ARENALIb: A Modelica Library for Discrete-Event System Simulation

ARENALIib: A Modelica Library for Discrete-Event System
Simulation

Victorino S. Prat

Alfonso Urquia

Sebastian Dormido

Departamento de Informadtica y Automatica, ETS de Ingenieria Informatica, UNED
Juan del Rosal 16, 28040 Madrid, Spain
E-mail: {vsanz, aurquia, sdormido} @dia.uned.es

Abstract

The design, implementation and use of ARENALIb
is discussed in this manuscript. ARENALIb is a
new Modelica library for modeling, simulation and
analysis of discrete-event systems (DES). This new
Modelica library tries to replicate the functionality
and capabilities of Arena: a general-purpose simu-
lation environment supporting the process approach
to DES modeling [1]. ARENALib library will be
released soon under the GNU General Public License
(GPL). The library’s general architecture, implemen-
tation and use are presented. Also the results of some
model simulations, validated with Arena’s results are
discussed, as well as the future work and conclusions.

Keywords: discrete-event; DES; Arena

1 Introduction

ARENALIDb is a new Modelica library for Discrete-
Event System (DES) modeling and simulation.

The main objective of this library is to provide a mod-
eling and simulation environment for DES using the
process approach, opposite to other contributions in
Modelica that use Statecharts[2, 3] or Petri nets[4] ap-
proaches.

ARENALIib has also to be considered as a general-
purpose tool, instead of application-oriented libraries
developed by other authors (for example [5]). DES
models built using ARENALIib are completely written
in Modelica language and they can be simulated using
Dymola, as opposed to other approaches that require
the combined use of different software tools (for in-
stance, [6]).

When finished, ARENALib will be freely distributed
under the GNU-GPL license.

ARENALID has been designed and implemented repli-
cating the functionality and capabilities of Arena [1],

which is a simulation environment for DES modeling
and simulation using the process approach.
ARENALIib validation is performed by comparison
with Arena, when simulating the same systems.

In the next section, the capabilities and functionality
of Arena will be discussed. It will be followed by
a description of ARENALIib general architecture, de-
tailing the main components of the library. The con-
nection between discrete and continuous systems us-
ing ARENALib will also be presented, as well as the
random numbers and variates generation. After that, a
simple case study will be explained in detail in order to
show the use of the library, followed by the simulation
and experiment setup. Finally an extended case study,
future work notes and conclusions are provided.

2 Arena

The process approach describes the system from the
entity perspective. The entity is the basic component
of the simulation model.

To support this approach to DES simulation, Arena
components are arranged into panels. The main panel
is called Basic Process, and contains the main basic
components for system simulation.

Panel components can be classified into two types:
flowchart modules and data modules. Flowchart mod-
ules allow to describe the entity flow through the sys-
tem (dynamic part of the system). They include Cre-
ate, Process, Dispose, Decide, Batch, Separate, As-
sign and Record modules. Data modules describe the
characteristics of system elements (static part), such as
Entity, Queue, Resource, Variable, Schedule and Set
modules. The procedure for building a model consists
in drawing the flowchart diagram and configuring the
required data modules. This procedure is analogous in
ARENALIb and will be detailed in Section 10.

At this moment, ARENALib implements the Create,

The Modelica Association

539

Modelica 2006, September 4™ — 5™

V.S. Prat, A. Urquia, S. Dormido

Process, Dispose and Decide flowchart modules and
the Entity, Resource and Queue data modules. This
implementation is described below.

3 ARENALIib Architecture

ARENALIb has been designed around the idea of im-
plementing the Arena’s Basic Process panel and being
able to model and simulate the same kind of systems
than Arena. As a consequence, it’s architecture has
been divided in two parts (ARENALib general archi-
tecture is shown in Figure 1a)):

e The user zone, that contains the Basic Process
panel modules (flowchart and data), the Project
model draft which is the start package for new
systems’ models and the tutorial package that in-
cludes some examples to help the beginner user
to get used with the library. The structure of this
zone is shown in Figures 1c),1b) and 1d).

o The developer zone, stored in the “src” package,
contains all the internal models and functions
used by ARENALIib simulations. Details about
this package are shown in Figures le) and 1f).

The user zone will be detailed in Section 10, while the
developer zone will be discussed in the next sections.
The main problem that has been addressed in
ARENALID is the management of the dynamical be-
havior of the components of the system. It includes the
entity flow management, seizing and releasing of re-
sources and the generation of the statistical indicators.
This problem has been solved using dynamic-memory
structures implemented as an static library (written in
C language). The static library is connected to the
Modelica code using Modelica’s external-function in-
terface. Packages Ext and DynMem contains the func-
tions to access the static library (these packages are
shown in Figures le) and 1f)).

