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I�TRODUCTIO� 

Stuart Pocock [1983] defined clinical trials as any planned experiments, involving 

patients with a given medical condition, which are designed to elucidate the most 

appropriate treatment for future cases. The canonical example of experiments of this 

sort is the drug trial, which is usually divided into four phases1. Phase I focuses on 

finding the appropriate dosage in a small group of healthy subjects (20-80); thus such 

trials examine the toxicity and other pharmacological properties of the drug. In phase II, 

between 100 and 200 patients are closely monitored to verify the treatment effects. If 

the results are positive, a third phase, involving a substantial number of patients, begins, 

in which the drug is compared to the standard treatment. If the new drug constitutes an 

improvement over the existing therapies and the pharmaceutical authorities approve its 

commercial use, phase IV trials are begun, wherein adverse effects are monitored and 

morbidity and mortality studies are undertaken. 

 

This paper focuses on phase III drug trials.  The standard experimental design for these 

trials currently involves a randomised allocation of treatments to patients. Hence the 

acronym RCTs, standing for randomised clinical (or sometimes controlled) trials2. The 

statistical methodology for planning and interpreting the results of RCTs is grounded in 

the principles established by Ronald Fisher, Jerzy Neyman and Egon Pearson in the 

1920s and 1930s. A hypothesis is made about the value of a given parameter (e.g., the 

survival rate) in a population of eligible patients taking part in the trial. The hypothesis 

is tested against an alternative hypothesis; this requires administering the drug and the 

control treatment to two groups of patients. Once the end point for the evaluation of the 

treatment is reached, the interpretation of the collected data determines whether or not 

we should accept our hypothesis about the effectiveness of the drug, assigning a certain 

probability to this judgment.   

                                                 
1 Clinical trials can be set to analyse many different types of treatment: not only drugs, but also medical 
devices, surgery, alternative medicine therapies, etc. The characteristics of these types of trials are quite 
different; so, for the sake of simplicity, I will only deal here with drug testing.  
2 In this paper, for the sake of simplicity, ‘RCTs’ will refer to standard frequentist trials. Notice though 
that randomization may well feature in the design of a Bayesian clinical trial.  
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This statistical methodology is based on a specific view of probability – called the 

frequestist approach -- according to which probabilities are (finite or infinite) relative 

frequencies of empirical events: here these are treatment effects in a given experimental 

setting. However, there are alternative interpretations of the axiomatic definition of 

probability and it is possible to construct clinical trials from at least one of these: 

Bayesianism. In the Bayesian approach, probabilities are conceived as degrees of belief. 

Hence, for instance, these probabilities can be calculated on the basis of whatever 

information is available and are not tied to a particular trial design [Berry, 2005]. Unlike 

in the case of standard RCTs, we can calculate these probabilities with or without 

randomisation and with any number of treated patients. Hence, depending on the 

conception of probability we adopt, clinical trials can be designed and their results 

interpreted in different manners, not always convergent.  

 

The first clinical trial planned and performed following a frequentist standard was the 

test of an anti-tuberculosis treatment, streptomycin. It was conducted in Britain and 

published in 1948. Over the following decades, RCTs would be adopted as a testing 

standard by the international medical community and by pharmaceutical regulatory 

agencies all over the world. Today, RCTs constitute the mainstream approach to drug 

testing and, through evidence-based medicine, they even ground standards of medical 

care. The 1980s brought a boom in Bayesian statistics, with many practical 

implementations in medicine, as well as in other disciplines. As soon as the computing 

power required by Bayesian calculations became available, increasingly sophisticated 

Bayesian trials were designed and implemented. It has been argued that these trials may 

be more efficient and more ethical than a frequentist RCT: e.g., reaching a cogent 

conclusion about the efficacy of a treatment may require fewer participants, minimising 

the number of patients exposed to the risks of the experiment. Today, there is debate 

about whether regulatory agencies, and in particular the FDA, should accept evidence 

from Bayesian trials as proof of the safety and efficacy of a drug. If (or, rather, when) 

this happens, frequentism may lose its commanding position in the field of medical 

experiments. The question is whether the grounds for this change are in fact sound. 

 

The aim of this paper is to provide an overview of the philosophical debate on 

frequentist versus Bayesian clinical trials. This has been an ongoing discussion over the 
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last thirty years and it is certainly not closed. The comparison between these approaches 

has focused on two main dimensions: the epistemology of the statistical tools (e.g., p-

values vs. prior and posterior probabilities) and the ethics of the different features in 

each experimental design (e.g., randomisation). As of today, the mainstream view 

among philosophers (certainly not among biostatiscians) is that RCTs are epistemically 

and ethically problematic and a Bayesian alternative would be welcome. I would like to 

add a third dimension of comparison, so far neglected in this debate: the advantages of 

each approach as a regulatory yardstick. I contend that a fair comparison between these 

two approaches should simultaneously consider three dimensions: epistemological, 

ethical and regulatory. Philosophers and statisticians care deeply about the 

epistemological issues. Physicians and patients are equally concerned about the ethical 

issues. But we all care, as citizens, about the regulatory issues. There is a trade-off 

between these three different dimensions and the perfect trial that would satisfy all the 

concerned parties may well not exist. 

 

Most of the conflicts created by RCTs derive from the regulatory constraints imposed 

on medical experimentation. In a world where clinicians and patients were free to 

negotiate which testing standard was more mutually suitable for their goals in research 

and care, it is likely that the frequentist and Bayesian trials would both flourish. Yet for 

the last 100 years we have lived in a regulated world in which we want state agencies to 

conduct trials in order to determine whether treatments are safe and effective enough to 

warrant authorisation of their commercial distribution. RCTs were adopted as a testing 

standard by many of these regulatory agencies and, despite their epistemic and ethical 

flaws, they seem to have done a good job in keeping harmful compounds off 

pharmaceutical markets. As long as we want this type of regulatory supervision, we 

should be willing to accept certain constraints on our testing methodologies (be these 

frequentist or Bayesian) whenever we conduct experiments in order to gain regulatory 

approval.  

 

I will open the first part of this paper by trying to elucidate the frequentist foundations 

of RCTs. I will then present a number of methodological objections against the viability 

of these inferential principles in the conduct of actual clinical trials. In the following 

section, I will explore the main ethical issues in frequentist trials, namely those related 

to randomisation and the use of stopping rules. In the final section of the first part, I will 



 

 4 

analyse why RCTs were accepted for regulatory purposes. I contend that their main 

virtue, from a regulatory viewpoint, is their impartiality, which is grounded in 

randomisation and fixed rules for the interpretation of the experiment. 

 

Thus the question will be whether Bayesian trials can match or exceed the achievements 

of frequentist RCTs in all these respects. In the second part of the paper, I will first 

present a quick glimpse of the introduction of Bayesianism in the field of medical 

experiments, followed by a summary presentation of the basic tenets of a Bayesian trial. 

The point here is to show that there is no such thing as “a” Bayesian trial. Bayesianism 

can ground many different approaches to medical experiments and we should assess 

their respective virtues separately. Thus I present two actual trials, planned with 

different goals in mind, and assess their respective epistemic, ethical and regulatory 

merits. In a tentative conclusion, I contend that, given the constraints imposed by our 

current regulatory framework, impartiality should preside over the design of clinical 

trials, even at the expense of many of their inferential and ethical virtues.  

 

1.1  I� WHAT SE�SE ARE RCTS GROU�DED I� FREQUE�TISM?  

 

Running a phase III clinical trial is a manifold task, which goes far beyond its statistical 

underpinnings. The credibility (and feasibility) of a trial is conditional on a complete 

preplanning of every aspect of the experiment. This plan is formally stated in the study 

protocol. The following items should feature in the protocol, according again to Pocock 

[1983, p. 30]: 

 

Background and general aims Patient consent 

Specific objectives Required size of study 

Patient selection criteria Monitoring of trial progress 

Treatment schedules Forms and data handling 

Methods of patient evaluation Protocol deviations 

Trial design Plans for statistical analysis 

Registration and randomisation of patients Administrative responsibilities 

 

The aim of a trial is to test a hypothesis about the comparative efficacy of an 

experimental treatment (be it with the standard alternative or a placebo). Leaving aside 
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for a moment the statistical design of the test, first it is necessary to define which 

patients are eligible for the study (e.g., they should be representative of the disease 

under investigation); how to create an experimental group and a control group; how to 

administer treatment to each of them; and what the end-points for the evaluation of their 

responses are. During the course of the trial, an interim analysis is usually performed in 

order to monitor the accumulating results, since reaching the number of patients 

specified in the design may take months or years and because the information gleaned 

from such an interim analysis may in fact warrant some action such as terminating the 

trial early. Once the trial is completed, the hypothesis about the comparative efficacy of 

the treatment will be either accepted or rejected and the results published. Depending on 

the disease and the planned sample size, this may add several years to the time taken up 

by the two previous trial phases. Thus the development of a new drug may well take a 

decade before it is approved for public use by the pharmaceutical regulatory agency3.  

 

In this section, we will focus only on those aspects of the trial more directly connected 

to the frequentist view that have been more broadly discussed in the medical literature: 

namely, randomisation as a treatment allocation mechanism, on the one hand, and the 

use of significance testing and confidence intervals in the analysis of the results of the 

trial, on the other. The goal of this section will be limited to showing how these 

concepts are related to the frequentist interpretation of probability. It is important to 

clarify them in order to show the real scope of the Bayesian alternative: paradoxically, 

p-values and confidence intervals are often understood as if they measured some kind of 

posterior probability -- i.e., as if they were measuring Bayesian degrees of belief for 

certain events rather than frequencies. 

 

Let us start with randomisation. Once a patient is deemed eligible (according to the 

trial’s protocol) and recruited, the informed consent form signed and the log sheet with 

her identification details filled out, the treatment is assigned at random. Depending on 

the arrangement of the trial (number of treatments, whether or not it is double blinded, 

whether or not it is multi-centre), randomisation may be implemented in different ways. 

The general principle is that each patient should have an equal probability of receiving 

                                                 
3 For an updated account of the practical arrangements involved in a trial, including compliance with the 
current regulatory constraints, see [Hackshaw, 2009, pp. 157-201]. The book provides a concise overview 
of every dimension of a clinical trial today. For a thorough overview, see [Piantadosi, 2005]. 
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each treatment. If it is convenient to control the allocation of treatments according to 

patient characteristics, in order to prevent imbalances, randomisation can be stratified. 

What is the statistical rationale of this procedure? 

 

Let us informally sketch Fisher’s original argument for randomisation (as reconstructed 

in [Basu, 1980]). In order to study the response differences between the two treatments 

in trial patients, we need a test statistic with a known distribution: for instance, T=Σdi, 

where di is the response difference. Assuming the hypothesis that there is no difference 

between treatments, suppose we observe a positive difference di between treatments in a 

given pair of patients who received them at random. Assuming that our hypothesis is 

true, this difference must have been caused by a nuisance factor. If we kept this factor 

(and all other factors) constant and repeated the experiment, the absolute value of |di| 

would be the same with the same sign, if the treatments were identically allocated; it 

will be reversed if the allocation had been different. The sample space of T will be the 

set of 2n vectors R = {(± d1, ± d2,…., ± dn)}  

 

Randomisation warrants that all these vectors will have an equal probability. If di is 

positive for all i, we will observe another n response differences d’i equal or bigger than 

di if and only if d’i = di. The probability of observing this response is (½)n, the 

significance level of the observed differences, as we will see below. This probability 

was, for Fisher, the frequency of observing this difference in an infinite series of 

repetitions of the experiment. And we will need it in order to calculate how exceptional 

the results of our experiment have been. 

This statistical rationale for randomisation is usually skipped in medical textbooks, 

where random allocations are usually justified through the following two arguments. 

First, randomisation prevents selection bias: it prevents investigators from assigning 

(consciously or unconsciously) patients with, say, a given prognosis to any one of the 

treatments. For instance, an investigator might allocate the experimental treatment to the 

healthier patients, if she wants the trial to be positive, or to the patients with a worse 

prognosis, if she thinks they will benefit more. This is an argument that never fails to 

appear in medical textbooks and, as we will see below, it was extremely influential in 

the acceptance of clinical trials by the medical profession, at least in the United 

Kingdom and the United States. A second argument that is often cited in medical 
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textbooks to justify randomisation can be traced back to Fisher’s famous tea tasting 

experiment. In clinical trials, randomisation would allow control over unknown 

prognostic factors, since, over time, their effect would be distributed in balance between 

the two groups. Bayesians and frequentists usually accept the first argument –we will 

see more about this in the second part of this paper. But, as we will see in the following 

section, there is more disagreement about the second argument within both approaches. 

