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Abstract 

This paper discusses how to use parallel processing methods to solve control algorithms 

in real-time in the field of Control Engineering education. It is a well known fact that 

some types of control problems can not be dealt with in just one practical session in the 

lab because of their huge computational load. However, the use of low-cost clusters of 

workstations (COWs) and passing-message software let students program their own 

control algorithms and visualize the results in real-time without waiting for a long time. 

In this paper we describe the control of a pH-neutralization process using dynamic 

programming algorithms. The pH-neutralization process has been recognized as one of 

the most difficult single loop in process control. For this reason, this process has been 

used as an experiment in control teaching to show up the results obtained by using 

parallel techniques. Thus, this heavy-computational-load example represents a 

meaningful case study to demonstrate the suitableness of using parallel computing 

techniques to include new experiments in the control lab. 

 

Index terms 

Dynamic programming, optimal control, clusters of workstations, PVM, laboratory, pH-

neutralization process, real-time. 
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1 Introduction 

Since modern control theory emerged, optimization methods have been a constant in the 

theoretical contents of graduated courses on Control Engineering. Among all these 

methods, the most relevant is the dynamic programming (DP) [1] as it is a classical and 

powerful technique to solve several optimization problems under general conditions. Its 

applications are many and well-known [2], [3]: scheduling, automatic control, artificial 

intelligence, economics, etc.  

Whereas this technique is common factor in every theoretical course on optimal control, 

it is a resource that has not been widely used in the control lab assignments because the 

calculation of the function cost is a very time-consuming task. Although dynamic 

programming can be applied analytically in some cases, generally the solution has to be 

found numerically and, now, unfortunately the problem of the dimensionality plays a 

key role: CPU time and memory storage requirements can become so high that, in 

practice, conventional dynamic programming can not be used numerically at all except 

to work out simple problems. For this reason, several techniques have seen developed to 

reduce the computational cost [2], [4], [5], [6], [7], [8], [9], [10], [11]. These techniques 

reduce the great disadvantage of DP, i.e. its great computational cost, but they do not 

solve it completely. Computational time is still very long and it does not allow us to use 

dynamic programming in most cases of practical interest either in industrial or 

educational contexts, as for example, control laboratory assignments. 

One of the solutions to take advantage of dynamic programming in actual control 

problems, that is, to compute the control algorithm in one sampling interval, is a parallel 

machine. Since there is a big amount of arithmetic operations that can evaluate parallely 

when the dynamic programming recursive formula is calculated, the use of parallel 

programming techniques will allow to reduce the execution time in order to solve large-
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scale dynamic programming problems. The computational theory of dynamic 

programming from the viewpoint of parallel computation was examined by Larson [12], 

but the resulting algorithms are just applicable to a very specific and expensive range of 

parallel computer architectures.   

However, the high price of parallel computers avoids that university departments can 

consider seriously this solution in order to introduce dynamic programming in the 

control lab assignments. But, last years, decreasing prices and technological advances of 

personal computers have allowed to carry out parallel processing in a simple and not-so-

expensive fashion by building clusters of workstations (COWs) [13], [14], [15]. 

Nowadays, COWs are considered a good low-cost alternative to parallel computers for 

many reasons (flexibility, scalability, and adaptability) but, in an educational context, 

the economic one stands out: the low hardware and software costs. Just hooking 

together a few Intel/AMD boxes by a dedicated Fast-Ethernet switch and installing any 

Linux distribution, and a COW will be ready to crunch numbers. Once the machine is 

built, the last step is to choose the most convenient paradigm of parallel programming, 

that in clusters it is usually by passing messages among processing nodes. There are 

many proprietary and public-domain message-passing systems (CMMD, Express, 

Fortran-M, Nx, PARMACS, etc.) but the most important and popular packages are MPI 

(Message-Passing Interface) [16] and PVM (Parallel Virtual Machine) [17]. Shortly, 

MPI is a standard specification developed by the MPI Forum, a consortium of parallel 

computer vendors, and PVM is a self-contained system to run parallel applications on a 

network of heterogeneous Linux/Windows computers. 

