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Abstract

In a recent paper, we introduce a new family of Information Content (IC) models based on the
estimation of the conditional probability between child and parent concepts. This work is encouraged by
the finding of two drawbacks in the computational method of our aforementioned family of IC models, as
well as other two gaps in the literature. First gap is that two of our cognitive IC models do not satisfy
the axiom that constrains the sum of probabilities on the leaf nodes to be 1, whilst some ontologies
with multiple inheritance could prevent the IC model satisfying the growing monotonicity axiom in
concepts with multiple parents. Second gap is the lack of a complete and updated experimental survey
including a pairwise statistical significance analysis between most IC models and ontology-based similarity
measures. Finally a third gap is the lack of replication and confirmation of previous methods and results
in most works. The latest two gaps are especially significant in the current state of the problem, in
which there is no convincing winner within the family of intrinsic IC-based similarity measures and the
performance margin is very narrow. In order to bridge the aforementioned gaps, this paper introduces
the following contributions: (1) a refinement of our recent family of well-founded Information Content
(IC) models; (2) eight new intrinsic IC models and one new corpus-based IC model; and (3) a very
detailed experimental survey of ontology-based similarity measures and Information Content (IC) models
on WordNet, including the evaluation and statistical significance analysis on the five most significant
datasets of most ontology-based similarity measures and all WordNet-based IC models reported in the
literature, with the only exception of the IC models recently introduced by Harispe et al. (2015a) and
Ben Aouicha et al. (2016b). The evaluation is entirely based on a Java software library called HESML
which has been developed by the authors in order to replicate all methods evaluated herein. The new
IC models obtain rivaling results as regard the state-of-the-art methods and improve our previous mod-
els, whilst the experimental survey allows a detailed and conclusive image of the state of the problem to
be drawn by setting the new state of the art and quantifying the main achievements of the last three decades.

Keywords: Intrinsic Information Content models, ontology-based semantic similarity measures, IC-
based similarity measures, word similarity benchmark, semantic similarity, concept similarity model,
experimental survey.

1 Introduction

The human similarity judgments between concepts un-
derlie most of cognitive capabilities, such as categoriza-
tion, memory, decision-making, and reasoning, as well as
the use and discovery of anologies among others. For this
reason, this problem has a lot of applications in Artifi-
cial Intelligence (AI) and many other related fields. The
main research problem studied herein is the proposal of
new Information Content (IC) models for ontology-based
semantic similarity measures with the aim of estimating
the degree of similarity between words as perceived by a
human being. However, because of that the common ap-

proach to compute word similarity measures is to select
the highest pairwise similarity value between the concept
sets evoked by each word, our main research problem is
closely related to the proposal of concept similarity mod-
els, whose aim is to estimate the degree of similarity
between concepts instead of words. A concept similar-
ity model is a function sim : C x C — R defined on a
set of concepts which estimates the degree of similarity
between concepts as perceived by a human being. The
research into concept similarity models, so called in a
broad sense as the human similarity judgment problem
in cognitive sciences, has given rise to different strategies
to tackle the problem of which the ontology-based simi-
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larity measures have proven to be the most successful of
them.

The research into ontology-based semantic similarity
measures is an old problem in AT and other related fields,
such as cognitive psychology Tversky (1977), Natural
Language Processing (NLP) and Information Retrieval
(IR), Rada et al. (1989). A plethora of ontology-based
similarity measures have been proposed in the litera-
ture, giving rise to a large set of applications in the
fields of NLP, IR, bioengineering and genomics. For in-
stance, Lastra-Diaz (2014) introduces an ontology-based
IR model disclosed by Lastra Diaz and Garcia Serrano
(2014) which is based on the weighted Jiang-Conrath
(J&C) distance introduced and evaluated in Lastra-Diaz
and Garcia-Serrano (2015b). Patwardhan et al. (2003)
introduce a Word Sense Disambiguation (WSD) method
based on the distributional hypothesis and the use of
ontology-based similarity measures in order to select the
closest evocated concept between a disambiguated word
and its neighboring words. Mihalcea et al. (2006) pro-
pose a text similarity measure based on the combina-
tion of an Inverse Document Frequency (IDF) weight-
ing scheme with any ontology-based similarity measure,
which is evaluated in a Paraphrase Detection (PD) task,
whilst Fernando and Stevenson (2008) propose a para-
phrase detection method based on a quadratic form be-
tween Boolean occurrence vectors whose matrix is de-
fined by any ontology-based similarity measure between
words. In document clustering, Song et al. (2009) pro-
pose a genetic algorithm for text clustering based on a
Li et al. (2003) similarity measure, whilst Dagher and
Fung (2013) introduce a document clustering method
based on a VSM model and a WordNet-based term ex-
pansion based on the Jiang and Conrath (1997) distance.
Liu et al. (2009) introduce a method for the discov-
ery of relevant WDSL-specified web services based on
a WDSL similarity metric defined by the dot product
between the provider and query vectors, whose weights
are derived from the Li et al. (2003) similarity mea-
sure. Martinez et al. (2010) introduce a document
anonymization method based on ontology-based similar-
ity measures. Cross and Hu (2011) introduce a seman-
tic alignment quality measure for the Ontology Align-
ment (OA) problem which relies on the difference be-
tween the similarity measure between the concepts in
the base ontology and their image in the target ontol-
ogy; and Pirré and Talia (2010) introduce an ontology
mapping method based on a reformulation of the Jiang
and Conrath (J&C) distance and the Seco et al. (2004)
IC model, whilst Jeong et al. (2008) propose a framework
for XML-schema matching based on ontology-based sim-
ilarity measures. In Oliva et al. (2011), Lee (2011) and
Hadj Taieb et al. (2015), the authors introduce differ-
ent methods for sentence similarity based on ontology-
based similarity measures. Other works use similarity
measures for the extraction of domain ontologies from
the Internet like Wang and Zhou (2009), or from text
corpora like Meijer et al. (2014). Montani et al. (2015)
propose an ontology-based process similarity metric for
process mining that relies on the Wu and Palmer (1994)
similarity measure. In the field of bioengineering, Couto

et al. (2007) introduce a reformulation of three classic
IC-based similarity measures with the aim of computing
similarity measures based on the Gene Ontology (GO),
whilst Chaves-Gonzalez and Martinez-Gil (2013) intro-
duce a similarity-based evolutionary method for syn-
onym recognition in the biomedical domain. Other spe-
cific similarity measures have been studied for biomed-
ical text mining, such as Pedersen et al. (2007) and
Sénchez and Batet (2011), as well as other genomics ap-
plications, such as protein function prediction Pesquita
et al. (2009), Couto and Pinto (2013) and pathway pre-
diction Chiang et al. (2008).

1.1 The context of our research

An ontology-based semantic similarity measure is a bi-
nary concept-valued function sim : C' x C — R defined
on a single-root taxonomy of concepts (C, <¢) which re-
turns the degree of similarity between concepts as per-
ceived by a human being. Modern research into the
problem starts with the pioneering works by Tversky
(1977) and Rada et al. (1989) in the fields of cognitive
psychology and IR respectively. Tversky (1977) intro-
duce a feature-based similarity measure which requires
a representation of the concepts as feature sets, whilst
Rada et al. (1989) introduce a semantic distance defined
as the length of the shortest path between concepts in a
taxonomy. The main drawback of the Rada et al. (1989)
measure, as well as other similarity measures which use
the length of the shortest path between concepts, is that
all the edges in the taxonomy contribute to the over-
all distance with the same weight, the so-called wuni-
form weighting problem. In order to bridge this latter
gap, Resnik (1995) introduces the first similarity mea-
sure based on an Information Content (IC) model de-
rived from corpus statistics, as well as the first method
to compute an IC model, such as those proposed herein.
Every IC-based similarity measure needs a comple-
mentary concept-valued function, called the Information
Content (IC) model. Given a taxonomy of concepts de-
fined by a triplet C = ((C,<¢),T") where I € C' is the
supreme element called the root, an Information Con-
tent model is a function IC : C — RT U {0}, which
represents an estimation of the information content for
every concept, defined by IC (¢;) = —loga (p(ci)), p(ci)
being the occurrence probability of each concept ¢; € C.
Every IC model must satisfy two further properties: (1)
nullity in the root, such that IC (T') = 0, and (2) grow-
ing monotonicity from the root to the leaf concepts, such
that Ve; <¢ ¢;j = IC (¢;) > IC (¢;). Once the IC-based
measure is chosen, the IC model is mainly responsible
for the definition of the notion of similarity and distance
between concepts. Other works, such as Pirré and Eu-
zenat (2010), have also proposed intrinsic IC models for
semantic relatedness measures which rely on the whole
set of semantic relationships encoded into an ontology.
The first known IC model is based on corpus statistics,
which was introduced by Resnik (1995) and detailed in
Resnik (1999). The main drawback of the corpus-based
IC models is the difficulty in getting a well-balanced and
disambiguated corpus for the estimation of the concept
probabilities. To bridge this gap, Seco et al. (2004) intro-



duced the first intrinsic IC model in the literature, whose
core hypothesis is that the IC models can be directly
computed from intrinsic taxonomical features. There-
fore, the development of new intrinsic IC-based similar-
ity measures is divided into two subproblems: (1) the
proposal of new intrinsic IC models, as in our work,
and (2) the proposal of new IC-based similarity mea-
sures. In another recent work Lastra-Diaz and Garcia-
Serrano (2015a), we introduce a new family of intrin-
sic and corpus-based IC models called well-founded IC
models, which is based on the proposal of different meth-
ods for the estimation of the conditional probabilities
between child and parent concepts within a taxonomy.
The main idea behind the new family of well-founded IC
models is that any IC model should satisfy a set of ax-
ioms that algebraically link the conditional probabilities,
probability function and IC model in order to define a
well-founded probability space.

1.2 Motivation and hypotheses

The first motivation is the finding of two drawbacks in
the algorithm to compute the family of well-founded IC
models introduced in Lastra-Diaz and Garcia-Serrano
(2015a). First, the two intrinsic and cognitive IC mod-
els called CondProbLogistic and CondProbCosine do not
satisfy the axiom that constrains the sum of probabili-
ties on the leaf nodes to be 1. It is a consequence of
the non-linear transformations applied to the conditional
probabilities of these two models, a fact that was already
mentioned in our aforementioned work. Second, in some
cases, the ontologies with multiple inheritance could pre-
vent the IC model satisfying the growing monotonicity
axiom in concepts with multiple parents. This latest fact
means that for some concept pairs c;,c; € C, the con-
straint ¢; <¢ ¢; = IC (¢;) > IC (c¢;) could be violated.
In appendix B of our aforementioned work, we prove that
the recovery algorithm based on the recursive formula in
equation (3) is a sufficient condition for the sum of prob-
abilities over the leaf nodes to be 1, what follows the
underlying probability space is well-defined. However, if
the taxonomy exhibits multiple inheritance, the proba-
bilities p(¢;) derived from equation (3) could be higher
than the probability of any direct parent in some nodes
with multiple parents, thus, leading to a violation of the
aforementioned growing monotonicity axiom. Our main
hypothesis is that the solution to these two drawbacks
could lead us to an improvement in the performance of
the family of well-founded IC models, in addition to fix-
ing an algebraic inconsistency that moves the family of
well-founded IC model away from their original design
principles.

Second motivation of this work is the lack of an up-
dated and exhaustive evaluation of ontology-based sim-
ilarity measures and IC models in WordNet, as well as
the lack of an exhaustive pairwise statistical significance
analysis between them. In the literature, we find some
out-of-date similarity benchmarks such as that reported
by Budanitsky and Hirst (2001) and Budanitsky and
Hirst (2006), and others, more recent but not exhaus-
tive, such as Hadj Taieb et al. (2014b). The largest and
most recent word similarity benchmarks in WordNet are

introduced by Lastra-Diaz and Garcfa-Serrano (2015a)
and Lastra-Diaz and Garcia-Serrano (2015b). However,
not all of the hybrid IC-based similarity measures eval-
uated in the latest work have been previously evaluated
with many IC models considered herein and the datasets
introduced by Miller and Charles (1991), Agirre et al.
(2009) and Hill et al. (2015). In addition, most ontology-
based similarity measures have never been compared
through a statistical significance analysis. Therefore,
in the light of the results reported by Lastra-Diaz and
Garcia-Serrano (2015a), and in order to provide a con-
clusive image of the current state of the problem, we
introduce herein a new and larger evaluation of IC mod-
els and ontology-based similarity measures than those
available in the literature. This new evaluation is based
on the most recently available datasets and our own soft-
ware implementation of all the IC models and similarity
measures evaluated herein, covering most developments
from the pioneering works of Rada et al. (1989) and Seco
et al. (2004).

