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Abstract—The advent of the Internet of Things has generated
loads of data from the devices that are now connected to
the Internet. While the majority of the data corresponds to
measurements done by these devices, there is a second type of
information (the metadata) that provides information about the
devices themselves. Most of this metadata is still underused, when
used at all. On the other hand, the graphical user interfaces that
allow operating and/or monitoring the connected devices from
a computer or smartphone, are usually programmed from zero.
However, the metadata that describes the main properties of the
devices (i.e. inputs, outputs, precision, range, etc.) can be used
along with smart web design techniques to automatically create
these interfaces. This article proposes a framework to achieve
this, and presents an application example consisting of an online
lab of a servo-motor.

Index Terms—Internet of Things, Online labs, Metadata

I. INTRODUCTION

THe main idea behind the Internet of Things (IoT) [1], [2]
is to extend the Internet network so that it goes from

connecting just the devices that have traditionally been in
the network (computers, smartphones, printers...) to connect
a much wider variety of things (such as all types of sensors,
blinds, refrigerators, or locks). While this idea may now
sound simple, it only became a real possibility with the right
combination of mature enough technologies in: 1) WiFi and
satellite communications, 2) microprocessors and 3) batteries.

However, connecting so many different things to the Internet
has three consequences that must be taken into account [3].
The first one is that a huge amount of new data and com-
munication transmissions are now appearing, and this may be
difficult to digest by agents and/or the network, respectively.
The second one is the variety of the data formats, which
complicates even more the work of agents to read and process
all the information generated by the new things that are now
being connected. The third one is, for those applications that
require it, the need of new User Interfaces (UIs) to present
the information to human users and/or allow them to operate
these things. This paper tackles this last issue.

A video intercom that allows you to see on your phone
who is calling at your door and to open it, if you want,
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from wherever you may be, is a good example of an IoT
application that requires both visualization of information (the
video stream) and operation (a way to open the door). For
this, a UI (running on the phone in this example) is required
to both display the video and allow the user to open the
door. In this case, the UI could be rather simple, as the bare
minimum would only require a dedicated (usually rectangular)
space to broadcast the video stream and see who is calling at
the door, and a button to open the door if desired. However,
other applications require much more complex designs and
functionalities [4], [5]. An example could be a process line in
a factory that can be remotely supervised and operated. In such
a context, information from many different sources (cameras,
proximity sensors, RFID readers...) should be displayed in
the UI. Similarly, one single button would be completely
insufficient to control the operation of the process line, where
many actuators (motors, electrovalves, switches...) may play a
crucial role.

In an IoT context, each of the elements, whether they are
sensors or actuators, is an individual entity that is able to
broadcast information and/or receive operation commands au-
tonomously. These IoT devices usually provide some metadata
[6] to allow other agents to: 1) know which services are
available and 2) invoke them. Whether this agent is the final
user (for example, an end-user UI) or an intermediate element
(for example, an IoT gateway), what remains important here is
that a more or less detailed information about the capabilities
and communication features of the devices is available. This
information, when it is complete enough, can be used to build
web UIs automatically when combined with modern smart
web design techniques [7], [8]. This, in turn, has the potential
to solve, or at least alleviate, the third issue that appeared with
the advent of the IoT, mentioned two paragraphs above.

Online Labs (OLs) [9], [10], which are virtual or real lab
resources that are made available for use online, may be
considered a particular use case or application of the IoT, as
the basic idea of an OL is to connect lab things to the Internet.
While not all OLs use IoT devices and/or approaches, they
present the potential to do so. More importantly, a vast major-
ity of legacy OLs could be adapted or converted, solely with
software tools, to present IoT-type functionalities, in the sense
of communications and metadata availability. Similarly, an OL
can also be considered a simplified, or small scale, Industry
4.0 scenario, where the connected industrial plant or process
is replaced by the lab equipment, which, in many cases, is
a smaller and simpler version of an actual industrial plant
(especially for Electrical Engineering and Control Engineering
lab activities).
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The rest of the work is organized as follows. Section
II analyzes the related work in the literature regarding the
automatic generation of UIs, both for a general context and
in the online labs’ field. Section III presents the solution we
propose to achieve the automatic generation of UIs. While
contextualized for OLs, the tools and methods presented in
this section can be immediately applied to more general IoT
scenarios. Section IV gives an example that uses the proposed
solution with a servo-motor online laboratory. Section V
discusses the conclusions of this work. Finally, Section VI
provides the links to the public repositories where our solution
and motivational example are available.

