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Summary 
 
Objective: This work proposes creating an automatic system to locate and segment the optic nerve head 
(ONH) in eye fundus photographic images using genetic algorithms.  
 
Methods and material: Domain knowledge is used to create a set of heuristics that guide the various steps 
involved in the process. Initially, using an eye fundus colour image as input, a set of hypothesis points 
was obtained that exhibited geometric properties and intensity levels similar to the ONH contour pixels. 
Next, a genetic algorithm was used to find an ellipse containing the maximum number of hypothesis 
points in an offset of its perimeter, considering some constraints. The ellipse thus obtained is the 
approximation to the ONH. The segmentation method is tested in a sample of 110 eye fundus images, 
belonging to 55 patients with glaucoma (23.1%) and eye hypertension (76.9%) and random selected from 
an eye fundus image base belonging to the Ophthalmology Service at Miguel Servet Hospital, Saragossa 
(Spain). 
 
Results and conclusions: The results obtained are competitive with those in the literature.  The method’s 
generalization capability is reinforced when it is applied to a different image base from the one used in 
our study and a discrepancy curve is obtained very similar to the one obtained in our image base. In 
addition, the robustness of the method proposed can be seen in the high percentage of images obtained 
with a discrepancy δ<5 (96% and 99% in our and a different image base, respectively). The results also 
confirm the hypothesis that the ONH contour can be properly approached with a non-deformable ellipse. 
Another important aspect of the method is that it directly provides the parameters characterising the shape 
of the papilla: lengths of its major and minor axes, its centre of location and its orientation with regard to 
the horizontal position. 
 
Keywords: Optic nerve head segmentation; Genetic algorithm; Constraint handling; Ellipse fitting; 
Glaucoma. 
 
1. Introduction 
The optic nerve head (ONH), also known as the papilla, is the area where all the retina 
nerve fibres converge to form the start of the optic nerve that leaves the back of the 
eyeball. In the centre of the papilla there is an area without any nerve fibres called the 
excavation, and around this area, another area slightly more raised than the rest of the 
retina, called the neuroretinal ring, whose external perimeter delimits the papillary 
contour. In a two-dimensional image, the ONH exhibits a lighter colour than the retina, 
is oval in shape and fragmented into different subregions by the blood vessels that 
emerge from the excavation to the retina. Moreover, inside the excavation there is an 
even brighter area called pallor. 
 
Analysis of the ONH is one of the most important tests to diagnose a number of eye 
diseases. Thus, for example, the excavation/papilla vertical relation and the area of the 
neuroretinal ring are important parameters to consider in the diagnosis of glaucomatous 
papillae [1]. Furthermore, the location of the ONH is also interesting in retina studies 
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[2-5]. However, in the latter instance, the requirements for locating the papillary contour 
are less demanding (an approximate location is sufficient) because the final objective is 
to filter the papillary region to limit the analysis of the image to just the retina region. 
Several techniques are used for studying the state of the optic nerve and the nerve fibre 
layer [6]: photographic techniques (analogical and digital), laser polarimetry (GDx 
system), confocal laser scanning system (HRT system), optical coherence tomography 
(OCT) and scanning laser tomography (SLT). With any of these last four techniques, 
the expert extracts a series of details that enable him to mentally reconstruct the 
topography of the eye fundus and accordingly determine the papillary and excavation 
contour. 
 
Current support systems for the diagnosis of eye diseases based on eye fundus 
information imply manual or semi-automatic tracing of the papillary contour and other 
ONH structures. Thus, from this initial information, the system determines a set of 
measures that are used together with other findings to do the diagnosis. Nevertheless, in 
the field of research, systems are beginning to appear which try to minimise human 
intervention in the process for segmenting and identifying different structures of the 
ONH. In this respect, detection of the papillary contour has aroused special interest. 
Specifically, the first semi-automatic strategies were based on geometric properties of 
the image pixels and their intensity level values. In [7], the expert marks four points 
with a high probability of belonging to the papillary contour and the algorithm traces an 
ellipse containing these four points as an initial approach and, then, the contour is 
refined from the grey levels close to this ellipse. Later, [8] presented a semi-automatic 
method based on the grey level gradient properties.  
 
Active contour-based strategies have also been shown to be useful. A characteristic 
property of this type of technique is that it is highly dependent on a preliminary stage of 
contour initialisation, from which the final solution is refined. In other words, if the 
initialisation is bad, it is highly likely that the solution will not be achieved. In some 
instances, this initialisation stage has been done manually, [9-12], and in other instances 
automatically [4, 5, 12, 13]. We focus on the latter. Thus, in [5] an automatic system is 
proposed which uses the template matching technique to detect the centre of the papilla, 
and a circumference is defined around the centre which constitutes the first approach to 
the contour and its radius is estimated with an algorithm based on the least squares 
method. This circumference will be the starting point for the precise location of the 
papilla using the active contour technique. Conversely, in [13], segmentation was done 
using fuzzy c-means clustering to obtain a better initial approach to the ONH contour. 
The same as in [12], the gradient vector flow field was used to define the external 
energy of the active contour. In [4] template matching was also used to locate the centre 
of the ONH and, moreover, for the precise identification of the contour, controlled 
active contours were used with domain knowledge to progressively approach the 
solution.  
 
This paper presents a method for locating and segmenting the ONH in eye fundus 
photographic images, without any intervention by the user. Thus the method identifies 
the ONH automatically and selects a point located approximately in its centre. For 
segmentation, a genetic algorithm is used that searches for the ellipse that best 
approaches the papillary contour. In the literature there is no record of the use of genetic 
algorithms to solve this kind of problems. However the results obtained here are shown 
to be highly competitive with the methods mentioned earlier. Basically, the idea is to 
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transform the solution space of the problem under analysis, formed by all the papillary 
contours possible, into a new representation space where the application of the genetic 
approach is feasible. In this transformation process, we will explain how to encode the 
possible solutions of the original space of the problem and how to evaluate each one. 
Besides, we will show how to inject the available domain knowledge into different 
stages of the method to obtain the solution. 
 

Characteristic No. images 
Cataract (severe or moderate) 0 

Light artifacts 3 
Some of rim blurred or missing 5 
Moderate peripapillary atrophy 16 

Concentric peripapillary atrophy/artifacts 20 
Strong pallor distractor 6 

Table 1. Image base visual characteristics. 
 