Finally, the last motivation is the replication of previ-
ous methods and experiments. Most works introduc-
ing similarity measures or IC models during the last
decade have only implemented or evaluated classic 1C-
based similarity measures, such as the Resnik, Lin and
Jiang-Conrath measures, avoiding the replication of 1C
models and similarity measures introduced by other re-
searchers. Some works have not included all the details
of their methods, or the experimental setup to obtain the
published results, thus, preventing their reproducibil-
ity. Most works have copied results published by others.
This latest fact has prevented the valuable confirmation
of previous methods and results reported in the litera-
ture, which is an essential feature of science. Pedersen
(2008a), and subsequently Fokkens et al. (2013), warn
of the need to reproduce and validate previous methods
and results reported in the literature, a suggestion that
we subscribe to in our aforementioned works, where we
also warn of finding some contradictory results. This
replication problem is especially significant in the cur-
rent state of the problem, in which there is no con-
vincing winner within the family of intrinsic IC-based
similarity measures and the performance margin is very
narrow, as concluded in our aforementioned works. In
addition, Pedersen (2008a) also warns of the need of re-
leasing the software developed for the evaluation of new
methods and experiments reported in the literature with
the aim of allowing their reproducibility. Following the
suggestions from Pedersen, we introduce our new soft-
ware library of ontology-based semantic similarity mea-
sures and IC models together with a set of reproducible
experiments in a forthcoming paper, Lastra-Diaz and
Garcia-Serrano (2016).

The proposed refinements close the algebraic and algo-
rithmic definition of the family of well-founded IC mod-
els, giving rise to research into further IC models within
this family.

For the experimental survey, our main hypotheses are
as follows:

H1. A group of recent IC-based similarity measures out-
perform the path-based similarity measures, as well



as the classic IC-based measures, but there is no
statistically significant difference between them.

H2. There is no statistically significant difference in
performance between most intrinsic IC models and
the best performing corpus-based IC model defined
as baseline, which is derived from the “ic-treebank-
addl1.dat” file in the Pedersen (2008b) dataset.

H3. A small set of the best performing intrinsic IC mod-
els outperform the best performing corpus-based 1C
model defined as baseline.

H4. The classic IC-based similarity measures proposed
by Resnik, Jiang and Conrath, and Lin have been
definitively outperformed by a small set of state-of-
the-art IC-based similarity measures.

H5. The practical use of the current hybrid IC-based
similarity measures that are based on the length of
the shortest path is prevented by their high compu-
tational cost in comparison with the other methods
with a similar performance.

H6. Most IC-based similarity measures perform better
with a specific IC model.

H7. The state-of-the-art IC-based similarity measures
outperform the best corpus-based similarity mea-
sures in the SimLex665 dataset.

HS8. The proposed refinement into the computation
method of the well-founded IC models could lead
us to an improvement in their performance.

1.3 Research problem and contributions

The main aims of this paper are as follows. First, the
proposal of a refinement into the four-step algorithm
used to compute the family of well-founded IC models
with the aim of eliminating the aforementioned draw-
backs of the computational method introduced in our
previous work, Lastra-Diaz and Garcia-Serrano (2015a).
Second, the proposal of eight new intrinsic IC models
and one new corpus-based IC model in the new frame-
work of our family of well-founded IC models. And third,
the introduction of a new and very detailed experimen-
tal survey of IC models and ontology-based similarity
measures on WordNet with a complete detailed statisti-
cal significance analysis between IC models and similar-
ity measures, including the evaluation of most ontology-
based similarity measures since the work of Rada et al.
(1989) and all WordNet-based IC models reported in
the literature, with the only exception of the IC mod-
els recently introduced by Harispe et al. (2015a) and
Ben Aouicha et al. (2016b).

The refinement of the well-founded IC models allows
a new family of IC models to be derived from the pre-
vious models introduced by Lastra-Diaz and Garcia-
Serrano (2015a), as well as three new strategies to
compute the conditional probabilities. The new intrin-
sic IC models are called CondProbRefHyponyms, Cond-
ProbRefUniform, CondProbRefLeaves, CondProbRefLo-
gistic, CondProbRefCosine, CondProbRefLogisticLeaves,

CondProbRefCosineLeaves and CondProbRefLeavesSub-
sumersRatio, whilst the new corpus-based IC model is
called CondProbRefCorpus. The CondProbRefLeaves-
SubsumersRatio 1C model is a reformulation of the
Sénchez et al. (2011) IC model in the framework defined
by our family of IC models.

The new experimental survey includes most of the in-
trinsic and corpus-based IC models evaluated in Lastra-
Diaz and Garcfa-Serrano (2015a), as well as the nine new
IC models introduced herein, one of the unexplored in-
trinsic IC models introduced by Blanchard et al. (2008),
and most ontology-based similarity measures since the
work by Rada et al. (1989). The word similarity bench-
marks introduced herein include the five most signifi-
cant datasets on the problem, as well as a very de-
tailed pairwise statistical significance analysis between
the IC models and ontology-based similarity measures.
The benchmarks reported herein are, to the best of our
knowledge, the largest experimental survey on intrinsic
IC models and ontology-based similarity measures on
WordNet reported in the literature, which is based on
a same code implementation. We exactly reproduce the
same experiments from Lastra-Diaz and Garcia-Serrano
(2015a), but with a much larger set of IC models and
ontology-based similarity measures. Our experiments
include a set of the hybrid IC-based similarity measures
based on the length of the shortest path between con-
cepts which were evaluated in Lastra-Diaz and Garcia-
Serrano (2015b) and subsequently discarded because of
their high computational cost. The experimental sur-
vey includes 22 ontology-based similarity measures, 22
intrinsic IC models, and 3 corpus-based IC models.

The rest of the paper is structured as follows. Section
2 reviews the literature on concept similarity models.
Section 3 summarizes the factual state of the art of the
problem, whilst section 3.1 reviews the literature on in-
trinsic IC models. Section 4 introduces the proposed
refinement in the well-founded IC models, as well as the
new IC models derived from it. Section 5 describes the
evaluation methodology and the results obtained. Sec-
tion 6 introduces an in-depth discussion of the results.
Last section presents our conclusions and future work.
Finally, appendix groups the summary data tables and
all raw data tables resulting from the evaluation.

2 Concept similarity models

This section makes a comparison between the concept
and word similarity models proposed in the literature
which we categorize as ontology-based and corpus-based
similarity measures, and the most recent concept sim-
ilarity models proposed in cognitive psychology. First,
we compare the main strategies adopted to tackle the
problem, and finally, we review the literature on corpus-
based and ontology-based similarity measures.

2.1 Comparison of strategies

In the fields of NLP and IR, we find two different types of
similarity models to estimate the degree of similarity be-
tween words: (1) ontology-based similarity measures as
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Table 1: State-of-the-art non IC-based similarity measures evaluated in our experiments.

in our work, and (2) corpus-based similarity and related-
ness measures. The ontology-based similarity measures
are based on the definition of binary concept-valued simi-
larity functions on “is-a” taxonomies, which have proven
in Lastra-Diaz and Garcia-Serrano (2015a) to be the
best approximation to similarity human judgments on
the noun subset of the SimLex dataset Hill et al. (2015),
as being efficient, robust and easy to implement. How-
ever, the main drawback of the ontology-based similarity
measures is the limited coverage of the ontologies and the
cost and difficulties of building them. Other drawback
of the ontology-based methods is the requirement of a
single taxonomy that includes all the words to be com-
pared, although this problem has given rise to the pro-
posal of methods for the estimation of semantic similar-
ity measures combining multiple ontologies, such as the
general-purpose method introduced by Al-Mubaid and
Nguyen (2009), the method for feature-based measures
proposed by Solé-Ribalta et al. (2014) and the method
for IC-based similarity measures proposed by Batet et al.
(2014). On the other hand, the corpus-based similarity
and relatedness measures mainly rely on the distribu-
tional hypothesis, and they are commonly based on the
statistical co-occurrence between word contexts in large
corpora, as a means of estimating the degree of simi-
larity between words. The corpus-based measures “can
confuse similarity with relatedness” (Li et al., 2015, §1).
In addition, “it is commonly considered that distribu-
tional measures can only be used to capture semantic
relatedness” (Harispe et al., 2015b, §2.5.2), and “they
have traditionally performed poorly when compared to
WordNet-based measures” (Mohammad and Hirst, 2012,
p.1). This latter fact is confirmed by the recent compar-

isons between ontology-based and corpus-based similar-
ity measures reported by (Banjade et al., 2015, Table 1)
and Le and Fokkens (2015), as well as our benchmarks
in (Lastra-Dfaz and Garcia-Serrano, 2015a, §6.4). It is
worth to note that the ontology-based similarity mea-
sures use an explicitly defined concept similarity model
with the aim of estimating the degree of similarity be-
tween words whose specific meaning (evocated concept)
is unknown, whilst the corpus-based measures use the
occurrence of the words in a specific context, whose
meaning (concept) is implicitly defined by the context.
Finally, the research into the similarity judgments
problem in cognitive psychology derives from the pio-
neering work of Tversky (1977). The research into the
field of IR has focused on the proposal of a plethora
of symmetric and contextless similarity measures guided
by experimental evaluation. On the contrary, the re-
search into cognitive sciences has followed a parallel line
more focused on the definition of theoretical models ca-
pable of explaining several non-metric phenomena in
the human similarity judgments described by Twversky
(1977) and Pothos et al. (2015), such as: (1) asymme-
try or non-commutativity, (2) context dependency and
(3) the conjunction fallacy. The most recent cognitive
similarity model is introduced by Pothos et al. (2013)
and Pothos and Trueblood (2015), being inspired by a
quantum probability approach for cognition proposed by
Busemeyer and Bruza (2012), whose non-commutative
nature allows the representation of different non-metric
phenomena. However, the quantum probability similar-
ity model has not yet been experimentally evaluated.



2.2 Corpus-based measures

Many corpus-based similarity or relatedness mea-
sures are based on concept-based resources, such as
Wikipedia. For instance, Strube and Ponzetto (2006) in-
troduce WikiRelate, a method for computing the seman-
tic relatedness between words based on a graph derived
from Wikipedia. WikiRelate extracts the Wikipedia
pages associated to each input word and builds a tax-
onomy of categories by merging the categories that the
pages belong to. Finally, WikiRelate uses standard path-
based and IC-based similarity measures on the recovered
taxonomy in order to compute the relatedness measure
between words. We can interpret WikiRelate as a two-
stage method based on the combination of a taxonomy
recovering method, such as the method recently pro-
posed by Ben Aouicha et al. (2016a), with any stan-
dard ontology-based similarity measure. Gabrilovich
and Markovitch (2007) introduce a semantic relatedness
method for word and documents, called ESA, which rep-
resents the meaning of a word or text as a weighted vec-
tor of Wikipedia concepts (articles); whilst Agirre et al.
(2009) introduce several distributional relatedness mea-
sures based on a vector space model trained on a large
Web corpus, which favourably compare with a large set
of ontology-based similarity measures on WordNet.

On the other hand, another very active line of re-
search in corpus-based similarity measures is the pro-
posal for hybrid concept-based distributional measures,
which integrate knowledge bases (KBs) or explicit “is-a”
semantic networks in order to overcome the lack of well-
defined semantic knowledge. For instance, Patwardhan
and Pedersen (2006) introduce a similarity and related-
ness measure which relies on the gloss vector overlapping
between the extended WordNet gloss vectors of two in-
put concepts. Mohammad and Hirst (2006) introduce a
hybrid distributional measure which relies on the cosine
function and the concept-based conditional probabilities
for the words derived from the Roget’s thesaurus. Al-
varez and Lim (2007) propose a hybrid distributional
similarity measure that relies on the product of two tax-
onomical WordNet-based functions with a gloss overlap-
ping factor by using “is-a” and “part-of” relationships,
whilst Li et al. (2015) introduce another hybrid distri-
butional measure whose core idea is that the similarity
computation relies on truly “is-a” relationships, which
are derived from a very large web corpus by using an
automatic method based on syntactic rules.

