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Abstract

The calculation of the multicomponent thermal diffusion coefficients and partial thermal
conductivity of polyatomic gas mixtures, with large numbers of components, based on
the Kinetic Theory of Gases is revisited. The terms involving inelastic collisions and
relaxation times for various internal degrees of freedom are considered, in addition to
the classical Chapman-Enskog expressions. For polar gases, the resonant exchange of
rotational energy is also accounted for. The present work is the natural extension of the
algorithms shown in Combust. and Flame 163 (2016) 540-55 for the calculation of the
Fick’s law multicomponent diffusion coefficients, of which it makes use.

This work presents a new iterative algorithm for the calculation of the multicomponent
thermal diffusion coefficients and partial thermal conductivity. This new algorithm has
been implemented in the C++ library MuTLib (Multicomponent Transport Library), avail-
able for the transport properties calculations in third party applications and included in
the additional material of this publication. The algorithm performance improvements are
shown in two different flames: a hydrogen premixed flame and a methane diffusion flame.
The results are successfully compared against the library package EGLib (Ern-Giovangigli
Library, which considers the same physical effects as this work), and to the well known
mixture averaged approximation.
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1. Introduction

Diffusion is the transport phenomenon responsible for mixing at the molecular level, play-
ing an important role in combustion [1]. As is well known, diffusion fluxes are propor-
tional to species concentration and temperature gradients, with Fick’s law multicomponent
diffusion coefficients D;; (i, j = 1,...,N) and thermal diffusion coefficients D7; being the
corresponding respective transport coefficients [2, 3]. Hence, accurate calculation of D;;
and Dr; is the key for a correct evaluation of diffusion fluxes in multicomponent mixtures.
Once all the relevant physical processes taking place in a typical combustion environment
are accurately represented (in particular multicomponent diffusion and chemical kinet-
ics), it is possible to perform Direct Numerical Simulations (DNS) of laminar or turbulent
flames, which may be considered as numerical experiments.

In the case of mixtures of dilute gases, the Kinetic Theory of Gases (KTG) [4, 5, 6] pro-
vides a general framework for the calculation of the multicomponent diffusion coefficients
D;; and Dr;, thermal conductivity and viscosity, based on knowledge on the molecular
characteristics of all chemical species in the mixture (i.e., molecular masses, sizes and
intermolecular interaction potentials among all different species in the mixture). Classi-
cal theory provides very good results on monoatomic gases assuming elastic interactions
between molecules. Within the Kinetic Theory of Gases framework and based on the
Chapman-Enskog expansion, a step forward was given in reference [7] to account for po-
lar interactions, monopolar-polar interactions, non elastic interaction and polar resonant
collisions. Based on this, in references [8, 9, 10], a formal kinetic theory for polyatomic
gases was requiring the resolution of a linear system with 3N equations (or 2N + P, where
P is the number of non monoatomic molecules). The solution of the aforementioned sys-
tems poses no difficulty. However, if the number of components in the mixture is high,
the evaluation of the transport properties must be evaluated at every time step and every
node in the computational mesh and can become computationally expensive in DNS of
unsteady flames. This is because the aforementioned linear systems depend on the mix-
ture composition and temperature. The former difficulty has motivated the development
of useful simplified approximations, such as mixture averaged transport properties, which
becomes quite accurate in the dilute limit, or the use of constant Lewis numbers, which
is useful in theoretical combustion analyses as it leads to simplified evolution equations
[1, 3]. Recent works have tested simplified models using Lewis number in the stabilization
effect of premixed flames [11]. In reference [12], the authors show the validation of the
mixture averaged approximation in hydrogen flames with thermal diffusion. Nevertheless,
a proper evaluation of multicomponent transport properties is critical in accurate DNS of
reactive flows. For instance, detailed multicomponent transport can have an important ef-
fect in turbulent flames in regions where the front experiences strong curvature [13] and in
cases with Reynolds numbers between 600 and 8000 [14].
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After the initial studies on multicomponent diffusion in combustion by Dixon-Lewis [15]
followed by Jones and Boris [16] and Oran and Boris [17], the general problem of mul-
ticomponent transport is addressed by Giovangigli (see, e.g., [18, 19, 20, 21, 22]). In
particular, the application of standard iterative methods for the calculation of the transport
properties of multicomponent mixtures is investigated in reference [23]. For a review on
the implementations for transport calculations available in 2011 see [24]. A different strat-
egy 1s adopted by Xin et al. in a more recent work [25], based on a sensitivity analysis
which determines the group of species whose diffusive transport has strongest impact on
flame dynamics, thus allowing for a simplified treatment of the transport properties of the
remaining species.

The calculation of the multicomponent Fick diffusion coefficients was also analyzed by
Arias-Zugasti et al. [26], where two efficient new algorithms: Model 1 and Model 14+M,
are derived for the calculation of D;;. The optimal implementation of Model 1+M was
subsequently analyzed by Naud and Arias-Zugasti [27]. In Model 1, based on [28], the
multicomponent mixture is assumed to be dilute in 1 major species, and D;; is given as a
power series in terms of the remaining N — 1 mole fractions in the mixture. As a natural
extension of Model 1, in Model 1+M the mixture is assumed to contain a total of 1 + M
major species, and D;; are computed as a power series in terms of the remaining N —M — 1
mole fractions, which are assumed to be close to the dilute limit, thus avoiding the use of
approximate methods regarding the major, non-dilute, species.