We used a random sample of 124 eye fundus images selected from an eye fundus image 
base belonging to the Ophthalmology Service at Miguel Servet Hospital, Saragossa 
(Spain). From this initial image base, we eliminated all those eyes that had some type of 
cataract (severe and moderate) and were left with a base of 110 images. The mean age 
of the patients was 53.0 years (s.d. 13.05), with 46.2% male and 53.8% female and all 
of them were Caucasian ethnicity. 23.1% patients had chronic simple glaucoma and 
76.9% eye hypertension. The images were acquired with a colour analogical fundus 
camera, approximately centred on the ONH and they were stored in slide format. In 
order to have the images in digital format, they were digitised using a HP-PhotoSmart-
S20 high-resolution scanner, RGB format, resolution 600x400 and 8 bits/pixel. Table 1 
shows, for the 110 images selected, all those visual characteristics related to potential 
problems that may distort the detection process of the papillary contour. 
 
The article is organised as follows: section 2 describes the different stages of the 
method proposed. Section 3 focuses on the genetic algorithm-based approach with 
which it possible to solve the problem under study. Section 4 evaluates the method 
results and compares them with other methods. Finally, Section 5 summarises the 
conclusions of this work. 
  
2. Method Description 
Currently, the easiest way of obtaining information on the state of the ONH without 
using very costly equipment (desirable property in screening campaigns) is the two-
dimensional photo. The aim of this work is to locate and segment the ONH using 
photographs of eye fundus as input information. Accordingly, the method that we 
propose consists of three stages. In the first stage a pre-processing of the eye fundus 
image is done. Next, in the second stage, a set of points, called set of hypothesis points 
(HPs), is obtained. HPs exhibit intensity levels characteristic of the points forming the 
papillary contour. For this, the property that the papilla pixels have an intensity level 
higher than retina pixels (see Figure 1.a) is used. Therefore, if the intensity level of the 
pixels in a segment, whose extremes are located inside the papilla and retinal area, 
respectively (see Figure 1.a), is plotted as a function of the distance from each pixel to 
the segment extreme located in the papilla, the papillary contour pixels will always be 
situated in positions near to a change in intensity level with a strong negative slope 
(Figure 1.b). This process is repeated for other segments that are angularly equispaced 
and form a bundle. From now on, each of these segments will be called radial segment 
(RS) and the plot of intensity levels of the points belonging to an RS will be called 
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intensity level profile. Finally, the last stage consists of selecting the most suitable HPs 
from the initial set and joining them properly with an ellipse to form a solution papillary 
contour. Based on a set of constraints and initial hypotheses, we will use a genetic 
algorithm (GA) to search for the optimum ellipse. Figure 2 summarises in a block 
diagram all the stages involved in the whole process. The following subsections 
describe each of these stages in detail. 
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Figure 1. Obtaining hypothesis points (HPs) from the intensity level profile (ILP) of a radial segment 

(RS): a) example of RS-20 located in the normalised red channel of an eye fundus image; b) example of 
HPs located on strong negative slope sections of the ILP associated with RS-20. 

 
2.1. Pre-processing 
In order to reduce the computational cost associated with image processing, this stage 
begins by extracting a subwindow of the original image, of fixed size (261x261), where 
the papilla is approximately in the centre of the image. Bearing in mind that each 
photographic image is taken so that the ONH is near to the centre of the scene, this task 
is relatively simple: just thresholding in the three RGB channels is sufficient  [14] to 
find the approximate position of the papilla and then centre the new analysis subwindow 
with respect to the centre of the raw segmented papilla. In order to smooth the image 
and eliminate spurious intensity values, a 5x5 Wiener filter was applied to the three 
RGB channels. Moreover, owing to the variability of intensity level range of the 
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different images, a RGB-normalisation was done to rescale images to the interval [0, 
255] on each of the three channels associated with an image. 
 
 

 

Eye Fundus Image 

Preprocess 
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Figure 2. Stages involved in obtaining the papillary contour. 
 
 
The point situated approximately in the centre of the papilla defining the centre of the 
bundle from which the RSs emerge is called the centre of analysis (CA). It is obtained 
automatically from the relative position of the pallor and the large blood vessels that 
leave the papilla at the top and bottom. Therefore, previously, we need to segment these 
two structures. Thus, the approximate segmentation of the pallor is achieved with 
thresholding (Thp=253) of the normalised grey image, followed by selecting that region 
with the biggest area. Here the property of the pallor having high luminosity is used. 
Similarly, to locate the large vessels, a morphological bottom-hat filtering is performed, 
with a disc-shaped structuring element (radius=15), followed by thresholding, with a 
threshold equal to 15% of maximum value of normalised image intensity. Finally, to 
locate the coordinates of CA, (xa, ya), we used the following procedure: if (xp, yp) 
represents the coordinates of the geometric centre of the segmented pallor, then ya=yp; 
the coordinate xa is calculated as the middle point of the shortest segment parallel to the 
x-axis at the height of yp connecting the boundary of the segmented pallor with the 
boundary of the segmented large blood vessels (see Figure 3).  
 
To simplify the processing of the two subsequent stages, all the right eye images are 
converted to the left eye using a horizontal reflection (it could also have been done the 
other way round). To determine the eye type, the relative position of the pallor with 
respect to the blood vessels is again used: in the left eye, the pallor is always to the right 
of the large vessels (see Figure 3.a). 
 
In order to make the size of each RS independent of the image analysed, a fixed length, 
LRS, is always used, which ensures that the opposite end to the CA is always situated in 
the retina. The value of LRS is chosen depending on the resolution selected for the input 
images and is obtained from the statistical study of the size of a representative set of 
papillae. 
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Figure 3. Centre of analysis: (a) relative position between the pallor and the large blood vessels; (b) detail 
of the area of interest (see dotted rectangle in (a)). 

 
 
 
Finally, Table 2 collects the value used for each of the parameters associated with the 
pre-processing stage. It is important to stress that these values (except for the 
normalisation range) are dependent on the resolution of the original image and they 
were heuristically selected for best performance. In most cases, the algorithm’s overall 
performance is not very sensitive to changes in these parameters. 
 
 

Pre-processing Parameters Value 
Subwindow Sise 261x261 pixels 
Normalisation Range  [0, 255] 
Wiener Filter 5x5 pixels  
Pallor Threshold 253 
Bottom-hat Radius 15 pixels 
Bottom-hat Threshold 40 
LRS (Length of a RS) 110 pixels 
NRS (Number of RSs) 100 

Table 2. Pre-processing stage parameter values.  
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2.2. Obtaining Hypothesis Points 
In principle, the characterisation of a hypothesis point is based on the property 
mentioned at the beginning of this section: a point of the image which belongs to the 
papillary contour and presents a change in its intensity level with a strong negative 
slope. However, this property represents a necessary but not sufficient condition, since 
other causes may exist that give rise to the appearance of negative slopes in the intensity 
level profile. For example, the presence of blood vessels in the papilla, the imperfect 
uniformity of the colour of the retina and papilla or the existence of peripapillary 
atrophy areas. This is the reason why the set of points thus obtained are called 
hypothesis points, since this set may consist not only of solution points but also of other 
points which, generically, will be associated with noise. Next, a process for obtaining 
these points is described. 
 
