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A B S T R A C T

The destabilization, fragmentation, and atomization of thin fluid sheets governs processes such as the
aerosolization of sneeze ejecta, agrochemical spraying, and fuel injection in liquid rocket engines. Although
the evolution, stability, and breakup of fluid sheets composed of a Newtonian liquid has been extensively
studied, the morphology and dynamics of viscoelastic fluid sheets remains poorly understood. This manuscript
provides a theoretical and numerical framework that integrates the effects of fluid elasticity, surface tension,
inertia, and viscosity to predict the morphology, velocity, and stress within stable fluid sheets composed of
viscoelastic fluids as a function of the dimensionless Weber, Reynolds, and Weissenberg numbers. We find a
non-monotonic behavior in the sheet’s size, velocity, and stress distribution as a function of the ratio between
the Weissenberg and the Weber numbers. In particular, a minimum in the sheet’s size and a maximum in the
stress occur when such a ratio is of the order of unity. We interpret these results as the consequence of the
competing effects of the growth-favoring inertia and the restoring elastic forces acting within the sheet.
. Introduction

The formation of thin fluid sheets and their fragmentation into
prays of droplets has many industrial and practical applications, such
s fuel injection in liquid rocket engines, spin coating of substrates, and
grochemical spraying of crops [1–6]. Some applications, such as spin
oating, require the existence of smooth, stable sheets that homoge-
eously coat the substrate; for other applications, such as crop spraying,
nstable sheets that atomize into aerosols are necessary [5,6,4].

Thin fluid sheets are also present in quotidian events, such as when
iquids are poured out of lipped pitchers [4] or during activities such as
peaking or sneezing, where inertia flattens the expelled mucosalivary
olume into a sheet-like structure [7–10]. This is accompanied by
he appearance of holes and thin filaments within the sheet, which
ubsequently destabilize and break up into a spray of droplets [7–10].

An understanding of the dynamics of sheet formation and breakup
s thus necessary to systematically control regimes of sheet stability, set
esired film thicknesses for stable sheets, and tune the range of drop
ize distributions in atomized sprays [11,4,5,12–16]. Although the for-
ation, morphology, and stability of Newtonian sheets is well studied,

he dynamics of viscoelastic fluid sheets, such as polymeric coatings or
aliva, is not yet fully understood, since the complex interplay between
nertial, capillary, viscous, and elastic stresses can introduce deviations
rom the classical Newtonian behavior of thin fluid sheets [17–20,10].

The present work focuses on providing a physical description of
table, quasi-two dimensional sheets formed by a pair of oppositely
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facing impinging jets. Upon collision, the momentum transferred by the
two jets results in the formation of a radially expanding sheet in the
plane perpendicular to the plane of the jets [4,11,12]. The sheets are
externally bounded by a thicker cylindrical rim, which can destabilize
into ligaments and droplets under certain conditions [4,11,12].

The shape and size of Newtonian liquid sheets formed through the
collision of laminar jets was first documented in the pioneering work
of Savart in 1833 [21,22]. This system was further characterized by
Magnus in 1855 [23] and subsequently in a series of works by Taylor,
who measured the thickness distribution along the sheets, derived the
general equations for the sheet shape, and compared the experimental
results with theoretically-calculated profiles [13–16]. The thickness
distribution was later determined theoretically by Hasson and Peck,
assuming a plug velocity profile within the liquid jets and no dissipation
of energy upon impact [12].

The sheet shape, rim position, and liquid velocity were analytically
and experimentally quantified by other authors as a function of the
incident jet velocity, radius, and orientation [11,4,6,24]. The size and
morphology of Newtonian liquid sheets is determined by a competition
between inertial forces, which drive sheet expansion and thinning,
and capillary forces, which limit the sheet’s surface area and radial
expansion. Thus, the stationary length and width of stable Newtonian
sheets scale with the Weber number [11,16,5,25].

Newtonian sheets become unstable when inertial forces exceed a
critical value [11]. The ratio and magnitude of capillary, inertial, and
vailable online 18 July 2022
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viscous forces, quantified by the dimensionless Weber and Reynolds
numbers, determine the morphological and dynamic characteristics of
the sheet and rim destabilization [5,4]. A linear stability analysis was
carried out by Bremond and Villermaux, who revealed that capillary
Rayleigh–Plateau instabilities drive fluctuations in the rim that eventu-
ally grow and destabilize into ligaments [11]. Other breakup regimes
have been mapped by several authors [5,4,3,26,27], revealing a rich set
of instabilities such as a periodic ‘‘fishbone’’-type rim fragmentation,
the appearance of expanding holes within the films, and the forma-
tion of aerodynamic or hydrodynamic waves that result in the full
atomization of the liquid sheets. High fidelity numerical simulations of
Newtonian jets over a range of stability conditions, ranging from stable
films to atomizing sheets, have also been carried out and the resulting
morphologies compared to the experimentally observed structures [6].

Although the morphology and dynamics of stable and unstable
Newtonian liquid sheets formed by a pair of impinging jets has been
extensively studied through a combination of experimental, theoretical,
and numerical approaches, only a handful of works have investigated
viscoelastic sheet formation [18,20,28,19,29,17,30]. In particular, nu-
merical works on sheets formed by the discharge of liquid from thin
slits [17,18] and experiments on worm-like micelles [19] and dissolved
polymers [28,29] revealed that a higher elastic modulus results in the
formation of smaller sheets [17,18]. Hence, it is expected that elasticity
acts alongside capillarity to resist the radial spread of the film and
deter sheet breakup by inducing stabilizing tensile stresses. However
a quantitative study of the thickness, velocity, and stress distributions
within liquid sheets formed by colliding impinging jets as a function of
the fluid’s elasticity is still lacking.

The present work aims at advancing our understanding of stable
liquid sheets composed of viscoelastic liquids formed by the collision
of two impinging jets. We revisit the general set of governing equations
previously derived by Entov et al. for sheets formed by the discharge of
liquids from thin slits [17], by adapting them to the case of impinging
jets. Hence, we develop a set of governing equations and boundary
conditions to predict the thickness, velocity, and stress distributions
within liquid sheets as a function of the fluid’s elasticity, viscosity,
inertia, and surface tension, as quantified via the dimensionless Weber
(𝑊 𝑒), Reynolds (𝑅𝑒), and Weissenberg (𝑊 𝑖) numbers. We conduct a
systematic parametric study of the three dimensionless numbers and
elucidate their role in determining the shape, size, velocity, and stress
distribution within the films. To the best of our knowledge such a study
has not yet been conducted.

The Newtonian asymptotic limit of the sheet’s size is controlled by
the Weber number, which quantifies the ratio of inertial to capillary
stresses, in line with previous works [26]. For viscoelastic sheets, the
Weissenberg number determines to what extent elastic forces con-
tribute to the buildup of extensional stresses throughout the film. We
find that the ratio between the Weissenberg and the Weber numbers
(𝑊 𝑖∕𝑊 𝑒), hereafter referred to as the modified Weissenberg number
(𝑊 𝑖∗), reflects the ratio of the solution’s elastic relaxation time divided
by the convective process timescale. A non-monotonicity in sheet size
and stress is revealed for 𝑊 𝑖∗ on the order of unity, elucidating that the
largest deviations from Newtonian behavior occur when the relaxation
time of the solution equals the time required for a fluid element to
traverse the extent of the film. The magnitude of this non-monotonicity
is controlled by the Reynolds number, which expresses the relative
importance of inertial to viscous effects.