Other family of relatedness measures are based on
randow walks on weighted graphs derived from different
knowledges sources, such as Wikipedia and WordNet.
For instance, Hughes and Ramage (2007) propose a se-
mantic relatedness measure between word pairs which is
based on a random walk using Personalized PageRank
on a weighted graph derived from WordNet and corpus
statistics, whilst Yeh et al. (2009) extend their previous
work on semantic relatedness measures based on random
walks to Wikipedia, and Ramage et al. (2009) propose a
corpus-based measure based on a random walk on Word-
Net with the aim of estimating the semantic similarity
between text fragments. Finally, Yazdani and Popescu-
Belis (2013) propose a method for estimating the se-

mantic relatedness between concepts based on a random
walk approach on a Wikipedia concept network with two
link types: the hypertext links between Wikipedia arti-
cles (concepts), and the lexical similarity between them
defined by the cosine score between the vectors repre-
senting each article.

Another growing research trend on corpus-based se-
mantic similarity and relatedness measures is the de-
velopment of word embeddings, such as those proposed
by Mikolov et al. (2013), Pennington et al. (2014) and
Suzuki and Nagata (2015), whose core idea is the learn-
ing of a vector representation (embedding) for large vo-
cabularies, such that the Euclidean distance between
word vectors reflects their semantic similarity. Most
word embeddings use a large corpora in their learn-
ing process, thus, they are a subfamily of the corpus-
based methods. The word embedding methods com-
monly use complex machine learning algorithms, which
are time-consuming and hard to reproduce. However,
once the vector representations are computed, their eval-
uation mainly depends on the dimensionality of the vec-
tor space, thus, they can be very efficient for large vo-
cabularies and low dimensionality.

2.3 Ontology-based similarity measures

In two recent works, Lastra-Diaz and Garcia-Serrano
(2015b) and Lastra-Diaz and Garcia-Serrano (2015a), we
provide a very detailed review of the current ontology-
based semantic measures, thus, we only provide herein a
categorization in order to introduce the similarity mea-
sures that will be evaluated in our experiments. For a
more in-depth review of the topic, we refer the reader
to our aforementioned works, especially the former, and
the recent book by Harispe et al. (2015b).

We categorize the current ontology-based semantic
measures into four subfamilies as follows: (1) edge-
counting similarity measures, the so called path-based
measures, whose core idea is the use of the length of
the shortest path between concepts as an estimation of
their degree of similarity, such as the pioneering work of
Rada et al. (1989) and the subsequent works of Wu and
Palmer (1994), Leacock and Chodorow (1998), Hirst and
St-Onge (1998), Pedersen et al. (2007) and Al-Mubaid
and Nguyen (2009); (2) IC-based similarity measures
whose core idea is the use of an Information Content (IC)
model, such as the pioneering work of Resnik (1995), and
the measures proposed by Jiang and Conrath (1997) and
Lin (1998); (3) feature-based measures, whose core idea
is the use of set-theory operators between the feature sets
of the concepts, such as the pioneering work of Tversky
(1977), and more recently Sdnchez et al. (2012), whose
core idea is the use of the overlapping of ancestor sets as
an estimation of the overlapping between the unknown
feature sets of the concepts; and finally, (4) other similar-
ity measures that cannot be directly categorized into any
previous family, which are based on taxonomical features
derived from set-theory operators Batet et al. (2011), or
novel contributions of the hyponym set Hadj Taieb et al.
(2014b). Out of our previous categorization, it was also
worth mentioning some proposals of aggregated similar-
ity measures, such as Martinez-Gil (2016), whose key
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Table 2: Definition of the state-of-the-art IC-based similarity measures evaluated in our experiments.

feature is the merging of multiple ontology-based sim-
ilarity measures in order to produce a final similarity
judgement.

In addition to the four subfamilies of ontology-based
similarity measures aforementioned above, we categorize
the family of IC-based similarity measures into the fol-
lowing four subgroups, as shown in table 2: (1) the first
group of classic IC-based measures made up of the simi-
larity measures introduced by Resnik (1995), Jiang and
Conrath (1997) and Lin (1998); (2) a second group that
we call hybrid or path-based IC-based similarity mea-
sures, which is defined by those measures that make up
an IC model with any function based on the length of
the shortest path between concepts, such as the pioneer-
ing work of Li et al. (2003), and other subsequent works
such as Zhou et al. (2008a), Meng et al. (2014), Gao
et al. (2015), and the two weighted IC-based similarity
measures introduced by Lastra-Diaz and Garcia-Serrano

(2015b); (3) a third group that is based on any reformu-
lation strategy between different approaches, such as the
IC-based reformulations of the Tversky measure in Pirré
(2009) and Pirré and Euzenat (2010), as well as the IC-
based reformulation of most edge-counting methods in-
troduced by Sénchez and Batet (2011); and finally, (4) a
fourth group that is based on a monotone transformation
of any classic IC-based similarity measure, such as the
exponential-like scaling of the Lin (1998) measure intro-
duced by Meng and Gu (2012), the reciprocal of the J&C
distance introduced by Garla and Brandt (2012), and
another cosine-based normalization of the J&C distance
introduced by Lastra-Diaz and Garcia-Serrano (2015b).
In addition, we show herein that the FalTH similarity
measure introduced by Pirré and Euzenat (2010) is also
a monotone transformation of the Lin (1998) similarity
measure, despite its initial design being based on a refor-
mulation of the Tversky (1977) measure. Table 3 shows
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Table 3: Equivalence classes of similarity measures induced by any monotone transformation from any classic similarity

measure.



the monotonicity relationships between most IC-based
similarity measures which have been experimentally con-
firmed in our evaluation. For the sake of completeness of
our experimental survey, we also evaluate herein all non
IC-based similarity measures shown in table 1, despite
the present work is focused on new IC models and their
evaluation with the state-of-the-art IC-based similarity
measures shown in table 2.

Finally, Stanchev (2014) introduces a similarity graph
from WordNet with the aim of computing the similarity
between words. In addition to the taxonomical struc-
ture from WordNet, the graph uses the definition and
examples of use of the WordNet concepts as evidence
on the relationships between concepts. The similarity
graph is defined by a collection of oriented edges with
asymmetric weights, in which the weights between par-
ent and child concepts encode the probability that a user
interested in the source node of an edge is also interested
in the concept associated to the destination node. The
similarity measure is defined as the product of the edge
weights throughout the path between the word nodes.
Despite some weights being defined in an arbitrary way,
the method obtains outstanding results in the Miller and
Charles (1991) dataset, and introduces for the first time
an asymmetrical path-based method founded on prob-
ability theory. We note that the similarity measure in-
troduced by Stanchev is closely related to our weighted
J&C distance, denoted by dwJ&C' in table 2, as our
measure matches the logarithm of the product of condi-
tional probabilities between the word nodes. However,
the basic form of the dwJ&C' distance does not inte-
grate the word nodes into the WordNet taxonomy and
the weights are symmetric, the edge weights being the
logarithm of the conditional probabilities.

2.4 Summary and positioning

In summary, the ontology-based similarity measures are
efficient, easy to implement and more accurate than
the corpus-based methods, whilst the corpus-based mea-
sures offer a broader lexical coverage at the expense
of a high complexity and computational cost, as well
as the difficulties to obtain well-balanced learning cor-
pus. However, the corpus-based relatedness measures
based on word embeddings combine the broad coverage
of the corpus-based methods with an efficient evaluation
method in operation mode. On the other hand, unlike
the theoretical models developed in cognitive psychol-
ogy which have not yet evaluated, the ontology-based
similarity measures have been successfully evaluated in
many human similarity benchmarks, and they have con-
tributed to the development of a large set of applications.
For these reasons, we are focusing our research effort on
the development of new IC models and ontology-based
similarity measures.

3 State of the art

This section summarizes the current factual state of the
art on ontology-based similarity measures and IC models
and review the related work on IC models.

The state of the art in ontology-based similarity mea-
sures is defined by the family of intrinsic IC-based mea-
sures, which are defined by the combination of one spe-
cific IC-based similarity measure with any intrinsic 1C
model. More specifically, our cosine-normalized Jiang-
Conrath (cosJ&C') similarity measure is currently the
best performing ontology-based similarity measure ac-
cording to the evaluation on the five most significant
datasets reported in (Lastra-Diaz and Garcia-Serrano,
2015a, table 6). However, in this latest work we did
not evaluate other hybrid IC-based measures that ob-
tained state-of-the-art results in Lastra-Diaz and Garcia-
Serrano (2015b), such as our hybrid measure coswJ&C
and the Zhou et al. (2008b) similarity measure. Like-
wise, the cosJEC similarity measure is the only mea-
sure that obtains a statistically significant higher per-
formance than the baseline, (Lastra-Diaz and Garcia-
Serrano, 2015a, fig.3). However, we also prove that
there is no statistically significant difference between
the cosJéC similarity measure and those introduced by
Meng and Gu (2012) and Pirré and Euzenat (2010).

The outperformance of the IC-based similarity mea-
sures is supported by several recent WordNet-based
benchmarks, such as Lastra-Diaz and Garcia-Serrano
(2015a), Lastra-Diaz and Garcia-Serrano (2015b) and
Hadj Taieb et al. (2014b), as well as other older ones,
such as Budanitsky and Hirst (2006), Pirr6é (2009) and
Sénchez et al. (2011). Another benchmark in bioengi-
neering introduced by Garla and Brandt (2012) also con-
firms the outperformance of an intrinsic IC-based sim-
ilarity measure derived from the reciprocal of the J&C
distance. Likewise, McInnes and Pedersen (2013) prove
the outperformance of the classic IC-based similarity
measures over the path-based measures and gloss-based
relatedness measures in a WSD benchmark in bioengi-
neering, but it is also proven that there is no a statis-
tically significant difference between a corpus-based 1C
model and the intrinsic IC model introduced by Sénchez
et al. (2011). This latest conclusion on the debate be-
tween intrinsic and corpus-based IC models is endorsed
in a more conclusive manner by the recent benchmarks
in our aforementioned works.

In our aforementioned works, we conclusively prove
several significant facts on the state of the art of IC mod-
els as follows. First, contrary to what the research com-
munity thought, most corpus-based IC models derived
from the unexplored “*.add1” set of WordNet-based fre-
quency files in Pedersen (2008b) rival the state-of-the-art
intrinsic IC models, (Lastra-Diaz and Garcia-Serrano,
2015b, table 6). Second, the best performing IC model
on average is the Seco et al. (2004) IC model, (Lastra-
Diaz and Garcfa-Serrano, 2015a, table 5). Third, there is
no a statistical significant difference between most state-
of-the-art intrinsic IC models, as well as between most
intrinsic IC models and the baseline IC model defined by
a corpus-based IC model derived from the “ic-treebank-
addl.dat” file in the aforementioned Pedersen dataset,
(Lastra-Diaz and Garcia-Serrano, 2015a, fig.2). And fi-
nally, the Sénchez and Batet (2012) IC model is the
only one that obtains a statistically significant higher
performance than the corpus-based IC model defined as
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Table 4: State-of-the-art Information Content models evaluated in our experiments.

baseline, (Lastra-Diaz and Garcia-Serrano, 2015a, fig.2).

In order to overcome the lexical coverage limitation
associated to the ontologies, we argue that at least two
strategies could be explored. The first strategy is the
ontology population based on WordNet by using any
automatic WordNet-based semantic annotation method,
such as that explored by Sanfilippo et al. (2005). A sec-
ond strategy is the automatic assembly of broad coverage
“is-a” taxonomies from a large corpus such as Wikipedia,
as is recently proposed and evaluated by Ben Aouicha
et al. (2016a).

