
 1

A new control laboratory using parallel programming

S. Dormido-Canto, J. Sánchez, S. Dormido

Dept. Informática y Automática, ETS Ing. Informática, UNED
 Juan del Rosal 16, 28040 Madrid. Spain

Tel. +34 91 3987151 fax. +34 91 3988663 E-mail: sebas@dia.uned.es

Abstract

This paper discusses how to use parallel processing methods to solve control algorithms

in real-time in the field of Control Engineering education. It is a well known fact that

some types of control problems can not be dealt with in just one practical session in the

lab because of their huge computational load. However, the use of low-cost clusters of

workstations (COWs) and passing-message software let students program their own

control algorithms and visualize the results in real-time without waiting for a long time.

In this paper we describe the control of a pH-neutralization process using dynamic

programming algorithms. The pH-neutralization process has been recognized as one of

the most difficult single loop in process control. For this reason, this process has been

used as an experiment in control teaching to show up the results obtained by using

parallel techniques. Thus, this heavy-computational-load example represents a

meaningful case study to demonstrate the suitableness of using parallel computing

techniques to include new experiments in the control lab.

Index terms

Dynamic programming, optimal control, clusters of workstations, PVM, laboratory, pH-

neutralization process, real-time.

 2

1 Introduction

Since modern control theory emerged, optimization methods have been a constant in the

theoretical contents of graduated courses on Control Engineering. Among all these

methods, the most relevant is the dynamic programming (DP) [1] as it is a classical and

powerful technique to solve several optimization problems under general conditions. Its

applications are many and well-known [2], [3]: scheduling, automatic control, artificial

intelligence, economics, etc.

Whereas this technique is common factor in every theoretical course on optimal control,

it is a resource that has not been widely used in the control lab assignments because the

calculation of the function cost is a very time-consuming task. Although dynamic

programming can be applied analytically in some cases, generally the solution has to be

found numerically and, now, unfortunately the problem of the dimensionality plays a

key role: CPU time and memory storage requirements can become so high that, in

practice, conventional dynamic programming can not be used numerically at all except

to work out simple problems. For this reason, several techniques have seen developed to

reduce the computational cost [2], [4], [5], [6], [7], [8], [9], [10], [11]. These techniques

reduce the great disadvantage of DP, i.e. its great computational cost, but they do not

solve it completely. Computational time is still very long and it does not allow us to use

dynamic programming in most cases of practical interest either in industrial or

educational contexts, as for example, control laboratory assignments.

One of the solutions to take advantage of dynamic programming in actual control

problems, that is, to compute the control algorithm in one sampling interval, is a parallel

machine. Since there is a big amount of arithmetic operations that can evaluate parallely

when the dynamic programming recursive formula is calculated, the use of parallel

programming techniques will allow to reduce the execution time in order to solve large-

 3

scale dynamic programming problems. The computational theory of dynamic

programming from the viewpoint of parallel computation was examined by Larson [12],

but the resulting algorithms are just applicable to a very specific and expensive range of

parallel computer architectures.

However, the high price of parallel computers avoids that university departments can

consider seriously this solution in order to introduce dynamic programming in the

control lab assignments. But, last years, decreasing prices and technological advances of

personal computers have allowed to carry out parallel processing in a simple and not-so-

expensive fashion by building clusters of workstations (COWs) [13], [14], [15].

Nowadays, COWs are considered a good low-cost alternative to parallel computers for

many reasons (flexibility, scalability, and adaptability) but, in an educational context,

the economic one stands out: the low hardware and software costs. Just hooking

together a few Intel/AMD boxes by a dedicated Fast-Ethernet switch and installing any

Linux distribution, and a COW will be ready to crunch numbers. Once the machine is

built, the last step is to choose the most convenient paradigm of parallel programming,

that in clusters it is usually by passing messages among processing nodes. There are

many proprietary and public-domain message-passing systems (CMMD, Express,

Fortran-M, Nx, PARMACS, etc.) but the most important and popular packages are MPI

(Message-Passing Interface) [16] and PVM (Parallel Virtual Machine) [17]. Shortly,

MPI is a standard specification developed by the MPI Forum, a consortium of parallel

computer vendors, and PVM is a self-contained system to run parallel applications on a

network of heterogeneous Linux/Windows computers.

