
Customized Online Laboratory Experiments
A general tool and its application to the Furuta inverted pendulum

Daniel Galan, Dictino Chaos, Luis de la Torre,

Ernesto Aranda-Escolastico, and Ruben Heradio

POC: D. Galan (dgalan@dia.uned.es)

Thanks to online laboratories, students can perform experimental activities from their
mobile devices and/or computers. This paper proposes an experimentation environment that2

extends the capabilities of interactive online labs with scripting language support. Thus, control
engineering students can specify complex experiments, avoid routine tasks, and empirically test4

controllers made by themselves.

To put our work into context, let us introduce two popular taxonomies for labs and6

experiments. First, two criteria can be used to classify labs: (i) according to where they are
accessed, labs can be local or remote; and (ii) according to their physical nature, labs can be8

real plants or computer simulations. Hence, these criteria can be combined in four different ways
[1]:10

1) Local access & real resource: Traditional hands-on labs.
2) Local access & simulated resource: Local virtual labs. The plant is substituted by a12

computer simulation.
3) Online & real resource: Online remote labs. The plant is real, but accessed through the14

Internet.
4) Online & simulated resource: Online virtual labs. The plant is replaced by a simulation16

that can be remotely and simultaneously accessed by many students, enabling virtual
classrooms.18

Our approach supports scripting experiments for online remote labs and local/online virtual
labs. Harward et al. [2] propose the following classification regarding the type of experiments20

that can be undertaken on remote and virtual labs:

1) Batched experiments. The student specifies the experiment beforehand and submits it to22

the lab. When the experiment finishes, the student receives the results. No feedback is

1



provided during the experiment execution. The MIT Microelectronics WebLab [3] is a
good example of this type of labs.2

2) Interactive experiments. The student can manipulate lab parameters during the experiment
execution, receiving immediate feedback through sensors, cameras and other devices. For4

example, with the Ball and Beam remote lab described in [4], students can adjust controller
parameters in real-time to stabilize the ball in a specific position of the beam while they6

visualize the effects in the plant.
3) Sensor Experiments. The student only monitors or analyzes real-time data streams without8

influencing the lab execution. An example of this type of experiments is the MIT
instrumented flagpole [5].10

We propose the use of an Experimentation Environment (EE) with which students can
perform interactive tasks with virtual and remote laboratories, but also, write their own code and12

develop more complex tasks. Our approach provides a general solution for all the previously
defined kind of labs and also enables combining them. For instance, students can program an14

experiment in the EE. Then, they can monitor its execution, or even modify the experiment
on-the-fly by directly manipulating the lab. The pedagogical benefits of this flexibility will be16

illustrated with two experiments on a Furuta inverted pendulum: (i) keeping the pendulum in the
upright position, while its rotatory arm follows the reference, and (ii) implementing the swing18

up control. Moreover, this paper also reports the successful application of our approach in a
distance-education university course. Check “This work at a glance” to see a brief summary and20

what we have achieved with this work.

Related Work22

Current experimentation scripting solutions for control engineering education are ad-hoc
tools that only work on specific virtual or remote labs. In contrast, our approach provides a24

general solution; EE enables scripting experiments on any lab developed with Easy Java/javascript
Simulations (EJsS) [6], gathering and visualizing real-time data from them. Furthermore, EE26

provides a simple interface to the remaining labs created with any other technology; that is, to
interconnect a non-EJsS lab with EE. The only requirement the lab must satisfy is implementing28

the reduced function list in the interface.

Table 1 includes some significant laboratories that use distinct programming languages to30

script experiments. Data have been obtained from literature reviews [7], [8], [9]. The first two
columns are the name and the description of the laboratory or environment. The rest of the32

columns provide important information about the most relevant features general experimentation
environments should have, such as the followings:34

2



1) The grade of coupling between the experimentation tools and the plant that is either
simulated or used in the real lab.2

2) The usability of the system, the ease with which users can perform experiments using the
available resources.4

3) The reusability of the experimentation tools presented in the lab for other setups.
4) Whether the experimentation tools are embedded in the lab user interface or not.6

Finally, Table 1 includes the name of the language to program the experiments, whether
this language is easy to learn or not (learnability), the ability to perform complex experiments8

(power), and, if the language is a Domain-Specific Language (DSL) or General Purpose one
(GPL). As discussed later in this paper, all these characteristics were assessed through a student’s10

questionnaire. According to the table:

1) Coupling is very high between the labs and their experimentation scripting support, except12

for general purpose environments such as PLC programming or assembly code. Any change
in the lab requires modifications in its experimentation scripting support. In contrast, EE14

has been specifically designed so that changes in the lab do not alter the functionality of
the environment and thus do not require any extra changes.16

2) When the experimentation scripting support is embedded into the lab, reusing it in other
labs usually requires making profound changes in every particular lab. In contrast, EE is18

a general solution where any lab is easily deployed.
3) A DSL specifically designed to program experiments is usually easier to learn and use20

than a GPL created for any kind of task [10]. In addition, GPLs involve more risks and
require the implementation of security layers in the labs. EE provides students with a22

Blockly DSL for most tasks. Nevertheless, for those special situations when the DSL is
not enough, EE supports complementing the DSL code with general JavaScript code.24

A Universal Experimentation Environment for Virtual and Remote labs

EE is open source, and it is distributed as part of EJSApp, which is a package to deploy26

EJsS labs on the Moodle Learning Management System (LMS) and it is freely available at:
https://github.com/UNEDLabs/moodle-mod_ejsapp. EE supports:28

1) Programming experiments both graphically or textually. EE aims to be useful not only
for any type of online lab, but also for undergraduate and secondary students. For that30

reason, it offers both a visual and a textual programming language. The first one, Blockly,
is especially indicated for students without an in-depth knowledge of programming, or32

who are interested in undertaking simple experiments. The second, JavaScript, allows the

3

https://github.com/UNEDLabs/moodle-mod_ejsapp


user to perform more complex tasks, such as experiments that require complex equations.
Figure 6 exemplifies this situation.2