The purpose of this work is to provide a new simple, efficient and accurate iterative algo-
rithm for the evaluation of the multicomponent thermal diffusion coefficients and partial
thermal conductivity of typical combustion gas mixtures. The general idea to achieve this
goal is to formulate the problem in terms of dimensionless variables, based on the correct
characteristic scales, in a similar way as it is done for Model 1 of [26] for the calculation of
D;j. As shown below, the proposed solution makes use of the results shown in [26] and in-
volves a new linear system of equations resolution with sub-matrices which are diagonally
dominant, thus allowing for an efficient inversion based on the Neumann series.

The proposed algorithm has been implemented in the C++ library MuTLib, included as
additional material. The results are presented for a premixed hydrogen flame and a dif-
fusion methane flame and compared against mixture averaged thermal diffusion and the
software library package EGLib, developed by Ern and Giovangigli [23]. The level of
accuracy vs. number of iterations is shown to probe the algorithm efficiency.

2. Mass conservation and heat equation in multicomponent gases

In the present work we consider a multicomponent ideal gas mixture with N different
chemical species, assuming that all state variables in the mixture are given quantities (mass



density p, molecular number density 7, pressure p and absolute temperature 7). Following
the notation of [6], the mole fraction of species i will be denoted by x; = n; /n, and the mass
fraction of species i by y; = p;/p, where n; is the molecular number density of species i and
pi is the local mass density of species i. Mole and mass fractions are related by m;x; = my;,
where m; is the molecular mass of species i and m is the molecular mass of the mixture,
given by the corresponding mole mass over Avogadro’s number.

2.1. Mass conservation equations in multicomponent gases

As is well known, the macroscopic mass conservation equations in a multicomponent
mixture are given by (see, e.g., [1, 2, 3])

1 dp; 1 .
E%:—V(v%—Vi)—EVi'VPi; i=1,...,N (1)

where v is the mixture hydrodynamic velocity , o stands for the substantial derivative

d 0
p = o +v-V and V; are the diffusion velocities, with

Zini =0 (2)

The former conservation equations can be easily derived from the macroscopic point of
view, by imposing the mass conservation principle in the continuum approximation. On
the other hand, Eq. (1) can also be derived from the microscopic (i.e., molecular) point of
view, accounting for the mass as collision invariant in the Boltzmann equation [6]. In this
regard, following the Kinetic Theory of Gases, the Chapman-Enskog method determines
successive approximations to the solution of the Boltzmann equation. Zero order approx-
imation leads to Euler hydrodynamic equations while the first order approximation leads
to the Navier-Stokes equations. Kinetic Theory of Gases is more than a mathematical way
to get the proper conservation equations, as it also leads to the correct expressions for the
molecular transport fluxes (of momentum, mass and energy) and provides a model based
on first principles which allows for the calculation of the corresponding molecular (i.e.,
diffusive) transport coefficients, based on basic descriptions of individual particles and
their collisions behavior. For instance, the first Chapman-Enskog order mass conservation
equation terms are

Vi=—-)Y Dijd;—Dp;VInT 3)

J



where D;; are the multicomponent diffusion coefficients, Dr; are the multicomponent ther-
mal diffusion coefficients, d; are the mass diffusion driving force vectors, given by

d; = Vx; + (x; yz)Vlnp——< Zm) 4

and where F; is the body force per unit mass acting on species i. As can be seen, the
first term in Eq. (3) provides the contribution to the mass diffusion of species i due to
composition inhomogeneities in the mixture, barodiffusion and differential external forces,
given by the generalized Fick’s law. The second term in Eq. (3) is the thermal diffusion,
i.e., the diffusive transport of mass as a consequence of a temperature gradient (also known
as thermodiffusion, thermophoresis or Ludwig—Soret transport), with corresponding mass
fluxes given by

Jri=—pyiDr;VInT (5)

2.2. Heat equation in multicomponent mixtures

As is well known, the calculation of the thermal diffusion coefficients and the partial ther-
mal conductivity according to the KTG are very closely related, thus allowing for a joint
framework for the calculation of both transport properties, as shown below. Reference
[10] studies the energy equation and heat transmission in polyatomic gas mixtures. The
heat flux vector derived from the KTG is

q= kBTZ<5-|-e,>nV )LVT—nkBTZDT, (6)

i=1 i=1

N
Y eije
. _ j=1 . . .
where kg is the Boltzmann constant, ¢; = , A' is the partial coefficient of ther-

N
y e
=1
mal conductivity and the parameter € is the Lennard Jones potential well depth (further

discussion about the values ¢;; may be found in Appendix B from additional material).
The relation between the thermal conductivity A and the partial thermal conductivity A’ is

A—l/—gﬁk-D- 7
— T;l TiVTi (

where k7 is the thermal diffusion ratio defined by (8).



N
Dri=Y_ Djjkr; i=1,....N
=1
=y (8)
Y kri =0
i=1

2.3. Calculation of the transport coefficients according to the KTG

The Kinetic Theory of Gases provides expressions for the evaluation of the molecular
transport properties of multicomponent mixtures of dilute gases. Thermal diffusion is
often referred to as a second order effect. This is because if the zero order is considered
in the Chapman-Enskog expansion, the resultant homogeneous system leads to the trivial
solution for [Dri] ), so at least the first correction in the Chapman-Enskog expansion
must be used. The multicomponent thermal diffusion coefficients [DTi](l) resultant from
the Kinetic Theory of Gases for polyatomic gases are given by
8400

[Dril () = gn’TB 9)

(1)

The parameter A’ is obtained in terms of the coefficients ay; and a(()ll)i, (see Eq. (31) of

[15D.