II. RELATED WORK

An influential seminal work on UI generation was the SYN-
GRAPH system [11]. Many ulterior systems have followed
SYNGRAPH’s approach of producing UIs tailored to different
situations by processing input abstract functional specifica-
tions. For example, the SUPPLE system [12], [13] renders UIs
customized for specific devices and user models by optimizing
a cost function that considers the interface’s functional input
specification. Other systems, such as SUPPLE++ [14] and
MyUI [15], enable accessible interfaces adapted to users with
low vision, with mouse impaired dexterity, etc. As a result,
the focus of much research has been on defining appropriate
User Interface Description Languages (UIDLs) that support
specifying interfaces abstractly and concisely. For instance,
Navarre et al. [16] provide a comparative analysis of 25
UIDLs. Examples of this trend in the IoT domain are [17],
[18], [19], [20].

In contrast, other approaches (including ours) look for
taking advantage of things’ metadata to generate their interface
automatically. For example, the World Wide Web Consortium
(W3C) published the Web of Things (WoT) architecture and
the Thing Description (TD) model to tackle the heterogene-
ity of the hardware and protocols involved in complex IoT
infrastructures. Through their TDs, Web Things (WTs) can
expose their properties in well-known web protocols. [7], [8]
propose to generate WTs’ UIs from their TDs. In the online
experimentation area, the Smart Device Specification (SDS)
for OLs [21] can be considered as a TD equivalent. The SDS
of an OL describes what services the lab provides and, as
shown in [22], [23], it can be used to generate basic UIs.

Here, we develop some ideas briefly proposed in [24].
This paper (i) describes the metadata specification of the
Remote Interoperability Protocol (RIP) [25], (ii) explains how
to generate OLs’ UIs from RIP metadata, and (iii) provides a
fully-functional open-source implementation of our approach.
It is worth noting the generality of our work, applicable not
only in online experimentation but also in many other contexts.

III. PROPOSED SOLUTION

Adding IoT-type metadata to OLs, so that they can be
considered “smart”, has become a trend in recent years. The
first works to address this were [21], [26], which presented
a specification to turn traditional OLs into smart OLs. A
subsequent effort that resulted in an IEEE standard for online

learning objects was [27]. Similarly, our RIP protocol follows
the same ideas of the two previous works and extends them
with additional features and metadata information.

It is important to keep in mind that while RIP was initially
designed for OLs, it can be applied to other use cases
comprehended by cyber-physical systems and the IoT. When
RIP is applied to OLs, We talk about “experiments” and
“lab”, but we could simply change the terms to “processes”
and “industrial plant”, respectively, when RIP is used in an
industrial context, or to “applications” and “IoT devices”
when it is used in an IoT scenario. Therefore, the proposed
solution has the potential to be applied to a wide variety of
domains that include: lab work for education and/or research,
IoT applications such as smart homes, smart cities, smart
agriculture, etc. and Industry 4.0.

In this section, an introduction to RIP and to its essential
features is first presented. The last part shows how these
features can be used to build a UI automatically, and describes
our proposal on how a smart client, that supports RIP, can
implement this possibility.

A. Introduction to RIP & to its main features

The objective of RIP is to offer a simple, yet powerful,
communication solution usable from web clients. As such, RIP
only uses pure HTTP standard protocols. RIP exposes meta-
data and input and output methods and variables related to
a control program (for example, a LabVIEW VI) defined in
a remote computer to monitor and manipulate some physical
devices.

Next, a description of RIP’s main features and of the data
this protocol transfers is given.