After that, it is clear that an infrastructure for parallel processing oriented to solve

optimal control problems in real-time can be afforded at low cost for many university

departments. And, it will make possible to include in the traditional assignments of

 4

laboratories new staggering and defying control projects. So far, the analysis, design,

and construction of complex real-time control systems using dynamic programming

algorithms in the lab were a far-fetched idea. These types of projects were forbidden as

consequence of the time necessary to run the experiences when a complex process was

being controlled. Now, low-cost parallel computers allow departments to widen the

range of process to be controlled in the lab, being the time constrains just a matter of

scalability and adaptability: to bring down the sampling interval to evaluate the control

algorithm can be reached by a cluster resize.

Currently, one of the pedagogical goals of our Department is to show up to students

how parallel computation may be applied to settle many types of engineering problems.

For this reason, all the UNED’s computer science students [18] pass a course on

advanced computer architecture in which are explained the principles of parallel

computing. There are many works about the contents and the scheduling of these

courses [19], [20], [21], [22], where is pointed out that the engineering undergraduates

have to be conversant with the tools that parallel processing offers to solve certain

problems. Thus, to know parallel programming is fundamental to understand the

performance that can be reached in the design and analysis of a broad range of control

systems.

Looking to provide a more useful and pragmatic than theoretical view of the parallel

computing, the main section of the course is focused in teaching how to construct

COWs and program them using the passing messages paradigm. So, once a student

passes the course, s/he must be able to build and program a COW using low cost

facilities, that is, Linux as operating system and PVM as passing-messages library.

In this work is demonstrated how pH process modelling and the regulator design can be

integrated in a cluster of PCs, bringing out a new category of control experiments to be

 5

developed in the labs. It is further demonstrated that the experiments can be

implemented in real-time.

The paper is organized as follows: A brief introduction to classical algorithms of

dynamic programming is shown in Section 2. Section 3 describes the parallel

implementations of these algorithms in COWs using the paradigm of passing messages.

Section 4 points out shortly the main features of the cluster and software used to

program the previous algorithms. In Section 5, the control via cluster of a pH-

Neutralization process as a new control lab assignment is described. Section 6 analyses

the scalability of the previous control problem and the viability of implementing it on

real-time in the lab using a cluster and an improved parallel version of a classical

algorithm of dynamic programming. Finally, contributions of this work are summarized.

2 Classical algorithms of Dynamic Programming

DP is based on Bellman’s Principle of Optimality [1]. Basically, it states that every

portion of an optimal trajectory is an optimal trajectory for a particular subproblem as it

is depicted in Fig. 1.

xA

xB

xC

xD

I

II

III

Fig. 1. Bellman’s Principle Optimality: if I+II+III is the trajectory from state xA to state xB, according to a
given cost (performance) function, then II is the optimal trajectory for the subproblem xC-xD.

In this case, the optimization problem can be stated as a N-stage decision problem

defined as follows: Find the sequence of decisions))(.....,),1((Nuu (policy) and the

corresponding sequence of states))(.....,),1((Nxx (trajectory) minimazing the

performance or cost function,

 6

 ∑=
=

N

k
kkukx

1
)),(),((LJ (1)

where,

)),(),((g)1(kkukxkx =+ (2)

and subject to the sets of constraints on the state and decision variables which can be

formulated as,

 mn kkxukx ℜ⊂∈ℜ⊂∈)),((U,)(X (3)

In this problem, x is the state variable, X is the set of allowable states, u is the decision

variable, U is the set of admissible decisions, k is the stage, and J is the cost or objective

function; L represents the cost of a single stage.

If the minimum cost function from stage k to the end of the decision problem is defined

as,













= ∑
=+

N

kjNukuku
jjujxkx)),(),((Lmin),(I

)(,),1(),(K

it is possible to prove using Bellman’s Principle of Optimality that,

 []{ }1),),(),((gI)),(),((Lmin),(I ++= kkkukxkkukxkx
u

 (4)

with,

 { })),(),((Lmin),(I
)(

NNuNxkx
Nu

=

for the final stage N.

In order to solve (4) numerically, the sets X and U are assumed to be finite for

computational purposes; in cases where they are infinite, the set of admissible states X

and the set of admissible decisions U are quantized at each stage defining a

computational grid:

 7

{ }

{ })),(()),(()),(()),((U

)(.....,),(,)()(X

)),((21

)(21

U

X

.....,,, kkxukkxukkxukkx

kxkxkxk

kkxM

kM

=

=

where MX(k) is the number of quantized states at stage k and MU(x(k), k) is the number

of quantized decisions at stage k and state x(k).

