
Automatic Design of Analog Electronic Circuits using Grammatical

Evolution

Federico Castejóna, Enrique J. Carmonaa,∗

aDepartamento de Inteligencia Artificial, ETS Ingeniería Informática, Universidad Nacional de Educación a
Distancia (UNED), Juan del Rosal 16, 28040, Madrid, Spain.

Abstract

A new approach for automatic synthesis of analog electronic circuits based on Grammatical
Evolution is presented. Grammatical Evolution is an evolutionary algorithm based on grammar
which can generate code in any programming language and uses variable length linear binary
strings. The decoding of each chromosome determines which production rules in a Backus-Naur
Form grammar definition are used in a genotype-to-phenotype mapping process. In our method,
decoding focuses on obtaining circuit netlists. A new grammar for generating such netlists and
a variant of the XOSites-based crossover operator are also presented. A post-processing stage
is needed to adapt the decoded netlist prior its evaluation using the NGSpice simulator. Our
approach was applied to several case studies, comprising a total of seven benchmark circuits. A
comparison with previous works in the literature shows that our method produces competitive
circuits in relation to the degree of compliance with the output specifications, the number of
components and the number of evaluations used in the evolutionary process.

Keywords: Automatic Circuit Design, Analog circuits, Evolutionary Electronics,
Grammatical Evolution, NGSpice

1. Introduction

Since the late 1970s, analog circuits have been gradually replaced by digital circuits, but
some functions still have to remain analog, mainly because transducers are analog as well. Un-
like digital circuit design, analog circuit design still suffers from a lack of automatic design tools.
Much effort has been made in Electronic Design Automation (EDA) to obtain help tools for the
design of analog or mixed signal integrated circuits such as standard cell libraries or rule based
expert systems [1]. Additionally, the field of Evolutionary Electronics appeared in 1998 [2], and
since then, its goal has been the synthesis of electronic circuits using evolutionary algorithms.
Inspired by natural selection, evolutionary algorithms can obtain solutions to complex prob-
lems. Thus, using a tentative population of potential circuit solutions, the best solutions are
selected, crossed over and mutated. Successive generations lead to progressive improvement in
the population in general and the best solution in particular. Evolutionary algorithms applied
to synthesis tasks use neither design rules nor expert knowledge for the design [3]. That is why
they can lead to unconventional solutions which challenge human designer intuition [4, 5].

Automatic circuit synthesis comprises two tasks: topology selection and circuit sizing. These
tasks can be accomplished together or separately [6]. Thus, in some cases, evolutionary algo-
rithms have only been used for circuit sizing, while topology selection has been done by human
designers [7], or aided by aforementioned EDA tools [8]. In other cases, both tasks, topology se-
lection and sizing, have been tackled simultaneously by evolutionary algorithms and, in general,
by Evolutionary Electronics [2].

∗Corresponding author
Email addresses: federico.castejon@seap.minhap.es (Federico Castejón), ecarmona@dia.uned.es

(Enrique J. Carmona)

Preprint submitted to Applied Soft Computing 20th July 2017

This version of the article has been accepted for publication, after peer review but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1016/j.asoc.2017.09.036. Use of this Accepted Version is subject to the Licence CC BY-NC-ND.

ENRIQUE JAVIER CARMONA SUAREZ
Rectángulo

http://dx.doi.org/10.1016/j.asoc.2017.09.036

2

Evolutionary algorithms have been used successfully for the design of digital circuits [9, 10,
11, 12, 13]. On the other hand, they have also been used with good results for automatic
synthesis of analog circuits [14, 15, 16, 17]. In the last case, Koza’s group has been one of the
most active in this area and its works based on genetic programming are especially relevant
[18]. In particular, GP (and its variants) is considered the evolutionary paradigm with more
successful results in the field of analog circuit design [19] and possibly remains so in the future
[5, 20]. The scope of this work will be limited to the design of analog circuits. Thus, from now
on, only this kind of circuits will be considered.

One of the main problems to be tackled in Evolutionary Electronics is how to encode a
circuit. A circuit instance, which can be seen as a graph where edges are circuit components
and vertices are circuit nodes, has to be encoded in a suitable chromosome structure. Next, a
taxonomy based on [21] presents different types of approaches that are grouped according to
how a circuit is encoded:

1. Direct encoding: components, node numbers and component values are encoded in a linear
chromosome. In this case, the chromosome can have a fixed [22] or variable length [23, 24].
Alternatively, only components and node numbers are encoded in a linear chromosome,
while component values are adjusted by a numerical optimizer [25, 26, 3]. In all cases, the
decoding process is straightforward, leading to a circuit netlist.

2. Encoding by grammar : the chromosome is decoded into an expression whose syntax can be
described by a grammar. Development expressions can be seen as part of this approach.
A development expression defines the sequence of specialized functions which transform
an initial circuit, normally called embryo, into a final circuit [27, 28, 18, 29, 30]. These
approaches are based on genetic programming, using tree chromosomes as coding struc-
tures. Another way of encoding by grammar is using grammatical evolution, where linear
binary chromosomes are used as coding structures and a set of sub-circuit development
expressions contained in a grammar are used to decode each chromosome into a circuit
[31].

3. Encoding implicit interactions between components: inspired by biologic genetic regula-
tory networks (GRN), this type of approaches encodes components and their connections
with other components in a linear chromosome. Genes have regulatory regions which are
influenced by other gene coding regions. These interactions determine the actual influence
and final weight of the connections between the components [32, 21].

A new approach for designing analog electronic circuits based on Grammatical Evolution is
presented here. This type of evolutionary paradigm can generate code in any programming
language and uses variable length linear strings as chromosomes [33]. The chromosome values
determine which production rules in a Backus-Naur Form (BNF) grammar definition are used
in a genotype to phenotype mapping process in order to obtain a program or, as in our case,
a circuit netlist. As far as the authors know, this paper, along with [31], also signed by the
authors of this work, are the only two works in the literature that have applied GE to analog
circuit design.

The main contribution of this work is twofold. First, we show evidence about how grammati-
cal evolution can be used successfully for the automatic design of analog circuits. Second, unlike
the grammar described in [31], which is oriented to the building of sub-circuit development
expressions, the new grammar here presented focuses on generating circuit netlists.

The rest of the paper is structured as follows: Section 2 describes the problem to solve.
Section 3 describes our method in detail. Section 4 focuses on applying our method to several
case studies. Section 5 shows the results of the case studies. Next, a result discussion and
a comparison with previous works in the field are presented in Section 6. The conclusions of
our work are given in Section 7. A final appendix contains the topology and sizing of the best
circuits obtained by our algorithm.

3

3
2

1

0

Circuit

to be

evolved

250

Vcc

Vs

Rs

Rload

Figure 1: Example of a test fixture.

2. Problem Description

The global goal in this work is to design a circuit which meets a set of specifications. The
circuit will also be constrained to use a set of components called test fixture. The test fixture
normally consists of a positive power supply, an output load resistor and ground. Besides,
depending on the problem, an input signal generator or a negative power supply, with their
respective series resistors, may be needed. Fig. 1 shows an example of test fixture that uses
five nodes. Four of them (0, 1, 2, and 3) are denominated accessible nodes because they can be
used by the evolved circuit. In other case, they are denominated inaccessible nodes (e.g. the
node linking Rs and Vs). The evolutionary circuit will be defined by a netlist, that is, a list of
components and their connection nodes.

We assume that the set of specifications describes the desired output of the circuit in function
of the input signal. In this way, it is possible to define an error function whose objective is to
compare the desired output and the measured output of the proposed circuit as a solution.
Therefore, the problem of automatically designing a circuit that meets a set of specifications
can be transformed into a new optimization problem consisting of finding a circuit that minimizes
the value returned by the mentioned error function as indicated in (1), where O is the desired

output for the input signal, I, and Õj is the measured output for the j-th circuit when I is
applied.

minimize
j

error(O − Õj) (1)

3. Method Description

In this section, a new proposal for automatic design of analog electronic circuits is presented.
Several aspects related to our approach are described: (a) a short introduction to Grammatical
Evolution (paradigm on which our method is based); (b) the grammar designed for decoding a
chromosome into a netlist; (c) the taxonomy of types of chromosomes used in our approach; (d)
the post-processing stage which is necessary to adapt the evolved netlist to the netlist format
required by the simulator; and (e) the search engine used for our method. Finally, a decoding
example is also shown.

3.1. Grammatical Evolution

Grammatical Evolution (GE) was introduced by Michael O’Neill and Connor Ryan [33]. GE
is an evolutionary paradigm which can generate code in any programming language. It uses
variable length linear binary strings as chromosomes and the decoding of each individual is
based on a BNF grammar. Currently, GE is one of the most widely applied grammar-based
approaches [34].

3.2 Block grammar 4

On the other hand, Genetic Programming (GP) uses parse trees as chromosomes and needs
special crossover and mutation operators to work on this kind of chromosomal structures. These
operators also have to preserve the closure property. These constraints do not apply in GE,
where standard variation operators can be used and the decoding process based on grammar
guarantees the correctness of the resulting program.

