
TELEOPERATION OF AN INVERTED PENDULUM THROUGH THE WORLD WIDE WEB

J. Sánchez, F. Morilla, S. Dormido

Dpto. de Informática y Automática, UNED, Avda. Senda del Rey nº 9, 28040 Madrid.
Spain. Phone: 34-91-3987146 Fax: 34-91-3986697,
E-mail: {jsanchez, fmorilla, sdormido}@dia.uned.es

Abstract: The Departamento de Informática y Automática of the Universidad Nacional
de Educación a Distancia (UNED) is working in the development of new paradigms of
Internet-based laboratories. In this approach, a WWW browser is the only tool needed
to conduct the remote practical experiences with real or simulate systems. An example
of remote on-line control of an inverted pendulum using a Java-enabled browser is
presented in this paper. Copyright © 2001 IFAC.

Keywords: Teleoperation, laboratory education, teaching, remote control.

1. INTRODUCTION

Now, modeling and dynamic simulation are
considered the basic tools to verify the theoretical
background acquired during the study of the subjects.
These two tools allow to practice with certain objects
that are unreachable for the students (inappropriate
timetable, long distances between home and
university) or for the university departments (high
prices, no room for new didactical setups, scarcity of
staff) (Kheir et al., 96).

The experimentation with a physical system is
irreplaceable for simulations or training simulators
(Poulis and Pouliezos, 1997; Cooper and Fina, 1999).
A student working with a real experiment has
feelings that are not the same ones that those
obtained against simulations. Many times the student
thinks that working with a real plant instead of a
simulation has more profits, but it is not true. In most
of the activities with real plants, the student
calculates and enters a set of parameters in a
graphical user interface and obtains some numerical
or graphical results. If the plant model is right, these
results do not have to be different with those obtained
of working against the real plant. But in certain type
of hands-on exercices, as the laboratories of Digital
Electronic, Computer Architecture, Process Control
or Robotics, the student's activity is not limited to the
manipulation of parameters. The student designs
systems by using graphical environments in those a
symbol or icon represents a real or simulated object.
Therefore, the design stage is independent of the
object regarding its existence or not.

But working with real plants produces the appearance
of phenomena (nonlinearities, saturations of the
actuators) or accidental situations (electrical and
mechanical irregularities). These phenomena are not
easily ported to a simulation due to their stochastic
nature or for simplification. But these phenomena
contribute to improve the practical experience
acquired for the student. The practical education
needs the support of errors and irregularities of the
mechanical, electrical or chemical systems in
opposition to the icons and ideal environments
represented in a computer screen.

But the current face-to-face laboratories present a set
of factors that avoid their application before certain
situations. These factors are:

• A great number of students enrolled in a course.
That situation obligates to fix several shifts and
timetables. But that does not benefits students (lack
of additional time to fulfill the projects, few
possibilities to practice with new systems) and
teachers (neglecting the research activities or taking
time away from teachers’ leisure in order to attend to
the labs)
• The distance education model. Distance students
have to move for several days to the labs because of
practical experiences can take many hours and even
days to perform.
• The lack of financial resources, in many cases,
forces to that the number of available experiments in
the laboratory to be scarce. This point, the student
enrolment, and the reduced space of the labs cause
that the hands-on exercises can not be developed in
the way that the students and teachers want.

Distance education InternetLaboratories

+

WWW-based remote laboratories

2. THE TELEOPERATION AS A SOLUTION

To solve or to play down the problems outlined
previously is necessary to appeal to the teleoperation.
This concept has already been studied for some
years, but that now it is accessible to students thanks
to the current diffusion of the Internet network in our
society. In general, the teleoperation term is the
possibility to manipulate and to control at distance
certain resources with the same possibilities that one
person would have if he/she were operated in a local,
manual, and direct way. Obviously the definition of
the term includes many cases: from the control of a
guided car using a cable until the control by means of
radio frequency of the supervision vehicles on the
Mars surface, or even the control of our bank account
by means of WAP mobile phones.