The computational method usually proceeds backwardly (backward dynamic

programming with interpolation), as shown in Figures 3 and 4 [4].)),((* kkxu i stands

for the optimal decision at the state ix at the stage k. The optimal decision policy is

obtained for a complete family of optimization problems, i.e., for every state at all

stages, and it always determines an absolute minimum within the accuracy of the

computational grid as it is shown in Fig. 5.

It must be taken into account if g((), ((),),)i j ix k u x k k k is not a quantized state, then

I(g((), ((),),), 1)i j ix k u x k k k k + has to be interpolated. It has been proven, under

reasonable assumptions, that interpolation errors tend to increase almost linearly with

)(kN − . The only way to be more accurate is the use of more quantized states and

decisions, with a higher computational load.

k k +1

x

x i(k) x i(k +1)

x i+1 (k +1)

x i+2 (k +1)

x i -1 (k +1)

stages

u
j(x i (k), k)

u
j+1 (x i (k), k)

u j -1(x i (k), k)

g (x i (k), u
j(x i (k), k), k)

g (x i (k), u
j+1(x i (k), k), k)

g (x i (k), u
j -1(x i (k), k), k)

cost: L (x i (k), u
j(x i (k), k), k)

: quantized states
: non-quantized states

Fig. 3. Basic backward dynamic programming computational procedure at a given state xi(k).

 8

initialize kkxkx ∀∈∀∞=),(X,),(I
evaluate)(X),,(I NxNx ∈∀
for all the stages from 1−= Nk to 1
 for all the quantized states)(X)(kkx i ∈

 for all the admissible controls)),((U)(kkxku ij ∈

 evaluate)),(),((g kkukx ji

 if)1(X)),(),((g +∈ kkkukx ji

 interpolate)1),),(),((g(I +kkkukx ji

 if)),((I)1),),(),((g(I)),(),((L kkxkkkukxkkukx ijiji <++

)1),),(),((g(I)),(),((L)),((I ++= kkkukxkkukxkkx jijii

)()),((* kukkxu ji =
 endif;
 endif;
 endfor;
 endfor;
endfor

Fig. 4. Sequential algorithm of backward dynamic programming with interpolation.

f(x)

x∆0 2∆ 3∆ 4∆ 5∆ 6∆

global minimum

quantified local
 minimum

true local
minimum

Fig. 5. A global minimum can be lost when a function is evaluated in a too coarse computational grid.

However if the inverse function 1g− exists,

 []())1(,)(),1(g),(g 1 +=+− kxkkxkxkx

an alternative sequential backward dynamic programming computational procedure

without interpolation can be used (Fig. 6) [4]. As there are no errors due to

interpolation, it is clear that the only way to obtain a more accurate solution is the

employ of a dense computational grid.

 9

initialize kkxkx ∀∈∀∞=),(X,),(I
evaluate)(X),,(I NxNx ∈∀
for all the stages from 1−= Nk to 1
 for all the quantized states)(X)(kkx i ∈

 for all the quantized states)1(X)1(+∈+ kkx j

))(),1((g 1 kxkxu ij += −
 if)),((U kkxu ∈

 if)),((I)1),1((I)),(),((L kkxkkxkkukx iji <+++

)1),1((I)),(),((L)),((I +++= kkxkkukxkkx jii

)()),((* kukkxu ji =
 endif;
 endif;
 endfor;
 endfor;
endfor

Fig.6. Sequential algorithm backward dynamic programming without interpolation.

The solution of (4) is by far the most time-consuming part of the dynamic programming

computations. The approximate computation time τ, assuming there are no constraints,

is:

() ()()X U
1

,
n

k

M k M x k kτ τ
=

= ⋅ ⋅ ∆∑

where τ∆ is the time to solve (4) once, i.e. at one state using one decision choice. If

were constraints, (4) would have to be solved less times and the actual value of τ would

be smaller.

Yet any increase in both the number of states and decisions produces the fast growth of

the computing time. Consequently, in order to solve many optimization problems with

DP it will be necessary to resort to parallel processing. The parallel computation

schemes will be discussed in the following section.

 10

3 Parallel Dynamic Programming Algorithms

To parallelize the dynamic programming algorithms effectively, we need to know which

stages are computation intensive and can be subdivided to parallelize them. Firstly, it

must be noted that the evaluation of the optimal return function, equation (4), for all

stages generally involves three nested iterative loops. The internal loop varies

depending on algorithms with or without interpolation, as described in Figures 6 and 4.