2) Extracting and plotting data from the experiments. EE allows students to choose which
data to analyze and plot. They can choose from line charts: the X and Y-axis data, the4

sampling period and whether they want to display all the data or just the last “n” points.
Students can collect data at any specific moment of the experiment. They can select which6

data to visualize and so, they are not constrained by the laboratory interface limits. In this
way, they become aware of the importance of something they take for granted in traditional8

interactive virtual and remote laboratories.
3) Real-time interaction among the lab, the experiment code and the user. Students can run10

their experiments with just a mouse click. Since the experiment execution does not require
compilation or waiting times, students can quickly make changes to correct errors or try12

different algorithms. The experiments have an immediate effect on the laboratory, reflecting
all changes in real time at the Graphical User Interface (GUI).14

User Interface Elements

Figure 1 shows the three main components of the EE user interface, which are detailed16

below:

1) Experiment Editor (marked with a red rectangle at the bottom): This is where the18

experiments are programmed. It consists of a menu and an editing area. The first one,
located on the left side, is where the different blocks used to design the scripts are available20

and organized in categories. The experiment is defined by joining different blocks. Later on,
EE will interpret and execute the experiment automatically. It does not require compilation22

or waiting times; the creation process is fast, dynamic and simple.
2) Custom Charts Panel (blue box at the top right): Students can define customized plots24

using EE. They decide which values or expressions to represent and how they want to
visualize them. It is possible to set the sampling period, and the number of points to be26

plotted. The information is depicted in real time as the experiment progresses. EE enables
students to create different types of graphs for the same experiment, or even compare the28

result of previous tests on the same chart.
3) Online Laboratory (green box at the top left): Online laboratories, whether they are30

virtual or remote (as their nature is transparent to the environment), do not need additional
adaptations and are automatically included in EE.32

4



Identifying and Separating User Roles

Along the online lab life cycle, three roles can be distinguished: the designer (the person2

who creates the laboratory), the instructor (who uses the lab with teaching purposes), and the
students (who carry out experiments with learning purposes). The use of EE offers several4

advantages to each of them.

As EE can collect and plot any experimental data, the lab designer is freed from the need6

to consider what data and plots are significant for any potentially interesting experiment in order
to implement the corresponding functionality in the lab.8

Thanks to EE,instructors can propose more diverse tasks to their students. Also, the
evaluation of the students’ work can be enhanced thanks to the possibility of reviewing the10

students’ code to see how they reached their lab results. In addition to being a practical exercise,
the experiments can be used as a tutorial or as an example, so the instructor can distribute the12

laboratory along with experiments to better explain different phenomena.

Lastly, EE is a general-purpose tool for students to perform different lab tasks, including14

those that the designer and the instructor might not have contemplated. This allows research-
based learning techniques to be used in any laboratory. The environment gives students freedom16

and precision, allowing them to modify variables that might not appear in the interface. Moreover,
they can add actions to be performed when an event is triggered and automate repetitive tasks18

such as data collection. It also enables the custom design and analysis of charts. Experiments
can be saved (so that students can continue unfinished work at any time) and shared (so they20

can study different approaches to accomplish the same task).

Figure 2 shows a clear work-flow of the work to be done by each of the roles involved in22

the laboratory life cycle. The tools cited as examples in the figure have been used in the final
implementation of EE and are described throughout the paper.24

Underlying EE Technologies

The following points summarize the technologies upon which EE is built:26

1) EjsS to develop online laboratories. The creation of student-friendly and effective online
interactive labs requires programming knowledge and development time. EjsS is a program28

generator that facilitates the design and distribution of these laboratories [11]. Users can
focus on designing the lab user interface and, in the case of virtual labs, on defining their30

mathematical models. Then, EjsS automatically generates the Java or JavaScript code that

5



implements the lab. As nowadays most browsers do not support Java applets because of a
number of security issues, it is preferable to work with the JavaScript generated code. This2

way, labs can be directly accessed through a web browser without installing any program.
EjsS is part of Open Source Physics (OSP), which organizes and shares collections of4

open-source educational resources in Physics through the ComPADRE Digital Library [6].
In particular, OSP offers more than 500 EjsS labs [12], ready to be used with our EE.6

2) Blockly to graphically script experiments. Blockly is an open source library created by
Google in 2011 to develop visual programming environments and used in many applica-8

tions [13], [14]. Scripts are generated by connecting blocks with different functionalities
between them, as if it was a puzzle. The final script can be translated to JavaScript, Python,10

Dart, PHP or adapted to any user-defined language [15]. In the case of EJsS, since the
labs will be preferably implemented in JavaScript, Blockly diagrams are translated into12

JavaScript. We have enriched the standard programming environment offered by Blockly
with new blocks and functions to control every aspect required by online labs. Table 214

summarizes the new blocks.
3) Chart.js to plot experimental data. Chart.js is an open-source JavaScript library that enables16

the creation of HTML5 responsive charts [16].
4) UNILabs to deploy EE and online labs. UNILabs [17] is an international network of virtual18

and remote labs supported by different universities around the world [18]. As UNILabs is
based on Moodle, the management and deployment of labs and experimentation resources20

are simple tasks for the instructors.

Use Examples of the EE in a Furuta Pendulum System22

This section exemplifies the educational uses of EE by defining two experiments for the
Furuta inverted pendulum. First, a virtual lab for the pendulum is presented; then, its remote24

lab is described. By using both, students can contrast the theoretical results, obtained from the
virtual lab, against the real data, obtained from the remote lab. Both labs are open-source and26

freely available at: https://github.com/AnonymCSM/FurutaPendulum. There it is
also possible to find all the information provided to students to work with the laboratories: a28

basic guide to the Furuta pendulum, the documentation relating to the lab interface and the task
protocol.30

Virtual Lab

Inverted pendulum systems and, particularly, the Furuta pendulum, have been used as a32

benchmark in control engineering for years because of their dual nature [19]: while they usually

6

https://github.com/AnonymCSM/FurutaPendulum


are easily describable systems, they also imply challenging problems from the point of view of
non-linear dynamics and control theory.2

A Furuta pendulum is formed by a rigid link attached to an arm which can rotate in
a horizontal plane, perpendicular to the pendulum (see Figure 3). This rotary arm results in4

the main difference with other inverted pendulum systems, and adds additional complexities in
the form of Coriolis forces and centrifugal torques. This provides not only a more involved6

mathematical model but also interesting behaviors to study [20], [21], [22].