Finally, despite the plethora of ontology-based similar-
ity measures and IC models available in the literature,
the selection of a specific similarity measure for a partic-
ular application is still an open problem. For instance,
a recent benchmark in a biomedical ontology-based IR
task by Alonso and Contreras (2016) proves that there
is no a statistically significant difference in performance
between the intrinsic IC measure in (Garla and Brandt,
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2012, eq. (13)) and the similarity measure introduced
by Pedersen et al. (2007). This latter fact questions the
extrapolation of the results and conclusions obtained in
classic word similarity benchmarks to specific similarity-
based applications. Thus, in order to improve our un-
derstanding of the problem, we suggest that the evalua-
tion methodology of ontology-based similarity measures
should be reconsidered by defining new task-oriented
benchmarks and larger datasets. In this latter line of re-
search, Jurgens et al. (2015) introduce a new similarity
evaluation method called Cross-Level Semantic Similar-
ity (CLSS), whose aim is to measure the contribution of
the degree of similarity between small language units to
the semantic similarity between larger linguistic units.
Precisely, Pilehvar and Navigli (2015) propose an uni-
fied method to compute the semantic similarity between
items from multiple linguistic levels. On the other hand,
Saif et al. (2014) have carried out a study on the im-
pact of the incompleteness of some linguistic resources
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Table 5: Our current family of well-founded IC models introduced by Lastra-Diaz and Garcia-Serrano (2015a) and
evaluated in this work. Hypo(c;) and Leaves(c;) denote respectively the set of subsumed concepts and leaf concepts
for any concept ¢; € C, without including the base concept c;.

in Arabic, such as WordNet and Wikipedia, and into
the performance of the ontology-based and gloss-based
similarity measures. This latter work shows degradation
of the performance from most ontology-based similarity
measures, which call our attention to the problems of
extrapolating the results based on English benchmarks
and resources. Another interesting issue is the avail-
ability of a large word similarity benchmark based on
WordNet that would also include instances of concepts
and multiple-word terms, in the spirit of the TR9856
dataset introduced by Levy et al. (2015).

In summary, the mainstream of research into ontology-
based similarity measures is still the proposal of new in-
trinsic IC models and IC-based measures, such as that
proposed by Pirré and Euzenat (2010), Meng et al.
(2014), Gao et al. (2015) and our aforementioned works.
However, we also find in the literature some new corpus-
based IC models such as that introduced by Harispe
et al. (2015a), and some relevant non IC-based mea-
sures such as that proposed by Sanchez et al. (2012) and
Hadj Taieb et al. (2014b). In addition, there are several
strategies that could be explored in order to overcome
the lexical coverage limitation of the ontologies, and the
selection of a specific similarity measure for a particular
application is still an open problem.

3.1 Related work on IC models

In another recent work by Lastra-Diaz and Garcia-
Serrano (2015a), we provide an in-depth review of the
state of the art in IC models. For this reason, this section
only provides a summary of the literature on IC mod-
els, including a review of the latest IC models published
after our aforementioned work.

In Resnik (1995) and subsequently Resnik (1999), the
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author introduces the first IC model reported in the
literature. The Resnik IC model relies on a frequency
counting method of the occurrences of a concept and its
subsumed concepts into a corpus, that is also described
in detail by (Pedersen, 2013, p.34), who uses the Resnik
method to build the WordNet-based frequency files used
in our experiments, Pedersen (2008b). The Resnik fre-
quency counting method does not take the word senses
into account; however, Pedersen (2010) proves that the
IC models derived from a non sense-tagged corpus per-
form better than the sense-tagged ones. In order to
overcome the drawbacks of the corpus-based IC mod-
els, Seco et al. (2004) introduce the first intrinsic IC
model reported in the literature, whose core idea is that
the IC models can be computed using only taxonomi-
cal features, such as the hyponym set ratio. During the
last decade, the development of intrinsic IC models has
become one of the mainstreams of research in the area.
Among the main intrinsic IC models proposed in the lit-
erature, we find the works in Zhou et al. (2008a), Sebti
and Barfroush (2008), Blanchard et al. (2008), Sénchez
et al. (2011), Sénchez and Batet (2012), Yuan et al.
(2013), and Hadj Taieb et al. (2014a), as shown in table
4, as well as the IC models introduced by Lastra-Diaz
and Garcfa-Serrano (2015a) that are shown in table 5.
Finally, we have four recent works on IC models
introduced by Adhikari et al. (2015), Harispe et al.
(2015a), Aouicha and Taieb (2015) and Ben Aouicha
et al. (2016b). First, Harispe et al. (2015a) introduce
a family of corpus-based IC models based on the Belief
function theoretical framework which is encouraged by
the observation that the occurrences of a concept not
only impact the IC value of the more general ancestor
concepts, the so-called ancestors, but should also im-



pact the IC value of the more specific concepts, the so-
called descendants. Harispe et al. (2015a) propose three
different corpus-based IC models based on an adapta-
tion of the classic belief and plausibility functions in the
Demster-Shafer theory (DST), and the pignistic func-
tion. Second, Adhikari et al. (2015) introduce a new
intrinsic IC model which is encouraged by the lack of
integration in the previous IC models of a large com-
bination of taxonomical features in order to distinguish
several structural differences between concepts not con-
sidered before. The Adhikari et al. (2015) IC model
integrates the relative depth, hyponym structure, sub-
sumed leaves count and subsumer set count. Aouicha
and Taieb (2015) introduce a new intrinsic IC model
specifically designed for the MeSH biomedical ontology
which has not been evaluated in WordNet. And finally,
Ben Aouicha et al. (2016b) introduce a new intrinsic IC
model on WordNet which is based on a new quatification
of the ancestor set of each base concept. has not been
included in our experiments. Tables 4 and 5 show the
set of IC models that is implemented and evaluated in
our experiments. This latest set of IC models, together
with the recent IC models proposed by Harispe et al.
(2015a) and Aouicha and Taieb (2015), represent, to the
best of our knowledge, all the intrinsic and corpus-based
IC models reported in the literature. On the other hand,
Blanchard et al. (2008) IC, is evaluated herein for the
first time in a word similarity benchmark.

4 The proposed refinement

In Lastra-Dfaz and Garcfa-Serrano (2015a), we propose
a general framework to design IC models based on differ-
ent methods for the estimation of the conditional prob-
ability between child and parent concepts, and we in-
troduce a new family of IC models based on it, the so-
called well-founded IC models shown in table 5. Our IC
models are computed into four steps: (a) estimation of
the conditional probabilities p(c;|c;); (b) building of a
total ordering of the concept set; (¢) recovery of the con-
cept probabilities p (¢;) by using the recursive formula in
equation (3); and (d) recovery of the IC values from the
concept probabilities p (¢;).

In order to eliminate the two drawbacks detailed in
section 1.2, we introduce two refinements into the fam-
ily of well-founded IC models and derive nine new IC
models. First, in order to solve the problem related to
the two cognitive IC models, we define a subsequent nor-
malization step in the recovery of the concept probabil-
ities in step (c) above, such that the overall sum of the
probability on the leaf concepts is always 1 for these
cases. Second, in order to warrant that the IC mod-
els satisfy the growing monotonicity axiom, such that
Ve; <c ¢j = IC (¢;) > IC (c¢j), we define a new method
for recovering the final concept probabilities based on the
definition of the probability p (¢;) as the sum of the prob-
abilities of the leaf concepts subsumed by the concept
¢;, instead of the direct value returned by the recursive
formula in equation (3). Thus, we define a subsequent
subsumed probability recovery step in the probability re-
covery step (d) above. We note that this new definition
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of the concept probabilities as the probability of their
subsumed leaves matches the axiomatic construction of
a discrete probability space, as introduced by Lastra-
Diaz and Garcia-Serrano (2015a), or any book on the
subject, such as Ash and Doléans-Dade (2000). The new
method to compute the final probabilities p (¢;) from the
conditional probabilities p (c;|c;) matches the previous
method in our aforementioned work whenever the tax-
onomy is tree-like, but it produces a slightly different
probability function on taxonomies with multiple inher-
itance. This latest refinement is a sufficient condition
to satisfy the growing monotonicity axziom regardless of
the conditional probability model or the type of base
taxonomy.

Refinement 1. In order to satisfy the growing
monotonicity axiom regardless of the type of tax-
onomy, we introduce the following changes into the
algorithm used to build the well-founded IC mod-
els. First, we introduce the growing monotonicity
axiom as a further axiom into the definition of a
well-founded IC model. And second, in order to
satisfy the new axiom (4) the concept probability
is defined as the sum of the probability of its sub-
sumed leaves, instead of the direct value obtained
from the recursive formula in equation (3), as was
done in our aforementioned work.

Refinement 2. In order to warrant that the sum of
leaf concept probabilities is 1 for any cognitive 1C
model, such as the CondProbLogistic and Cond-
ProbCosine introduced in Lastra-Diaz and Garcia-
Serrano (2015a), it is necessary to normalize the
overall sum of leaf probabilities to 1.

All new IC models share the same algebraic and com-
putational structure, being computed into six steps: (1)
estimation of the conditional probabilities; (2) building
of a total ordering of the concepts within the taxonomy;
(3) recovery of the concept probabilities p (¢;) by using
the recursive formula in equation (3); (4) unit normal-
ization of the probability of the leaf nodes only for the
IC models based on non-linear transformations of the
conditional probability; (5) computation of each concept
probability p (¢;) as the overall sum of the probability of
its subsumed leaves; and finally, (6) computation of the
IC values from the concept probabilities. In this way,
the new steps (4) and (5) above eliminate the two afore-
mentioned drawbacks, but the four remaining steps are
identical to the original algorithm 1 in our previous work.

The two refinements above lead us to the reformu-
lation of the algorithm 1 to build the well-founded IC
models introduced by Lastra-Diaz and Garcia-Serrano
(2015a). The previous algorithm 1 is substituted by
the new algorithm to build the well-founded IC mod-
els, which is summarized in table 6. Unlike the previous
algorithm 1, the new algorithm only uses the iterative
top-down procedure defined by the recursive formula in
equation (3) in order to compute the probability of the
leaf nodes, not the probability of each concept as was
done in our aforementioned work. We recall that the
probability recovery algorithm defined by the top-down



formula in equation (3) warrants that the overall sum
of the leaf probabilities is 1 if the conditional probabil-
ities p (¢ilcj) are well-defined and satisfy the constraint
in equation (1). This latter fact is formalized into the
proposition 2 below.

The New Algorithm in table 6 works on any type of
taxonomy, and satisfies all the structure axioms in defi-
nition 1. The algorithm includes the two modifications
proposed above in order to eliminate the two drawbacks
found in our previous method. Thus, the proposed algo-
rithm completely closes the algebraic and computational
definition of the family of well-founded IC models, and
it should be used in the design of any new intrinsic IC
model.

Definition 1 (refined well-founded IC model)
Given a tazonomy of concepts C = (C,<¢,T'), and an
IC model defined by the function IC : C — RT U {0},
we call it a refined well-founded IC model if it can
be written as IC (c) —loga (p(c)) where p(c) is a
concept-valued function as defined in equation (4), and
the functions p(c;|c;) are the conditional probabilities
between any child concept ¢; and its parent concepts
cj, which satisfy the edge-based property as defined in
equation (1).

(1) Edge-based aziom. The sum of conditional probabil-
ities p (¢;|c;) of the children nodes ¢; on any parent
¢; node must be equal to 1, as defined in equation
(1), where LA (¢;) denotes the set of lowest ances-
tors (direct parents) of any concept ¢;.

2

Veilej€LA(cq)

(1)

p(cilej) =1

Leaf node probability axiom. The overall probability
of the leaf concepts sums 1, as defined in equation
(2), and they are computed using the iterative top-
down algorithm defined by equation (3).

> pler) =1 (2)

ck€Lc
p : C—[0,1]CR
1 , G = r
ple) = > ple)plale) ,a#0 3)
Ve €LA(c;)

(3) Probability node axiom. The probability p(c;)
for each concept ¢; € C must be equal
to the sum of the probability of each sub-
sumed leaf concept ¢ €  Leaves(c;)
{ck € C | e, <¢ ¢; N ¢k is a leaf concept}, as de-
fined in equation (4).