N
A =4y x;(alg)+af)) (10)
i=1

The values a(IO)O, a%)i and a(()ll). are the coefficients of the probability density function (PDF)

in the Boltzmann equation written in terms of the Sonine polynomials S ( ) (AKA gen-
eralized Laguerre polynomials):

< '(v+n+1
sV (=Y, (, - ) 1 (11)
=0 (n=p)IpT(v+p+1)
Assuming a small deviation from the equilibrium PDF in the Boltzmann equation, the
KTG computes the transport properties of the system in terms of the aforementioned co-
efficients by means of a variational procedure (see, e.g., [29] for further details), which

leads to the following linear system for al%)o, agz))l. and a(()ll)i (see Eq. (24a) of [15])

rsmn i:l"._7N
;;L jann = (81 =+ B ) i rs,mn = 00, 10,01 12)



together with the compatibility condition Eq. (13)

AOO 00 N

(1) (n _
Z Yjago; = 0= ,lel Zl mjxjagy; =0
j =

(13)

In the present work, instead of the L parameters shown in (12), A values are used, consis-
tent with the notation used in reference [6]. The relation between both sets of parameters

is given by

L?O 00 _ 4 gm,x, A00.00 _ 00,00
J mix; ij
L?O 10 _ —4A Ly?,oo _ _4A1000
Lllom _4A1001 oL _ 40010 ij=1,...,N (14)
j ij Jji Jji
1010 _ _ 41010
L;” —4A
0’1,01 0’1 01
Lij

As can be seen, the difference between L and A parameters is a factor of -4 except for the
super indexes 00, 00, in which case the relation is given by the former linear combination.
The previous system of equations Eq. (12) may be written as:

(1)
AOO’OO AOO,]O 0 aO? 0
—4 A107OO A10710 A10701 ago) — X (15)
0 AOl,lO AOI,OI (1) X
A
supplemented by Eq. (13), where vector a(()g) (with components ago)o, i=1,...,N), a(li))
(with components al(ll)o, i=1,...,N) and a(()ll) (with components al(lo)l, i=1,...,N) are

the N dimensional vectors related to thermal transport properties in the Chapman-Enskog
expansion, modified for polyatomic gases, and where vector x contains the mole fractions
Xi.

In general, the coefficients in Eq. (15) are given by mole fraction weighted sums
of several microscopic propertles of the chemical species in the mixture (see [10]), de-
pending on the molecular sizes, masses, elastic collision integrals—defined in terms of the
corresponding interaction potentials, specific molecular heat, inelastic collision parame-
ters and resonant self diffusion parameters. As a consequence, these coefficients depend
on mixture composition and temperature. These A coefficients can be written in terms of
the well known binary diffusion coefficients (Z;)

rs,mn
A

g3 ( kT ) /
X sncg;.gg}”* 27m;;

(16)



by means of

A:;,m" 25kBl’l Z );jcj l;ngn; rs,mn = 00,10,01 (17)
l

where o;; is the differential collision cross-section of chemical species i and j, m ;1 =

m; L j ~1 denotes the reduced mass and where the reduced collision integrals Ql(Jl D
are tabulated in reference [8]. In the former expression Eq. (17) the dimensionless func-
tions Fl;s/"" depend on temperature, but not on mixture composition, and the details are

described in Appendix B from additional material.

3. Derivation of an efficient algorithm for the calculation of the multicomponent
thermal diffusion coefficients and partial thermal conductivity according to KTG

The main idea behind the present algorithm for the calculation of the thermal diffusion
coefficients has two parts. On one hand inspection of Eq. (15) shows that the coefficient
matrix in the first block in this linear system (i.e., A°*% supplemented by Eq. (13)) is the
same matrix that has to be inverted for the calculation of the Fick diffusion coefficients D;;.
Thus, the first part of the present algorithm is to solve Eqgs. (13, 15) using the blockwise
matrix inversion formula

AIBY"' (A'+A'BD-CA'B)"'CA'| A 'B(D-CA'B)"!
(c D) _( ~(D-CA'B)"TcA™! | (D-CA'B)! )
(13)
which holds for any square matrix with entries A, B, C, D, as long as sub-matrices A and

D — CA~'B are non-singular. In the present case, according to Eq. (15), the sub-matrices
A, B, C, D are defined by

A =A% (19)
B=[ A%10 0] (20)
c { Algoo } o

D - Ryfig Aol } (22)

In the application of this strategy to the linear system under consideration the inverse of
the first block (A%% supplemented by Eq. (13), A in Eq. (18)) is already available from
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the calculation of D;;. The second part of the algorithm makes use of the observation that
the second block that needs to be inverted to solve Eq. (15), i.e., D — CA~'Bin Eq. (18),
is diagonally dominant. Hence, by scaling this part of the system (blocks A'%:00 A10.10,
A10:01 - AOL105n4 A0LOT) with the corresponding diagonal terms, the block D — CA~'B
is written as 1 + A7 (see Eq. (35) below) and its inverse can be efficiently computed by
means of the Neumann series [30] (i.e., the matrix version of the geometric series)

(1+Ar);" = (i (—Ar>’> (23)
ij

r=0

which is convergent as long as the norm of matrix Az is ||Ar|| < 1, and has fast convergence
rate if ||Ar|| < 1 (where we define matrix Ar, Eq. (35), by analogy with matrix A in Model
1 of [26]). This way the present algorithm makes full use of the information available
from the calculation of the Fick diffusion coefficients D;;, which is assumed to have been
performed prior to the calculation of the thermal diffusion coefficients. On the other hand,
the solution for D7; is written in terms of a Neumann series, in a similar way as it is done
in Model 1 of [26]. The implementation of this general strategy is shown in full detail
below.