After that, it is clear that an infrastructure for parallel processing oriented to solve 

optimal control problems in real-time can be afforded at low cost for many university 

departments. And, it will make possible to include in the traditional assignments of 
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laboratories new staggering and defying control projects. So far, the analysis, design, 

and construction of complex real-time control systems using dynamic programming 

algorithms in the lab were a far-fetched idea. These types of projects were forbidden as 

consequence of the time necessary to run the experiences when a complex process was 

being controlled. Now, low-cost parallel computers allow departments to widen the 

range of process to be controlled in the lab, being the time constrains just a matter of 

scalability and adaptability: to bring down the sampling interval to evaluate the control 

algorithm can be reached by a cluster resize. 

Currently, one of the pedagogical goals of our Department is to show up to students 

how parallel computation may be applied to settle many types of engineering problems. 

For this reason, all the UNED’s computer science students [18] pass a course on 

advanced computer architecture in which are explained the principles of parallel 

computing. There are many works about the contents and the scheduling of these 

courses [19], [20], [21], [22], where is pointed out that the engineering undergraduates 

have to be conversant with the tools that parallel processing offers to solve certain 

problems. Thus, to know parallel programming is fundamental to understand the 

performance that can be reached in the design and analysis of a broad range of control 

systems. 

Looking to provide a more useful and pragmatic than theoretical view of the parallel 

computing, the main section of the course is focused in teaching how to construct 

COWs and program them using the passing messages paradigm. So, once a student 

passes the course, s/he must be able to build and program a COW using low cost 

facilities, that is, Linux as operating system and PVM as passing-messages library. 

In this work is demonstrated how pH process modelling and the regulator design can be 

integrated in a cluster of PCs, bringing out a new category of control experiments to be 
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developed in the labs. It is further demonstrated that the experiments can be 

implemented in real-time.   

The paper is organized as follows: A brief introduction to classical algorithms of 

dynamic programming is shown in Section 2. Section 3 describes the parallel 

implementations of these algorithms in COWs using the paradigm of passing messages. 

Section 4 points out shortly the main features of the cluster and software used to 

program the previous algorithms. In Section 5, the control via cluster of a pH-

Neutralization process as a new control lab assignment is described. Section 6 analyses 

the scalability of the previous control problem and the viability of implementing it on 

real-time in the lab using a cluster and an improved parallel version of a classical 

algorithm of dynamic programming. Finally, contributions of this work are summarized. 

 

2 Classical algorithms of Dynamic Programming 

DP is based on Bellman’s Principle of Optimality [1]. Basically, it states that every 

portion of an optimal trajectory is an optimal trajectory for a particular subproblem as it 

is depicted in Fig. 1. 

xA

xB

xC

xD

I

II

III

 

Fig. 1. Bellman’s Principle Optimality: if I+II+III is the trajectory from state xA to state xB, according to a 
given cost (performance) function, then II is the optimal trajectory for the subproblem xC-xD. 
 

In this case, the optimization problem can be stated as a N-stage decision problem 

defined as follows: Find the sequence of decisions ))(.....,),1(( Nuu (policy) and the 

corresponding sequence of states ))(.....,),1(( Nxx (trajectory) minimazing the 

performance or cost function, 
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and subject to the sets of constraints on the state and decision variables which can be 

formulated as,  

 mn kkxukx ℜ⊂∈ℜ⊂∈ )),((U,)(X  (3) 

In this problem, x is the state variable, X is the set of allowable states, u is the decision 

variable, U is the set of admissible decisions, k is the stage, and J is the cost or objective 

function; L represents the cost of a single stage. 

If the minimum cost function from stage k to the end of the decision problem is defined 

as, 
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it is possible to prove using Bellman’s Principle of Optimality that, 
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with, 
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)(
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for the final stage N. 

In order to solve (4) numerically, the sets X and U are assumed to be finite for 

computational purposes; in cases where they are infinite, the set of admissible states X 

and the set of admissible decisions U are quantized at each stage defining a 

computational grid: 
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where MX(k) is the number of quantized states at stage k and MU(x(k), k) is the number 

of quantized decisions at stage k and state x(k). 