1) Definition of experiments and general metadata: Ex-
isting OLs can incorporate RIP by simply installing a RIP
server implementation in the lab computer or board. Several
experiments can be defined within one single server, and
each experiment can be associated with just one single OL
model/equipment or with different ones. An experiment gets
defined by the next required data, which needs to be specified
in the RIP server:

• Simulation model or control program: Each OL experi-
ment requires a simulation model (for virtual labs) or a
control program (for real labs) that runs the mathematical
simulation or handles the connection to the hardware,
respectively.

• Path to the simulation model or the control program:
Experiments must all define the path to the simulation
model or the control program within the machine that
hosts the RIP-enabled OL.

• Experiment identifier: This identifier unequivocally pin-
points a particular experiment defined in the RIP server.

While the previous data is mandatory, the following optional
metadata may also be provided for each experiment:

• Authors: Experiments may include a list of creators or
authors.

• Description: Experiments may include a description that
provides some details about the experiment scope, possi-
ble experimental tasks, objectives, and so on.
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Fig. 1: Possible metadata sources: (1) custom-defined informa-
tion in the configuration files of the RIP server implementation
(RIP-SI), (2) lab software (Sft); either a simulation model or
a control program, and (3) lab plant with IoT devices.

• Keywords: Experiments may include a list of keywords
or related terms.

• Cameras: Finally, experiments may also include a list of
accessible URLs that stream the video grabbed by the
associated cameras. This is highly recommended for real
online labs, but not used in virtual labs.

2) Gather information of input and output variables: The
RIP server has a list of well-defined input and output variables
from the simulation model or control program associated
with each defined experiment. In this work, we understand
a variable is well-defined when it provides, at least, the
following information:

• Name: The name of the variable.
• Description: A brief description of what the variable is

and its purpose.
• Nature: Whether it is an output variable, an input variable,

or both.
• Type (or format): Defines if the variable is a boolean, a

number, a string or an array.
• Min value: The minimum value the variable can take. For

booleans, “false”; for strings, and empty string (“”); in
any other case, a number.

• Max value: The maximum value the variable can take.
For booleans, “true”; for strings, and empty string; in
any other case, a number.

• Precision: The minimum quantity in which the value of
a variable can be modified. For booleans or strings, an
empty string; in any other case, a number.

If the simulation models or the control programs allow it,
the RIP server will build the list of well-defined variables
automatically from the information contained in the software.
This possibility depends on the features offered by the software
used in the lab computer and on whether RIP provides
support for such software. Examples that currently meet both
requirements are LabVIEW and MATLAB. Another option
is that RIP receives this information from supported IoT
devices that provide metadata. That would be the case for
experiments that use real equipment, when such equipment
includes these kinds of devices. If this list cannot be built
automatically by the RIP server, either from the information
received from the simulation model/control program or from

the IoT devices themselves, RIP also provides a way to allow
a human user (normally, the lab owner) to create such list for
each OL experiment that requires it. Fig. 1 illustrates all these
possibilities.

3) Transfer the metadata: There are two levels of metadata
an agent can obtain from a RIP server. In both cases, agents
can retrieve this information through a simple REST call:

• General: This corresponds to general information about
all the experiments defined in the RIP server and about
the available communication method to get more details
about them.

• Related to an experiment: This corresponds to the infor-
mation about the input and output variables (see Section
III-A2). It also gets the metadata associated with that par-
ticular experiment (see Section III-A1). Last but not least,
it also includes information about the built-in methods
provided by RIP that an agent can call to communicate
with the OL for manipulating it and reading its state (see
next).

4) Write and read variables: An agent may use RIP’s built-
in protocol methods to manipulate the OL experiment and read
its states, which is done by reading/writing output/input vari-
ables from/to its corresponding simulation model or control
program. Just like in the previous case, a simple REST call is
all an agent needs to perform the write and read operations.

B. Use of RIP and smart web design techniques to automati-
cally create UIs

While RIP was originally defined to provide simple and
reliable communications between web client apps and lab
resources, it can also be used as a key piece to build these
client applications automatically.