3.1. Final expression for the KTG linear system
The system of equations (15) may be scaled according to the following expressions:

25an

rs,mn __ rs,mn
Fym = AP uit— Ay
3 a\V
~ mnj . T
amnj:_snkB ez ) Lj=1,...,N (24)
J
5
irsi - E)Lirsxi
with:
. (Ci,int.)
2,00:1 )L_l(): i 2,01: l kB i=1 N;
i i 25an 10.10 i 25ken o 2 yoeeydVS
7 D Fii BT A01.01 ( "mt‘) Dii
4 ¢ kg
(25)

p ==l e A B L o N (26)
xj i



where c; ;; 18 the internal component of the molecular heat capacities for the species i
(further details in Appendix B from additional material). The reference species N has
been selected as the species with highest mole fraction, in the same way as it is done
in Model 1 and Model 1+M of [26]. This way we are able to make use of the results
available from the calculation of D;;. On the other hand, based on the observation that the
second block in Eq. (15) is diagonally dominant, instead of using the reference species
N to define the dimensionless variables, the reference scales in this part of the system are

. . . 1 ..
given by the corresponding diagonal terms. Note that the factor — above is just a way to
X
J
write the equations in a compact way, i.e., from the computational point of view, there is
no division by magnitudes close to zero for Vanishing molar fractions!. Note also that for

Skpn AlOI0 _ Z ?;Cﬁ l;g 10,4 25iBnA21,01 (Cz;{int.)z _
it B

convenience the expressions ———

N 2

XiX¢ ( Cijint. 01,01

Z F; it have been used.
] Div \ kg ‘

Inserting the former definitions in Eq. (15), the KTG linear system is written in dimen-
sionless form as

FOO,OO FOO,IO 0 500 0
F10,00 Fl(),l() FlO’OI 510 — ilO (27)
0 FO1.10 1 ag] X01

where the resultant last 2 X N equations have been scaled with the diagonal terms to im-
prove the convergence rate of the Neumann series used in the inversion of this part of
the system Note that for monoatomic species c¢;in. = 0 and the correspondent equation
Z FO1 loaloj + do1; = Xo1; only makes sense if dp;; = 0. In this case there are two
optlons dlrect elimination of the former equations from system (27) or make them com-
patible with (28) by means of

F }0,01 _0
1!71.(])_1701 — §;; for monoatomic species (28)
X1, =0

Before using the blockwise inversion formula Eq. (18), the N equation in the linear

!Taking into account the nature of expressions F; ;1 described in Appendix B from additional material,

i ) XiXy XiX XiX,
the resultant expressions related to the molar fractions are — ‘ 6;j and ’—€6j1. In the first case '—KB,- =X
Xj Xj Xj
if i = j and zero otherwise. As well il —0j; = x; if j = [ and zero otherwise.
Xj
J
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system Eq. (27) (i.e., the last equation in the first block, which can be expressed as a
linear combination of the N — 1 previous equations) is substituted by the overall mass
conservation condition Eq. (13), which is used to calculate the last entry of vector ay.
This way the present calculation strategy ensures exact mass conservation not only for the
converged results, but also for the approximate results found at any finite iteration level of
the present algorithm. Thus we find

doon = — ) — doo (29)

and we define vector &, as the vector containing the remaining values dgo;:
dgyo; = Aoois i=1,....N—1 (30)

Inserting this last result in Eq. (27), the KTG linear system for the thermal diffusion
coefficients is finally written as Eq. (31)

1+A FO0 ¢ ay, 0~
F]0,00 FlO,]O FlO.,O] 510 — ilO (31)
0 FO1,10 1 g X01
where 9
. _ 700,00 mj ZinN 00,00 ¢ . L. .
Al]_F;'j m_N@_NNF;N 6”, l,]—l,...,N 1 (32)

Epmzﬂﬁw—g%gﬁﬂﬁm; i=1,...N: j=1,..N—1 (33
Eq. (31) is the final expression for the KTG linear system for D7; and A’. The solution
of this system can be computed by means of the blockwise inversion formula Eq. (18).
In this regard, the first sub-matrix that needs to be inverted is 1 + A, where, as can be
easily checked, A;; (defined in Eq. (32)) is the same matrix A;; given by Eq. (21) of [26].
Thus, the inverse of this block is already known from the calculation of the Fick diffusion
coefficients (see Eq. (20) of [26]), since we are assuming that the calculation of D;; has
been completed prior to the calculation of Dy; and A'.

3.2. Solution of the second block and expressions for the multicomponent thermal diffu-
sion coefficients and partial thermal conductivity

According to the scaling used to derive Eq. (31), the new block matrix to be inverted using
the blockwise matrix inversion formula (18) can be written as:
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[D—cA'B] ' = (1+A7)"" — (L+Ag)F100!
_FOLIO(:[]_ _{_AT)*I ]]__’_FOI,IO (]]_ +AT)71F10701

where, by analogy with matrix A in Model 1 of [26], we define matrix A7 by means of

(34)

]]_ +AT — F10,10 _Fl0,00(ﬂ _{_A)*IFOO,]O _F10,01F0],10 (35)

Since this matrix is close to the identity it is reasonable to expect that the Neumann series
inversion formula (Eq. (23)) can be used to define an approximate iterative algorithm with
fast convergence rate. With this idea in mind, the thermal diffusion coefficients are given
by means of

{ ﬁOO } ]l—l—A F00’10<1 +AT) (FIOOIXOI _XIO) (36)

where (1 -|—A) ~! is known from the calculation of the Fick diffusion coefficients and where
(1 +AT) can be computed in an iterative fashion using the Neumann series Eq. (23).
For instance, to leading order (i.e., for r = 0) (1 +AT) =1 , whereas the first term

(r = 1) would give (1+A7)"/ =1 —Az. Note that the first iteration does not involve
matrix multiplications.