The computational method usually proceeds backwardly (backward dynamic 

programming with interpolation), as shown in Figures 3 and 4 [4]. )),((* kkxu i  stands 

for the optimal decision at the state ix at the stage k. The optimal decision policy is 

obtained for a complete family of optimization problems, i.e., for every state at all 

stages, and it always determines an absolute minimum within the accuracy of the 

computational grid as it is shown in Fig. 5. 

It must be taken into account if g( ( ), ( ( ), ), )i j ix k u x k k k  is not a quantized state, then 

I(g( ( ), ( ( ), ), ), 1)i j ix k u x k k k k +  has to be interpolated. It has been proven, under 

reasonable assumptions, that interpolation errors tend to increase almost linearly with 

)( kN − . The only way to be more accurate is the use of more quantized states and 

decisions, with a higher computational load. 

 

k k +1

x

x i(k) x i(k +1)

x i+1 (k +1)

x i+2 (k +1)

x i -1 (k +1)

stages

u  
j(x i (k), k)

u  
j+1 (x i  (k), k)

u  j -1(x i (k), k)

g (x i (k), u  
j(x i (k), k), k)

g (x i (k), u  
j+1(x i (k), k), k)

g (x i (k),  u  
j -1(x i (k), k), k)

cost: L (x i (k), u  
j(x i (k), k), k)

: quantized states
: non-quantized states  

Fig. 3. Basic backward dynamic programming computational procedure at a given state xi(k). 

 



 8

initialize kkxkx ∀∈∀∞= ),(X,),(I   
evaluate )(X),,(I NxNx ∈∀  
for all the stages  from  1−= Nk   to 1 
    for all the quantized states  )(X)( kkx i ∈  

        for all the admissible controls  )),((U)( kkxku ij ∈  

            evaluate )),(),((g kkukx ji  

            if  )1(X)),(),((g +∈ kkkukx ji  

              interpolate )1),),(),((g(I +kkkukx ji  

              if  )),((I)1),),(),((g(I)),(),((L kkxkkkukxkkukx ijiji <++  

                  )1),),(),((g(I)),(),((L)),((I ++= kkkukxkkukxkkx jijii  

                  )()),((* kukkxu ji =  
              endif; 
            endif; 
        endfor; 
    endfor; 
endfor 

Fig. 4. Sequential algorithm of  backward dynamic programming with interpolation. 

f(x)

x∆0 2∆ 3∆ 4∆ 5∆ 6∆

global minimum

quantified local
 minimum

true local
minimum

 

Fig. 5. A global minimum can be lost when a function is evaluated in a too coarse computational grid. 

 
However if the inverse function 1g−  exists, 

 [ ]( ) )1(,)(),1(g),(g 1 +=+− kxkkxkxkx   

an alternative sequential backward dynamic programming computational procedure 

without interpolation can be used (Fig. 6) [4]. As there are no errors due to 

interpolation, it is clear that the only way to obtain a more accurate solution is the 

employ of a dense computational grid. 

 



 9

initialize kkxkx ∀∈∀∞= ),(X,),(I  
evaluate )(X),,(I NxNx ∈∀  
for all the stages  from 1−= Nk  to 1 
    for all the quantized states )(X)( kkx i ∈  

       for all the quantized states )1(X)1( +∈+ kkx j  

          ))(),1((g 1 kxkxu ij += −  
          if  )),((U kkxu ∈  

             if  )),((I)1),1((I)),(),((L kkxkkxkkukx iji <+++  

                 )1),1((I)),(),((L)),((I +++= kkxkkukxkkx jii  

                 )()),((* kukkxu ji =  
             endif; 
          endif; 
       endfor; 
    endfor; 
endfor 

Fig.6. Sequential algorithm backward dynamic programming without interpolation. 

The solution of (4) is by far the most time-consuming part of the dynamic programming 

computations. The approximate computation time τ, assuming there are no constraints, 

is: 

( ) ( )( )X U
1

,
n

k

M k M x k kτ τ
=

= ⋅ ⋅ ∆∑  

where τ∆  is the time to solve (4) once, i.e. at one state using one decision choice. If 

were constraints, (4) would have to be solved less times and the actual value of τ would 

be smaller. 