4 Basic Process Panel

Analogously to Arena’s process approach schema,
ARENALIDb has been divided in two type of modules:
flowchart modules and data modules. Flowchart Mod-
ules, that enables the modeler to describe the flow of
entities in the system. It is composed by:

e Create module, represents the creation or arrival
of entities to the system.

e Process module, simulates the point for entity
processing.

e Dispose module, where the entities leave the sys-
tem.

e Decide module, simulates a division in the flow
of entities.

Data Modules, representing the components of every
process in the system, such as:

e EntityType module, describes the characteristics
of the entities.

e Queue module, represents the queue where the
entities should wait for processing.

e Resource module, are the components of the de-
fined processes.

All these modules will be discussed in Sections 6 and
7.

5 Interfaces

As previously mentioned the connection between
modules is one of the main problems encountered dur-
ing the development of the library.

One of the problems of module connection is that, for a
given point in time, several and different entities could
be arriving at the same module. This means that the
same connector has to receive different entities from
different modules of the system.

At the beginning, the approach taken to solve this
problem was to implement an entity receival interface
for each module. This interface was basically a text
file in which the information of the received entity was
written. The module that received the entity could read
it from the file and process it. This solution was suc-
cessful for small systems. However, the use of text
files is very time consuming and the performance for
large models was poor.

To solve that performance problem a dynamic memory
interface was implemented for data exchange among
modules. This interface consists in storing in an In-
teger variable in Modelica a number that corresponds
to the pointer to a Dynamic Data Structure (DDS) pre-
viously created. These DDS’s are stored in memory
and correspond to the main data structures used in the
system’s simulation, such as queues and linked lists of
elements. There is a DDS for managing queues of en-
tities, lists of resources, lists of entity types, lists of
statistical indicators and lists of attributes of an entity.

The Modelica Association

540

Modelica 2006, September 4™ — 5™

ARENALIb: A Modelica Library for Discrete-Event System Simulation

= () 4RENALD = [JARENALD = [JARENALb
[T ModelDrait "|jM0de|Draft !
4 @BasicProcess FlowchartDiagram @ ModelDraft
[Tukorial = [JDats * [T]|BasicProcess
= [JsRE ™ Entities = @ Tutorial
+'ﬁBasicPlocess ™ Queues - -
& Tinttaces ——— (]| Drilling_Cestiter
[variates # [BasicProcess FlowschartDiagram
0 ¥
: Cqex H] Tutorial @Data
(CJDyntdem # [sRC & |j5F|E
a) b) c)
=I[JsRC
* [T]|BasicProcess
H [Intertaces
= [T Variates
= [JARENALD =[] 5RC Mar
*] ModelDratt # [JBasicFrocess = ﬁ Dizcrete
= [T BasicProcess = ﬁlnterfaces Bemadll
I Create b‘ Entityln ou
= Dizpose [EnityOut Bin
i—tProcess + OutBlock Geom
< Decide . InBlock Nagbin
= Dat.
ﬁ e + e|n0utBlock Poiszon
@ EntityType
+ +In20utBlock + ﬁ Continuous
A Queus - Variah
ariates +
h Resource - ﬁ £ ﬁ CMAG
wt +
H [T Tuterial ﬁ Ij Ext
m i * [PomMem ¥ [JDyrbdem
d) e) f)

Figure 1: ARENALID architecture: a) General Architecture; b) Model Draft; ¢) Tutorial; d) BasicProcess; e)

Interfaces; f) Random Variates

The performance was increased about 40 times from
the text file’s approach.

So the interface between modules is composed by an
integer number, which corresponds to the pointer to
the entity receival queue of a given module, and in-
dicates the memory address for accessing the queue.
Also, every module has a queue of outgoing entities
for managing the order in which the entities are trans-
fered to the next module.

For the development of the flowchart modules, some
general interfaces have been implemented. The basic
ones are the connectors for input and output entities.

Based on these basic connectors several models have
been created to cover all the possible interfaces of the
flowchart modules. Depending on the number of in-
puts and outputs of each module they can be classi-
fied into: InBlock (one input), OutBlock (one output),
InOutBlock (one input and output) and In20utBlock

(one input and two outputs).