Let (p1, ..., pn) be the set of all the points belonging to an RS and ordered from less to 
greater according to their distance from the CA. An interval of strong negative slope 
(ISNS) is defined for an RS as a set of consecutive points, (pr, ..., ps), which satisfy the 
four conditions shown in Eq. (1), where tan(x) is the tangent operator on a curve at 
point x, α=-3 (71.6º) is a configurable threshold that marks the limit of the minimum 
tangent of the all points belonging to an ISNS, β=4 is a positive and configurable 
number that establishes the minimum number of points necessary to form an ISNS, and 
i=1,...,m, where m is the number of ISNSs in a RS. The idea is to obtain a representative 
point for each ISNS, called strong negative slope hypothesis point (SNS_HP). 
Specifically, to calculate the SNS_HP associated with the i-th ISNS in an RS, Eq. (2) is 
used, where second_point_of (X) is an operator that obtains the second point of the 
ordinate set X. 
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Once the SNS_HPs associated with an RS have been obtained, a stage is applied to 
eliminate retina noise. Remember that the length of each RS was sufficiently large to 
reach the retina from the CA and, thus, ensure the inclusion of the points belonging to 
the papilla-retina boundary in the RS. However, imperfect uniformity of the intensity 
level of the retina can cause the existence of ISNSs on the RS section included in the 
retinal area and, consequently, of noisy SNS_HPs. In order to filter this noise, an 
intensity level threshold is defined, which is called the retina threshold, Thret, so that all 
the SNS_HPs obtained whose intensity level is below this value will be rejected (see 
hp3 in Figure 1.b). This threshold is determined for each RS and is defined as the mean 
intensity level of its 50 pixels furthest from the centre of analysis, plus their standard 
deviation (Figure 1.b). The SNS_HPs not removed for the retina threshold are now 
called filter hypothesis points (F_HPs). 
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Indeed, the set of F_HPs are obtained for each colour channel using the same CA. It is 
important to analyse the three channels independently because the information obtained 
in each one is not always redundant and, therefore, using just one channel or the fusion 
of three in a grey level image could imply a loss of information. Since the number of 
F_HPs obtained, when handling the three channels, are many and very often close to 
one another, they can group together and form clusters along each RS. If each cluster is 
replaced by a new point, a large number of F_HPs will be removed, but the non-
redundant information in each channel will be preserved. Thus, given the set of all the 
filter hypothesis points, (fhp1, ..., fhpk), obtained as a result of applying  Eq. (2) and Thret 
in the same RS and in the three channels, and ordered from less to greater according to 
their distance from the centre of analysis, a radial cluster, CRS, is defined as the set of 
consecutive F_HPs, (fhpr, ..., fhps), which satisfy the three conditions shown in Eq. (3), 
where d(x,y) is the Euclidean distance operator between the points x and y, and λ=2 is a 
configurable threshold that establishes the maximum distance between two consecutive 
points belonging to the same cluster. Then, each cluster is transformed into a new point, 
called cluster hypothesis point (C_HP). Specifically, to calculate the C_HP associated 
with the j-th cluster in an RS, Eq. (4) is used, where the operator mean (X) represents 
the mean value of the points contained in the set X, and j=1,...,l, where l is the number 
of clusters in the RS. 
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The entire process followed here to obtain the C_HPs for an RS is repeated for the set of 
NRS=100 radial segments in the bundle whose origin is always situated in the CA. As a 
summary, Figure 4 shows the pseudocode algorithm used to obtain the final hypothesis 
points, hereafter HPs. As an example, Figure 5 shows the HPs obtained from applying 
this algorithm to an eye fundus image. In relation to parameter values used in Eqs. (1)-
(4), observe that the greater the values chosen for α (in absolute value) β and λ, the 
fewer the number of HPs associated with an RS will be, and vice versa. Therefore, we 
must find a compromise solution between not detecting the HP solution belonging to the 
real contour of the papilla in an RS (high values of α, β and λ) and obtaining too many 
HPs in this RS, including the solution point (very low values of α, β and λ). The values 
of α, β, λ reported throughout the paper were heuristically selected in this sense for best 
performance. 
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HP ={∅} 
FOR each RSj, j=1,..., NRS 
 FHPj={∅} 

 
 
 

 FOR each Chi, i∈{R,G,B} 
  Obtains set ISNSi

j, from (1) 
  Obtains set SNS_HPi

j = f(ISNSi
j), from (2) 

  Obtains set F_HPi
j = f(SNS_HPi

j, Thj
ret) 

  F_HPj = F_HPj ∪ F_HPi
j 

 END for 
 Obtains set Cj = f(F_HPj), from (3) 
 Obtains set C_HPj = f(Cj), from (4) 
 HP={HP, {C_HPj}} 
END for 

 
 
 
 
 
 
 
 
 
 
 
Figure 4. Pseudocode algorithm to obtain the final set of hypothesis points, HPs, where RSj is the j-th 
radial segment, Chi the i-th colour channel, ISNSi

j is the set of intervals of strong negative slope existing 
in the RSj and associated with the Chi, SNS_HPi

j is the set of strong negative slope points obtained from 
ISNSi

j, F_HPi
j is the set of filter hypothesis points obtained from SNS_HPi

j and using the retina threshold, 
Thj

ret, F_HPj is the set of all the filter hypothesis points in RSj from the three colour channels, Cj is the set 
of radial clusters existing in RSj, and C_HPj is the set of cluster hypothesis points associated with Cj. The 
final set of HPs stores the set of C_HPs associated with each RS separately, i.e., HP={{C_HP1},..., 
{C_HPNrs}}. 
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Figure 5. Eye fundus image final set of hypothesis points. 