However, neither of these two arguments presuppose a particular conception of 

probability, so we will not develop them at more length here.  

 

Let us focus instead on the statistical interpretation of test results. The aim is to evaluate 

how significant they are under a number of probabilistic assumptions. Again, it is often 

the case that their statistical rationale is only partially explained in medical textbooks, 

giving rise to great confusion about what clinical trials actually mean. So let us revisit 

once more the original rationales for significance levels, because, as we will see, the 

medical community (as it is often the case in many social sciences) uses a combination 

of them. 

The use of significance tests certainly predates Fisher. Leaving aside previous uses in 

astronomy, Karl Pearson was already using them to measure the discrepancy between a 

theoretical distribution of probability and a curve of empirical frequencies, using χ2 as a 

test of the “goodness of fit” [Cowles & Davis, 1982]. If the probability of observing a 

given value of χ2 was below 0.1, Pearson considered the goodness of fit “a little 

improbable”. But this implied nothing about the truth or falsity of any hypothesis –

being a committed positivist, Pearson viewed curves just as summaries of observations. 

W. S. Gosset made a more precise estimate of significance levels, arguing they should 

be “three times the probable error in the normal curve”: the odds of such an observation 

were approximately 30 to 1, which was usually rounded to 0.5. In the 1920s Fisher 

restated the concept within his own statistical framework. He was a frequentist for 

whom any probability judgment should be theoretically verifiable to any chosen degree 

of approximation by sampling its reference set. However, Fisher admitted various ways 

to represent our uncertainty depending on the extent of our prior knowledge4.  

Significance tests will better assess the plausibility of a given hypothesis (the null 

hypothesis) about which not much is previously known. It should allow us to specify a 

                                                 
4 Fisher’s positions is certainly simplified here. For a brief comparative discussion see [Lehmann, 1993].  
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unique distribution function for the statistic that we will use to test it.  But there may be 

many different such statistics available.  With this function, we can calculate the 

probability of each possible value of the statistic on the assumption that the hypothesis 

is true. Once the experiment is run and actual data provide the observed value of the 

statistic, we can also calculate how likely it is, assuming the truth of the hypothesis, to 

obtain a result with less or equal probability than the observed one: this is the p-value. 

In other words, the p-value is the proportion of an infinite series of repetitions of an 

experiment, all conducted assuming the truth of the null hypothesis, that would yield 

data contradicting it as strongly as or more so than the observed result. Therefore, the p-

value is a probability of observed and unobserved results which is tied to the design of 

the experiment and cannot be properly interpreted without it. 

Suppose the probability of observing a result within this tail area is less than 0.5: if one 

such result occurs in the experiment, Fisher would interpret it as a serious deviation 

from what we would have expected, were the hypothesis true. Such a result would make 

the hypothesis “implausible”: either an exceptionally rare chance has occurred or the 

hypothesis is not true. But the data alone cannot establish whether the former or the 

latter is the case (or whether both are).  

Fisher was careful (usually, but not always) to remark that a single experiment did not 

provide solid enough grounds to demonstrate any natural phenomenon. Only when an 

experiment is repeated and delivers results that systematically deviate from the 

hypotheses tested can we judge the latter to be implausible. However, the truth of the 

hypothesis can never be established with significance testing: it is just assumed. 

Neyman and Pearson developed a different rationale for the testing of hypotheses: 

instead of assessing the plausibility of a single (null) hypothesis, we should have a 

criterion for choosing between alternative exclusive hypotheses, with a known 

probability of making the wrong choice in the long run. Errors could be of two kinds: 

rejecting the null hypothesis when it is true or accepting it when it is false.  

Using the probability distribution of the statistic, we define a rejection region R: if the 

observed value of the statistic falls within R, the null hypothesis (H0) should be rejected 

and the alternative hypothesis (H1) accepted; if the observed value falls outside R, H0 

should be accepted and H1 rejected. The probability α of making an error of the first 

kind (accepting H1 when it is false) is called the size of the test; given the probability β 

of making an error of the second kind (rejecting H1 when it is true), the power of the test 
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amounts to 1-β. In order to construct the test, we should decide which hypothesis would 

be the null, in order to minimize the probability α of an erroneous rejection. We then 

choose a rejection region with the desired probability α that maximises the power of the 

test. Achieving this power implies a certain sample size (a given number of patients in a 

trial). 

In the Neyman-Pearson approach, instead of measuring how implausible the observed 

result makes H0 (without any actual probability value), α gives us the probability of 

incorrectly rejecting H0 in a hypothetical long run of repeated experiments. Again, 

nothing is concluded about the truth of H0: accepting a hypothesis implies, at most, 

acting as if it were true. Whereas Fisher wanted significance to ground an inductive 

inference (repeated experiments would make H0 implausible), Neyman calculated 

probabilities (size and power) for a test, trying to minimize their epistemic import. For 

Neyman, we cannot know that H0 will be incorrectly rejected in only a given number of 

instances: we can only decide to believe it5. 

In its more widespread interpretation, the Fisherian p-value would somehow express the 

inductive support that a hypothesis receives from certain experimental data: given a 

certain observation, and assuming the hypothesis is true, it is the probability of 

observing it or a more extreme result6. The Neymanite significance level α is a 

deductively established probability of making type I errors in a series of experiments, 

before observing any particular result. 

Fisher was extremely unhappy with the approach advanced by Neyman and Pearson. 

Leaving aside technical objections, Fisher considered Neyman’s behaviouristic tests as 

an industrial procedure aimed at cutting experimental costs, not at solving inferential 

problems. However, as Gigerenzer et al. [1989] put it, their respective views were 

merged in a sort of “hybrid theory” that textbooks popularised over the second half of 

the 20th century. Neyman’s behaviourism was dropped and error probabilities were 

given an epistemic interpretation: the p-value became an observed α, a post trial error 

rate that measured the inductive evidence for a hypothesis. This is what Steve Goodman 

[1999a] calls the p-value fallacy. In a similar vein, a confidence interval is often simply 

                                                 
5
 In Neyman’s [1957, p. 12] own words, this is “an act of will to behave in the future (perhaps until new 
experiments are performed) in a particular manner, conforming with the outcome of the experiment”. 
From a Bayesian perspective, this inductive behaviour is just decisión-making without loss functions. 
6 As Donald Gillies made me notice, after 1930 Fisher himself would have preferred the fiducial 
argument by way of inductive measure: see [Gillies, 1973; Seidenfeld, 1979]  for an analysis. 
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understood as a range within which the true outcome measure is likely to lie, without 

any mention of error probabilities in the long run. As we will see in the second part of 

this paper, such misinterpretations would correspond more to Bayesian posterior 

probabilities than to the original frequentist definition.  

It is an open question to what extent these sorts of misconceptions have actual 

consequences on the assessment of the safety and efficacy of drugs.  Perhaps a better 

understanding of the scope of p-values and confidence intervals would contribute to 

reducing the confusion generated by so many trials with apparently mutually 

contradictory results7. However, this confusion may well have other sources, such as, 

for instance, the publishing practices inspired by pharmaceutical companies [Sismondo 

2009]. For the time being, I hope the previous clarification is enough to clarify in what 

sense RCTs are conceptually grounded in the frequentist paradigm. In the following 

section we will examine a number of objections concerning the possibility of 

implementing RCTs according to this very demanding standard. 

 

1.2 METHODOLOGICAL ISSUES  

 

The controversy over the foundations of statistics between frequentists and Bayesians is 

too long and deep to be summarised here. Equally beyond the scope of this paper is a 

discussion of the technical objections addressed by each party against their respective 

approaches to clinical trials8. I will focus instead on the philosophical debate on the 

flaws of frequentist RCTs, presenting a number of arguments that hold independently of 

any conception of probability9. These objections, listed below, have been developed 

over the last thirty years, mainly by Peter Urbach and John Worrall, without much 

response so far. The reader may now judge to what extent they are conclusive.  

 

Objection #1: which population?  

 

                                                 
7 Statistical mistakes of this sort were soon denounced in the medical literature: see, for instance, 
Mainland 1960. For an update, see, e.g., [Sterne and Smith, 2001]. 
8 The interested reader can catch a glimpse of this debate in the special issue on this topic of the journal 
Statistics in Medicine 12: 1373-1533, 1993.   
9 A connected but separate issue that I will not address here either is the scope of RCTs in causal 
inference, which has also received some philosophical attention: see, e.g., [Cartwright, 2007; Papineau, 
1994] and also Dan Steel’s paper in this volume. 
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In a clinical trial there is no real random sampling of patients, since the population 

random samples should be drawn from remains usually undefined: there is no reference 

population, just criteria of patient eligibility in the trial protocol. Generalizing from the 

individuals entered into the study to any broader group of people seems ungrounded 

[Urbach, 1993]. 

 

Objection #2: significant events may not be that rare 

 

A positive result in a significance test is interpreted as an index that H0 is false. Were it 

true, such result would be an “exceptionally rare chance”. It would be exceptional 

because a randomised allocation of treatments would ideally exclude any alternative 

explanation: uncontrolled factors would be evenly distributed between groups in a series 

of random allocations. However, it would not be “exceptionally rare” that the treatment 

was effective in the case where it had been allocated to the healthier patients alone, to 

those with best prognoses or to any group of patients that for whatever reason could 

differentially benefit from the treatment.  

 

Colin Howson, among others, has argued that randomisation as such does not guarantee 

that the occurrence of such unbalanced allocation in a particular trial is rare: it may be 

produced by uncontrolled factors. As Worrall [2007, pp. 1000-01] puts it, 

“randomisation does not free us from having to think about alternative explanations for 

particular trial outcomes and from assessing the plausibility of these in the light of 

‘background knowledge’”. This further assessment cannot be formally incorporated, as 

it should be, into the methodology of significance testing. Hence, we cannot ground our 

conclusions on this methodology alone. 

 

Objection #3: post randomisation selection 

By sheer chance, a random allocation may yield an unbalanced distribution of the two 

treatments, i.e., the test groups may differ substantially in their relevant prognostic 

factors (these are called baseline imbalances). This difference may bias the comparison 

between treatments and spoil the experiment. If one such distribution is observed, the 

customary solution is to randomise again seeking a more balanced allocation. However, 

argues Urbach [1985], the methodology of significance testing forbids any choice 

between random allocations: if they are adequately generated, any allocation should be 
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as good as any other. Hypotheses should be accepted or rejected on the basis of the 

experiment alone, without incorporating our personal assessment of the generated data 

(justified though it may be). 

 

It is usually assumed that with a high number of enrolled patients, it is very unlikely that 

randomisation generates unbalanced groups. Urbach argues that we cannot quantify this 

probability and much less discard it. At best, a clinical trial provides an estimation of 

the efficacy of a treatment, but there is no direct connection between this result and the 

balance of the two groups. The conclusions of the trial can be spoiled by the following 

two objections. 

 

Objection #4: unknown nuisance variables after randomisation 

 

Even after randomising, uncontrolled factors may differentially influence the 

performance of a treatment in one of the groups. Further randomisations at each step in 

the administration of the treatment (e.g., which nurse should administer it today?) may 

avoid such interferences, but this is quite an impractical solution. Declaring such 

disturbances negligible, as many experimenters do, lacks any internal justification in the 

statistical methodology assumed [Urbach, 1985; Worrall, 2007].   

 

Objection #5:  known nuisance variables 

 

It has been argued that randomisation can at least solve the problem created by known 

perturbing factors that are difficult to control for. These could be at least randomised 

out. Following Levi [1982], Urbach [1985, p. 267] argues that since we know of no 

phenomena correlated to these confounding factors, “there is no reason to think that 

they would balance out more effectively between groups by using a physical 

randomising device rather than employing any other method”. 

 

Objection #6:  RCTs do not necessarily perform better than observational studies 

 

Despite all these objections, it is often claimed that RCTs are more reliable than non-

randomised “observational” studies such as, for instance, case-control studies, where 

retrospective samples of cases and controls matched for known risk factors are 
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compared. Cohort studies or registry databases may also provide information about 

comparative interventions. In the 1970s and 1980s analyses of randomised and non-

randomised trials of a given treatment showed that the estimated effects were higher in 

the latter than in the former10. If we assume that RCTs provide the more reliable 

estimation of the true effect of a treatment, we can conclude that the observational 

studies indeed “exaggerated” the effects.  However, a recent wave of analyses 

concerning the quantitative bias of observational studies shows that there might not be 

such overestimation. In view of all these, Worrall [2007, p. 1013] concludes that there is 

“no solid independent reason for thinking that randomisation has automatic extra 

epistemic weight”: if we do not commit ex ante to RCTs as the gold standard to provide 

the estimation of the effects of a treatment, the comparison is not necessarily 

unfavourable to observational studies.  

