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Abstract: In this paper a method of tuning decentralized PID controllers for multivariable
systems is presented. It is based on an iterative numeric algorithm, and it uses information
coming from the frequency response of the full matrix of the system transfer functions.
Then, the effects of the interaction are included in the design because the off-diagonal
elements in this matrix are taken into account. The aim is to meet the design specifications
that were gain margins, phase margins or a combination of both in the different
experiments carried out. Three examples are shown: two obtained from the literature and
one from a real plant. The results are compared with another type of MIMO tuning.
Copyrigth  1999 IFAC.
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1. INTRODUCTION

Although numerous techniques of advanced control
exist (robust, predictive, adaptative control, etc) the
decentralized control is still frequently used in
industry as a strategy of multivariable control, as a
mere control technique or used in the most internal
control loop and with some of the previous ones in a
superior level. The sacrifice that supposes the
invariable deterioration of the benefits of a
decentralized control structure when is compared
with a full multivariable control strategy, is
compensated with certain advantages like design and
hardware simplicity or easiness of use.

However, the use of this type of strategies is not
always possible due to the interaction effects. A
severe interaction will produce a loss on closed-loop
performance and stability. In these cases it will be
necessary to give up the use of these techniques and
of think in another type of strategies commented
previously.  In order to study these interaction effects
numerous methods exist, one of most often used in
industrial applications being the relative gain matrix
(RGA) (Bristol,1966) with their numerous variants,
due to their calculation simplicity. The use of this
matrix is not only limited to the steady state analysis

to solve the pairing problem among variables.
Furthermore, it is supplemented with other calcu-
lations to provide indexes of stability, or interaction
dynamic analysis. In this line, methods like the direct
and inverse Nyquist’s arrays (DNA and INA),
(Rosenbrock,1979; Maciejowsky,1989), supplemen-
ted with Gershgorin’s bands, and other calculations
like the condition numbers, Niederlinsky's index,
dynamic RGA, etc, are frequently used.

Once this type of decentralized techniques has been
selected for use, either because the interaction is not
severe or because only some of the system outputs
are needed, and once the pairing problem has been
solved, the following step will be choosing the
controller and its tuning. Most of the papers
published in this field use PID controllers (with their
different possibilities) for a multitude of well-known
reasons: industrial implantation, robustness,
employment easiness... Some methods found in the
literature could be classified under the following
headings that show the interest that the topic has
raised in the last years:

Tuning methods based on heuristic formulas: These
formulas indicate the direction in which the
parameters have to be detuned to compensate the



interaction effects when all the loops are closed. The
initial parameters have been previously calculated
using some SISO technique, that is, making a design
with only the elements of the main diagonal (the gii)
of the system transfer function matrix.
(Shinskey,1995; McAvoy, 1983) works are in this
line.

Designs based on the relay method: These techniques
are able to obtain the different parameters of the
controllers from the frequency and amplitude of a
maintained oscillation, achieved with the relay when
closing the loops progressively. Numerous iteration
algorithms exist, like those of (Wang et al, 1996 and
1997; Menani and Koivo, 1996; Halevy et al, 1996;
Shiu and Hwang, 1998)  to mention some.

True multivariable tuning methods: In this case, in
order to calculate the controller parameters, these
methods do not use only a part of the information of
the transfer function matrix but rather in the design
they already take into account the interaction of the
off-diagonal elements. One of the most outstanding is
the work of Ho et al (1996), that provides on-line
tuning formulas to obtain the PID controllers for two
by two systems. This is a method that uses
Gershgorin’s band to provide a correction to the
specifications of phase and gain margins and then
they enter in a SISO formulation.

The present work could be framed within this last
group. In it, an iteration algorithm is proposed to
achieve the PID parameters for any multivariable
system, paying special attention to those of two
inputs and two outputs. First, the tuning method is
exposed presenting the notation and the used
algorithm. Later the method is applied to three
examples: two taken from literature and one
developed by the authors.