The Furuta pendulum is schematically described in Figure 3. The system has two degrees
of freedom, which are the angle described by the rotary arm ψ and the angle described by the
pendulum θ. Rigorously, the configuration space is a 2-torus, that is,

(
ψ θ

)
∈ S1×S1, and the

corresponding tangent space is
(
ψ θ ψ̇ θ̇

)
∈ S1 × S1 × R2. If we assume that both angles

are increasing when the arm and the pendulum rotates counter-clockwise (as shown in Figure
3), their positions in a Cartesian coordinate system s0 and s1 can be expressed as follows

s0 = l0

sinψ

cosψ

0

 (1)

s1 =

L0 sinψ + l1 sin θ cosψ

L0 cosψ − l1 sin θ sinψ
l1 cos θ

 , (2)

where l0, l1 are the length to their center of mass of the rotary arm and the pendulum, respectively8

and L0 is the total length of the rotary arm. For the sake of brevity, the equations of motion
of the inverted pendulum are not reproduced, but they can be derived from the Euler-Lagrange10

method as in [20], [21], [22].

The virtual laboratory consists of a simulation of the pendulum equations developed with12

EJsS. The simulation incorporates a 3D graphical representation of the pendulum and user inputs
to interact with it, as shown in Figure 4. The user interface is designed as simple as possible to14

allow only the most basic actions: change the position of the pendulum, the reference, as well
as stop, pause or resume the simulation.16

Remote Lab

The remote laboratory is composed of two main components: 1) the server side, developed18

in LabVIEW, that accepts connections using an element called JIL [23] and 2) the view in EJsS,
whose variables are linked to the ones in the remote laboratory. The implementation of the server20

7



in LabVIEW and the EJsS files that include JIL communication between the software and the
hardware can also be found at https://github.com/AnonymCSM/FurutaPendulum.2

The design of the remote laboratory is very close to the virtual one, replacing the 3D
view with a webcam video streaming of the pendulum and eliminating the interaction with the4

variables that can not be directly manipulated on the real plant (angles θ and ψ, which in our
virtual and remote labs are called α and β, respectively).6

The virtual and remote laboratory user interfaces have been streamlined as much as
possible, without losing usability. This is the crucial difference from previous designs that are8

bloated, and include lots of tools and visualizations, each focused on a limited set of very specific
tasks.10

A vital feature of the laboratory is that it enables the user to change the controller of the
plant. This has been done in previous laboratories as well, but using a specific language to the12

domain of application, which needs a special server for its execution (see [24] for a previous
successful implementation of this idea). In this work, this task has been addressed with a novel14

approach, being the controller defined in JavaScript. Hence, the same code can interact without
modification with the simulation on the browser and with the real system. In the latter case, the16

JavaScript code is executed in a sandbox in LabVIEW.

Furthermore, the controller does not need “to be written” at all, and the EJsS lab does18

not have an editor or options to load and save files. Everything (from the controller to the
visualization) can be constructed with our EE, as the next section illustrates. Thus, the user20

interface is general, simple and can be used for many different purposes and assignments without
any modification.22

Experiment 1: Keeping the Pendulum in the Upright Position While the Rotatory Arm
Follows the Reference Changes24

This activity aims to develop a state feedback linear control law capable of keeping the
pendulum in a vertical and upward position while the base of the pendulum is following position26

setpoint changes.

For this remote laboratory, the controller has been implemented on the server side. Instead28

of implementing it on the client side, where the control signal should be sent periodically to
the server. This is mandatory for the Furuta pendulum because it is a very fast plant (stability30

is lost above 30ms of sampling time or delay).

Without students having to indicate anything, the experimentation environment is capable32

8

https://github.com/AnonymCSM/FurutaPendulum


of distinguishing whether the code fragments must be executed locally or remotely, depending on
whether the laboratory is virtual or remote and the type of code the student wants to run. Figure2

5 shows an experiment with local and remote code to control the pendulum and to visualize
the outputs. Code fragments related to the visualization are executed locally. However, the code4

that substitutes the controller function (the one inside the red rectangle in the figure) is executed
remotely.6

At the top of Figure 5, the experiment designed by the student is shown. At the bottom, the
server side is represented, showing the program implemented in LabVIEW, which is responsible8

for controlling the input and sending the output of the Furuta pendulum. The code that is executed
in the server part is marked in a red rectangle. The controller designed using the EE is displayed10

above. In the lower part, the already translated code that is remotely executed on the server
is shown. Although this controller statements are programmed on the client side in JavaScript12

language, LabVIEW has tools to translate and execute it, so the received code is evaluated at
each execution step, transmitting the new control action value to the motor.14

In the top part of Figure 5 (in the client side), there is a possible design for the proposed
experiment. It consists of joining different blocks to form a script. The first of these blocks,16

called “Create Chart”, situated at the top of the editing area, is used to define the graph for
evaluating the control performance. It plots the reference for the angle described by the rotatory18

arm (“betaRef ”) and its real value (“beta”), obtained from the remote plant as a function of the
time (“t”). A sample shall be taken every 100 milliseconds. After defining the visual elements,20

there is a set of blocks that describe the actual execution of the experiment. The first of these, the
“start data collection” block, is used for the system to start taking the measures defined in the22

“Create Chart” block and plotting them in a graph. The first “set” block is used to tell the server
that a controller designed by the student will be used. Finally, the “replace function” block is24

responsible for modifying the function implemented by the controller. This code fragment makes
use of the following laboratory variables: “beta”, “betaRef ”, “alpha”, “dbeta” and “dalpha”26

referring to the real beta angle, the reference beta angle, the real alpha angle, the derivative of
beta and the derivative of alpha, respectively. Finally, the result obtained from the controller28

code is passed to the variable “u”, which refers to the motor voltage connected to the rigid arm.
Once the experiment is executed, the system translates the code automatically into JavaScript30

and the statements inside the “replace function” block are sent to the server to be used as the
controller for the pendulum system.32