2

cr€Leaves(c;)

p(ci) p(ck) (4)

(4) Monotonicity. Ve;,¢; € C, ¢; <¢ ¢;j = IC (¢;) >
1C (c;)
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The axioms (1), (2) and (3) above allow us to define a
new family of well-founded intrinsic IC models based on
the estimation of the conditional probabilities p (¢;|c;)
for each edge of the taxonomy, as shown in table 7. The
axiom (3) is a sufficient condition for the satisfaction of
the axiom (4), thus, the new refined IC models satisfy
the monotonicity axiom by design. We call the new fam-
ily as refined well-founded IC models in order to distin-
guish it from our previous IC models, and to emphasize
the use of the new algorithm in table 6. In proposition
1, we show that given a taxonomy (C, <¢,T'), the defin-
ition of the concept probabilities according to axiom (3)
is a sufficient condition to get a well-founded probability
space, which moreover matches the standard axiomatic
construction of any discrete probability space. In addi-
tion, we show in proposition 2 that axioms (1) and (2) of
a well-founded IC model are sufficient conditions to build
a leaf-valued function p : Lo € C — [0, 1] that satisfies
axiom (2) above and the second premise of proposition
1. Thus, proposition 2 proves that any well-founded IC
model induces a well-founded probability space on any
base taxonomy, and the whole system is supported by
the structures derived from the conditional probabili-
ties. The proofs of both propositions are included in
appendix B of Lastra-Diaz and Garcia-Serrano (2015a).

Proposition 1 Be a taxonomy C =(C,<c,T") defined
by a partially ordered set (C,<¢) with a distinguished
supreme element I', called the root, and Lo the set of
leaves in C'. If a set-valued positive function P is defined
from the leaf-valued function p as follows:

P2t —0,1]
O PU= X pla)
ck€ELcNA

p:Lc CC—10,1]
> ple) =1

cx,€Lc

(2)

then the following facts are satisfied: (1) P is a prob-
ability measure, and (2) the triplet (I',2", P) is a prob-
ability space.

Proposition 2 Let a taxonomy C =(C,<¢,T) and Lo
be the set of leaves in C. Given a concept-valued function

p defined by

p : C—10,1]
1 5 if C; = T
ple) = > plalej)p(e;) , otherwise
Ve, €ELAc(ci)

then P (L¢) =1, as given below:

> plex) =1

cxkE€Lc

P(Lc) =

4.1 The new family of IC models

This section introduces eight new intrinsic IC models
called  CondProbRefHyponyms, CondProbRefUni-
form, CondProbRefLeaves, CondProbRefLogistic,



New probability and IC recovery algorithm

Input:  a rooted taxonomy C' = (C, <¢,T)
(1) p(cile;) for each child and parent concepts.
Output 2)p:C—[0,1]CR
(3) IC: C x C — RTU{0}

1:  Compute the conditional probabilities p (¢;|c;).

2: Build a queue @ with a total ordering of the taxonomy
(C,<¢,T), such that every concept is in a subsequent position
to every one of its parent concepts
Remark: top-down computation of the leaf node probabilities

3: foreach ¢; € Q

1 5 if Ci = T

4: p(ci)= { > plelej)p(ej) , otherwise

Ve;eLAc(ci)

5:  end foreach
Remark: normalization of the overall leaf node probability (only
if the p (¢i|cj) values do not satisfy axiom 1)

6: overallLeavesProb = > p(ck)

cx€Leaves(T")

7:  foreach ¢; € Leaves (I")

8: P (6i) = graratvesPron

9:  end foreach
Remark: bottom-up computation of the node probababilities
Remark: for the computation of the probability of each node,
Leaves (¢;) denotes the set of subsumed leaf concepts inclusive
C;.

10:  foreach ¢; € Q

1, pe)= Y ple)
cp€Leaves(c;)

12: IC (¢;) = —logyp (¢i)

13:  end foreach

Table 6: New algortihm for the computation of the refined well-founded IC models.

CondProbRefCosine, CondProbLogisticLeaves, Cond-
ProbRefCosineLeaves and  CondProbRefLeavesSub-
sumersRatio, and a new corpus-based IC model called
CondProbRefCorpus. From the latter list, the first
five intrinsic IC models and the CondProbRefCorpus
IC model are derived from the corresponding IC
models introduced by Lastra-Diaz and Garcia-Serrano
(2015a) by using the new algorithm to compute the
probability and IC values detailed in table 6. On
the other hand, the new intrinsic IC models called
CondProbLogisticLeaves, CondProbRefCosineLeaves
and CondProbRefLeavesSubsumersRatio are based
on three new methods to estimate the conditional
probabilities p(c;lc;).  The CondProbLogisticLeaves
and, CondProbRefCosineLeaves 1C models combine the
conditional probability function preqves (¢ilc;) with two
different cognitive-based non-linear similarity functions
previously introduced in our aforementioned work.
Because of the good performance exhibited by the
Sanchez et al. (2011) IC model in combination with our
coswJ&C similarity measure, we propose the CondPro-
bRefLeavesSubsumersRatio 1C model which is a refor-
mulation of the Sénchez et al. (2011) IC model based
on the general framework proposed by the family of IC
models introduced herein. This new IC model is based
on the fact that the difference in IC values between child
and parent concepts in a tree-like taxonomy matches the
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logarithm of the conditional probability p(c;|c;). This
latest observation inspired the family of IC-based simi-
larity measures introduced by Lastra-Diaz and Garcia-
Serrano (2015b), and from it follows that the Sanchez
et al. (2011) IC model can be reformulated as the ratio
between child and parent concepts of the function o ()
in table 7. The function o (x) is called Sdnchez-Batet-
Isern estimator, because o (x) can be interpreted as a
taxonomical estimator of the concept probabilities. Pre-
cisely, the CondProbRefLeavesSubsumersRatio IC model
defines a well-defined probability space from the kernel
function of the Sénchez et al. (2011) IC model, and this
same strategy could be used in order to reformulate other
IC models, or taxonomy-based conditional probability
estimators, in the general framework proposed by our
family of IC models.

Table 7 shows the definition of the new family of IC
models. For the formulas in table 7, Hypo (c;) and
Leaves (¢;) denote respectively the set of subsumed con-
cepts and subsumed leaf concepts for any concept ¢; € C,
without including the base concept ¢;. Unlike our pre-
vious work, each concept probability denoted by p* (¢;)
is defined as the sum of the probability of the subsumed
leaf nodes in equation (4), instead of the value directly
obtained from the top-down formula in equation (3).
The probability values p(c¢;) of the non-leaf concepts
that are obtained from the top-down formula in equa-



New IC models in this work Definition
CondProbRefHyponym ICCPRenypO (Cz) = —log, (p}ZI PO (CZ))
(cile;) = |Hypo(ci)[+1
PHypo (CilCj) = = (Hypo(ex)[+1)
Vep | ejeLA(ey)
CondProbRefUniform ICcpRefuni (ci) = —logz (p?]niform (C%))
1

PUniform (Cil¢i) = Temarenten

CondProbRefLeaves ICCPRefLea (¢;) = —logs (pzecwes (i)
A |Leaves(c;)|+1
PLeaves (CZ|C]) = > ([Leaves(ck)[+1)
Ve | ej€LA(ey)

ICcPRefLog (ci) = 1092 (Ph0q (ci)
CondProbRefLogistic PrLog (cilcj) = 1(93) ° Priypo (cilc;)

o (x: k)= ) k* = 8

ICCPRefCoe (Cz) = —lo 0g2 (pCos (CZ>)
CondProbRefCosine DCos (Cz‘cg) ¢.(x) 0 PHypo (Cl|cj)

o () =1 cos (37

ICCPRefCorpus‘ (C ): 71092 (p* (Cz))
CondProbRefCorpus Deorpus (CZ|CJ) = me{l’{rf;;){}l,f(ck)}

Vep | eje€LA(ey)

ICCPRefLogLeLwes (Ci) = _lOg2 (pzogLea’UES (Cz))

CondProbRefLogisticLeaves

CondProbRefCosineLeaves

PLogLeaves (Ci|cj) =
o (x: k)=

ICCPRefCos (ci) =
PCosLeaves (Ci |Cj)

| ' (:C) O PLeaves (Ci|cj)
——, k*=38
1+e_k(m_%)

_l0g2 (péosLeaves (Ci))
2 (l’) O PLeaves (Ci|cj)

¢, (z) =1—cos (3z)

CondProbRefLeavesSubsumersRatio

PLeaSubRat (Ci |Cj) =

o(c)=

ICcPRefLeaSubRat (Ci) =

~ |subsumers(c)

71((79)2 (pzeaSubRat (Ci))
oo,

a(ci)

Vey, | ej€LA(e,) o (e

‘-l-l

N

|Leaves(c)|

Table 7: New set of IC models proposed into the family of well-founded IC models. Unlike our previous work, each
concept probability denoted by p*(c;) is defined as the sum of the probability of the subsumed leaf nodes, instead of
the value directly obtained from the recursive formula in equation (3). The new IC models are computed using the
new algorithm detailed in Table 5. Hypo(c;) and Leaves(c;) denote respectively the set of subsumed concepts and
leaf concepts for any concept ¢; € C, without including the base concept c¢;.

tion (3) are only temporary values whose aim is to obtain
the estimated probability value of each leaf concept. The
new IC models are computed using the new algorithm
detailed in table 6. The CondProbRefLogistic, CondPro-
bRefCosine, CondProbLogisticLeaves and CondProbRe-
fCosineLeaves 1C models do not satisfy the edge-based
axiom defined by equation (1) in definition 1 because
of they integrate a non-linear monotone transformation
in their definition that prevents it, thus, the weights of
the taxonomy used with the coswJ&C' similarity mea-
sure in table 2 are set to |IC (¢;) — IC (¢;)| instead of

—loga (p (cilcy)).

5 Evaluation

The goals of the experiments described in this section
are as follows: (1) the experimental evaluation of the
proposed IC models and their comparison with the state-
of-the-art methods; (2) a new experimental study onto
the state of the art in ontology-based similarity mea-
sures; (3) a detailed statistical significance analysis of
the similarity measures and IC models; (4) the replica-
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tion of previously reported methods and results; (5) a
new comparison between intrinsic and corpus-based IC
models; (6) a study into the impact of the IC models on
the IC-based similarity measures; (7) a comparison of
the computational cost of the ontology-based similarity
measures; (8) a new confirmation of the findings in our
previous aforementioned works on the refuted outperfor-
mance of the intrinsic IC models over the corpus-based
ones; and (9) a new confirmation of the achievements of
the family of intrinsic IC models and IC-based similarity
measures.

5.1 Methods evaluated herein

In order to compare the new family of IC models in table
7 with the state-of-the-art IC models, as well as provid-
ing a conclusive image of the state of the art of the prob-
lem, we implemented and evaluated all the IC models in
tables 4, 5 and 7, as well as all the IC-based similarity
measures in table 2 and the remaining ontology-based
similarity measures shown in table 1. One IC model in-
troduced by Blanchard et al. (2008) is evaluated herein
for the first time. To the best of our knowledge, we



evaluate herein all WordNet-based intrinsic IC models
reported in the literature, with the only exception of the
IC model very recently introduced by Ben Aouicha et al.
(2016b). Therefore, the experiments reported herein are
the largest experimental survey of intrinsic IC models
and ontology-based similarity measures reported up to
date, which are based on a same code implementation.

For all the similarity measures and IC models, the
depth is defined as the length of the shortest ascending
path from each concept to the root. For the Zhou et
al. IC model, the authors define the depth starting at
1 for the root concept. All methods have been imple-
mented in a Java software library called HESML, which
has been developed by the authors in order to replicate
all methods evaluated herein. HESML was also used
in our two aforementioned works on IC-based similarity
measures and IC models, and it is going to be introduced
and released in another forthcoming paper, Lastra-Diaz
and Garcia-Serrano (2016), together with a set of re-
producible experiments and a replication dataset called
WNSimRep vl.