In GE, the unit of information is called codon and, normally, corresponds to one byte in the
chromosome. Therefore, a codon can have 256 possible values. The decoding of a chromosome
consists of traversing it from left to right, using each codon to choose an appropriate production
rule according to the mapping function expressed in (2), where MOD is the modulus function
and NR is the number of rules for the current non-terminal. Note that the output of MOD
belongs to the set {0, 1, ..., (NR − 1)}. Therefore, the rules for each non-terminal symbol are
numbered from 0 to NR− 1.

rule = codon_value MOD NR (2)

Additionally, if all the codons of a chromosome are completely read, but the expression is not
fully decoded, then the reading will restart at the beginning of the chromosome and the decoding
process continues. This mechanism is known as wrapping [33]. The wrapping parameter defines
how many times the chromosome can be read before giving up.

3.2. Block grammar

In order to generate netlists of analog circuits, a suitable grammar has been developed. It
is a BNF grammar, which is defined by a tuple of four elements: {S, T,N,R} where S is the
start symbol, T is the set of terminal symbols, N is the set of non-terminals and R is the
set of production rules. A non-terminal symbol is a symbol that can be expanded into other
non-terminal or terminal symbols, and a terminal symbol is a literal that cannot be further
expanded. Applying the rules recursively to a string of symbols will usually terminate in a final
output string consisting only of terminal symbols.

Table 1 shows the grammar used in our approach. It is expressed in Extended Backus Naur
Form format [35] and comprises all the types of components that will be used in the case studies.
This grammar always considers node #0 as ground.

The start symbol of the grammar is the LIST non-terminal, which is directly expanded as
the COMPONENTS non-terminal. The COMPONENTS symbol can be expanded as one of
the circuit components allowed or as one component plus the possibility to further expand the
netlist (by adding a new component).

The term block grammar refers to the fact that the grammar is designed so that each com-
ponent consumes a fixed length codon block. To achieve this, a non-terminal symbol, called
DUMMY, is introduced to force the decoding process to consume as many codons as needed.
This is implemented in the grammar by making a production rule for the DUMMY symbol with
two options: “null1” and “null2”. Note that when a production rule has associated only one
option, no codon is read [33]. Therefore, the assignation of two options for the DUMMY symbol
forces to read and use a codon when this non-terminal symbol is being expanded. The null ter-
minals produced by this rule will be removed later from the evolved netlist in a post-processing
stage. Thus, DUMMY non-terminals are used as padding codons to build components with a
fixed size block. Specifically, the grammar shown in table 1 uses 8-codon long blocks.

Node numbers are generated by the NODE non-terminal production rule. A special param-
eter of the grammar, denoted by MNN, defines the maximum node number that can be used by
the circuit to evolve, without counting the test fixture accessible node number (TFANN). The
MNN has to be set in advance by the user and the TFANN depends on the design specifications.

RESISTORs and CAPACITORs have a value expressed in scientific notation, m ·10e, where
1 ≤ m < 10 and the magnitude order range of the exponent, e, depends on the type of component
(resistor or capacitor). TRANSISTORs can be BJT or MOSFET. Two types of BJT and
MOSFET transistors are defined by the BJTTYPE and MOSTYPE non-terminals, respectively.
If MOSFET transistors are used, it will be assumed that the substrate pins of PMOS and NMOS

3.3 Managing different types of chromosomes 5

Table 1: Generic grammar for netlist generation (see Section 3.2 for a detailed description)

S = LIST

T = { “R”, “C”, “Q”, “M”, “QNPN”, “QPNP”, “null1”, “null2”, “0”, “1”, “2”, “3”, “4”,

“5”, “6”, “7”, “8”, “9”, “e”, “.”, end-of-line character}

N = { LIST, LINE, RESISTOR, CAPACITOR, BJT, MOSFET, BJTTYPE,

MOSTYPE, MODELNMOS, MODELPMOS, DUMMY, NODE,

RESISTORVAL, CAPACITORVAL, CHANELWIDTH, DIGIT,

NONZERODIGIT, EXPONENT, EOL }

R = comprises the following rules of production

LIST = COMPONENTS;

COMPONENTS = RESISTOR | RESISTOR, COMPONENTS | CAPACITOR | CAPACITOR,

COMPONENTS | BJT | BJT, COMPONENTS | MOSFET | MOSFET,

COMPONENTS;

RESISTOR= "R", NODE, NODE, DUMMY, RESISTORVAL, DUMMY, EOL;

CAPACITOR = "C", NODE, NODE, DUMMY, CAPACITORVAL, DUMMY, EOL;

BJT = "Q", NODE, NODE, NODE, BJTTYPE, DUMMY, DUMMY, DUMMY,

EOL;

MOSFET = "M", NODE, NODE, NODE, MOSTYPE, CHANELWIDTH, EOL;

BJTTYPE = "QNPN" | "QPNP";

MOSTYPE = MODELNMOS | MODELPMOS;

MODELNMOS = "0", "NMOS1 L=10u W=”

MODELPMOS = "1", "PMOS1 L=10u W=”

DUMMY = "null1" | "null2";

NODE = "0" | "1" | "2" | "3" | "4" | "5" | ... | “TFANN+MNN-1”;

RESISTORVAL = NONZERODIGIT, “.”, DIGIT, “e”, DIGIT;

CAPACITORVAL = NONZERODIGIT, “.”, DIGIT, “e”, EXPONENT;

CHANELWIDTH = NONZERODIGIT, DIGIT, "u" | "1", DIGIT, DIGIT, "u";

DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

NONZERODIGIT = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

EXPONENT = "-12" | "-11" | "-10" | "-9" | "-8" | "-7" | "-6" | "-5" | "-4" | "-3";

EOL end-of-line character

are connected to the maximum and minimum voltage nodes, respectively. These pins are coded
in the MODELPMOS and MODELNMOS non-terminals. MOSFET channel length is always
fixed to 10µm, while channel width can be evolved between 10µm and 199µm, in the same way
as in [18].

The grammar shown in table 1 is generic. Therefore, it should be adjusted to each specific
design problem. For example, if a type of component is not used because it is not included in
the design specifications, it should be removed from the final grammar. On the other hand,
other components could be added to the grammar such as, for example, diodes or inductors. A
chromosome decoding example using the grammar described here will be presented in subsection
3.5.

3.3. Managing different types of chromosomes

In GE, there could be chromosomes which cannot be mapped to a final expression. This
happens when a chromosome is read as many times as the value assigned to the wrapping
parameter, without producing an expression free of non-terminal elements [33]. In our case,
these chromosomes, which can be called inexpressible chromosomes, do not produce a netlist
and therefore cannot be simulated. They will be penalized strongly in order to have a low
probability of being chosen during the parent selection stage. In particular, since lower fitness
values are better (minimization problem), penalization can be done by assigning a high value as

3.4 Netlist post-processing 6

the fitness value and arbitrarily fixed to 5× 107. This value is the maximum fitness allowed, so
any other fitness value will be lower than this one. In this context, an inexpressible individual
will only win a tournament, that is, it will be selected as parent, if all individuals randomly
selected to compete in the tournament are inexpressible.

Additionally, badly formed circuits can also appear after decoding. This occurs when the
evolved circuit has no connection with at least one of the test fixture accessible nodes such as the
power supply, the load resistor or the signal generator. These circuits are unfeasible and their
chromosomes will be called unfeasible chromosomes. This kind of chromosomes is less penalized
than inexpressible ones, because it is preferable to obtain chromosomes that generate a netlist
although they are unfeasible. In this case, the penalization value is arbitrarily fixed to 2.5×107,
that is, half the penalization value used for inexpressible chromosomes.

There also exists the problem of chromosomes generating a netlist with one or more dangling
components, that is, components with one or more pins connected to an isolated node. This
case is not considered as an unfeasible circuit, since it can be easily tackled. There are several
approaches to manage dangling components:

1. Remove the dangling component [36, 18].

2. Connect the dangling component to a preexisting circuit node (ground, positive or negative
power supply, input, output, etc.) [37]

3. Insert a high valued resistor between the ground and dangling node [21].

The first and second approaches can be complicated to implement when the dangling component
has three or more pins. Thus, our method uses the third approach. Finally, the chromosomes
which are not classified in the above categories will be denominated feasible chromosomes.

3.4. Netlist post-processing

The netlist just generated in the decoding process cannot be directly fed to the simulator.
A post-processing step is needed, which does the following actions in the evolved netlist:

1. The test fixture netlist, which depends on the specifications of the circuit to be designed,
is added.

2. If the evolved circuit is not completely connected to all the test fixture accessible nodes,
the netlist is marked as unfeasible, penalized accordingly and is not simulated.