6 Flowchart Modules

Flowchart modules are used to model the flow of en-
tities through the system. This entity flow begins in
Create modules, and finish in Dispose modules. In this
section, each of the currently implemented modules is
detailed and it’s use and configuration parameters are
shown.

6.1 Create

As mentioned before, it allows to model the arrival of
entities to the system. This arrival is expressed in form
of an inter-arrival time between entities. The module
extends the OutBlock interface module. The parame-
ters of the module are the following:

The Modelica Association

541

Modelica 2006, September 4™ — 5™

V.S. Prat, A. Urquia, S. Dormido

e EntityType, is the type of the entities created in
the module. This entity type has to be previously
instantiated from an entity type data module.

o Entity Generation Function, represents the inter-
arrival time. This time can be calculated from: (1)
a probability distribution; (2) a constant expres-
sion and (3) a Modelica variable from any other
model.

e g2l,g2 and g3, are the parameters of the previous
function. Depending on the distribution selected
the meaning of each one changes.

e TimeUnit, is the local time unit. The inter-arrival
time will be based on it.

e Entities Per Arrival, defines the number of enti-
ties generated in each arrival time.

e Max Arrivals, establishes the maximum number
of entities generated in the module. If the number
of entities reach this value, no more entities will
be created.

e First Creation, sets the simulated time when the
first entity is created.

6.2 Process

It defines a process. It extends the InOutBlock inter-
face module. The parameters of the module are the
following:

e Name, the name of the module.

e Type, can be standard and submodel. The stan-
dard defines a simple process configured by the
module parameters. On the other hand, the sub-
model indicates that this module is just a mask
for a more complicated process, composed by a
DES itself. The submodel type is not fully im-
plemented, but it can be easily done by using the
Modelica’s object oriented capabilities.

e Action, the possible values are Delay, Seize-
Delay, Seize-Delay-Release and Delay-Release.
Depending on the option chosen, the entity will
seize a resource, be processed (delayed), and at
the end release the resource.

e Priority, establishes the priority of entity selec-
tion from the waiting queue. This option is not
implemented yet. The entity selected is the first
in the queue (FIFO).

e Resources, is the list of the resources associated
to the process. Each resource has to be previously
declared using a resource data module.

e Resource Quantities, defines the quantity of each
resource that has to be seized by the entity. If any
of the resources does not have the specified quan-
tity available then the seize operation fails and
the entity must wait in the queue. This param-
eter must have the same length than the previous
one.

e (Queue, is the queue associated to the process. It
has to be previously defined with a queue data
module.

e Delay type, represents the processing time for an
entity. It can be a continuous value or a probabil-
ity distribution.

o gl, g2 and, g3, are the parameters of the Delay
type function.

e TimeUnit, also represents the local time unit. It is
the base time for the delay value.

e Allocation, determines the kind of process the
module is simulating. Possible values are “Value
Added”, “Non Value Added”, “Wait” , “Trans-
fer” and “Other”, and will influence the statistical
results of the entities processed.

6.3 Dispose

It is the final point for the entities in the system: they
are removed from the system and their statistical infor-
mation is stored. For that reason, this module has no
parameters.

6.4 Decide

It permits the modeler to simulate a division in the flow
of the entities. Given a chance or a condition, the mod-
ule decides the output connector the entity will leave
the module through. It extends the In20utBlock in-
terface model. The parameters of the module are the
following:

e Type, establishes the type of flow division, either
by chance (percentage) or by condition. At this
moment only the “by chance” option is imple-
mented.

e Percent True, is the percentage of entities that will
leave the module through it’s True output connec-
tor.

The Modelica Association

542

Modelica 2006, September 4™ — 5™

ARENALIb: A Modelica Library for Discrete-Event System Simulation

7 Data Modules

Data modules represent the static components of the
system. These are the entities themselves and the rest
of the components that will interact with them along
it’s flow, such as queues and resources. At the present,
three modules have been implemented and are detailed
below.

7.1 EntityType

This data module defines the attributes of a type of
entity. These attributes are the name, the picture of
the entity (currently not implemented), and the costs
associated to the entity.

7.2 Queue

It is used to describe process queues. The only type of
queue currently implemented is the FIFO.

7.3 Resource

This module represents the resources used by the en-
tities in the processes. An entity must seize (when
needed) the resource in order to be processed. After
processing, the entity can release the resource or not,
depending on the kind of process performed.

8 Connection with other Modelica
models

ARENALIib modules can be connected to other Model-
ica models, so hybrid continuous-discrete systems can
be easily modeled.