2. ITERATIVE METHOD FOR TUNING
DECENTRALIZED CONTROLLERS

Let suppose a MIMO system with two inputs and two
outputs. The use of a decentralized control strategy
has been decided and the pairing problem of
variables has been solved. It is aimed to control this
system by means of two controllers k1 and k2. The
controller ki closes a loop between the controlled
variable yi and the manipulated variable ui. If the
controller k2 has already been tuned by some method
and it is sought to make the same thing with the k1, as
can be seen in Figure 1, between the controlled
variable y1 and the manipulated variable u1 there is
something else than the transfer function g11, because
an additive action appears. This is due to the
existence of one of the hidden loops described in
(Shinskey,1995). The effect of this additive action
could be represented as the block a1 shown in Figure
2. In the same figure, the combination of g11 and a1 is
denominated 

11
~g , following the notation of Zhu and

Chiu (1998) (in this paper a study of the interaction
and stability characterization of this type of systems
can be found).

Fig. 1: Interaction of the hidden loop on the loop 1.   

Fig. 2: Effect of the interaction and the final result

With this scheme in mind, the proposed tuning
approach instead of calculating a controller for g11

(that would be when there is not interaction) will
proceed to tune k1 for 

11
~g  which already incorporates

the effect of this interaction. Nevertheless, the
modification of k1 will have its effect on the other
loop, a new tuning of k2 becoming necessary. This
operation could be made successively until the
producing changes in k1 and k2 are small and each
loop meets the design specifications. The calculation
could be carried out using some SISO tuning method
adapted, as it will be seen later on.

3. TUNING APPROACH FOR PID
CONTROLLERS

Let suppose that k1 and k2 are two PID controllers
described by
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where the superscript indicates the number of the
iteration, and the subscript the loop to which the
calculation refers. The algorithm starts with ok1

and
ok2

 obtained exclusively for g11 and g22 by means of a
SISO method or an arbitrary controller that could be
Kp=1, Ti=9999, Td=0. The effect of this election has
little repercussion in the number of iterations and in
the convergence.  The following iterative algorithm
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is proposed: from ok1 , og11
~  is obtained, and from ok2 ,

og 22
~ is obtained, following the expressions:
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If the couples ii gk 111
~   and ii gk 222

~  meet the design
specifications the iteration concludes. Otherwise the
iteration number increases.

Fig. 3: Flow diagram of the algorithm

The controller ik1
 is then calculated for the model

1
11

~ −ig  and the controller ik 2
 for the model 1

22
~ −ig .  With

the new controllers ik1
 and ik 2

, ig11
~  and ig 22

~  are
recalculated.  With these data a new iteration begins.
This process is shown in Figure 3.

4. OBTAINING THE i
jk  FROM THE i

jjg~

In order to obtain the i
jk  from the i

jjg~  a lot of SISO

methods can be employed. However the calculation
of the i

jjg~  from i
ja  is not immediate, due to certain

problems: the presence of time delays in the
functions gij can make the analytic calculation
complicated. Not less important, the variety of types
of models that can take place when making the
quotient given in the expression of i

ja  makes it

impossible to use a particular formula among the

existing ones for models of first order plus delay, two
time constant plus delay,..., (Ho et al, 1996). To solve
these problems, the proposed method uses an
adaptation of a generic tuning method allowing a
numeric calculation instead of an analytic one, that is
to say, not expressing the gij as a transfer function but
as the array of frequency response of the transfer
function. This operation mode is much easier and
quicker and the i

jjg~  will be other response arrays,

without an analytic expression in the form of a
concrete transfer function.

An adaptation of the analytic method of Morilla and
Dormido (1998) has been chosen. This is an
extension of the Aström and Hägglund (1984)
method consisting in a generalization of the Ziegler-
Nichols formulas to move a point of Nyquist’s
diagram of the open loop transfer function from a
position A (in controller's absence) until another
position B (in controller's presence), as Figure 4
shows. If the controller is an ideal PID controller
given by the following expression
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the determination of its parameters can be
summarized in the equations
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where ωc is the frequency corresponding to the point
A elected in the Nyquist’s diagram, ra and φa are the
gain and the angle of this same point, rb and φb the
destination point B gain and angle, and α the ratio
between the derivative and integral time constants,
that should be specified.

Fig. 4: Process and process plus controller
Nyquist’s diagram and circle unit. The
controller is PID and it has been tuned to
move the point A to the point B.
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As Morilla and Dormido (1998) show, its design
admit three design possibilities: phase margin (PM),
gain margin (GM) and a combination of both. Due to
space limitations, only the design for phase margin
will be described. First of all, the frequency range ωc

that admits solution for a certain controller is
calculated, that is to say, the set of points A, keeping
in mind that the process included in the algorithm is a
frequency response array, iig~ . From this array, the

point A gain and angle, ra and φa, are obtained. From
the PM specifications, φb is calculated. Because point
B is located on the unit circle, then rb = 1. With these
data, Kp and Ti are calculated from expressions (5)
to (6) for each point A with possible solution. In
order to choose one among all of the solutions, a
selection approach is needed. For example, if it is
sought to minimize the integral of the absolute value
of the error (IAE), the maximum ratio Kp/Ti will be
looked for. Parameter α can also be chosen to
minimize some other optimization approach.