Yet any increase in both the number of states and decisions produces the fast growth of 

the computing time. Consequently, in order to solve many optimization problems with 

DP it will be necessary to resort to parallel processing. The parallel computation 

schemes will be discussed in the following section. 
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3 Parallel Dynamic Programming Algorithms 

To parallelize the dynamic programming algorithms effectively, we need to know which 

stages are computation intensive and can be subdivided to parallelize them. Firstly, it 

must be noted that the evaluation of the optimal return function, equation (4), for all 

stages generally involves three nested iterative loops. The internal loop varies 

depending on algorithms with or without interpolation, as described in Figures 6 and 4. 

Several approaches to parallelize the dynamic programming algorithms are possible 

[23]. In the next paragraphs, dynamic programming parallel procedures implemented on 

clusters using message passing are proposed to solve optimal control problems. The 

master/slave paradigm has been used as programming paradigm to develop the parallel 

algorithms. The master is responsible for dividing the problem into small tasks, 

distributing these tasks among a farm of slave processors and gathering the partial 

results to produce the overall result. The slave processors execute a very simple code: to 

receive a message with data, to process the information, and to send the result to the 

master. The work is done in stages; each stage must finish before the work for the next 

stage can be generated. In this way, the master synchronizes the slaves at the end of 

each stage. In the following sections the classical algorithms of dynamic programming 

—with and without interpolation— are parallelized. 

Table 1 summarizes the notations and conventions used throughout the next paragraphs. 
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Table 1: Notation and conventions. 

Notation Meaning 

k index of stage 
m index of processor 
M number of slave processors 
N number of stages 

∆x partition size in the space of states 

∆u partition size in the space of decisions 
*)(⋅  optimal value of )(⋅  

i)(⋅  i-th component of vector )(⋅  

i)(⋅  i-th quantized value of )(⋅  

[ ]mi)(⋅  i-th quantized value of )(⋅ computed by the 
processor m 

[ ]m)(⋅  quantized values of )(⋅ computed by the 
processor m 

[ ]m
start)(⋅  initial value in the processor m of the 

quantized values of )(⋅  

[ ]m
end)(⋅  final value in the processor m of the 

quantized values of )(⋅  

 

 

3.1 Parallel algorithms without interpolation 
In sequential dynamic programming without interpolation (Fig. 6), the decision 

variables are not quantized. However, when the decision variables can take any value 

for any quantized state at the current stage, the state at the next stage is also a quantized 

state. For this reason, the computational grid is just defined in the set X. When this 

algorithm is parallelized, the parallel processing can be carried out only in the loop of 

the states of the stage k. The pseudocode corresponding to the master and slave 

processors are shown in figures 7 and 8, respectively. 
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MASTER 

start up the parallel virtual machine:   pvm_start_pvmd( ); 
start up the slave tasks:   pvm_spawn( ); 
initialize   I(x, k) = ∞  ∀x ∈ X(k) ∀k 
evaluate   I(x, N)  ∀x ∈  X(N) 
send constant data to all slave processors:   pvm_mcast( ); 
for  1−= Nk  to  1   
    for  1=m  to  M 

         compute  [ ] m
startkx )(  , [ ]m

endkx )(  

         send to each slave processor:  kxkxukx ∀∀),(),,(I , [ ] m
startkx )(  , [ ]m

endkx )( : 
                                                             pvm_send( ); 
    endfor 
    receive the result from each slave processor:   [ ] [ ] ),(),,(I * kxukx mm :  
                                                                                   pvm_recv( ); 
    compute and update   kxkxukx ∀∀),(),,(I  
endfor 

Fig.7. Master computational procedure for algorithm backward dynamic programming without 
interpolation. 