Arena provides the possibility of including continu-
ous modules in the models, however this possibility is
very limitated. Analogously, ARENALIb provides in-
terfaces in each module to perform a connection with
any Modelica model, which is much more powerful
than Arena’s capabilities.

This connection interfaces give the modeler the pos-
sibility of configuring ARENALib module parameters
from external Modelica models.

We can separate the connection interfaces in two:

o Integer ones, that represent the transfer of entity
related events between discrete and continuous
systems. The input Integer connector is used to
tell the system that an entity has arrived or that an
entity has finished the processing (in the Create
and Process modules). And the output connector

(in the Process module) is used to tell the continu-
ous system which entity (with it’s serial number)
has seized the resource and is ready to be pro-
cessed.

e Real ones, are just values for the rest of the avail-
able parameters of the modules, such the time for
the first arrival, the maximum arrivals, the prior-
ity, etc.

On the other hand, each discrete module provides in-
formation that can be accessed using the Modelica dot
notation. The list of variables that can be accessed for
each module is displayed in the information icon of the
module’s model.

9 Random Variables

A key point in DES simulation is the random num-
ber generation. This section has been divided into two
parts to separate the random number generation (ob-
servations of the U (0, 1) distribution) from the variate
generation.

9.1 Random Number Generation

Due to the DES dependence on stochastical distri-
butions and to ensure good simulation results, it is
very important to have a good source for pseudo-
random numbers, to build statistically good random
variates[7].

Also, in order to be able to analyze and validate the
results from ARENALIb in comparison with the ones
obtained from Arena, the same pseudo-random num-
ber generator has been implemented.

This random number generator is called CMRG (Com-
bined Multiple Recursive Generator) [8] and has a pe-
riod length of 2'°!. This period length can be divided
into disjoint streams, each of them of length 2!%7.
ARENALIb associates one of those streams with each
Random Variable, so the random number stream inde-
pendency can be ensured for variate generation.

The implementation of the CMRG has been done
translating the implementation in C, done by Pierre L.
Ecuyer (available on the web at [9]), into Modelica
code. In this way, the generator is available for anyone
outside the ARENALIib environment. The only remark-
able thing for it’s usage is the management of the seed,
which is read from a text file and updated every time a
new stream is generated.

The Modelica Association

543

Modelica 2006, September 4™ — 5™

V.S. Prat, A. Urquia, S. Dormido

9.2 Random Variates Generation

To provide the modeler enough functionality for mod-
eling and simulating many kind of systems, some
of the most commonly-used probability distributions
have been implemented and included in the library.
These distributions are functions that use the stream
created by the CMRG to generate random variates.
The output variables of all the distribution functions
are the variate’s value and the updated random stream,
that will be used to obtain more new variates. The in-
put variables of the functions are the following:

9.2.1 Continuous Probability Distributions

e Uniform (min,max)

Exponential (mean)

Normal (mean,variance)

LogNormal (mean,variance)

Triangular (min,mode,max)

9.2.2 Discrete Probability Distributions

e Bernoulli (p)

Discrete Uniform (min,max)

Binomial (n,p)

Geometric (p)

Negative Binomial (n,p)

Poisson (alpha)

10 ARENALib Use

In this section the use of ARENALIib will be introduced
by means of a simple example. The development of
the model, the experiment setup, the analysis of the
results an the validation with Arena are explained in
detail.

10.1 Model Description

It is a very simple case of a processing system. The
modeled system consists on a Drilling Center where
the parts arrive, are drilled (processed) and leave.

The flowchart components of the system are a create
module, that represents the parts arriving to the center,
a process module, which is the drilling center itself and
finally the dispose module where the parts leave the

system. The flowchart diagram is presented in Figure
2.

The data modules are: (1) the entity type that repre-
sents the processed parts; (2) the drilling press viewed
as a resource; and (3) the queue associated to the press.
For building this model in ARENALib we should use
the package ModelDraft, duplicate and rename it to
match our model requirements. This package includes
all the basic components necessary to simulate the sys-
tem.

Inside the ModelDraft there are two structures, the
flowchart diagram that will be used to compose the
system’s structure and the data package which con-
tains models for structuring all the needed data mod-
ules of our system.

For building the Drilling Center in ARENALIb, an en-
tity type, a resource and a queue modules have to be
inserted in their corresponding data models, and then
the flowchart diagram has to be drawn by drag a drop
of a create, a process and a dispose module.

The last step is to configure the parameters of each
data and flowchart module, as desired, to match the
requirements of the system.