 
 
2.3 Obtaining the Papillary Contour 
Since the human papillary contour always has a slightly oval aspect, this work proposes 
searching for the solution by approaching this contour with an ellipse, as done in other 
works, e.g. [4, 6]. For this, a genetic algorithm will be suitably instantiated (see details 
in Section 3), whose main objective will be to search for an ellipse containing the 
maximum number of HPs in its perimeter. From this instant, it is assumed that: 1) the 
geometric shape of the papilla can be approached by a non deformable ellipse, and 2) all 
those ellipses that are not a solution will contain few HPs, or what is the same, the more 
HPs that the ellipse contains, the more likely this ellipse will approach the real contour 
of the papilla. Later, by analysing the experiment results it will be possible to confirm 
the validity of these two hypotheses. 
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3. Genetic Algorithm 
Genetic algorithms (GA) are one of the paradigms most frequently used in evolutionary 
computation and they owe their inspiration to the biological process of evolution: 
natural selection and survival of the fittest individuals [15]. Thus, given a problem of a 
specific domain, these algorithms code potential solutions using a structure of data like 
a chromosome (individual) where the genes are parameters of the problem proposed. 
The approach to the solution of each chromosome is calculated using a fitness function. 
Finally, by applying selection and variation operators (mutation and recombination), a 
population of chromosomes evolves to the optimum solution until a finalisation 
criterion is achieved. The modelling of a problem using GAs can be divided into four 
stages. The first consists of defining the most appropriate way of representing 
individuals or solutions. The second implies constructing the fitness function to assess 
the goodness of these individuals. The third consists of choosing or constructing the 
most appropriate selection and reproduction operators, in accordance with the coding of 
individuals and the nature of the problem to be solved. Finally, the fourth implies 
choosing the values of the parameters defining the intrinsic operating capacity of the 
GA (for example, maximum number of generations and size of population) or the 
operating capacity of the operators (for example, probability of mutation and probability 
of crossover).  
 
Under the two hypothesis raised in the previous section, here we shall use the genetic 
paradigm to find that ellipse containing the maximum HPs in its contour. In order to 
manage the process of counting the number of HPs belonging to the perimeter of an 
ellipse, we work in fact with the HPs contained in an elliptic crown concentric to this 
ellipse and whose width is small enough to include only the HPs that actually belong to 
the papillary contour and large enough for the real papillary contour, which is not a 
perfect ellipse, to be included inside it. Nevertheless, the genetic search can produce 
local minima due to the presence of HPs associated with noise. The ellipse thus 
obtained could contain pallor points or another type of distractors that would prevent the 
contour proposed from representing the optimum solution. It is true that, thanks to the 
mutation operator and the population solution that a GA handles, it is possible to avoid 
local minima to a large extent. However to further minimise this possibility, and given 
that the CA is always chosen at a point very near to the pallor (see Figure 3), the HPs in 
each RS actually belonging to the pallor contour will always be nearer to the CA than 
those actually belonging to the papillary contour. Taking advantage of this property, a 
circumference is used, called filter circumference, with its centre in the CA, which aims 
to eliminate all those HPs that are inside the circumference and are associated with the 
pallor contour. There is a clear compromise when choosing the radius value of this 
circumference: it must be large enough to eliminate the large number of points 
belonging to the pallor and small enough not to filter papillary contour points.  As will 
be seen in the next subsection, the optimum value of this parameter will be 
automatically obtained during the evolutionary process associated with executing the 
GA. 
 
3.1 Coding of Individuals 
From the description above, it can be established that the phenotypic space, solution 
space of the original problem, consists of the elliptic crown space defined from the 
infinite ellipses that can be traced in the image. However, as indicated at the beginning 
of this section, we are also interested in searching for the most appropriate elliptic 
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crown width and filter circumference radius value. Therefore, these two parameters will 
also form part of the problem search space. To code this type of solutions, the 
phenotypic space is transformed into a genotypic space consisting of real vectors of 7 
variables [Xe, Ye, ϕ, a, b, r, δ]. With the first five components of this vector it is 
possible to code just one hypothesis ellipse. Thus, (Xe,Ye) represents the centre of this 
ellipse, ϕ the angle that its major axis forms with the x-axis, and (a, b) the magnitudes 
of its major and minor semi-axis, respectively. The sixth component, r, codes the radius 
of the filter circumference. It is not necessary to code the coordinates of the centre of 
this circumference because its centre always is CA. The last component, δ, represents 
the offset with which it is possible to define an elliptic crown concentric to the 
hypothesis ellipse and delimited by an external ellipse, (Xe, Ye, ϕ, a+δ, b+δ), and an 
internal ellipse, (Xe, Ye, ϕ, a-δ, b-δ). 
 
3.2 Fitness Function 
In order to assess the goodness of each individual, a fitness function is defined that 
assigns a numerical value to each of the solutions proposed by the GA in the genotypic 
space. Given that, for this, we are interested in counting the number of hypothesis points 
contained in each elliptic crown proposed, it is necessary to determine, as a preliminary 
stage, which points fall within this crown (see Figure 6). For example, let [Xei, Yei, ϕi, 
ai, bi, ri, δi] be an individual of the population, then the following steps are applied: 
 

1. Decoding of [Xei, Yei, ϕi, ai, bi, ri, δi], (see Figure 6.a). 
 

2. All the hypothesis points inside the filter circumference are eliminated (see Figure 
6.b). Each remaining HP is called circumference filter hypothesis point (HPCF).  

 
3. The distance of each HPCF to the hypothesis ellipse is calculated. 

 
4. For each RS, a HPCF is selected that is at a minimum distance from the hypothesis 

ellipse and we denote it by minimum distance hypothesis point (HPMD), as shown in 
Figure 6.c. 

 
5. Only the HPMDs inside the elliptic crown are selected (see Figure 6.d). Each of these 

points is called elliptic crown hypothesis point (HPEC). 
 

6. Finally, the number of HPECs is counted. 
 

To facilitate the optimum elliptic crown search, a new heuristic is introduced based on 
the idea of contour continuity. This heuristic establishes not only maximising the 
number of hypothesis points contained in the elliptic crown but also reducing the 
number of discontinuities. This will aid the convergence process, since, for example, 
given two crowns containing the same number of points, the one will survive that has 
the points distributed more uniformly along the contour. In order to achieve this aim, 
and bearing in mind that all the images were transformed to the left eye, the elliptic 
crown is divided into four regions labelled as the temporal region (the region closest to 
the temporal bone and defined in the range [-50º, 50º]), superior region, belonging to the 
range (50º, 130º), nasal region, the region closest to the nose and defined in the range 
[130º, 230º], and the inferior region, belonging to the range (230º, 310º). Therefore, in a 
first approach, the fitness function, F1, is the one indicated in Eq. (5), where NPX 
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denotes the number of points in region X of the elliptic crown and ωi is the weighting 
factor of each of the addends. 