In order to compare the intrinsic and corpus-based
1C models, we use as baseline a corpus-based Resnik IC
model based on the Wordnet-based frequency file called
“ic-treebank-addl.dat” included in Pedersen (2008b),
which was also used as a baseline in Lastra-Diaz and
Garcia-Serrano (2015a), having been the best perform-
ing corpus-based IC model in Lastra-Diaz and Garcia-
Serrano (2015b).

5.2 Experimental setup

We follow the same experimental setup defined by
Lastra-Diaz and Garcia-Serrano (2015a), including the
same preprocessing steps, evaluation metrics, baselines,
management of polysemic words and reporting of the
results. In addition, we include for the first time a de-
tailed pairwise statistical significance analysis between
each pair of IC models and IC-based measures. We use
the noun database of Wordnet 3.0, Miller (1995), and the
five most significant word similarity benchmarks shown
in table 8. For each word pair, we select the highest
similarity value between the pairwise comparison of the
sets of concepts evoked by each word.

Some preprocessing was necessary for the Agirre203
and SimLex-999 datasets to carry out the experiments.
For the Agirre203 dataset, it was necessary to remove
two word pairs containing verbs not present in the noun
database of Wordnet 3.0, such as the pairs (drink,eat)
and (stock,live). In addition, it was also necessary to
change the term “media” for “medium”, and “children”
for “child”, because these terms do not appear directly
in noun database. For this reason, we only used 201
nouns instead of 203, thus, this subset is called here-
after Agirre201. In the case of SimLex-999, it contains
666 nouns, but the word “august” is not included as
synset in WordNet 3.0, thus, we only used 665 nouns
from the SimLex-999 dataset, and this subset is called
hereafter SimLex665. Finally, the MC30 dataset in-
troduced by Miller and Charles (1991) is made up by
30 noun pairs; however, two word pairs are commonly
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Reference  Acronym #wp  Description

Rubenstein  RG65 65 65 noun pairs ranging a

and Good- similarity between 0 and

enough 4.

(1965)

Miller and MC28 28 Subset of RG65

Charles

(1991)

Agirre Agirre201 201  Pure similarity subset of

et al. Finkelstein et al. (2002)

(2009) with similarity in the
range 0 to 10.

Pirré P&S 65 Modern replication of

(2009) RG65

Hill et al. SimLex665 665  Noun subset of SimLex-

(2015) 999 with similarity in the

range 0 to 10.

Table 8: Word similarity benchmarks used in our exper-
iments

ommited because of they were not included in previ-
ous versions of WordNet. For this reason, we use the
M(C28 dataset as defined at (Resnik, 1995, table 3) and
(Li et al., 2003, p.875), together with the original hu-
man similarity judgements introduced by Rubenstein
and Goodenough (1965). The datasets corresponding to
the similarity benchmarks shown in table 8 are included
in the HESML distribution.

5.3 Evaluation metrics

As evaluation metrics, we use the Pearson correlation
factor, denoted by 7 in equation (5), and the Spearman
rank correlation factor, denoted by p in equation (6).
For a detailed review of the latter metrics, we refer the
reader to (Lastra-Diaz and Garcia-Serrano, 2015a, §5.3).

S (X -X) (v-Y)
NN RV S ok
DI

a2 o1) di = (i — y;)

p = (6)

In order to compare the performance of the IC mod-
els, we use the average Pearson and Spearman correla-
tion values for each pair (IC model, IC-based similarity
measure) on all datasets. The statistical significance of
the results is evaluated by using the p-values resulting
from the t-student test for the difference mean between
the Spearman correlation values reported by each pair
of IC models or IC-based similarity measures. The p-
values are computed by using a one-sided t-student dis-
tribution on two paired sample sets. For the p-values
between IC models, we use the vectors of the average
Spearman correlation values over each 1C-based similar-
ity measure (rows in table 11) as a paired sample set,
whilst for the similarity measures we use the vectors of
Spearman correlation values of each similarity measure
over all datasets (rows in table 12). Our null hypothesis,



denoted by Hy, is that the difference in the average per-
formance between the compared IC models or IC-based
measures is 0, whilst the alternative hypothesis, denoted
by Hj, is that their average performance is different. For
a 5% level of significance, it means that if the p-value is
greater than 0.05, we must accept the null hypothesis,
otherwise we can reject Hy with an error probability of
less than the p-value.

The Spearman rank correlation metric can represent
better the use of the similarity measures in most rank-
based selection tasks in NLP and IR, because it “pro-
vides an evaluation metric that is independent of these
data-dependent transformations 7, (Agirre et al., 2009,
§6). In addition, most similarity measures are monotone
transformations from previous measures. Therefore, a
statistical significance analysis based on the Spearman
correlation shows the intrinsic differences and similari-
ties between methods in a more conclusive manner than
an analysis based on the Pearson correlation. Likewise,
in order to compare the IC-based similarity measures, we
selected for each measure its best performing IC model
according to the average Spearman correlation values
shown in table 11.

5.4 Results obtained

Table 9 below shows the computational cost of each sim-
ilarity measure on the MC28 dataset. The remaining
data tables are included in the appendix next to the
bibliography. Tables 10 and 11 show in each cell the av-
erage Pearson and Spearman correlation values respec-
tively obtained in the evaluation of each IC model with
any IC-based similarity measure on all datasets. Ta-
ble 12 shows the Pearson and Spearman correlation val-
ues obtained by each ontology-based similarity measure
on all datasets. In order to make the interpretation of
the resulting p-values easier, tables 13 and 14 show a
summary of the statistical significance analysis between
the IC models and ontology-based similarity measures,
whilst the raw p-values are shown in tables 25 and 26.
Each row in tables 13 and 14 shows an ’x’ whenever the
method in the row header obtains a statistically signif-
icant higher performance than the method in the col-
umn header. Thus, the rows show the methods that
are outperformed by each method on the left, whilst the
columns show the methods that outperform each method
at the top. Finally, tables 15 to 24 in the appendix show
all raw data tables for the cross-evaluation of the IC
models and IC-based similarity measures on all datasets.

6 Discussion

6.1 Comparison of the IC models

Looking at tables 10 and 11, the following conclusions
can be drawn: (1) the Seco et al. (2004) IC model obtains
the highest average Pearson and Spearman correlation
values on all datasets and IC-based similarity measures,
as it is the best performing IC model on average; (2)
a large set of IC models made up of the models intro-
duced by Seco et al. (2004), Blanchard et al. (2008),
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Similarity measure Overall Avg Ratio
(msec)  (msec)
Sanchez et al. (2012) 480 17.14 0.66
Pirré and Seco (2008) 696 24.86 0.96
Pirr6é and Euzenat (2010) 703 25.11 0.97
Garla and Brandt (2012) 715 25.54 0.98
Meng and Gu (2012) 716 25.57 0.99
Jiang and Conrath (1997) 722 25.79 0.99
Resnik (1995) (baseline) 726 25.93 1.00
Lin (1998) 728 26.00 1.00
Lastra-Dfaz and Garcia- 735 26.25 1.01
Serrano (2015b), cosJ&C
Hadj Taieb et al. (2014b) 774 27.64 1.07
Al-Mubaid and Nguyen 38016 1357.71  52.36
(2009)
Wu and Palmer (1994) 42514 1518.36  58.56
Gao et al. (2015) 44343 1583.68 61.08
Li et al. (2003), strategy 9 45201 1614.32  62.26
Meng et al. (2014) 48499 1732.11 66.80
Zhou et al. (2008b) 50343 1797.96 69.34
Pedersen et al. (2007) 53504 1910.86 73.70
Leacock and Chodorow 53921 1925.75  74.27
(1998)
Li et al. (2003), strategy 4 54278 1938.50 74.76
Li et al. (2003), strategy 3 54607 1950.25 75.22
Rada et al. (1989) 56172 2006.14 77.37
Lastra-Diaz and Garcfa- 172490 6160.36 237.59

Serrano (2015b), coswJ&C

Table 9: Overall running time and average time per word
pair for each similarity measure in the MC28 dataset
with the following PC setup: Windows 8.1 x64, Java
1.8, Intel Core i7-5570 @ 2.40 GHz, 8 Gb RAM. The
rows are arranged in ascending order according to the
running time reported for each similarity measure. All
the similarity measures have been implemented and eval-
uated within a same software library developed by the
authors. The last row shows the running time ratio as
regard the baseline defined by the Resnik measure.

Sénchez et al. (2011), Sanchez et al. (2012), Meng et al.
(2012), Yuan et al. (2013) and Adhikari et al. (2015) ob-
tain on average a higher Pearson and Spearman corre-
lation values than the corpus-based IC model defined as
baseline; (3) the new IC models called CondProbRefHy-
ponyms and CondProbRefCosine obtain on average a
higher Pearson and Spearman correlation values respec-
tively than the baseline IC model, and the Zhou et al.
(2008a) IC model also obtains on average a higher Spear-
man correlation value than the baseline IC model; (4)
most of our family of well-founded IC models and the
Hadj Taieb et al. (2014a) IC model obtain on average
a lower Pearson and Spearman correlation values than
the baseline IC model; and (5) the Hadj Taieb et al.
(2014a) IC model obtains on average the lowest Pearson
and Spearman correlation values among all IC models,
and its average performance is much lower than the re-
maining IC models.

Tables 15 to 24 allow the following conclusions to be
drawn: (1) the Sanchez et al. (2011) IC model obtains
the highest Pearson correlation value with our cosw J&C



similarity measure in the RG65 dataset; (2) the Resnik
IC model obtains the highest Pearson correlation value
with the J&C similarity measure in the MC28 dataset;
(3) our new CondProbRefUniform IC model obtains the
highest Pearson correlation value with the FalTH sim-
ilarity measure in the Agirre201 dataset; (4) the Yuan
et al. (2013) IC model obtains the highest Pearson cor-
relation value with the FalTH measure in the P&S¢.u
dataset; and (5) the Seco et al. (2004) IC model obtains
the highest Pearson correlation value with the Zhou et al.
(2008b) similarity measure in the SimLex665 dataset.
In addition, an analysis of the raw Spearman corre-
lation values on all datasets allows the following con-
clusions to be drawn: (6) the Meng et al. (2012) IC
model obtains the highest Spearman correlation value
with our coswJ&C measure in the RG65 dataset; (7)
the Resnik IC model obtains the highest Spearman cor-
relation value with our cosw.JJ&C measure in the MC28
dataset; (8) our new CondProbRefUniform IC model ob-
tains the highest Spearman correlation value with the
Lin (1998), FaITH and Meng and Gu (2012) similarity
measures in the Agirre201 dataset; (9) the Sénchez et al.
(2011) IC model obtains the highest Spearman correla~
tion value with our cosw.J&C' similarity measure in the
P&Sy, dataset; and (10) the Yuan et al. (2013) IC
model obtains the highest Spearman correlation value
with the Zhou et al. (2008b) similarity measure in the
SimLex665 dataset.

6.2 The statistical significance of the
IC models

Table 13 allows the following conclusions to be drawn.
First, the Seco et al. (2004) IC model obtains a statis-
tically significant higher average Spearman correlation
value than the remaining IC models with the only ex-
ception of the Sanchez et al. (2011) IC model. Second,
Seco et al. (2004) and Sdnchez et al. (2011) are the only
IC models that are not outperformed in a statiscally sig-
nificant manner by another IC model. Third, the Seco
et al. (2004), Sénchez et al. (2011) and Yuan et al. (2013)
IC models obtain a statistically significant higher aver-
age Spearman correlation value than the baseline defined
by the corpus-based Resnik IC model, thus, this small
set of state-of-the-art intrinsic IC models outperform the
best performing corpus-based IC model, confirming the
H3 hypothesis positively. Fourth, the Hadj Taieb et al.
(2014a) IC model obtains a statistically significant lower
average Spearman correlation than all of the IC mod-
els. Fifth, most of our intrinsic IC models obtain a
statistically significant lower average Spearman correla-
tion than the rest of the IC models, with the exception
of the CondProbHyponyms, CondProbCosine, CondPro-
bRefHyponyms, CondProbRefLeaves and CondProbRef-
Cosine IC models. Sixth, the Zhou et al. (2008a), Meng
et al. (2012) and Yuan et al. (2013) IC models only
obtains a statistically significant lower average Spear-
man correlation than the Seco et al. (2004) IC model,
whilst the Adhikari et al. (2015) IC model is only out-
performed by another two IC models. Thus, the Zhou
et al. (2008a), Meng et al. (2012), Yuan et al. (2013) and
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Adhikari et al. (2015) IC models follow the Seco et al.
(2004) and Sénchez et al. (2011) IC models in terms of
performance in the average Spearman correlation. How-
ever, looking at table 10, we see that the performance
measured by the Pearson correlation of the Zhou et al.
(2008a) IC model is much lower than the remaining IC
models. And seventh, among the twenty-five IC models
analyzed, the Resnik IC model defined as baseline ob-
tains a statistically significant higher average Spearman
correlation than other ten models, and it is statistically
outperformed by only three intrinsic IC models, thus,
there is no a statistically significant difference between
most instrinsic IC models and the baseline, a fact that
confirms the hypothesis H2 positively.