 

These six objections are sound, in my view. Even if, over the last 50 years, RCTs have 

certainly succeeded in identifying effective and ineffective treatments, their a priori 

epistemic grounds are not as flawless as you might think if you just relied on the 

standard biomedical literature. There is certainly room for competing alternatives, as we 

will have the occasion to discuss in the second part of this paper. However, let me close 

this section now noting that there is quite a general agreement, even among Bayesian 

critics, about one argument for randomisation: it offers protection against selection 

biases. As I already mentioned, the medical profession has always appreciated this 

epistemic virtue of randomisation, perhaps because there has been a clear awareness of 

biases of this sort in the medical literature for at least a hundred years if not more. 

Allocating treatments at random prevents any manipulation and guarantees a fair 

comparison. This argument for randomisation is also independent of any particular view 

of probability11 and, as we will see below, played a central role in the acceptance of 

RCTs as regulatory standards, as I will discuss in section 1.5 below. But let us now 

examine a different source of objections against frequentism in clinical trials: the ethical 

dilemmas it leads to. 

 

1.3 ETHICAL ISSUES  

                                                 
10  See [Worrall, 2007, pp. 1009-1013] for a discussion. 
11 See [Berry and Kadane, 1997] for a nice decision-theoretic argument for randomisation developed from 
a Bayesian perspective. See also how the impossibility of manipulation provides a very good defence for 
observational studies in [Vandenbroucke, 2004]. 



 

 14 

 

Randomised clinical trials are, obviously, experiments with human subjects. As such, 

they are usually conducted under external supervision according to the ethical principles 

approved in the Nuremberg code, the Helsinki declaration, and other national and 

international guidelines12. Trials are conducted for research purposes, and the design of 

the experiment often imposes constraints on the standards of care that patients may 

receive. Many ethical dilemmas arise therein. In this section I will only focus on the 

conflicts more directly related to the frequentist foundations of RCTs: namely, the 

ethical issues involved in randomisation (as a treatment allocation procedure) and in the 

stopping rules that may close a trial before it reaches the targeted sample size13. 

 

 There is a common stance regarding the ethics of randomisation: it is only acceptable 

when there is genuine uncertainty in the medical community about which one among 

the allocated treatment is most beneficial for a patient (in the population determined by 

the study’s eligibility criteria)14. This is often referred to as clinical equipoise. Ideally, 

this would be reflected in the null hypothesis adopted (no difference between 

treatments) and the trial should eliminate this uncertainty. It is open to discussion 

whether there is a sound ethical justification for random assignment rather than patient 

or doctor choice whenever clinical equipoise obtains, or whether this is just an ad hoc 

ethical principle to justify the random allocation of treatments required by significance 

testing.  There has long been evidence that individual clinicians have preferences about 

the best treatment for their patients, in particular when the illness is serious and the risks 

and possible benefits are not negligible15. This could be interpreted as resistance to treat 

them as the indeterminate members of a statistical population, as required in the 

statistical design of the experiment. 

 

But even if there were genuine equipoise, why would it be ethical to allocate treatments 

at random? The standard argument for justifying the participation of patients in clinical 

trials draws on the general normative principles usually applied in bioethics after the 

                                                 
12 However, in developing countries the regulation of clinical trials is significantly softer and this creates 
a clear incentive for the industry to conduct their tests there: for an overview and discussion see [Macklin, 
2004].  
13 For a general overview of bioethics with particular attention to clinical trials, see [Beauchamp and 
Childress, 2001] and [Levine, 1998]. 
14 For a critique, see, for instance, [Gifford, 1986 and 1995].  
15 E.g., [Taylor et al., 1984]. 
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Belmont Report: autonomy, beneficence or non-maleficence, and justice. Autonomy is 

granted if the patients consent to receive their treatment at random after being properly 

informed about the clinical equipoise of both treatments and the research design of the 

trial. If the equipoise is genuine, then random allocation is consistent with the expected 

effect being as good as possible. As for justice, if there finally were a difference 

between treatments despite the initial equipoise, those who received the less effective 

one did so at random, which doesn’t seem intuitively unfair. The principles of autonomy 

and justice bear a more direct connection to the statistical assumptions of the trial, so let 

us discuss them in more detail. 

 

For all practical purposes, the autonomy of every patient in a trial is grounded in the 

informed consent she gives to participate in the experiment, signing a formal agreement 

before it starts. This is a legal requirement in many countries and, in addition, an 

Institutional Review Board usually oversees the process. There are different standards 

concerning the information that the patient should receive before giving consent, but it 

should certainly include the fact that the trial is for research purposes, the fact that 

participation is voluntary, and an explanation of the procedures to be followed. In 

RCTs, there is at least a paragraph about the random allocation of treatments, stated in a 

non-technical language16. However, there is qualitative evidence that patients often 

misunderstand these paragraphs, making their informed consent to randomisation 

dubious. Moreover, there is also evidence that clarifying this confusion is often difficult, 

if not expensive17.  

Various surveys of the patients’ motivation to take part in trials (e.g., [Edwards et al., 

1998]) point out that a randomised allocation of treatments is at odds with their goals: 

they are expecting to benefit personally from the treatment and the more information 

there is about the different effects of each drug, the more reluctant they are to a random 

assignment. It is often cited in this context how AIDS activists subverted research 

protocols in the early 1980s trials: among other things, they exchanged treatments after 

randomisation in order to increase their probabilities of receiving the experimental drug 

                                                 
16 E.g., “You will be randomised into one of the study groups described below. Randomisation means that 
you are put into a group by chance. It is like flipping a coin. Which group you are put in is done by a 
computer. Neither you nor the researcher will choose what group you will be in. You will have an 
EQUAL/ONE IN THREE/ETC. chance of being placed in any group” (From the informed consent 
template developed by the American national Cancer Institute in 1998, included as an appendix in  
[Hartnett, 2000]) 
17 See, e.g., [Featherstone and Donovan, 1998; Flory and Emanuel, 2004]. 
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[Epstein, 1996]. They vindicated their autonomy to bear the risks of receiving untested 

treatments and succeeded in gaining access to the first antiretroviral drug, AZT, before 

any trial was completed. If patients perceive any difference in the treatments that they 

can benefit from, they may well prefer to dispense with randomisation. Such differences 

exist: equality among treatments may refer just to the single quantified outcome 

measured in the trial, but the quality of life that each treatment yields may significantly 

differ. 

The question of the benefits that a patient can expect from a trial is also relevant for the 

discussion of the justice of randomisation. Intuitively, patients can perceive 

randomisation as a fair lottery. However, lotteries are considered fair procedures when 

the good allocated is scarce. This was sometimes the case in clinical trials, but usually 

there are doses of the experimental treatment for every patient in the experiment, even if 

only half of them receive it. What should be distributed are the potential benefits and 

burdens of the test, which are a priori unknown. The fairness of such a distribution does 

not rely on the outcome (some may win and some may lose, none of them deserving it), 

but rather on the impartiality of the allocation. No patient can claim that the allocation 

was intended to favour one person over another.   

 

The best formulation for the view of justice intuitively captured in the idea of a fair 

lottery is probably a contractarian one [Stone, 2007]. If the participants in a trial 

acknowledge that, all of them being equally eligible, all of them have equally strong 

claims to receive the potential benefits and burdens of the trial and, on the other hand, 

no other consideration is taken into account, then it seems plausible that they would 

agree to use an equiprobable lottery in order to distribute whatever comes out of the 

treatments. However, if we adopt a different approach to justice, the fairness of 

randomisation can be questioned. In a utilitarian perspective, for instance, the allocation 

of treatments would be fair if it maximised the social utility of the participants in the 

trial (or, perhaps, society as a whole). There is no a priori reason to presume that a 

randomised allocation would achieve this. E.g., if equipoise fails concerning the 

comparison of these treatments, there may be differences in the expected utility that 

each treatment may yield to each participant. Hence certain non-random allocations may 

yield a superior average expected utility superior and be ethically preferable from a 

purely utilitarian perspective.   
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To sum up, from an ethical perspective, randomisation is quite controversial, and it 

seems clear that if it were possible to avoid it, this would bring ethical gains. Alternative 

approaches to randomisation may fare better in some respects, as we will see in more 

detail in the second part of the paper. Yet if we want to interpret the results of the trial 

through significance tests, some sort of randomisation is necessary.  

 

The second ethically contentious topic regarding frequentism in clinical trials is that 

concerning stopping rules18.  It may happen that before completing the trial, a larger 

than expected treatment effect, either beneficial or harmful to the patients, is observed 

in the experimental arm. Or, alternatively, it may appear that the experimental therapy is 

having no effect. Hence the trial might be terminated early due to the very bleak 

prospect of demonstrating any effect, at the risk of not reaching the statistical power 

initially envisaged in the protocol, which is tied to the sample size (i.e., the number of 

patients treated in the trial). In order to justify this decision, certain factors should be 

considered. Namely, the plausibility of the observed effect, the number of patients 

already recruited, the number of interim analyses performed, and the monitoring method 

applied. If the trial takes a long time to be completed, the protocol will specify a number 

of interim analyses (e.g., according to certain clinical endpoints). At each stage, there 

will be a stopping rule providing a criterion for whether or not to continue the trial. The 

patients’ interests are usually considered in the choice of the interim endpoints. As 

mentioned above, a common view about the ethics of trial interruption nowadays is that 

this should happen as soon as the evidence accumulated contradicts the initial 

assumption of clinical equipoise. However, if the effect of the experimental drug is, at 

that point, positive, should we stop the trial and use it on other patients without 

conducting an additional trial in full? 19  

 

Our views on this question will depend on the epistemic standard we adopt. We might 

choose the standard view in evidence-based medicine, namely that only accomplished 

RCTs with a given statistical power count as proper evidence of the safety and efficacy 

                                                 
18 See [Baum et al., 1994; Cannistra, 2004] for a general discussion. See also [Mueller et al., 2007; 
Goodman, 2007] for a discussion incorporating the Bayesian perspective. 
19 This is what Gifford [2000, p. 400] calls the RCT dilemma: if trials are stopped as soon as clinical 
equipoise vanishes, but before we reach their predefined statistical endpoints, there would be no point in 
designing the experiment in search of a certain level or significance or power. 
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of a treatment. In this view, it is unethical to administer the experimental drug to a 

patient without completing a trial20. Cases in which patients have been injured after 

receiving an improperly tested drug are cited for this position: thalidomide provides a 

good example. Under the trade name Contergan, one million West Germans consumed 

thalidomide as a sedative in the early 1960s –and subsequently many more people 

around the world. Reports were soon published in medical journals showing an 

association between the drug and peripheral neuropathy and, later, between the drug 

serious birth defects when consumed by pregnant women. Only then did the 

manufacturer withdraw the drug from European markets, but eight thousand babies had 

been already born with severe deformities. At that point, there was no clear regulatory 

standard about the safety of a compound, neither in the United States nor in Europe. As 

we will see in the following section, the thalidomide scandal prompted the approval of 

more strict regulations, leading to the current prevalence of RCTs. However, there are 

cases in which lives were lost in additional trials for a treatment whose efficacy was 

seemingly clearly evident, but not statistically grounded in a proper RCT: e.g. the 

ECMO trials, as analysed by John Worrall [2008]. 

 

A recent systematic review shows that the number of trials that are being stopped early 

for apparent benefit is gradually increasing [Montori et al., 2005]. This decision is 

usually not well justified in the ensuing reports: the treatment effects are often too large 

to be plausible, given the number of events recorded. Again, this is open to various 

interpretations: trials may have been stopped out of genuine concern for the patients’ 

welfare, but less altruistic motivations could have also played a role (e.g., pressure from 

the funding body or the urgency of an impact publication). Yet, this review [Montori et 

al., 2005] depends on the evidentiary standard we adopt: if we only consider credible 

the evidence originating from properly powered RCTs, we should be sceptical about the 

results of early stopping trials. However, if we accept alternative sources of evidence, as 

Worrall suggests, we may accept some of the results from these trials as legitimate.   