Figure 1 shows a screenshot of the experimentation environment after executing the
experiment. At the top right part, it is the user-defined graph with the results. It shows the34

changes in the angle of reference corresponding to, at first, a step to 1.48 radians and, later,

9



to -0.38 radians. These changes were made during the execution of the experiment using the
interactive element of the user interface.2

The performance of different controllers can be evaluated quickly and easily with this
experiment. It can be observed how the parameters used are appropriate, since, in addition to4

keeping the pendulum in equilibrium, the system can follow the reference efficiently. Thanks to
the IP-camera, which provides a front view of the plant, and to the user-defined graphs, both6

updated in real time, students can corroborate the results visually and empirically. In case students
would like to try different parameters, they merely have to modify them in the experiment and8

relaunch it. Then, they could compare the previous graph with the new one to study the controller
efficiency, or to see if the system becomes unstable and the pendulum falls.10

Experiment 2: Implementing the Swing Up Control

It is possible to design much more complicated controllers maintaining the same structure12

in the design of the experiment used in the previous experience. The controller proposed in this
experiment is based on the design of K. J. Åström and K. Furuta [25]. This controller is not14

only able to follow the rotating arm angle reference, but also to swing the pendulum upwards
if it falls. This is something that might happen if the change in angle reference is very abrupt.16

In this way, if the pendulum is outside the attraction region, the controller will execute the code
that will bring it back to the desired equilibrium position. Otherwise, the control will be the18

same as that studied in the previous experiment.

Since this is an advanced controller that requires more lines of code, there can be20

students to whom the use of blocks may impose an added difficulty in the creation process.
The experimentation environment offers the possibility of evaluating code written directly in22

JavaScript to make the design task more accessible. This block can be activated or deactivated
by the instructor according to the requirements of the activity to be performed.24

To check the correct operation of this controller, it is necessary to start from an initial
situation in which the pendulum is down. To do this, a possibility is to initially send a controller26

to the server where the control signal is 0 (u = 0), and then transmit the new controller and test
whether or not the pendulum rises.28

Figure 6 shows the script proposed for the experiment. Compared to the previous example,
the main change is the controller code, which has been implemented in JavaScript directly.30

Instead of creating equations by verbosely combining blocks, the “evaluate” block is used.
The lower part of the figure shows in detail the JavaScript code that has been used. As this32

implementation varies from the previous one in the elevation of the pendulum, to check if the

10



script works correctly it is enough to see through the IP-camera if the pendulum really rises
once the experiment is executed.2

Empirical Assessment of the EE Pedagogical Value

The evaluation proposed in this section was undertaken for the course Fundamentals of4

Automatic Control to assess the EE educational utility. This course is taught at the National
University of Distance Education in Spain, in the 4th year of the degree associated with the6

faculties of Physical Sciences and Computer Science. 23 students of Physical Sciences (from a
total of 27) and 17 of Computer Science participated (of 22 students enrolled) in this process.8

The evaluation consisted of:

1) An initial interview to gather general information before the experiences were undertaken.10

2) The first experience consisted of using just a virtual laboratory without the EE. Students
had to study the Furuta pendulum model and the controller already implemented using12

thelab GUI. They had to modify parameters such as the initial state of the pendulum or
the controller parameters to perform the experimentation tasks.14

3) Students answered a questionnaire of 40 questions after working with the laboratory. These
questions were categorized according to the aspect to be analyzed: (1) Environment,16

(2) Usability, (3) Learning and (4) Other aspects. The answers were supplemented
with data automatically collected from the web environment. Interested readers can18

find the whole set of questions, tests, and the automatically obtained data in the
public repository: https://github.com/AnonymCSM/FurutaPendulum/blob/20

master/Evaluation.pdf

4) In the second experience, students had to use the Furuta pendulum virtual lab through EE.22

The goal was to create a position controller with the swing up feature (Experiment 2).
5) Finally, students filled again the previous questionnaire to compare their answers and24

appraisals with both tools.

The purpose of this evaluation was to compare student performance with traditional online26

labs versus the EE. Students can interact with the first ones but not design their own controllers,
something they can do if the lab is included in the EE. The complete evaluation protocol was28

held on the same day. Moreover, students did not have access to the answers of the work done
for the first experience until they had completed the second questionnaire. This was intended to30

prevent students from having more knowledge of the concepts involved when they were facing
the second evaluation in comparison to when they faced the first one.32

11

https://github.com/AnonymCSM/FurutaPendulum/blob/master/Evaluation.pdf
https://github.com/AnonymCSM/FurutaPendulum/blob/master/Evaluation.pdf
https://github.com/AnonymCSM/FurutaPendulum/blob/master/Evaluation.pdf


Initial Interview Results

The aim was to obtain general information about the students’ background, experiences2

and confidence with the concepts explained in the course. The results are summarized in Figure
7.4

Confronted Results of the First and Second Evaluation

Results obtained from the students’ evaluations after the first experience (only with the6

virtual laboratory) and the second (using the EE) are compared in this section.

About the Working Environment8

Regarding the questions that assessed students’ perception of the virtual laboratory and
EE, the most notable results are found in Figure 8.10

No significant differences were found regarding the ease of use of the virtual lab and EE;
students did not have more problems working with one tool than the other. However, EE helped12

them identifying the underlying model and control concepts slightly better than the sole use of
the virtual lab. Students believed that EE was more useful than the lab to help them solving14

their own doubts, to identify misconceptions, to make use of concepts learned in theory, and to
perform more experiments than the requested ones.16

About the Usage

Students needed more opportunities (+1346 executions) and time (+48 hours) to perform18

the experimentation tasks using the EE than the virtual laboratory. We consider reasonable this
difference since the proposed tasks for the EE were more complex than for the virtual lab. The20

extra time was used to deepen their knowledge of the theory and to solve their doubts as shown
by the results described above. Therefore, keeping more time working with the system helps22

them to learn more and with better quality.

