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Abstract 24 

Live Fuel Moisture Content (LFMC) is one of the main factors affecting forest ignitability 25 

as it determines the availability of existing live fuel to burn. Currently, LFMC is 26 

monitored through spectral vegetation indices or inferred from meteorological drought 27 

indices. While useful, neither approach provides mechanistic insights into species-28 

specific LFMC variation and they are limited in the ability to forecast LFMC under 29 

altered future climates. Here, we developed a semi-mechanistic model to predict daily 30 

variation in LFMC across woody species from different functional types by adjusting a 31 

soil water balance model which estimates predawn leaf water potential (Ψpd). Our 32 

overarching goal was to balance the trade-off between biological realism, which enhances 33 

model applicability, and parameterization complexity, which may limit its value within 34 

operational settings. After calibration, model predictions were validated against a dataset 35 

comprising 1,659 LFMC observations across peninsular Spain, belonging to different 36 

functional types and from contrasting climates. The overall goodness of fit for our model 37 

(R2 = 0.5) was better than that obtained by an existing models based on drought indices 38 

(R2 = 0.3) or spectral vegetation indices (R2 = 0.1). We observed the best predictive 39 

performance for seeding shrubs (R2 = 0.6) followed by trees (R2 = 0.5) and resprouting 40 

shrubs (R2 = 0.4). Through its relatively simple parameterization, the approach developed 41 

here may pave the way for a new generation of process-based models that can be used for 42 

operational purposes within fire risk mitigation scenarios. 43 

Key words 44 
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1. Introduction 51 

Wildfires are a natural component of many terrestrial ecosystems, but they are becoming 52 

an increasing threat to civil protection, public health and national security worldwide 53 

(Borchers-Arriagada et al., 2021; Duane et al., 2021; Karavani et al., 2018; McDonald, 54 

2020; Resco de Dios and Nolan, 2021; Tedim et al., 2020). Sustainable wildfire 55 

management should not seek to eliminate all fires in ecosystems that are naturally fire-56 

prone. Instead, the target for wildfire management lies in creating fuel structures, from 57 

local to landscape scales, that reduce the risk for life and property while maintaining 58 

ecological functions. In this context, a key aspect for fire prevention and management 59 

actions is understanding the temporal changes that occur in the moisture content of both, 60 

dead and live fuels. Wildfires can only occur once critical fuel dryness thresholds are 61 

crossed (Jurdao et al., 2012; Luo et al., 2019; Nolan et al., 2016), and management can 62 

significantly alter fuel growth and provide a better knowledge of where and when live 63 

and dead fuels are in a critically dry state for assessing the risk of large wildfires (Moreno-64 

Gutiérrez et al., 2011). 65 

Wildfire activity depends on the interplay between biomass loads and connectivity 66 

along with the availability of such biomass to burn, which is strongly determined by 67 

moisture content (Boer et al., 2021). While dead fuel moisture content (DFMC) variations 68 

have been far researched (Matthews, 2014), there are significant knowledge gaps 69 

regarding live fuel moisture content (LFMC) variations that can be addressed from a plant 70 

physiology perspective. LFMC, the water content in live foliage and small twigs on a dry 71 

mass basis, critically affects forest ignitability and likelihood of fire spread (Balaguer-72 

Romano et al., 2020; Gabriel et al., 2021; Pimont et al., 2019; Rossa, 2017). This is 73 

because the water content of live tissues acts as a heat sink, consequently reducing the 74 

intensity of fire and its rate of spread (Rothermel, 1983). 75 
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In forest ecosystems, where plant biomass is inherently abundant enough to 76 

sustain a fire, fire activity is primarily constrained by the frequency and duration of dry 77 

weather periods (Boer et al., 2021). In Mediterranean forests and shrublands, amongst 78 

other parts of the world, climate aridity is projected to increase during the 21st century as 79 

a result of global change (IPCC, 2021). Consequently, increasing water scarcity may lead 80 

to longer fire seasons and higher fire danger as LFMC distributions shift towards drier 81 

levels for long periods of time (Ma et al., 2021; Resco de Dios et al., 2021). 82 

Many fire management agencies routinely monitor LFMC directly through time-83 

consuming and expensive field inventories or indirectly through remote sensing products 84 

or meteorological drought indices. Remotely-sensed approaches, which include spectral 85 

vegetation indices and radiative transfer models, allow the monitoring of LFMC over 86 

large areas at fine spatial and temporal resolutions (Yebra et al., 2013). Drought indices, 87 

such as the Drought Code (DC) from the Canadian Forest Fire Weather Index (Van 88 