Finally, the hypothesis H8 behind the refinement and
the new IC models introduced in this work is posi-
tively confirmed by the data obtained in our exper-
iments. Looking at table 13, we see that the new
IC models CondProbRefUniform, CondProbRefLeaves,
CondProbRefCosine and CondProbRefCorpus, obtain a
statistically significant higher average Spearman corre-
lation than their corresponding non-refined IC models
CondProbUniform, CondProbLeaves, CondProbCosine
and CondProbCorpus. However, the CondProbRefHy-
ponyms and CondProbRefLogistic 1C models are not
able to obtain a statistically significant higher perfor-
mance than their corresponding models CondProbHy-
ponyms and CondProbLogistic.

6.3 Comparison of the similarity
measures

Table 12 shows that our coswJ&C similarity measure
combined with the Sanchez et al. (2011) IC model ob-
tains the highest Spearman correlation values in all
datasets, with the only exception of SimLex665, the
highest Pearson correlation values in the RG65 (0.8870)
and MC28 (0.8710) datasets, as well as the highest over-
all average combined Pearson and Spearman correlation
values (0.7708) shown in the last column and the high-
est overall average Spearman correlation value (0.7579).
We point out that the highest Pearson correlation value
(0.8809) in the MC28 dataset is obtained by the J&C
similarity measure with the Resnik IC model, as shown
in table 17, whilst the Seco et al. (2004) IC model is
used for the overall comparison in table 12, because this
latter IC model is the best performing IC model for the
J&C measure in terms of the Spearman correlation.

Table 12 also shows that the Zhou et al. (2008b) simi-
larity measure obtains the highest Pearson (0.6237) and
Spearman (0.6101) correlation values in the SimLex665
dataset and the highest overall average Pearson correla-
tion value (0.7859). In addition, the Zhou et al. (2008b)
measure obtains the second best overall performance.
The Hadj Taieb et al. (2014b) similarity measure ob-
tains the highest Pearson correlation value (0.7123) in
the Agirre201 dataset. The FalTH similarity measure in-
troduced by Pirré and Euzenat (2010) obtains the high-
est Pearson correlation value (0.9082) in the P&Sfuy
dataset when it is combined with the Yuan et al. (2013)
model.



Table 12 shows that a small set of similarity mea-
sures obtain a higher overall performance than the base-
line defined by J&C measure, as well as the Resnik and
Lin similarity measures. This small set of outperforming
measures is made up of our coswJ&C' and cosJ&C' sim-
ilarity measures and the measures introduced by Zhou
et al. (2008b), Pirré and Seco (2008), Hadj Taieb et al.
(2014b) and Gao et al. (2015). In addition, a large set of
ontology-based similarity measures obtain a higher aver-
age Pearson correlation value than the baseline defined
by the J&C similarity measure.

The coswJ&C' similarity measure, in combination
with the Sénchez et al. (2011) IC model, obtains the
best overall performance defined by the average of the
Pearson and Spearman correlation values, as shown in
last column of table 12. In addition, the coswJ&C
similarity measure outperforms the remaining measures
in the Spearman correlation metric. Looking at ta-
ble 18, we can see another very meaningful and unex-
pected fact: the coswJ&C' similarity measure obtains
the highest Spearman correlation value in the MC28
dataset with all the IC models, excluding the Hadj Taieb
et al. (2014a) IC model. We attribute the good perfor-
mance of the cosw.J&C' similarity measure in the Spear-
man metric to the novel method for computing the dis-
tance between concepts that is defined by our distance
disyjec introduced in Lastra-Diaz (2014) and Lastra-
Diaz and Garcia-Serrano (2015b), which defines an IC-
based weighted graph as a generalization of the clas-
sic Jiang-Conrath distance. On the other hand, this
dis,, 7&,c measure requires the computation of the length
of the shortest path on a non-uniform and real-valued
weighted graph using the Dijkstra algorithm, whose
computation time is longer than for the case in which
only the edge count is required, as happens for the rest
of the hybrid IC-based similarity measures shown in ta-
ble 2. For this reason, the coswJ&C measure reports the
highest computational cost in table 9, which is roughly
three times greater than most hybrid IC-based similarity
measures.

The data in table 9 allows the hypothesis H5 and
the following conclusion introduced in Lastra-Diaz and
Garcfa-Serrano (2015b) to be confirmed: despite the
coswJ&C and Zhou et al. (2008b) similarity measures
outperforming the remaining similarity measures on av-
erage, the computational cost and the performance of
these measures, as well as the remaining hybrid IC-based
similarity measures, prevent their use in practical appli-
cations. Thus, a practical option is to use our cosJ&C
similarity measure, which obtains the third best overall
performance, despite there being no statistical signifi-
cant difference between it and the measures introduced
by Pirré and Seco (2008) and Hadj Taieb et al. (2014b).
Indeed, the general conclusion that we advance here is
that the performance margin between the state-of-the-
art ontology-based similarity measures is very narrow.

An interesting point is that the three similarity mea-
sures on top of table 12 are derived from the Jiang-
Conrath distance. The coswJ&C' similarity measure
is a generalization of the Jiang-Conrath measure based
on an IC-based weighted graph, whilst the Zhou et al.
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(2008b) similarity measure is a linear combination of it
with the Leacock and Chodorow (1998) similarity mea-
sure. On the other hand, the cosJ&C similarity mea-
sures is a monotone transformation of the Jiang-Conrath
distance. Thus, the measurement strategy introduced by
Jiang and Conrath (1997) leads the state of the art of
the problem.

6.4 The statistical significance of the
similarity measures

Table 14 allows the following conclusions to be drawn:
(1), our coswJ&C similarity measure and the measure
introduced by Zhou et al. (2008b) obtain a statistically
significant higher average Spearman correlation value
than the baseline defined by the J&C measure, and
they are the only measures that outperform the base-
line; (2) our cosw J&C similarity measure, and the mea-
sures introduced by Zhou et al. (2008b) and Meng et al.
(2014), are the only measures that are not outperformed
by other measures in a statistically significant manner;
(3) the Zhou et al. (2008b) similarity measure obtains
a statistically significant higher average Spearman cor-
relation value than all of the measures, with the only
exception of the coswJ&C and Meng et al. (2014) simi-
larity measures; (4) the Wu and Palmer (1994) similarity
measure obtains a statistically significant lower average
Spearman correlation value than all of the remaining
measures; (5) our coswJ&C similarity measure and the
measure introduced by Zhou et al. (2008b) obtain a sta-
tistically significant higher average Spearman correlation
value than all of the classic IC-based measures, whilst
our cosJ&C measure and the Garla and Brandt (2012)
measure statistically outperform the Resnik and Lin sim-
ilarity measures; and finally, (6) the Rada et al. (1989)
similarity measure and all measures derived from it, such
as the measures introduced by Leacock and Chodorow
(1998) and Pedersen et al. (2007), together with the
Al-Mubaid and Nguyen (2009) measure, are only out-
performed in a statistically significant manner by our
coswJ&C' similarity measure, and the measures intro-
duced by Zhou et al. (2008b) and Meng et al. (2014).
In summary, conclusions (1) and (2) above prove hy-
pothesis H1 on the outperformance of the path-based
similarity measures by a group of state-of-the-art IC-
based similarity measures. Conclusion (5) above proves
the hypothesis H4 on the outperformance of the classic
IC-based similarity measures by a small set of state-of-
the-art methods. On the other hand, the conclusion (6)
above is very significant because it proves for the first
time that only this small set of state-of-the-art IC-based
similarity measures have been able to obtain a statis-
tically significant higher average Spearman correlation
value than the family of path-based similarity measures.
If we reproduce the statistical significance analysis in ta-
ble 14 using the average Pearson correlation as sample
set, we could see that most IC-based similarity measures
obtain a statistically significant higher average Pearson
correlation than the path-based measures, a fact that
endorses the common belief that the path-based similar-
ity measures have been definitively outperformed by the



family of IC-based similarity measures. However, the
results shown in table 14 reopen the debate. We argue
that the lack of a statistically significant difference be-
tween the Garla and Brandt (2012) and Pedersen et al.
(2007) similarity measures, and thus any other measure
derived from Rada et al. (1989), is mainly responsible
for the lack of a statistically significant difference in per-
formance reported by Alonso and Contreras (2016) for
the use of the two aforementioned measures in a bio-
medical IR task. The latter facts endorse our idea that
research into the area should focus on the improvement
in the performance based on the Spearman rank corre-
lation, because this latter metric could predict the ex-
pected performance in applications based on similarity
measures better.

We note other significant fact. Our coswJ&C sim-
ilarity measure, and the measures introduced by Zhou
et al. (2008b) and Meng et al. (2014), are all hybrid IC-
based similarity measures that integrate an IC model
with any path-based feature. Among the latter afore-
mentioned measures, the coswJ&C' similarity measure is
the only one that defines a real IC-based weighted graph,
whilst the other two measures integrate a pure edge-
counting measure in their formulas. Our experimental
results and the significance analysis show that the 1C-
based weighted distance on a taxonomy, as proposed by
the coswJ&C similarity measure, is currently the best
approach for maximizing the Spearman rank correla-
tion value, thus, this type of taxonomical feature should
be explored in future developments into ontology-based
similarity measures, despite its high computational cost.

6.5 Impact of the IC models on the
similarity measures

The last four rows in tables 10 and 11 show a set of sta-
tistics considering the Pearson and Spearman correlation
values reported by each similarity measure (column) as a
random variable evaluated on all IC models. These sta-
tistics allow the following conclusions to be drawn: (1)
most [C-based similarity measures exhibit a moderate
standard deviation in the Pearson and Spearman corre-
lation values as regard the set of IC models; (2) most
IC-based similarity measures in table 11 exhibit a peak
ratio greater than 1.0 times their standard deviation, a
fact that supports our H6 hypothesis which states that
most IC-based similarity measures perform better with
a specific IC model; and (3) the standard deviation of
the Spearman correlation of the IC-based similarity mea-
sures as regards the IC models is statistically significant
lower than the standard deviation of the Pearson corre-
lation, a fact that is supported by a p-value of 0.0073
between both random sets. This latter fact means that
the performance of the IC-based similarity measures as
a function of the IC models is more stable in terms of
the Spearman rank correlation than the Pearson metric.

We conclude that every similarity measure should be
used with its best performing IC model in any practical
application. However, there is no strong evidence con-
firming that the outperformance of a similarity measure
in any word similarity benchmark can be extrapolated to
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other applications (see our discussion in section 3). Our
most significant conclusion as regards the IC models is
as follows: the two best performing and preferred IC
models by most IC-based similarity measures, and thus,
the most practical IC models, are those introduced by
Sénchez et al. (2011) and Seco et al. (2004).

6.6 New state-of-the-art results

The new state-of-the-art in intrinsic IC models and in-
trinsic IC-based similarity measures is set by the Sénchez
et al. (2011) IC model in combination with our cosw J&C
similarity measure, and the Seco et al. (2004) IC model
in combination with the Zhou et al. (2008b) similar-
ity measure. Likewise, these two latter intrinsic IC-
based similarity measures obtain a statistically signifi-
cant higher performance than the remaining methods.
Thus, the four aforementioned methods are convincing
winners among the families of IC models and ontology-
based similarity measures. The coswJ&C' similarity
measure obtains the highest average Spearman corre-
lation value and the highest overall averaged Pearson-
Spearman correlation value on all datasets, as well as
the highest Spearman correlation value in four of the
five datasets evaluated, and the highest Pearson corre-
lation values in the RG65 and MC28 datasets. On the
other hand, the Zhou et al. (2008b) similarity measure
obtains the highest average Pearson correlation value on
all datasets and the highest Spearman correlation value
in the SimLex665 dataset.