Finally, the thermal diffusion coefficients can be easily calculated from the former result
recalling Eqgs. (9, 25, 26, 29). On the other hand, the thermal diffusion fluxes can be
directly computed by means of

jri= P L Dinéigo;V InT (37)

The coefficients a(llo)i and aéll)l. may be derived from the scaled parameters djo; and dp;; that

may be computed using the expressions:

{ a9 } =—(1+Ar)"" (F1%%%g; — %) (38)

{ ap } =% +F"10(1+A7)” (FlOOIXm—Xlo) (39

It will be noted that aforementioned matrix inversion (1 —|—A) ~ is not strictly needed to ob-
tain the vectors { ay, } { ajo } and { g1 } with a desired level of convergence. From
the computational point of view it is more efficient to simply implement algorithms with
successive matrix-vectors multiplications, see Figure 1. For that purpose the expressions
(35) and (23) must be taken into account.
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v = 1_710,01)201
w :ilo—Vl
510=W

loop for the number of iterations
v = FOL10y
v, = 1001y,
v3 = FO0.10y
V4 = (ﬂ —I—A)_l V3
v, = F10.00y,
v = F10,10y
W=V|+V)—V5+W
ajp=appt+w

end of the loop

ag; = FO1%,

ag) = Xo1 — o1

vy = FO0.105

gy = —(1+4) "vs

Figure 1: Algorithm scheme for the calculation of vectors 4,, , 410 and a9; as matrix-vector multipli-
cations
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3.3. Transport algorithm implementation and validation

The presented methodology and the algorithms from [26] have been implemented and
tested in the C++ library MuTLib, and the corresponding results have been compared
against the Fortran package EGLib [31, 23]. It is important to remark that both packages
(MuTLib and EGLib) consider the same physical effects included in the full multicompo-
nent transport description available in the Chemkin package [32]. Therefore, a gas mixture
with the same inputs leads to equivalent systems of linear equations for the transport prop-
erties evaluation and a direct inversion produces the same results.

Both packages deploy the transport magnitudes (Fick diffusion coefficients, thermal dif-
fusion coefficients and partial thermal conductivity) for a given temperature and mixture
molar fractions. To this end, MuTLib is able to read and interpolate the thermodynamic
data (specific heat), the kinetic data (collision diameter, rotational collision index, Lennard
Jones potential, etc.) and the collision integral tables for interpolation and evaluation as a
function of mixture composition and temperature. On the other hand, EGLib expects more
elaborated inputs, such us binary diffusion coefficients, collision integrals A*, B*, C*, vis-
cosity and collision integrals as polynomials of temperature for the species involved in the
mixture. EGLib also expects the specific heat as a direct input to the user subroutines and
assumes that the expressions for resonant exchange of internal energy are embedded in the
supplied binary diffusion coefficients.

Regarding the iteration level, MuTLib may be executed with different degrees of iteration
separately for the Fick diffusion coefficients and the partial thermal conductivity. On the
other hand EGLib only provides the options of either using direct inversion or a predefined
set of conjugate gradient iterations (i.e., three iterations for the thermal diffusion vector and
thermal conductivity, the last one preconditioned and two iterations for the Fick diffusion
coefficients).

3.4. Algorithm efficiency

The number of operations implied in the present algorithm is addressed below. It will be
compared against other well known algorithms, including a direct LDL” and two iterative
conjugate gradient algorithms, with and without preconditioning. It will be assumed that
the matrix system and the right hand side of the linear system are given. No considerations
are done about the operations needed to build the linear system of equations, only the
number of operations needed to reach the solution is accounted for. The approach is very
generic and the numbers of operations are estimated approximately, although minor order
numbers of operations will be kept. Any of the algorithms used for comparison may be
optimized or customized for the current problem and the number of operations may differ
slightly. Thus, the main purpose here is only to provide a general idea of the algorithm
cost in terms of the different numbers of additions and multiplications needed in each case.
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For instance, for preconditioning we have considered a left matrix-vector multiplication,
where a dense preconditioning matrix is assumed and no sparsity issues are taken into
account.

The sequence of matrix-vector multiplications in (38) (1+Az)"! (%10 — F'%0%0;) are
repeated in the expressions (36) and (39) from right to left. A single matrix-vector mul-
tiplication of order N takes MV = 2N? — N operations. The computation of the vector
F1901g0, — %1 requires N + MV operations. Taking into account the expression (35),
the resultant vector — (1+A7) (F1%%1%o; — %y0) requires ca. 7MV + 4N operations. The
value is approximated because some matrix and vector dimensions are of order N — 1 in
(35). Thus, for a number of Neumann steps r the number of operations needed to obtain
(1 +AT)71 (FIO’OIXOI —ilo) is ca. 6rMV +3rN + MV + N, and to get the solution for
the three vectors a,, , ajp and &g, around 6rMV +4MV + 3rN + 3N operations are

necessary.
N)®
BN _ gy

operations [33]. In the case of a matrix multiplication for the whole 3N system, the
matrix-vector multiplication takes 12N? — N, avoiding the zeroes terms. A general it-
erative conjugate gradient algorithm (not optimized for this particular system) requires
30rN +r (12N2 —N) operations for the solution of a 3N system of equations (see, e.g.,
[33] (10.2.16)). With preconditioning, an additional 3N matrix-vector multiplication for
the right hand side and one additional 3N matrix-vector multiplication in each iteration are
considered. The operation count results for each of the aforementioned solution algorithms
are summarized in Table 1, as a function of the number of iterations r. The expressions
shown in Table 1 are plotted in Figure 2. It is important to remark that the conjugate
gradient operation count shown in this work corresponds to a generic CG algorithm, not
to EGLib, which is specifically optimized for this particular system, leading to a lower
computational load. As can be seen, the performance of the present algorithm (see orange
lines) is better than the direct method. With the first iteration » = 1, the direct algorithm
is slower than MuTLib algorithm for any number of species. For higher levels of iteration
r =2 and r = 3, direct method (blue lines) is better for small numbers of species, under
10. The operation count of MuTLib is slightly better than a generic conjugate gradient
algorithm for small numbers of species and slightly worse for big numbers of species.
However, the operation count of MuTLib with the recommended iteration level r = 1, is
better than conjugate gradient for r > 2 for any number of species. On the other hand
Figure 2 shows that the performance of MuTLib is better than a generic preconditioned
conjugate gradient regardless of iteration level and number of species.