Wagner, 1974), are based on daily air temperature and precipitation data and are designed 89 

to conceptually represent water dynamics in soil reservoirs. Common limitations to both 90 

indirect approaches are that they provide incomplete information on interspecific 91 

differences, at least without a priori calibrations, and that forecasting relies on empirical 92 

methods. Furthermore, a number of studies have cast doubt on the reliability of DC as an 93 

actual proxy of LFMC, at least in some plant functional types in the Mediterranean basin 94 

(Ruffault et al., 2018; Soler Martin et al., 2017). 95 

The degree of variation in LFMC within a fire season varies markedly across life-96 

forms, at least in Mediterranean environments (Resco de Dios, 2020). This variation 97 

arises from differences in physiological and anatomical characteristics controlling LFMC 98 

such as stomatal control, the degree of sclerophylly, or rooting depth (Sánchez-Martínez 99 

et al., 2020). Empirical studies have often observed how seasonal variation in LFMC is 100 



5 
 

largest in seeding shrubs, intermediate in resprouting shrubs and lowest in trees (Nolan et 101 

al., 2018; Pellizzaro et al., 2007b; Viegas et al., 2001). Seeding shrubs often have shallow 102 

root systems which cannot reach deeper water sources (Nolan et al., 2018), high resistance 103 

to embolism (Pausas et al., 2016) and poor stomatal controls (Resco de Dios, 2020), 104 

which jointly lead to the lowest LFMC values during drought periods and the largest 105 

seasonal variation. Resprouting shrub species often have deeper roots and lower drought 106 

tolerance than seeders, leading to intermediate variation in LFMC (Resco de Dios, 2020). 107 

Tree species often have the deepest rooting systems and strong stomatal controls, which 108 

buffers against short term fluctuations in shallow water levels and, consequently, they 109 

often display nearly constant LFMC throughout the fire season (Nolan et al., 2018; Viegas 110 

et al., 2001). 111 

Nolan et al. (2020) demonstrated that inter-species variation in LFMC could in 112 

principle be modelled as a function of predawn leaf water potential (Ψpd), given 113 

information on pressure-volume relationships. This approach can be further simplified 114 

and LFMC may be modelled from Ψpd using solely a linear regression when plants are 115 

operating below the turgor loss point, which is the most critical from the perspective of 116 

fire occurrence (Nolan et al., 2018). In a case study using six species from a 117 

Mediterranean forest, the prediction of LFMC from Ψpd showed an overall goodness of 118 

fit that was better than that from existing drought indices (Nolan et al., 2018). To scale 119 

up from local to larger areas, LFMC predictions would require predictions of Ψpd which, 120 

in turn, is strongly related to rhizosphere soil water potential (Ψsoil). That is, Ψpd overnight 121 

equilibrates with Ψsoil in the absence of nocturnal transpiration or significant disruptions 122 

in the soil-plant-atmosphere continuum (Ritchie and Hinckley, 1975). However, to our 123 

knowledge, no study has yet attempted large scale LFMC modelling by coupling a soil 124 

water balance model with a physiological model. 125 
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MEDFATE is a forest ecosystem model designed to simulate soil and plant water 126 

balances in forest stands with heterogeneous structure and composition (De Cáceres et 127 

al., 2021, 2015). Aboveground stand structure is represented by total height, leaf area 128 

index and crown ratio of a set plant cohort. In MEDFATE, a plant cohort represents a set 129 

of plants that belong to the same species with similar structural characteristics, including 130 

root distribution, which is specified using the depths corresponding to cumulative 50% 131 

and 95% of fine roots. Soil is represented using a set of vertical layers with different 132 

depths and physical properties. Finally, the model requires daily weather data as inputs 133 

to simulate plant hydraulics and transpiration at subdaily time steps (De Cáceres et al., 134 

2015). 135 

Here we seek to develop a novel approach for forecasting daily variations in 136 

LFMC across Mediterranean species by merging soil and plant water potential 137 

simulations from MEDFATE (De Cáceres et al., 2021) with previously developed Ψpd-138 

LFMC based models (Nolan et al., 2018). More specifically, we seek to model LFMC 139 

variation across species grouped in three functional types (seeding shrubs, resprouting 140 

shrubs and trees) from Ψpd values, and compare the results with current approaches such 141 

as the Drought Code and remotely sensed vegetation indices. To this end, we used the 142 