 
INST NPNPNPNPF ⋅+⋅+⋅+⋅= 43211 ωωωω  (5) 

 
 

(a) (b)

(d)(c)

 
Figure 6. Stages in the process of counting hypothesis points in the elliptic crown: (a) HPs (•) and 
elements resulting from the decoding of an individual: ellipse (⎯), elliptic crown (- - -), filter 
circumference (⎯ - ⎯), (b) obtaining the HPCFs (•) that are outside of the filter circumference (× HPs 
eliminated), (c) obtaining, in each RS, the HPMDs (•) that are at a minimum distance from the genetic 
ellipse (× HPs eliminated) and (d) obtaining the HPECs (•) that are inside the elliptic crown (× HPs 
eliminated). In each figure only 20% of the RSs used are shown for clarity. 
 
 
Another interesting phenomenon is related to the result of approaching the papillary 
contours traced by the experts with ellipses. Although the definition domain of the 
angle, ϕ, forming the major axis of an ellipse with the x-axis is |ϕ|∈[0, 90]º, statistically 
it is shown that most papillary ellipses exhibit a major axis closer to the vertical than the 
horizontal axis. This makes it possible to define a new heuristic where the ellipse 
solution search is biased towards ellipses with ϕ→90º. Moreover, we must remember 
that we are interested in maximising the filter circumference radius, r, and minimising 
the width of the elliptic crown, δ. Therefore, the idea is to include these variables in the 
fitness function in order to combine all these objectives. The new fitness function is the 
one indicated in Eq. (6). 
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ϕωδωωωωωω ⋅+⋅+⋅+⋅+⋅+⋅+⋅= 76543212 rNPNPNPNPF INST  (6) 
 

 
Since some of the subobjectives considered in Eq. (6) need to be minimised and others 
maximised, it is necessary to redefine the fitness function to be able to consider the 
convergence in the same direction. Specifically, the final objective, without losing 
generality, was considered as a minimisation process. For this, all the subfunctions 
included in Eq. (6) and aimed towards a maximisation objective are transformed into 
new subfunctions where the new objective is now to minimise. Moreover, the range of 
variation of all of them is normalised in the interval [0,1].  
 
Thus, the objective of maximising the number of points contained in each of the four 
regions defined earlier is transformed into a process of minimisation, as shown in Eq. 
(7), where NPX

(min) denotes the new subfunction to be minimised and NPXmax the 
maximum number of points that may be in region X. 
 

Xmax

Xmax

NP
NPNPNP X

X
−

=(min)  
(7) 

 
Similarly, maximisation of the filter circumference radius is transformed too into a 
process of minimisation, as shown in Eq. (8), where r(min) is the new subfunction to be 
minimised and Rmax and Rmin are the maximum and minimum values that the filter 
circumference radius can have.  
 

minmax

max(min)

RR
rRr

−
−

=  
(8) 

 
The initial subobjective of minimising the width of the elliptic crown coincides with the 
minimisation strategy considered, so it will only be necessary to normalise, as indicated 
in Eq. (9), where δ(min) is the new subfunction to be minimised and Δmax and Δmin are the 
maximum and minimum values that the width of the elliptic crown can have. Observe 
that as the value of δ is always defined with regard to the ellipse, the actual width of the 
elliptic crown is defined in the interval [2Δmin, 2Δmax]. 
 

minmax

min(min)

Δ−Δ
Δ−

=
δδ  

(9) 

 
Finally, maximisation of the angle formed by the major axis of the ellipse proposed and 
the x-axis is now transformed into a process of minimisation, as shown in Eq. (10), 
where ϕ(min) is the new subfunction to be minimised, ϕmax and ϕmin are the maximum and 
minimum angles, in absolute value, of the major axis with the x-axis. 
 

minmax

max(min)

ϕϕ
ϕϕ

ϕ
−
−

=  
(10)

 
In short, the fitness function that the genetic algorithm must minimise is given by Eq. 
(11). The value of the weights, ωi, is obtained experimentally by testing different 
configurations. Nevertheless, since the priority is to maximise the number of points for 
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each candidate ellipse crown, the magnitude of the weights associated with the NPi
(min) 

will be weighted to a greater extent with regard to the rest of the weights, i.e.  ω1, ω2, 
ω3, ω4 > ω5, ω6, ω7. Moreover, from an anatomical point of view, a large number of the 
blood vessels, especially those with a large diameter emerge from the centre of the 
papilla and cross the papillary contour through the superior and inferior regions (see 
Figure 3.a). In these sections of the contour, there will be no transition between the 
papilla and retina and, consequently, there will be no associated hypothesis points. 
Consequently, the number of points found in the nasal and temporal region will be 
weighted more with regard to those found in the superior and inferior region. 
Furthermore, if it is admitted that quasi-symmetry exists for each coordinate axis, then 
ω1=ω3 > ω2=ω4. Next, the weights associated with the filter circumference radius and 
the elliptic crown offset will be weighted in importance and to an equal extent, i.e. 
ω5=ω6 > ω7. The smallest value is assigned to the weight ω7. 
 

(min)(min)(min)(min)

(min)(min)(min) ...

ϕωδωωω

ωωω

⋅+⋅+⋅+⋅+

+⋅+⋅+⋅=

7654

3213

rNP

NPNPNPF

I

NST  
(11) 
 

 
Table 3 collects the value used for each of the parameters related to the fitness function. 
More importantly, the values of NPXmax depend, in addition to the angular range of each 
region X∈{T,N,S,I}, on the value of NRS, namely, Σx(NPXmax)=NRS. The values of Rx and Δx 
depend on the resolution of the original image. The values of Rx, Δx and ϕx were 
obtained statistically from a representative sample of papillary contours when we 
approached the contour drawn by each expert with an ellipse. Finally, the values of ωi, 
i=1,...,7,  were obtained after trying several combinations and taking into account the 
constraints outlined in this subsection. 
 

See eq. Fitness Function Parameters Values 
(7) {NPTmax, NPNmax, NPSmax, NPImax} {27, 27, 23, 23} 
(8) {Rmax, Rmin} {40, 5} pixels 
(9) {Δmax, Δmin} {4, 1} pixels 

(10) {ϕmax, ϕmin} {90, 15} degrees 
(11) {ω1, ω2, ω3, ω4, ω5, ω6, ω7} {2.5, 1.5, 2.5, 1.5, 0.8, 0.8, 0.4}⋅10-1 

Table 3. Value of each of the parameters associated with the fitness function. 
 