A direct inversion of a system of 3N equations with LDLT factorization takes
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] Algorithm Number of operations

MuTLib algorithm 12rN?> +8N?> —3rN — N
LDLT ON?
Conjugate gradient 12rN? +29rN
Preconditioned conjugate gradient | 30rN” 4 18N? 4-26rN — 3N

Table 1: Number of operations needed to solve the transport system for a N species system for several
iterative algorithms as a function of the number of iterations .
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Figure 2: Operation count needed to solve the transport system for N species according to MuTLib, direct
method LDT7, iterative conjugate gradient (CG) and preconditioned conjugate gradient (PCG) as a function
of the number of species for numbers of iterations » =1, 2, 3.
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4. Numerical applications

The performance of the present approximate method is illustrated below in two particular
cases of interest in combustion: a hydrogen premixed flame and a methane counterflow
diffusion flame. We will focus on the accuracy of the results for the thermal diffusion
fluxes Dr; and partial thermal conductivity A’ vs. number of terms included in the it-
erative algorithm. To this end the package Chemkin with full multicomponent transport
description (including Soret transport) has been used to determine the mole fraction and
temperature profiles as a function of position in each flame configuration. Thus, the trans-
port properties in the mixture are computed by Chemkin according to KTG [8] and provide
the rigorous results for D7; and A" as functions of position (termed D7; (exact KTG) and
A’ (exact KTG) below). Then, based on the mole fraction and temperature profiles pro-
vided by Chemkin, the thermal diffusion coefficients Dr; and partial thermal conductivity
A’ are re-calculated according to the present iterative algorithm (Section 3, Eq. (37)) and
the corresponding results (termed Dr; (approximate model) and A’ (approximate model)
below) are compared to the corresponding rigorous KTG values. To this end we define the
absolute error in D7; and A’ as

ADr; = |Dr; (approximate model) — Dr; (exact KTG)|

AL’ = |1/ (approximate model) — A’ (exact KTG))| (40)

and will base our accuracy analysis in terms of the maximal absolute errors as a func-
tion of position, normalized by the maximal value of each corresponding rigorous KTG
magnitude
o max (ADry;)
" max |Dr; (exact KTG)|
- max (A1)
A7 max |A’ (exact KTG)|

The same accuracy analysis will be also performed with the thermal diffusion fluxes and
partial thermal conductivity computed by means of the mixture averaged approximation
(Appendix A from additional material), and the corresponding normalized errors & and
€, are also shown.

As explained in Section 3, the calculation of the thermal diffusion coefficients and partial
thermal conductivity involves the calculation of the Fick diffusion coefficients. Hence, to
focus on the accuracy of the Neumann series used for the inversion of the new sub-matrix
1+ A7 (Eq. (35)), in the results shown below the calculation of the Fick diffusion coeffi-
cients has been performed in an analytic way. As a consequence the inverse of matrix 1 +A
is given by the corresponding exact result, which is equivalent to the leading order result
of model 1+M in the optimized implementation shown in [27]. Thus, in the convergence

(41)
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analysis shown below the normalized relative errors & and €,/ are shown as a function
of the number of terms included in the Neumann series expansion used to calculate the
inverse of the thermal diffusion sub-matrix (1 + A7) according to the present approximate
algorithm (i.e., the maximal finite value considered for index r in Eq. (23)).

4.1. Results for premixed hydrogen flames

We consider a uni-dimensional hydrogen flame deflagration in air at latm and 300K as
a function of the equivalence ratio ¢, with chemical kinetics described by the seven-step
combustion mechanism [34]. As a consequence only 8 species are present, numbered ac-
cording to: H2, 02, H20, O, OH, H, HO2, N2, with nitrogen as the reference species. As
a particular case, Fig. 3 (major species) and Fig. 4 (radicals) show the results found for
each chemical species as a function of position in a stoichiometric (¢ = 1) premixed hy-
drogen flame. Figures 3(a), 4(a) show the mole fraction and temperature profiles. Figures
3(b) and 4(b) show the thermal diffusion coefficients as a function of position for differ-
ent algorithm approximations and mixture averaged. Figures 3(c), 4(c) show the relative
errors found for different MuTLib algorithm approximations, mixture averaged and the
available EGLib approximation. As can be seen in Figs. 3(c), 4(c), the convergence rate
of the present algorithm is remarkable, yielding results which are quite accurate includ-
ing only the first order term (r = 1) in the Neumann series expansion (Eq. (23)). On the
other hand, Figs. 3(c), 4(c) also show that the mixture averaged approximation is quite
inaccurate in this particular case (errors of MA approximation are out of range in Figs.
3(c), 4(c)). This result could be expected, since the mixture averaged approximation is a
good approximation only in the dilute limit. Regarding the accuracy of EGLib, although
for some species (H2, O, OH, H) the differences are almost as good as the MuTLib ap-
proximation for r = 2, the results for 02, H20, HO2 and N2 with EGLib are similar to the
MuTLib approximation for r = 1.
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Figure 3: Results for the major species in a stoichiometric (¢ = 1) premixed hydrogen flame vs. distance
L. Left column (a): mole fraction and temperature profiles. Center column (b): thermal diffusion coef-