Several approaches to parallelize the dynamic programming algorithms are possible

[23]. In the next paragraphs, dynamic programming parallel procedures implemented on

clusters using message passing are proposed to solve optimal control problems. The

master/slave paradigm has been used as programming paradigm to develop the parallel

algorithms. The master is responsible for dividing the problem into small tasks,

distributing these tasks among a farm of slave processors and gathering the partial

results to produce the overall result. The slave processors execute a very simple code: to

receive a message with data, to process the information, and to send the result to the

master. The work is done in stages; each stage must finish before the work for the next

stage can be generated. In this way, the master synchronizes the slaves at the end of

each stage. In the following sections the classical algorithms of dynamic programming

—with and without interpolation— are parallelized.

Table 1 summarizes the notations and conventions used throughout the next paragraphs.

 11

Table 1: Notation and conventions.

Notation Meaning

k index of stage
m index of processor
M number of slave processors
N number of stages

∆x partition size in the space of states

∆u partition size in the space of decisions
*)(⋅ optimal value of)(⋅

i)(⋅ i-th component of vector)(⋅

i)(⋅ i-th quantized value of)(⋅

[]mi)(⋅ i-th quantized value of)(⋅ computed by the
processor m

[]m)(⋅ quantized values of)(⋅ computed by the
processor m

[]m
start)(⋅ initial value in the processor m of the

quantized values of)(⋅

[]m
end)(⋅ final value in the processor m of the

quantized values of)(⋅

3.1 Parallel algorithms without interpolation
In sequential dynamic programming without interpolation (Fig. 6), the decision

variables are not quantized. However, when the decision variables can take any value

for any quantized state at the current stage, the state at the next stage is also a quantized

state. For this reason, the computational grid is just defined in the set X. When this

algorithm is parallelized, the parallel processing can be carried out only in the loop of

the states of the stage k. The pseudocode corresponding to the master and slave

processors are shown in figures 7 and 8, respectively.

 12

MASTER

start up the parallel virtual machine: pvm_start_pvmd();
start up the slave tasks: pvm_spawn();
initialize I(x, k) = ∞ ∀x ∈ X(k) ∀k
evaluate I(x, N) ∀x ∈ X(N)
send constant data to all slave processors: pvm_mcast();
for 1−= Nk to 1
 for 1=m to M

 compute [] m
startkx)(, []m

endkx)(

 send to each slave processor: kxkxukx ∀∀),(),,(I , [] m
startkx)(, []m

endkx)(:
 pvm_send();
 endfor
 receive the result from each slave processor: [] []),(),,(I * kxukx mm :
 pvm_recv();
 compute and update kxkxukx ∀∀),(),,(I
endfor

Fig.7. Master computational procedure for algorithm backward dynamic programming without
interpolation.

SLAVE

receive constant data from master processor: pvm_recv();

receive kxkxukx ∀∀),(),,(I , [] m
startkx)(, []m

endkx)(: pvm_recv();

for []mi kx)(∈)(X km

 for)1(X)1(+∈+ kkx j

 []))(),1((g)(1 mijm kxkxku += −

 if)),((U)(kkxku m ∈

 if [] []),)((I)1),1((I)),(,)((L kkxkkxkkukx
mijmmi <+++

 [] [])1),1((I)),(,)((L),)((I +++= kkxkkukxkkx jmmimi

 [])(),)((* kukkxu mmi =
 endif;
 endif;
 endfor;
endfor;

send to master processor: [] []),)((),,)((I * kkxukkx mm : pvm_send();

Fig.8. Slave computational procedure for algorithm backward dynamic programming without
interpolation.

3.2 Parallel algorithms with interpolation
In sequential dynamic programming with interpolation it is necessary to define a

quantized computational grid in the sets X and U (Fig. 4). The parallel processing can

 13

be carried out either in the loop of the states of the stage k, or in the loop of the

decisions of the stage k. In both cases, it is necessary to use an interpolation procedure

to compute the equation (4) has to be used. Both parallel codes can be found in [24].

The parallel processing algorithm of the states makes use of parallel processing carried

out in the loop of the states at stage k. Each slave processor initially receives from the

master a subset of quantized states at stage k. Every single permitted quantized decision

has to be checked for every quantized state. Yet, in the parallel processing of the

decisions the optimization procedure is carried out in two parts at each stage k. In the

first part, each slave processor receives from the master only a subset of the admissible

decisions and subsequently performs the optimization over all the quantized states at

stage k using this subset of decisions. Thus each slave processor obtains a local

optimum that is sent to the master. In the second part of the algorithm the master, once

all the local optima have been gathered, computes the actual global optimum.

