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Abstract

In a recent paper, we introduce a new family of Information Content (IC) models based on the
estimation of the conditional probability between child and parent concepts. This work is encouraged by
the �nding of two drawbacks in the computational method of our aforementioned family of IC models, as
well as other two gaps in the literature. First gap is that two of our cognitive IC models do not satisfy
the axiom that constrains the sum of probabilities on the leaf nodes to be 1, whilst some ontologies
with multiple inheritance could prevent the IC model satisfying the growing monotonicity axiom in
concepts with multiple parents. Second gap is the lack of a complete and updated experimental survey
including a pairwise statistical signi�cance analysis between most IC models and ontology-based similarity
measures. Finally a third gap is the lack of replication and con�rmation of previous methods and results
in most works. The latest two gaps are especially signi�cant in the current state of the problem, in
which there is no convincing winner within the family of intrinsic IC-based similarity measures and the
performance margin is very narrow. In order to bridge the aforementioned gaps, this paper introduces
the following contributions: (1) a re�nement of our recent family of well-founded Information Content
(IC) models; (2) eight new intrinsic IC models and one new corpus-based IC model; and (3) a very
detailed experimental survey of ontology-based similarity measures and Information Content (IC) models
on WordNet, including the evaluation and statistical signi�cance analysis on the �ve most signi�cant
datasets of most ontology-based similarity measures and all WordNet-based IC models reported in the
literature, with the only exception of the IC models recently introduced by Harispe et al. (2015a) and
Ben Aouicha et al. (2016b). The evaluation is entirely based on a Java software library called HESML
which has been developed by the authors in order to replicate all methods evaluated herein. The new
IC models obtain rivaling results as regard the state-of-the-art methods and improve our previous mod-
els, whilst the experimental survey allows a detailed and conclusive image of the state of the problem to
be drawn by setting the new state of the art and quantifying the main achievements of the last three decades.

Keywords: Intrinsic Information Content models, ontology-based semantic similarity measures, IC-
based similarity measures, word similarity benchmark, semantic similarity, concept similarity model,
experimental survey.

1 Introduction

The human similarity judgments between concepts un-
derlie most of cognitive capabilities, such as categoriza-
tion, memory, decision-making, and reasoning, as well as
the use and discovery of anologies among others. For this
reason, this problem has a lot of applications in Arti�-
cial Intelligence (AI) and many other related �elds. The
main research problem studied herein is the proposal of
new Information Content (IC) models for ontology-based
semantic similarity measures with the aim of estimating
the degree of similarity between words as perceived by a
human being. However, because of that the common ap-

proach to compute word similarity measures is to select
the highest pairwise similarity value between the concept
sets evoked by each word, our main research problem is
closely related to the proposal of concept similarity mod-
els, whose aim is to estimate the degree of similarity
between concepts instead of words. A concept similar-
ity model is a function sim : C � C ! R de�ned on a
set of concepts which estimates the degree of similarity
between concepts as perceived by a human being. The
research into concept similarity models, so called in a
broad sense as the human similarity judgment problem
in cognitive sciences, has given rise to di¤erent strategies
to tackle the problem of which the ontology-based simi-
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larity measures have proven to be the most successful of
them.
The research into ontology-based semantic similarity

measures is an old problem in AI and other related �elds,
such as cognitive psychology Tversky (1977), Natural
Language Processing (NLP) and Information Retrieval
(IR), Rada et al. (1989). A plethora of ontology-based
similarity measures have been proposed in the litera-
ture, giving rise to a large set of applications in the
�elds of NLP, IR, bioengineering and genomics. For in-
stance, Lastra-Díaz (2014) introduces an ontology-based
IR model disclosed by Lastra Díaz and García Serrano
(2014) which is based on the weighted Jiang-Conrath
(J&C) distance introduced and evaluated in Lastra-Díaz
and García-Serrano (2015b). Patwardhan et al. (2003)
introduce a Word Sense Disambiguation (WSD) method
based on the distributional hypothesis and the use of
ontology-based similarity measures in order to select the
closest evocated concept between a disambiguated word
and its neighboring words. Mihalcea et al. (2006) pro-
pose a text similarity measure based on the combina-
tion of an Inverse Document Frequency (IDF) weight-
ing scheme with any ontology-based similarity measure,
which is evaluated in a Paraphrase Detection (PD) task,
whilst Fernando and Stevenson (2008) propose a para-
phrase detection method based on a quadratic form be-
tween Boolean occurrence vectors whose matrix is de-
�ned by any ontology-based similarity measure between
words. In document clustering, Song et al. (2009) pro-
pose a genetic algorithm for text clustering based on a
Li et al. (2003) similarity measure, whilst Dagher and
Fung (2013) introduce a document clustering method
based on a VSM model and a WordNet-based term ex-
pansion based on the Jiang and Conrath (1997) distance.
Liu et al. (2009) introduce a method for the discov-
ery of relevant WDSL-speci�ed web services based on
a WDSL similarity metric de�ned by the dot product
between the provider and query vectors, whose weights
are derived from the Li et al. (2003) similarity mea-
sure. Martínez et al. (2010) introduce a document
anonymization method based on ontology-based similar-
ity measures. Cross and Hu (2011) introduce a seman-
tic alignment quality measure for the Ontology Align-
ment (OA) problem which relies on the di¤erence be-
tween the similarity measure between the concepts in
the base ontology and their image in the target ontol-
ogy; and Pirró and Talia (2010) introduce an ontology
mapping method based on a reformulation of the Jiang
and Conrath (J&C) distance and the Seco et al. (2004)
IC model, whilst Jeong et al. (2008) propose a framework
for XML-schema matching based on ontology-based sim-
ilarity measures. In Oliva et al. (2011), Lee (2011) and
Hadj Taieb et al. (2015), the authors introduce di¤er-
ent methods for sentence similarity based on ontology-
based similarity measures. Other works use similarity
measures for the extraction of domain ontologies from
the Internet like Wang and Zhou (2009), or from text
corpora like Meijer et al. (2014). Montani et al. (2015)
propose an ontology-based process similarity metric for
process mining that relies on the Wu and Palmer (1994)
similarity measure. In the �eld of bioengineering, Couto

et al. (2007) introduce a reformulation of three classic
IC-based similarity measures with the aim of computing
similarity measures based on the Gene Ontology (GO),
whilst Chaves-González and Martínez-Gil (2013) intro-
duce a similarity-based evolutionary method for syn-
onym recognition in the biomedical domain. Other spe-
ci�c similarity measures have been studied for biomed-
ical text mining, such as Pedersen et al. (2007) and
Sánchez and Batet (2011), as well as other genomics ap-
plications, such as protein function prediction Pesquita
et al. (2009), Couto and Pinto (2013) and pathway pre-
diction Chiang et al. (2008).