Spanish subset of a global LFMC database (Yebra et al., 2019) for calibration and 143 

validation. Our ultimate goal was to develop an approach that can be used within 144 

operational settings. Considering the usual trade-off between the degree of biological 145 

realism that is incorporated into a model and how applicable and easy to use the model 146 

will be, we seek to merge simplicity with biological realism to enhance applicability by 147 

making some simplifying assumptions on the biological differences across species.  148 

 149 

2. Materials and Methods 150 
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2.1 Globe-LFMC database 151 

Globe-LFMC is a global database of live fuel moisture content measured from 1,383 152 

sampling sites in 11 countries (Yebra et al., 2019). Each individual record represents an 153 

in situ destructive measurement of LFMC. We selected all sites within Spain with species 154 

specific records, resulting in 40 sampling sites containing 2,511 individual records with 155 

observed LFMC. Data includes 37 species (Methods A1) from 21 different genera 156 

covering a sampling period of 20 years from 1996 to 2017 (Table A1). Sampling sites 157 

cover many of the contrasting climates and ecoregions of peninsular Spain (Fig. 1). 158 

 159 

Figure 1. Globe-LFMC sampling sites in Spain. a) Ecoregions, b) mean annual precipitation and c) mean 160 

annual air temperature. Black circles indicate the location of our study sites. Ecoregions delimitations 161 

obtained from (Dinerstein et al., 2017) and meteorological gradients from (Chazarra Bernabé et al., 2018). 162 

 163 

Mean annual air temperature varied from 10.9 to 17.8ºC and mean annual 164 

precipitation from 243 to 1,345 mm across the selected sampling sites (Fig. 1.b-c, Table 165 
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A1). Vegetation types and ecoregions ranged from xeric sclerophyll or Mediterranean 166 

pine forests to the more mesic Cantabrian mixed forests, dominated by temperate 167 

deciduous broad-leaf species  (Fig. 1.a). 168 

2.2 MEDFATE 169 

MEDFATE (version 2.2.3) is a process-based soil-vegetation-atmosphere transfer model 170 

implemented in an R package, which uses soil, vegetation, and meteorological data to 171 

predict soil moisture dynamics (De Cáceres et al., 2021; Table A2). The model is based 172 

on the BILJOU and SIERRA water balance models (Granier et al., 1999; Mouillot et al., 173 

2001) and predicts, at a daily time steps, the soil water content as a function of soil 174 

properties, stand structure and daily climatic variables. Thus, daily changes in soil water 175 

content are calculated as the difference between precipitation, the water input, and canopy 176 

interception, plant transpiration, bare soil evaporation, surface runoff and deep drainage 177 

(De Cáceres et al., 2021, 2015). Also, the model predicts daily plant transpiration and 178 

photosynthesis rates. Based on Sperry et al. (2017), stomatal regulation of gas exchange 179 

is simulated at sub-daily steps involving detailed calculations of hydraulics, leaf energy 180 

balance and photosynthesis.  181 

We divided the soil into four layers (0-10 cm, 10-20 cm, 20-60 cm and 60-100 cm deep). 182 

When a given soil layer is filled, water percolates to the next layer below, except in the 183 

deepest layer where water is lost from the profile via deep drainage. Soil data inputs are 184 

bulk density, the percentage of clay, sand, organic matter and rock fragment content, 185 

which were derived from the Soil Grids System at 250 m resolution (Hengl et al., 2017). 186 

A previous sensitivity analysis has shown that modelled transpiration is more sensitive to 187 

meteorological or vegetation inputs such as annual rainfall and leaf area index (LAI) than 188 

to soil inputs such as soil depth of layers or soil texture variation from clayey soils to 189 

sandy soils (De Cáceres et al., 2015). 190 
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Vegetation data inputs are species identity, tree density, shrub cover, plant height, 191 

tree diameter at breast height and plant rooting depth. All data except rooting depth were 192 

obtained  from the nearest plot which includes the target species from the Third National 193 

Forest Inventory of Spain (Alberdi et al., 2016), following the same approach as in 194 

previous publications (De Cáceres et al., 2021). MEDFATE requires the rooting depth 195 

where the cumulative 50% (Z50) and 95% (Z95) of fine roots occur. Previous studies 196 

have incorporated species-specific differences from a model assuming that vegetation is 197 

at eco-hydrological equilibrium (Cabon et al., 2018). However, to simplify model 198 

parameterization and diminish computational demands, we assumed that Z50 and Z95 199 

occurred at 10 cm and 20 cm for seeding shrubs (R-), at 20 cm and 75 cm for resprouting 200 

shrubs (R+) and at 20 cm and 100 cm for trees (Tr), respectively. We chose these depths 201 