Overall, our work discloses the intricate interplay of physical forces
that leads to previously unexplored morphologies and stress distribu-
tions within viscoelastic liquid films, expanding our understanding of
how the presence of viscoelastic materials influences sheet formation,
expansion, and thinning.
2

Fig. 1. Schematic of the sheet geometry. (a) Front view. Upon impingement of two
identical liquid jets, a flat fluid sheet is formed along the 𝑥–𝑦 plane. The sheet is divided
into two sections: a quasi-two dimensional film (white) and a cylindrical rim (gray)
that bounds the edge of the film. The gray ellipse marks the jet impingement region at
𝑟 = 𝑅𝐼𝑅 and the inner boundary of the film, which is described using a cylindrical
coordinate system (𝑟 − 𝜃). The rim position is characterized using a parameterized
coordinate system (𝜉 − 𝜓), where the normal 𝒏̂ and tangent 𝝉̂ vectors are depicted
in red. (b) Side view. Liquid sheets are formed by two identical liquid jets of radius 𝑅𝑗
and average velocity 𝑈𝑗 oriented at an angle 𝛼 with the 𝑦-axis. (c) Magnification of a
section of the rim. The cylindrical rim runs along the 𝜉 axis and has a cross-sectional
area 𝑓 . The relationship between the relevant unit normal vectors is shown, where 𝜓
is the angle formed between 𝝉̂ and 𝒆̂𝑟.

2. Physical modeling of viscoelastic fluid sheets

We consider a system where a liquid sheet is formed through the
collision of two identical liquid jets of radius 𝑅𝑗 and average velocity
𝑈𝑗 oriented along the 𝑦 − 𝑧 plane, as depicted in Fig. 1b. The jets are
oriented at an angle 2𝛼 = 𝜋∕2 with respect to each other and the system
is symmetric with respect to the vertical 𝑦-axis. Hence, 𝛼 = 𝜋∕4 is the
angle formed by each jet and the vertical 𝑦-axis. Upon collision, the
momentum transferred by the two jets results in the formation of a
thin fluid sheet oriented along the 𝑥–𝑦 plane (Fig. 1a). The fluid sheet
is divided into two sections: a thin, quasi-two dimensional film formed
upon jet impingement (denoted as ‘film’ in Fig. 1a), and a thicker
cylindrical rim that bounds the perimeter of the film (denoted as ‘rim’
in Fig. 1a).

This Section summarizes the dimensionless governing equations for
stable sheets composed of viscoelastic liquids, namely the conservation
of mass and momentum. Stresses and deformations are described by
an upper-convected Maxwell constitutive model [17,18]. Simplifying
assumptions on the nature of the flow and stress fields are used to cast
the system of equations as two sets of ordinary differential equations
(ODEs) for the film and for the rim, respectively, in order to facilitate
the numerical solution. The appropriate boundary conditions for the
geometry at hand are also derived here. For the interested reader, the
derivations of the equations, originally proposed in the works of Entov
et al. [17] and Yarin [18] for a different geometry, can also be found,
revisited and adapted to the geometry at hand, in the Supplemental
Material.
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2.1. Film equations

A cylindrical coordinate system (𝑟, 𝜃, 𝑧) is used to model the film
eometry, as shown in Fig. 1, with the 𝑧-axis oriented along the
hickness of the sheet. Upon impingement, the jets form an ellipse in
he 𝑟− 𝜃 plane, whose position is given by 𝑟 = 𝑅𝐼𝑅 (𝜃). In this elliptical

impingement region, the streamlines oriented along the jet direction
are deflected towards the plane of the sheet. Of special importance
is the separation streamline, which forms a stagnation point in the
elliptical impingement region and divides the streamlines deflected at
each angular position 𝜃. The origin 𝑂 of the coordinate system is placed
at this stagnation point [11,12].

The conservation of mass and momentum determine the dimen-
sionless thickness 2ℎ, velocity 𝑼 , and stress 𝝈 within the liquid film.
The mass continuity and Cauchy momentum equations are written in
dimensionless form as

0 = 𝛁 ⋅ 𝑼 , (1)

𝑼 ⋅ 𝛁𝑼 = 𝛁 ⋅ 𝝈. (2)

ll equations in this manuscript are rendered dimensionless by scaling
he lengths and distances with the jet radius 𝑅𝑗 , the velocities by the
verage jet velocity 𝑈𝑗 , and the stresses by the inertial stress scale 𝜌𝑈2

𝑗 .
The total stress 𝝈 in the film is written as the sum of an isotropic

ressure (𝑃𝜹), with 𝜹 the identity matrix, and a deviatoric stress, which
s expressed as the sum of a polymeric (𝑻 𝑃 ) and a Newtonian solvent

(2𝑫∕𝑅𝑒𝑠) contribution, as follows:

𝝈 = −𝑃𝜹 + 𝑻 𝑃 + 2
𝑅𝑒𝑠

𝑫 ≈ −𝑃𝜹 + 𝑻 𝑃 , (3)

where 𝑫 = 1
2
(

∇𝑼 + ∇𝑼𝑇 ) . (4)

𝑅𝑒𝑠 = 𝜌𝑅𝑗𝑈𝑗∕𝜂𝑠 is the Reynolds number of the Newtonian solvent, 𝜂𝑠 is
the solvent viscosity, 𝜌 is the fluid density, and 𝑫 is the rate-of-strain
tensor. The quasi-two dimensional sheets in this manuscript are formed
by the inertia supplied by the pair of impinging jets, such that 𝑅𝑒𝑠 ≫ 1.
Additionally, the solvent contribution to the extra stress is neglected,
effectively attributing any deviatoric stress buildup in the viscoelastic
sheets to the presence of the polymer. This assumption is justified by
the fact that sheets formed by impinging jets composed of Newtonian
fluids are always considered stress-free.

The upper-convected Maxwell (UCM) model relates the polymeric
stress contribution to the velocity gradients in the fluid,

𝑻 𝑃 +𝑊 𝑖 𝑻 𝑃 (1) = 2
𝑅𝑒

𝑫, (5)

where 𝑻 𝑃 (1) = 𝐷𝑻 𝑃
𝐷𝑡

− (𝛁𝑼 )𝑇 ⋅ 𝑻 𝑃 − 𝑻 𝑃 ⋅ (𝛁𝑼 ) , (6)

where 𝑻 𝑃 (1) is the upper-convected derivative of the polymeric stress.
In Eqs. (5)–(6), we have introduced the following dimensionless

parameters:

𝑅𝑒 =
𝜌𝑈𝑗𝑅𝑗
𝜂𝑃

(Reynolds number), (7)

𝑊 𝑖 =
𝜆𝑈𝑗
𝑅𝑗

(Weissenberg number), (8)

where 𝜂𝑃 corresponds to the polymer contribution to the zero-shear
viscosity. The Reynolds number has its usual meaning of character-
izing the ratio between inertial and viscous stresses. While inertia is
the dominant force driving the flow and, hence, the sheet’s growth,
viscosity acts as a dissipative growth-mitigating mechanism. The Weis-
senberg number is the ratio between the polymer’s longest relax-
ation/retardation time 𝜆 and a characteristic time of the process, re-
lated to inertia, 𝑅𝑗∕𝑈𝑗 . The exact interpretation of 𝑊 𝑖 will become
clearer in the discussion below, as we will show how it determines
whether elastic effects play a dominant role in shaping the stress
distribution and morphology of the sheets.
3

The present analysis is developed using the UCM model as the
constitutive model, in view of its simplicity, its reduced number of pa-
rameters, and its ability to capture the overall behavior of viscoelastic
fluids [31]. The mathematical framework presented in this manuscript
can easily be adapted to other more elaborate nonlinear constitutive
models that may be more suitable to capture conditions where shear
thinning behavior or high strain rates occur.