1.1 The context of our research

An ontology-based semantic similarity measure is a bi-
nary concept-valued function sim : C � C ! R de�ned
on a single-root taxonomy of concepts (C;�C) which re-
turns the degree of similarity between concepts as per-
ceived by a human being. Modern research into the
problem starts with the pioneering works by Tversky
(1977) and Rada et al. (1989) in the �elds of cognitive
psychology and IR respectively. Tversky (1977) intro-
duce a feature-based similarity measure which requires
a representation of the concepts as feature sets, whilst
Rada et al. (1989) introduce a semantic distance de�ned
as the length of the shortest path between concepts in a
taxonomy. The main drawback of the Rada et al. (1989)
measure, as well as other similarity measures which use
the length of the shortest path between concepts, is that
all the edges in the taxonomy contribute to the over-
all distance with the same weight, the so-called uni-
form weighting problem. In order to bridge this latter
gap, Resnik (1995) introduces the �rst similarity mea-
sure based on an Information Content (IC) model de-
rived from corpus statistics, as well as the �rst method
to compute an IC model, such as those proposed herein.
Every IC-based similarity measure needs a comple-

mentary concept-valued function, called the Information
Content (IC) model. Given a taxonomy of concepts de-
�ned by a triplet C = ((C;�C) ;�) where � 2 C is the
supreme element called the root, an Information Con-
tent model is a function IC : C ! R+ [ f0g, which
represents an estimation of the information content for
every concept, de�ned by IC (ci) = �log2 (p (ci)), p (ci)
being the occurrence probability of each concept ci 2 C.
Every IC model must satisfy two further properties: (1)
nullity in the root, such that IC (�) = 0, and (2) grow-
ing monotonicity from the root to the leaf concepts, such
that 8ci �C cj ) IC (ci) � IC (cj). Once the IC-based
measure is chosen, the IC model is mainly responsible
for the de�nition of the notion of similarity and distance
between concepts. Other works, such as Pirró and Eu-
zenat (2010), have also proposed intrinsic IC models for
semantic relatedness measures which rely on the whole
set of semantic relationships encoded into an ontology.
The �rst known IC model is based on corpus statistics,

which was introduced by Resnik (1995) and detailed in
Resnik (1999). The main drawback of the corpus-based
IC models is the di¢ culty in getting a well-balanced and
disambiguated corpus for the estimation of the concept
probabilities. To bridge this gap, Seco et al. (2004) intro-
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duced the �rst intrinsic IC model in the literature, whose
core hypothesis is that the IC models can be directly
computed from intrinsic taxonomical features. There-
fore, the development of new intrinsic IC-based similar-
ity measures is divided into two subproblems: (1) the
proposal of new intrinsic IC models, as in our work,
and (2) the proposal of new IC-based similarity mea-
sures. In another recent work Lastra-Díaz and García-
Serrano (2015a), we introduce a new family of intrin-
sic and corpus-based IC models called well-founded IC
models, which is based on the proposal of di¤erent meth-
ods for the estimation of the conditional probabilities
between child and parent concepts within a taxonomy.
The main idea behind the new family of well-founded IC
models is that any IC model should satisfy a set of ax-
ioms that algebraically link the conditional probabilities,
probability function and IC model in order to de�ne a
well-founded probability space.

1.2 Motivation and hypotheses

The �rst motivation is the �nding of two drawbacks in
the algorithm to compute the family of well-founded IC
models introduced in Lastra-Díaz and García-Serrano
(2015a). First, the two intrinsic and cognitive IC mod-
els called CondProbLogistic and CondProbCosine do not
satisfy the axiom that constrains the sum of probabili-
ties on the leaf nodes to be 1. It is a consequence of
the non-linear transformations applied to the conditional
probabilities of these two models, a fact that was already
mentioned in our aforementioned work. Second, in some
cases, the ontologies with multiple inheritance could pre-
vent the IC model satisfying the growing monotonicity
axiom in concepts with multiple parents. This latest fact
means that for some concept pairs ci; cj 2 C, the con-
straint ci �C cj ) IC (ci) � IC (cj) could be violated.
In appendix B of our aforementioned work, we prove that
the recovery algorithm based on the recursive formula in
equation (3) is a su¢ cient condition for the sum of prob-
abilities over the leaf nodes to be 1, what follows the
underlying probability space is well-de�ned. However, if
the taxonomy exhibits multiple inheritance, the proba-
bilities p (ci) derived from equation (3) could be higher
than the probability of any direct parent in some nodes
with multiple parents, thus, leading to a violation of the
aforementioned growing monotonicity axiom. Our main
hypothesis is that the solution to these two drawbacks
could lead us to an improvement in the performance of
the family of well-founded IC models, in addition to �x-
ing an algebraic inconsistency that moves the family of
well-founded IC model away from their original design
principles.
Second motivation of this work is the lack of an up-

dated and exhaustive evaluation of ontology-based sim-
ilarity measures and IC models in WordNet, as well as
the lack of an exhaustive pairwise statistical signi�cance
analysis between them. In the literature, we �nd some
out-of-date similarity benchmarks such as that reported
by Budanitsky and Hirst (2001) and Budanitsky and
Hirst (2006), and others, more recent but not exhaus-
tive, such as Hadj Taieb et al. (2014b). The largest and
most recent word similarity benchmarks in WordNet are

introduced by Lastra-Díaz and García-Serrano (2015a)
and Lastra-Díaz and García-Serrano (2015b). However,
not all of the hybrid IC-based similarity measures eval-
uated in the latest work have been previously evaluated
with many IC models considered herein and the datasets
introduced by Miller and Charles (1991), Agirre et al.
(2009) and Hill et al. (2015). In addition, most ontology-
based similarity measures have never been compared
through a statistical signi�cance analysis. Therefore,
in the light of the results reported by Lastra-Díaz and
García-Serrano (2015a), and in order to provide a con-
clusive image of the current state of the problem, we
introduce herein a new and larger evaluation of IC mod-
els and ontology-based similarity measures than those
available in the literature. This new evaluation is based
on the most recently available datasets and our own soft-
ware implementation of all the IC models and similarity
measures evaluated herein, covering most developments
from the pioneering works of Rada et al. (1989) and Seco
et al. (2004).
Finally, the last motivation is the replication of previ-

ous methods and experiments. Most works introduc-
ing similarity measures or IC models during the last
decade have only implemented or evaluated classic IC-
based similarity measures, such as the Resnik, Lin and
Jiang-Conrath measures, avoiding the replication of IC
models and similarity measures introduced by other re-
searchers. Some works have not included all the details
of their methods, or the experimental setup to obtain the
published results, thus, preventing their reproducibil-
ity. Most works have copied results published by others.
This latest fact has prevented the valuable con�rmation
of previous methods and results reported in the litera-
ture, which is an essential feature of science. Pedersen
(2008a), and subsequently Fokkens et al. (2013), warn
of the need to reproduce and validate previous methods
and results reported in the literature, a suggestion that
we subscribe to in our aforementioned works, where we
also warn of �nding some contradictory results. This
replication problem is especially signi�cant in the cur-
rent state of the problem, in which there is no con-
vincing winner within the family of intrinsic IC-based
similarity measures and the performance margin is very
narrow, as concluded in our aforementioned works. In
addition, Pedersen (2008a) also warns of the need of re-
leasing the software developed for the evaluation of new
methods and experiments reported in the literature with
the aim of allowing their reproducibility. Following the
suggestions from Pedersen, we introduce our new soft-
ware library of ontology-based semantic similarity mea-
sures and IC models together with a set of reproducible
experiments in a forthcoming paper, Lastra-Díaz and
García-Serrano (2016).
The proposed re�nements close the algebraic and algo-

rithmic de�nition of the family of well-founded IC mod-
els, giving rise to research into further IC models within
this family.
For the experimental survey, our main hypotheses are

as follows:

H1. A group of recent IC-based similarity measures out-
perform the path-based similarity measures, as well
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as the classic IC-based measures, but there is no
statistically signi�cant di¤erence between them.