In our context, the teleoperation is the access to the
physical elements of a laboratory using the resources
of the Internet. But this access has to guarantee an
adequate level of presence in order to allow users to
develop the hands-on activities with the same validity
to practice in the laboratory rooms.

If the teleoperation term is applied to the Internet-
based access to the face-to-face laboratories without
spatial and temporal restrictions, the concept of the
WWW-based remote laboratory or telelab arises (see
Figure 1).

Fig. 1. Telelab is the mixture of realities and
necessities

But, why is the telelaboratory a possible solution to
the problems in the university laboratories? The
remote access via the Internet facilitates that:

1. Laboratories have 24-hour-a-day access, every day
of the year.
2. Students do not have to move to the lab for the
realization of the hands-on practical exercises.
3. Bigger optimization in the use of the lab resources.
4. Access to different types of experiments, with
independence that the department resources are
scarce.
5. Students can prepare their experiments in advance
in case that the presence in the laboratory is
mandatory.

6. The learning process improves thanks to a 24-hour
link between practical experience and theoretical
knowledge.

In accordance with the modern society in which we
are living, a consequence of the existence of remote
laboratories that deserves special attention is the
creation of remote laboratory experimentation
networks among universities. If a single remote
laboratory solves many of the problems outlined
previously, the creation of consortia increases these
benefits notably. And these benefits redound to the
two parts: (1) students would have a complete set of
practical activities regardless of the university
resources (personnel, equipment, etc.); (2) teaching
staff would have different platforms to support their
lectures but reducing costs of acquisition and
maintenance. Additionally, and thanks to this kind of
consortia, the remote access to different didactical
setups allows universities a better integration of the
practical experiences in the educational curriculum
(Antsaklis et al., 1999).

Fig. 2. Inverted pendulum

3. AN EXAMPLE OF TELEOPERATION: REMOTE
CONTROL OF AN INVERTED PENDULUM

To distinguish this contribution from other similar
works (Gillet et al., 2000; Zolnay et al., 2000) and to
highlight the main differences and analogies, next
some of the design options of this approach are
enumerated:

• Easy to use and understand. The
experimentation interface is very friendly and has
already tested in other simulation environments
developed in the department (Sánchez et al., 2000).

• Multiplatform software client. The graphical
experimentation interface is a 100% pure Java applet.
This allows students to conduct the experiments from
any platform just using a Java-enabled browser.

• Global access to the remote laboratory by using
a data-sharing approach. The exchange of
information between the server and the clients is
carried out by means of a small application protocol
that allows:

- To know user's type: student or teacher,
- To transmit the parameter and data streams

closing the tuning loop across the Internet, and
- To manage the control loop (stop, start, new

sampling time, etc.) from the client interface.

This data approach against the terminal-like approach
gets a sustained and flexible exchange of
information, minimizing the bandwidth requirements
at the same time. However, the effort of software
development is bigger.

• On-line access to the physical resource. The
interaction with the system is dynamic and in
realtime. Students are not just expected to tune
sliders and controllers, to run the simulation, to
examine the scopes, and to repeat again all the steps
if they want to change some data. During the
experimentation stage, every change in the input
variables is immediately shown in the
experimentation GUI. So, users can visualize on-the-
fly how the system behavior evolves according to the
values of the interactive variables. But, when the
experimentation stage is over, it is possible to
download and picked up the results in a file. Later
on, the student could carry out a quantitative analysis
of his/her experiment since the file has the samples of
all the system signals. The existence of a master
client has been considered. Other clients have to wait
but they can visualize what is happening in the
system while the master client conducts a practical
exercise.

• The control loop implements at the server side.
The real-time control loop is running on the
computer that stands for the communication and
operation interface with the didactical setups. The
control loop is closed in the server and never across
the Internet as it happens with the tuning loop.