3. The “null1” and “null2” symbols are deleted (see Section 3.2).

4. Additional resistors are added to connect dangling components. A 1GΩ resistor is con-
nected between the ground and each dangling node.

5. The short-circuited components are removed because they do not have any function in the
circuit.

6. The component labels are numbered because the simulator needs to identify each compo-
nent with a unique label and automatic component numbering cannot be modeled by a
context-free grammar.

7. The component values generated in scientific notation are converted to standard notation,
and unit prefixes are also added.

Finally, the resulting netlist is simulated. Here NGSpice [38], which is based on Spice3 [39], is
used for this task. Spice and derived software is industry’s de facto standard electronic circuit
simulation software, and even referred as “gold standard” [40].

The NGSpice output of a candidate circuit is processed to produce the resulting signal (i.e.
output voltage or output current) which is compared with the design specifications in order
to obtain the fitness value for that circuit. If an NGSpice error is obtained when a circuit is
simulated, then this circuit is labeled as unfeasible and penalized accordingly.

3.5 Decoding example 7

3.5. Decoding example

In this example, the design problem consists of obtaining a BJT-based amplifier, considering
a set of specifications and including the test fixture shown in Fig. 1. The MNN parameter is set
by the user to value 6 and, according to the aforementioned figure, TFANN = 4. Therefore,
the total number of nodes that the circuit has to evolve is 10. A candidate chromosome could
be the following, {53, 34, 22, 60, 4, 122, 32, 71, 9, 251, 74, 7, 82, 140, 93, 232, 66, 94, 33, 102,
28, 40, 63, 67, 255, 3, 45, 32}. The decoding process, using the grammar shown in table 1, is as
follows:

1. The decoding starts with the S symbol, that is, with LIST.

2. LIST is expanded as COMPONENTS. Since the production rule implies no choices, no
codon is drawn.

3. A codon value is needed for the expansion of COMPONENTS and the first codon is 53,
so 53MOD 8 selects rule #5 which gives: BJT, COMPONENTS.

4. BJT has only one associated rule. Therefore it is expanded directly and the result is:
Q, NODE, NODE, NODE, BJTTYPE, DUMMY, DUMMY, DUMMY, EOL,

COMPONENTS.

5. Q is a terminal symbol and does not consume any codons. Next, the expansion of the
rule for the NODE non-terminal with codon value 34 selects rule #4 (34MOD 10), which
is associated with node number 4: Q 4, NODE, NODE, BJTTYPE, DUMMY,

DUMMY, DUMMY, EOL, COMPONENTS.

6. The expansion of the other two nodes, with codon values 22 and 60, gives node numbers
2 (22MOD 10) and 0 (60MOD 10), respectively: Q 4 2 0, BJTTYPE, DUMMY,

DUMMY, DUMMY, EOL, COMPONENTS.

7. The expansion of rule for the BJTTYPE symbol with codon value 4 selects rule #0

(4MOD 2), which is associated with QNPN, that is, the type of BJT transistor: Q 4 2 0
QNPN, DUMMY, DUMMY, DUMMY, EOL, COMPONENTS.

8. The following three DUMMY non-terminals are used as padding codons in order to use an
8-codon fixed sized block. The expansion with codon values 122, 32 and 71 selects null1,
null1 and null2, respectively: Q 4 2 0 QNPN null1 null1 null2 EOL, COMPONENTS.

9. EOL has only one rule and is expanded as an end-of-line character. At this point, the first
component of the netlist is decoded completely and will not be shown in the next steps.

10. Next, the COMPONENTS non-terminal is expanded with codon value 9, selecting rule
#1 which produces: RESISTOR, COMPONENTS.

11. The RESISTOR symbol has only one rule and does not consume any codons. Therefore,
it is expanded and the result is: R, NODE, NODE, DUMMY, RESISTORVAL,

DUMMY, EOL, COMPONENTS.

12. The R symbol is terminal and does not consume any codons. The NODE non-terminals
with codon values 251 and 74 produce node numbers 1 and 4, respectively: R 1 4
DUMMY, RESISTORVAL, DUMMY, EOL, COMPONENTS.

13. The process continues in a similar way until the evolved netlist is obtained. In particular,
the decoding process ends when the expression has no more non-terminals to expand. This
happens when the codon 67 is decoded. Thus, in this case, the last four codons of the
chromosome are not used.

The final evolved netlist is:

Q 4 2 0 QNPN null1 null1 null2
R 1 4 null2 1.0e3 null1
C 4 3 null1 1.0e-9 null2

3.6 Search engine 8

0

3

1

4

250

Vcc

Vs
Q1

Rload

Rs

R1
1k

C1

1n

Figure 2: Example of evolved circuit connected to the test fixture of Fig. 1.

Next, the post-processing stage is applied, according to the steps outlined in Section 3.4.
In this case, it comprises: (a) addition of the test fixture netlist (see Fig. 1), (b) deletion of
null parameters, (c) component label numbering, and (d) addition of unit suffixes to component
values. Those steps related to unfeasible circuit, short-circuited or dangling components do not
apply in this case. The resulting netlist is as follows:

*Test fixture netlist

Vcc 1 0 dc 5
Vs 0 50 0.0 ac 0.001
Rs 50 2 100
Rload 3 0 100
*Evolved netlist

Q1 4 2 0 QNPN
R1 1 4 1.0k
C1 4 3 1.0n

Note that the node used to connect V s and Rs is not an accessible node. However, it is
necessary to label it in order to define completely the test fixture. To do that, any node number
not belonging to the set {0, 1, ..., (TFANN +MNN − 1)} ≡ {0, 1, ..., 9} is valid. In this case,
the value 50 has been arbitrarily selected. The circuit associated with the final netlist is shown
in Fig. 2.

3.6. Search engine

It is known that GE is a modular evolutionary paradigm, that is, it deals separately with the
chromosome decoding strategy and the solution search strategy. In particular, the search does
not need to be carried out by a specific algorithm. This means that any existing evolutionary
algorithm using integer strings as chromosomes can be used. In particular, genetic algorithms
(GA) are normally used as a search engine in GE, although it is also possible to perform the
search using other methods, such as algorithms based on particle swarm optimization. In our
case, a GA-based approach is used. Here, linear chromosomes are composed of a variable length
of codons (bytes).

We use a block crossover operator, named one-block crossover, which takes advantage of the
block grammar. It is a variant of the crossover operator described in [41]. In particular, the
crossover point is a multiple of the block size which is defined by the grammar (see Section
3.2). Thus, material is exchanged at a component boundary, as is shown in Fig. 3a. In this
way, we avoid the destructive behavior associated with a classic crossover operator which could
interchange parts of different components. This operator also includes a maximum chromosome
length constraint for the children obtained. If the constraint is violated, the child will be

9

51 52 53 54 55 56 57 58 17 18 19 20 21 22 23 24

Parent 1

Parent 2

Child 1

Child 2

Point 2

Point 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 59 60 61 62 63 64 65 66

(a) One-block crossover operator

1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 Original chromosome

1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 Mutated chromosome

(b) Bitwise mutation operator

Figure 3: Operative followed by the variation operators implemented.

clipped to the maximum length. This constraint helps to control the negative effects of the well-
known bloat effect [4]. In section 5, the benefits of the one-block operator are compared with
a standard one-point operator. On the other hand, the mutation operator is a classic bitwise
operator where bits are changed randomly according to a mutation rate, as it can be seen in
Fig. 3b. The survivor selection is based on generational replacement, and the parent selection is
implemented by 3-individual tournament . Finally, the fitness function is always defined in such
a way that lower values correspond to better circuits, so the circuit design problem is tackled
as a minimization problem.

4. Case Studies

Two sets of benchmark circuits were chosen to test the approach proposed. The first set,
denoted by non-computing circuits, comprises a temperature sensing circuit, a voltage reference
circuit and a Gaussian function generator circuit. The performance of the method proposed will
be analyzed from a statistical point of view using this set of circuits. A second set, denoted by
computational circuits, comprises four computing circuits: square, square root, cube and cube
root. The best circuits obtained will be shown and their results will be assessed and compared
with those of previous works [18, 21, 42, 43, 44, 24]. In this section, the configuration parameters
of our method and the design specifications of the target circuits are presented.