H2. There is no statistically signi�cant di¤erence in
performance between most intrinsic IC models and
the best performing corpus-based IC model de�ned
as baseline, which is derived from the �ic-treebank-
add1.dat��le in the Pedersen (2008b) dataset.

H3. A small set of the best performing intrinsic IC mod-
els outperform the best performing corpus-based IC
model de�ned as baseline.

H4. The classic IC-based similarity measures proposed
by Resnik, Jiang and Conrath, and Lin have been
de�nitively outperformed by a small set of state-of-
the-art IC-based similarity measures.

H5. The practical use of the current hybrid IC-based
similarity measures that are based on the length of
the shortest path is prevented by their high compu-
tational cost in comparison with the other methods
with a similar performance.

H6. Most IC-based similarity measures perform better
with a speci�c IC model.

H7. The state-of-the-art IC-based similarity measures
outperform the best corpus-based similarity mea-
sures in the SimLex665 dataset.

H8. The proposed re�nement into the computation
method of the well-founded IC models could lead
us to an improvement in their performance.

1.3 Research problem and contributions

The main aims of this paper are as follows. First, the
proposal of a re�nement into the four-step algorithm
used to compute the family of well-founded IC models
with the aim of eliminating the aforementioned draw-
backs of the computational method introduced in our
previous work, Lastra-Díaz and García-Serrano (2015a).
Second, the proposal of eight new intrinsic IC models
and one new corpus-based IC model in the new frame-
work of our family of well-founded IC models. And third,
the introduction of a new and very detailed experimen-
tal survey of IC models and ontology-based similarity
measures on WordNet with a complete detailed statisti-
cal signi�cance analysis between IC models and similar-
ity measures, including the evaluation of most ontology-
based similarity measures since the work of Rada et al.
(1989) and all WordNet-based IC models reported in
the literature, with the only exception of the IC mod-
els recently introduced by Harispe et al. (2015a) and
Ben Aouicha et al. (2016b).
The re�nement of the well-founded IC models allows

a new family of IC models to be derived from the pre-
vious models introduced by Lastra-Díaz and García-
Serrano (2015a), as well as three new strategies to
compute the conditional probabilities. The new intrin-
sic IC models are called CondProbRefHyponyms, Cond-
ProbRefUniform, CondProbRefLeaves, CondProbRefLo-
gistic, CondProbRefCosine, CondProbRefLogisticLeaves,

CondProbRefCosineLeaves and CondProbRefLeavesSub-
sumersRatio, whilst the new corpus-based IC model is
called CondProbRefCorpus. The CondProbRefLeaves-
SubsumersRatio IC model is a reformulation of the
Sánchez et al. (2011) IC model in the framework de�ned
by our family of IC models.
The new experimental survey includes most of the in-

trinsic and corpus-based IC models evaluated in Lastra-
Díaz and García-Serrano (2015a), as well as the nine new
IC models introduced herein, one of the unexplored in-
trinsic IC models introduced by Blanchard et al. (2008),
and most ontology-based similarity measures since the
work by Rada et al. (1989). The word similarity bench-
marks introduced herein include the �ve most signi�-
cant datasets on the problem, as well as a very de-
tailed pairwise statistical signi�cance analysis between
the IC models and ontology-based similarity measures.
The benchmarks reported herein are, to the best of our
knowledge, the largest experimental survey on intrinsic
IC models and ontology-based similarity measures on
WordNet reported in the literature, which is based on
a same code implementation. We exactly reproduce the
same experiments from Lastra-Díaz and García-Serrano
(2015a), but with a much larger set of IC models and
ontology-based similarity measures. Our experiments
include a set of the hybrid IC-based similarity measures
based on the length of the shortest path between con-
cepts which were evaluated in Lastra-Díaz and García-
Serrano (2015b) and subsequently discarded because of
their high computational cost. The experimental sur-
vey includes 22 ontology-based similarity measures, 22
intrinsic IC models, and 3 corpus-based IC models.
The rest of the paper is structured as follows. Section

2 reviews the literature on concept similarity models.
Section 3 summarizes the factual state of the art of the
problem, whilst section 3.1 reviews the literature on in-
trinsic IC models. Section 4 introduces the proposed
re�nement in the well-founded IC models, as well as the
new IC models derived from it. Section 5 describes the
evaluation methodology and the results obtained. Sec-
tion 6 introduces an in-depth discussion of the results.
Last section presents our conclusions and future work.
Finally, appendix groups the summary data tables and
all raw data tables resulting from the evaluation.

2 Concept similarity models

This section makes a comparison between the concept
and word similarity models proposed in the literature
which we categorize as ontology-based and corpus-based
similarity measures, and the most recent concept sim-
ilarity models proposed in cognitive psychology. First,
we compare the main strategies adopted to tackle the
problem, and �nally, we review the literature on corpus-
based and ontology-based similarity measures.

2.1 Comparison of strategies

In the �elds of NLP and IR, we �nd two di¤erent types of
similarity models to estimate the degree of similarity be-
tween words: (1) ontology-based similarity measures as
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Reference De�nition of the non IC-based similarity measures

Rada et al. (1989)

simRada (c1; c2) = 1� 1
2dRada (c1; c2)

dRada (c1; c2) = len (c1; c2) = min
8�2Paths(c1;c2)

( P
eij2�

1

)
Wu and Palmer (1994) simW&P (c1; c2) =

2�depth(LCA(c1;c2))
len(c1;LCA(c1;c2))+len(c2;LCA(c1;c2))+2�depth(LCA(c1;c2))

Leacock and Chodorow (1998) simL&C (c1; c2) = �log
�
1+len(c1;c2)
2�maxdepth

�
Li et al. (2003) simLi_s3 (c1; c2) = e

���len(c1;c2); �� = 0:25

Li et al. (2003)
simLi_s4 (c1; c2)= e

���len(c1;c2) � e��d�e���d
e��d+e���d

, ��= 0:2 ��= 0:6
d = depth (LCA (c1; c2))

Al-Mubaid and Nguyen (2009) dMubaid (c1; c2)= log (1 + len (c1; c2) � (depthmax� depth (LCS (c1; c2))))
Pedersen et al. (2007) simPath (c1; c2) =

1
1+len(c1;c2)

Sánchez et al. (2012)
disS&B (c1; c2)= log2

�
1 + j�(c1)n�(c2)j+j�(c2)n�(c1)j

j�(c1)n�(c2)j+j�(c2)n�(c1)j+j�(c1)\�(c2)j

�
� (a)= fc 2 C j a � cg

Hadj Taieb et al. (2014b)

simTaieb_1 (c1; c2)= jTermDepth (c1; c2)j �TermHypo (c1; c2)
TermDepth (c1; c2) =

2�depth(c1;c2)
depth(c1)+depth(c2)

TermHypo (c1; c2) =
2�SpecHypo(c1;c2)

SpecHypo(c1;c2)+SpecHypo(c1;c2)

SpecHypo (c1; c2)= 1�
log(HypoV alue(c))

log(HypoV alue(root))

HypoV alue (c)=
P

c02HypoInc(c)
P (depth (c0))