Eqs. (1), (2) and (5) are coupled partial differential equations and
can be solved to yield the velocity and stress distribution throughout
the film. Following the work of Entov et al. [17] and Yarin [18], a
series of simplifying assumptions are made in order to cast the system
of equations as a set of nonlinear ODEs. This remainder of this Section
lists the main assumptions and the final form of the simplified film
equations. A full derivation is made accessible in the Supplemental
Material.

Due to the thinness of the sheet, the governing equations are simpli-
fied following the auspices of the lubrication theory [32,33]. Further-
more, as with Newtonian flows, it is assumed that the flow inside the
film is vorticity-free. These assumptions imply that, to leading order,
the film adopts a unidirectional velocity profile given by

𝑼 ≈ 𝑈𝑟 (𝑟, 𝜃) 𝒆̂𝑟, (9)

where the radial flow has a thickness-averaged, plug-type profile. Using
this definition for 𝑼 , the film continuity equation (Eq. (1)) simplifies
to the algebraic expression

𝐶1 (𝜃) = 𝑟𝑈𝑟ℎ, (10)

where 𝐶1 (𝜃) is a function of 𝜃 only, and 𝑈𝑟 and ℎ are evaluated at 𝑟.
n expression for 𝐶1 (𝜃) in terms of the 𝜃 and the impingement angle 𝛼

is derived later in the text (see Eq. (24)).
Due to the extensional nature of the flow field within the expanding

liquid film, extensional stresses dominate over shear stresses. Moreover,
a stress-free boundary condition is applied at the liquid–air interface,
𝝈 (𝑟, 𝜃, 𝑧 = ±ℎ) = 0, where 𝝈 is the total stress tensor. Hence,

𝝈 ≈ 𝜎𝑟𝑟 (𝑟, 𝜃) 𝒆̂𝑟𝒆̂𝑟 + 𝜎𝜃𝜃 (𝑟, 𝜃) 𝒆̂𝜃 𝒆̂𝜃 + 𝜎𝑧𝑧 (𝑟, 𝜃) 𝒆̂𝑧𝒆̂𝑧, (11)

here 𝜎𝑟𝑟, 𝜎𝜃𝜃 , and 𝜎𝑧𝑧 are the thickness-averaged, extensional compo-
ents of the stress tensor.

Following the aforementioned assumptions, the 𝑟-component of the
auchy momentum equation (Eq. (2)) reduces to

𝑟𝑟ℎ
𝜕𝑈𝑟
𝜕𝑟

=
𝜕
(

𝑟ℎ𝜎𝑟𝑟
)

𝜕𝑟
− 𝜎𝜃𝜃ℎ. (12)

Due to the stress-free boundary condition, to leading order the
𝑧-component reduces to the expression

𝜎𝑧𝑧 = 0. (13)

Using this result and Eq. (3), an expression for the isotropic pressure
can be obtained, where

𝑃 = 𝑇 𝑃𝑧𝑧. (14)

Thus, the relevant components of the total stress tensor can be entirely
written in terms of the deviatoric stresses, as

𝜎𝑟𝑟 = 𝑇 𝑃𝑟𝑟 − 𝑇
𝑃
𝑧𝑧, (15)

𝜎𝜃𝜃 = 𝑇 𝑃𝜃𝜃 − 𝑇
𝑃
𝑧𝑧, (16)

where all stresses are thickness-averaged. Due to the number of equa-
tions and unknowns, the 𝜃-component of the Cauchy momentum equa-
tion is not needed.

The extensional components of the UCM model evaluate to the
following expressions:

𝜕𝑇 𝑃𝑟𝑟
𝜕𝑟

= 1
𝑈𝑟

(

2
𝑅𝑒 𝑊 𝑖

𝑑𝑈𝑟
𝑑𝑟

− 1
𝑊 𝑖

𝑇 𝑃𝑟𝑟 + 2
𝑑𝑈𝑟
𝑑𝑟

𝑇 𝑃𝑟𝑟

)

, (17)

𝜕𝑇 𝑃𝜃𝜃 = 1
(

2 𝑈𝑟 − 1 𝑇 𝑃 + 2𝑈𝑟𝑇 𝑃
)

, (18)

𝜕𝑟 𝑈𝑟 𝑅𝑒 𝑊 𝑖 𝑟 𝑊 𝑖 𝜃𝜃 𝑟 𝜃𝜃
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𝜕𝑇 𝑃𝑧𝑧
𝜕𝑟

= 1
𝑈𝑟

[

−2
(

𝑇 𝑃𝑧𝑧 +
1

𝑅𝑒 𝑊 𝑖

)

(

𝑑𝑈𝑟
𝑑𝑟

+
𝑈𝑟
𝑟

)

− 1
𝑊 𝑖

𝑇 𝑃𝑧𝑧

]

. (19)

The continuity equation has been used to make the substitution 𝜕𝑈𝑧
𝜕𝑧 =

− 𝜕𝑈𝑟
𝜕𝑟 − 𝑈𝑟

𝑟 . Finally, the 𝑟− 𝜃 component of the UCM model can be used
to show that 𝑈𝑟 is independent of 𝜃, such that 𝑈𝑟 = 𝑈𝑟 (𝑟).

Substituting Eq. (10) and Eqs. (17)–(19) into Eq. (12), the 𝑟-
component of the momentum equation can be expressed entirely in
terms of the polymer stresses and film velocity, as

𝑑𝑈𝑟
𝑑𝑟

=

[

𝑇 𝑃𝑧𝑧 − 𝑇
𝑃
𝑟𝑟

𝑊 𝑖
−

2𝑈𝑟
𝑅𝑒 𝑊 𝑖 𝑟

+
2𝑈𝑟𝑇 𝑃𝑧𝑧
𝑟

+
𝑈𝑟

(

𝑇 𝑃𝑧𝑧 − 𝑇
𝑃
𝜃𝜃
)

𝑟

]

[

𝑈2
𝑟 − 4

𝑅𝑒 𝑊 𝑖
− 𝑇 𝑃𝑟𝑟 − 3𝑇 𝑃𝑧𝑧

]−1
, (20)

Eqs. (17)–(20) represent a system of nonlinear first-order ODEs in
erms of the radial coordinate, 𝑟. Thus, four boundary conditions are
eeded to solve for the film velocity 𝑈𝑟 and the film stresses 𝑇 𝑃𝑟𝑟 , 𝑇

𝑃
𝜃𝜃 ,

nd 𝑇 𝑃𝑧𝑧. Following the work of Hasson and Peck [12] and Bremond and
illermaux [11], the boundary conditions are specified at the boundary
f the elliptical impingement region, located at 𝑟 = 𝑅𝐼𝑅 (𝜃).

The dimensionless function 𝑅𝐼𝑅 (𝜃) prescribes the location where
he fluid film is formed and begins to radially expand. Following the
erivation of Ref. [12], we assume that polymer stresses developing
ithin the liquid jets prior to impingement are negligible and the jets
ave a plug flow profile. Thus, 𝑅𝐼𝑅 can be written as

𝐼𝑅 = sin 𝛼
1 − cos 𝜃 cos 𝛼

. (21)

The full derivation can be accessed in the Supplemental Material. In
situations where polymer stresses within the jet (before impingement)
become relevant, a shift in the position of the separation streamline
may occur. A correction to account for the shift of the origin location
could then be introduced in the expression for 𝑅𝐼𝑅. We do not expect
such corrections to have an impact on the physics of the problem, hence
we limit the analysis to cases where such effects are negligible.