4.1. Configuration Parameters

The netlist generation grammar has to be adjusted to the specific problem being tackled,
bearing in mind the following items: component types allowed, test fixture accessible node num-
ber (TFANN), and maximum node number (MNN). Component types not used in the problem

4.2 Specifications of non-computational circuits 10

Table 2: Parameter values of the GE-based method

Circuit type Temperature sensor (TS), Voltage reference (VR), Gaussian function

(GF) or Computing circuits (CC)

Grammar Generic grammar (see table 1) adapted to benchmark circuit

Fitness function Depends on benchmark circuit (see subsections 4.2 and 4.3)

Population size (µ) 1, 000

Representation Codon strings of variable length

Generations 3, 000

Initialization Random codon strings of 150 − 250 length

Maximum chromosome length 294 (TS), 294 (VR), 336 (GF) and 294 (CC) codons

Crossover One-block crossover operator (see section 3.6)

Crossover probability 0.5

Block size (component) 7 (TS), 7 (VR), 8 (GF) and 7 (CC) codons

Mutation Bitwise

Mutation probability 0.001

Parent selection Tournament selection (size=3)

Survivor selection Generational replacement (λ = µ)

Elitism 2

Wrapping 4

Termination condition Maximum number of generations

Random number generator Mersenne Twister

Number of runs per circuit 50

have to be removed from the grammar given in table 1, by modifying the COMPONENTS non-
terminal and other related non-terminals. After removing one or several component types, it
could be necessary to adjust the block size in the grammar. For example, if MOSFET transistors
are not necessary, which are responsible for using 8-byte long blocks in the grammar of table 1,
the block size of the adapted grammar can be reduced to 7 bytes, which is done by removing the
last DUMMY non-terminals in the remaining component types. Note that the size of 7 bytes
is imposed by the RESISTOR and CAPACITOR non-terminals. Table 2 shows the configura-
tion parameters used in our method. The parameter values were adjusted experimentally from
preliminary runs. The GA parameter adjustment was made testing different combinations of
parameter values and evaluating each of them in function of the number of successful circuits
obtained in the set of non-computational circuits. The best GA parameter configuration ob-
tained with this class of circuits was maintained without changes in the set of computational
circuits. In particular, in relation to the wrapping parameter, there is evidence in the literature
that if wrapping is removed, a degradation of performances will be obtained [45]. However,
there is no rule of thumb for optimum tuning of this parameter. The wrapping parameter was
set to different values in preliminary runs, but there were no significant differences in the results.
We left a final wrapping value of 4 in order to favor the emergence and evolution of feasible
individuals in the first generations. Additionally, we found that wrapping was not much used
in the final generations.

4.2. Specifications of non-computational circuits

All specifications described for the set of non-computational circuits are the same as those
defined by Koza [18], including the definition of the different fitness functions and the type of
components used.

4.2.1. Temperature sensing circuit

This circuit takes its own temperature as input and should provide an output voltage pro-
portional to the temperature value. The range of temperature is 0◦C ≤ T ≤ 100◦C and the

4.2 Specifications of non-computational circuits 11

range of the output voltage should be 0V ≤ Vo ≤ 10V . Candidate circuits will be simulated
with a temperature sweep in the above mentioned range at intervals of 5◦C giving 21 fitting
points. When the absolute difference between the desired output voltage, Voi , and measured

output voltage, Ṽoi , is less than or equal to 0.1V , a hit is scored. A hit scored at a fitting
point means that the measured output is close enough to the desired output at that point. For
example, if a circuit (individual) gets a hit in 15 of the 21 fitting points, then its ratio of hits is
said to be 15/21. Only if all available hits are scored, the circuit is considered successful. The
fitness function is calculated using (3), where the weight factors, wi, are calculated using (4),
which depend on whether a hit is scored or not at the evaluated point.

fitness =
∑

i

wi|Voi − Ṽoi | (3)

wi =

{
1.0

10.0

when |Voi − Ṽoi | ≤ 0.1V

when |Voi − Ṽoi | > 0.1V
(4)

The types of components allowed are 2N3904 and 2N3906 BJT transistors, resistors and
capacitors. The fixture test has four accessible nodes: two power supplies (+15V and −15V),
one output load resistor (1KΩ) and ground.

4.2.2. Voltage reference circuit

The goal of this circuit is to provide a fixed output voltage of 2V when the input voltage varies
inside the interval 4V ≤ Vi ≤ 6V and the temperature varies in the interval 0◦C ≤ T ≤ 100◦C.

Candidate circuits will be simulated with a voltage DC sweep in the first range at intervals
of 0.1V and a temperature sweep in the second range at intervals of 25◦C giving a total of 105
(21 × 5) fitting points. When the absolute difference between the desired output voltage, Voi ,

and measured output voltage, Ṽoi , is less than or equal to 0.02V , a hit is scored. The fitness
function is calculated using (5), where the weight factors, wi, are evaluated using (6), which
depend on whether a hit is scored or not at the evaluated point.

fitness =
∑

i

wi|Voi − Ṽoi | (5)

wi =

{
1.0

10.0

when |Voi − Ṽoi | ≤ 0.02V

when |Voi − Ṽoi | > 0.02V
(6)

The types of components allowed are 2N3904 and 2N3906 BJT transistors and resistors.
The test fixture has three accessible nodes: one power supply (with a 1KΩ series resistor), one
output load resistor (10KΩ), and ground.

4.2.3. Gaussian function generator circuit

The goal of this circuit is to generate an output current which is a Gaussian function of
the input voltage. The output current will be measured on an output voltage generator. This
problem is credited to Adrian Stroica of JPL in Pasadena, California [18]. The input voltage
can vary inside the interval 2V ≤ Vi ≤ 3V and Gaussian function will be centered in 2.5V with
a standard deviation of 0.1V . The output current peak will be of 80nA. Candidate circuits will
be simulated with a voltage DC sweep in the above mentioned range at intervals of 0.01V giving
a total of 101 fitting points. When the absolute difference between the desired output current,
Ioi , and measured output current, Ĩoi , is less than or equal to 5nA, a hit is scored. The fitness
function is calculated using (7), where the weight factors, wi, are calculated using (8), which
depend on whether a hit is scored or not at the evaluated point.

fitness =
∑

i

wi|Ioi − Ĩoi | (7)

4.3 Specifications of computational circuits 12

wi =

{
106

107
when |Ioi − Ĩoi | ≤ 5nA

when |Ioi − Ĩoi | > 5nA
(8)

The types of components allowed are N-channel and P-channel MOSFET transistors and
resistors. The test fixture has four accessible nodes: one power supply (+5V), one input signal
generator (2− 3V and a 1Ω series resistor), the above-mentioned output voltage generator, and
ground.

4.3. Specifications of computational circuits

All specifications described for the set of computational circuits are the same as those defined
in [18], including the definition of the different fitness functions and the type of components
used. The set of computational circuits consists of four circuits which compute a mathematical
function of the input voltage value. Four functions are used: square, square root, cubing and
cube root. Input voltage varies from −250mV to 250mV , with the exception of the square root
circuit which varies between 0V and 500mV . Candidate circuits will be simulated with a voltage
DC sweep in the above-mentioned ranges at intervals of 25mV giving a total of 21 fitting points.
When the absolute difference between the desired output voltage, Voi , and measured output

voltage, Ṽoi , is less than or equal to 1%Voi , a hit is scored. The fitness function is calculated
using (9), where the weight factors wi, are calculated using (10), which depend on whether a
hit is scored or not at the evaluated point.

fitness =
∑

i

wi|Voi − Ṽoi | (9)

wi =

{
1.0

10.0

when |Voi − Ṽoi | ≤ 1%Voi

when |Voi − Ṽoi | > 1%Voi

(10)

The types of components allowed are 2N3904 and 2N3906 BJT transistors and resistors. The
test fixture has five accessible nodes: two power supplies (+15V and −15V), one input signal
generator (with a 1KΩ series resistor), one output load resistor (1KΩ), and ground.

5. Results and Evaluation

In this section, the results of the case studies are shown. In order to make a statistical
evaluation of the method proposed, common performance measures of evolutionary algorithms
such as the success rate (SR) and mean best fitness (MBF) are used [4]. Given an experiment
comprising a number of test runs of the method, SR is defined as the ratio of the number of
successful runs in relation to the total number of runs, where one success is obtained when the
evolved circuit scores all the hits. On the other hand, MBF is the fitness average of the best
individuals, each of which is obtained at the end of each run, whether successful or not. Finally,
the minBF is also considered, that is, the minimum best fitness obtained in the successful runs,
which corresponds to the best circuit designed by the method in a particular experiment (50
runs).

For the set of non-computational circuits, an analysis of two method parameters is done.
In particular, the effects observed for the number of generations and the maximum number of
nodes are shown. The outputs of the best circuits obtained for this set are also shown. The
case study for the set of computational circuits only focuses on the circuit design, so only the
outputs of the best circuits are shown.

The time for a run depends on the circuit evolved and the number of generations used. In
any case, for 3, 000 generations, a run takes an average of 70-80 minutes in a cluster with 5 PCs.
Each PC has a Core 2 Quad Intel CPU @ 2.66Ghz, four cores, 4GB RAM and 250GB disk,
making a total of 20 cores.