P (depth (c0))=
jfc02C j depth(c0)=depth(c)gj

jCj
depth (c)=length of the longest ascending path c! root
HypoInc (c)= fc0 2 C j c0 � cg

Table 1: State-of-the-art non IC-based similarity measures evaluated in our experiments.

in our work, and (2) corpus-based similarity and related-
ness measures. The ontology-based similarity measures
are based on the de�nition of binary concept-valued simi-
larity functions on �is-a�taxonomies, which have proven
in Lastra-Díaz and García-Serrano (2015a) to be the
best approximation to similarity human judgments on
the noun subset of the SimLex dataset Hill et al. (2015),
as being e¢ cient, robust and easy to implement. How-
ever, the main drawback of the ontology-based similarity
measures is the limited coverage of the ontologies and the
cost and di¢ culties of building them. Other drawback
of the ontology-based methods is the requirement of a
single taxonomy that includes all the words to be com-
pared, although this problem has given rise to the pro-
posal of methods for the estimation of semantic similar-
ity measures combining multiple ontologies, such as the
general-purpose method introduced by Al-Mubaid and
Nguyen (2009), the method for feature-based measures
proposed by Solé-Ribalta et al. (2014) and the method
for IC-based similarity measures proposed by Batet et al.
(2014). On the other hand, the corpus-based similarity
and relatedness measures mainly rely on the distribu-
tional hypothesis, and they are commonly based on the
statistical co-occurrence between word contexts in large
corpora, as a means of estimating the degree of simi-
larity between words. The corpus-based measures �can
confuse similarity with relatedness�(Li et al., 2015, §1).
In addition, �it is commonly considered that distribu-
tional measures can only be used to capture semantic
relatedness� (Harispe et al., 2015b, §2.5.2), and �they
have traditionally performed poorly when compared to
WordNet-based measures�(Mohammad and Hirst, 2012,
p.1). This latter fact is con�rmed by the recent compar-

isons between ontology-based and corpus-based similar-
ity measures reported by (Banjade et al., 2015, Table 1)
and Le and Fokkens (2015), as well as our benchmarks
in (Lastra-Díaz and García-Serrano, 2015a, §6.4). It is
worth to note that the ontology-based similarity mea-
sures use an explicitly de�ned concept similarity model
with the aim of estimating the degree of similarity be-
tween words whose speci�c meaning (evocated concept)
is unknown, whilst the corpus-based measures use the
occurrence of the words in a speci�c context, whose
meaning (concept) is implicitly de�ned by the context.
Finally, the research into the similarity judgments

problem in cognitive psychology derives from the pio-
neering work of Tversky (1977). The research into the
�eld of IR has focused on the proposal of a plethora
of symmetric and contextless similarity measures guided
by experimental evaluation. On the contrary, the re-
search into cognitive sciences has followed a parallel line
more focused on the de�nition of theoretical models ca-
pable of explaining several non-metric phenomena in
the human similarity judgments described by Tversky
(1977) and Pothos et al. (2015), such as: (1) asymme-
try or non-commutativity, (2) context dependency and
(3) the conjunction fallacy. The most recent cognitive
similarity model is introduced by Pothos et al. (2013)
and Pothos and Trueblood (2015), being inspired by a
quantum probability approach for cognition proposed by
Busemeyer and Bruza (2012), whose non-commutative
nature allows the representation of di¤erent non-metric
phenomena. However, the quantum probability similar-
ity model has not yet been experimentally evaluated.
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2.2 Corpus-based measures

Many corpus-based similarity or relatedness mea-
sures are based on concept-based resources, such as
Wikipedia. For instance, Strube and Ponzetto (2006) in-
troduce WikiRelate, a method for computing the seman-
tic relatedness between words based on a graph derived
from Wikipedia. WikiRelate extracts the Wikipedia
pages associated to each input word and builds a tax-
onomy of categories by merging the categories that the
pages belong to. Finally, WikiRelate uses standard path-
based and IC-based similarity measures on the recovered
taxonomy in order to compute the relatedness measure
between words. We can interpret WikiRelate as a two-
stage method based on the combination of a taxonomy
recovering method, such as the method recently pro-
posed by Ben Aouicha et al. (2016a), with any stan-
dard ontology-based similarity measure. Gabrilovich
and Markovitch (2007) introduce a semantic relatedness
method for word and documents, called ESA, which rep-
resents the meaning of a word or text as a weighted vec-
tor of Wikipedia concepts (articles); whilst Agirre et al.
(2009) introduce several distributional relatedness mea-
sures based on a vector space model trained on a large
Web corpus, which favourably compare with a large set
of ontology-based similarity measures on WordNet.
On the other hand, another very active line of re-

search in corpus-based similarity measures is the pro-
posal for hybrid concept-based distributional measures,
which integrate knowledge bases (KBs) or explicit �is-a�
semantic networks in order to overcome the lack of well-
de�ned semantic knowledge. For instance, Patwardhan
and Pedersen (2006) introduce a similarity and related-
ness measure which relies on the gloss vector overlapping
between the extended WordNet gloss vectors of two in-
put concepts. Mohammad and Hirst (2006) introduce a
hybrid distributional measure which relies on the cosine
function and the concept-based conditional probabilities
for the words derived from the Roget�s thesaurus. Al-
varez and Lim (2007) propose a hybrid distributional
similarity measure that relies on the product of two tax-
onomical WordNet-based functions with a gloss overlap-
ping factor by using �is-a� and �part-of� relationships,
whilst Li et al. (2015) introduce another hybrid distri-
butional measure whose core idea is that the similarity
computation relies on truly �is-a� relationships, which
are derived from a very large web corpus by using an
automatic method based on syntactic rules.
Other family of relatedness measures are based on

randow walks on weighted graphs derived from di¤erent
knowledges sources, such as Wikipedia and WordNet.
For instance, Hughes and Ramage (2007) propose a se-
mantic relatedness measure between word pairs which is
based on a random walk using Personalized PageRank
on a weighted graph derived from WordNet and corpus
statistics, whilst Yeh et al. (2009) extend their previous
work on semantic relatedness measures based on random
walks to Wikipedia, and Ramage et al. (2009) propose a
corpus-based measure based on a random walk on Word-
Net with the aim of estimating the semantic similarity
between text fragments. Finally, Yazdani and Popescu-
Belis (2013) propose a method for estimating the se-

mantic relatedness between concepts based on a random
walk approach on a Wikipedia concept network with two
link types: the hypertext links between Wikipedia arti-
cles (concepts), and the lexical similarity between them
de�ned by the cosine score between the vectors repre-
senting each article.
Another growing research trend on corpus-based se-

mantic similarity and relatedness measures is the de-
velopment of word embeddings, such as those proposed
by Mikolov et al. (2013), Pennington et al. (2014) and
Suzuki and Nagata (2015), whose core idea is the learn-
ing of a vector representation (embedding) for large vo-
cabularies, such that the Euclidean distance between
word vectors re�ects their semantic similarity. Most
word embeddings use a large corpora in their learn-
ing process, thus, they are a subfamily of the corpus-
based methods. The word embedding methods com-
monly use complex machine learning algorithms, which
are time-consuming and hard to reproduce. However,
once the vector representations are computed, their eval-
uation mainly depends on the dimensionality of the vec-
tor space, thus, they can be very e¢ cient for large vo-
cabularies and low dimensionality.