Mass and energy balances for a control volume extending from
the jets up to the impingement boundary 𝑅𝐼𝑅 are set up, assuming
no energy dissipation. Details concerning the definition of the control
volume and the derivation of the boundary conditions can be found in
the Supplemental Material. The resulting expressions provide boundary
conditions for 𝑈𝑟 and ℎ, where:

𝑈𝑟
|

|

|𝑟=𝑅𝐼𝑅
= 1, (22)

ℎ||
|𝑟=𝑅𝐼𝑅

=
𝑅𝐼𝑅
2

sin 𝛼. (23)

qs. (22) and (23) can be used to obtain the value of the unknown
unction 𝐶1 (𝜃), since the quantity 𝑟𝑈𝑟ℎ is conserved at a constant angle
, as per Eq. (10), which subsequently evaluates to:

1 (𝜃) = 𝑟𝑈𝑟ℎ = 𝑟𝑈𝑟ℎ
|

|

|𝑟=𝑅𝐼𝑅
=
𝑅2
𝐼𝑅
2

sin 𝛼. (24)

Since the jets are freely suspended in air and have a plug flow
profile, we assume that the fluid is stress-free up to the point of
impingement, such that

𝑇 𝑃𝑟𝑟
|

|

|𝑟=𝑅𝐼𝑅
= 𝑇 𝑃𝜃𝜃

|

|

|𝑟=𝑅𝐼𝑅
= 𝑇 𝑃𝑧𝑧

|

|

|𝑟=𝑅𝐼𝑅
= 0. (25)

The assumption of a zero-stress boundary condition is rigorously valid
for freely suspended jets at a (dimensional) distance larger than 𝑈𝑗𝜆
from each other; for smaller distances, corrections accounting for resid-
ual stresses may be incorporated. However, we do not expect such
corrections to significantly modify the observed trends, hence, in view
of its simplicity, we constrain our study to the case of zero-stress
boundary conditions.
4

2.2. Rim equations

The governing equations for the rim are most conveniently ex-
pressed using a parameterized (local) coordinate system, in which the
𝜉−𝜓 coordinate axes are defined along the rim, as shown in Fig. 1 [11,
18,17]. The following geometric relations are established between
the film’s cylindrical coordinate system and the rim’s parameterized
coordinate system, where
𝑑𝜉
𝑑𝜃

= − 𝑅
sin𝜓

, (26)

𝑑𝑟
𝑑𝜃

= − 𝑅
tan𝜓

. (27)

In this local coordinate system, the 𝜉-coordinate is the arc length along
the rim and the 𝜓-coordinate is defined as the angle between the 𝜉- and
-coordinates. Hence, 𝜓 quantifies the local deviation of the rim from
circle with radius 𝑅 centered at the stagnation point 𝑂, which would

orrespond to a value of 𝜓 = 𝜋∕2. It is worthwhile to note that while
he film is a 2D system in which 𝑟 and 𝜃 can independently vary, the
im is a 1D system in which 𝑅 (the radial position of the rim) and 𝜃
re mutually constrained through Eq. (27). In addition, the normal and
angent vectors at the rim can be defined as:

̂ = − sin𝜓 𝒆̂𝑟 − cos𝜓 𝒆̂𝜃 , (28)

𝝉̂ = cos𝜓 𝒆̂𝑟 − sin𝜓 𝒆̂𝜃 , (29)

here the 𝜉-coordinate is tangent to 𝝉̂.
Similarly to the film, mass and momentum balances along the rim

re used to determine the rim’s radial position 𝑅 (𝜃), cross-sectional
rea 𝑓 , velocity 𝑼 𝜉 , and orientation 𝜓 . The rim continuity and mo-

mentum equations are obtained by balancing the conserved quantity’s
influx from the sheet with its flow through a differential section of the
rim.

Following Refs. [18,17,11], we assume that the rim has a circular
cross-section and a plug flow profile which runs tangent to the 𝜉-axis,
where

𝑼 𝜉 (𝜉) = 𝑈𝜉 (𝜉) 𝝉̂ . (30)

Under these assumptions, the rim continuity equation becomes:

𝑑
(

𝑈𝜉𝑓
)

𝑑𝜃
= −2𝐶1, (31)

where 𝐶1 is given by Eqs. (24) and (26) has been used to cast the
derivative in terms of 𝜃, since it is more convenient to express the rim
equations in terms of 𝜃 rather than 𝜉, whose upper bound is unknown.

As in Refs. [17,18], we assume that the rim is stress-free. Thus, the
rim’s momentum balance is obtained by equating momentum convec-
tion due to mass influx/outflux with the momentum diffusion originat-
ing from the presence of bulk and interfacial stresses:

𝑑
(

𝑈2
𝜉 𝑓 𝝉̂

)

𝑑𝜃
= −2𝐶1𝑼 −

2𝐶1
𝑈𝑟 sin𝜓

𝒏̂ ⋅ 𝝈 − 2
𝑊 𝑒

𝑅
sin𝜓

𝒏̂. (32)

The dimensionless Weber number has been introduced in the stress
balance for the rim, where

𝑊 𝑒 =
𝜌𝑈2

𝑗 𝑅𝑗
𝛾

(Weber number), (33)

and 𝛾 is the interfacial tension between the liquid and the air. The
eber number quantifies the ratio of inertial forces, which drive sheet

ormation and expansion, and capillary forces, which limit the areal
xtent of the film.

The tangential and normal components of the momentum balance
an be obtained by dotting Eq. (32) with 𝒏̂ and 𝝉̂, respectively:

𝑑
(

𝑈2
𝜉 𝑓

)

=
[

−
2𝐶1 cos𝜓

(

𝑈2
𝑟 + 𝑇 𝑃𝜃𝜃 − 𝑇

𝑃
𝑟𝑟
)

]

, (34)

𝑑𝜃 𝑈𝑟 𝑟=𝑅(𝜃)
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𝑑𝜓
𝑑𝜃

= 2
𝑈2
𝜉 𝑓

[

−
𝐶1

𝑈𝑟 sin𝜓
(

𝑇 𝑃𝑟𝑟 sin
2 𝜓 + 𝑇 𝑃𝜃𝜃 cos

2 𝜓 − 𝑇 𝑃𝑧𝑧
)

+𝐶1𝑈𝑟 sin𝜓 − 𝑅
𝑊 𝑒 sin𝜓

]

𝑟=𝑅(𝜃)
+ 1,

(35)

where the film velocity and stresses are evaluated at the rim’s radial
position 𝑅 (𝜃), and are given by the solutions of the film equations.
Eqs. (27), (31), (34), and (35) thus represent a system of ODEs for the
rim in terms of the angular coordinate 𝜃.