 

Just as it happened with randomisation, the problem is whether there is any alternative 

standard for judging clinical evidence which is at least as epistemically strong as RCTs, 

                                                 
20 Therefore stopping rules should be calibrated depending on the trade-off between benefits for the 
participants in a trial and benefits for future patients in order to minimize the loss of information if the 
trial has to be interrupted. See [Buchanan and Muller, 2005] for a discussion. 
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but causes less ethical trouble. Part of the strength of the Bayesian approaches we will 

discuss in the second part of this paper is that, in principle, they can solve these 

problems. On the one hand, randomisation is not strictly necessary for inference (even if 

it can be defended on other grounds); hence perhaps following a Bayesian approach will 

allow us to avoid it. On the other hand, a trial may be stopped at any point without 

disturbing the statistical validity of the results: the conclusions will be as strong as the 

evidence gathered so far.  

 

But before we get to examine this alternative, we should first consider just what the 

original alternatives to RCTs were and why the latter succeeded so quickly. Relatedly, it 

is worth noticing here that the ethical dilemmas we have just discussed are not created 

by RCTs as such, but rather by our current regulatory framework, in which RCTs 

feature prominently as a testing standard. As I anticipated in the introduction, a fair 

comparison between RCTs and any alternative approach to clinical trials should take 

into account not only the inferential and ethical merits of each option, but also their 

respective soundness as a regulatory standard. 

 

To this end, I will now present in some detail the different approaches to drug testing 

implemented over the 20th century, considering also their regulatory impact. This will 

show that we demand from clinical trials not only certain inferential virtues and ethical 

foundations, but also certain warrants of impartiality that vary according to each social 

context.  

 

1.4 REGULATORY ISSUES 

 

From the 1950s on, RCTs have been adopted in many countries as a regulatory standard 

to decide whether a drug is suitable for commercial distribution: a properly conducted 

phase III trial would decide about its safety and efficacy. As I mentioned in the 

introduction, this regulatory dimension of RCTs is not usually considered in their 

philosophical discussion, despite the attention it receives from sociologists and 

historians. However, the epistemic merits of RCTs as a regulatory yardstick should be 

considered together with their methodological and ethical foundations, if only because 

these merits were certainly considered by the agencies that adopted them as their testing 

standard.  This adoption poses an interesting philosophical problem: assuming that the 
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civil officers at these agencies were statistical novices, what sort of arguments 

convinced them of the superiority of RCTs as opposed to other testing methods?  Were 

they justified in accepting these arguments, or did they blindly follow the advice of the 

statistical experts who recommended RCTs?  

 

The standard sociological account of statistical expertise provides the following picture 

of how, in modern democracies, it came to replace non-mathematical forms of expert 

advice.  [Porter, 1995] An increasing pressure for public accountability made politicians 

choose statistical advisors. Statistical figures were perceived as the outcome of 

impersonal rules and calculations that exclude bias and personal preferences. Hence 

weak professional groups adopted statistical methods in order to strengthen their 

credentials as experts. In this account, trust in numbers is somehow blind: if there is no 

external check, the mere appearance of impartiality makes quite a poor epistemic 

justification. This approach grounds nowadays the best historical accounts of the 

introduction of RCTs for regulatory purposes. 

 

In this section, I will provide an overview of the regulatory uses of RCTs, discussing the 

main alternatives considered for drug testing in different countries. In choosing between 

these alternatives it seems as if the regulatory bodies were driven by an epistemic 

concern: they wanted their testing standard to be impartial, i.e., the result of the test 

should be independent of the interests of any of the concerned parties (patients, 

clinicians, the pharmaceutical industry, and the regulator itself). Historians and 

sociologists claimed that the adoption of RCTs as an impartial testing standard was 

blind, because their frequentist foundations were never well understood either by the 

medical profession or by the regulators. This claim may be true, but I contend that they 

understood quite well in what sense randomisation and significance testing provided 

insurance against testing biases, independently of their statistical underpinnings. In this 

respect, their adoption was clearly justified. By way of conclusion, I will briefly 

consider what our regulatory dilemmas are today and to what extent this impartiality 

request is still valid today.  

 

Between 1900 and 1950 expert clinical judgment was the main criterion in the 

assessment of the properties of pharmaceutical compounds, both in Britain and the 

United States. An experienced clinician would administer the drug to a series of patients 



 

 21 

he considered more apt to benefit from it. His conclusions would be presented as a case 

report, informing of the details of each patient’s reaction to the treatment. The 

alternatives were first laboratory experiments and then controlled clinical trials (from 

which RCTs would later emerge). Laboratory experiments would proceed either in vitro 

or in vivo (on animals and patients) and they were considered superior by clinicians 

with a scientific background. Yet their scope was usually restricted to safety 

considerations. It soon gave way to comparative trials, in which two treatments were 

alternated on the same patient or administered in two groups of patients (simultaneously 

or not). The arrangements to secure the comparability of the two treatments were the 

controls, and these adopted different forms: among the most prominent features were a 

clear statement of eligibility criteria to enter the trial, alternation and then randomisation 

in the allocation of treatments, uniformity in their administration and blinding 

(concealing the administered treatment from the patients and sometimes the doctors). 

These controls were not necessarily used all at once. Descriptive statistical reports from 

these trials conveyed their results with different degrees of sophistication. Significance 

testing features only occasionally in the medical literature before 195021.   

 

The regulatory authorities in Britain and the United States arranged official drug testing 

depending on the standards adopted by the research community within their respective 

medical professions. In both cases, and all throughout the 20th century, regulators were 

concerned about impartiality, here understood as independence from the financial 

interests of the pharmaceutical industry. Tests sponsored by manufacturers for 

advertising purposes were considered suspicious by consumers in both countries and 

this prompted, in different ways, the development of public pharmaceutical agencies to 

conduct or supervise the tests. However, most clinical researchers considered 

themselves impervious to biases from non-financial sources and impartial enough to 

conduct clinical tests without bias-proof mechanisms. Until the 1960s, regulatory 

decisions were fundamentally based on expert judgments of this sort. Expert judgment 

came only to be discredited in the United States because in the late 1950s a group of 

methodologically-minded pharmacologists imposed their views on the superiority of 

RCTs at the Food and Drug Administration22. However, as Iain Chalmers and Harry 

Marks have often argued, even for this enlightened minority the inferential power of 

                                                 
21 For excellent overviews see [Edwards, 2007; Marks, 1997; Toth, 1997].  
22 For an illustration of these points see [Marks, 2000, Carpenter and Moore, 2007]. 
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RCTs and its statistical foundations were not the primary reason to adopt them: 

randomisation and significance testing were understood as impersonal rules for 

allocating treatments and interpreting  trial results which warranted the impartiality of 

the assessment.   

 

During the 1960s and 1970s, RCTs became mandatory for regulatory decisions in 

different degrees. In the United States, before the 1960s, the Food and Drug 

Administration was only entitled to test the safety but not the efficacy of pharmaceutical 

compounds. In the late 1950s there were voices in the FDA demanding stricter testing 

standards linking safety and efficacy, under increasing public mistrust in the 

pharmaceutical industry. The thalidomide scandal gave them the opportunity to project 

their views on the 1962 Drug efficacy amendment to the Food, Drug and Cosmetics 

Act. It required from the applicant “adequate and well-controlled clinical studies” for 

proof of efficacy and safety (although the definition of a well-controlled investigation 

would not be clarified until 1969, when it was formally quantified as two well-

controlled clinical trials plus one previous or posterior confirmatory trial). Carpenter 

and Moore [2007] are correct, in my view, when they claim that this set of regulations 

created the modern clinical trial industry. In the following three decades, 

pharmaceutical funding would boost the conduct of RCTs in the United States and 

abroad. 

 

In the United Kingdom, the Medical Research Council (MRC) acted as a consulting 

body to the Ministry of Health in pharmaceutical issues from the 1920s on. Unlike the 

FDA, the MRC did not supervise ex officio the British drug market: when its 

Therapeutic Trials Committee started testing compounds in the 1930s, it was always at 

the request of the manufacturer. The MRC trials were undertaken in support of the 

British pharmaceutical industry, with a view to foster its international competitiveness 

and domestic reputation. Until the thalidomide scandal in the 1960s, the 

commercialisation of a drug in the UK did not formally require any sort of clinical test 

for either safety or efficacy. The thalidomide scandal prompted the creation of the 

Committee on Safety of Drugs (CSD) within the Ministry of Health, with a 

subcommittee in charge of clinical trials and therapeutic evidence. However, neither the 

Ministry of Health nor the CSD could legally prevent the commercialisation of new 

drugs. The industry informally agreed to get CSD approval for their trials and inform 
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them about the toxicity of their products: it was a non-compulsory licensing system 

established on the basis of safety alone, not efficacy. This voluntary arrangement 

operated smoothly for almost a decade (1964-1971). A statutory system came to replace 

it as a result of the 1968 Medicines Act, which gave to the Ministry of Health the 

licensing authority, with a Medicines Commission acting as advisory body. The 

industry was now required to present evidence regarding safety and efficacy, but 

clinical trials were defined in the 1968 Act in a way general enough to encompass all 

the testing procedures mentioned above (from expert clinical judgment to statistical 

tests). Even if RCTs were at this point the testing standard in clinical research in Britain, 

the regulator did not officially adopt them as a yardstick. Provided that the regulatory 

body established its independence from the industry (hence, its financial impartiality), it 

was possible to submit evidence gathered from different sources and the decision would 

be made on a case by case basis.23  

 

Impartiality in clinical trials is therefore the more socially desirable the bigger the 

public concern about biases, and this seems to depend entirely on the context in which 

trials take place. In Germany, for instance, the Drug Law was also revised in the 

aftermath of the thalidomide catastrophe. Yet this did not bring centralised control over 

clinical trials, which was considered costly and inefficient. Instead, it was agreed that 

the Federal Chamber of Physicians (BÄK) Drug Commission and the German Society 

for Internal Medicine issue guidelines for drug testing that the manufacturers should 

follow. Unlike Britain or the United States, in Germany therapeutic reformers did not 

form a coalition with statisticians after the II World War. Arthur Daemmrich’s [2004, 

pp. 53-54] hypothesis is that, as a reaction against the terrible experiments conducted by 

the Nazi doctors during the war, the German medical profession strongly defended the 

necessity to treat patients individually, beyond any research protocol reducing them to 

standardised cases. In consequence, placebos and double blind experiments were often 

avoided, even if their virtues against biases were known and praised. The BÄK’s 

reputation was based on the defence of patients' rights and not even the thalidomide 

scandal could shatter it throughout the 1960s and 1970s. While RCTs became more and 

more widely used, the 1976 Drug Law still granted the medical profession the right to 

                                                 
23 On the creation and early trials of the MRC see [Cox-Maksimov, 1997]. The regulatory dimensions are 
discussed in [Abraham, 1995; Ceccoli, 1998]. 
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set testing standards, even if the BÄK had been already accused of pro-industry bias and 

the socialist party had demanded a “neutral” examination of drugs by a central agency. 

 

The political demands and expectations placed on clinical trials were different in all 

these countries. However, for regulatory purposes, the testing standard adopted was 

always justified on the grounds of its purported impartiality, no matter if whether was 

clinical expert judgment, laboratory tests, or RCTs. Historians and sociologists are 

probably right in explaining this regulatory concern for impartiality as the result of 

external public pressure. However, it is open to discussion whether the adoption of a 

testing standard was always epistemically blind. It may be true that the statistical 

foundations of RCTs were never well understood by the medical profession as a 

regulatory yardstick either in the United States or in Britain at the time of their 

adoption, or even later. However, in both cases, the medical profession, and even the 

public, seemed to understand quite well in what sense RCTs offered real protection 

against biases in the conduct and interpretation of medical experiments. RCTs provided 

proper impartial grounds for regulatory decisions. As I pointed out in the previous 

sections, randomisation certainly helps in preventing selection bias independently of its 

statistical grounds. Significance testing was understood less as discretionary 

interpretation rule than mere clinical expert judgment. On these grounds, the adoption 

of RCTs as a testing standard for regulatory purposes seems epistemically justified24.   

 

All in all, the social process that led to the adoption of frequentist RCTs as a regulatory 

standard may have been interest-driven, but it was not epistemically blind. If we still 

adhere to the principle that regulatory clinical trials should be independent of the 

particular interests of the manufacturers, any alternative testing methodology should be 

at least as impartial as our current RCTs are. However, the situation is today far more 

complicated than in the 1950s. 