2.3 Ontology-based similarity measures

In two recent works, Lastra-Díaz and García-Serrano
(2015b) and Lastra-Díaz and García-Serrano (2015a), we
provide a very detailed review of the current ontology-
based semantic measures, thus, we only provide herein a
categorization in order to introduce the similarity mea-
sures that will be evaluated in our experiments. For a
more in-depth review of the topic, we refer the reader
to our aforementioned works, especially the former, and
the recent book by Harispe et al. (2015b).
We categorize the current ontology-based semantic

measures into four subfamilies as follows: (1) edge-
counting similarity measures, the so called path-based
measures, whose core idea is the use of the length of
the shortest path between concepts as an estimation of
their degree of similarity, such as the pioneering work of
Rada et al. (1989) and the subsequent works of Wu and
Palmer (1994), Leacock and Chodorow (1998), Hirst and
St-Onge (1998), Pedersen et al. (2007) and Al-Mubaid
and Nguyen (2009); (2) IC-based similarity measures
whose core idea is the use of an Information Content (IC)
model, such as the pioneering work of Resnik (1995), and
the measures proposed by Jiang and Conrath (1997) and
Lin (1998); (3) feature-based measures, whose core idea
is the use of set-theory operators between the feature sets
of the concepts, such as the pioneering work of Tversky
(1977), and more recently Sánchez et al. (2012), whose
core idea is the use of the overlapping of ancestor sets as
an estimation of the overlapping between the unknown
feature sets of the concepts; and �nally, (4) other similar-
ity measures that cannot be directly categorized into any
previous family, which are based on taxonomical features
derived from set-theory operators Batet et al. (2011), or
novel contributions of the hyponym set Hadj Taieb et al.
(2014b). Out of our previous categorization, it was also
worth mentioning some proposals of aggregated similar-
ity measures, such as Martinez-Gil (2016), whose key
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Classic IC-based similarity measures
Resnik (1995) simResnik (c1; c2) = IC (MICA (c1; c2))

Jiang and Conrath (1997)
dJ&C (c1; c2) = IC (c1) + IC (c2)� 2IC (MICA (c1; c2))
simJ&C (c1; c2) = 1� 1

2dJ&C (c1; c2)

Lin (1998) simLin (c1; c2) =
2IC(MICA(c1;c2))
IC(c1)+IC(c2)

IC-based reformulations of the Tversky similarity measure

Pirró and Seco (2008) simP&S (c1; c2)=

8<: 3IC (MICA (c1; c2))
�IC (c1)� IC (c2)

, if c1 6= c2
1 , if c1= c2

Monotone transformations of classic IC-based similarity measures

Pirró and Euzenat (2010) simFaITH (c1; c2) =
IC(MICA(c1;c2))

IC(c1)+IC(c2)�IC(MICA(c1;c2))

Meng and Gu (2012) simMeng (c1; c2) = e
simLin(c1;c2) � 1 = e

2IC(MICA(c1;c2))

IC(c1)+IC(c2) � 1
Garla and Brandt (2012) simpath_IC (c1; c2) =

1
1+dJ&C(c1;c2)

Lastra-Díaz and García-Serrano (2015b)
simcosJ&C (c1; c2) = 1� cos

�
�
2

�
1� dJ&C(c1;c2)

2�maxdJ&C

��
maxdJ&C = max

c2Leaves(C)
fIC (c)g

Hybrid IC-based similarity measures based on the shortest path length

Li et al. (2003) simLi_s9 (c1; c2) = simLi_s4 (c1; c2) � e
��IC�e���IC
e��IC+e���IC

, �� = 0:4
IC =MICA (c1; c2)

Zhou et al. (2008b) simZh (c1; c2)= 1� k�

0@ log(len(c1;c2)+1)

log

�
2�max

c2T
fdepth(c)g�1

�
1A

� 1
2 (1� k)� dJ&C (c1; c2) k� = 1

2 by default

Meng et al. (2014) simMeng2014 (c1; c2) = simLin (c1; c2)

�
1�e�k�len(c1;c2)

e�k�len(c1;c2)

�
; k� = 0:08

Gao et al. (2015)

simGao (c1; c2) = e
��L(c1;c2) ; �� = 0:15 and �� = 2:05

L (c1; c2) = wt (c1; c2) � len (c1; c2)

wt =

( �
1+IC(MICA(c1;c2))
IC(MICA(c1;c2))

��
; IC (MICA (c1; c2))� 1

2� ; 1 > IC (MICA (c1; c2)) � 0

Lastra-Díaz and García-Serrano (2015b)

simcoswJ&C (c1; c2) = 1� cos
�
�
2

�
1� dwJ&C(c1;c2)

2�maxdJ&C

��
dwJ&C (c1; c2) = min

8�2Paths(c1;c2)

( P
eij2�

w (eij)

)
w (eij) =

�
�log2 (p (cijcj)) , if p (cijcj) are known
jIC (ci)� IC (cj)j , otherwise

Table 2: De�nition of the state-of-the-art IC-based similarity measures evaluated in our experiments.

feature is the merging of multiple ontology-based sim-
ilarity measures in order to produce a �nal similarity
judgement.
In addition to the four subfamilies of ontology-based

similarity measures aforementioned above, we categorize
the family of IC-based similarity measures into the fol-
lowing four subgroups, as shown in table 2: (1) the �rst
group of classic IC-based measures made up of the simi-
larity measures introduced by Resnik (1995), Jiang and
Conrath (1997) and Lin (1998); (2) a second group that
we call hybrid or path-based IC-based similarity mea-
sures, which is de�ned by those measures that make up
an IC model with any function based on the length of
the shortest path between concepts, such as the pioneer-
ing work of Li et al. (2003), and other subsequent works
such as Zhou et al. (2008a), Meng et al. (2014), Gao
et al. (2015), and the two weighted IC-based similarity
measures introduced by Lastra-Díaz and García-Serrano

(2015b); (3) a third group that is based on any reformu-
lation strategy between di¤erent approaches, such as the
IC-based reformulations of the Tversky measure in Pirró
(2009) and Pirró and Euzenat (2010), as well as the IC-
based reformulation of most edge-counting methods in-
troduced by Sánchez and Batet (2011); and �nally, (4) a
fourth group that is based on a monotone transformation
of any classic IC-based similarity measure, such as the
exponential-like scaling of the Lin (1998) measure intro-
duced by Meng and Gu (2012), the reciprocal of the J&C
distance introduced by Garla and Brandt (2012), and
another cosine-based normalization of the J&C distance
introduced by Lastra-Díaz and García-Serrano (2015b).
In addition, we show herein that the FaITH similarity
measure introduced by Pirró and Euzenat (2010) is also
a monotone transformation of the Lin (1998) similarity
measure, despite its initial design being based on a refor-
mulation of the Tversky (1977) measure. Table 3 shows
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Rada et al. (1989) similarity measure and its monotone transformations

Rada et al. (1989)

simRada (c1; c2) = 1� 1
2dRada (c1; c2)

dRada (c1; c2) = len (c1; c2) = min
8�2Paths(c1;c2)

( P
eij2�

1

)

Leacock and Chodorow (1998)

simL&C (c1; c2) = �log
�
1+len(c1;c2)
2�maxdepth

�
Factorization:
simL&C (c1; c2) = ' (x) � simRada (c1; c2)