Thanks to the metadata provided by RIP (see Section
III-A2), a smart client app can determine the complete list and
features of inputs and outputs, and their associated methods
to write and read them, respectively. For this, the minimum
and maximum values allowed for each input and output lab
variable, along with their precision, name, format, description,
and available REST methods are used. Fig. 2 extends Fig. 1
to depict this process.

An important detail is that all processes illustrated in Fig.
2 take place in runtime. This way, whenever a change in
the lab modifies the metadata, the HTML5 client application
can be updated automatically. This means that when a user
accesses the webpage in which the lab client app is embedded,
it will already display the required changes. If the OL client
application is open when the changes take place on the server-
side, the user only needs to refresh the webpage to get the
UI updated version. A couple of change examples that would
produce this effect are: adding a motor to the system (which
would result in having a new input), or adjusting the precision
of a sensor (which would change the associated metadata for
that output and so, the way it should be displayed).

The following two sections provide more details on how
Steps 3 and 4 are performed to achieve the automatic gener-
ation of UIs.
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Fig. 2: Use of RIP to automatically generate the UI for an OL. (1) The client, with a RIP client implementation (RIP-CI), sends
a request to ask the RIP server about the information available for an OL. (2) The RIP server sends the metadata (variables’
minimum, maximum and precision values, as well as their format, names, description and methods for reading/writing them).
Here, the RIP server also sends the URLs from which lab images can be grabbed, if any. (3) The client application reads the
received metadata and uses the information to specify the HTML UI elements (buttons, sliders, labels, etc.). (4) The client
creates all the required HTML elements and injects them into the web app on-the-fly.

1) Using the metadata to define the HTML UI elements:
The part of the metadata gathered and exchanged by RIP and
used to build the UI, has the following JSON format and
content for a system with N outputs and M inputs:

{
"outputs":{

"list":[
{

"name":"output_1",
"description":

"description_output_1",
"type":"type_output_1",
"min":"min_output_1",
"max":"max_output_1",
"precision":"precision_output_1"

},
//...
{

"name":"output_N",
"description":

"description_output_N",
"type":"type_output_N",
"min":"min_output_N",
"max":"max_output_N",
"precision":"precision_output_N"

}
],
"methods":[

{
//...

}
]

},
"inputs":{

"list":[
{

"name":"input_1",
"description":

"description_input_1",
"type":"type_input_1",

"min":"min_input_1",
"max":"max_input_1",
"precision":"precision_input_1"

},
//...
{
"name":"input_M",
"description":

"description_input_M",
"type":"type_input_M",
"min":"min_input_M",
"max":"max_input_M",
"precision":"precision_input_M"

}
],
"methods":[
{
//...

}
]

}
}

For the sake of simplicity and briefness, the methods meta-
data in the outputs and inputs fields are not included. However,
it contains all the information a client needs to create the REST
calls to: 1) subscribe for getting updates on the values of the
outputs, and 2) send requests for writing/modifying the inputs.
Interested readers can find all the details in [25].

We extended the RIP client implementation to use the
above information for building the UI elements of the web
app automatically. The UI elements are defined with different
HTML tags, depending on whether the variable is an input
or an output, and depending on its type (provided in the
metadata). The basic procedure consists of filling the HTML
tag attributes with the information received as metadata. Table
1 shows which UI elements are built for each case, as well as
the HTML tags that get automatically generated and injected
in the web app.

While many possibilities are valid here, we found the UI
elements in Table 1 offer a good solution for users to read
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Nature Type UI elements Basic HTML code

output
boolean button <input readonly type=“button”>
number label (x2) <label>
string label (x2) <label>

input
boolean button <input type=“button”>

number
label <label>
input field <input type=“number”>
slider <input type=“range”>

string label <label>
input field <input type=“text”>

TABLE I: UI elements and HTML code correspondence for
the different inputs and outputs.

and enter the data of an OL, and an example of the result can
be found in Section IV. While it is not in the scope of this
paper to explain in detail how all the HTML tags are generated
based on the metadata, we present one of the cases. Before
that, however, a few comments are needed to further explain
the previous table.

• Output booleans do not use a <label> tag because the
label (consisting on the name of the variable as it is
provided by the metadata) is added to the <input> tag
itself through its value attribute. To prevent users from
interacting with this element, the readonly property is
added to the tag.