 

As we saw in the previous sections, as patients we may prefer to avoid randomisation, 

but as consumers of pharmaceutical compounds we may want them to be fairly tested 

by an independent authority. For the pharmaceutical consumer, the situation is today 

                                                 
24 Of course, RCTs are not the only means to implement a fair test, but just part of a larger set of tools: 
see [Evans et al., 2006] for an overview. The interested reader can visit the James Lind Library for a 
general view of the evolution of fair tests over the world: http://www.jameslindlibrary.org/  See also the 
Project Impact site: http://www.projectimpact.info/   [both accessed in July 2009] 
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paradoxical in this respect. On the one hand, tight regulatory standards generate lags: it 

takes more time for a new drug to reach its targeted consumers, with significant 

economic costs for the producer. On the other hand, consumers are, more than ever, 

wary of potential fraud in the testing process, if the industry is entirely free to conduct 

them25.  In the United States, for-profit private contractors conduct about 75 percent of 

all clinical trials, in which the pharmaceutical industry invests billions of dollars 

annually. There is growing evidence of bad testing and reporting practices biasing the 

results, such as: enrolling patients with a milder disease or healthier than the population 

who will actually receive the drug, using a dose of a comparable drug that is outside of 

the standard clinical range, using misleading measurement scales, etc26. In this context, 

randomisation and significance testing alone do not guarantee an unbiased clinical trial: 

various surveys have found significant degrees of association between private 

sponsorship and positive conclusions for the experimental drug in published trials27. Of 

course, these results are open to interpretation (it may simply be the case that the 

industry only funds and publishes trials of products that are considered better than the 

standard therapy), but caution about bias is advisable.  

 

In sum, frequentist clinical trials are controversial from a methodological and ethical 

perspective, but have worked reasonably well so far as an impartial regulatory standard. 

However, there is a clear need for improvement on this front as well: we want 

regulatory trials to be both more impartial and more efficient (and, in particular, 

quicker). The prima facie strength of the Bayesian approach to clinical trials is that they 

promise improvement along these three dimensions (methodological, ethical and 

regulatory). Let us present how they work. 

 

2.1. BAYESIA� TRIALS: A 25 YEARS HISTORY 

Let me begin this second part of the paper with a brief summary of the development of 

the Bayesian approach to clinical trials during the last thirty years. I follow here 

Deborah Ashby’s [2006] review, where she distinguishes three main periods. In the first 

one, ranging from 1982 to 1986, several experimental designs were launched and some 

                                                 
25 For an overview of the literature on the drug lag and related topics, see [Comanor, 1986]. [Carpenter, 
2004] provides an analysis of patients' influence on FDA decisions. The risks of pharmaceutical fraud are 
discussed in [Krimsky, 2003] 
26 For a quick general overview of these practices see [Jain, 2007]. 
27 E.g., [Lexchin, et al., 2003; Yank et al., 2007]. 
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were even implemented [Kadane, 1996]. But the computational power needed to 

implement more ambitious  trials was still lacking. This became gradually available 

between 1987 and 1991, when the BUGS computer simulation package was created. 

Then came a period of consolidation (1992-1996), with a regular flow of publications 

on Bayesian trials and the first hints of regulatory attention to this approach. In the 

following ten years the variety of ideas and experiences accumulated deserved a first 

textbook [Spiegelhalter, Abrams & Miles, 2004]. Over the last ten years many phase I 

and II trials have been conducted following Bayesian principles, since these are allowed 

by the regulations. Phase III trials for drugs are still rare, due to regulatory restrictions, 

but they are already accepted by the FDA for medical devices28. And a Bayesian meta-

analysis has been accepted as evidence in 2003 in the approval of a therapeutic 

compound29. Bayesianism has not yet reached the mainstream medical literature: 

according to Ashby, it will be the next frontier. But there is growing debate on whether 

the FDA should approve Bayesian designs for regulatory purposes, and if this occurs, 

this last boundary will soon be crossed, just as it happened with standard RCTs.   

I will first introduce the more elementary concepts in the Bayesian approach to clinical 

trials, together with an attempt to classify the different methodologies in their design 

and analysis. The point of this section is to show that Bayesian clinical trials are 

constitutively diverse and can be tailored to multiple purposes, so no straightforward 

overall comparison with standard RCTs is possible. In order to illustrate this diversity, 

in the following two sections I will briefly review two different Bayesian trials. The first 

one, conducted during the 1980s, exemplifies how very elaborate ethical considerations 

can be incorporated into the design of a trial through a statistical representation of 

expert judgment. The second one, designed and conducted at the beginning of this 

decade, illustrates instead the potential efficiency of Bayesian trials and their impact on 

the regulatory process. 

The following three sections will thus cover the basic items considered in the first part 

of the paper: epistemic, ethical, and regulatory issues. On these grounds I will provide a 

final discussion of the relative merits of each approach, frequentist and Bayesian, in the 

concluding section.  

 

                                                 
28 I will not consider here the case of medical devices: see [Campbell, 2005] for a discussion. 
29 See [Berry, 2006, p. 29] for a quick review. The published source is [Hennekens et al., 2004]. 



 

 27 

2.2 BAYESIA� APPROACHES: A QUICK I�TRODUCTIO� 

The basic paradigm of Bayesian statistics is straightforward. Initial beliefs 

concerning a parameter of interest, which could be based on objective evidence 

or subjective judgment or a combination, are expressed as a prior distribution. 

Evidence from further data is summarized by a likelihood function for the 

parameter, and the normalized product of the prior and the likelihood form the 

posterior distribution on the basis of which conclusions should be drawn 

[Spiegelhalter, Freedman and Parmar, 1994, p. 360]30. 

Suppose we are interested in finding out the true mean difference (δ) between the 

effects of two treatments. The statistic xm would capture the difference observed in the 

sample of participants in a comparative trial. The statistic xm would here be normally 

distributed as expressed in the following density function: 

),()( 2 mxxp mm σδφ=    

where m would be the number of observations of the mean response recorded so far in 

the trial and δ and σ2
/m would stand for the mean and variance of the distribution. This 

first equation provides the likelihood function: it shows the support lent by the trial data 

to the possible values of the mean difference between treatments. 

Our initial beliefs about the true mean difference (δ), excluding all evidence from the 

trial, could be expressed thus by this density function: 
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Bayes theorem would allow us to weight our prior by the likelihood function31, 

obtaining the posterior distribution of δ: 
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30 In this section, I will follow two standard introductions: [Spiegelhalter, Freedman and Parmar, 1994] 
and [Spiegelhalter, Abrams and Miles, 2004]. Donald Berry has produced very concise overviews of the 
Bayesian approach to clinical trials: e.g., [Berry, 1993 and 2006].  
31 In the usual expression of Bayes theorem, the product of the prior and the likelihood function is divided 
by the normalising factor p(xm). 
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This is the expression of our beliefs about δ after m observations. The posterior mean 

would provide a point estimate of the true mean difference (δ) between treatments. The 

posterior mean ± 1.96 posterior standard deviations would provide a 95% credible 

interval estimate of δ.  

By way of example, Spiegelhalter, Freedman and Parmar [1994] provide the following 

Bayesian analysis of a conventional RCT. This trial studied the effects of levamisole 

(LEV) in combination with 5-fluorouracil (5-FU) for patients with resected cancer of 

the colon or rectum: that is, LEV+5-FU versus control. The main outcome measure in 

this trial was the duration of patients’ survival.  

Two prior distributions were constructed for the analysis. The first one was a sceptical 

prior formalizing the belief that large treatment differences are not likely. For instance, 

we may initially believe that the mean difference δ0 will be 0. The prior should be 

spread to encompass a range of treatment differences considered plausible by the 

experts who designed the experiment. The probability of observing a mean difference 

equal or superior to the minimal clinically worthwhile benefit was set to 0.05 (the type I 

error α of the original trial). Assuming a value for σ, we can calculate n0 and specify the 

sceptical prior distribution p0 (δ). An enthusiastic prior would concordantly represent 

the beliefs of those “individuals who are reluctant to stop when results supporting the 

null hypothesis are observed”. They would expect the mean difference δ0 to be the 

minimal clinically worthwhile benefit. This second distribution would be spread with 

the same σ and n0 than the sceptical prior.  

 

Fig.1 (from [Spiegelhalter, Freedman and Parmar, 1994]) 
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In fig.1 we can see the sceptical (continuous line) and the enthusiast prior (intermittent 

line), with the probabilities of falling below, within and above the range of equivalence 

between treatments (dotted vertical lines) in the right hand corner32. 

With the data from the m patients gathered in the original trial, we can calculate the 

observed sample difference xm and the corresponding likelihood for LEV+5 versus 

control, as shown in fig.2. The probability that LEV+5-FU is an inferior treatment 

seems low (0.003), though the probability of it being superior is just moderate (0.777) 

 

 

 

Fig.2 (from [Spiegelhalter, Freedman and Parmar, 1994]) 

Weighting the priors with the likelihood, we obtain their posterior distributions (fig.3) 

 

Fig.3 (from [Spiegelhalter, Freedman and Parmar, 1994]) 

                                                 
32 The range of equivalence is the space between the null hypothesis and the minimal clinically important 
difference, measured as an increase in average survival of a given number of months. 
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Should anyone holding the sceptical prior (continuous line) accept the efficacy of 

LEV+5-FU? Even if the posterior mean is now closer to the upper limit of the range of 

equivalence than the prior mean (fig.1), it is still within this range. The sceptic can 

reasonably refuse to accept the superiority of LEV+5-FU over the control treatment on 

the basis of the trial data. 

Despite this straightforward illustration, there is no such thing as a single Bayesian 

approach, not only to clinical trials, but generally. But for concreteness, let us just focus 

here on the general approaches to clinical trials classified by Spiegelhalter, Abrams and 

Miles in their textbook [2004, pp. 112-13].  

One classificatory criterion is the type of prior used in each approach. In the empirical 

Bayes approach, hyperparameters for the distribution of an array of studies assumed 

exchangeable can be estimated directly from these studies through a meta-analysis. In 

the proper Bayes approach the priors are constructed with either empirical data or 

subjective opinions (obtained through elicitation methods). Objective or reference prior 

distributions are used in the reference Bayes approach. These priors summarise a 

minimal amount of information: for instance, a uniform (e.g., flat) probability 

distribution over the range of interest; or the sceptical and enthusiastic priors of the 

previous example.  

We can also differentiate these approaches according to their methods of analysis and 

reporting. In the empirical Bayes approach, a frequentist meta-analysis of several 

studies is reinterpreted, under certain assumptions, as an approximation of a Bayesian 

estimate. In the reference Bayes and proper Bayes approaches, the analysis is a direct 

application of Bayes's theorem. However, in the former, depending on the priors, the 

posterior distribution would approximate the conclusions of a frequentist likelihood 

analysis.  Spiegelhalter, Abrams and Miles distinguish a fourth Bayesian approach to 

clinical trials: the full Bayes approach, in which decision theory is incorporated into the 

analysis so that judgments about treatments depend on the maximization of an expected 

utility function (with subjective probabilities).  

Hence, depending on the approach implemented, a Bayesian clinical trial will yield 

results that will diverge more or less from the conventional RCT. By way of example, 

we can compare the strength of a p-value for or against a given hypothesis with the 

corresponding Bayes factor. This latter is, in its simplest form, the ratio between the 
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likelihoods of two alternative hypotheses, i.e., the probability of the data, assuming their 

truth: 

)|(/)|(BF 10 HdatapHdatap=  

The p-value is precisely the probability of observing a certain range of values (observed 

and unobserved), assuming the truth of a hypothesis. The BF is independent of the 

priors on the hypothesis33: it just compares how probable the observed data are 

assuming the truth of each hypothesis. If H0 states that there is no difference between 

treatments regarding a certain parameter (θ = 0) and H1 encompasses a range of 

alternative values of θ, the minimum Bayes Factor proposed by Steve Goodman takes, 

among these alternative values, the one that provides the “smallest amount of evidence 

that can be claimed for the null hypothesis (or the strongest evidence against it) on the 

basis of the data”. 

 

Of all possible θ ≠ 0 (H1), we take the one which makes higher the probability of 

obtaining the observed data, assuming the truth of H1 . For this value of θ, the BF will 

be minimum: a small BF implies that the observed data will be much more probable 

under H1 than under H0, just as a small p-value implies that there is a small probability 

of obtaining data as extreme or more than the one observed if H0 is true, which is why 

we should reject it.  