as they are consistent with previously defined soil depths and with our assumptions that 202 

seeding shrubs (R-) have shallow root systems that can only access shallow water 203 

resources; that tree (Tr) species have the deepest rooting systems and are able to extract 204 

water from superficial and also from deep layers; and that resprouting shrubs (R+) have 205 

an intermediate root distribution. MEDFATE also includes a set of species-specific plant 206 

traits covering plant size, shrub and tree allometric coefficients to predict biomass fuel 207 

loading, phenology and anatomy characteristics, tissue moisture, light extinction, 208 

transpiration, and photosynthesis (De Cáceres et al., 2021). We used the default values 209 

for each species with the aim of using a parsimonious parameterisation to enhance the 210 

potential application of the model. 211 

Temperature, precipitation and wind speed were obtained for each sampling site 212 

(in a 0.1º x 0.1º grid) from the ERA-5 Land reanalysis dataset (Hersbach et al., 2020), 213 

which provides hourly estimates of climate variables from the Copernicus Climate 214 

Change Service. Daily meteorological variables of relative humidity, incoming solar 215 
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radiation, and potential evapotranspiration were then obtained using the meteoland R 216 

package (De Cáceres et al., 2018). Relative humidity was estimated assuming that dew 217 

point temperature equals the minimum temperature, and potential solar radiation was 218 

estimated from latitude, slope and aspect. Incoming solar radiation was then obtained 219 

following Thornton and Running (1999). 220 

Input data were then used to predict daily species-specific Ψpd values and 221 

simulations were ran with a one-year spin-up period to avoid interferences from initial 222 

conditions. 223 

2.3 Model calibration and validation 224 

We divided the Globe-LFMC database into a calibration and a validation dataset. The 225 

calibration dataset was obtained by randomly sampling among sites and species using 34 226 

% of the total dataset, that is, 852 data points. After obtaining Ψpd from MEDFATE, we 227 

calibrated its relationship with LFMC based on a linear regression where, following 228 

Nolan et al., (2018), Ψpd  had been logarithmically transformed. We used a single 229 

relationship between LFMC and Ψpd for all species in the entire dataset, instead of using 230 

separate relationships for each species. This is because we sought to increase model 231 

simplicity within operational settings and because not all the species present in the dataset 232 

had enough measurements for independent calibration. The validation dataset, containing 233 

the remaining 1,659 data points (representing 66% of the total), was used to validate the 234 

LFMC predictions. Model validation was performed by a linear regression between 235 

observed and predicted LFMC calculating the adjusted R-squared (R2) to measure the 236 

goodness of fit of our predictions, as well as the intercept (β0) and the slope (β1), and their 237 

95% confidence interval, to test for model prediction biases. We also calculated the root 238 

mean square error (RMSE) and the mean absolute error (MAE) to quantify the accuracy 239 
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of the predictions, and the mean biased error (MBE; Jolliff et al., 2009) to assess if our 240 

predictions underpredict or overpredict observed data. 241 

2.4 Drought Indices and Spectral Vegetation Indices 242 

We compared the goodness of fit of our approach with predictions from existing drought 243 

indices and spectral vegetation indices using the same Globe-LFMC database validation 244 

dataset. We obtained Drought Code (DC) values using the Canadian Forest Fire Danger 245 

Rating System, as implemented in the cffdrs R package (Wang et al., 2017), using the 246 

same meteorological data sources as those previously described for MEDFATE, and also 247 

leaving a one year spin-up period to avoid interference from initial conditions. 248 

Following Marino et al. (2020), we calculated nine spectral indices (Table A3)  to 249 

infer LFMC using data from the Moderate Resolution Imaging Spectrometer (MODIS) 250 

MCD43A4 Collection 6 reflectance product produced acquired daily tiles at 500-meter 251 

resolution. Data was downloaded from the NASA Land Processes Distributed Active 252 

Archive Center (LP DAAC, https://lpdaac.usgs.gov/). Then, for each sampling date and 253 

site we extracted the values of each MODIS band as a simple pixel extraction which 254 

corresponded with the sampling site area. We regressed the spectral indices against 255 

observed LFMC to select the index with the highest adjusted R2 in subsequent analyses 256 