 
3.3 Knowledge Injection and Constraint Handling 
As well as the local knowledge injected in the different heuristics used in section 2 to 
obtain the set of HPs, modelling of the problem with the genetic approach is done using 
global knowledge. On the one hand, from the heuristics mentioned in the previous 
subsection to construct the fitness function and, on the other hand, from different 
heuristics used to initialise the population of individuals. The use of an ellipse as an 
approach to the solution, the choice of four regions in the papillary contour to account 
for discontinuities in the contour, the use of the filter circumference to eliminate false 
hypothesis points and the vertical position trend of the major semi-axis of the papillary 
ellipses belong to the first case. The choice of definition domains, limited above and 
below for each of the genes forming an individual, belong to the second case. In 
particular, the range of variation for each definition domain is based on statistical data 
obtained from the result of approaching the papillary contours traced by the two experts 
with an ellipse (see Table 4). 
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Variable Statistics Value 

Major axis (Min, Max) (41.7, 60.3) 
Mean ± std 50.6 ± 4.1 

Minor axis (Min, Max) (37.2, 54.9) 
Mean ± std 45.9 ± 3.9 

|Angle| of major 
axis with X-axis 

(Min, Max) (2.9, 89.9) 
Mean ± std 63.3 ± 20.5 

Ratio major-
minor axis 

(Min, Max) (1.01, 1.30) 
Mean ± std 1.10 ± 0.056 

Table 4. Statistics obtained when approaching each contour papillary 
drawn by the experts with an ellipse. 

 
 
There is also a series of constraints based on the definition of the variables involved. 
Thus, for example, the solution ellipse always has to contain the CA, the minor semi-
axis cannot be greater than the major semi-axis, the filter circumference radius cannot 
be greater then the minor semi-axis. Other constraints arise as a result of imposing the 
definition domains associated with each gene. Others appear as a consequence of 
observing certain structural parametric relations: for example, a threshold is imposed on 
the minor-major axis relation below which the associated ellipse would not be a 
solution. This fact is based on the low eccentricity associated with the solution ellipses 
(see Table 4). 
 
Finally, constraint handling is done using a penalty function, P(x), defined according to 
Eq. (12), where φ(x) is a boolean function, Rn→{0,1}, which returns true if and only if 
the vector x satisfies all the n constraints and k is a constant much greater than zero, in 
our case k=103. The idea is to transform the problem of minimising the fitness function 
described in Eq. (11), subject to satisfying the set of constraints indicated above, into a 
new minimisation problem without constraints. For this, just incorporating the penalty 
function into the original fitness function and obtaining the new fitness function to be 
minimised, indicated in Eq. (13), is sufficient. 
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)()()( xPxFxF += 3  (13) 

 
 
3.4 Implementation of GA 
The coding of the GA was done from the MATLAB toolbox (Genetic Algorithm and 
Direct Search, v.1.0.1). Specifically, the initialisation of the population was done 
randomly on the definition domain chosen for each gene, as shown in Table 5. The 
values in this table (except for the ϕ gene) are dependent on the resolution of the 
original image and all of them are obtained from the statistical data shown in Table 4. 
Each individual in the population was represented with a real vector of fixed dimension. 
This type of representation, which arose as a direct consequence of the problem 
formulation, has the advantage of facilitating the use of standard recombination and 
mutation operators. Thus, for the first case, the well-known one-point crossover 
operator applied probabilistically in accordance with its crossover ratio was used. For 
the second case, the non-uniform mutation operator with Gaussian distribution was used 
[16]. This latter operator was applied with a probability of 1 per gene. However, the 
magnitude of the mutation applied to each gene decreases in each new generation and is 
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proportional to the standard deviation of a zero-mean Gaussian distribution. This 
decrease is controlled using two parameters called scale and shrink. The first controls 
the standard deviation of the mutation in the first generation, and the second controls the 
ratio with which the mean mutation magnitude decreases. The standard deviation 
decreases linearly so that its final value is (1–shrink) times its initial value in the first 
generation. For example, if shrink=1, the mutation magnitude in the ultimate generation 
would be zero. A generational model was chosen as the population model. This choice 
directly determines the type of survival selection method, based on age. In principle, 
this selection method was combined with an elitism scheme, in an attempt to prevent 
losing the current fittest member in the population. However, as we will see in the next 
section, the experiment results showed that the population of elite reduced the 
performance. The parent selection is done by stochastic uniform sampling. Table 6 
summarises this configuration.  
 

Gene Definition Domain 
[Xemin, Xemax] [80, 180] 
[Yemin, Yemax] [80, 180] 
[|ϕmin|,|ϕmax|] [15º, 90º] 
[amin, amax] [30, 70] 
[bmin, bmax] [30, 65] 
[rmin, rmax] [10, 40] 
[δmin, δmax] [1, 4] 

Table 5. Definition domain of each of the genes in a chromosome. 
 
 

Initialisation Random 
Representation Real vector (dim 1x7) 
Recombination One-point crossover 
Mutation Non-uniform with Gaussian 

distribution 
Parent selection Stochastic uniform 
Survival Selection Generational with elite 

Table 6. Summary of the GA configuration used in our approach. 
 
 
4. Testing  and Results 
To measure the features of our algorithm we used 110 images obtained from the initial 
image base after eliminating all the cases of eyes with cataracts. In order to do the result 
of the evaluation quantitatively reproducible, we measured the mean discrepancy 
between the points of the contour obtained with the segmentation method and a gold 
standard (GS). For each image, the GS was defined from a contour that was the result of 
averaging two contours, each of them traced by an expert. Here we shall use the 
discrepancy definition, δ, done in [4], whose formula is determined by Eq. (14), where:  

jδ is the discrepancy measurement for the image j. 
 i = 1..N, where N is the number of angularly equispaced RSs. 

j
im  is the length of the radius defining the i-th point of the ellipse proposed for the 

image j. 
j

iμ and are the mean and typical deviation, respectively, of the lengths of the radii 
defining the i-th point of the contours traced by the experts and belonging to the 
image j. 

j
iσ

ε = 0.5 is a small factor to prevent division by zero where the experts are in exact 
agreement. 
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For visualisation purposes, the ogive of discrepancy is plotted, namely, the number of 
images with discrepancy less than δ, |{j : δ j < δ}|, versus δ. Thus, the number 
(percentage) of images that fit any given level of accuracy can be read off the y-axis. 
Owing to the stochastic nature associated with the GA, each ogive of discrepancy 
represented in the different graphs depicted in the next subsection, corresponds in fact to 
the result of averaging five ogives of discrepancy, obtained as a result of executing the 
GA five times with the same parameter configuration. 
 