 

SLAVE 

receive constant data from master processor:   pvm_recv( ); 

receive  kxkxukx ∀∀),(),,(I ,    [ ] m
startkx )(  , [ ]m

endkx )(  :   pvm_recv( ); 

for  [ ]mi kx )(  ∈  )(X km  

   for  )1(X)1( +∈+ kkx j  

      [ ] ))(),1((g)( 1 mijm kxkxku += −  

       if   )),((U)( kkxku m ∈   

          if  [ ] [ ] ),)((I)1),1((I)),(,)((L kkxkkxkkukx
mijmmi <+++  

              [ ] [ ] )1),1((I)),(,)((L),)((I +++= kkxkkukxkkx jmmimi  

            [ ] )(),)((* kukkxu mmi =  
         endif; 
       endif; 
   endfor; 
endfor; 

send to master processor:  [ ] [ ] ),)((),,)((I * kkxukkx mm :   pvm_send( ); 

Fig.8. Slave computational procedure for algorithm backward dynamic programming without 
interpolation. 

 

3.2 Parallel algorithms with interpolation 
In sequential dynamic programming with interpolation it is necessary to define a 

quantized computational grid in the sets X and U (Fig. 4). The parallel processing can 
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be carried out either in the loop of the states of the stage k, or in the loop of the 

decisions of the stage k. In both cases, it is necessary to use an interpolation procedure 

to compute the equation (4) has to be used. Both parallel codes can be found in [24].  

The parallel processing algorithm of the states makes use of parallel processing carried 

out in the loop of the states at stage k. Each slave processor initially receives from the 

master a subset of quantized states at stage k.  Every single permitted quantized decision 

has to be checked for every quantized state. Yet, in the parallel processing of the 

decisions the optimization procedure is carried out in two parts at each stage k. In the 

first part, each slave processor receives from the master only a subset of the admissible 

decisions and subsequently performs the optimization over all the quantized states at 

stage k using this subset of decisions. Thus each slave processor obtains a local 

optimum that is sent to the master. In the second part of the algorithm the master, once 

all the local optima have been gathered, computes the actual global optimum.  

 

4 Cluster and Software Description 

The cluster used in this study is composed of 16 AMD K7 processors (nodes) running at 

500MHz, each one with 384MB of RAM and 7GB disk. The nodes are connected to a 

Fast Ethernet network through a 100Mb/s switch, making up a COW with 1 master and 

15 slave processors. The operating system installed is Linux (Red-Hat 6.1). This COW 

is isolated from any external network, and is exclusively dedicated to solving the 

optimization problem. 

To afford out this work, a parallel processing toolbox developed in Matlab has been 

used [25]: PVMTB (Parallel Virtual Machine ToolBox), based on the standard PVM. 

With PVMTB, users of scientific computing environments, like Matlab, in a COW with 

a message passing system, like PVM, can now take advantage of the rapid prototyping 
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nature of the environment and the clustered computing power in order to prototype High 

Performance Computing (HPC) applications. The user maintains all the interactive, 

debugging and graphics capabilities, and can now reduce execution time by taking 

advantage of the available processors. The interactive capability can be regarded as a 

powerful didactical and debugging tool.  

Figure 9 shows a diagram of PVMTB. The Toolbox makes use of the PVM low-level 

routines and the Matlab-API (Application Program Interface) functions allow the 

exchange of messages among Matlab processes. 

Network

Operating System

MATLABPVM

PVMTB

MATLAB ApplicationPVM Application

 

Fig. 9. Overview of PVMTB. 

 

5  A case-study: The control of a pH-Neutralization process 

The pH process is of great importance in the chemical industry and in waste water 

treatment, and it is difficult to control for a number of reasons: 1) The process is highly 

nonlinear; 2) It is very sensitive to disturbances near the point of neutrality; 3) It is 

difficult to formulate and identify a mathematical model of the process due to small 

amounts of polluting elements, e.g. carbonate or phosphate, change the dynamic of the 

process. 