4 Cluster and Software Description

The cluster used in this study is composed of 16 AMD K7 processors (nodes) running at

500MHz, each one with 384MB of RAM and 7GB disk. The nodes are connected to a

Fast Ethernet network through a 100Mb/s switch, making up a COW with 1 master and

15 slave processors. The operating system installed is Linux (Red-Hat 6.1). This COW

is isolated from any external network, and is exclusively dedicated to solving the

optimization problem.

To afford out this work, a parallel processing toolbox developed in Matlab has been

used [25]: PVMTB (Parallel Virtual Machine ToolBox), based on the standard PVM.

With PVMTB, users of scientific computing environments, like Matlab, in a COW with

a message passing system, like PVM, can now take advantage of the rapid prototyping

 14

nature of the environment and the clustered computing power in order to prototype High

Performance Computing (HPC) applications. The user maintains all the interactive,

debugging and graphics capabilities, and can now reduce execution time by taking

advantage of the available processors. The interactive capability can be regarded as a

powerful didactical and debugging tool.

Figure 9 shows a diagram of PVMTB. The Toolbox makes use of the PVM low-level

routines and the Matlab-API (Application Program Interface) functions allow the

exchange of messages among Matlab processes.

Network

Operating System

MATLABPVM

PVMTB

MATLAB ApplicationPVM Application

Fig. 9. Overview of PVMTB.

5 A case-study: The control of a pH-Neutralization process

The pH process is of great importance in the chemical industry and in waste water

treatment, and it is difficult to control for a number of reasons: 1) The process is highly

nonlinear; 2) It is very sensitive to disturbances near the point of neutrality; 3) It is

difficult to formulate and identify a mathematical model of the process due to small

amounts of polluting elements, e.g. carbonate or phosphate, change the dynamic of the

process.

5.1 The experimental process

The experimental process consists, as shows Figure 10, in the neutralization of a strong

acid (HCl) with strong base (NaOH) in a continuous stirred tank reactor (cstr) of

volume (V). The acid flow (q), whose concentration is cA (mol/l), is adjusted manually

 15

and the base flow (u), whose concentration is cB (mol/l), is controlled by a low flow

pneumatic valve, which is regulated with a predictive controller implemented by a

cluster of PCs. This feedback signal is used to provide a flow control loop at the cluster

output so that this output could be regarded as the adjusting base flow, rather than the

valve position. The pH level is measured in the outlet stream of the tank and sampled by

the cluster.

PHm

PHm

cluster of PCs

predictive
controller

ACID
BASE

V

qcA

PHm

cB

u

PHm

Flm

PH-meter

Flow-meter

FlmFlm

PHm

PHm

Flm

Fig. 10. pH-Neutralization of strong acid (concentration cA, flow q) with strong base (concentration cB,
flow u). Tank volume is V.

Let xA and xB be the concentrations of acid and base in the tank respectively. The

system dynamic is then given by,











−=

−=

BB
B

AA
A)(

x
V
qc

V
u

dt
dx

xc
V
q

dt
dx

 (5)

and the pH is given by,

 












−+−=

24
log)(H

2 xKxxp w (6)

where BA xxx −= and 214)mol/l(10−=wK at 25ºC.

The experimental operating conditions used in our case study are listed in Table 2.

 16

Table 2: Experimental operating conditions.

Acid flow, q 0.5 l min-1

Base flow, u 0 – 0.1 l min-1

Acid normality, cA ≈ 10-4 mol l-1

Base normality, cB ≈ 0.5⋅10-3 mol l-1

Tank volume 10 l

5.2 The control system

The control purpose is to maintain the pH in a set point of the outlet stream by

manipulating the flow of base which gets to the tank at a rate determined by the position

of a valve. Thus, the position of this valve is the control input that determines the

neutralization into the tank, requiring continuous adjustment under feedback control in

order to achieve satisfactory results. In this case-study, the aim of the cluster of PCs is

to replace a conventional PID controller.