' (x) = �log
�

3�2x
2�maxdepth

�
Li et al. (2003)

simLi_s3 (c1; c2) = e
���len(c1;c2); �� = 0:25

Factorization:
simLi_s3 (c1; c2) = ' (x) � simRada (c1; c2)

' (x) = e2��(x�1)
��=0:25�! '� (x) = e

(x�1)
2

Pedersen et al. (2007)

simPath (c1; c2) =
1

1+len(c1;c2)

Factorization:
simPath (c1; c2) = ' (x) � simRada (c1; c2)
' (x) = 1

3�2x

Lin (1997) similarity measure and its monotone transformations

Lin (1998) simLin (c1; c2) =
2IC(MICA(c1;c2))
IC(c1)+IC(c2)

Pirró and Euzenat (2010)

simFaITH (c1; c2) =
IC(MICA(c1;c2))

IC(c1)+IC(c2)�IC(MICA(c1;c2))

Factorization:
simFaITH (c1; c2) = ' (x) � simLin (c1; c2)
' (x) = x

2�x

Meng and Gu (2012)

simMeng (c1; c2) = e
simLin(c1;c2) � 1

Factorization:
simMeng (c1; c2) = ' (x) � simLin (c1; c2)
' (x) = ex � 1

Jiang and Conrath (1997) similarity measure and its monotone transformations

Jiang and Conrath (1997)
dJ&C (c1; c2) = IC (c1) + IC (c2)� 2IC (MICA (c1; c2))
simJ&C (c1; c2) = 1� 1

2dJ&C (c1; c2)

Garla and Brandt (2012)

simpath_IC (c1; c2) =
1

1+dJ&C(c1;c2)

Factorization:
simpath_IC (c1; c2) = ' (x) � simJ&C (c1; c2)
' (x) = 3� 2x

Lastra-Díaz and García-Serrano (2015b)

simcosJ&C (c1; c2) = 1� cos
�
�
2

�
1� dJ&C(c1;c2)

2�maxdJ&C

��
maxdJ&C = max

c2Leaves(C)
fIC (c)g

Factorization:
simcosJ&C (c1; c2) = ' (x) � � (t) � simJ&C (c1; c2)
' (x) = 1� cos

�
�
2x
�

� (t) = 1� 1�t
maxdJ&C

, normalization function

Table 3: Equivalence classes of similarity measures induced by any monotone transformation from any classic similarity
measure.
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the monotonicity relationships between most IC-based
similarity measures which have been experimentally con-
�rmed in our evaluation. For the sake of completeness of
our experimental survey, we also evaluate herein all non
IC-based similarity measures shown in table 1, despite
the present work is focused on new IC models and their
evaluation with the state-of-the-art IC-based similarity
measures shown in table 2.
Finally, Stanchev (2014) introduces a similarity graph

from WordNet with the aim of computing the similarity
between words. In addition to the taxonomical struc-
ture from WordNet, the graph uses the de�nition and
examples of use of the WordNet concepts as evidence
on the relationships between concepts. The similarity
graph is de�ned by a collection of oriented edges with
asymmetric weights, in which the weights between par-
ent and child concepts encode the probability that a user
interested in the source node of an edge is also interested
in the concept associated to the destination node. The
similarity measure is de�ned as the product of the edge
weights throughout the path between the word nodes.
Despite some weights being de�ned in an arbitrary way,
the method obtains outstanding results in the Miller and
Charles (1991) dataset, and introduces for the �rst time
an asymmetrical path-based method founded on prob-
ability theory. We note that the similarity measure in-
troduced by Stanchev is closely related to our weighted
J&C distance, denoted by dwJ&C in table 2, as our
measure matches the logarithm of the product of condi-
tional probabilities between the word nodes. However,
the basic form of the dwJ&C distance does not inte-
grate the word nodes into the WordNet taxonomy and
the weights are symmetric, the edge weights being the
logarithm of the conditional probabilities.

2.4 Summary and positioning

In summary, the ontology-based similarity measures are
e¢ cient, easy to implement and more accurate than
the corpus-based methods, whilst the corpus-based mea-
sures o¤er a broader lexical coverage at the expense
of a high complexity and computational cost, as well
as the di¢ culties to obtain well-balanced learning cor-
pus. However, the corpus-based relatedness measures
based on word embeddings combine the broad coverage
of the corpus-based methods with an e¢ cient evaluation
method in operation mode. On the other hand, unlike
the theoretical models developed in cognitive psychol-
ogy which have not yet evaluated, the ontology-based
similarity measures have been successfully evaluated in
many human similarity benchmarks, and they have con-
tributed to the development of a large set of applications.
For these reasons, we are focusing our research e¤ort on
the development of new IC models and ontology-based
similarity measures.

3 State of the art

This section summarizes the current factual state of the
art on ontology-based similarity measures and IC models
and review the related work on IC models.

The state of the art in ontology-based similarity mea-
sures is de�ned by the family of intrinsic IC-based mea-
sures, which are de�ned by the combination of one spe-
ci�c IC-based similarity measure with any intrinsic IC
model. More speci�cally, our cosine-normalized Jiang-
Conrath (cosJ&C ) similarity measure is currently the
best performing ontology-based similarity measure ac-
cording to the evaluation on the �ve most signi�cant
datasets reported in (Lastra-Díaz and García-Serrano,
2015a, table 6). However, in this latest work we did
not evaluate other hybrid IC-based measures that ob-
tained state-of-the-art results in Lastra-Díaz and García-
Serrano (2015b), such as our hybrid measure coswJ&C
and the Zhou et al. (2008b) similarity measure. Like-
wise, the cosJ&C similarity measure is the only mea-
sure that obtains a statistically signi�cant higher per-
formance than the baseline, (Lastra-Díaz and García-
Serrano, 2015a, �g.3). However, we also prove that
there is no statistically signi�cant di¤erence between
the cosJ&C similarity measure and those introduced by
Meng and Gu (2012) and Pirró and Euzenat (2010).
The outperformance of the IC-based similarity mea-

sures is supported by several recent WordNet-based
benchmarks, such as Lastra-Díaz and García-Serrano
(2015a), Lastra-Díaz and García-Serrano (2015b) and
Hadj Taieb et al. (2014b), as well as other older ones,
such as Budanitsky and Hirst (2006), Pirró (2009) and
Sánchez et al. (2011). Another benchmark in bioengi-
neering introduced by Garla and Brandt (2012) also con-
�rms the outperformance of an intrinsic IC-based sim-
ilarity measure derived from the reciprocal of the J&C
distance. Likewise, McInnes and Pedersen (2013) prove
the outperformance of the classic IC-based similarity
measures over the path-based measures and gloss-based
relatedness measures in a WSD benchmark in bioengi-
neering, but it is also proven that there is no a statis-
tically signi�cant di¤erence between a corpus-based IC
model and the intrinsic IC model introduced by Sánchez
et al. (2011). This latest conclusion on the debate be-
tween intrinsic and corpus-based IC models is endorsed
in a more conclusive manner by the recent benchmarks
in our aforementioned works.
In our aforementioned works, we conclusively prove

several signi�cant facts on the state of the art of IC mod-
els as follows. First, contrary to what the research com-
munity thought, most corpus-based IC models derived
from the unexplored �*.add1�set of WordNet-based fre-
quency �les in Pedersen (2008b) rival the state-of-the-art
intrinsic IC models, (Lastra-Díaz and García-Serrano,
2015b, table 6). Second, the best performing IC model
on average is the Seco et al. (2004) IC model, (Lastra-
Díaz and García-Serrano, 2015a, table 5). Third, there is
no a statistical signi�cant di¤erence between most state-
of-the-art intrinsic IC models, as well as between most
intrinsic IC models and the baseline IC model de�ned by
a corpus-based IC model derived from the �ic-treebank-
add1.dat� �le in the aforementioned Pedersen dataset,
(Lastra-Díaz and García-Serrano, 2015a, �g.2). And �-
nally, the Sánchez and Batet (2012) IC model is the
only one that obtains a statistically signi�cant higher
performance than the corpus-based IC model de�ned as
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IC models De�nition