This design approach involves two information
loops: the synchronous control local loop, and the
asynchronous tuning loop (see Figure 3). The last
one is closed across the Internet and it takes charge
of tuning and managing the control local loop and the
plant state.

• Generation of disturbances in the process
variables for validation purposes. There are two
techniques to change the system signals: on-line
modification due to the user’s actions (movement of
a slider in the process diagram) or disturbances
preprogrammed by the tutor/instructor for the
experiment. In this last case, the disturbances are

saved in the experiment definition file (file of
parameters).

Control loop:
- Synchronous
- Local (controller-plant)
- Realtime

Tuning loop:
- Asynchronous
-TCP/IP (client-server)

- Sensitive to the network delays

Client Server

Fig. 3. Teleoperation diagram with two information
loops: tuning and control.

• Replacement of the controller. In this
environment, the software package used to design
the control structure determines the change of the
control law. This software is Matlab/Simulink and
the Quanser WinCon environment. Different
controllers can be placed in a Simulink block
diagram and the instructor could choose one or
another by means of the file of parameters.

4. ELEMENTS OF THE ENVIRONMENT

4.1 The client-side

At the client side, the experimentation interface is
composed of two parts: the graphical user interface
(GUI) and the visualization system. The GUI is a
Java applet with two parts: the browsing window (see
Figure 4), and the experimentaction window (see
Figure 5).

Fig. 4. Browsing window

The browsing window.

The browsing window allows the experiments to be
adjusted to the hierarchical structure of a textbook or
a course. Three browsing levels are considered:
chapters, lessons, and experiments. In this way, the
environment could have i chapters, each chapter j

lessons, and each lesson k experiments (these
experiments can be different, using either the same
plant type or different plants). In this simple way, the
tutor/instructor will be able to tailor the environment
for teaching a course with a certain profile, and the
student/operator will be able to select an experiment
among all the existent ones, according to the
concepts or situations that he/she wants to study or to
observe. This window is setup with a plain text file
(the browsing file).

The graphical experimentation interface

The experimentation graphical user interface (EGUI)
for the remote control of the inverted pendulum is
shown in Figure 5. The EGUI is characterized to
offer all the elements to carry out a realtime and
interactive supervision of the pendulum.

Fig. 5. Experimentation window

The EGUI is composed of the following parts: the
process diagram, the control panels, three scopes, a
multisignal scope, and the historical log. The process
diagram is made up of a graphical diagram of the
process with alphanumerical visualization of the
most important signals and units, plus an outline of
the control strategy, allowing the access to the
parameters and the modes of the controllers. The
control panels are composed of three types of
elements (buttons, sliders, and fields) and can be
grouped in three categories: main control panel
(located at the top of the interface), the interactive
variable panel (sliders and alphanumeric fields to
modify the value of the signals and the set point), and
the controller panel.

Besides scopes displaying the pendulum state with all
the relevant signals, the IGUE has an animation of
the mobile parts of the pendulum to enhance the user
perception. This way, the user has a quantitative
(scopes, numeric fields) and qualitative (animation,
video) view of the physical system.

With the purpose of allowing the tutor to limit and
guide the user’s actions, the way in which the user
interacts with these panels can be configured by

means of files of parameters. There are three possible
configurations for each variable: totally hidden,
visible but not modifiable, visible and modifiable.

The total time that a user has to fullfil the experience
depends of the type of experiment chosen in the
browsing window. This time is fixed for the tutor in
the file of parameters, file located in the remote
server.

4.2 The server-side

There are several applications running at the server
side (see Figure 6). These are:

- A HTTP server. It provides the HTML pages, the
experimentation applets, and the files of parameters.
Also it controls the access to the pages in function of
user's type and it supplies the access to the remote
visualization environment.