                                                 
33 Yet, it does depend on the prior distribution within hypothesis. The BF impinges on the prior 
probabilities through Bayes theorem, which for the comparison between these two hypotheses takes the 
form: 
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Table 1 (from [Goodman 1999b]) 

Table 1 provides a comparison between one particular minimum BF34 and the 

corresponding one-sided p-value (for a fixed sample size), for a range of values of the 

test statistic Z. For the conventional p-value threshold, 0.05, the BF is 0.15, meaning 

that the null hypothesis gets 15% as much support as the best supported alternative 

value of θ. As Goodman observes, this is a moderate strength of evidence against H0. If 

the prior probability of H0 is 0.75, the impact of the corresponding likelihood will yield 

a posterior of just 0.44. Only with a very low initial probability (0.26) will we obtain a 

posterior of 0.05.  

This illustration just shows that, for BF of a certain form, a Bayesian analysis can be as 

demanding as a conventional hypotheses testing or even more so. However, as 

Spiegelhalter, Abrams and Miles [2004, p. 132] point out, there is no simple monotonic 

relationship between Bayes factors and p-values. If we choose a different form for the 

BF, they can diverge from the p-values. In other words, the traditional frequentist 

approach to clinical trials and a possible Bayesian alternative will depend on a 

combination of principled and practical considerations that can justify this choice in 

case of discrepancy. Since this justification depends entirely on the type of Bayesian 

approach we choose, it is better to examine a couple of well-articulated examples to see 

how strong the Bayesian case can be. 

                                                 
34 Assuming a normal distribution and H1 ≠ 0, the minimum Bayes Factor would be: 

)2/exp(BF 2
min mz−=  

where zm is the standardised test statistic for H0. For further details see [Goodman, 1999b]. 
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2.3 THE VERAMAPIL VS �ITROPRUSSIDE TRIAL 

Our first example is a clinical trial aimed at determining the relative efficacy of two 

drugs, veramapil and nitroprusside, in controlling hypertension immediately after open-

heart surgery. The trial was conducted over 30 months, from September 1984 to March 

1987 in Baltimore, at Johns Hopkins Hospital, by a team led by E. Heitmiller and T. 

Blanck. The statistical advisors were led by J. Kadane at Carnegie Mellon University in 

Pittsburgh. Both drugs were already available, though verapamil was used for different 

heart conditions and counted as the experimental treatment in the comparison. A 

conventional RCT had already been attempted unsuccessfully at John Hopkins in the 

early 1980s, and in 1984 the idea arose of conducting instead a pilot Bayesian study. 

The trial implemented for the first time an approach developed by Kadane, N. Sedransk 

and T. Seidenfeld (hereafter KSS), in the early 1980s. Following the classification 

outlined above, the KSS approach, as implemented in the trial, would count as a proper 

Bayes approach: priors are elicited from a group of experts to be updated through Bayes 

theorem.  However, Kadane and his coauthors show a clear sympathy for the full Bayes 

approach: decision theory plays a certain role in the conceptual foundations of the KSS 

methodology (e.g.. [Sedransk, 1996]), even if in this particular trial utility functions 

were not elicited or postulated to account for any of the choices made.  

The main goal of the KSS approach is ethical: it is aimed at improving the allocation of 

treatments in a trial, so that patients receive a treatment that at least one expert would 

recommend in view of his personal characteristics. This way, they are protected against 

treatments that are unanimously considered inferior at the point they enter the trial. The 

elicited prior for the variable measuring the effect of each treatment probabilistically 

depends on a set of covariates (diagnostic indicators) and treatment. Depending on the 

values of these covariates in each patient, a computer will calculate which of the two 

treatments each expert would recommend for him, according to the expert’s updated 

prior.  

Whereas the implementation of the clinical equipoise principle in a frequentist RCT 

presupposes that the medical community has no statistical grounds to judge one 

treatment as superior until a significant conclusion is reached, in a Bayesian approach at 

least some actionable evidence can be attained earlier, depending on one’s prior and the 

data accumulated throughout the trial. The KSS approach uses this evidence in the 
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following manner: a patient will only receive a treatment if at least one expert judges it 

admissible, given his characteristics, at the point at which he enters the trial. From then 

on, the patient will never receive a treatment that the panel of experts in the trial agree 

to consider inferior at that point. 

Sedransk [1996] provides an excellent formal analysis of the notion of admissibility as 

implemented in the KSS design. It hinges on the following basic principles (for which 

Sedransk provides an axiomatic statement as well)35: 

P1: The outcome following treatment with any admissible treatment must be 

scientifically interpretable 

P2: Admissibility must be determined based on current information including 

data already gathered in the course of the clinical trial 

P3: A set of K experts is sufficient when the addition of any other expert (i.e., 

any other relevant scientific opinion) cannot change the admissibility or 

inadmissibility of any treatment. 

For a treatment to be admissible P1 requires that its effects can be traced to clearly 

defined factors (excluding therefore those “alternative” therapies without clear causal 

mechanisms to back up the experts’ opinion). P2 differentiates the KSS approach from 

standard RCTs since the evidence accumulated throughout the trial impinges on the 

definition of an admissible treatment. P3 is also crucial for the design of the study, since 

the trial will terminate only when the data gathered bring to an agreement the panel of 

experts whose priors are elicited for the study. The cogency of the results of the trial 

will therefore depend on the range of opinions represented in the panel. P3 establishes a 

sufficiency criterion to assess the diversity of this range.  

Several admissibility criteria can potentially satisfy this set of principles, of which the 

simplest one defines an admissible therapy “as a treatment considered superior or 

equivalent (to the proper comparison treatment(s)) by at least one expert in the panel”36. 

However, this criterion presents no particular difficulty for P1 and P2, but it will only 

comply with P3 if the views about each treatment in the scientific community are just a 

                                                 
35 Sedransk actually presents eight principles, but in order to simplify the discussion I will just consider 
three, those that she deems the “basic premises” for the KSS designs [Sedransk, 1996, p. 109] 
36 More formally, as Kadane puts it, “if at least one (updated) expert would consider it (in the computer) 
to have lower expected deviation from target than the other treatment” [Kadane, 1994, p. 223]. 
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few and are fully represented in the panel. Otherwise, the admissibility criterion may 

not secure that patients do not receive an inferior treatment. 

A variety of allocation rules based on admissibility criteria are possible within the KSS 

approach, sometimes departing from standard randomisation. The “statistical price” to 

pay for the ethical constraint imposed on allocation rules is that the likelihood function 

should explicitly condition on the patients’ characteristics that are considered in the 

allocation of a treatment. As Kadane and Seidenfeld [1996] show, the likelihood 

function would then be of the general form: 

∏∝
J

j jjjj X|TOfPf ),()( θθ  

Where Xj is the vector of relevant characteristics of jth patient, Tj is the treatment 

assigned to the jth patient and Oj the corresponding outcome. The past evidence up to 

and including the jth patient is expressed by Pj = (Oj, Tj, Xj, Oj-1, Tj-1, Xj-1,…, O1, T1, X1). 

θ is a vector of the parameters that determine the probability of an outcome Oj for a 

patient j given characteristics Xj and treatment Tj.  

This is the likelihood function that will be used in the allocation of treatments during the 

trial; conditioning on Xj, the set of diagnostic indicators used in the allocation of the 

treatment, makes explicit all the information on the outcome Oj carried by the assigned 

treatment. If the computer assigns treatments according to this information alone, all 

other sources of bias in the allocation will be excluded. Even if randomisation is 

acceptable in a Bayesian perspective in order to prevent selection biases, the KSS 

approach achieves this by virtue of its own design37. However, the allocation algorithm 

designed by Sedransk will make use of it in order to balance the independent variables. 

Let us now briefly review how the KSS methodology was implemented in the veramapil 

vs. nitroprusside trial conducted at Johns Hopkins Hospital38. Five experts representing 

a range of medical opinions about the treated condition were identified. Once the 

criteria of eligibility for the trial were set, the anaesthesiologist in charge of the study 

independently chose the four most important variables for predicting a prognosis for 

each of the participant patients. Then the prior opinion of each expert on the outcome 

                                                 
37 See [Kadane and Seidenfeld, 1990] for the details of this argument and a wonderful discussion of 
randomisation from a Bayesian perspective. 
38 This summary draws from the papers compiled in [Kadane, 1996, pp. 129-219]. 
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(the effects on arterial pressure) was elicited as a function of these covariates and the 

treatment administered39.  

The elicitation method designed by Kadane and his coauthors required an hour-long   

telephone interview. The prior was estimated assuming that the treatment outcome 

depended on the four predictor variables according to a normal linear model. There 

were 16 possible combinations of these variables and, therefore, 16 possible patient 

types. For each of these, each expert’s prior would allow us to estimate the effect of 

each treatment and therefore the expert’s preference for either veramapil or 

nitroprusside. 

Once the trial started, whenever a suitable patient was recruited, the values of  each of 

the four predictor variables were measured and entered into a computer, which yielded 

the mean arterial pressure predicted by each expert for a patient with such values 

according to each treatment. The computer also implemented an allocation rule as 

follows: if all the experts predicted a higher (better) mean arterial pressure with the 

same treatment, this one was assigned to the patient; otherwise, the computer would 

assign one at random with the constraint of maximising balance among treatments 

regarding the predicting variables. After a treatment was administered to a patient, the 

lowest mean arterial pressure recorded was also entered into the computer and the 

experts’ priors were updated. The updated priors were then used to deliver predictions 

for new patients entering the trial40. 

All in all, 29 patients completed the trial, 17 in the verapamil arm and 12 receiving 

nitroprusside. Even if the allocation rule made more likely that certain types of patients 

received one of the treatments more often, no statistically appreciable effect was 

detected. The results can be summarised in a table showing the treatment each expert 

would recommended for each type of patient before and after the treatment, using for 

                                                 
39 E.g.: “For patients on beta blockers and calcium antagonists who have no previous history of 
hypertension and no wall motion abnormality, what is your median for the average deviation of mean 
arterial pressure from 80mmHg?” [Kadane, 1996, p. 171]. The methodology of this elicitation procedure 
was exposed in full in [Kadane et al., 1980]. 
40 Due to a “gap in communication” between the medical team and the statistical advisors about how to 
measure the more beneficial outcome for patients, two different endpoints were used in the trial (each one 
with its own set of elicited priors): the lowest value of the mean arterial pressure and the average 
deviation from a target pressure, both over 30 minutes after the patient received the treatment (LADEV). 
An additional measure was used in the transition between these two. Also, due to a bug in the computed 
program, the treatments were not assigned according to the original allocation rule. However it was 
always a function of the patients’ characteristics alone and therefore the results were not biased by this 
change. For a discussion of these complications see Kadane’s section on “Operational History and 
Procedural Feasibility” [Kadane, 1996, pp. 171-176] 
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this end the priors elicited for LADEV, once updated with the data collected in the trial. 

This table shows “an overall trend towards preferring verapamil over nitroprusside” 

[Kadane and Sedransk, 1996, p. 177]. The prior and posterior distributions of each 

expert for the effects of each treatment in each type of patient are also presented. 

Kadane and Sedransk do not provide an aggregate of these opinions showing the degree 

of consensus attained and suggest instead a more general assessment, using standard 

indexes in cardiology to evaluate the effects of each treatment [Heitmiller et al., 1996]. 

Given the difficulties that hindered this particular implementation of the KSS approach, 

it is understandable that the trial yielded no strong conclusion. Actually, this study is not 

defended on the basis of the statistical strength of its results, but rather for its ethical 

superiority in terms of the standard of care provided to the participants. Let us then 

briefly examine this Bayesian methodology in the light of the ethical issues that arise in 

frequentist trials. It has already been mentioned that in the KSS framework it is possible 

to incorporate the actual beliefs of the medical community about a treatment: clinical 

equipoise can therefore be measured rather than merely postulated as in conventional 

RCTs. On the patients’ side, regarding their autonomy, it is open to discussion whether 

there is real understanding of the informed consent form regarding the allocation 

procedure. The participants in the verapamil trial had to deal with the following 

paragraph: 

The drug to be used in your case would be chosen with a recently developed 

statistical technique which incorporates the opinions of experts in the field 

concerning which drug is best for you, based on a variety of characteristics of 

the disease process, such as any history of high blood pressure or abnormal heart 

movements, rather than on an actual consideration of your case. If these opinions 

lead to the conclusion that only one of the drugs is allowable for you, that drug 

will be used. If both are found to be allowable, the assignment will be based on 

the need for balance in the characteristics of participants receiving each drug 

[Kadane, 1996, p. 141] 

Whether patients can understand this paragraph better than the usual sentence about 

flipping coins is a purely empirical question. A priori, it does not seem very plausible 

that they do. The autonomy of the participant in KSS trials seems to be grounded more 

on their desires than on their beliefs. If patients expect to benefit personally from their 

participation in a trial, it can be argued a priori that a KSS trial gives them a better 
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expected utility to do so under very reasonable assumptions [Emrich and Sedransk, 

1996]. Notice that this does not amount to straightforward choice of treatment by the 

patient [Kadane and Seidenfeld, 1996, pp. 118-119], but the KSS allocation rule 

probably does more to meet the demand for the personal recommendation of the 

physician than standard randomisation.  