Resnik (1999)
ICResnik= �log2 (bp (ci)) , bp (ci)= f(ci)

N = f(ci)
f(�)

f (ci)= TF (ci)+IF (ci)= TF (ci)+
P

8cj j ci2LA(cj)
f (cj)

Seco et al. (2004) ICSeco (c)= 1� log(jHypo(c)j+1)
log(max_nodes)

Zhou et al. (2008a) ICZhou (c) = k
�
1� log(jHypo(c)j+1)

log(max_nodes)

�
+ (1� k) log(depth(c))

log(depthmax)
; k� = 1

2

Blanchard et al. (2008)
ICg (ci)= �log2

�
jSubsumedLeaves(ci)j

maxLeaves

�
SubsumedLeaves (ci)= fcj 2 C j cj �C ci ^ cj is leaf g

Sánchez et al. (2011)
ICS�anchez2011 (ci)= �log2

 jLeaves(ci)j
jsubsumers(ci)j

+1

maxLeaves+1

!
�
Leaves (ci)= fcj 2 C j (cj �C ci ^ cj 6= ci) ^ cj is leafg
subsumers (ci)= fcj 2 C j ci �C cjg

Sánchez and Batet (2012) ICS�anchez2012 (c)= �log2
�

commonness(c)
commonness(root)

�8<: commonness (c)= 1
jSubsmers(c)j ; c leaf

commonness (c)=
P
commonness (l)

8l j l is leaf and l<c
; c not leaf

Meng et al. (2012) ICMeng (c)=
log(depth(c))
log(depthmax)

�(1�
log

 
1+

P
a2Hypo(c)

1
depth(a)

!
log(Nodemax)

)

Yuan et al. (2013) ICY uan (c)= fdepth (c) (1� fleaves (c))+fhyper (c)8><>:
fdepth (c)=

log(depth(c))
log(depthmax)

fleaves (c)=
log(jLeaves(c)j+1)
log(Leavesmax+1)

fhyper (c)=
log(jHyper(c)j+1)
log(Nodemax)

Hadj Taieb et al. (2014a) ICTaieb (c)=

 P
a2HyperInc(c)

Score (a)

!
�AvgDepth (c)

AvgDepth (c)= 1
jHyperInc(c)j�

P
c02HyperInc(c)

depth (c0)

Score (c)=

 P
c02DirectHyper(c)

depth(c0)
jHypoInc(c0)j

!
� jHypoInc (c)j

HypoInc (c)= fa 2 C j a � cg HyperInc (c)= fa 2 C j c � ag

Adhikari et al. (2015)

ICAdhikari (c) =
log(depth(c)+1)
log(depthmax+1) �

�
1� log

�
jLeaves(c)�nmih(c)j

Leavesmax

jsubsmers0(c)j + 1

��

�

0B@1� log

 
1+

P
a2Hypo(c)

1
depth(a)

!
log(Nodemax)

1CA subsmers0 (c)= subsmers (c)[fcg

Table 4: State-of-the-art Information Content models evaluated in our experiments.

baseline, (Lastra-Díaz and García-Serrano, 2015a, �g.2).
In order to overcome the lexical coverage limitation

associated to the ontologies, we argue that at least two
strategies could be explored. The �rst strategy is the
ontology population based on WordNet by using any
automatic WordNet-based semantic annotation method,
such as that explored by San�lippo et al. (2005). A sec-
ond strategy is the automatic assembly of broad coverage
�is-a�taxonomies from a large corpus such as Wikipedia,
as is recently proposed and evaluated by Ben Aouicha
et al. (2016a).
Finally, despite the plethora of ontology-based similar-

ity measures and IC models available in the literature,
the selection of a speci�c similarity measure for a partic-
ular application is still an open problem. For instance,
a recent benchmark in a biomedical ontology-based IR
task by Alonso and Contreras (2016) proves that there
is no a statistically signi�cant di¤erence in performance
between the intrinsic IC measure in (Garla and Brandt,

2012, eq. (13)) and the similarity measure introduced
by Pedersen et al. (2007). This latter fact questions the
extrapolation of the results and conclusions obtained in
classic word similarity benchmarks to speci�c similarity-
based applications. Thus, in order to improve our un-
derstanding of the problem, we suggest that the evalua-
tion methodology of ontology-based similarity measures
should be reconsidered by de�ning new task-oriented
benchmarks and larger datasets. In this latter line of re-
search, Jurgens et al. (2015) introduce a new similarity
evaluation method called Cross-Level Semantic Similar-
ity (CLSS), whose aim is to measure the contribution of
the degree of similarity between small language units to
the semantic similarity between larger linguistic units.
Precisely, Pilehvar and Navigli (2015) propose an uni-
�ed method to compute the semantic similarity between
items from multiple linguistic levels. On the other hand,
Saif et al. (2014) have carried out a study on the im-
pact of the incompleteness of some linguistic resources
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Well-founded IC models De�nition
CondProbHypo ICCPHypo (ci)= �log2 (pHypo (ci))

pHypo (cijcj)= jHypo(ci)j+1P
8ck j cj2LA(ck)

(jHypo(ck)j+1)

CondProbUniform ICCPUni (ci)= �log2 (pUniform (ci))
pUniform (cijcj)= 1

jchildren(cj)j
CondProbLeaves ICCPLea (ci)= �log2 (pLeaves (ci))

pLeaves (cijcj)= jLeaves(ci)j+1P
8ck j cj2LA(ck)

(jLeaves(ck)j+1)

CondProbLogistic

ICCPLog (ci)= �log2 (pLog (ci))
pLog (cijcj)= 'l (x) � pHypo (cijcj)
'l (x : k)=

1

1+e
�k(x� 1

2 )
; k�= 8

CondProbCosine
ICCPCos (ci)= �log2 (pCos (ci))
pCos (cijcj)= 'c (x) � pHypo (cijcj)
'c (x)= 1� cos

�
�
2x
�

CondProbCorpus

ICCPCorpus (ci)= �log2 (p (ci))

p (ci)=

(
1 , ci= �P

8cj2LA(ci)
p (cj) pcorpus (cijcj) , ci 6= �

pcorpus (cijcj)= maxf1;f(ci)gP
8ck j cj2LA(ck)

maxf1;f(ck)g

Table 5: Our current family of well-founded IC models introduced by Lastra-Díaz and García-Serrano (2015a) and
evaluated in this work. Hypo(ci) and Leaves(ci) denote respectively the set of subsumed concepts and leaf concepts
for any concept ci 2 C, without including the base concept ci.