Students participated more in the forum (+17 messages) when they were facing experi-24

mentation tasks for the EE than with the virtual laboratory. This fact favored the exchange of
ideas and points of view among the students.26

About the Learning Outcomes

Students took a 10-question test to assess what they had learned using both tools. They had28

to choose between 4 possible answers, and mistakes did not penalize. In the test, five questions

12



were about the model of the Furuta pendulum and the other five about the controller. The number
of students who answered the questions related to the controller correctly increased significantly2

thanks to the use of EE (in total, 21% more students passed the test once they used EE and
93% obtained better grades). Therefore, it can be concluded that allowing students to implement4

their own algorithms helps to improve the degree of learning of specific concepts.

About Other Aspects6

• The quantity and quality of information provided to students: 34 of the 40 students
considered that they received the appropriate information to perform the tasks for both8

tools (responding very much in agreement or in agreement).
• Problems and difficulties during the performance of tasks: The students had more challenges10

in performing the work with EE than with the virtual laboratory (24 with EE and 12 with
the laboratory). We believe that documentation and clarity of tasks need to be improved.12

• Tool affinity: Students found both tools useful for this and other subjects. 32 of them said
they were very much in agreement or agreed on the use of laboratories and EE, 5 only to14

the use of laboratories, 2 just to EE and 1 to none. Likewise, 21 students said they strongly
agreed or agreed about having fun using EE versus 26 with the virtual lab.16

• Negative feedback: Most of the negative comments about EE are due to the amount of time
students had to dedicate to carry out the experiences. However, as demonstrated by the marks18

obtained in the test, that time was invested in obtaining a more solid knowledge. So we
consider that, despite the feedback from the students, it is beneficial for them. Nevertheless,20

we will try to make the activities more enjoyable and attractive in the future.

Conclusions22

An online experimentation environment has been presented to extend current virtual and
remote lab capabilities. With it, students can easily program experiments, test controllers designed24

by themselves, monitor the execution of experiments, and collect and plot real-time data streams.

Two experiments for the Furuta pendulum have been described to illustrate the proposed26

environment applicability to teach control engineering. First, a simple state feedback linear
control law has been defined to keep the pendulum in a vertical and upward position while28

its base follows position set-point changes. Then, a more complex controller is designed, which
not only follows the rotating arm angle reference but also swings the pendulum upwards if it30

falls.

Finally, a pedagogical evaluation of our approach has been reported, working with students32

13



from a distance-education university course, obtaining positive results regarding both learning
outcomes and student acceptance.2

Acknowledgments

This work has been supported by (i) the Spanish Ministry of Science, Innovation and4

Universities, under the project with reference DPI2016-77677-P; (ii) the Community of Madrid,
under the research network RoboCity2030-DIH-CM P2018/NMT-4331; and (iii) the Spanish6

Ministry of Economy and Competitiveness under the project CICYT DPI2014-55932-C2-2-R.

References8

[1] S. Dormido, “Control learning: present and future,” Annual Reviews in Control, vol. 28,
no. 1, pp. 115–136, 2004.10

[2] V. J. Harward, J. A. Del Alamo, S. R. Lerman, P. H. Bailey, J. Carpenter, K. DeLong,
C. Felknor, J. Hardison, B. Harrison, I. Jabbour et al., “The ilab shared architecture: A web12

services infrastructure to build communities of internet accessible laboratories,” Proceedings
of the IEEE, vol. 96, no. 6, pp. 931–950, 2008.14

[3] J. Hardison, D. Zych, J. Del Alamo, V. Harward, S. Lerman, S. Wang, K. Yehia, and
C. Varadharajan, “The microelectronics weblab 6.0–an implementation using web services16

and the ilab shared architecture,” in International Conference on Engineering Education
and Research, Tainan, Taiwan, 2005, pp. 1–5.18

[4] L. de la Torre et al., “The ball and beam system: A case study of virtual and remote lab
enhancement with moodle,” IEEE Transactions on Industrial Informatics, vol. 11, no. 4,20

pp. 934–945, Aug 2015.

[5] K. Amaratunga and R. Sudarshan, “A virtual laboratory for real-time monitoring of22

civil engineering infrastructure,” in International Conference on Engineering Education.
Manchester, U.K.: Citeseer, 2002, pp. 18–22.24

[6] W. Christian, F. Esquembre, and L. Barbato, “Open source physics,” Science, vol. 334, no.
6059, pp. 1077–1078, 2011.26

[7] L. Gomes and S. Bogosyan, “Current trends in remote laboratories.” IEEE Transactions on
Industrial Electronics, vol. 56, no. 12, pp. 4744–4756, 2009.28

[8] R. Heradio, L. de la Torre, and S. Dormido, “Virtual and remote labs in control education:
A survey,” Annual Reviews in Control, vol. 42, no. Supplement C, pp. 1 – 10, 2016.30

[9] V. Potkonjak, M. Gardner, V. Callaghan, P. Mattila, C. Guetl, V. M. Petrović, and
K. Jovanović, “Virtual laboratories for education in science, technology, and engineering:32

A review,” Computers & Education, vol. 95, pp. 309–327, 2016.