5.1 Set of non-computational circuits 13

Table 3: Results obtained for different experiments (rows) in the set of non-computational circuits, depending
on the maximum number of nodes (MNN). Each experiment corresponds to 50 runs and 3, 000 generations per
run. #Succ. is the number of successes, SR is the success rate, minBF is the minimum Best Fitness, and MBF
is the Mean Best Fitness

Target MNN # Succ. SR (%) minBF MBF±std Hits avg±std / max

sensor 4 21 42.0 0.176 6.559 ± 11.196 19.2 ± 2.6 / 21

sensor 6 21 42.0 0.169 5.294 ± 6.526 19.5 ± 1.7 / 21

sensor 8 24 48.0 0.172 3.653 ± 4.256 19.9 ± 1.4 / 21

sensor 10 26 52.0 0.140 2.628 ± 2.942 20.2 ± 1.1 / 21

sensor 15 22 44.0 0.140 4.574 ± 5.326 19.7 ± 1.4 / 21

sensor 20 16 32.0 0.286 5.849 ± 7.007 19.3 ± 2.1 / 21

sensor 30 13 26.0 0.066 6.328 ± 8.598 19.3 ± 1.9 / 21

vref 4 1 2.0 0.773 33.756 ± 21.167 49.3 ± 27.4 / 105

vref 6 4 8.0 0.112 26.567 ± 16.228 56.5 ± 26.3 / 105

vref 8 5 10.0 0.183 18.145 ± 13.498 68.8 ± 23.3 / 105

vref 10 13 26.0 0.125 14.093 ± 15.096 78.0 ± 26.5 / 105

vref 15 6 12.0 0.231 20.429 ± 16.451 65.3 ± 26.1 / 105

vref 20 5 10.0 0.171 17.955 ± 17.072 71.5 ± 25.9 / 105

vref 30 6 12.0 0.309 18.255 ± 16.550 70.0 ± 27.5 / 105

gauss 4 6 12.0 0.078 10.632 ± 6.990 69, 6 ± 15.2 / 101

gauss 6 12 24.0 0.040 6.702 ± 6.782 78.1 ± 17.8 / 101

gauss 8 8 16.0 0.068 6.645 ± 6.372 77.4 ± 15.9 / 101

gauss 10 12 24.0 0.047 5.945 ± 6.276 78.9 ± 18.2 / 101

gauss 15 13 26.0 0.030 6.474 ± 6.682 79.8 ± 16.8 / 101

gauss 20 13 26.0 0.041 6.856 ± 7.230 80.3 ± 17.5 / 101

gauss 30 8 16.0 0.060 7.649 ± 6.674 74.9 ± 17.7 / 101

5.1. Set of non-computational circuits

The results on the set of non-computational circuits are shown in Table 3, where different
values of the MNN parameter were tested. Due to the stochastic nature of an evolutionary
algorithm, each experiment, represented in each row of the table, was repeated 50 runs. As it
can be seen, the SR and MBF values obtained depend on the goal circuit, showing that some
circuits are harder to tackle than others. However, for design problems, such as those discussed
here, the most important challenge is to implement a method that creates one good solution at
least once [4]. In this context, the minBF value obtained by our method is always competitive
and, in the three cases, the best circuit obtained always reaches 100% of hits (considering 50
runs).

Fig. 4 shows graphically the effect of the MNN parameter on the SR for the three circuits
studied. As it can be seen, there is a peak or plateau where the SR reaches the maximum value
for each type of circuit. Specifically, in the temperature sensor and voltage reference circuits,
there is a peak for MNN = 10 nodes and, in the Gaussian function generator, a plateau for
MNN = 15− 20 nodes. According to these results, the following strategy can be established in
order to systematically tune the MNN parameter. Starting with a fixed and small MNN value,
several runs are done and, for each of then, the value of the number of hits is analyzed. Then,
the MNN value is gradually increased, until the number of hits of the evolved circuit reaches
the maximum.

The number of components is also affected by the MNN parameter. Specifically, Fig. 5 shows
the average number of components for the successful circuits obtained in each experiment versus
MNN. For calculating the average number of components, it was used neither the test fixture

5.1 Set of non-computational circuits 14

Table 4: Results obtained for different experiments (rows) in the set of non-computational circuits, depending
on the number of generations. Each experiment uses an MNN of 6 and corresponds to 50 runs. #Succ. is the
number of successes, SR is the success rate, minBF is the minimum Best Fitness and MBF is the Mean Best
Fitness

Target # Gen. # Succ. SR (%) minBF MBF±std Hits avg±std / max

sensor 10, 000 29 58.0 0.065 3.881 ± 5.936 19.9 ± 1.8 / 21

sensor 3, 000 21 42.0 0.169 5.294 ± 6.526 19.5 ± 1.7 / 21

vref 10, 000 7 14.0 0.188 17.353 ± 14.588 70.7 ± 25.0 / 105

vref 3, 000 4 8.0 0.112 26.567 ± 16.228 56.5 ± 26.3 / 105

gauss 10, 000 22 44.0 0.036 3.943 ± 5.167 85.0 ± 17.1 / 101

gauss 3, 000 12 24.0 0.040 6.702 ± 6.782 78.1 ± 17.8 / 101

5 10 15 20 25 30

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Maximum number of nodes (MNN)

S
u
c
c
e
s
s
 r

a
te

 (
S

R
)

T.sensing
V.ref
Gauss

Figure 4: Success rate (SR) versus maximum number of nodes (MNN) for the set of non-computational circuits.

components nor simplifications based on changing parts of the evolved circuit by equivalent
sub-circuits. The average number of components reaches a minimum for the MNN equal to
4 and 8 in the voltage reference and Gaussian function generator, respectively. On the other
hand, in the case of the temperature sensor, a minimum quasi-plateau is observed for the MNN
ranging from 10 to 20.

In addition, in order to study whether an improvement is still possible, the number of
generations is increased. Table 4 shows the results obtained for 10, 000 generations. As it can
be seen, the SR, MBF and minBF improved in relation to the study with 3, 000 generations.

Finally, the measured outputs of the best circuits are compared with the expected ones.
Thus, Fig. 6a, 6b and 6c show, respectively, the output voltage of the best temperature sensing
circuit, the output voltage of the best voltage reference circuit, and the output current of the
best Gaussian function generator circuit. As it can be seen, a good fit is obtained. The topology
and sizing of each one of these circuits are shown in the final appendix (see Fig. A.9, A.10 and
A.11, respectively).

The introduction of the one-block crossover operator allows our method to interchange com-
plete blocks (circuit components) between parent chromosomes. In contrast, a standard one-
point operator could be more aggressive because it can break a chromosome at any point and
swap information with different internal meaning. Table 5 shows a comparison between both
operators. The study is performed for MNN values with high SR scores (see fig. 4). For each of
the three circuits, the SR value obtained by the one-block operator is greater than that one of

5.1 Set of non-computational circuits 15

5 10 15 20 25 30

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Maximum number of nodes (MNN)

C
o
m
p
o
n
e
n
ts

Total
Transistors
Resistors
Capacitors

(a) Temperature sensing.

5 10 15 20 25 30

1
0

1
5

2
0

2
5

3
0

3
5

4
0

M����u� �u���� �	 ��
�� �M

�

C
o
m
p
o
n
e
n
ts

Total
Transistors
Resistors

(b) Voltage reference.

5 10 15 20 25 30

1
0

1
5

2
0

2
5

3
0

3
5

������� ������ �� ����� �����

C
o
m
p
o
n
e
n
ts

Total
 !"#$%

Resistors

(c) Gaussian function generator.

Figure 5: Mean number of components versus maximum number of nodes (MNN) for the set of non-computational
circuits.

5.1 Set of non-computational circuits 16

0 20 40 60 80 100

0
2

4
6

8
10

Temperature (ºC)

V
ou

t
Expected
Measured

(a) Temperature sensing

4.0 4.5 5.0 5.5 6.0

1.
99

8
2.

00
0

2.
00

2
2.

00
4

2.
00

6

Vin

V
ou

t

Expected
0ºC
25ºC
50ºC
75ºC
100ºC

(b) Voltage reference. Note the reduced scale of Y
axis (△Vout = 2mV)

2.0 2.2 2.4 2.6 2.8 3.0

0e
+

00
2e

−
08

4e
−

08
6e

−
08

8e
−

08

Vin

Io
ut

Expected
Measured

(c) Gaussian function generator

Figure 6: Measured output versus expected output for the best non-computational circuits.

5.1 Set of non-computational circuits 17

−0.2 −0.1 0.0 0.1 0.2

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Vin

V
ou

t

Expected
Stationary case
2000ms
200ms
20ms
2ms
0.2ms

(a) Squaring circuit

−0.2 −0.1 0.0 0.1 0.2

−
0.

01
5

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Vin

V
ou

t

Expected
Stationary case
2000ms
200ms
20ms
2ms
0.2ms

(b) Cubing circuit

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Vin

V
ou

t

Expected
Stationary case
2000ms
200ms
20ms
2ms
0.2ms

(c) Square root circuit

−0.2 −0.1 0.0 0.1 0.2

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Vin

V
ou

t

Expected
Stationary case
2000ms
200ms
20ms
2ms
0.2ms

(d) Cube root circuit

Figure 7: Measured output versus expected output in the best computational circuits. These results are obtained
for a DC sweep analysis in stationary conditions and transient analyses in non-stationary conditions (using
different rise times for a ramp input signal). The circuits were evolved using a fitness function based on a DC
sweep analysis.