 

5.1  The experimental process 

The experimental process consists, as shows Figure 10, in the neutralization of a strong 

acid (HCl) with strong base (NaOH) in a continuous stirred tank reactor (cstr) of 

volume (V). The acid flow (q), whose concentration is cA (mol/l), is adjusted manually 
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and the base flow (u), whose concentration is cB (mol/l), is controlled by a low flow 

pneumatic valve, which is regulated with a predictive controller implemented by a 

cluster of PCs. This feedback signal is used to provide a flow control loop at the cluster 

output so that this output could be regarded as the adjusting base flow, rather than the 

valve position. The pH level is measured in the outlet stream of the tank and sampled by 

the cluster.  

PHm

PHm

cluster of PCs

predictive
controller

ACID
BASE

V

qcA

PHm

cB

u

PHm

Flm

PH-meter

Flow-meter

FlmFlm

PHm

PHm

Flm  

Fig. 10. pH-Neutralization of strong acid (concentration cA, flow q) with strong base (concentration cB, 
flow u). Tank volume is V. 

 

Let xA and xB be the concentrations of acid and base in the tank respectively. The 

system dynamic is then given by, 

 











−=

−=

BB
B

AA
A )(

x
V
qc

V
u

dt
dx

xc
V
q

dt
dx

 (5) 

and the pH is given by, 

 












−+−=

24
log)(H

2 xKxxp w  (6) 

where BA xxx −=  and  214 )mol/l(10−=wK  at 25ºC.  

The experimental operating conditions used in our case study are listed in Table 2. 
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Table 2: Experimental operating conditions. 

Acid flow, q 0.5 l min-1 

Base flow, u 0 – 0.1 l min-1 

Acid normality, cA ≈ 10-4 mol l-1 

Base normality, cB  ≈ 0.5⋅10-3 mol l-1 

Tank volume 10 l 

 

5.2  The control system 

The control purpose is to maintain the pH in a set point of the outlet stream by 

manipulating the flow of base which gets to the tank at a rate determined by the position 

of a valve. Thus, the position of this valve is the control input that determines the 

neutralization into the tank, requiring continuous adjustment under feedback control in 

order to achieve satisfactory results. In this case-study, the aim of the cluster of PCs is 

to replace a conventional PID controller.  

To get students working in parallel programming for solving control problems in real-

time, we have developed a predictive controller based in dynamic programming using a 

cluster of PCs. The control parameters in our case-study are 1,10,1 21 === uNNN  and 

0=λ ,(more details about predictive controllers can be found in  [26]). Since predictive 

controllers make use of a process model to obtain the control signal by minimizing a 

given cost function, the controller is associated to an optimization problem with 

constraints, and it can thus be formulated as a dynamic programming problem which is 

described in (1), (2) and (3). So, considering (5), (6) and sampling with Euler 

aproximation where ∆t is equal to T (sampling period), it is possible to substitute (2) in 

terms of pH: 

     ( ) )(H)(1010
1010

log)1(H AB)(H14)(H
)(H14)(H kpq

V
c

ku
V
c

V
qeTkp kpkp

kpkp +




 −+−⋅−⋅
+

=+ −−
−−
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6  Experimental results 

To solve the problem in real-time, students develop in the lab a parallel improved 

version of a parallel algorithm backward dynamic programming without interpolation 

known as systematic reduction of computational grid without interpolation [24]. In this 

new approach, students have to introduce a new external loop: the number of 

reductions. Consequently, they have to solve the dynamic programming problem as 

many times as number of reductions. Once a solution is obtained for a reduction, a band 

of width 2∆bi (i goes from 1 to the number of reductions) is calculated around it. Then a 

new computational grid with a lower ∆xi is computed for the next reduction. In this way, 

a better solution with a computational complexity much lower is got it. Figure 11 

depicts the procedure.  

∆bi ∆xi

stages1 2 3 4

quantized states in the reduction i

optimum solution in the reduction i

quantized states in the reduction i+1  

Fig. 11. Systematic reduction of computational grid without interpolation procedure with dimension 2. 
 