14



[10] M. Fowler, Domain-Specific Languages. Addison-Wesley Professional, 2010.
[11] F. Esquembre, “Easy Java Simulations: A software tool to create scientific simulations in2

Java,” Computer Physics Communications, vol. 156, no. 6, pp. 199–204, January 2004.
[12] “Open Source Physics webpage,” http://www.opensourcephysics.org, available online (last4

accessed 09/12/2018).
[13] N. Fraser, “Google blockly-a visual programming editor,” Published. Google, Place, 2014.6

[14] J. Trower and J. Gray, “Blockly language creation and applications: Visual programming
for media computation and bluetooth robotics control,” in Proceedings of the 46th ACM8

Technical Symposium on Computer Science Education. Kansas City, Missouri, USA:
ACM, 2015, pp. 5–5.10

[15] J. Trower and I. Gray, “Creating new languages in Blockly: two case studies in media
computation and robotics,” in Proceedings of the 46th ACM Technical Symposium on12

Computer Science Education. Kansas City, Missouri, USA: ACM, 2015, pp. 677–677.
[16] “ChartJS webpage,” http://www.chartjs.org/, available online (last accessed 09/12/2018).14

[17] “UNILabs webpage,” http://unilabs.dia.uned.es, available online (last accessed 09/12/2018).
[18] J. Sáenz, J. Chacón, L. De La Torre, A. Visioli, and S. Dormido, “Open and low-cost16

virtual and remote labs on control engineering,” IEEE Access, vol. 3, pp. 805–814, 2015.
[19] O. Boubaker, “The inverted pendulum benchmark in nonlinear control theory: a survey,”18

International Journal of Advanced Robotic Systems, vol. 10, no. 5, p. 233, 2013.
[20] E. Aranda-Escolástico, M. Guinaldo, M. Santos, and S. Dormido, “Control of a chain20

pendulum: A fuzzy logic approach,” International Journal of Computational Intelligence
Systems, vol. 9, no. 2, pp. 281–295, 2016.22

[21] M. Ramı́rez-Neria, H. Sira-Ramı́rez, R. Garrido-Moctezuma, and A. Luviano-Juarez,
“Linear active disturbance rejection control of underactuated systems: The case of the24

Furuta pendulum,” ISA Transactions, vol. 53, no. 4, pp. 920–928, 2014.
[22] J. G. Gonzalez Fontanet, A. Lusson Cervantes, and I. Bausa Ortiz, “Alternatives of control26

for a Furuta’s pendulum,” Revista Iberoamericana de Automatica e Informatica Industrial,
vol. 13, no. 4, pp. 410–420, 2016.28

[23] J. Chacon, H. Vargas, G. Farias, J. Sanchez, and S. Dormido, “Ejs, jil server, and labview:
An architecture for rapid development of remote labs,” IEEE Transactions on Learning30

Technologies, vol. 8, no. 4, pp. 393–401, 2015.
[24] D. Chaos, J. Chacón, J. A. Lopez-Orozco, and S. Dormido, “Virtual and remote robotic32

laboratory using ejs, matlab and labview,” Sensors, vol. 13, no. 2, pp. 2595–2612, 2013.
[Online]. Available: http://www.mdpi.com/1424-8220/13/2/259534

[25] K. J. Åström and K. Furuta, “Swinging up a pendulum by energy control,” Automatica,
vol. 36, no. 2, pp. 287–295, 2000.36

[26] K. Collins, PLC programming for industrial automation. Exposure, 2007.

15

http://www.opensourcephysics.org
http://www.chartjs.org/
http://unilabs.dia.uned.es
http://www.mdpi.com/1424-8220/13/2/2595


[27] E. Lindsay, D. Liu, S. Murray, and D. Lowe, “Remote laboratories in engineering education:
Trends in students’ perceptions,” in Proceedings of the 18th Conference of the Australasian2

Association for Engineering Education. Melbourne, Australia: Australasian Association
for Engineering Education, 2007.4

[28] O. A. Herrera, G. R. Alves, D. Fuller, and R. G. Aldunate, “Remote lab experiments:
Opening possibilities for distance learning in engineering fields,” in Education for the 21st6

CenturyImpact of ICT and Digital Resources. Springer, 2006, pp. 321–325.
[29] M. Casini, D. Prattichizzo, and A. Vicino, “The automatic control telelab: A user-friendly8

interface for distance learning,” IEEE Transactions on Education, vol. 46, no. 2, pp. 252–
257, 2003.10

[30] T. Mohsen-Torabzadeh, Z. M. Hossain, P. Fritzson, and T. Richter, “OMWeb-Virtual web-
based remote laboratory for Modelica in engineering courses,” in Proceedings of the 8th12

International Modelica Conference. Dresden, Germany: Linköping University Electronic
Press, 2011, pp. 153–159.14

[31] B. Aktan, C. Bohus, L. Crowl, and M. Shor, “Distance learning applied to control
engineering laboratories,” IEEE Transactions on Education, vol. 39, no. 3, pp. 320–326,16

Aug 1996.
[32] A. V. Parkhomenko, O. Gladkova, E. Ivanov, A. Sokolyanskii, and S. Kurson, “Development18

and application of remote laboratory for embedded systems design,” International Journal
of Online Engineering (iJOE), vol. 11, no. 3, pp. 27–31, 2015.20

[33] I. Iturrate, G. Martı́n, J. Garcı́a-Zubia, I. Angulo, O. Dziabenko, P. Orduña, G. Alves,
and A. Fidalgo, “A mobile robot platform for open learning based on serious games and22

remote laboratories,” in 2013 1st International Conference of the Portuguese Society for
Engineering Education (CISPEE). Porto, Portugal: IEEE, 2013, pp. 1–7.24

[34] I. Santana, M. Ferre, E. Izaguirre, R. Aracil, and L. Hernandez, “Remote laboratories
for education and research purposes in automatic control systems,” IEEE Transactions on26

Industrial Informatics, vol. 9, no. 1, pp. 547–556, 2013.
[35] D. Lowe, S. Murray, L. Weber, M. de la Villefromoy, A. Johnston, E. Lindsay,28

W. Nageswaran, and A. Nafalski, “LabShare: towards a national approach to laboratory
sharing,” in Proceedings of the 20th Annual Conference for the Australasian Association30

for Engineering Education. Adelaide, Australia: The School of Mechanical Engineering,
University of Adelaide, 2009, pp. 458–463.32

16



Sidebar: This work at a glance

. Online labs are revolutionary tools that produce both economic and educational benefits.2

On the one hand, labs can be shared among institutions, drastically reducing traditional lab costs.
On the other hand, students can access experimental resources 24/7 from anywhere through their4

electronic devices. This paper presents an open source online lab for the Furuta Pendulum, a
very popular system in control engineering education that helps to study interesting problems6

related to non-linear dynamics and control theory.