5.2 Set of computational circuits 18

Table 5: Comparison between the one-point and one-block crossover operators in relation to success rate (SR)
in the three non-computational circuits. The p-values for one-tailed hypothesis test for difference of proportions
are also shown

Goal MNN Operator Runs SR (%) p-value

Temp. sensing 6 One-point 50 28.0
0.071

Temp. sensing 6 One-block 50 42.0

Volt. Ref. 10 One-point 50 14.0
0.067

Volt. Ref. 10 One-block 50 26.0

Gaussian 15 One-point 50 22.0
0.320

Gaussian 15 One-block 50 26.0

the one-point operator. In order to evaluate these results from a statistical point of view, a one-
tailed hypothesis test for difference of proportions was made. The p-values obtained (see table
5) reveal that the results are statistically significant (α = 0.1) for the temperature sensing and
voltage reference circuit. Therefore, we can conclude that, for the cases studied, the one-block
operator outperforms or equals the one-point operator’s results.

5.2. Set of computational circuits

The case studies for the set of computational circuits only focus on the design, so the SR
and MBF are not shown here. The use of 3, 000 generations was enough to obtain good results.
The MNN values used for each circuit, following the strategy indicated in Section 5.1, were the
following: 10 for squaring and square root, 20 for cubing and 30 for cube root. Fig. 7 shows a
comparison between the expected and measured output values for the best circuits obtained in
stationary conditions.

On the other hand, it is also interesting to analyze the time-domain response of the com-
putational circuits obtained (non-stationary conditions). To do that, a ramp with different rise
times, ∆rt, is applied to the input of the four best computational circuits. Fig. 7 also shows the
output obtained for each case. All the circuits work fine for a rise time of ∆rt = 200ms but the
output worsens as the value of ∆rt decreases. At this point, it should be recalled that the circuits
were evolved from a fitness function based on a DC sweep analysis. However there is evidence
in the literature that the evaluation of the fitness function based on this type of analysis can
lead to less robust circuit designs [42, 24]. For this reason, a new experiment was run in order
to analyze whether it is possible to improve the time-domain response of this kind of circuits.
In particular, this study was done by choosing arbitrarily the squaring circuit. Now, the fitness
function was based on a time-domain analysis (instead of a DC sweep analysis), where the rise
time of the ramp was set to ∆rt = 0.2s. Fig. 8 shows a comparison between the measured and
expected output values for the best circuit obtained with this experiment and using ramp input
signals with different rise times. As it can be seen in the above-mentioned figure, the behavior
of this circuit is much better than that obtained from a fitness function based on a DC sweep
analysis (see Fig. 7a). Besides, the expected output is very close to the measured output, even
for ∆rt = 0.2ms. From now on, this circuit will be considered the best version of the squaring
circuit. The results of this study are consistent with those obtained in [24, 42], where evaluation
of the fitness function based on a time-domain analysis appears to be more robust than that
based on a DC sweep analysis.

Finally, the topology and sizing of the best computational circuits obtained are included in
the final appendix (see Fig. A.12, A.13, A.14 and A.15).

6. Discussion

This section compares the results obtained with our best-evolved circuits with previous works
for the two sets of benchmark circuits. In relation to the three non-computational circuits, they

19

Table 6: Comparison with previous works for the best non-computational circuits. Note that, in AGE [21], the
results for #Components are averaged for five circuits, so the value shown is not an integer

GP [18] AGE [21] Proposed work - GE

Temperature sensor

Fitness 26.4 1.13 0.065

#Evaluations 1.60 × 107 6.50 × 106 6.14× 10
6

#Components 67 70.2 33

Voltage reference

Fitness 6.6 2.64 0.112

#Evaluations 5.12 × 107 5.60 × 106 1.86× 10
6

#Components 54 27.8 32

Gaussian function generator

Fitness 0.094 0.3 0.036

#Evaluations 2.30 × 107 4.30× 10
6 6.23 × 106

#Components 14 36 28

were synthesized in previous works using genetic programming [18] and analog genetic encoding
[21]. Table 6 compares our results with the mentioned works. The results of previous works
are shown as presented in the papers where the methods are published. In order to make a
fair comparison, all the fitness values shown are computed with the same fitness function. The
specifications of each circuit are the same as Koza’s [18] except in the case of the voltage reference
circuit, where a different load resistor (10KΩ) is used as it was also done in [21].

As it can be seen in the above-mentioned table, in all the cases, our method improves the
fitness results and uses a number of evaluations similar or lower. In addition, the number of
components used is the lowest, for the case of the temperature sensor, and is in the middle, for
the case of the voltage reference or the Gaussian function generator.

In relation to the four computational circuits, they were synthesized in previous works using
genetic programming (GP) [18, 42, 43] and evolution strategies (ES) [24]. The cubing circuit
is also compared with a conventional design [44]. Table 7 show our results compared with the
mentioned works. The results of the different approaches, with which we compare our results,
are shown as presented in [24]. In order to make a fair comparison, which was independent of
the fitness function used in each paper, the mean absolute error (MAE) was used, defined as

it is indicated in (11), where Oi is the expected output, Õi is the measured output, n is the
number of fitting points, and i = 1, ..., n. As it can be seen in the above-mentioned table, our
method obtains the minimum MAE with a minimum number of evaluations for the four circuits
considered. The number of components used was also competitive in relation to the results
obtained with other approaches.

MAE =
1

n

i=n∑

i=1

|Oi − Õi| (11)

In addition to the aforementioned advantages of GE over GP (see section 3.1), the use of
BNF grammars may also help to explain the good results obtained by our method. In particular,
our grammar helps to reduce the search space of the solution in two forms. On the one hand,
it allows us to discretize that space in a custom way. For example, the search of capacitor or
resistor values is limited to a set of discrete values according to the following format: “X.Y eZ”
(see table 1). On the other hand, it allows us to formalize different types of constraints with
the additional advantage that any individual decoded using such grammar will always meet
the constraints. For example, the maximum node number (MNN) can be constrained by the

20

Table 7: Comparison with previous works for the set of computational circuits.

GP [18] GP [42] GP [43] Manual design[44] ES [24] Proposed work - GE

Square root

Mean absolute error, mV 183.57 20 - - 9.23 2.048

Component no. 64 39 - - 22 26

Evaluation no. - 6.70 × 109 - - 3.70 × 106 1.83× 10
6

Squaring

Average error, mV - 27 - - 1.44 0.109

Component no. 39 37 - - 35 29

Evaluation no. - 1.00 × 109 - - 2.70 × 106 1.87× 10
6

Cube root

Average error, mV 80.00 - - - 11.90 4.178

Component no. 50 - - - 39 28

Evaluation no. 3.80 × 107 - - - 4.50 × 106 1.85× 10
6

Cubing

Average error, mV 1.04 - 0.99 7.13 0.29 0.0585

Component no. 56 - 47 12 44 36

Evaluation no. - - 2.94 × 106 - 2.34 × 106 1.87× 10
6

grammar in order to limit the number of nodes that can be used in the evolved circuit (see table
1).

A more detailed interpretation of the topology and sizing for each one of the circuits obtained
could be a long and complex issue. In this context, it is necessary to emphasize the open-
ended nature associated to the designs obtained by using evolutionary algorithms. This kind
of algorithms can connect devices in new and arbitrary ways. On the other hand, the human
designer is biased by his domain knowledge and previous experience on similar designs or other
sub-circuits that can be combined to produce new circuits. It is therefore considered by many
to be an art rather than a science. That kind of bias does not exist in an evolutionary algorithm
because it is only guided by optimization of the fitness function which represents the design
specifications to be met by the solution circuit. In this sense, an automatically designed circuit
could look strange to a human designer [20], but despite this fact, the simulation reveals that the
evolved circuit works. A future line of study, which is beyond the scope of this work, could be
to analyze the circuits obtained and compare them with other hand-designed circuits, assuming
that the same type of problem is solved in both cases.

Finally, in order to contextualize the results obtained in our paper, it is necessary to say that
we are obtaining netlists which describe synthesized circuits in terms of topology and component
sizing. However, from an industrial point of view, this is only one step in a much broader flow
[5]. Specifically, after the netlist is generated, it is converted into a layout. Then this layout is
used for creation of process masks in order to conveniently dope a specific area of a silicon wafer
(chip). By last, the chip is packaged and tested. If a problem is detected after any of these
steps, backtracking to the previous step is needed. In the worst case, redesign of the netlist may
be needed.

21

−0.2 −0.1 0.0 0.1 0.2

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Vin

V
ou

t

expected
2000ms
200ms
20ms
2ms
0.2ms

Figure 8: Measured output versus expected output for different rise times of a ramp input signal in the best
evolved squaring circuit obtained using a fitness function based on a time-domain analysis.