• Output numbers and strings use two labels. The first one
takes the value of the variable’s name, as provided by the
metadata. The second one takes the value of the variable’s
value, as provided by RIP’s REST interface.

• Input numbers use a label (again, for the variable’s name),
and a numeric and a range input field, which are used to
provide two different ways of entering data in the web
app to write a value in an input variable.

• Input strings use a label (same use as in the previous
cases) and a (text) input field to allow users to enter the
new string they want to write in the variable.

One of the most illustrative examples of HTML code
generated by the RIP client implementation, is the case of
a slider created for an input number variable. For a slider
generated for an input variable i, where 1 ≤ i ≤ M , the
HTML code is (following the naming convention used in the
metadata example given at the beginning of this subsection):

<input min="min_input_i"
value="initial_value_of_input_i"
max="max_input_i"
step="precision_input_i"
type="range"
title="description_input_i"
onchange="rip.set([’input_i’],

[this.value]);"
/>

The min and max attributes of the HTML tag fix the end-
ings of the generated slider to min input i and max input i,
preventing the user to set a value out of such range. The step
attribute fixes the minimum change the values of the slider
can take and so, it must fit the precision of the input. The
title attribute provides a tooltip for the element, displayed
when the user leaves the mouse on top of it, and would
show the description provided in the metadata for the input
description input i. The initial value set for the slider in the UI

is specified through the value attribute. This value is obtained
by RIP at the moment of establishing the connection with the
remote system. Finally, the onchange instruction is used to get
the value of the slider when the user changes it (this is done
through this.value) and send it to the remote system using a
REST call (implemented in RIP in the set() method). This
method takes two parameters: 1) the name of the input to be
modified (input i), and 2) the new value the input must take
(this.value). A web app not using RIP could still build the
required REST calls on the fly simply using the information
provided by the metadata in the methods field for inputs and
outputs.

2) Arranging the HTML UI elements: Once the individual
HTML UI elements are defined, the next step is to arrange and
place them in the web app to form a friendly UI1. There are
many valid choices to do this, and the program we developed
allows users to choose between some options to change the
final layout. Nevertheless, by default, the UI is built according
to the following main rules:

1) The control panel, containing all the elements for inputs
and outputs, is placed below whatever view elements
have been added in the web application manually (if
any).

2) This panel is divided into two sections (<div> tags):
the first one contains all the inputs, while the second
one contains all the outputs. These sections are placed
in two different rows by default.

3) Both sections present the overflow HTML property to
allow some of its elements to move to a new row when
the space is not enough to accommodate them in one
single row. This is especially useful in order to make
the UI usable from mobile devices with smaller screens.

4) The elements are placed in each section from left to right
following the order they are placed in the metadata.

5) For inputs/outputs that produce several UI elements, the
label is place in the same column (not the same row) as
the input/output elements.

The configuration options implemented to give the user
some control on how the resulting UI will look like, are two:
1) to change the location of the control panel (point 1 in
the list above) and 2) to select whether the labels should
appear in the same row or in the same column (point 5 in
the above list). When the first configuration is set to place the
control panel on the right, or on the left, the input and output
sections are placed in columns instead of in rows (point 2)
and they are filled with the elements as they appear in the
metadata from top to bottom, instead of from left to right
(point 4). Fig. 3 shows a configuration window developed by
the authors to facilitate users the process of selecting between
the implemented options.

IV. CASE STUDY: SERVO-MOTOR ONLINE LAB

Servo-motors are commonly used in control engineering
courses for controlling their position and/or velocity, normally
by means of a PID. Moreover, several OLs [28], [29] have been

1We consider a UI to be “friendly” when it is responsive, its elements are
grouped by functionality, and the UI presents no usability issues.
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Fig. 3: Configuration window to select the parameters that change the layout of the resulting UI.

proposed to make them remotely accessible 24/7. Therefore,
this system provides a great example for this section.