Thanks to the experimentation environment described in this article, students can define8

new controllers and validate them, program non-trivial experiments, plot real-time data streams,
and avoid repetitive work. The environment main component is a language designed specifically10

for programming experiments easily and visually. As the environment is online itself, it runs on
any device with a web browser and avoids any software installation.12

The environment is illustrated solving two practices on the Furuta Pendulum online lab: 1)
defining a state feedback linear control law that keeps the pendulum in a vertical and upwards14

position while its base follows position set-point changes, and 2) designing a more complex
controller that swings the pendulum upwards when it falls.16

17



Author Biography

Daniel Galan received the M.Sc. degree in Automation and Robotics from the Polytechnic2

University of Madrid in 2013 and Ph.D. in Computer Engineering and Automatic Control in 2017
from UNED. Currently, he is working with the Department of Computer Science and Automatic4

Control of the Computer Engineering School of UNED. His research interests include robotics,
virtual and remote labs, education technologies, interactive applications and virtual reality.6

Dictino Chaos received M.Sc. Degree in Physics from the Complutense University of
Madrid in 2004, and Ph.D. in Computer Engineering and Automatic Control in 2010 from UNED.8

Currently, Dr. Chaos holds an Assistant Professor position with the Department of Computer
Science and Automatic Control of UNED. His research interests include virtual and remote labs,10

nonlinear control, tracking, point stabilization, and path following of under-actuated vehicles, the
stability of switched systems and robotics.12

Luis de la Torre received the M.Sc. degree in physics from the Complutense University of
Madrid, Madrid, Spain, in 2008, and the Ph.D. degree in computer science from the Universidad14

Nacional de Educacion a Distancia (UNED), Madrid, in 2013. He is an Assistant Professor with
the Department of Computer Sciences and Automatic Control, UNED. His research interests16

include virtual and remote labs, distance education, and http protocols and technologies.

Ernesto Aranda-Escolastico received the M.S. degree in Physics from the Complutense18

University of Madrid, Spain, in 2013, the M.S. degree in Control Engineering from UNED, Spain,
in 2014, and the Ph.D. degree in Computer Engineering and Automatic Control from UNED in20

2018. His research interests include event-triggered control, networked control systems, multi-
rate systems and nonlinear systems.22

Ruben Heradio received the M.Sc. degree in Computer Science from the Polytechnic
University of Madrid, Spain, in 2000; and the Ph.D. degree in Software Engineering and24

Computer Systems from UNED in 2007. Currently, Dr. Heradio is Associate Professor at the
Software Engineering and Computer Systems Department of the UNED Computer Engineering26

School. His research and teaching interests include Software Engineering, Computational Logic,
and e-Learning.28

18



TABLE 1: Comparative summary of state-of-the-art experimentation scripting support for online
labs. The last row summarizes the environment this paper presents

.
Name Description General Features Language Features

C
ou

pl
in

g

U
sa

bi
lit

y

R
eu

sa
bi

lit
y

E
m

be
dd

ed

Name L
ea

rn
ab

ili
ty

Po
w

er

D
om

ai
n

TriLOGI [26] It is a simulator to program PLCs
with contact diagrams. ↓ - ↑ 7

PLC graphi-
cal scripts ↓ ↓ DSL

UTS remote
PLC [27]

It is a remote lab where students can
write down PLC scripts to interact
with pneumatically driven cylinder
apparatus.

↑ ↓ ↑ X
PLC
instruction
list scripts

↓ ↑ GPL

Remote Lab
Experiment
[28]

It allows users to create and compile
their own assembly code for a 8051
micro-controller.

↓ ↓ ↑ 7
Assembly
code ↓ ↑ GPL

Automatic
Control
Telelab [29]

It offers a set of different Control
experiments where users are able to
upload their own controller created
with MatLab and Simulink.

↑ - ↓ 7 MatLab ↓ ↑ GPL

OMWeb [30]

It is a web-based teaching environ-
ment where users can edit Open
Modelica scripts to solve exercises
proposed by the instructor.

↑ ↓ ↓ X Modelica ↓ ↑ GPL

Second Best
to Being
There [31]

It is the first remote laboratory devel-
oped. Students were able to upload
a controller coded with C.

↑ ↓ ↓ 7 C ↓ ↑ GPL

RELDES [32]

It is an online remote laboratory
where students can upload Arduino
code to solve some proposed exer-
cises.

↑ ↓ ↓ 7 Arduino ↓ ↑ GPL

WebLab-
Deusto [33]

An experience offered through
WebLab-Deusto to control a mobile
robot using Blockly.

↑ ↑ ↓ X Blockly ↑ ↓ DSL

SLD [34]
Using Simulink files users can con-
trol systems modeled by the instruc-
tor.

↑ ↑ ↓ 7 Simulink ↑ ↓ DSL

iLab [2]

Using Xilinx and VHDL schemes
users are able to define specific pro-
cedures for some elements of the
plant.

↑ ↓ ↓ X Xilinx-VHDL ↓ ↑ GPL

LabShare Sa-
hara [35]

Users are able to define Java al-
gorithms to develop controllers that
must fulfill certain predefined con-
straints.

↑ ↓ ↑ X Java ↓ ↑ GPL

UniLabs [18]
It is possible to define a controller
with JavaScript code for a two cou-
pled electric drives system.

↑ ↑ ↑ X JavaScript ↓ ↑ GPL

Experiment
Editor (EE)

The environment proposed in this
paper. ↓ ↑ ↑ 7

JavaScript &
Blockly ↑ ↑ GPL&DSL

19



TABLE 2: New blocks added to the Blockly base distribution to define experimentation scripts
on online labs.

Description
It is used to set the selected laboratory variable to the
desired value. In this case, users will set the value of the
control signal “u” for the Furuta pendulum controller.
It returns the value of the selected lab variable. In this case
users will obtain the value of the angle “alpha” from the
Furuta pendulum laboratory.

It starts the evolution of the laboratory.

It pauses the evolution of the laboratory.
It sets all variables with the predefined initial value and
restart the evolution of the laboratory.