The boundary conditions for the rim variables at the stagnation
oint 𝜃 = 𝜋, i.e the most upstream position of the rim, are:

𝜓||
|𝜃=𝜋

= 𝜋∕2, (36)

𝜉
|

|

|𝜃=𝜋
= 0, (37)

𝑅||
|𝜃=𝜋

= 𝑅0 = 𝑊 𝑒 𝐶∗
1

[

𝑈𝑟 −
𝑇 𝑃𝑟𝑟 − 𝑇

𝑃
𝑧𝑧

𝑈𝑟

]

𝑟=𝑅0

, (38)

where 𝐶∗
1 = 𝐶1

|

|

|𝜃=𝜋
= sin3 𝛼

2 (1 + cos 𝛼)2
, (39)

where 𝑅0 is the radial position at the stagnation point. The right-hand-
side (RHS) of Eq. (38) is derived by evaluating (Eq. (35)) at 𝜃 = 𝜋, by
accounting for 𝑑𝜓∕𝑑𝜃|𝜃=𝜋 = 0.

3. Numerical model

We outline here the method used to derive the numerical solution of
the system of ODEs. Note that the equations for the film can be solved
independently of the equations for the rim, but not vice-versa. The
system of ODEs describing the rim variables is indeed coupled to the
film equations, via the values of the film variables (namely the radial
velocity and the stresses) at the rim location. Since the rim equations
(Eqs. (27), (31), (34), and (35)) become singular at 𝜃 = 𝜋, we modify
the boundary conditions. In particular, following the strategy outlined
in [18,11], we move the boundary condition slightly downstream, at
a rim position 𝜃 = 𝜋 − 𝜖, where 𝜖 is small enough that one can still
consider

𝜓||
|𝜃=𝜋−𝜖

= 𝜓||
|𝜃=𝜋

= 𝜋∕2, (40)

𝑟||
|𝜃=𝜋−𝜖

= 𝑟||
|𝜃=𝜋

= 𝑅0. (41)

The remaining boundary conditions at the new location are derived by
means of a local energy and mass balance, whose details can be found
in the Supplemental Material,

(𝑈𝜉𝑓 )𝜃=𝜋−𝜖 = 2𝜖𝐶∗
1 , (42)

𝑈2
𝜉 𝑓 )𝜃=𝜋−𝜖 = 2𝜖𝐶∗

1𝑈𝑟
|

|

|𝑅0
. (43)

In order to solve the system of ODEs describing the system, we first
ntegrate the film equations (Eqs. (17)–(20)) along the radial direction,
tarting from 𝑟 = 𝑅𝐼𝑅, for 𝜃 = 𝜋. Thus, we derive the position of the
tagnation point 𝑅0 by means of an iterative procedure. The procedure
s repeated until the residual between the left-hand-side (LHS) and the
ight-hand-side (RHS) of Eq. (38) is |LSH − RHS| ≤ tol, with tol = 10−8

he required tolerance. We then use the derived value of 𝑅0 to evaluate
he initial boundary conditions for the rim’s equations and we proceed
y numerically integrating Eqs. (27), (31), (34), and (35) in the range
∈ [𝜋−𝜖, 0]. As the main integration of the rim equations is performed
long 𝜃, the required values of 𝑈𝑟, 𝑇 𝑃𝑟𝑟 , 𝑇

𝑃
𝜃𝜃 , and 𝑇 𝑃𝑧𝑧 at the rim position

= 𝑅 (see Eqs. (34) and (35)) are calculated by separately integrating
he film equations (Eqs. (17)–(20)) starting from 𝑟 = 𝑅𝐼𝑅 up to 𝑟 = 𝑅.
ll integrations are performed with an explicit six-stage fifth-order
unge–Kutta method [34], implemented by means of the ode45 Matlab
ubroutine [35].
5

t

4. Results

We now establish how viscous, inertial, capillary, and elastic effects
influence the size, velocity, and stress distribution within the liquid
film and rim, and to what extent sheets formed by viscoelastic liquids
differ from their Newtonian counterparts. For this purpose, we conduct
a parametric sweep in terms of the relevant dimensionless parameters
that appear in the governing equations for the sheet and rim.

The size of Newtonian sheets is solely determined by 𝑊 𝑒. Hence,
it is expected that this parameter governs the asymptotic behavior in
the limit of Newtonian sheets. However, for viscoelastic sheets, three
dimensionless parameters - 𝑅𝑒, 𝑊 𝑖, and 𝑊 𝑒 - capture the interplay
etween inertial, capillary, viscous, and elastic forces that govern the
heet morphology and dynamics. The Weber number (𝑊 𝑒, Eq. (33))

represents the competition between inertial driving forces and capillary
restoring forces, while the Reynolds number (𝑅𝑒, Eq. (7)) reflects the
ratio of inertial and viscous driving forces. The Weissenberg number
(𝑊 𝑖, Eq. (8)) itself is of more difficult interpretation, since it does
not represent a ratio of physically relevant quantities within the liquid
sheet.

However, the dimensionless film and rim equations can be rescaled
in order to determine the most relevant combinations of dimensionless
groups governing their solution (the rescaled ODEs and boundary con-
ditions are provided in the Supplemental Material). From the rescaled
equations, we expect the most relevant parameter in determining the
qualitative behavior of the sheet dynamics and morphology to be the
modified Weissenberg number, 𝑊 𝑖∗ = 𝑊 𝑖∕𝑊 𝑒. Unlike for 𝑊 𝑖, the
physical interpretation of 𝑊 𝑖∗ is readily established. Such a parameter
can indeed be written as

𝑊 𝑖∗ = 𝑊 𝑖
𝑊 𝑒

=
𝑡𝑟𝑒𝑙
𝑡𝑐𝑜𝑛𝑣

=
𝜆𝛾

𝜌𝑈𝑗𝑅2
𝑗

(modified Weissenberg number). (44)

Hence, 𝑊 𝑖∗ can be interpreted as the ratio of the solution’s relax-
ation time 𝑡𝑟𝑒𝑙 = 𝜆 divided by the convective (or process) timescale
𝑡𝑐𝑜𝑛𝑣 = 𝜌𝑈𝑗𝑅2

𝑗∕𝛾. The relaxation time of the solution 𝑡𝑟𝑒𝑙 quantifies the
time required for a polymer element to relax back to an equilibrium,
un-stretched state following a given deformation, and measures the
amount of time it takes for a polymer molecule to deform in response
to an applied flow [36,37]. The ‘‘process’’ timescale 𝑡𝑐𝑜𝑛𝑣 represents the
amount of time required for a material element to traverse the entire
length 𝐿 of the sheet, where 𝐿 ∼ 𝜌𝑈2

𝑗 𝑅
2
𝑗∕𝛾 = 𝑅𝑗𝑊 𝑒 [11,18]. This

is rigorously true for Newtonian sheets, where the average velocity
within the sheet scales as the jet velocity 𝑈𝑗 and the length of the sheet
scales as 𝑅𝑗𝑊 𝑒 [11]. In the case of viscoelastic and non-Newtonian
sheets, deviations from such a scaling are expected, but the physical
interpretation still holds to first order. Thus, 𝑊 𝑖∗ provides information
on how the elasticity of the solution affects the momentum transport
and stress distribution as material flows along the fluid sheet, and
reflects the relevant time scales that control the film dynamics [10].

4.1. Parametric study of 𝑊 𝑒, 𝑅𝑒, and 𝑊 𝑖∗

Fig. 2 presents the results of the parametric sweep of the dimension-
less 𝑅𝑒, 𝑊 𝑒, and 𝑊 𝑖∗ on the sheet size, velocity, and extensional stress
distribution. The varying 𝑊 𝑖∗ is shown on the 𝑥-axis of each figure,
and different 𝑅𝑒 and 𝑊 𝑒 values are depicted by different line colors
and styles, respectively.