(Enhanced Vegetation Index (EVI), R2=0.33, Fig. A1). As EVI values included all the 257 

species present in the sampling site area, we additionally calculated the equivalent water 258 

thickness (EWT) from individual LFMC values to enhance comparability. EWT, which 259 

is a measure of water content per unit surface area of the vegetation (Sow et al., 2013), 260 

was calculated following Chakroun et al. (2015): 261 

𝐸𝑊𝑇 =
1

𝜌𝑤

1

𝑁
∑(𝐿𝐹𝑀𝐶𝑖) (

1

𝑆𝐿𝐴𝑖
)                                                                        (1) 262 

https://lpdaac.usgs.gov/
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where LFMC is the observed foliar moisture content recorded in the Globe-LFMC 263 

database, ρw is the density of pure water (1000 kg m−3) and SLA is the specific leaf area. 264 

Species-specific SLA values were obtained from the MEDFATE plant traits set. We 265 

calculated the EWT of N species contained in each study site for each sampling date by 266 

applying equation (1) for i species. Finally, as vegetation index signals saturate in the 267 

upper ranges, EVI values were logarithmically transformed before regression against 268 

EWT.  269 

2.5 Statistical analysis  270 

To assess for significant differences across the approaches used for calibration, we used 271 

an encompassing test of Davidson and MacKinnon (1993) with the “lmtest” R package 272 

(Zeileis and Hothorn, 2002).  To compare two non-nested models, the test fits a third 273 

encompassing model which contains all regressors from both models. Then, the 274 

encomptest() function performs a Wald test for comparing each models against the 275 

encompassing model. If there are significative differences between each linear model 276 

against the encompassing model, the test indicates that both linear models are 277 

significantly different. 278 

3. Results 279 

The dataset allowed for model testing and calibration under a wide range of LFMC values, 280 

which varied across functional groups as expected. That is, LFMC variation was largest 281 

in seeding shrubs (45-145%, 5 and 95% percentiles, respectively), and intermediate in 282 

resprouting shrubs (60-120%). Average variations in trees (75-140%) were larger than in 283 

shrubs due to physiological differences between Pinus and Quercus, although seasonal 284 

variations within each genus were smaller than those obtained for seeders and resprouters. 285 

Across all species and years, the average seasonal values varied between 125% in spring 286 

to 80% in summer. 287 
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 288 

3.1 Calibration, validation and comparison of MEDFATE, DC and EVI. 289 

Using the calibration dataset, we regressed predicted Ψpd (logarithmically transformed), 290 

and DC values against observed LFMC, and EVI (logarithmically transformed) against 291 

the equivalent water thickness (EWT) (Fig. A2). The encompassing test of Davidson and 292 

MacKinnon showed significant differences (p < 0.001) in the predictions of LFMC based 293 

on MEDFATE and on DC, against the encompassing model which contains all regressors 294 

from both models. Our model showed significantly better fit than DC (Fig. A2).  EVI 295 

could not be included in this analysis as the response variables were different (LFMC vs 296 

EWT). Then, the equations derived from these linear regressions were subsequently 297 

applied to Ψpd, DC and EVI values obtained for the validation dataset. LFMC predictions 298 

using our approach (MEDFATELFMC) showed a substantial improvement over those based 299 

on the drought index (DCLFMC) and the spectral vegetation (EVIEWT) index (Table 1, Fig. 300 

2). 301 

Table 1. Goodness of fit statistics for the three approaches used in this study: MEDFATELFMC, Drought Code 302 

(DCLFMC) used to predict LFMC, and Enhanced Vegetation Index (EVIEWT) used to predict EWT, for each 303 

functional type (R-, seeding shrubs; R+, resprouting shrubs; Tr, trees). We calculated the adjusted R-304 

squared (R2), the intercept (β0), and the slope (β 1), with each standard error in brackets, of the regression 305 

between observed and predicted LFMC, and also the root mean square error (RMSE), mean absolute error 306 

(MAE) and mean biased error (MBE) and the 95% confidence interval for correlation coefficients (CIlow and 307 

CIup). 308 

 R2 β 0 β 1 RMSE MAE MBE CIlow CIup 

MEDFATELFMC 0.5 -25.4 (±3.1) 1.4 (±0.0) 31.1 22.3 -8.8 1.3 1.4 

R- 0.6 -28.9 (±3.4) 1.4 (±0.0) 28.7 21.5 -4.8 1.3 1.4 

R+ 0.4 -22.1 (±12.1) 1.4 (±0.1) 32.4 21.4 -12.9 1.1 1.6 

Tr 0.5 -22.7 (±7.7) 1.4 (±0.1) 34.7 22.7 -15.8 1.2 1.6 

DCLFMC 0.3 -6.2 (±3.7) 1.1 (±0.0) 33.6 24.3 -3.4 1.0 1.2 

R- 0.5 -46.7 (±4.3) 1.5 (±0.0) 31.3 23.4 -4.6 1.5 1.6 

R+ 0.07 49.5 (±5.9) 0.4 (±0.1) 31.2 22.5 6.5 0.3 0.5 

Tr 0.09 44.2 (±11.1) 0.7 (±0.1) 41.6 29.5 -14.6 0.5 1.0 
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  EVIEWT 0.1 -0.001(±0.0) 1.0 (±0.0)  0.005 0.003 -0.0002 0.9 1.2 