It resets the laboratory.
It executes the “eval” JavaScript function with the desired
code written in the block text-area.

It replaces a laboratory function with the code specified
inside the block. The parameters of the function will appear
below the name.
It adds a new event, the condition is an state variable from
the evolution of the system compared with the desired
value and the action is the code added inside the block.

It adds the desired statements to the code executed every
step of the laboratory evolution.
It pauses the execution of the following blocks the amount
of seconds desired.

It is used to define the chart where the values are going to
be represented.

It starts the data representation in the chart.

It stops the data collection.

20



LABORATORY
CUSTOM CHARTS PANEL

EXPERIMENT EDITOR

Figure 1: General view of the user interface elements of the proposed Experimentation
Environment. The lab (in this case, the remote version of the Furuta pendulum) is shown in
a green square. The experiment editor is marked in red, it can be seen an experiment coded with
Blockly. The plot obtained from the execution of this experiment is shown in blue.

21



DESIGNER

INSTRUCTOR

STUDENTS

PC + LAB 

CREATION TOOLS
WEB

ONLINE

REPOSITORY

The designer creates 

the lab using 

creation tools, like 

EjsS (and LabVIEW if 

it is remote)

The created lab is 

uploaded to an 

online repository, 

such as ComPADRE

The lab is accessible 

to any user through 

the Internet

WEB WEB LMS

Instructors 

download the 

desired lab

Optional: Instructors 

add new features to the 

lab (If the remote part 

allows them)

The adapted lab is 

uploaded to a 

Learning Management 

System (LMS)

The lab is now 

accessible to the 

students thanks to a 

LMS, such as UNILabs

LMS EXPERIMENT ENV. EXPERIMENT (REMOTE PC)

Students can access 

the labs by identifying 

themselves in the 

LMS

Students perform their 

experiment using the 

Experimentation 

Environment

Experiments are executed. 

(The EE will decide which 

code should be send to 

the Remote PC)

(The LabVIEW program 

interprets and executes 

the remote code if it is 

needed)

PC + LAB 

CREATION TOOLS

Figure 2: Online lab life cycle: from its creation by the designer to its use by students going
through its preparation as a learning object by the instructor. Steps related to the use of remote
laboratories are shown in brackets.

22



Figure 3: Schematic representation of the Furuta pendulum model. The imaginary axes (x, y,
and z) are represented in blue. The angles (theta and psi) formed between the axes and the arms
are painted in yellow, the measurements at the center of masses of each arm (l0 and l1) and the
total length of the rigid link (L0) are represented in black.

23



Figure 4: Virtual (up) and remote (down) labs for the Furuta pendulum. GUIs consist of a visual
feedback area situated at the top, and the model parameters control area at the bottom. In the case
of the remote lab, web-cam images are displayed, and any change in the GUI is automatically
sent to the plant.

24



Figure 5: Client and server side of the Furuta remote lab when the position controller experiment
is executed

25



Figure 6: Swing up and position control experiment

26



Strongly
agree

Agree

Neither agree
nor disagree

Disagree

Strongly
disagree

0 5 10 15
Students' count

U
p

 t
o

 d
at

e 
w

it
h

 t
h

e 
co

u
rs

e
 s

el
f 

ap
p

re
ci

at
io

n

0

10

20

30

No Yes
Experience with

VRLs

S
tu

d
en

ts
' c

o
u

n
t

Yes, I think I
know everything

Yes, I know
part of it

I am
not sure

No

0 5 10 15 20 25
Students' count

S
tu

d
en

ts
' k

n
o

w
le

d
g

e 
ab

o
u

t
 t

h
e 

ex
p

er
ie

n
ce

s 
to

 b
e 

d
o

n
e

0

10

20

30

No Yes
Experience with

Visual Programming

Figure 7: Results from the first students’ evaluation phase to determine their background before
undertaking the experiences.

27



Strongly
agree

Agree

Neither agree
nor disagree

Disagree

Strongly
disagree

0 5 10 15 20 25

T
h

e 
la

b
/E

E
 h

as
 a

n
in

tu
it

iv
e 

u
se

Strongly
agree

Agree

Neither agree
nor disagree

Disagree

Strongly
disagree

0 5 10 15 20

I s
o

lv
ed

 d
o

u
b

ts
u

si
n

g
 t

h
e 

la
b

/E
E

Strongly
agree

Agree

Neither agree
nor disagree

Disagree

Strongly
disagree

0 5 10 15 20
Students' count

M
an

y 
th

eo
ry

 c
o

n
ce

p
ts

 w
er

e
u

n
u

se
fu

l f
o

r 
th

e 
ex

p
er

ie
n

ce

0 5 10 15

I b
et

te
r 

u
n

d
er

st
o

o
d

 t
h

e
th

eo
ry

 u
si

n
g

 t
h

e 
la

b
/E

E
.

0 5 10 15 20

I w
as

 a
b

le
 t

o
 d

o
 o

th
er

ex
p

er
im

en
ts

 u
si

n
g

 t
h

e 
la

b
/E

E
 

0 5 10 15 20
Students' count

I f
in

d
 t

h
e 

la
b

/E
E

u
se

fu
l f

o
r 

m
y 

le
ar

n
in

g
 

Type

EE

VL

Figure 8: Students’ perception of the most representative questions about the Furuta pendulum
virtual lab lab and the EE.

28


	Related Work
	A Universal Experimentation Environment for Virtual and Remote labs
	User Interface Elements
	Identifying and Separating User Roles
	Underlying EE Technologies

	Use Examples of the EE in a Furuta Pendulum System
	Virtual Lab
	Remote Lab
	Experiment 1: Keeping the Pendulum in the Upright Position While the Rotatory Arm Follows the Reference Changes
	Experiment 2: Implementing the Swing Up Control

	Empirical Assessment of the EE Pedagogical Value
	Initial Interview Results
	Confronted Results of the First and Second Evaluation
	About the Working Environment
	About the Usage
	About the Learning Outcomes
	About Other Aspects


	Conclusions
	Acknowledgments
	References
	This work at a glance
	Author Biography