The dimensionless length, 𝐿, and sheet aspect ratio (i.e length/
width), 𝐿∕𝑊 , of the sheets are shown in Fig. 2a–b. 𝐿 is the vertical
extent of the film measured from the stagnation point at 𝜃 = 𝜋 to the
bottom of the sheet at 𝜃 = 0, and 𝑊 is the maximum width of the
sheet. The average value of the dimensionless radial velocity in the
sheet, 𝑈 𝑟, is depicted in Fig. 2c, where 𝑈 𝑟 is calculated by performing

volume average along the entire film. The volume-averaged value of
he dominant component of the polymer stress within the film, 𝑇

𝑃
, is
𝜃𝜃
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Fig. 2. Effect of the interplay of viscous, inertial, capillary, and elastic forces on the characteristic sheet properties: Parametric sweep varying dimensionless 𝑊 𝑒, 𝑅𝑒, and 𝑊 𝑖∗.
Results for the (a) sheet length, 𝐿, (b) sheet aspect ratio (length/width), 𝐿∕𝑊 , (c) volume-averaged film velocity, 𝑈 𝑟, and (d) volume-average film extensional stress, 𝑇

𝑃
𝜃𝜃 are

presented, where variations in 𝑊 𝑖∗ are shown on the 𝑥-coordinate axis and different 𝑅𝑒 and 𝑊 𝑒 are shown as different line colors and textures, according to the legend. A
non-monotonic behavior in the sheet’s size, velocity, and stress arises at 𝑊 𝑖∗ ∼ 1, where the polymer’s relaxation time exactly balances the residence time of a polymer molecule
within the film (i.e the convective timescale). The magnitude of the non-monotonicity is a function of both 𝑅𝑒 and 𝑊 𝑒, and Newtonian behavior is recovered at the limits 𝑊 𝑖∗ → 0
and 𝑊 𝑖∗ → ∞.
shown in Fig. 2d. The volume-averaged 𝑇
𝑃
𝑟𝑟 and 𝑇

𝑃
𝑧𝑧 are approximately

five orders of magnitude smaller than 𝑇
𝑃
𝜃𝜃 , and are therefore not shown.

Several conclusions can be drawn by examining the independent
effects of changing each of the dimensionless parameters on the film’s
morphological and dynamical characteristics. Particularly, the most
salient feature of the results in Fig. 2 is the non-monotonicity in the
film’s size, velocity, and stress that emerges as a function of 𝑊 𝑖∗, repre-
senting a departure from classical Newtonian behavior. The emergence
of this non-monotonicity, as well as its location and magnitude, is also
dependent on 𝑅𝑒 and 𝑊 𝑒.

Stable, inviscid Newtonian sheets can be fully characterized by
the dimensionless Weber number, reflecting the competition between
the inertial driving forces that promote sheet expansion, and surface
tension restoring forces which limit sheet growth [11,16,5,25]. Fig. 2a
reveals that the 𝑊 𝑒 indeed still plays a dominant role in setting the
asymptotic behavior in the Newtonian limit. The solution for viscoelas-
tic sheets tends to such a limit in two cases: 1. at high 𝑅𝑒, regardless
of 𝑊 𝑖∗, i.e. when inertia dominates over viscosity; and 2. for 𝑊 𝑖∗ → 0
or 𝑊 𝑖∗ → ∞, regardless of 𝑅𝑒. At the limit of 𝑊 𝑖∗ → 0, the polymer
reacts instantaneously to the applied deformation, effectively behaving
6

as a solvent fluid element, and does not induce any additional stress
within the solution along its path in the sheet. At the opposite limit
of 𝑊 𝑖∗ → ∞, the time required for the polymer to stretch in response
to the extensional deformations in the sheet is significantly larger than
amount of time the polymer spends inside the film. Thus, the polymer
molecules undergo a negligible deformation by the time they traverse
to the bottom of the sheet, and are thus incapable of inducing any
significant deviatoric stress within the film.

A departure from the asymptotic Newtonian behavior occurs other-
wise. In particular, a non-monotonic trend in the sheet’s size is observed
for increasing 𝑊 𝑖∗, with a minimum occurring at a critical value of the
modified Weissenberg number, 𝑊 𝑖∗𝑐𝑟𝑖𝑡. We interpret such a minimum
as the result of the balance between the relaxation timescale of the
polymer and the convective timescale. In other words, the time a
polymer molecule spends inside the fluid film during its outward radial
flow is equivalent to the time necessary for the polymer to deform in
response to extensional stresses within the fluid sheet. In cases close
to the Newtonian limit (high 𝑅𝑒), this corresponds to the condition
𝑊 𝑖∗𝑐𝑟𝑖𝑡 ∼ 1. However, for lower 𝑅𝑒, we observe a shift of the minimum,
such that 0.1 < 𝑊 𝑖∗ < 1. The reason for this shift is that the convective
𝑐𝑟𝑖𝑡
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Fig. 3. Contour plots and rim cross-sections at fixed 𝑊 𝑒 = 300 and 𝑅𝑒 = 50, and
varying 𝑊 𝑖∗ showing the sheet size and velocity in the rim. The Newtonian solution
at 𝑊 𝑒 = 300, corresponding to 𝑊 𝑖∗ = 0, is shown in black. The viscoelastic solutions
for 𝑊 𝑖∗ = 0.05, 0.33, and 3 are depicted in pink. The rim cross-sectional area 𝑓
(magnified by an area factor of 1000) and velocity 𝑈𝜉 are shown on the right half
of the figure. At low 𝑊 𝑖∗ = 0.05, viscoelastic sheets are smaller and narrower than
their Newtonian counterparts. As 𝑊 𝑖∗ increases, the sheet length shrinks further and
a minimum in sheet size is revealed at 𝑊 𝑖∗ = 0.33. At large 𝑊 𝑖∗ = 3, the sheet
size increases, approaching the Newtonian morphology. For all cases, both 𝑓 and 𝑈𝜉
monotonically increase with decreasing 𝜃 (i.e from the top to the bottom of the film).

time scale is an approximation derived from the expected scaling of the
sheet’s length for Newtonian sheets. In the viscoelastic case, the sheet’s
length is consistently shorter. Hence the actual convective time scale is
lower than the estimated one.

Fig. 2a–b also reveals that, for a constant 𝑊 𝑒, the magnitude of the
non-monotonicity in sheet size and shape is inversely proportional to
𝑅𝑒. Larger 𝑊 𝑒 and lower 𝑅𝑒 induce larger deviations in the size and
shape of stable viscoelastic liquid sheets, hence smaller 𝑊 𝑖∗𝑐𝑟𝑖𝑡. These
deviations in the Newtonian solution can also be examined in terms of
the Ohnesorge number, Oh, where 𝑂ℎ =

√

𝑊 𝑒∕𝑅𝑒 = 𝜂𝑃 ∕
√

𝜌𝑅𝑗𝛾 [38].
Oh reflects the ratio between viscous stresses, 𝜂𝑝𝑈𝑗∕𝑅𝑗 , and inertio-
capillary stresses,

√

𝜌𝑈2
𝑗 𝛾∕𝑅𝑗 , and is important in dictating the stability

and ‘‘printability’’ of inkjet printing fluids. Thus, Oh provides a concise
way to capture viscous, inertial, and surface tension contributions in
free-surface flows [38]. As shown in Fig. 2, viscous effects start to have
an influence in the morphology and dynamics of viscoelastic liquid
sheets when 𝑂ℎ ≳ 0.1. The deviations in the sheet’s aspect ratio that
occur at high 𝑊 𝑒 and low 𝑅𝑒 (i.e 𝑂ℎ ≳ 0.1), as shown in Fig. 2b, will
be explained further in Section 4.2.