To get students working in parallel programming for solving control problems in real-

time, we have developed a predictive controller based in dynamic programming using a

cluster of PCs. The control parameters in our case-study are 1,10,1 21 === uNNN and

0=λ ,(more details about predictive controllers can be found in [26]). Since predictive

controllers make use of a process model to obtain the control signal by minimizing a

given cost function, the controller is associated to an optimization problem with

constraints, and it can thus be formulated as a dynamic programming problem which is

described in (1), (2) and (3). So, considering (5), (6) and sampling with Euler

aproximation where ∆t is equal to T (sampling period), it is possible to substitute (2) in

terms of pH:

 ())(H)(1010
1010

log)1(H AB)(H14)(H
)(H14)(H kpq

V
c

ku
V
c

V
qeTkp kpkp

kpkp +




 −+−⋅−⋅
+

=+ −−
−−

 17

6 Experimental results

To solve the problem in real-time, students develop in the lab a parallel improved

version of a parallel algorithm backward dynamic programming without interpolation

known as systematic reduction of computational grid without interpolation [24]. In this

new approach, students have to introduce a new external loop: the number of

reductions. Consequently, they have to solve the dynamic programming problem as

many times as number of reductions. Once a solution is obtained for a reduction, a band

of width 2∆bi (i goes from 1 to the number of reductions) is calculated around it. Then a

new computational grid with a lower ∆xi is computed for the next reduction. In this way,

a better solution with a computational complexity much lower is got it. Figure 11

depicts the procedure.

∆bi ∆xi

stages1 2 3 4

quantized states in the reduction i

optimum solution in the reduction i

quantized states in the reduction i+1

Fig. 11. Systematic reduction of computational grid without interpolation procedure with dimension 2.

Numerous simulations are afforded in the lab using different sizes to define the initial

quantized computational grids in the set X. Table 3 shows the partition size (∆x) and

the width of the band (∆b) in the space of states when three reductions are considered.

 18

Table 3: ∆x and ∆b for three reductions.

 reductions ∆x ∆b

Initial partition 0.5 8

1st reduction 0.25 1

2nd reduction 0.125 0.5

3rd reduction 0.0625 0.25

Initial partition 0.1 8

1st reduction 0.05 0.2

2nd reduction 0.025 0.1

3rd reduction 0.0125 0.05

Initial partition 0.01 8

1st reduction 0.005 0.02

2nd reduction 0.0025 0.01

3rd reduction 0.00125 0.005

Figure 12 shows some results for differents set points in the pH control with ∆x = 0.5

and ∆x = 1 as initial partitions and an initial value of pH equal to 4.

4

6

8

10

0 5 10 15 20

0

0.05

0.1

0 5 10 15 20
time (minutes)time (minutes)

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0

0.05

0.1

0

0.05

0.1

4

6

8

10

4

6

8

10

time (minutes)

time (minutes)

time (minutes)

time (minutes)

ba
se

 fl
ow

, u
 (

l m
in

-1
)

pH

pH

pH

pH_ref=9 pH_ref=9

pH_ref=8 pH_ref=8

pH_ref=7 pH_ref=7

∆x = 0.5
∆x = 0.1

ba
se

 fl
ow

, u
 (

l m
in

-1
)

ba
se

 fl
ow

, u
 (

l m
in

-1
)

Fig. 12. Results of the simulations.

Table 4 shows the average times for each sampling time with differents sizes of the

initial partition in a single processor system.

 19

Table 4: Average time (in seconds) for each sample time in a single processor system.

t (∆x = 0.5) t (∆x = 0.1) t (∆x = 0.01)

0.75 10 944

A measure of the relative performance of a multicomputer system is the speedup factor,

S(M) = ts / tp, where ts is the execution time using one processor and tp is the execution

time using a computer with M processors. But, also, in a message-passing system, the

time to send messages must be included in the total execution time of a problem. Thus,

the parallel execution time (tp) is obtained by adding two elements: the computation

time (tcomp), and the communication time (tcomm): tp = tcomp + tcomm.

As the COW is dedicated to the resolution of the optimization problem and isolated

from any external network, the standard deviation of tp is very small and can be ignored.

Only mean times will be considered.

Figure 13 shows the average time (in seconds) for each sample time and the speedup

obtained as the number of processors is increased. In accordance with the obtained

results, the following general observations can be pointed out: 1) for coarse initial

partitions in the space of states (∆x = 0.5), the speedup with less than five slave

processors is very low. In Figure 13(a) can be observed how the Amdahl’s limit

(maximun number of processors for solving a problem in the minimum time) is reached

for M = 4. Therefore, the result with M = 10 is worse than the time obtained by a single

processor. 2) for fine initial partitions in the space of states (∆x = 0.1), the

computational burden has been increased and the speedup reaches a saturation point

from M = 13 as it is depicted in Figure 13(b). 3) finally, for very fine initial partitions in

the space of states (∆x = 0.01), the speedup is quite better, almost linear (Figure 13(c)).