7. Conclusions

In this paper, we describe the application of GE to the automatic design of analog circuits.
A novel grammar is defined in order to generate circuit netlists. The main characteristic of this
grammar is that it is oriented to generation of circuit netlists, unlike other approaches based on
grammar that are oriented to the building of sub-circuit development. Although GE has been
already used to design of digital circuits, this is the first work, as far as authors know, where
GE has been applied to design of analog circuits.

Although the maximum node number (MNN) has to be entered by the user before execution,
the method is not highly sensitive to the MNN parameter, and a non-zero success rate is obtained
for the entire range of MNN values analyzed. In any case, a strategy based on the gradual
increase in the MNN was proposed.

Our approach has proved to be a valid and simple method for evolving analog circuits. It was
tested in seven benchmark circuits for different purposes: temperature sensor, voltage reference,
Gaussian generator function and four computational circuits, each of them implementing a
different mathematical function (square root, squaring, cube root and cubing). The circuits
obtained were compared with other competitive evolutionary approaches. In relation to the
output desired, we obtain the best fitness results with a minimum number of evaluations in
the seven cases. Regarding the complexity of the circuits, the method provides circuits with a
smaller number of components for 4 out of the 7 types of circuits analyzed.

Finally, for circuits whose output can be sensitive to the frequency of the input signal, we
provide evidence that it is more robust to evaluate the fitness function using a time-domain
analysis than using a DC sweep analysis.

AppendixA. The best circuits

In this appendix, the topology and sizing of the best circuits obtained with our approach
are shown in Fig. A.9-A.15. In order to simplify the figures, resistor blocks comprising resistors
in series or parallel were replaced by an equivalent resistor. Additionally, table A.8 shows the
results of MOSFET transistor types and channel widths obtained for the Gaussian function
generator circuit (see Fig. A.11).

22

Table A.8: The channel widths and the type of MOSFET transistors, which were obtained during the evolutionary
process, for the circuit shown in Fig. A.11

Transistor Type Channel width

M1 n-channel 175

M2 n-channel 199

M3 n-channel 74

M4 n-channel 199

M5 p-channel 142

M6 n-channel 11

M7 p-channel 10

M8 n-channel 91

M9 n-channel 199

M10 n-channel 199

M11 n-channel 199

M12 n-channel 99

M13 n-channel 35

M14 n-channel 179

M15 p-channel 46

M16 n-channel 197

M17 p-channel 124

Q1

R4

100M

R3

34

Q7

Q20
Q8

Q12

Q9

Q11

Q13

Q14

Q16

Q17

Q18

Q19

Q2 Q3

1k

R1R5

1.75k

R2

7.424

7.7M

R13

Q10

Q21

R8 746.7k

Q22

Q5

Q4

R9

64K
Q6

Q15

R7

7.6K

R14

1G

C1

34p

-15v

-15v

-15v

-15v

+15v

-15v

-15v

+15v

-15v

+15v

-15v

+15v

Figure A.9: The best temperature sensing circuit. The dashed line box represents the circuit output. This circuit
was evolved from a fitness function based on a temperature sweep analysis.

23

6.7M

R15

Q7

R13

4k

Q12

Q13

Q15

Q1

Q19

R10

31M

R8

2.96M

Q6

R5

59.58k

R6

87M

R16

65

Q9

Q8

Q10

10.7k

R7

Q18
Q4

R2

10k

Q3

Q5

3.56k

R3

Q2

Q17

Q20

Q11

Q14

R14

270

Q16

1kR1

+

-

V1

5V

Figure A.10: The best voltage reference circuit. The dashed line boxes represent the input and output, respec-
tively. This circuit was evolved from a fitness function based on a DC sweep analysis.

R6

900M
M13

M12

R10

19M

520M

R8

M8

M6

M3
M16R11

42M

R4

300M

R3 970k

M15

M14

R5

1.4M

R13

5.7k

M10

M5

M7

M17

R7

30M

30MR2

R1

1

+

-

V1

2.5V

+

-

V2

2.5V
M11M9M4M2

M1
+5v

+5v

+5

+5v

+5v

Figure A.11: The best Gaussian function generator circuit. The dashed line boxes represent the input and
output, respectively. This circuit was evolved from a fitness function based on a DC sweep analysis.

24

R14

100M

R2

1k

R1949

Q3 Q5 Q6Q2

R7 4.6M

R6 9.9k

6.4MR8

R4

220M

Q11 Q1Q8

R11

5.9M

Q9

Q10

53M

R3

R10

5.7M

1G

R20

Q4

160k

R16

Q7

Q12

R12

67

R18

32k

38

R13

R15

40

+

-

V1

250mV

1k

R1

-15v

-15v

-15v

+15v

+15v

Figure A.12: The best squaring circuit. The dashed line boxes represent the input and output, respectively. This
circuit was evolved from a fitness function based on a domain-time analysis.

95

R14

Q15

R739k

R5

1.2M

Q13

1k

R2

Q19

9.2k

R8

Q11
Q3

+

-
250mV
V1

R6

36k

1k

R1

Q1

Q9

Q6

27.3k

R3

Q12

Q18

Q10

Q2

Q14

Q4

Q7

Q16
Q17

Q8

R9

3.42k

R12

2.76M

-15v

+15v

-15v

+15v

Figure A.13: The best square root circuit. The dashed line boxes represent the input and output, respectively.
This circuit was evolved from a fitness function based on a DC sweep analysis.

25

Q7

1k

R1

Q11

53k

R10R6

4.3G

1G
R19

Q10

Q18

Q4

770

R5

R8

75M

Q22

R12

78M
Q13

Q2

Q5

R17 100k

Q19

Q8

R4

980

Q16

Q21

Q20 Q15

Q12

100k

R14

3G

R9

Q14

Q9

+

-

V1

250mv

R13

100k

R15

861.82k

1k

R2

Q6

Q17

Q1

1G

R18

4M

R3

Q3

+15v

+15v

-15v

-15v

-15v

Figure A.14: The best cubing circuit. The dashed line boxes represent the input and output, respectively. This
circuit was evolved from a fitness function based on a DC sweep analysis.

1kR1

R19

1G

R171G

Q7

Q12

Q15

Q13Q6

Q8

Q10

Q2 Q14Q1

Q3

R10 2k

R5

27k

R3

97k

R18
1G

Q9

R16 1G1GR14

Q11

Q5

R4

22k

R15

1G
174.8

R7

R9 6.43k

+

-

V1 250mv

1kR2

R12

980

Q4

-15v

+15v

-15v

+15v

Figure A.15: The best cube root circuit. The dashed line boxes represent the input and output, respectively.
This circuit was evolved from a fitness function based on a DC sweep analysis.

References

[1] G. G. E. Gielen, R. A. Rutenbar, Computer-aided design of analog and mixed-signal inte-
grated circuits, in: R. A. Rutenbar, G. G. E. Gielen, B. A. Antao (Eds.), Computer-Aided
Design of Analog Integrated Circuits and Systems, John Wiley & Sons, Inc., New York,
NY, USA, 2002, pp. 3–10. doi:10.1109/5.899053.

[2] R. Zebulum, M. Pacheco, M. Vellasco, Comparison of different evolutionary methodolo-
gies applied to electronic filter design, in: IEEE International Conference on Evolutionary
Computation Proceedings. IEEE World Congress on Computational Intelligence, 1998, pp.
434–439. doi:10.1109/ICEC.1998.699812.

[3] J. Grimbleby, Automatic analogue circuit synthesis using genetic algorithms, IEEE Proceed-
ings - Circuits, Devices and Systems 147 (6) (2000) 319–323. doi:10.1049/ip-cds:20000770.

26

[4] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, Natural Computing
Series, Springer, 2003.

[5] T. McConaghy, G. Gielen, Genetic programming in industrial analog CAD: Applications
and challenges, in: T. Yu, R. Riolo, B. Worzel (Eds.), Genetic Programming Theory and
Practice III, Springer US, 2006, pp. 291–306. doi:10.1007/0-387-28111-8_19.

[6] E. Martens, G. Gielen, Classification of analog synthesis tools based on their archi-
tecture selection mechanisms, Integration, the VLSI Journal 41 (2) (2008) 238–252.
doi:10.1016/j.vlsi.2007.06.001.

[7] D. Nam, Y. D. Seo, L.-J. Park, C. H. Park, B. Kim, Parameter optimization of an on-chip
voltage reference circuit using evolutionary programming, IEEE Transactions on Evolu-
tionary Computation 5 (4) (2001) 414–421. doi:10.1109/4235.942535.

[8] J. Ramos, K. Francken, G. G. E. Gielen, M. S. J. Steyaert, An efficient, fully parasitic-
aware power amplifier design optimization tool, IEEE Transactions on Circuits and Systems
I 52 (8) (2005) 1526–1534. doi:10.1109/TCSI.2005.851677.