The corresponding non-monotonic trends of the volume-averaged
radial velocity 𝑈 𝑟 and tangential stress 𝑇

𝑃
𝜃𝜃 confirm our physical in-

terpretation of the observed phenomenon. Inviscid Newtonian sheets
are characterized by 𝑈 = 1 and 𝑇

𝑃
= 0, irrespective of the
7

𝑟 𝜃𝜃
magnitude of 𝑊 𝑒 [17,11,4]. Deviations from the Newtonian behavior,
in which the polymer-induced extensional stresses along the sheet
increase and, consequently, the average sheet velocity decreases, are
more pronounced at lower 𝑅𝑒 and higher 𝑊 𝑒, as shown in Fig. 2c–d.
At lower 𝑅𝑒, viscous dissipation reduces the size of the sheets, an effect
similarly seen in high viscosity Newtonian sheets [39]. At constant
values of 𝑊 𝑖∗, sheets with higher inertia (i.e larger 𝑊 𝑒) are larger and
therefore more radially expansive, allowing the polymer molecules to
extend more as they travel from the impingement location to the edge
of the film. Thus, larger sheets with higher 𝑊 𝑒 have more extended
polymers that induce increases in the magnitude of 𝑇

𝑃
𝜃𝜃 and reductions

in 𝑈 𝑟.
It is known that the presence of elastic polymers can greatly extend

the stability of fluid sheets by creating strong extensional stresses that
dramatically increase the extensional viscosity of the fluid and resist
sheet deformation and breakup [4,7,40]. In strong extensional flows,
such as those realized in sheets formed by impinging jets, coiled macro-
molecules in the fluid can become significantly extended and overlap
with their neighbors [41,36,42]. Therefore, in viscoelastic liquid sheets,
both surface tension (at the curved rims) and elasticity (within the
thin film) act against inertia [19]. The large extensional deformations
that develop along the 𝜃-direction (i.e the extensional axis) give rise
to strong extensional stresses that resist the radial expansion of the
sheet, which explains the increases in 𝑇

𝑃
𝜃𝜃 and the reductions in 𝑈 𝑟

and 𝐿 as 𝑊 𝑖∗ increases when 𝑊 𝑖∗ ≲ 𝑊 𝑖∗𝑐𝑟𝑖𝑡. Furthermore, the presence
of a maximum in the tangential stress for 𝑊 𝑖∗ ∼ 𝑊 𝑖∗𝑐𝑟𝑖𝑡 confirms our
interpretation of the non-monotonicity in the sheet’s size and velocity
as a result of a competition between the inertial and elastic time scales.

As stated in Section 2, the UCM model was used in virtue of its
simplicity and ability to capture the overall behavior of viscoelastic
fluids [31]. We anticipate that the qualitative trends in the sheet size,
velocity, and stress still hold for other more elaborate constitutive
models that take into account the finite extensibility of the polymer or
the non-linearity of the spring. In these cases, we expect the magnitude
of the stress buildup (and the accompanying reduction in sheet velocity
and size) to be mitigated in comparison to the UCM model, due to the
incorporation of nonlinear terms in the constitutive equation for the
polymer stress and the accompanying shear thinning behavior.

4.2. Size, velocity, and stress distributions at constant 𝑅𝑒 and 𝑊 𝑒 and
varying 𝑊 𝑖∗

A comprehensive review of the average sheet size, velocity, and
stress was presented in Fig. 2 as a function of the three dimensionless
groups. In this Section, detailed information on the sheet’s morphology,
as well as its velocity and stress distributions as a function of 𝑟 and 𝜃,
is provided for sheets of constant 𝑅𝑒 = 50 and 𝑊 𝑒 = 300 and varying
𝑊 𝑖∗ (corresponding to the pink dash-dotted line in Fig. 2).

Fig. 3 presents the sheet profiles and rim cross sections at values
of 𝑊 𝑖∗ = 0.05, 0.33, and 3, where 𝑊 𝑖∗ = 0.33 corresponds to the
minimum sheet length 𝐿 in Fig. 2a. These three values of 𝑊 𝑖∗ are
selected to represent the cases where 𝑡𝑟𝑒𝑙 ≪ 𝑡𝑐𝑜𝑛𝑣 (𝑊 𝑖∗ = 0.05),
𝑡𝑟𝑒𝑙 ∼ 𝑡𝑐𝑜𝑛𝑣 (𝑊 𝑖∗ = 0.33), and 𝑡𝑟𝑒𝑙 ≫ 𝑡𝑐𝑜𝑛𝑣 (𝑊 𝑖∗ = 3). In addition,
the stress-free Newtonian solution at 𝑊 𝑒 = 300 is shown in Fig. 3 in
order to provide a comparison with the viscoelastic case. In Fig. 4,
the thickness-averaged extensional stress 𝑇 𝑃𝜃𝜃 (top row) and velocity
𝑈𝑟 (bottom row) distributions at 𝑊 𝑖∗ = 0.05, 0.2, 0.33, and 3 are
depicted, where each column corresponds to a different 𝑊 𝑖∗. Finally,
Fig. 5 shows the progression of 𝑈𝑟 and 𝑇 𝑃𝜃𝜃 along 𝜃 at the rim location
𝑅, for the same cases as Fig. 4.

The rim contours in Fig. 3 reveal that both the rim velocity 𝑈𝜉
and cross-sectional area 𝑓 increase monotonically from the top to the
bottom of the rim, with decreasing 𝜃, as mass continuously flows from
the film into the rim. The maximum rim velocity is therefore encoun-
tered at the bottom of the sheet, at 𝜃 = 0. Fig. 3 also indicate that the
sheet’s aspect ratio changes as 𝑊 𝑖∗ increases, where the sheets appear
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Fig. 4. Profiles of the thickness-averaged extensional stress 𝑇 𝑃𝜃𝜃 (top row) and thickness-averaged sheet velocity 𝑈𝑟 (bottom row) at fixed 𝑊 𝑒 = 300 and 𝑅𝑒 = 50, and varying 𝑊 𝑖∗.
At low 𝑊 𝑖∗ (𝑊 𝑖∗ = 0.05), the polymer reacts rapidly to extensional perturbations and induces stresses near the jet impingement location, which rapidly relax back to equilibrium.
As 𝑊 𝑖∗ increases (𝑊 𝑖∗ = 0.2 and 0.33) the relaxation timescale approaches the convective timescale; polymer-induced stresses arise at larger radial positions along the film and
take longer to relax. At large 𝑊 𝑖∗ (𝑊 𝑖∗ = 0.3), the polymer relaxation time is larger than the convective timescale, such that the individual polymer molecules take longer to
react to the imposed flow field and stresses only arise near the bottom of the film.
to be highly elongated at low 𝑊 𝑖∗. This feature can also be observed in
Fig. 2b, which reveals that at low 𝑊 𝑖∗ < 1, viscoelastic sheets display a
different morphological aspect ratio than their Newtonian counterparts.
The existence of elongated sheets formed by a pair of impinging jets
has also been corroborated by experimental studies on shear thinning
Carbopol solutions, which are expected to be viscoelastic [22].