10.2 Simulation and Experiment Setup

Arena ARENALib
Indicator Average [Half Width || Average
Part.NumberIn 20010 19887
Part. NumberOut 20006 19887
Part. VATime 3.3254 0.01574 3.3385
Part.WaitTime 3.4822 0.24270 3.4571
Part. WIP 1.3622 0.06354 1.3527
VATimePerEntity 3.3254 0.1574 3.3385
WaitTimePerEntity 3.4822 0.24270 3.4571
TotalTimePerEntity 6.8077 0.24771 6.7956
Queue.NumberInQueue || 0.69695 | 0.05623 0.68754
Queue.WaitingTime 3.4827 0.2427 3.4571

Table 1: Results of the drilling center simulations

When having the system’s model, and after having
configured all the parameters of the modules, a sim-
ulation experiment can be run.

There are two basic parameters for each simulation.
The simulation time and the global time unit. The
first one establishes the duration of the simulation ex-
periment, and the second one is the time unit (sec-
onds, minutes, hours,etc.) in which the simulation
time is established. These two parameters will influ-
ence the time unit parameter of the modules in the sys-
tem, translating the values in each module to match the
simulation time.

The Modelica Association

544

Modelica 2006, September 4™ — 5™

ARENALIb: A Modelica Library for Discrete-Event System Simulation

ANZ- 23[9 % ¢»=S0EEw v

Fart_amivés_to_the_system Driling_Corter Part oaves_system

/=]

a)

M|

Driling cener quene: Number Wating — Drlling oener resource: cument mumbe by

Figure 2: Drilling center model composed using: a) ARENALIb; and b) Arena

When the simulation time is finished, the statistical re-
sults of the run are written to a file named “SimRe-
sults.dsc”. After that, the only remaining variable in
the system is the CMRG seed. This ensures that sev-
eral experiments of the same model will, each of them,
use different pseudo-random numbers.

Results from the Drilling Center simulation are shown
in Table 1. These results have been obtained using
Dymola.

Several experiments can be easily configured using
Modelica’s scripting facilities.

Other result analysis capabilities are the plots. Every
module has several variables that can be plotted at the
end of the simulation and permits the analysis of the
evolution in time of the experiment. This can be very
useful to detect peak loads or compare several param-
eters in the system.

11 Case Study

As a case study, a Bottle Filling process is discussed.
This process consists in a tank which fills bottles with
liquid. Once a bottle is full, it is labeled and controlled
in two quality control processes. The bottles that pass
the first control are considered as first class bottles and
the ones that pass the second control are considered as
second class bottles. Any bottle that doesn’t pass the
second quality control process is cleaned and relabeled
again.

The tank has been modeled as a continuous system
which fills the bottles at a constant rate. Every 400
time units the tank is refilled to it’s maximum level.
The flowchart diagram of the process is displayed in
Figure 3, modeled either in Modelica and Arena.

Arena ARENALIb
Indicator Average [Half Width || Average
Bottle.NumberIn 637 650
Bottle.NumberOut 623 632
Bottle.VATime 6.1618 0.35771 6.405
Bottle.WaitTime 35.894 5.2451 36.237
Bottle. WIP 5.3305 (Corr) 5.5132
Labeling.NumberIn 659 677
Labeling.NumberOut 645 660
Labeling. VATimePerEntity 5.3348 0.13555 5.3026
Labeling. WaitTimePerEntity 34.697 (Corr) 34.796
Labeling.Total TimePerEntity 40.031 5.6018 40.098
Labeler_q.NumberInQueue 4.5534 (Corr) 4.7017
Labeler_q.WaitingTime 34.723 (Corr) 34.839
Cleaning.NumberIn 22 28
Cleaning.NumberOut 22 27
Cleaning. VATimePerEntity 19.202 (Insuf) 20.44
Cleaning. WaitTimePerEntity 1.0079 (Insuf) 0
Cleaning.Total TimePerEntity || 20.210 (Insuf) 20.44
Cleaner_q.NumberInQueue 0.0044 (Insuf) 0
Cleaner_q.WaitingTime 1.0079 (Insuf) 0

Table 2: Results of the Bottle Filling simulations

The results of the simulation and the validation data,
from the comparison with the Arena’s results, are pre-
sented in Table 2. Also some plots from Dymola’s
simulation results are shown in Figure 4.

12 Future Work

The main task for the future work will be the Basic
Process panel development completion, including the
modules still not implemented and the rest functional-
ities for the existing ones.