The example presented here uses a Virtual Instrument (VI)2,
created by National Instruments (developers of LabVIEW),
as the OL’s simulation model. VIs are how programs in
LabVIEW are called, and include two parts: the block diagram
(where the model is prepared using a visual programming
language similar to Simulink) and the front panel, where the
UI is built. Since this example uses a virtual model and no
hardware is involved, the origin of the metadata, as represented
in Fig. 1, is the second case, which, in this case, is the VI.
The reason to use an existing VI, created by a third-party,
instead of creating a new one ourselves, is to demonstrate that
our solution can be applied to many available examples out
there with little to no effort. The only modifications done to
National Instruments’ VI were to reconvert elements that used
a certain type (clusters) not currently supported by RIP, and
remove repeated inputs/outputs. This process took the authors
less than 10 minutes. Fig. 4 shows the VI’s front panel after
it was modified to meet the requirements imposed by RIP.
Initially, this lab could only be used on-site, sitting in front of
the computer where the VI and LabVIEW are installed and
run. Thanks to the use of RIP, and the web client app that is
built automatically, the lab becomes remotely operable from a
webpage, following the architecture presented in Fig. 2.

Table 2 presents the inputs and outputs of the modified VI
(and so, the data exchanged between the lab server and the
web app client), where:

2The VI used for the presented example is SimEx DC Motor Position
Control with PID.vi, which comes with NI’s Control & Simulation toolkit.

inputs Disturbance Setpoint Reset control Kc Ti Td
outputs Position Voltage Time

TABLE II: Inputs and outputs for the the servo-motor position
control example by National Instruments.

• For the inputs: Disturbance, Setpoint and Reset represent
the disturbance a user can enter to the system, the desired
setpoint (desired position, in this case) and a control to
reset the controller, respectively. Kc, Td, and Ti represent
the three parameters of the PID controller. An additional
input (stop) is always added by RIP to give the user a
way to disconnect the client from the server and stop the
process running there. It does not have to be defined in the
control program or the simulation model (as it happens in
this example), which is why it is not listed in this table.

• For the outputs: Position, Voltage, and Time represent the
actual position of the motor (in radians) at a given time,
the input voltage to the motor (the control signal in this
example), and the current time, respectively.

For this example, the web application including the RIP
Javascript client was prepared in Easy Javascript Simulations
(EJS)3, a free and open-source authoring tool widely used to
develop online labs. Fig. 5 presents the main panel in EJS to
setup the web app and gives an idea on how fast and effortless
is to prepare a web app so that it generates its UI automatically.
The configuration window in Fig. 3 is included in EJS to make
it very simple to specify the desired layout for the UI. It is
important to highlight that EJS is not required, but rather used
as a tool where we integrated RIP to avoid users having to

3https://www.um.es/fem/EjsWiki/

https://www.um.es/fem/EjsWiki/
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Fig. 4: Modified version of National Instruments’ VI example for position control of a servo-motor. Required changes were:
1) replace the cluster control representing the PID with three float controls for each of the PID parameters, and 2) remove
all repeated controls/indicators in any of their forms. The “Time” output was also added, not because it is required, but to
explicitly provide this important information in the resulting web app.

Fig. 5: Setup of the servo-motor web application in EJS.
Defining the UI is reduced to inserting a main and a drawing
panel (which correspond to <div> tags in HTML), and an
image of a disc to represent the motor in the virtual lab.

write one single line of code when preparing the bare-bones
of the web application that will build its UI automatically.

When the resulting web app, generated by EJS, is opened
and the RIP server is not running or reachable, the web
browser displays a simple UI with no functionality. Since only
the motor image was defined when building the web app in
EJS, that is all that appears (see the top image in Fig. 6).
However, when the RIP server is running and reachable, the
RIP client in the web app gets all the required metadata to
automatically build the controls and indicators in the UI, and
the result is a functional app (bottom image in Fig. 6).

As expected, the bottom image in Fig. 6 shows the UI
elements to read and write the data in the OL, and listed in
Table 2. Not only these components are displayed in the UI,
but they are also fully functional and capable of receiving and
sending the data when expected.