ficients. Right column (c¢): thermal diffusion coefs

ients percentage errors. The results for Dz; (b) and

10% x |ADTi/Drioraer | (¢) are shown for several maximal values of index r considered in the truncated Neumann
series expansion (Eq. (23)). The results for Dy; (b) using the mixture averaged (MA) approximation are
shown in yellow lines. The results for 102 x |ADTi/Drieraer| () using the EGLib (EG) r = 3 approximation are
also shown using red lines.
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Figure 5: Partial thermal conductivity in a stoichiometric (¢ = 1) premixed hydrogen flame vs. distance
L. Left column (a): partial thermal conductivity values. Center column (b): partial thermal conductivity
absolute errors . Right column (c): partial thermal conductivity percentage errors. The results are shown for
several maximal values of index r considered in the truncated Neumann series expansion (Eq. (23)). The
results using the mixture averaged (MA) approximation are shown in yellow lines. The results using the
EGLib (EG) r = 3 approximation are also shown using red lines.

Figure (5) shows the results for the partial thermal conductivity. As in the former results,
we find that the mixture averaged approximation is again quite inaccurate, while the EGLib
results for three conjugate gradient iterations (with preconditioning in the last one) provide
almost the exact values. In this case the results found with the present MuTLib algorithm
are not as accurate as those found using EGLib. However, the accuracy of MuTLib for the
partial thermal conductivity is around 2% for r = 1, which is remarkably accurate.

Figures 6, 7 and 8 show the normalized relative errors & and €, (Eq. (41)) vs. maximal
value of r in Eq. (23) found according to the present algorithm, as well as the mixture
averaged approximation. In the present analysis we have considered values of the equiva-
lence ratio ¢ covering the whole range between the lean-flame (Fig. 6) and the rich-flame
(Fig. 8) limits, while the results for a stoichiometric flame are shown in Fig. 7. As can be
seen, the present algorithm is quite accurate and has very fast convergence rate. In all the
cases considered the first order term of the Neumann series (Eq. (23)) provides maximal
relative errors of order 10% (often lower than 10%), and this error decreases by ca. an
order of magnitude with each new term included in the truncated Neumann series.

Figures 6, 7 and 8 also show that the present iterative algorithm is considerably more
accurate than the mixture averaged approximation, even if the Neumann series is truncated
at the first order term (r = 1). Regarding the comparison of relative errors among the
different species, it should be noted that the present definition of the normalized relative
errors & (Eq. (41)) penalizes those species with lowest thermal diffusion coefficients.
Therefore the species H2 and H have lower relative errors in Figs. 6, 7, 8 according to
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both, the present model and the mixture averaged approximation.
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Figure 7: Relative errors found vs. r for stoichiometric flames. Dotted horizontal lines = Mixture Averaged
Model. Continuous lines= present algorithm.
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We recall that an apparent linear decrease of & and €,/ vs. r in the semi-log Figs. 6, 7,
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8 corresponds to an exponential convergence rate of the present algorithm. Hence, the
results for the normalized relative errors €; and €, in Figs. 6, 7, 8 seem to fit to the general
exponential decrease formula

g =ge %1 (42)

where the prefactor € provides the accuracy of the present model truncated at the first
order term (r = 1), while the exponent & provides the convergence rate. The results of
this fit are shown in Fig. 9 for each particular chemical species vs. the equivalence ratio.
The most relevant feature of the present algorithm that can be seen in Fig. 9 is an overall
relative error of order 10% at the first order term and an exponential convergence rate
with a relative error reduction close to an order of magnitude for each new term included
in the truncated Neumann expansion (Eq. (23)). We also remark that the accuracy and
convergence rate of the present algorithm is not as dependent on equivalence ratio as it
happens to Model 1 and Model 1 + M of [26] for the Fick diffusion fluxes. In the present
algorithm this has been accomplished by means of the diagonal term scaling of the KTG
system (Egs. (25-26)).
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Figure 9: Results for maximal relative error &; fitted to the formula € = €1e™ ) vs. ¢ for all species. Left:

107 x first order term error &;. Right: exponent «.

4.2. Results for methane counterflow diffusion flames

To show the performance of the present algorithm in the case of a diffusion flame we
consider a counterflow diffusion flame configuration. Two counterflow jets are simulated,
with methane as fuel at x = Omm and air as oxidizer at x = 20mm. The initial compositions
are summarized in Table 2. The chemical mechanism of [35] is used, involving 58 species
and 270 reactions. The stagnation point is fixed at x = 10mm with strain rate a = 100s~!.
The Chemkin boundary conditions must be iterated to simulate the desired condition and
to obtain the molar fractions and temperature as a function of distance. The basis of the
steady flame model used in this section is described in reference [36].
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Fuel Oxidizer

Temperature T =320K T =1350K
xcus = 0.33 xmo = 0.15
Mole fractions | xop =0.15 xo2 =0.12
XN2 = 0.52 XN2 = 0.73

Table 2: Conditions of temperature and species mole fractions of fuel and oxidizer.

Figure 10 shows the results for the species with higher thermal diffusion flux, CH4, O,
H20 and N2. According to the present results we find that in this case the first order term
of the present iterative algorithm is already more accurate than both, mixture averaged
approximation and EGLib package.
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Figure 11 presents the results for the species O2, H2, CO2 and CO with meaningful ther-
mal diffusion flux. The accuracy increases with the number of iterations considered in the
truncated Neumann series expansion (Eq. (23)), as could be expected. As can be seen,
the shape of the curves is similar in all the cases, which could also be expected since the
thermal diffusion fluxes are proportional to the temperature gradient in all the cases.
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Figure 12: Partial thermal conductivity in a methane diffusion flame vs. distance L. Left column (a): partial
thermal conductivity values. Center column (b): partial thermal conductivity absolute errors . Right column
(c): partial thermal conductivity percentage errors. The results are shown for several maximal values of
index r considered in the truncated Neumann series expansion. The results using the mixture averaged
(MA) approximation are shown in yellow lines. The results using the EGLib (EG) r = 3 approximation are
also shown using red lines.