It is also necessary to notice that it is possible to use
any other SISO tuning method whenever it is adapted
to solve the problems commented before.

5. EXAMPLES

Example 1: As a first example, a water-methanol
distillation column proposed by Ho et al (1996) is
analyzed. The system is described by the following
transfer function matrix
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If a PM=20º and a GM=2 for both loops on Ho's
tuning formulas are specified, the following
parameters are obtained: Kp1=0.57, Ti1=20.7, Td1=0,
Kp2=-0.11, Ti2=12.88 Td2=0; while with
specifications of PM=30º and GM=3, for both loops,
they are Kp1=0.38, Ti1=21.64, Td1=0, Kp2=-0.07,
Ti2=14.8 Td2=0. However, if an analysis of these
tunings is made the obtained results show that the
values are very far from the initial specifications:

Tuning Loop 1 Loop 2

1th PM=51.6º  GM=3 PM=94º  GM=2.2
2th PM=65º   GM=5.3 PM=103º  GM=3.8

This is because any design that uses Gershgorin's
bands will provide very conservative tunings when
the interaction is appreciable. The main reason is that
in most of the cases, these bands are excessively
wide and they produce a correction in the initial
phase and gain margins. Gershgorin's bands for this
system with the first tuning can be seen in the graph
of Figure 5, superimposed with direct Nyquist array
(DNA). In this graph 

111
~gk  and 

222
~gk  (on continuous

line) are also superimposed, both being quite far from
the band borders, which shows that any design that
uses these bands in its calculation process will lead
inevitably to extra-conservative tunings. A more
exhaustive description of Gershgorin's bands and
direct Nyquist’s arrays can be found in Rosenbrock
(1979) or Maciejowsky (1989).

Using the algorithm proposed in this work with
specifications of PM1=45 and PM2=45 and beginning
with Kp1=1, Ti1=9999, Td1=0 y Kp2=-1, Ti2=9999,
Td2=0 the results of Table 1 are obtained for each
iteration. It is observed that five iterations have been
enough to meet the specifications in the two control
loops.

Table1:  Results obtained in each iteration for
example 1 with specifications of PM1=PM2=45º

It. PM1 PM2 GM1 GM2 Kp1 Ti1 Kp2 Ti2

1 0.08 0.09 7.55 1 0.22 2.57 -0.11 4.14

2 37 48 2.39 2.16 0.75 3.33 -0.04 1.67

3 42 40 2.63 1.41 0.70 4.25 -0.09 3.17

4 44 48 2.47 1.51 0.73 3.51 -0.09 3.10

5 45 45 2.48 1.46 0.73 3.56 -0.09 3.11

In Table 2 other tunings are showed, carried out for
the PI controllers in example 1 with different sets of
specifications: only PM, only GM or combinations of
both.

Table 2: Tuning with different specifications for example

Specifications Performance Control parameters
PM1 PM2 GM1 GM2 PM1 PM2 GM1 GM2 Kp1,  Ti1, Td1 Kp2,  Ti2, Td2

40 40 - - 40 40 0.12 1.36 0.69, 2.88,  0 -0.08,  2.78, 0
40 60 - - 40 60 2.43 1.43 0.73, 2.88,  0 -0.10,  4.41,    0
60 90 - - 60 82 2.54 3.32 0.78, 15,     0 -0.06,  7.37,    0

- - 4 4 20 55 4 4 0.32,  1.64, 0 -0.006,  0.6,    0
- - 2 5 16 56 2 5 0.66, 1.66,  0 -0.015,  6.15,  0
45 80 4 3 46 80 4 3 0.47,  6.58,  0 -0.06,  6.15,  0

30 65 3 4 30 65 3 4 0.56,  2.49,   0 -0.029, 3.04, 0



Fig.5: DNA with Gershgorin's bands superimposed
for example 1 with the first tuning of Ho’s
work. 