Numerous simulations are afforded in the lab using different sizes to define the initial 

quantized computational grids in the set X.  Table 3 shows the partition size (∆x) and 

the width of the band (∆b) in the space of states when three reductions are considered.   
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Table 3: ∆x and ∆b for three reductions. 

 reductions ∆x ∆b 

Initial partition 0.5 8 

1st reduction 0.25 1 

2nd reduction 0.125 0.5 

3rd reduction 0.0625 0.25 

Initial partition 0.1 8 

1st reduction 0.05 0.2 

2nd reduction 0.025 0.1 

3rd reduction 0.0125 0.05 

Initial partition 0.01 8 

1st reduction 0.005 0.02 

2nd reduction 0.0025 0.01 

3rd reduction 0.00125 0.005 

 
Figure 12 shows some results for differents set points in the pH control with ∆x = 0.5 

and  ∆x = 1 as initial partitions and an initial value of pH equal to 4.    
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Fig. 12. Results of the simulations. 
 

Table 4 shows the average times for each sampling time with differents sizes of the 

initial partition in a single processor system. 
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Table 4: Average time (in seconds) for each sample time in a single processor system. 

t (∆x = 0.5) t (∆x = 0.1) t (∆x = 0.01) 

0.75 10 944 

 

A measure of the relative performance of a multicomputer system is the speedup factor, 

S(M) = ts / tp, where  ts  is the execution time using one processor and  tp is the execution 

time using a computer with M processors. But, also, in a message-passing system, the 

time to send messages must be included in the total execution time of a problem. Thus, 

the parallel execution time (tp) is obtained by adding two elements: the computation 

time (tcomp), and the communication time (tcomm): tp = tcomp + tcomm. 

As the COW is dedicated to the resolution of the optimization problem and isolated 

from any external network, the standard deviation of tp is very small and can be ignored. 

Only mean times will be considered. 

Figure 13 shows the average time (in seconds) for each sample time and the speedup 

obtained as the number of processors is increased. In accordance with the obtained 

results, the following general observations can be pointed out: 1) for coarse initial 

partitions in the space of states (∆x = 0.5), the speedup with less than five slave 

processors is very low. In Figure 13(a) can be observed how the Amdahl’s limit 

(maximun number of processors for solving a problem in the minimum time) is reached 

for M = 4. Therefore, the result with M = 10 is worse than the time obtained by a single 

processor. 2) for fine initial partitions in the space of states (∆x = 0.1), the 

computational burden has been increased and the speedup reaches a saturation point 

from M = 13 as it is depicted in Figure 13(b). 3) finally, for very fine initial partitions in 

the space of states (∆x = 0.01), the speedup is quite better, almost linear (Figure 13(c)). 

In this case, since the computational burden has been increased considerably, the 
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computation part (tcomp) predominates over the communication part (tcomm) in the 

parallel execution time (tp) as it can be appreciated in Figure 14. 
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Fig. 13. Average times (in seconds) in each sample time and speedup factor. 
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Fig. 14. Chronogram of pH control with a size initial partition ∆x = 0.01. 

One of the more important points to guarantee the viability of implementing the pH 

control in real-time is the response time of the controller. It is clear this time must be 
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lower than the sampling time. In this case-study, the controller response time is 60 

seconds [24] and the sampling time in a single processor is shown in Table 4. For 

∆x = 0.5 and ∆x = 0.1 as sizes of the initial partition, the control of the pH could be 

solved in real-time with just a single processor. However, with ∆x = 0.01 is necessary to 

use a cluster of PCs. In the considered experiment, with M = 15 the sampling time is 70 

seconds (Figure 13(c)), this means that by adding two or three processors to the cluster 

is possible to control the  pH-Neutralization in real-time. 

 

7  Conclusions 

This paper has shown how feasible is to use methods of parallel processing to solve 

control algorithms in real-time in the field of Control Engineering education. 

Decreasing prices and technological advances of personal computers have allowed to 

carry out parallel processing in a simple and not-so-expensive fashion by building 

clusters of workstations (COWs). Now, low-cost parallel computers allow university 

departments to widen the range of process to be controlled in the lab. So, it makes 

possible to include in the traditional assignments of laboratories new staggering and 

defying control projects.  

In the experimental work presented here it is demonstrated how pH process modelling 

and regulator design can be integrated in a cluster of PCs for a new control experiment 

in the labs. It is further demonstrated that the experiments can be implemented in real-

time. 
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