Figure (12) shows the results for the partial thermal conductivity. As can be seen, the
mixture averaged approximation is very inaccurate, while EGLib (which includes three
preconditioned conjugate gradient iterations) provides results which are indistinguishable
from the exact values. As can be seen in Fig. (12), the results found with the present
algorithm (with » = 1,2,3) are not as accurate as those found with EGLib. However,
the relative errors found with MuTLib including only the first Neumann series iteration
(r=1) is less than 5% (remaining around 3% in most of the integration domain), which is a
remarkable result.

Figure 13 shows the relative errors for the species CH4, O, H20, N2, 02, CO2, H2, CO
and the thermal conductivity for the present iterative algorithm and mixture averaged. As
in the case of the premixed hydrogen flame, the error decays exponentially and therefore
the error curves look linear in semi-logarithmic scales. As can be seen in Fig. 13, the
relative errors may be fitted to the exponential decrease formula Eq. (42), in a similar way
as it was done in the case of a premixed hydrogen flame. The results from this fit show
that € values range from 1.11% (H2) to 14.8% (N2). In the case of the convergence rate
exponent «, the results are very similar for all species, ranging between 1.35 (A’) and 1.53
(H2). Hence, the accuracy and convergence rate of the present algorithm in the methane
counterflow diffusion flame configuration is comparable to the corresponding results found
in the premixed hydrogen flame configuration.
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5. Conclusions

A new iterative algorithm for an efficient and accurate multicomponent thermal diffusion
coefficients and partial thermal conductivity calculation based on the kinetic theory of
gases (KTG) is described. The central idea leading to this new algorithm lies in using the
proper scaled parameters and a detailed examination of the different matrices that must
be inverted in the resultant system of linear equations, derived from the KTG. The terms
involving inelastic collisions and relaxation times for the internal degrees of freedom in
polyatomic gases are considered and the resonant exchange of rotational energy is also
accounted for in the case of polar gases, in addition to the classical Chapman-Enskog
expressions. Thus, the present model considers the same physical effects included in the
full multicomponent transport description considered in the Chemkin package.

In the case of a multicomponent mixture with N chemical species, the proposed algorithm
makes use of the N — 1 x N — 1 matrix inversion needed for the calculation of the Fick’s
diffusion coefficients, a problem addressed in Model 1 and Model 1+ M of reference [26].
Based on these results, the calculation of the thermal diffusion coefficients involves a new
2N x 2N (or (N+P) x (N+ P), where P is the number of non monoatomic molecules)
system of equations, which is diagonally dominant. As a consequence, scaling this system
by the corresponding diagonal terms allows for a fast convergence rate iterative algorithm,
based on the Neumann series.

The efficiency, accuracy and convergence rate of this new algorithm have been success-
fully analyzed. The number of operations implied in the present algorithm is analyzed, and
is shown to be lower than well known iterative and direct methods. The results are com-
pared against the mixture averaged approximation and the transport package developed by
Ern and Giovangigli, EGLib, for two examples of practical interest: a premixed hydrogen
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flame and a methane counterflow diffusion flame. We show that the proposed new iterative
algorithm at the first order term is already more accurate than the mixture average approx-
imation in all the cases considered. On the other hand, regarding the thermal diffusion
coefficients it is shown that the first order term of the present algorithm is comparable to
the results based on the EGLib library including three conjugate gradient iterations (the
iteration level provided in the library) for the premixed hydrogen flame, and much more
accurate for the methane diffusion flame. However, regarding the partial thermal conduc-
tivity EGLib is considerably more accurate after three conjugate gradient iterations than
the present algorithm (which provides results with relative errors of ca. 3%). Regarding
convergence rate beyond the first order term, we find that each new term in the new iter-
ative algorithm provides a relative error reduction in thermal diffusion fluxes close to an
order of magnitude, making it a very accurate and efficient algorithm.

As a general conclusion the present algorithm for the thermal diffusion coefficients and
partial thermal conductivity, together with the results shown in [26] for the Fick’s diffu-
sion coefficients, provide an extremely efficient and accurate method for the calculation
of molecular mass transport coefficients in mixtures with large numbers of components,
which will be of interest for the numerical simulation of detailed combustion mechanisms
involving large numbers of chemical species. The aforementioned new algorithms have
been implemented in the C++ software library package MuTLib (Multicomponent Trans-
port Library) for the transport properties calculations in third party applications, which is
available as additional material of this publication.

Nomenclature

A perturbation matrix for Fick’s diffusion calculation
At perturbation matrix for thermal diffusion calculation
D Fick difussion coefficient

Dy thermal difussion coefficient

9 binary diffusion coefficient

JT thermal diffusion flux

kp Boltzmann constant

n number density

p pressure
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T absolute temperature

v mixture hydrodynamic velocity (barycentric)
X mole fraction

y mass fraction

Abbreviations

DNS Direct Numerical Simulation

EGLib  Ern Giovangigli Library
KTG Kinetic Theory of Gases
MA Mixture Averaged

MuTLib Multicomponent Transport Library

Greek Symbols

€ well depth Lennard Jones potential

A thermal conductivity

A partial thermal conductivity

[ equivalence ratio

p mass density

Subscripts

(n) Chapman-Enskog approximation index
Superscripts

(n) Chapman-Enskog approximation index
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