R- 0.1 0.001 (±0.0) 0.7 (±0.0) 0.002 0.001 0.0004 0.6 0.9 

R+ 0.2 -0.001 (±0.0) 0.9 (±0.1) 0.004 0.003 0.0004 0.8 1.3 

Tr 0.03 -0.004 (±0.0) 0.9 (±0.4) 0.01 0.008 -0.0002 0.4 1.4 

 309 

 310 

Figure 2. Observed LFMC against predicted values from MEDFATELFMC (a-d) and Drought Code (DCLFMC; f-311 

i), and Equivalent Water Thickness against Enhanced Vegetation Index (EVIEWT; j-m) for all the data (a, f, j) 312 

or separately across functional types of seeding shrubs (R-; b, g, k) in blue, resprouting shrubs (R+; c, h, l) 313 

in purple and trees (Tr; d, I, m) in green. The line and the R2 indicate the results of least squares fitting. 314 

 315 

The overall goodness of fit of our model, MEDFATELFMC (R2 of observed against 316 

predicted LFMC relationship of 0.5), was better than for DCLFMC (R2 = 0.3) or EVIEWT 317 

(R2=0.1). The RMSE and MAE in our model (31 and 22%, respectively) were also smaller 318 

than in DCLFMC (34 and 24%, respectively). It is worth noting that the goodness of fit in 319 

DCLFMC depended on the functional type. That is, DCLFMC showed a reasonable 320 

performance (R 2= 0.5) for seeding shrubs (Fig. 2h), albeit lower than in our model (R2 = 321 

0.6, Fig. 2c). However, neither DCLFMC nor EVIEWT were reliable predictors of LFMC or 322 
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EWT respectively as the coefficients of determination in resprouting shrubs or trees were 323 

lower than R2 = 0.2 in all cases (Fig. 2).  324 

 325 

3.2 MEDFATELFMC features. 326 

Despite the improvement of MEDFATELFMC over DCLFMC and EVIEWT, it is worth noting 327 

that our approach tended towards underprediction, particularly in the upper range of 328 

LFMC values (Fig. 2, Table 1). We observed that the slope of the observed vs predicted 329 

regression was 1.4 and the MBE was -8.8%, indicating this tendency towards 330 

underprediction. Our approach showed better goodness of fit for seeding shrubs (R2= 0.6, 331 

MAE =21%) than for trees (R2= 0.5, MAE =23%) or resprouting shrubs (R2= 0.4, MAE 332 

=21%). Also, we observed that MBE was lower for seeding shrubs (-5%) than for 333 

resprouters (-13%) or trees (-16%; Table 1). Predictions of LFMC from MEDFATELFMC 334 

realistically captured the differences in temporal patterns of moisture content (Fig. A3), 335 

across genus (Table 2) and species (exemplified in Fig. 3). 336 

 337 

Table 2 Goodness of fit statistics for each genus LFMC predicted with MEDFATELFMC. Sample size (n), 338 

adjusted R-squared (R2), intercept (β0) and slope (β1), with each standard error in brackets, from 339 

regressing observed against predicted LFMC for all the data, and also separately for each functional type 340 

and each genus (when n>20). We also show the root mean squared error (RMSE), mean absolute error 341 

(MAE), and mean bias error (MBE) and the 95% confidence interval for correlation coefficients (CIlow and 342 

CIup). 343 

 n R2 β0 β1 RMSE MAE MBE CIlow CIup 

Cistus (R-) 483 0.7 -5.3 (±3.5) 1.1 (±0.0) 20.7 16.1 -5.4 1.0 1.2 

Lavandula (R-) 33 0.5 -149.6 (±50.6) 3.0 (±0.6) 68.4 52.9 -34.2 1.9 4.2 

Salvia (R-) 473 0.6 -43.2 (±5.3) 1.5 (±0.1) 30.1 24.0 -5.6 1.4 1.6 

Thymus (R-) 47 0.7 -251.2 (±31.3) 3.9 (±0.4) 41.8 33.6 4.9 3.2 4.7 

Ulex (R-) 46 0.5 -19.4 (±23.1) 1.1 (±0.3) 24.2 20.5 10.7 0.6 1.7 

Arbutus (R+) 29 0.5 -24.3 (±37.9) 1.7 (±0.3) 62.1 50.5 -49.1 1.0 2.4 

Buxus (R+) 53 0.4 53.4 (±12.5) 0.5 (±0.1) 13.2 11.3 -4.3 0.2 0.7 
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Erica (R+) 43 0.3 4.5 (±18.1) 0.9 (±0.2) 21.2 17.6 3.4 0.5 1.3 