 
4.1 Experiment Results 
Different experiment results are shown in Figure 7 which aim to appropriately 
characterise the values associated with the intrinsic parameters of the GA proposed: 
population size (P), number of generations (G), crossover ratio (C), shrink value (S), 
associated to the mutation operator, and elite population size (E).  
 
Figure 7.a shows the effect of the population size when the rest of the GA parameters 
remain constant: (E=2, C=0.5, S=0.5), and finalisation condition (Cf), obtained on 
reaching 200 generations, i.e., Cf=200G. It is observed that as P increases, the global 
performance of the discrepancy curve improves. Since a small population size may 
require more generations to produce a performance comparable to that of a larger 
population, an experiment was done where the product PxG was constant. The results 
are shown in Figure 7.b. It can be observed that, although the ogive of discrepancy for 
small populations improves when G increases (compare with Figure 7.a), there is a 
saturation value, P=400, above which significant improvement does not occur. 
 
The variation in the size of the elite population, considering the rest of the fixed GA 
parameters (P=100, C=0.5, S=0.5), showed an interesting result (Figure 7.c): although 
no significant changes occur when the size of E∈{2, 4, 8} varies, the results improve 
when no elite population is used in the evolutionary process (E=0). Observe that, in 
order to prevent these results from being biased because of a large population, a value of 
P=100 was used which, as in the previous experiment (Figure 7.b), exhibited a curve of 
intermediate performance. Similarly, in order to reduce the computational load 
associated with a fixed size of generations, the finalisation condition of the GA was 
made more flexible: reaching 200G maximum or 50G consecutively in which there is 
no improvement in fitness of the best individual, Cf=200G50. 
 
Analysis of the effect of crossover and mutation operators was done in three 
experiments (see Figure 7.d-f). In each experiment, the S value remained fixed and only 
the C value varied. The rest of the parameters always remained constant (P=100, E=0, 
Cf=200G50). The experiments revealed the following: for a small crossover value 
(C=0.2) the results improve as the S value increases and the best result was obtained for 
S=0.8. Conversely, a high crossover value (C=0.8), irrespective of the S value, showed 
some similar discrepancy curves but had worse performance than that obtained for 
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C=0.2. Consequently, the optimum combination would be a high S value together with a 
low C value. 
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Figure 7. Accumulated mean discrepancy results for different GA configurations (population size=α1 

(α1P), elite=α2 (α2E), crossover ratio=α3 (α3C), shrink=α4 (α4S), number of generations(G)=α5 and stop 
condition if there is no improvement in α6 consecutive generations (α5Gα6)): (a) for different population 

sizes, (b) for PxG=2⋅104, (c) for different elite sizes, (d), (e) and (f) for different crossover values 
(C∈{0.2, 0.5, 0.8}) with S=0.2, 0.5 and 0.8, respectively, (g) for different generation sizes in GA final 
configuration (400P, 0E,0.2C,0.8S) and (h) for GA final configuration (400P, 0E,0.2C,0.8S, 50G50). 

 
 
4.2 Evaluation of Results  
In the light of the results obtained in the experiments, the following final parameter 
configuration was chosen for the GA. A population size, P=400, because higher values 

 18



did not imply significant improvements in the accumulated discrepancy curve and, 
moreover, it would have meant increasing the computational cost unnecessarily. Owing 
to the good performance of the discrepancy curve obtained for E=0, there was no elite 
population in the evolutionary process. The crossover fraction and shrink values, C=0.2 
and S=0.8, were chosen in accordance with the conclusion obtained in the preceding 
section. Note that a value of C=0.2 implies that, in each generation, 20% of the 
offspring is obtained with crossover, the other 80%, with mutation. However, owing to 
the type of mutation operator used, it should be pointed out that the magnitude of the 
mutation decreases with the number of generations. Specifically, a value of S=0.8 
indicates that the standard deviation value of the Gaussian distribution decreases 
linearly until 0.2 times the initial value. Therefore, the high shrink value only implies a 
high mutation value in the initial generations, guaranteeing the extensive search in all 
the genotypic space during the initial period. In subsequent generations, the gradual 
decrease in the magnitude of the mutation will guarantee convergence and the fact that 
this magnitude never reaches zero in final generations will guarantee the diversity of the 
population. Moreover, the crossover value used is only apparently low, bear in mind 
that 20% of a population of 400 individuals means obtaining 80 offspring by crossover 
in each generation, i.e., improved population due to genetic mixing is also guaranteed. 
 
To study the dependency of the computational cost regarding the number of 
generations, a final experiment was done where the final configuration chosen remained 
fixed (400P, 0E, 0.2C, 0.8S), and G was varied. The results (see Figure 7.g) show, 
except for G=10, an almost total overlapping of the curves for the four remaining G 
values. Obviously, if we are interested in minimising the computational cost, a value of 
G=20 would be the most appropriate without losing virtually any performance. Finally, 
Figure 7.h shows the discrepancy obtained for the final GA configuration chosen. 
 
4.3 Comparison with other Algorithms 
In the bibliography on automatic identification of ONH, the most usual way of 
evaluating results have been subjective, where the expert determines whether the 
contour obtained is valid for subsequent treatment. However, some quantitative 
evaluations have also been done. From all of these, the most objective is the direct 
comparison between the contour proposed and a gold standard, generated from 
averaging different contours traced by different experts. In this comparison the 
variability of the experts can be taken into account [4] or not [17]. This is an important 
issue because there is an inter-observer variability among different experts tracing the 
contour of a papilla and also intra-observer variability in each expert when he traces the 
contour of the same papilla at different instants of time [18, 19]. In another quantitative 
evaluation method [5], the comparison is made using characteristic parameters of the 
ellipse: vertical diameter, area, etc. Finally, other works have evaluated the contour 
proposed using indirect measurements, like [20], where the diagnosis of glaucoma 
obtained with the automatic contour is compared to that obtained with the contour 
traced by an expert.  
 