Fig. 6. Teleoperation diagram

- A concurrent server, named plant server, developed
in Java, with a double purpose. First, it interacts with
the data acquisition board to supply a stream with the
plant state to the tuning loop in order to update the
experimentation user interface. Second, it manages
the Simulink+Wincon environment through the
Matlab workspace and, so, the control loop is
managed (starting, stopping) and certain parameters
can be changed (controller parameters, sampling
period). The dialog between this server and the
experimentation applet is based on an application
protocol. Using this protocol, the client can send
commands and inquiries to the server in order to
control the experiment and to receive the answers.

- WinCon 3.0 is a realtime Windows application that
runs Simulink generated code using the Realtime
Workshop to achieve digital realtime on a PC
equipped with a data adquistion board. The board
(MultiQ3), the inverted pendulum, and the WinCom
software are made by Quanser Consulting.

- The Matlab/Simulink environment. The design and
construction of the control loop is carried out with

the Simulink blocks and the WinCom’s Simulink
block library. The Simulink model is managed from
the Matlab workspace by means of Matlab
commands, and, therefore, the supervision of the
control loop and their parameters is done easily.

The communication on Windows between the Java
language and Matlab has been carried out using the
ActiveX Automation protocol. Using the Matlab type
definition file, named mlapp.tlb and located in the
folder of the Matlab distribution, to generate
automatically a group of Java classes wrapping the
ActiveX-Matlab interface is an immediate action
from the Microsoft Visual Java++ environment
(MVJ++). The names of these classes are
DIMLApp.class and MLApp.class, and the
signatures of the available methods are:

public abstract void MinimizeCommandWindow();
public abstract void MaximizeCommandWindow();
public abstract void Quit();
public abstract void GetFullMatrix(java.lang.String,);
public abstract void PutFullMatrix(java.lang.String,);
public abstract java.lang.String Execute(java.lang.String);

So, the Java code can communicate with the Matlab
workspace using these methods and, therefore, Java
can manage the control loop generated with
Simulink/WinCom. Hence, the employment of the
MVJ++ environment is inevitable to carry out the
communication with Matlab through ActiveX

A dynamic library, Plant.dll, has been written to
program from the MultiQ3 board (initialization of
encoders and A/D outputs, encoder reads, A/D
output/input operations, etc.) from the Java server.
Because the MVJ++ is not compatible with the Sun’s
JNI specification (Java Native Interface), it was
necessary to use the Microsoft’s J/Direct
specification in order to access to the Plant.dll library
from the Java code.

The use of TCP sockets between the applets and the
server is a highly flexible and smart solution to
exchange information, and TCP level is reasonable
efficient in network utilization. Unfortunately, TCP
can also cause delays when an application is sending
many small packets in a short amount of time. This
makes the information view pretty choppy. Since the
server sends to the applet a 50 bytes-sized data
packet in response to a command, the NAGLE
algorithm has been disabled (RFC896) in the TCP
level. In this way, an improvement of the 60-90% in
the data transmission is reached, and, the information
exchange between applet and server is carried out in
a continuous and cadenced way.

The plant server

The server interface is composed of three parts: the
information fields, the message area that displays the

dialogue between applet and server, and the button
area (see Figure 6).

Fig. 6. Plant server interface

The plant server is designed to attend concurrently
multiple connections, although in this approach the
existence of a unique master client has been
considered. The server operation is very similar to
any concurrent server: a parent process listens to the
incoming connections in a port; once established the
TCP connection with the experimentation applet, the
parent process forks a new thread, named
Connection, in order to attend this new client
connection (see Figure 7). At the same time that the
thread is created, the Matlab/Simulink/WinCom is
open in the server and the Simulink model (the
control loop) is loaded. From now on, this thread will
receive the commands and inquiries from the applet
and transmit them to the Matlab workspace, giving
back the answers to the applet. So, the tuning loop is
closed across the network.