This is also relevant to the justice of the allocation procedure. If the distribution of costs 

and benefits in a KSS trial admits a utilitarian justification from the patient’s point of 

view, a fortiori it will be equally justifiable from a contractarian perspective: if the 

treatment assigned is conditional on just the set of covariates capturing the relevant 

diagnostic indicators, no patient can claim that the allocation was intended to favour one 

person over another41. Hence, the KSS allocation rule admits a broader justification than 

randomisation, as far as the principle of justice is concerned. 

Lastly, the admissibility rule implemented in the verapamil trial provides a very strong 

implementation of the principles of beneficence and non-maleficence: patients will not 

receive a treatment that no expert recommends, and they have a better chance of 

receiving one they can personally benefit from than with randomisation. This is also 

relevant for the discussion of the trial-stopping rules, the other ethical contentious issue 

raised by frequentist trials. Let me quote Kadane again: 

Whether to stop is a different kind of decision in a design of this sort than it is in 

a classically randomised design. In the latter, there can be agonizing decisions 

about whether to suspend operations when it is fairly clear which treatment is 

best (either overall or for a subclass of patients), but the results are not yet 

“significant”. By contrast, in the trial suggested above, patients are protected 

from clearly bad treatments, so the decision of whether to continue has no 

ethical component. Rather, it is merely a question of whether the cost of 

continued data collection is repaid by the information gained. [Kadane, 1994, p. 

223] 

All in all, the KSS approach seems to comply better with the principles of autonomy, 

justice, and beneficence than do standard RCTs. However, its scope is somewhat more 

restricted: as Kadane [1994, p. 222] points out as well, the KSS approach will only offer 

protection to patients against inferior treatments if the results are gathered at a pace 
                                                 
41 Assuming, of course, that nobody can decide at what point a patient enters a trial: the later he does, the 
more accumulated information he will benefit from.   
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quick enough to update the experts’ priors before new patients enter the trial. In the 

verapamil trial the relevant data were ready for collection from each patient an hour 

after the surgical procedure. “In slower, more chronic diseases, there might be little or 

no information to capture at this step, and consequently little or no advantage to patients 

(or anyone else) in using these ideas” [Kadane, 1994, p. 222]. Not much was said about 

the advantages of the KSS approach from a regulatory perspective, but I will discuss 

this further in the final conclusion. 

 

2.4 THE ASTI� TRIAL 

Our second example is ASTIN (Acute Stroke Therapy by Inhibition of Neutrophils), a 

phase II clinical trial conducted between 2000 and 2001 in order to test a 

neuroprotective therapy to stop or slow the death of brain cells in acute ischemic 

stroke42. Very few treatments are available for this condition, despite the tens of 

thousands of patients randomised into clinical trials over the last four decades. The 

ASTIN design was intended to provide a more efficient approach to clinical trials, 

improving the use of scarce patient resources and accelerating the development of 

promising therapeutic agents. ASTIN was described as follows:  

A Bayesian sequential design with real-time efficacy data capture and 

continuous reassessment of the dose response allowed double-blind, randomised, 

adaptive allocation to 1 of 15 doses (dose range, 10 to 120 mg) or placebo and 

early termination for efficacy or futility. The primary end point was change from 

baseline to day 90 on the Scandinavian Stroke Scale (SSS), adjusted for baseline 

SSS. [Krams et al., 2003, p. 2543] 

This is an instance of so-called adaptive designs: in trials of this sort, the design can be 

periodically modified depending on the evidence about certain hypotheses provided by 

the accumulated data. In ASTIN both treatment allocation and stopping rules were 

adaptive in a sense we will discuss in detail below. 

ASTIN was a multi-centre international trial, sponsored by a pharmaceutical company 

(Pfizer). The trial was designed by Donald Berry and Peter Mueller, from the University 

of Texas M.D. Anderson Cancer Center. Under the leadership of Berry, over the last 

decade the centre became an international reference in the conduct of Bayesian clinical 
                                                 
42 The  neutrophil inhibitory factor UK-279,276. 
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trials43. Of the 964 trial protocols registered at M.D. Anderson between 2000 and early 

2005, 178 used both a Bayesian design and a Bayesian analysis, namely for monitoring 

efficacy and toxicity. Some trials implemented Bayesian adaptive randomisation and 

dose finding techniques and, to a lesser degree, hierarchical models and predictive 

probabilities were also incorporated. For the last thirty years, Berry has advocated a full 

Bayes approach to clinical trials, grounding his arguments both on statistical and ethical 

considerations. However, Berry and his team at M.D. Anderson work under a strict 

regulatory system which requires approval from various internal panels and, sometimes, 

the FDA and other national bodies. Due to these regulatory constraints, most of trials at 

M.D. Anderson were phase I/II or phase II, supported by extensive simulations of their 

operating characteristics showing their degree of equivalence with standard frequentist 

trials.  As Berry [2004, p. 186] puts it, 

At least for the near future they will be used as tools, with justifications 

following a more or less traditional frequentist course. As time passes and as 

researchers and regulatory folk become more accustomed to Bayesian ideas, 

they will be increasingly accepted on their own terms. 

The ASTIN trial is no exception in this respect, and its original design was described by 

their own authors as a “frequentist cake with Bayesian icing” [Berry et al., 2002, p. 

154]. This is why the efficiency of these constrained Bayesian designs is so prominently 

emphasised. Even if the “playing field” is not levelled, Bayesian trials can provide a 

more efficient solution to one of the main regulatory issues of our time: scientific 

innovation goes much faster than the development of new therapies and this delay is 

partly caused by the time constraints imposed by the current regulatory regime of RCTs.  

Bayesian phase II trials such as the one we will discuss here can be more efficient in the 

following ways [Krams et al., 2005, p. 1341]: the participant patients will be treated 

more effectively thanks to an adaptive allocation procedure that incorporates the 

available information about the more efficient dosage; their design allows a quicker and 

more reliable choice of the dose to be used later in the phase III trial; if the regulatory 

                                                 
43 See Berry’s profile in [Couzin, 2004]. For an overview of the trials conducted at M.D. Anderson, see 
[Biswas et al., 2009]. 
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authority permits, it is possible to make a seamless (and therefore quicker) transition 

from the dose finding to this confirmatory phase of the trial44.  

The aim of the ASTIN trial was to identify the minimum dose with satisfactory effects, 

defined as the ED95: this dose would deliver 95% of the maximum efficacy, minimizing 

unacceptable adverse reactions. ASTIN sought a point estimate of ED95 with minimal 

variance. In order to achieve this goal, a standard phase II design may use between three 

and five doses and placebo. Each dose will be tested on an equal number of patients, 

usually fixed, independently of their comparative efficacy that will only be revealed at 

the end of the trial. The patients’ reactions will provide the basis to estimate the dose-

response curve. However, part of the observations may be wasted depending on the 

adjustment between the true range of efficacy of the drug and the dosage tested in the 

trial. The separation between the doses tested will constrain the accuracy of the ED95 

estimate. Ideally, it would be better to test many different doses, but the number of 

patients that this would require to ground the power of a standard design is prohibitive. 

The ASTIN trial tested 15 doses and placebo. In order to learn quickly and make the 

sample size as small as possible an adaptive treatment allocation rule was implemented. 

The rule was grounded on a formal decision model that calculated, at each point in the 

trial, the expected utility of choosing a given dose with a view to minimise the expected 

variance of the response at the ED95. Once the optimal dose Zj was chosen, the next 

patient could receive either placebo (with a fixed probability p0) or a dose in the 

neighbourhood of Zj (the remaining probability 1- p0 was split uniformly over all of 

them)45.  

Another adaptive feature of the ASTIN trial was an optimal stopping rule. Once a week, 

in view of the available data, it had to be decided whether to end the trial abandoning 

the drug (futility), continue with the dose-finding phase or finish it switching to a phase 

III trial. A stopping rule grounded on another formal decision model was initially 

constructed, but the trial implemented a simpler approach, based on bounds of posterior 

probability, that the authors summarised as follows: 

                                                 
44 The original design of ASTIN [Berry et al., 2002] envisaged the possibility of this seamless transition 
between phase II and phase III, but it was not finally implemented. Inoue et al., 2002 provide another 
sequential design for a seamless phase II/III trial. 
45 This fixed lower bound p0 for placebo granted that there would be a group of patients (at least 15% of 
the total) providing a “comparison benchmark” in the study, as expected by the regulator: see [Walton, 
1995, p. 352]. 
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The stopping rule in ASTIN continuously asked the following questions: (1) 

Does our estimate of the dose–response suggest that there is <10% chance of 

success for any dose (success was defined as a >3-point recovery over and above 

placebo as measured by a stroke scale)? If so, then stop for futility. (2) For the 

best dose, is the response good enough to conclude that there is >90% chance of 

success? If so, then stop for efficacy and switch to a confirmatory trial, 

comparing the “best dose” against placebo. [Krams et al., 2005, p. 1343] 

The effects of this sort of therapy are measured around 90 days after the stroke, 

assessing the patient’s neurological deficit with a standardised scale. In order to update 

the dose allocation system before this three-month deadline, a predictive longitudinal 

model was built to estimate the score for eligible patients in the Scandinavian Stroke 

Scale (SSS). Once measured, the true day 90 score replaced the estimate. The model 

was built on the evidence gathered in the Copenhagen Stroke Database46 and was 

updated with the periodical responses obtained from patients in ASTIN . 

Finally, in ASTIN the probability model for the dose-response curve was a normal 

dynamic linear model47. In the initial week of the trial, the prior estimate was flat, with a 

placebo effect of 10 points change from the SSS baseline (calculated from the 

Copenhagen Database). Such prior would not influence much the final results of the 

analysis and therefore its validity was never a concern for the regulators, who could rely 

entirely upon the study data [Walton et al., 2005, p. 352]. Updating this model with the 

study data yielded posterior estimates and 95% posterior credible intervals of the dose-

response curve, ED95 and the effect over placebo at the ED95. 

The successful conduct of this trial depended on a computer system that recorded and 

processed the information entered by the investigators, ran the software implementing 

all the statistical models, delivered the dose for each patient to the investigators, and 

assessed the stopping rules, helping to monitor the progress of the study [Berry et al., 

2002, pp. 127-134]. In the actual trial, the computer system was run by a private 

company independently of the sponsor. 

The trial process could therefore be charted as follows48: 

                                                 
46 A compilation of data gathered over two years in a Copenhagen facility from 1351 pharmacologically 
untreated stroke patients.  
47 See [Berry et al., 2002] for details.  
48 I quote from [Krams et al., 2005, p. 1343].  
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[1] A patient enters the trial. Baseline data are entered into the system; 

[2] Patient is randomised in blinded fashion to placebo or “optimal” dose to 

learn about research question;  

[3] Dose assigned is converted to particular vial numbers, allowing for blinded 

administration of study drug;  

[4] Patient’s response data are entered into the system as they progress through 

the study;  

[5] Patient’s final outcome is predicted using a longitudinal model  (the 

prediction is substituted by the final response, as soon as it becomes available)  

[6] Based on the currently available data, the system updates the “estimate” of 

the dose response curve and its uncertainty;  

[7] Each day the algorithm implements a decision rule and recommends to 

either:  

[8] A0: stop the study because of futility (based on the posterior probability that 

the treatment has an effect smaller than a minimum clinically relevant size) or  

[9] A2: stop dose finding and moves to a large confirmatory study (based on the 

posterior probability that the treatment has an effect larger than some clinically 

relevant size);  

[10] A1: continue dose finding study (the recommendation of the system is 

reviewed by the IDMC, which incorporates clinical judgment and factors in 

safety issues);  

[11] The dose allocator chooses a dose from a list of possible doses that will 

optimise learning about the ED95 or some aspect of the dose-response curve. The 

database used to determine the dose is continually updated as outcome data from 

patients are gathered. 