In the bibliography consulted by the authors and discarding the evaluations done 
subjectively and not quantitatively, we believe that the Lowell et al. method [4] is the 
one that has obtained the best results to date. Therefore, we shall use this approach as a 
reference to compare our results. Thus, Figure 8.a shows the discrepancy curves 
obtained from applying the two methods to our image base and Figure 8.b shows the 
comparison of the two methods on the image base used in [4]. Given that the Lowell et 
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al. (LOW) method is highly dependent on the initial radius values, r, and aspect ratio, a, 
applied in its temporal lock phase, we use different values for these parameters, r∈[40, 
50] and a∈[1.0, 1.1] when applying the LOW’s method to our image base. The range of 
variation of these parameters was taken bearing in mind the papilla sizes of our image 
base (see Table 4). From the different discrepancy curves obtained for each value, in 
Figure 8.a we only show the best discrepancy curve obtained for r=47 and a=1.03. We 
believe that worse discrepancy results obtained with the LOW’s method in our image 
base in comparison with his image base is because of the strong temporal lock phase 
dependency of his method with regard to the parameters r and a. Thus, the comments 
already made in this respect in [4] are confirmed. On the other hand, it can be observed 
that both discrepancy curves obtained with our method are very similar in the two 
image bases. This invariability provides evidence of our method’s generalization 
capability, i.e., suggesting similar results for different image bases. 
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Figure 8. Accumulated discrepancy results for our GA versus the Lowell et al. method: (a) in our image 
base, (b) in Lowell’s image base. 
 
 
Direct comparison of the discrepancy curve obtained by both methods in the LOW’s 
image base (see Figure 8.b) reveals two very different areas with opposite behaviours 
whose boundary is marked by the discrepancy value δ=1.6. Below this value, LOW’s 
results are better than our proposal, and above this value, precisely the opposite occurs. 
We think that the explanation for the results obtained in the first discrepancy stretch is 
that while our method approaches the solution using a non deformable ellipse, the local 
deformation phase in LOW’s method makes it possible to do a slight deformation of the 
ellipse obtained in the phase immediately before (global fit) and, thus, it better 
approaches the experts’ real trace. However, the change in trend on the second stretch of 
the curves reveals the strong robustness of our method. In fact, while LOW’s method 
only obtains 82% of images below a discrepancy δ=5, our method obtains 99%. This 
highlights that in LOW’s method a bad approach done by the global fit cannot be offset 
by the local fit. Instead, from the two discrepancy curves obtained from our database 
(see Figure 8.a), better behaviour of our method is observed in all the discrepancy 
range. That might reveal that the generalization capability of the LOW's method is 
lower than our method: 96% of images with δ<5, compared with 79% in LOW’s 
method. The robustness of our method is explained by the GA property of avoiding 
those solutions associated with local minima and because this property is reinforced by 
the injection domain knowledge in the constraint and fitness function definition which 
guides the GA search towards the real solution. 
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Finally, Figure 9 shows different examples of papillary contours obtained with our 
method. Although qualitatively Lowell’s group defined four categories: excellent, good, 
fair and poor, containing images with discrepancy up to one, two, five, or more, 
respectively, it should be borne in mind that the discrepancy value is also a function of 
inter-observer variability, since it affects typical deviation in Eq. (4). In other words, the 
greater the experts’ variability when tracing the contour of a papilla, the smoother the 
discrepancy error obtained. This fact is observed when the contours of the papillae in 
positions (3,1) and (1,2) in Figure 9 are compared. In fact, contour C31, in spite of 
having a greater discrepancy than the contour C12 (δ31=1.33, δ12=0.65) subjectively 
presents a quality with regard to its gold standard, GS31, comparable to the quality that 
C12 has with GS12. The explanation lies in the fact that the mean standard deviation of 
C31 (σ31=2.07) is greater than that of C12 (σ12=0.92). Obviously, this type of 
circumstance only is significant in small discrepancies. Our experts estimated it in δ∈[0, 
3]. Otherwise it is impossible to obtain contours with high discrepancies that fit the GS 
well as a consequence of high inter-observer variability. The reason for this is that the 
experts’ variability is always limited. 
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Figure 9. Several examples of segmentation obtained with our segmentation method: algorithm (solid 

line), gold standard (dotted line). 
 
 
5. Conclusions 
Although the enormous usefulness of active contours must be stressed for detecting 
contours in medical images and their frequent use in systems for locating the ONH, in 
this work they have not been used, precisely because they are highly dependent on the 
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initialisation stage. The great variability in the images used makes an approximate 
initialisation of the active contour to the papillary contour virtually impossible in all 
instances. Thus if we wish to construct a robust system, it is necessary to stress more the 
precise location stage of the contour and use domain knowledge to guide the process. In 
our case, local knowledge was initially used to obtain a first approach to the papillary 
contour using the set of hypothesis points: set of pixels with geometric characteristics 
and intensity levels similar to those of the papillary contour points. Then, global 
knowledge was injected into the GA. Thus, it was not only possible to construct a 
fitness function that appropriately guided the evolutionary process but also to minimise 
obtaining suboptimum solutions (local minima) associated with the presence of 
different types of distractors. 
 
When our method is applied to a different image base from the one used in our study, 
similar discrepancy curve results are obtained, providing evidence of its generalization 
capability. In addition, the robustness of the method proposed can be seen in the high 
percentage of images obtained with a discrepancy δ<5 (96% and 99% in our and the 
Lowell et al. image base, respectively). With this result it is possible to confirm the 
validity of the two initial hypotheses on which the construction of the fitness function is 
based: the geometric shape of the papilla can be approached with a non deformable 
ellipse and every ellipse that is not a solution contains few hypothesis points in an offset 
of its perimeter. Confirmation of the first hypothesis may be closely related to the fact 
that intra- and inter-observer variability does not explain the local fit, which follows the 
global fit, typical of active contour-based approaches.  
 
Another important aspect of the method is that it directly provides the parameters 
characterising the shape of the papilla: lengths of its major and minor axes, its centre of 
location and its orientation with regard to the horizontal position. These parameters or 
new ones obtained as a result of combining them, together with other morphological 
magnitudes of the papilla, are frequently used by the expert in the diagnostic process of 
eye pathologies. 
 
 

Number of 
Generations 10 20 30 40 50 

Average time 
per image (s) 16.94 33.46 49.37 65.30 80.88 

Table 7. Average time used per image to obtain a solution according to the number of generations (see 
Figure 7.g). The rest of the GA parameters remained fixed (400P, 0E, 0.2C, 0.8S). 

 
 
One of the disadvantages of the method proposed is related to the computational cost of 
using GAs. Bearing in mind that all the automatic detection system of the papillary 
contour was programmed in MATLAB and this was executed in an Intel Pentium M 
processor, 1.80 GHz, the average time per image for obtaining the papillary contour, for 
the final configuration of GA parameters and, according to the number of generations, is 
as shown in Table 7. Nevertheless, it is necessary to highlight that the time obtained 
thus is additionally penalised due to the fact that MATLAB is an interpreted language. 
Both the use of the compilable language and the parallelisation of the GA are obvious 
solutions to reduce this cost. This will be the aim of future work.  
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