Fig. 7. State diagram of the server

5. REMOTE VISUAL SUPERVISION

In order to provide a 24-hour-a-day access to the lab,
the hardware, two Java applets, and a server side Java
application have been developed for the remote
control of a system composed of lights and a video
camera commanded by a computer. The system
design allows the teacher to preconfigure several
camera setups. So, students concentrate their
attention on specific points of the physical system
that they are controlling across the Internet.

Fig. 8. Teacher applet

There are two client applets to control the camera:
teacher and student. The teacher client applet (Figure
8) has a full functionality. With this applet, the
teacher can configure the camera interactively
according to the necessities of the conducted
experiments: plant location, lighting, zoom for
emphasizing some details, etc. The student applet has
fewer functions than the teacher one. As it can be
appreciated in Figure 9, the interface lets user
program the camera with one of the six setups or take
it to the home position.

Fig. 9. Student applet

In accordance to the hardware requirements fixed for
the development of the visualization environment,
SONY and CANON have cameras that adapt
perfectly to these specifications. After analyzing each
one of them, the SONY camera EVI-D30/D31 was
chosen. This camera uses a protocol called VISCA
and can be full-controlled using RS-232C
communications.

Like the control of the pendulum, an application
protocol has been developed for the control of the
camera. The server, developed in Java, receives the
applet commands and inquiries and translates them to
the VISCA protocol, sending this information to the
camera through the on-site server serial port.

The video grabbing and transmission is carried out
by means of an AXIS hardware video server. This
solution discharges the server computer of the video
tasks, avoiding to disturb the control local loop.

Evidently, the construction of a remote
experimentation environment involves not only the

physical independence of the student, but also the
temporal one. For this reason, a prototype for the
remote control of lighting has been designed so that,
the view of the physical system is guaranteed at the
very same instant in which a TCP connection is
established to begin an experiment on a real plant.
The prototype is based on electromechanical relays,
separating the control circuit (D.C. supplies by the
cards D/A) from the power circuit (A.C. to turn on, in
this case, the lights).

6. CONCLUSIONS

Today, Internet is the bottleneck for this kind of
applications. To reduce the communication overhead
and to use augmented reallity techniques are some
solutions to get better communication performance.

The system is designed to be modular. So, the
Matlab/Simulink/WinCom environment allows to
integrate another pilot plant into the system easily.

The use of files of parameters is a smart solution to
manage different experiments with an only plant.

REFERENCES

Antsaklis, P., T. Basar, R. DeCarlo, N. Harris, M.
Spong and S. Yurkovich (1999). Report on the
NSF/CSS WorkShop on new directions in control
engineering Education, IEEE Control Systems
Magazine, Vol. 19, nº 5, pp. 53-58.

Cooper, D. and D. Fina (1999). Training simulators
enhance process control education. In:
Proceedings of the American Control Conference,
pp. 997-1001.

Gillet, D., C. Salzmann and P. Huguenin (2000). A
distributed architecture for teleoperation over the
Internet with application to the remote control of
an inverted pendulum. In: Second Nonlinear
Control Network (NCN) Workshop, Paris, France.

Kheir, N.A., K.J. Ämstrom, D. Auslander, K.C.
Cheok, G.F. Franklin, M. Masten, and M. Rabins
(1996). Control system engineering education.
Automatica, 32, 147-166.

Poulis, D. and A. Pouliezos, (1997). Computer
assisted learning for automatic control. In: The 4th

Symposium on Advances in Control Education,
pp. 181-184.

RFC986. In: http://www.faqs.org/rfcs/rfc896.html.
Sánchez, J., F. Morilla, S. Dormido, J. Aranda, and P.

Ruipérez (2000). Conceptual learning of control
by Java-based simulations. In: IFAC Symposium
on Advances in Control Education, Gold Coast,
Australia.

Zolnay, A., A. Lassó, H. Charaf and I. Vajk (2000).
Configurable remote, platform independent
control system. In: IFAC Symposium on Advances
in Control Education, Gold Coast, Australia.