111
~gk  and  

222
~gk  on continuous line

and  
111gk  and 

222 gk   in discontinuous

Example 2: It is a four-coupled tanks system, also
proposed by Ho et al (1996) whose transfer functions
matrix is given by
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By means of Ho's tuning formulas, if a PM1=40º and
a GM1=4 for the first loop and a PM2=30º and a
GM2=3 for the second are specified, the controllers
have the following parameters: Kp1=0.62, Ti1=217,
Td1=0, Kp2=0.94, Ti2=193 Td2=0.  If these tunings

are analyzed, the obtained results (PM1=67º,
GM1=5.35 for the first loop and PM2=61.5º,
GM2=4.5 for the second) are both far from the
specifications, although not as much as in the
previous example because Gershgorin's bands are not
as wide as in the previous example.

Using the iterative algorithm, designs shown in Table
3 can be obtained, where a great proximity between
the specifications and the results can be observed,
either in tunings for PM, by GM or combined of PM
and GM, and using PI or PID controllers.

Example 3: Lastly, in Table 4 some tunings for the
control of a heat exchanger (Morilla and Vázquez,
1997) are shown. The process transfer function
matrix is given by the following expression, and its
scheme is shown in Figure 6.
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Due to the width of Gershgorin’s bands (as it can be
seen in Figure 7), it was impossible to tune the
controllers using Ho's tuning formulas. However,
Table 4 shows that the iterative algorithm allows
multiple possibilities, most of them tested later in real
experiences. Here the difference between the
different tuning could be seen.

Table 3: Tuning for different specifications of example 2.

         Specifications          Performance       Control parameters

PM1 PM2 GM1 GM2 PM1 PM2 GM1 GM2 Kp1,  Ti1, Td1 Kp2,  Ti2, Td2

40 30 - - 40 30 2 1.28 0.88,   101,      0 3.25,   240,      0

67 61 - - 67 61 5.6 4.9 0.59,   209,      0 0.85,   173,      0

45 45 3 3 45 45 3 3 1.07,   208,      0 1.39,   192,      0

40 30 4 3 40 30 3.8 4.2 0.19,     48,      0 1.24,     91,      0

- - 6 6 10 10 6 6 0.56,     55,   9.44 0.71,     54,   9.14

Table 4: Tunings for different specifications of  example 3.

             Specifications          Performance       Control parameters

PM1 PM2 GM1 GM2 PM1 PM2 GM1 GM2 Kp1, Ti1, Td1 Kp2, Ti2, Td2

45 45 - - 45 45 1.97 4.64 4.8,       436,     0 -6.13,    426,     0

30 70 - - 30 70 1.85 9.64 6.38,     426,     0 -2.19,    280,     0

70 30 - - 70 30 2.02 2.55 3.89,     627,     0 -10.1,    243,     0
- - 3 3 35 27 3 3 0.76,       91,     0 -5.85,      97,     0

- - 2 5 32.6 27.3 2 5 1.78,     175,     0 -3.71,     111,    0

45 45 - - 43 47 2.15 3.45 7.1,       554,    77 -2.3,       132,   75

45 45 3 3 45 46 2.89 2.99 2.63,     263,     0 -9.91,     321,    0

45 45 3 3 45 43 3.12 3 2.73,     230,   12 -13.1,     231,  24

60 35 - - 60 36 1.75 2.36 6.31,     528,   53 -9.47,     271,  27

75 60 5 6 74.7 61 4.8 6.06 2.1,       585,     0 -4.5,       250,    0



Fig. 6: Process scheme of  example 3.

Fig. 7: DNA with Gershgorin's bands superimposed
for example 3

In Figure 8 a graph of the real temporal response of
the two temperatures is shown, where the set points
of T1 (output process temperature) were changed.
The control parameters correspond to a conservative
design, with the characteristics of the last row of
Table 4.

Fig. 8: Time response of  the  system  of example 3
under control

CONCLUSIONS

In this paper, a new multiloop controller tuning
method has been presented. The method, based on an
iteration algorithm, has been compared with some of
the examples used in the literature of MIMO tuning,
achieving designs nearer to the specifications. Inside
the algorithm any generic method of SISO controllers
tuning could be used but with some variation. The
difficulty that present some design methods that use
Gershgorin's bands has also been shown, because

with these, very conservative designs appear in the
best of the cases, since in other they don't obtain a
solution.  In contrast, the method has been
successfully applied to tuning the PID controllers of
several  real systems, like a heat exchanger.
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