In this case, since the computational burden has been increased considerably, the

 20

computation part (tcomp) predominates over the communication part (tcomm) in the

parallel execution time (tp) as it can be appreciated in Figure 14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

Number of processors (M)

t
(s

ec
o n

ds
)

S
(M

),
sp

ee
du

p
fa

ct
or

Number of processors (M)

t
(s

ec
on

ds
)

S
(M

),
sp

ee
du

p
fa

ct
or

Number of processors (M) Number of processors (M)

t
(s

ec
on

ds
)

S
(M

),
sp

ee
du

p
fa

ct
or

Number of processors (M) Number of processors (M)

∆x = 0.5(a)

∆x = 0.1(b)

∆x = 0.01(c)

Linear speed

Linear speed

Fig. 13. Average times (in seconds) in each sample time and speedup factor.

stage1 stage 2 stage 3 stage 4

sample period

stage 5 stage 6 stage 7 stage 8 stage 9

2nd and 3rd reduction
1st reduction

Fig. 14. Chronogram of pH control with a size initial partition ∆x = 0.01.

One of the more important points to guarantee the viability of implementing the pH

control in real-time is the response time of the controller. It is clear this time must be

 21

lower than the sampling time. In this case-study, the controller response time is 60

seconds [24] and the sampling time in a single processor is shown in Table 4. For

∆x = 0.5 and ∆x = 0.1 as sizes of the initial partition, the control of the pH could be

solved in real-time with just a single processor. However, with ∆x = 0.01 is necessary to

use a cluster of PCs. In the considered experiment, with M = 15 the sampling time is 70

seconds (Figure 13(c)), this means that by adding two or three processors to the cluster

is possible to control the pH-Neutralization in real-time.

7 Conclusions

This paper has shown how feasible is to use methods of parallel processing to solve

control algorithms in real-time in the field of Control Engineering education.

Decreasing prices and technological advances of personal computers have allowed to

carry out parallel processing in a simple and not-so-expensive fashion by building

clusters of workstations (COWs). Now, low-cost parallel computers allow university

departments to widen the range of process to be controlled in the lab. So, it makes

possible to include in the traditional assignments of laboratories new staggering and

defying control projects.

In the experimental work presented here it is demonstrated how pH process modelling

and regulator design can be integrated in a cluster of PCs for a new control experiment

in the labs. It is further demonstrated that the experiments can be implemented in real-

time.

Acknowledgements

This work has been supported by the Spanish CICYT under grant DPI2004-01804.

 22

References

[1] R. E. Bellman, “Dynamic Programming”, Princeton University Press, New

Jersey, 1957.

[2] R. E. Bellman and S. E. Dreyfus, “Applied Dynamic Programming”, Princeton

University Press, New Jersey, 1962.

[3] A. Grama, A. Gupta, G. Karypis and V. Kumar, “Introduction to Parallel

Computing, Design and Analysis of Algorithms”, second edition, Addison Wesley,

2003.

[4] A. P. de Madrid, S. Dormido and F. Morilla. “Reduction of the Dimensionality of

Dynamic Programming: A Case Study”, American Control Conference - ACC99.

San Diego, USA, 1999.

[5] R. E. Larson and A. J. Korsak, “A Dynamic Programming Succesive

Approximations Technique with Convergence Proofs”, Part I, Automatica, vol. 6,

pp. 245-252, 1970.

[6] A. J. Korsak and R. E. Larson, “A Dynamic Programming Succesive

Approximations Technique with Convergence Proofs”, Part II, Automatica, vol. 6,

pp. 253-260, 1970.

[7] L. Cooper and M. W. Cooper, “Introduction to Dynamic Programming”,

Pergamon Press, 1981.

[8] R. E. Larson and J. L. Casti, “Principles of Dynamic Programming. Part II:

Advanced Theory and Applications”, Marcel Dekker, Inc., New York, 1982.

[9] L. Moreno, L. Acosta and J. L. Sánchez, “Design of Algorithms for Spacial-time

Reduction Complexity of Dynamic Programming”, IEE Proc.-D, vol. 2, pp. 172-

180, 1992.