As discussed in Section III-B2, the automatic UI builder ac-
cepts some layout configurations. In EJS, this is done through
a configuration window where users can choose where to place

the control panel at, and whether they prefer labels to appear
in the same column or in the same row as the inputs/outputs.
Fig. 7 shows an example of the UI built automatically with
a different selection of parameters. Additionally, this example
uses different CSS options than the ones that come with EJS
by default to show a more up-to-date UI.

An aspect that is usually very important in OLs is plotting
and visualizing data in graphs. However, the application gen-
erated in this example does not offer this option. The reason
for this is twofold. First, representing data in a graph usually
requires selecting a pair of variables that makes sense plotting
one against the other. It also requires some knowledge to
decide which of the two variables should be better placed in
the y-axis, and which one in the x-axis. Therefore, automating
this process is not possible unless the metadata received from
RIP (or any other agent) includes some information about
the relation between the different input and output variables.
Second, previous works (such as [30]) provide a compatible
solution for plotting data in OL web apps other than creating a
UI in which pre-built graphs are already embedded. Actually,
[30] relies on the same tools (RIP for the lab side and HTML5
for the client-side) and mechanism (exchanging and processing
the lab metadata) to achieve this. These works propose giving
end-users (normally students or researchers) the power to
select the data to be plotted (variables for the x and y axes),
the labels, the scale and so on, instead of forcing users to work
with predefined graphs that are already integrated within the
OL web application. This, in turn, offers a better learning or
research experience, as users are free to plot whatever data
they want, whenever they need it.

V. CONCLUSIONS

This work presented the tools and methodology to automat-
ically build user interfaces for web applications that connect
to remote resources. These resources can be either virtual (for
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Fig. 6: Web app when the metadata is not available and the UI cannot be built automatically (top), and when it is (bottom).
The Stop button is added by RIP automatically even if it is not defined in the server, and the server executes its action when
the user presses this button in the app or when the client disconnects. This example uses EJS’ default CSS configuration.

Fig. 7: Web app automatically built with different parameters
and using a preset CSS different to EJS’ default one.

simulation programs running in a computer, for example) or
real (for IoT and other hardware devices).

The tools and methodology proposed to achieve this are
based on: 1) the use of IoT-type metadata that contains
all the relevant information of the remote resources to be
monitored and/or operated from the web app, and 2) smart web

design techniques to build the HTML+Javascript interface.
By obtaining the metadata from the remote resources and
parsing their information, the basic HTML5 user interface
elements can be built and arranged automatically in the web
app using, for example, fixed layouts that may, too, accept
some additional custom configuration parameters.

The overall process is illustrated with an example of a
servo-motor online lab, widely used in engineering education.
However, it could be applied in many other applications, and
even contexts, such as IoT, smart homes, and Industry 4.0.

The main advantage of the proposed method is that it
saves time and effort in developing the user interfaces for the
web applications required to interact with remotely available
resources, although more work is needed in terms of how these
user interfaces can be built to offer more complex and user-
friendly configurations.

Current limitations of the presented solution include: 1)
units are not specifically considered in the metadata and have
to be added in a variable’s name if they are required, 2)
complex types (such as arrays) are not supported, 3) options
to select between different UI layouts are still very limited,
as shown in Fig. 3, and 4) it has only been tested with
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fairly simple processes/lab resources so far. However, future
work in both the RIP specification and the RIP client imple-
mentation will address the previous first three shortcomings.
Additionally, the authors consider applying machine learning
techniques to build the UI automatically, instead of using fixed
HTML+CSS layouts. Finally, our plans also include testing the
proposed solution with more complex equipment with a higher
resemblance to industrial plants.

VI. MATERIAL

Following open science’s best practices4, our software arti-
facts are available publicly.

• The RIP server implementation that supports the solution
described in Section III is available at https://github.com/
Nebulous-Systems/rip-server labview.

• EJS with the RIP client implementation that includes the
UI automatic build feature, is available at https://gitlab.
com/ejsS/tool

• The case study presented in Section IV is
available at https://github.com/Nebulous-Systems/
Servo-Automatic-UI-Generation-Example
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