Before the trial was started ASTIN was simulated under a wide range of assumptions in 

order to convince both the sponsors and the regulatory authorities of its soundness 

[Berry et al., 2002, pp. 135-154]. Simulations provided both optimal parameters for the 

algorithm and the operating characteristics of the design, allowing a comparison with a 
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standard RCT. The following table compares, for instance, the sample size required in 

each [Grieve and Krams, 2005, p. 345] 

 

 

[Table 2] 

For a dose-response curve that reached a plateau at 2, 3 or 4 points benefit over placebo, 

on the left side there is the number of patients needed for a 80% and 90% power. On the 

right side, for an adaptive design with a maximum of 1000 patients, you can see the 

percentage of trials that would stop for the same benefit over placebo and the median 

number of patients required in each. The trial was designed to detect a 3 point benefit 

over placebo49.  

In the actual trial, 966 patients were randomised, 26% of them to placebo. 40% of the 

patients were allocated to the top three doses. Quoting from the published results, “UK-

279,276 did not produce any statistically significant effect on any of the efficacy 

variables at any dose or dose category for any of the analysed populations” [Krams et 

al., 2003, p. 2545]. After 48 weeks, the Independent Data Monitoring Committee that 

oversaw the trial decided that it could be stopped for futility and no more patients were 

admitted. The algorithm allowed a conclusion of futility at week 40, so the number of 

patients recruited might have been smaller. However, the trial protocol required at least 

500 assessable patients before stopping. Those already in the trial were monitored for 

13 additional weeks without a positive-dose response. 

A less conservative protocol could have stopped the trial much earlier: apparently, 

similar conclusions could have been reached with half of the recruited patients [Walton 

et al., 2005, p. 356]. However, with sequential stopping rules, a frequentist design could 

have been effective with fewer patients than those estimated in table 2. As William du 

                                                 
49 For a more extensive comparative discussion of sample sizes in both approaches, see the contribution 
of Land and Wieand in [Berry et al., 2002, pp. 169-174] and the rejoinder in pp. 176-180.  
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Mouchel observed, the inflexibility of standard RCTs is more a consequence of the 

regulatory framework than of the frequentist approach itself [Walton et al., 2005, p. 

354]. The panel discussion of the ASTIN trial organized in 2005 in a FDA-sponsored 

symposium revealed a general appreciation of the simplicity of implementing, e.g., the 

stopping rule in a Bayesian approach. Yet it remains an open question to what extent it 

is necessary to become a fully committed Bayesian in order to benefit from the ASTIN 

techniques. I will return to this point in the final discussion.   

Finally, notice that, from an ethical perspective, the ASTIN trial is at least as defensible 

as a standard frequentist trial, and perhaps more so. Going again through the principles 

we examined in the KSS trial, the autonomy of the patient is certainly respected. When 

adaptive randomisation schemes are implemented in a M.D. Anderson trial, the 

informed consent form incorporates clauses along these lines:  

If you are ... eligible to take part in the study, you will be randomly assigned (as 

in the toss of a coin) to one of two treatment groups. Participants in one group 

will receive [regimen 1]. Participants in the other group will receive [regimen 2]. 

At first, there will be an equal chance of being assigned to either group. As the 

study goes along, however, the chance of being assigned to the treatment that 

worked better so far will increase. [Biswal et al., 2009, p. 214] 

Again, this seems no more difficult to understand than standard randomisation 

techniques in a conventional RCT, and plausibly  the patients will be happy that their 

chances of being assigned to the better treatment are gradually increased. Beneficence 

and non-maleficence are equally well observed. From the point of view of justice, the 

stopping rule originally designed for the trial is particularly interesting. This rule 

allowed maximisation of the value of each stroke patient entering the trial in order to 

optimise treatment for the overall population and the individual patients [Berry et al., 

2002, pp. 119-124]. From a utilitarian perspective, the sacrifices of the trial participants 

will be minimised and justified by the welfare the tested treatment would bring to this 

bigger collective [Krams et al., 2005, p. 1343]50. However, the contractarian argument 

to justify the distribution of costs and benefits among trial participants would also apply 

here.  

 
                                                 
50 From this perspective, it is really worth considering the procedure to calculate sample sizes developed 
in [Inoue et al., 2005]. 
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3. CO�CLUDI�G DISCUSSIO�: FREQUE�TIST VS BAYESIA� TRIALS 

The examples discussed in the previous section show that, on the one hand, we have 

highly standardised frequentist RCTs, the design of which evolved under increasing 

regulatory pressure over the last 50 years. On the other hand, we have a plurality of 

Bayesian approaches to clinical trials: depending on which principles we want to 

implement, there is a wide range of designs available and more will certainly come in 

the future. What would a fair comparison under these circumstances be? Let us examine 

this question considering the three dimensions discussed in this paper: epistemological, 

ethical, and regulatory.  

Starting with the first one, we saw that p-values and confidence intervals are often 

misinterpreted in the medical literature as if they provided direct probabilities for 

particular events in clinical trials (§1.1). If this is not just a misunderstanding, but rather 

the expression of the sort of probability assignment the medical profession is interested 

in, this is an argument for the Bayesian approach, in which these probabilities can be 

correctly calculated. The objections against randomisation we examined in section 1.2 

do not apply, in principle, to its use in Bayesian trials, since it does not provide any 

inferential grounds: randomisation can be defended in a Bayesian perspective as a 

device against allocation biases [Berry and Kadane, 1997]. Even in this respect, there 

are alternatives to randomisation in a Bayesian approach, like conditioning on the 

allocation mechanism (and implementing it in a computer in order to assign treatments): 

the KSS approach provided a nice illustration of this possibility. We saw in section 1.4 

that RCTs were mainly adopted in Britain and the United States for the warrant they 

provided against biases. Bayesian trials can provide such warrants, using randomisation 

if necessary.  

Hence, in principle, Bayesianism is a suitable alternative for the potential epistemic 

demands of the medical profession. From a pure research perspective, any kind of 

Bayesian trial provides an excellent tool to conduct experiments to learn about 

therapies, and in non-regulatory contexts their use is growing fast [Biswas et al., 2009]. 

The thorny question is what kind of Bayesian approach should be preferred for the 

design and analysis of clinical trials in a regulatory context, where experiments should 

prove the efficacy and safety of a compound. It is at present dubious whether there is a 

purely epistemic response to this issue. 
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As I briefly mentioned in the discussion of the ASTIN trial, from a purely pragmatic 

perspective it may seem possible to use the more suitable technique for the goals of 

each trial, be it frequentist or Bayesian, without paying much attention to coherence 

(e.g. [Walton et al., 2005, p. 354]). However, the main epistemic argument for 

Bayesianism is that it makes it possible to carry out the entire design and analysis of a 

trial within a coherent framework (e.g., [Walton et al., 2005, p. 356]). In this respect, the 

apex of coherence would be provided by a full Bayes approach, in which every decision 

to be made in a trial could be explicitly formalised. This may not be very attractive for 

many practitioners: as it was observed in the discussion of the ASTIN design, the utility 

functions that feature in decision models are often simplistic in order to facilitate 

computations [Berry et al., 2002, p. 167].  Yet, as Berry often notes, the decisions will 

be made anyway and the formalisation contributes to clarify our choices and make them 

more transparent to every stakeholder in the trial. The verapamil and the ASTIN trials 

are both supported by expected utility calculations that are certainly relevant from the 

patient’s perspective. 

The open question here is whether it is possible to incorporate in a unified decision 

model all the interests at stake. John Whitehead [1993, p. 1410] presented this problem 

as follows. Three different goals are usually pursued in phase III clinical trials: 

regulatory agencies (acting on behalf of patients and consumers) want to keep out of the 

market ineffective and harmful compounds; pharmaceutical companies want to 

introduce into the market effective and safe compounds; finally, clinicians are interested 

in acquiring information on the relative characteristics of the experimental and control 

treatments. This is certainly a simplification, since all parties are interested in all aspects 

of the trial, but, it shows nonetheless that there is no single decision maker in clinical 

trials. But from a Bayesian perspective, this multiplicity of agents is difficult to 

encompass in a unified model51. There may be limits to the implementation of a full 

Bayes approach in a regulatory context.  

As Whitehead points out, in standard RCTs all these interests are somehow represented 

in the different elements of the analysis: small p-values express the concerns of the 

regulator; high-powered trials give a better chance of showing the efficacy of a 

compound and thus are in the producer's interest; and the estimates of the comparative 

                                                 
51 This is too technical an issue to discuss here, but it is certainly not neglected by the authors we are 
considering here: see, for instance, the compilation of essays in [Kadane, Schervish and Seidenfeld, 
1999].  
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difference between treatments will serve the clinician's interests. Of course, as we saw, 

it is easy to approximate all these aspects of standard RCTs from a Bayesian 

perspective, even without a full-fledged decision model. But, again, there are too many 

ways of approximating these characteristics in a Bayesian trial. In the current 

epistemology of science, this is more a virtue than an obstacle: as the methodological 

debate on evidence-based medicine illustrates (e.g., [Worrall, 2007]), scientific data 

serve different practical purposes and it is good to have different approaches to assess 

them (e.g., [Cartwright, 2006]). However, in a regulatory context, this plurality of 

standards may complicate the final decision: whether to authorise or not the commercial 

distribution of a drug. As Robert Temple, an FDA officer put it in an informal debate on 

the incorporation of Bayesian approaches to regulatory decisions: 

Of course, everybody knows that "p < 0.05" is sort of stupid. Why should it 

always be the same? Why shouldn't it be adjusted to the situation, to the risks of 

being wrong in each direction? The alternative to adopting a standard is to 

actually determine a criterion for success on the spot for each new case. That is 

my idea of a nightmare. So, we use a foolish, if you like, simplification. Maybe 

we adjust it sometimes when we feel we have to but you simplify the process a 

little bit so you can get done. I don't want to have to have a symposium for every 

new trial to decide on an acceptable level of evidence. [Berry et al., 2005, p. 

303] 

The FDA has been revising their views on acceptable evidence for regulatory purposes 

over the last decade. Two landmarks in this process are the so-called Evidence 

Document and the Critical Path Initiative report52: both texts acknowledge that quicker 

phase III trials drawing on broader data sources are necessary in order to accelerate the 

approval of new drugs. The current regulatory process is costly for pharmaceutical 

companies and deprives patients of access to potentially life-saving drugs for years. 

Complaints about this drug lag date back to the late 1960s and early 1970s, when the 

FDA enforced the current regulatory regime requiring two trials. However, nowadays 

the Bayesian approach provides a viable alternative to RCTs in order to meet this 

demand for faster trials and it has been defended precisely along these lines: patients 

                                                 
52 Food and Drug Administration, Innovation or stagnation? Challenge and opportunity on the critical 

path to new medical products (2004) and Providing clinical evidence of effectiveness for human drug and 

biological products. Guidance for industry (1998), both available at http://www.fda.gov (accessed in July 
2009). 
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want quick access to a better standard of care from the early testing stages just as much 

as the industry wants faster trials.   

In my view, an argument about the way Bayesian trials can help to protect the consumer 

from incorrect regulatory decisions is still lacking. In particular, it is still undecided 

which is the best design to cope, within a Bayesian framework, with the growing 

financial pressure exerted by pharmaceutical companies in the conduct of for-profit 

clinical trials. The KSS admissibility criteria illustrate the sort of practical issues 

involved in this process. If an expert decides to recommend a treatment independently 

of the accruing data, patients will not be protected from inferior treatments; thus it is 

necessary to incorporate a (fourth) admissibility principle in order to prevent such 

situations53. Mutatis mutandis, a similar principle should be applied to the selection of 

priors in a trial conducted for regulatory purposes, so that pharmaceutical companies do 

not make abusive use of exaggeratedly optimistic priors. That is, this should occur 

unless, as happened in the ASTIN trial, we use priors with minimal information in order 

not to influence the trial data, thus diminishing the potential to exploit the information 

available before the trial. 

I think Steven Goodman is right in pointing out the necessity of a middle ground 

between the potential flexibility of Bayesian approaches and the necessity of 

standardised Bayesian procedures that secure good (and quick) regulatory decisions 

[Berry, 2005, p. 304]. Once these procedures are agreed, their ethical superiority to 

standard RCTs may not be as outstanding as it currently appears in the examples 

discussed in the previous section, but this should not be the crucial consideration in our 

choice of a design for regulatory purposes. Even if it is an imperative to conduct clinical 

trials with the highest ethical standards, in the current regulatory regime most of them 

are conducted for the sake of consumer protection. In my view, this latter goal should 

prevail, as long as our societies deem it necessary to have regulatory agencies 

overseeing pharmaceutical markets.  
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