The reason behind the change in sheet’s aspect ratio at low 𝑊 𝑖∗ is
revealed in Fig. 4. At low 𝑊 𝑖∗, the relaxation timescale of the polymer
molecules is significantly smaller than the convective timescale (𝑡𝑟𝑒𝑙 ≪
𝑡𝑐𝑜𝑛𝑣). 𝑡𝑐𝑜𝑛𝑣 describes the approximate residence time of a polymer
molecule inside the liquid film, and thus represents the amount of time
that the polymer remains subjected to extensional deformations. At low
𝑊 𝑖∗, the polymer reacts rapidly to deformations imposed by the fluid,
and as a consequence conformational changes in the average stretch
and orientation of the polymer elements occur rapidly, at small 𝑟. This
is seen in both the 𝑇 𝑃𝜃𝜃 and 𝑈𝑟 distributions in Fig. 4, where increases
in 𝑇 𝑃𝜃𝜃 and subsequent reductions in 𝑈𝑟 arise at small radial positions,
near the jet impingement region.
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The fact that large stresses are confined near the top half of the
film, where 𝜋 ≥ 𝜃 ≥ 𝜋∕2, constrains the radial extent of the sheet
in this region and alters its shape. Due to the directionality of the
flow in the film, the narrowing of the sheet near the top of the film
subsequently affects the position of the rim further downstream, which
leads to narrower sheet morphologies.

At moderate 𝑊 𝑖∗, where the relaxation timescale approaches the
convective timescale (𝑡𝑟𝑒𝑙 ∼ 𝑡𝑐𝑜𝑛𝑣), the dynamics of the deforming
polymers under flow changes in two key ways. Firstly, the polymer
molecules take longer to react to extensional deformations in the film,
and polymer-induced stresses will arise further downstream (i.e at
larger radial locations) within the film. Secondly, since the relaxation
timescale matches the residence time of the polymer molecules inside
the film, the polymer elements will undergo stress-inducing conforma-
tional changes throughout most of their trajectory within the liquid
film. This is evident in Fig. 4, where non-zero values of 𝑇 𝑃𝜃𝜃 and values
of 𝑈𝑟 < 1 are present in a larger portion of the film. The presence of
higher stresses throughout the bulk of the film and the accompanying
velocity reductions lead to overall smaller sheets, as seen in Fig. 3. Since
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Fig. 5. The values of the thickness-averaged radial velocity 𝑈𝑟 (pink) and thickness-
averaged extensional stress 𝑇 𝑃𝜃𝜃 (black) at the rim location 𝑟 = 𝑅 (𝜃) are plotted as a
function of 𝜃 along the rim, shown on the 𝑥-axis in units of 𝜋. The data corresponds
to a fixed 𝑊 𝑒 = 300 and 𝑅𝑒 = 50, and varying 𝑊 𝑖∗ = 0.05, 0.2, 0.33, and 3. As 𝑊 𝑖∗

increases, the location of maximum stress and minimum velocity shifts downstream
towards lower values of 𝜃.

extensional stresses appear at all angles 𝜃, the radial position of the rim
shrinks globally, such that a shape aspect ratio closer to the Newtonian
value is recovered.

As 𝑊 𝑖∗ increases further, the development of polymer-induced
stresses continues to shift further downstream within the film, since the
polymer takes a longer time to react to the deformations imposed by the
flow at increasing 𝑡𝑟𝑒𝑙. At 𝑊 𝑖∗ = 3, nonzero values of 𝑇 𝑃𝜃𝜃 only arise near
the bottom of the film, at 𝜋∕2 ≥ 𝜃 ≥ 0. Thus, the upstream portion of the
sheet remains unaffected by the existence of the polymer, effectively
converging back to the Newtonian solution, as seen in Fig. 3. Additional
details on the extensional deformations that the flow field imposes on a
fluid element as it travels downstream from the impingement location
are presented in the Supplemental Material.

The values of 𝑈𝑟 and 𝑇 𝑃𝜃𝜃 for 𝑅𝑒 = 50, 𝑊 𝑒 = 300, and 𝑊 𝑖∗ = 0.05,
0.2, 0.33, and 3 at the rim location 𝑟 = 𝑅 (𝜃) are also shown graphically
in Fig. 5, as a function of the 𝜃 coordinate (shown on the 𝑥-axis, in
units of 𝜋). Fig. 5 highlights the same trends with 𝑊 𝑖∗ as Fig. 4,
where the position of maximum stress and minimum velocity shifts
downstream towards lower values of 𝜃 as 𝑊 𝑖∗ increases. For 𝑊 𝑖∗ =
0.05, the maximum value of 𝑇 𝑃𝜃𝜃 (and the minimum in 𝑈𝑟) occurs at the
stagnation point at 𝜃 = 𝜋. As 𝑊 𝑖∗ increases (𝑊 𝑖∗ = 0.2 and 0.33), the
position of the stress maximum shifts towards lower 𝜃, until eventually
reaching the end of the sheet at 𝜃 = 0. At the largest 𝑊 𝑖∗ = 3, a
maximum in 𝑇 𝑃𝜃𝜃 is not present, and the stress monotonically increases.

The trends in the velocity 𝑈𝑟 mirror those in the stress 𝑇 𝑃𝜃𝜃 , albeit
with a small delay. Thus, the minima in 𝑈𝑟 occur later (at lower 𝜃)
than the maxima in 𝑇 𝑃𝜃𝜃 , reflecting the spatial dynamics in the sheets:
the polymer molecules stretch in reaction to the extensional flow in the
radially expanding sheets, inducing stresses within the film, which in
turn cause decreases in the film’s velocity.

5. Conclusions

We developed a model for sheets formed by viscoelastic impinging
fluid jets, based on an upper-convected Maxwell constitutive law relat-
ing stresses and deformations. The numerical results unveil a complex
interplay between elasticity, surface tension, inertia, and viscosity.

In the asymptotic limit of Newtonian sheets (for high Reynolds num-
bers), the size of the sheets is determined solely by the Weber number
(𝑊 𝑒). However, as we deviate from the Newtonian case, additional
9

parameters come into play, captured by the Reynolds number (𝑅𝑒), and
the modified Weissenberg number (𝑊 𝑖∗ = 𝑊 𝑖∕𝑊 𝑒). Interestingly, we
find that the size of the sheet shows a non-monotonic evolution with
increasing 𝑊 𝑖∗, and a minimum sheet size is observed for a critical
value 0.1 < 𝑊 𝑖∗𝑐𝑟𝑖𝑡 < 1. For higher Reynolds numbers (close to the
Newtonian limit), 𝑊 𝑖∗𝑐𝑟𝑖𝑡 ∼ 1. Correspondingly, the radial velocity
presents a minimum and the extensional stresses a maximum. We
interpret these results as the consequence of the competing mechanism
between elasticity and inertia.

The modified Weissenberg number 𝑊 𝑖∗ represents indeed the ratio
between the relaxation time scale of a stretched polymer, and the
characteristic time that a fluid element spends inside the sheet. When
the polymer relaxation time is much shorter than the residence time
of a fluid element (strong inertial effect, 𝑊 𝑖∗ → 0), the fluid elements
are practically non-deformed during their persistence inside the sheet.
When the polymer relaxation time is much larger than the residence
time (strong elastic effect, 𝑊 𝑖∗ → ∞), the fluid elements do not have
the time to deform inside the sheet. In both cases, the sheet’s size,
radial velocity, and tangential stresses follow the trends observed in the
Newtonian case. However, when the two time scales are comparable,
both elasticity and inertia need to be accounted for. The absolute value
of the deviation from the Newtonian case is inversely proportional to
the Reynolds number. In conclusion, with the present study we have
established the steady state solution for viscoelastic sheets formed by
impinging jets.
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