Genista (R+) 30 0.6 -71.1 (±22.7) 1.7 (±0.3) 22.8 19.4 11.8 1.2 2.3 

Pinus (Tr) 121 0.5 64.4 (±16.9) 0.4 (±0.2) 20.5 16.8 -7.2 0.1 0.7 

Quercus (Tr) 347 0.6 -28.2 (±7.9) 1.5 (±0.1) 36.4 23.1 -17.5 1.3 1.7 

 344 

 345 
Figure 3. Observed (black dashed line) and MEDFATELFMC predicted (colour continuous line) LFMC seasonal 346 

dynamics across functional types, including a seeder (R-, Genista scorpius) in blue, a resprouting shrub 347 

(R+, Quercus coccifera) in purple and a tree (Tr, Quercus ilex) in green, in a representative sampling 348 

location (AraCin12). Error bars indicate standard error. 349 

 350 

The performance of the MEDFATELFMC model generally increased when 351 

examining variations at the genus level. We observed the best goodness of fit across 352 

seeding genera like Cistus (R2 = 0.7, MAE = 16%), Thymus (R2 = 0.7, MAE = 34%), 353 

Salvia (R2 = 0.6, MAE = 24%), Lavandula (R2 =0.5, MAE = 53%) and Ulex (R2 =0.5, 354 

MAE = 20%). We observed a higher β1 for Thymus (3.9) and Lavandula (3.0), indicating 355 

stronger underprediction of the model, but the slope remained between 1.1-1.5 for the 356 

other seeder shrubs. LFMC predictions for the two tree genera, Pinus and Quercus, 357 

showed an R2 =0.6 (Quercus) and R2 =0.5 (Pinus) and MAE between 37% (Quercus) and 358 

17% (Pinus). For resprouting shrubs, we observed a larger variation in goodness of fit, as 359 

the coefficient of correlation ranged from R2 = 0.3 in Erica (MAE = 18%), to R2 = 0.5 in 360 

Arbutus (MAE = 50%), R2 = 0.5 in Buxus (MAE = 11%) and R2 = 0.6 in Genista (MAE 361 

= 20%). 362 
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4. Discussion 363 

We developed, calibrated and validated a novel approach to predict daily values of LFMC 364 

across different species after modelling Ψpd using a plant-soil water balance model. Our 365 

approach keeps a compromise between being mechanistic and operational, as it makes a 366 

series of simplifying assumptions on the rooting depth parameters which drive, among 367 

others plant traits, inter-specific and seasonal differences. Importantly, we were able to 368 

realistically capture seasonal variations (Fig. A3) in LFMC across individuals belonging 369 

to different species (Fig. 3), genus (Table 2) and functional types (Fig. 2), and, overall, 370 

we demonstrated that our approach had a higher predictive ability than approaches based 371 

on remotely sensed spectral vegetation indices or drought indices (Table 1, Fig. 2). 372 

Our MEDFATELFMC model was able to realistically capture the temporal patterns 373 

of variation in LFMC across functional types. Following expectations, species with 374 

shallower root systems, such as seeding shrubs, showed faster LFMC reductions during 375 

the summer dry period (Fig. 3). On the other hand, tree species with deeper root systems 376 

were less responsive to seasonal dryness, showing relatively little seasonal variation in 377 