[9] C. A. Coello Coello, A. H. Aguirre, Design of combinational logic circuits through an
evolutionary multiobjective optimization approach, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 16 (1) (2002) 39–53. doi:10.1017/S0890060401020054.

[10] U. R. Karpuzcu, Automatic Verilog code generation through grammatical evolution, in:
Proceedings of the 2005 workshops on Genetic and evolutionary computation, ACM, 2005,
pp. 394–397. doi:10.1145/1102256.1102346.

[11] X. Yan, W. Wei, R. Liu, S. Zeng, L. Kang, Designing electronic circuits by means of gene
expression programming, in: First NASA/ESA Conference on Adaptive Hardware and
Systems, 2006, pp. 194–199. doi:10.1109/AHS.2006.31.

[12] X. Yan, J. Jin, Electronic circuits automatic design algorithm, in: Sixth Interna-
tional Conference on Natural Computation (ICNC), Vol. 5, 2010, pp. 2334–2337.
doi:10.1109/ICNC.2010.5584122.

[13] M. Anjomshoa, A. Mahani, S. Sadeghifard, A new automated design and optimization
method of CMOS logic circuits based on modified imperialistic competitive algorithm,
Applied Soft Computing 21 (2014) 423 – 432. doi:10.1016/j.asoc.2014.04.011.

[14] E. Tlelo-Cuautle, M. Duarte-Villaseñor, Evolutionary electronics: Automatic synthesis of
analog circuits by GAs, in: A. Yang, Y. Shan, L. Bui (Eds.), Success in Evolutionary
Computation, Vol. 92, Springer Berlin / Heidelberg, 2008, pp. 165–187. doi:10.1007/978-
3-540-76286-7_8.

[15] E. Tlelo-Cuautle, I. Guerra-Gómez, M. Duarte-Villaseñor, L. de La Fraga, G. Flores-
Becerra, G. Reyes-Salgado, C. Reyes-García, G. Rodriguez-Gómez, Applications of evo-
lutionary algorithms in the design automation of analog integrated circuits, Journal of
Applied Sciences 10 (2010) 1859–1872. doi:10.3923/jas.2010.1859.1872.

[16] K.-J. Kim, S.-B. Cho, Automated synthesis of multiple analog circuits using evolutionary
computation for redundancy-based fault-tolerance, Applied Soft Computing 12 (4) (2012)
1309 – 1321. doi:10.1016/j.asoc.2011.12.002.

[17] H. Mühlenbein, L. Zinchenko, V. Kureichik, T. Mahnig, Effective mutation rate for prob-
abilistic evolutionary design of analogue electrical circuits, Applied Soft Computing 7 (3)
(2007) 1012–1018. doi:10.1016/j.asoc.2006.07.001.

[18] J. Koza, D. Andre, F. Bennett III, M. Keane, Genetic Programming III: Darwinian Inven-
tion & Problem Solving, 1st Edition, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1999.

27

[19] M. O’Neill, A. Brabazon, Recent patents on genetic programming, Recent Patents on Com-
puter Science 2 (1) (2009) 43–49.

[20] T. McConaghy, P. Palmers, M. Steyaert, G. G. Gielen, Variation-aware structural syn-
thesis of analog circuits via hierarchical building blocks and structural homotopy, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 28 (9) (2009)
1281–1294. doi:10.1109/TCAD.2009.2023195.

[21] C. Mattiussi, D. Floreano, Analog genetic encoding for the evolution of circuits and
networks, IEEE Transactions on Evolutionary Computation 11 (5) (2007) 596–607.
doi:10.1109/TEVC.2006.886801.

[22] R. S. Zebulum, M. A. Pacheco, M. Vellasco, Artificial evolution of active filters: A case
study, in: Proceedings of the 1st NASA/DOD Workshop on Evolvable Hardware, IEEE
Computer Society, 1999, pp. 66–75. doi:10.1109/EH.1999.785436.

[23] R. S. Zebulum, M. S. Vellasco, M. A. Pacheco, Variable length representa-
tion in evolutionary electronics, Evolutionary Computation 8 (1) (2000) 93–120.
doi:10.1162/106365600568112.

[24] Y. A. Sapargaliyev, T. G. Kalganova, Open-ended evolution to discover analogue circuits
for beyond conventional applications, Genetic Programming and Evolvable Machines 13 (4)
(2012) 411–443. doi:10.1007/s10710-012-9163-8.

[25] S. Ando, H. Iba, Analog circuit design with a variable length chromosome, in: Proceed-
ings of the 2000 Congress on Evolutionary Computation, Vol. 2, 2000, pp. 994–1001.
doi:10.1109/CEC.2000.870754.

[26] J. B. Grimbleby, Automatic analogue network synthesis using genetic algorithms, in: First
International Conference on Genetic Algorithms in Engineering Systems: Innovations and
Applications, 1995, pp. 53–58.

[27] J. Koza, F. Bennett III, D. Andre, M. Keane, Synthesis of topology and sizing of ana-
log electrical circuits by means of genetic programming, Computer Methods in Applied
Mechanics and Engineering 186 (2-4) (2000) 459–482. doi:10.1016/S0045-7825(99)00397-7.

[28] J. Koza, F. Bennett III, D. Andre, M. Keane, Evolutionary design of analog electrical cir-
cuits using genetic programming, in: I. C. Parmee (Ed.), Adaptive Computing in Design
and Manufacture: The Integration of Evolutionary and Adaptive Computing Technolo-
gies with Product/System Design and Realisation, Springer London, 1998, pp. 177–192.
doi:10.1007/978-1-4471-1589-2_14.

[29] J. Koza, F. Bennett III, D. Andre, M. Keane, The design of analogue circuits by means
of genetic programming, in: P. J. Bentley (Ed.), Evolutionary Design by Computers, John
Wiley&Son, 1999, Ch. 16, pp. 365–385.

[30] J. Koza, F. Bennett III, D. Andre, M. Keane, Automatic design of analog electrical circuits
using genetic programming, in: H. Cartwright (Ed.), Intelligent Data Analysis in Science,
Oxford University Press, Oxford, 2000, Ch. 8, pp. 172–200.

[31] F. Castejón, E. Carmona, Automatic design of electronic amplifiers using grammatical
evolution, in: A. Alonso-Betanzos, et al. (Eds.), Actas de Multiconferencia CAEPIA-13,
2013, pp. 703–712.

[32] C. Mattiussi, Evolutionary synthesis of analog networks, Ph.D. thesis, Università degli
Studi di Trieste (2005).

[33] M. O’Neill, C. Ryan, Grammatical evolution, IEEE Transactions on Evolutionary Compu-
tation 5 (2001) 349–358. doi:10.1109/4235.942529.

28

[34] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, M. O’Neill, Grammar-based genetic
programming: a survey, Genetic Programming and Evolvable Machines 11 (3-4) (2010)
365–396. doi:10.1007/s10710-010-9109-y.

[35] ISO/IEC-14977, Information technology – syntactic metalanguage – extended BNF (1996).

[36] F. Wang, Y. Li, L. Li, K. Li, Automated analog circuit design using two-layer ge-
netic programming, Applied Mathematics and Computation 185 (2) (2007) 1087–1097.
doi:10.1016/j.amc.2006.07.029.

[37] J. D. Lohn, S. P. Colombano, A circuit representation technique for automated cir-
cuit design, IEEE Transactions on Evolutionary Computation 3 (3) (1999) 205–219.
doi:10.1109/4235.788491.

[38] P. Nenzi, H. Vogt, Ngspice user’s manual version 23 (2011).

[39] L. W. Nagel, D. O. Pederson, SPICE: Simulation program with integrated circuit emphasis,
Electronics Research Laboratory, College of Engineering, University of California, 1973.

[40] T. McConaghy, G. Gielen, Canonical form functions as a simple means for genetic
programming to evolve human-interpretable functions, in: Proceedings of the 8th An-
nual Conference on Genetic and Evolutionary Computation, ACM, 2006, pp. 855–862.
doi:10.1145/1143997.1144147.

[41] M. Nicolau, I. Dempsey, Introducing grammar based extensions for grammatical evolution,
in: IEEE Congress on Evolutionary Computation, IEEE, 2006, pp. 648–655.

[42] W. Mydlowec, J. Koza, Use of time-domain simulations in automatic synthesis of compu-
tational circuits using genetic programming, in: Late Breaking Papers at the 2000 Genetic
and Evolutionary Computation Conference, 2000, pp. 187–197.

[43] M. J. Streeter, M. A. Keane, J. R. Koza, Iterative refinement of computational circuits
using genetic programming, in: Proceedings of the Genetic and Evolutionary Computation
Conference, Morgan Kaufmann Publishers Inc., 2002, pp. 877–884.

[44] S. Cipriani, A. Takeshian, Compact cubic function generator, uS Patent 6,160,427 (Dec. 12
2000).

[45] M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in an
Arbitrary Language, Kluwer Academic Publishers, 2003. doi:10.1007/978-1-4615-0447-4.