The set of classic IC-based similarity measures, de-
fined by the Resnik, Lin and Jiang-Conrath measures,
have also been definitively outperformed in a statistically
significant manner by a small set of IC-based similarity
measures developed during the last decade, among which
we find the similarity measures introduced by Zhou
et al. (2008b) and the coswJ&C measure introduced
by Lastra-Diaz and Garcia-Serrano (2015b). In addi-
tion, the J&C similarity measure and its two monotone
transformations, our cosJ&C measure and the Garla
and Brandt (2012) similarity measure, obtain a statis-
tically significant higher average Spearman correlation
than the Resnik and Lin similarity measures, and the
cosJ&C obtains a statistically significant average Pear-
son correlation value than the J&C similarity measure.
However, we also prove that there is no a statistically sig-
nificant difference between the two aforementioned pairs
of outperforming IC-based similarity measures.

According to the results obtained, the two similar-
ity measures with the best overall performance are
the two hybrid IC-based similarity measures defined by
the coswJ&C' introduced by Lastra-Diaz and Garcia-
Serrano (2015b) and the Zhou et al. (2008b) measure.
However, their computational cost prevents their prac-
tical use in comparison with other measures, such as the
cosJ&C introduced by Lastra-Diaz and Garcia-Serrano
(2015b) and the Hadj Taieb et al. (2014b) measure.
There is no statistically significant difference between
these two latter measures. The cosJ&C measure ob-
tains a higher Spearman correlation on average than the
Hadj Taieb et al. (2014b) measure, whilst the Hadj Taieb
et al. (2014b) measure obtains a higher Pearson cor-



relation on average than the previous one. Thus, the
cosJ&C and Hadj Taieb et al. (2014b) measures are,
statistically speaking, the best option from the afore-
mentioned set of similarity measures with a practical
computational cost.

6.7 Monotone transformations.

The Spearman rank correlation value is invariant to
monotone transformations from any similarity measure,
thus, its exhaustive evaluation for all the similarity mea-
sures and IC models has confirmed that a lot of similarity
measures are monotone transformations of other classic
measures, as well as the findings of other unknown cases.
For instance, the Spearman correlation metric reported
by the FalTH similarity measure introduced by Pirré
and Euzenat (2010) reveals that it is a monotone trans-
formation of the Lin measure like the measure intro-
duced by Meng and Gu (2012). Indeed, there are many
cases like these. For instance, the similarity measure in-
troduced by Leacock and Chodorow (1998), the simpq:n
measure of Pedersen et al. (2007), and the simp; 3 mea-
sure of Li et al. (2003), all which are monotone trans-
formations of the Rada et al. (1989) measure, whilst the
siMpatn 1o measure of Garla and Brandt (2012) and
the sim ysj8c measure introduced by Lastra-Diaz and
Garcia-Serrano (2015b) are monotone transformations
of the J&C similarity measure as defined in table 2.
We confirmed experimentally that in all of the afore-
mentioned cases, the transformed measures preserve the
Spearman correlation values obtained by their respec-
tive base measures, differing only in their Pearson cor-
relation values. Table 3 shows a factorization of the lat-
ter similarity measures that proves the aforementioned
monotonicity relationships.

As a consequence of the aforementioned monotonic-
ity relationships, there is a reduced number of different
strategies to estimate the degree of similarity using an
ontology-based similarity measure, despite many simi-
larity measures having been proposed in the literature.
We argue that the monotonicity relationships between a
large set of similarity measures are the main cause be-
hind the lack of a statistically significant difference be-
tween most of the similarity measures evaluated herein.
Thus, the research community should explore either new
measurement methods or new similarity models in order
to bring about significant progress in the state of the
problem. On the other hand, the results obtained by the
measures introduced by Meng and Gu (2012), Garla and
Brandt (2012), Pirré and Euzenat (2010) and Lastra-
Diaz and Garcia-Serrano (2015b), prove that a proper
scaling and normalization of the similarity measures is a
good strategy to improve the Pearson correlation met-
ric slightly. Therefore, the research should focus on the
search for a significant improvement in the Spearman
correlation metric, which is also closely related to the
measurement strategy and similarity model used.

6.8 Computational complexity

Table 9 compares the running time of each similarity
measure in the evaluation of the MC28 dataset. The
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feature-based measure of Sdnchez et al. (2012) obtains
the lowest running time, making it the fastest among all
of the measures. As we expected from an analysis of their
definitions, all non hybrid IC-based similarity measures
obtain a running time that is almost identical to that re-
ported by the Resnik measure defined as baseline. The
small differences are only attributable to the activity of
the operating system during the experiments, because
these IC-based similarity measures share the same 1C-
based factors. On the other hand, the hybrid IC-based
similarity measures exhibit a running time of between
52 and 237 times greater than the baseline, making our
coswJ&C' similarity measure the slowest among all of
the measures. Thus, the computational complexity of
the hybrid IC-based measures is roughly two orders of
magnitude greater than the complexity of the remain-
ing IC-based similarity measures. Despite all hybrid I1C-
based similarity measures using the same implementa-
tion of the Dijkstra algorithm in our software library,
our coswJ&C similarity measure requires the measure-
ment of the length of the shortest path between concepts
on a non-uniform and real-valued weighted graph, whilst
the rest of the hybrid IC-based similarity measures only
require the edge count to be obtained, thus, the Dijsktra
algorithm is much faster in this latter case.

6.9 Confirming our hypotheses

The hypotheses H1, H2, H3, H4, H5, H6 and HS in-
troduced in section 1.2 have been positively confirmed
by the data obtained from our experiments, they having
been answered in the discussion above. Finally, hypoth-
esis H7 on the outperformance of the state-of-the-art
IC-based similarity measures on the best corpus-based
similarity measures in the SimLex666 dataset, is also
confirmed by comparing the best Pearson and Spearman
correlation values obtained by most IC-based similarity
measures in tables 23 and 24, with the results for these
metrics reported for the best corpus-based method in
the SimLex dataset (Pearson=0.599, Spearman=0.591),
as reported in a recent benchmark by Banjade et al.
(2015).

6.10 Contradictory results

We obtained several contradictory results in our exper-
iments, confirming the same findings reported in our
aforementioned works, as well as other new ones. For
instance, Meng and Gu (2012) and Meng et al. (2014)
report Pearson correlation values of 0.8804 and 0.8817
respectively with the Seco et al. (2004) IC model in the
RG65 dataset, whlist we obtained 0.8596 and 0.8486 re-
spectively. Gao et al. (2015) report a Pearson correla-
tion value of 0.885 for their similarity measure in the
RG65 dataset with an unknown corpus-based IC model,
whilst we obtained 0.87098 herein. Adhikari et al. (2015)
report the following Pearson correlation values of 0.86,
0.86 and 0.84 for their IC model in the MC30 dataset
with the Resnik, Lin and Jiang-Conrath similarity mea-
sure respectively, whilst we obtained 0.8211, 0.8410 and
0.8331 in the MC28 dataset. These facts confirm the re-
producibility problems in the area. Thus, we invite the



research community to reproduce the methods and ex-
periments reported in the literature in order to confirm
or refute the results reported herein.

7 Conclusions and future work

We have introduced a refinement of our recent family
of well-founded Information Content models, eight new
intrinsic IC models and one new corpus-based IC model
and a very detailed experimental survey on WordNet.
We have proven that the proposed refinement improves
the performance of our family of well-founded IC models,
and six of our new IC models obtain rivaling results as
regard the state-of-the-art intrinsic IC models, making
the new CondProbRefHyponyms and CondProbRefCo-
sine IC models our best performing IC models.

The Seco et al. (2004) and Sanchez et al. (2011) IC
models set the state of the art for the IC models, and the
Seco et al. (2004), Sanchez et al. (2011) and Yuan et al.
(2013) IC models are the only intrinsic IC models that
statistically outperfom the best performing corpus-based
IC model used as baseline. However, we prove that there
is no statistically significant difference between most in-
trinsic IC models and the corpus-based Resnik IC model
defined as baseline. Therefore, the aforementioned set of
intrinsic IC models can be considered as a practical al-
ternative to the corpus-based ones, and they should be
selected in accordance with the IC-based similarity mea-
sure used. On the other hand, the detailed experiment
survey carried-out herein allows a very significant con-
clusion to be drawn: despite the research effort made
during the last decade, the Seco et al. (2004) IC model
is still the state of the art on average.

The new state-of-the-art in intrinsic IC models and in-
trinsic IC-based similarity measures is set by the Sdnchez
et al. (2011) IC model in combination with our cosw J&C
similarity measure, and the Seco et al. (2004) IC model
in combination with the Zhou et al. (2008b) similarity
measure. The set of classic IC-based similarity measures,
defined by the Resnik, Lin and Jiang-Conrath measures,
have also been definitively outperformed in a statistically
significant manner by a small set of IC-based similarity
measures developed during the last decade, among which
we find the similarity measures introduced by Zhou et al.
(2008b) and the coswJ&C introduced by Lastra-Diaz
and Garcfa-Serrano (2015b). In addition, the J&C sim-
ilarity measure and its two monotone transformations,
our cosJ&C measure and the Garla and Brandt (2012)
similarity measure, statistically outperform the Resnik
and Lin similarity measures, and the cosJ&C similarity
measure obtains a statistically significant higher average
Pearson correlation value than the J&C similarity mea-
sure. However, we also prove that there is no a statis-
tically significant difference between the two aforemen-
tioned pairs of outperforming IC-based similarity mea-
sures.

Despite our coswJ&C' similarity measure and the
Zhou et al. (2008b) measure setting the state of the art
of the problem, their computational cost prevent their
practical use in comparison with other measures, such
as the cosJ&C introduced by Lastra-Diaz and Garcia-
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Serrano (2015b) and the Hadj Taieb et al. (2014b) mea-
sure. There is no a statiscally significant difference be-
tween the two latter aforementioned measures. Thus,
the cosJ&C' and Hadj Taieb et al. (2014b) measures are,
statistically speaking, the best option from the afore-
mentioned set of similarity measures with a practical
computational cost.

We have proven that the state of the art in ontology-
based similarity measures and concept similarity models
is led by the family of IC-based measures, more specifi-
cally by the measures derived from the Jiang-Conrath
similarity measure. In addition, we have made an-
other significant finding. Contrary to the common be-
lief among the research community, only a small set of
state-of-the-art hybrid IC-based similarity measures de-
rived from the J&C measure obtain a statistically sig-
nificant higher average Spearman correlation value than
the family of path-based similarity measures, a fact that
explains some unexpected results in applications based
on similarity measures reported in the literature, such
as that reported by Alonso and Contreras (2016).

Finally, as forthcoming activities, we are going to in-
troduce and releasing HESML in a forthcoming paper
Lastra-Diaz and Garcia-Serrano (2016), which is a new
scalable Java software library of ontology-based semantic
similarity measures and IC models. In addition, HESML
will be released with a replication dataset called WN-
SimRep vl, as well as a set of reproducible experiments
which allow automatically reproducing all the results re-
ported in our two aforementioned works and herein. The
aforementioned forthcoming paper is part of a novel inni-
tiative on computational reproducibility recently intro-
duced by Chirigati et al. (2016), whose pioneering work
is introduced by Wolke et al. (2016) with the aim of aid-
ing the exact replication of several dynamic resource al-
location strategies in cloud data centers evaluated in an-
other companion paper Wolke et al. (2015). Our repro-
ducible experiments are based on ReproZip, which is a
virtualization tool introduced by Chirigati et al. (2013b)
and Chirigati et al. (2013a), whose aim is to warrant the
exact replication of experimental results onto a different
system from that originally used into their creation.
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See summary tables 10, 11, 12, 13 and 14. All raw data
resulting from the evaluation is shown in tables 15 to 26
next the bibliography.
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