[10] M. Sniedovich, “Dynamic Programming”, Marcel Dekker, Inc., New York, 1992.

 23

[11] A. P. de Madrid, S. Dormido, F. Morilla and L. Grau, “Dynamic Programming

Predictive Control”. IFAC, 13th Triennial World Congress, 2c-02, pp. 279-284,

San Francisco, USA, 1996.

[12] R. E. Larson and E. Tse, “Parallel Processing Algorithms for the Optimal Control

of Nonlinear Dynamic Systems”, IEEE Transactions on Computers, C-22, vol. 8,

pp. 777-786, 1973.

[13] G. F. Pfister, “In Search of Clusters”, Prentice Hall, New Jersey, 1998.

[14] R. Buyya, “High Performance Cluster Computing”, Prentice Hall, vol. 1

(Architectures and Systems), New Jersey, 1999.

[15] R. Buyya, “High Performance Cluster Computing”, Prentice Hall, vol. 2

(Programmings and Applications), New Jersey, 1999.

[16] M. Snir and W. Gropp. “MPI: The Complete Reference”, The MIT Press,

Cambridge, Massachussetts, 2001.

[17] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancher and V. Sunderam,

“PVM: Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked

Parallel Computing”, The MIT Press, Cambridge, Massachussetts, 1994.

[18] Homepage, UNED [Online]. Available: http://www.uned.es/webuned/home.htm

[19] T. Hintz, “Introducing Undergraduates to Parallel Processing”, IEEE Trans. Educ.,

vol. 36, pp. 210-213, Feb. 1993.

[20] F. C. Berry, “An Undergraduate Parallel Processing Laboratory”, IEEE Trans.

Educ., vol. 38, pp. 306-311, Nov. 1995.

[21] J. A. Youssefi and K. Zemoudeh, “A Course in Parallel Processing”, IEEE Trans.

Educ., vol. 40, pp. 36-40, Feb. 1997.

[22] B. Wilkinson and M. Allen, “A State-Wide Senior Parallel Programming Course”,

IEEE Trans. Educ., vol. 42, pp. 167-173, Aug. 1999.

 24

[23] R. E. Larson and J. L. Casti, “Principles of Dynamic Programming. Part I: Basic

Analytic and Computational Methods”, Marcel Dekker, Inc., New York, 1978.

[24] S. D. Canto, “Programación Dinámica Paralela: Aplicación a Problemas de

Control”, Ph.D. Thesis, Dpto. Informática y Automática (UNED), Madrid, 2002,

(in Spanish).

[25] J. Fernández, A. Cañas, A. F. Díaz, J. González, J. Ortega and A. Prieto

“Performance of Message-Passing Matlab Toolboxes”, Springer-Verlag, vol.

2565, pp. 228-241, Heidelberg, 2003.

[26] J. M. Maciejowski, “Predictive Control with Constraints”, Prentice Hall, 2001.

S. Dormido-Canto received his MS degree in electronic engineering in 1994 from the Universidad
Pontificia de Comillas University (ICAI) and his Ph.D. degree in physics from the UNED (Universidad
Nacional de Educación a Distancia) in 2001. He joined at UNED Department of Computer Sciences and
Automatic Control as an Assistant Professor in 1994. His current research and teaching activities are
related with the analysis and design of control systems via intranet or internet, high performance
interconnection networks for cluster of workstations and optimal control.

J. Sanchez received his Computer Sciences degree in 1994, from Madrid Polytechnic University and his
Ph.D. in Sciences from UNED (Universidad Nacional de Educación a Distancia) in 2001. Since 1993, he
has been working at UNED Department of Computer Sciences and Automatic Control as an Assistant
Professor. His current research interests are the design of new systems for control education, virtual labs,
telepresence, multimedia, and the use of the Internet in education.

S. Dormido received his Physics degree from Madrid Complutense University (1968) and his Ph.D. from
Country Vasc University (1971). In 1981, he was appointed Full Professor of Control Engineering at
UNED. He has supervised 25 PhD Thesis and co-authoring more than 150 conference papers and 100
journal papers. Since 2002 is President of the Spanish Association of Automatic Control, CEA-IFAC. His
scientific activity includes various topics from the control engineering field: computer control of
industrial processes, model-based predictive control, robust control, modeling and simulation of hybrid
systems and control education with special emphasis on remotes and virtual labs.