LFMC, consistent with their larger dependence on deep soil water pools. Finally, 378 

resprouting shrub species show an intermediate dependence on shallow and deep water 379 

pools between seeding shrubs and tree species, resulting in an intermediate level of 380 

seasonal LFMC variation (Nolan et al., 2018). 381 

We observed a better performance for modelling LFMC in seeding shrubs and 382 

trees than for resprouting shrubs. This may be due to a lack of temporal continuity in 383 

resprouting shrub records at most sampling sites, as there were only two sites with more 384 

than three consecutive weekly measurements. Temporal discontinuity in the data can in 385 

turn decrease model performance due to poor data quality (Quan et al., 2021). Another 386 

possibility for a poorer model performance in resprouters could be the smaller temporal 387 
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variation in LFMC records. At any rate, our method for predicting LFMC in resprouters 388 

presents a significant improvement over existing commonly used approaches based on 389 

optical remote sensing and drought indices (Fig. 2). 390 

It is likely that LFMC predictions from our approach could be improved further 391 

by a more realistic description of the factors creating temporal variation as well as 392 

differences across species. Further studies using our model may derive LFMC from Ψpd 393 

as presented here (Fig. A2), but they are encouraged to develop their own calibration, 394 

particularly if dealing with very different vegetation types. Also, it is important that future 395 

studies consider the possibility of using species-specific pressure-volume curves to obtain 396 

LFMC estimates from Ψpd (Nolan et al., 2020) to understand whether better predictions 397 

may be obtained. 398 

LFMC depends on water content relative to dry mass (Pimont et al., 2019), 399 

consequently, the incorporation of processes affecting dry mass may lead to further 400 

improvements (Jolly et al., 2014). Seasonal changes in specific leaf area, for instance, 401 

may alter maximum LFMC (Nolan et al., 2020). Similarly, differences in specific leaf 402 

area across species are likely to alter the relationship between LFMC and Ψpd. That is, at 403 

a given water potential (or water content), we can expect higher LFMC in species with 404 

larger specific leaf area because dry matter content will be lower. A more realistic 405 

description of rooting depth may also be achieved by coupling species-specific root depth 406 

models (Cabon et al., 2018). However, we chose not to incorporate these variables in the 407 

current study because we sought to develop a relatively simple model that could be easily 408 

regionalised to work at national scales within operational settings. Further research could 409 

address to which extent model predictions could be improved by incorporating 410 

phenological as well as inter-specific differences in dry mass and rooting depth. 411 
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We observed that DC provided reliable LFMC predictions for seeding shrubs, but 412 

not for trees or resprouting shrubs species (Fig. 2). In the case of EVI, we always observed 413 

a poor relationship with EWT. LFMC varies over longer time-scales than the period 414 

between two consecutive MODIS measurements (Pellizzaro et al., 2007a; Resco de Dios 415 

et al., 2021; Viegas et al., 2001). The slight temporal mismatch between LFMC and 416 

MODIS measurements is thus unlikely to significantly affect the results. Our goal was to 417 

develop a species-specific model, and, to that end, our approach showed a superior 418 

performance, allowing, for example, to model understory and overstory species 419 

separately, while remotely sensed models typically provide an integrated estimate. It is 420 

likely that EVI computed from remotely sensed imagery with higher spatial (i.e., Sentinel 421 

3), will show a stronger relationship with species-specific LFMC values than the one 422 

shown here, but as it is an empirical approach, predictive capabilities would continue to 423 

be limited. However, we used MODIS instead as it has a longer coverage for model 424 

validation and overlap with the Globe-LFMC data set. It is worth noting that recent 425 

developments in the field of remote sensed Vegetation Optical Depth to detect vegetation 426 

response to water stress, also allow for enhanced realism in LFMC predictions (Rao et 427 

al., 2020). Understanding the potential for high resolution satellites remote sensed 428 

Vegetation Optical Depth approaches in monitoring species-specific variations in LFMC 429 

is another topic for future development. 430 

Despite the large amount of input data required to run MEDFATE simulations 431 

(Table A1), much of the complexities of state variables and parameters can be hidden 432 

from the user in practical operational tools. Our approach can be implemented within 433 

large scale fire danger forecast systems and may pave the way for a new generation of 434 

process-based models that are used for operational purposes within fire prevention 435 

scenarios. 436 
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 437 

5. Conclusions 438 

We have developed an approach to predict LFMC by combining a process-based model 439 

for the estimation of Ψpd and an empirical relationship between Ψpd and LFMC that allows 440 

predictions of species-specific seasonal changes and forecasts of future flammability 441 

conditions. Our predictions show better agreement with observed LFMC than drought 442 

indices or vegetation indices, not only in general terms, but also by species functional 443 

types and genus. Our approach can be implemented within large scale fire danger forecast 444 

systems and may pave the way for a new generation of process-based models that are 445 

used for operational purposes within fire prevention scenarios. As moisture is a critical 446 

driver of fire behaviour and considering the projected increases in extreme fire weather 447 

events, we suggest the incorporation of plant physiological traits and process-based eco-448 

hydrological models to better constrain fire behaviour projections, and also to better 449 

understand fuel availability dynamics for improving fire prevention actions. 450 
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