Other problems, that actually delay the development of
the whole library, are the management of different data
types for attributes and variables and the implementa-
tion of variable size matrices, for example, when intro-
ducing entity attributes that can be modified dynami-

The Modelica Association

545

Modelica 2006, September 4™ — 5™

V.S. Prat, A. Urquia, S. Dormido

cally during the simulation by any module, or the use
of system variables whose value and size can change
similarly to the attribute ones.

The solution for these problems is still in progress but
will be solved soon, enabling the further development
of the whole library.

The tutorial package will also be completed with more
examples as well as the information pages for every
module, either in the user zone and the development
Zone.

Visual representation of the simulations will also be
studied.

13 Conclusions

A new Modelica library has been designed and imple-
mented, offering the possibility of modeling DES and
hybrid continuous-discrete systems in a simple way.
This new library is based on Arena, a simulation envi-
ronment for DES.

This new library is completely compatible with the rest
of the Modelica’s components.

Several experiments have been performed obtaining
successful results. Validation has been done using
Arena for comparing results.

References

[1] Kelton W.D, Sadowski R.P, Sturrock D.T. Simu-
lation with Arena (Third Edition). McGraw-Hill,
2004.

[2] Otter M, Arzén K.-E, Dressler I. StateGraph -
A Modelica Library for Hierarchical State Ma-
chines. In: Proc. of the 4" Int. Modelica Confer-
ence, 2005, pp. 569-578.

[3] Ferreira J. A, Estima de Oliveira J.P. Modelling
Hybrid Systems using Statecharts and Model-
ica. In: Proc. of the 7" IEEE Int. Conference
on Emerging Technologies and Factory Automa-
tion, 1999.

[4] Mosterman P.J, Otter M, Elmqvist H. Modelling
Petri Nets as Local Constraint Equations for
Hybrid Systems using Modelica. In: Proc. of
the Summer Computer Simulation Conference,
1998, pp. 314-319.

[5] Farngvist D, Strandemar K, Johansson K. H,
Hespanha J.P. Hybrid Modeling of Communica-
tion Networks Using Modelica. In: Proc. of the

(6]

(7]

(8]

(9]

2" Int. Modelica Conference, 2002, pp. 209—
213.

Remelhe M.A.P. Combining Discrete Event
Models and Modelica - General Thoughts and
a Special Modeling Environment. In: Proc. of
the 2" Int. Modelica Conference, 2002, pp. 203—
207.

L’Ecuyer P. Software for uniform random num-
ber generation: distinguishing the good and the
bad. In: Proc of the 33’ conference on Winter
simulation, 2001, pp. 95-105.

L’Ecuyer P, Simard R, Chen E. J, Kelton W. D.
An Object-Oriented Random-Number Package
with Many Long Streams and Substreams. Op-
erations research, vol. 50, 2002, pp. 1073-1075.

L’Ecuyer P. CMRG source code web page.
http://www.iro.umontreal.ca/ lecuyer/myftp/streams00/
July, 2006.

The Modelica Association

546

Modelica 2006, September 4™ — 5™

ARENALIb: A Modelica Library for Discrete-Event System Simulation

Battle_filling Labeling FirstClass_battle
o B
M ol Lo
& ry =
SecondClass_bottle
Cleaning
) A

entities queu resources 3 schedules

a)

0 Tree
Tank? CharéggeTank Tank Gets Empty

Levels ‘ Rates | Continuous
1 tarkeel larHenirak: n
1Y e
Y Y ﬁ
#z3ign Battle AN new 1 Labeling FistClass_Botte
Etype walue to next J ‘\\
S— |

1

—

Cleaning condClass_Bottle

Begin tank refi\l\~—- TankRefil End tank refill
/ g_

Figure 3: Bottle Filling model composed using: a) ARENALIib; and b) Arena

b)

The Modelica Association 547 Modelica 2006, September 4™ — 5™

V.S. Prat, A. Urquia, S. Dormido

E Plot [1]
tank level Lakeling MumberinGuevue
120
1004
&0
50
40|
20
o4
-20 T
o 1000 2000 3000 4000 000
B Plot [2] = [B]X] | Pt [31 - BX)
— Shumberinval Shumber Outval FirstClazs_baottle Mumberin SecondClass_bottle Mumberin
oo oo
BO0 BO0
500 500
400 400
300 300
200 200
100 100
0 04
-100 T T T T T T T T T -100 T T T T T T T T T
1] 1000 2000 3000 4000 =000 a 1000 2000 3000 4000 5000

Figure 4: Bottle Filling model result plots using Dymola

The Modelica Association 548 Modelica 2006, September 4™ — 5™