in Arabic, such as WordNet and Wikipedia, and into
the performance of the ontology-based and gloss-based
similarity measures. This latter work shows degradation
of the performance from most ontology-based similarity
measures, which call our attention to the problems of
extrapolating the results based on English benchmarks
and resources. Another interesting issue is the avail-
ability of a large word similarity benchmark based on
WordNet that would also include instances of concepts
and multiple-word terms, in the spirit of the TR9856
dataset introduced by Levy et al. (2015).
In summary, the mainstream of research into ontology-

based similarity measures is still the proposal of new in-
trinsic IC models and IC-based measures, such as that
proposed by Pirró and Euzenat (2010), Meng et al.
(2014), Gao et al. (2015) and our aforementioned works.
However, we also �nd in the literature some new corpus-
based IC models such as that introduced by Harispe
et al. (2015a), and some relevant non IC-based mea-
sures such as that proposed by Sánchez et al. (2012) and
Hadj Taieb et al. (2014b). In addition, there are several
strategies that could be explored in order to overcome
the lexical coverage limitation of the ontologies, and the
selection of a speci�c similarity measure for a particular
application is still an open problem.

3.1 Related work on IC models

In another recent work by Lastra-Díaz and García-
Serrano (2015a), we provide an in-depth review of the
state of the art in IC models. For this reason, this section
only provides a summary of the literature on IC mod-
els, including a review of the latest IC models published
after our aforementioned work.
In Resnik (1995) and subsequently Resnik (1999), the

author introduces the �rst IC model reported in the
literature. The Resnik IC model relies on a frequency
counting method of the occurrences of a concept and its
subsumed concepts into a corpus, that is also described
in detail by (Pedersen, 2013, p.34), who uses the Resnik
method to build the WordNet-based frequency �les used
in our experiments, Pedersen (2008b). The Resnik fre-
quency counting method does not take the word senses
into account; however, Pedersen (2010) proves that the
IC models derived from a non sense-tagged corpus per-
form better than the sense-tagged ones. In order to
overcome the drawbacks of the corpus-based IC mod-
els, Seco et al. (2004) introduce the �rst intrinsic IC
model reported in the literature, whose core idea is that
the IC models can be computed using only taxonomi-
cal features, such as the hyponym set ratio. During the
last decade, the development of intrinsic IC models has
become one of the mainstreams of research in the area.
Among the main intrinsic IC models proposed in the lit-
erature, we �nd the works in Zhou et al. (2008a), Sebti
and Barfroush (2008), Blanchard et al. (2008), Sánchez
et al. (2011), Sánchez and Batet (2012), Yuan et al.
(2013), and Hadj Taieb et al. (2014a), as shown in table
4, as well as the IC models introduced by Lastra-Díaz
and García-Serrano (2015a) that are shown in table 5.
Finally, we have four recent works on IC models

introduced by Adhikari et al. (2015), Harispe et al.
(2015a), Aouicha and Taieb (2015) and Ben Aouicha
et al. (2016b). First, Harispe et al. (2015a) introduce
a family of corpus-based IC models based on the Belief
function theoretical framework which is encouraged by
the observation that the occurrences of a concept not
only impact the IC value of the more general ancestor
concepts, the so-called ancestors, but should also im-
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pact the IC value of the more speci�c concepts, the so-
called descendants. Harispe et al. (2015a) propose three
di¤erent corpus-based IC models based on an adapta-
tion of the classic belief and plausibility functions in the
Demster-Shafer theory (DST), and the pignistic func-
tion. Second, Adhikari et al. (2015) introduce a new
intrinsic IC model which is encouraged by the lack of
integration in the previous IC models of a large com-
bination of taxonomical features in order to distinguish
several structural di¤erences between concepts not con-
sidered before. The Adhikari et al. (2015) IC model
integrates the relative depth, hyponym structure, sub-
sumed leaves count and subsumer set count. Aouicha
and Taieb (2015) introduce a new intrinsic IC model
speci�cally designed for the MeSH biomedical ontology
which has not been evaluated in WordNet. And �nally,
Ben Aouicha et al. (2016b) introduce a new intrinsic IC
model on WordNet which is based on a new quati�cation
of the ancestor set of each base concept. has not been
included in our experiments. Tables 4 and 5 show the
set of IC models that is implemented and evaluated in
our experiments. This latest set of IC models, together
with the recent IC models proposed by Harispe et al.
(2015a) and Aouicha and Taieb (2015), represent, to the
best of our knowledge, all the intrinsic and corpus-based
IC models reported in the literature. On the other hand,
Blanchard et al. (2008) ICg is evaluated herein for the
�rst time in a word similarity benchmark.

4 The proposed re�nement

In Lastra-Díaz and García-Serrano (2015a), we propose
a general framework to design IC models based on di¤er-
ent methods for the estimation of the conditional prob-
ability between child and parent concepts, and we in-
troduce a new family of IC models based on it, the so-
called well-founded IC models shown in table 5. Our IC
models are computed into four steps: (a) estimation of
the conditional probabilities p (cijcj); (b) building of a
total ordering of the concept set; (c) recovery of the con-
cept probabilities p (ci) by using the recursive formula in
equation (3); and (d) recovery of the IC values from the
concept probabilities p (ci).
In order to eliminate the two drawbacks detailed in

section 1.2, we introduce two re�nements into the fam-
ily of well-founded IC models and derive nine new IC
models. First, in order to solve the problem related to
the two cognitive IC models, we de�ne a subsequent nor-
malization step in the recovery of the concept probabil-
ities in step (c) above, such that the overall sum of the
probability on the leaf concepts is always 1 for these
cases. Second, in order to warrant that the IC mod-
els satisfy the growing monotonicity axiom, such that
8ci �C cj ) IC (ci) � IC (cj), we de�ne a new method
for recovering the �nal concept probabilities based on the
de�nition of the probability p (ci) as the sum of the prob-
abilities of the leaf concepts subsumed by the concept
ci, instead of the direct value returned by the recursive
formula in equation (3). Thus, we de�ne a subsequent
subsumed probability recovery step in the probability re-
covery step (d) above. We note that this new de�nition

of the concept probabilities as the probability of their
subsumed leaves matches the axiomatic construction of
a discrete probability space, as introduced by Lastra-
Díaz and García-Serrano (2015a), or any book on the
subject, such as Ash and Doléans-Dade (2000). The new
method to compute the �nal probabilities p (ci) from the
conditional probabilities p (cijcj) matches the previous
method in our aforementioned work whenever the tax-
onomy is tree-like, but it produces a slightly di¤erent
probability function on taxonomies with multiple inher-
itance. This latest re�nement is a su¢ cient condition
to satisfy the growing monotonicity axiom regardless of
the conditional probability model or the type of base
taxonomy.

Re�nement 1. In order to satisfy the growing
monotonicity axiom regardless of the type of tax-
onomy, we introduce the following changes into the
algorithm used to build the well-founded IC mod-
els. First, we introduce the growing monotonicity
axiom as a further axiom into the de�nition of a
well-founded IC model. And second, in order to
satisfy the new axiom (4) the concept probability
is de�ned as the sum of the probability of its sub-
sumed leaves, instead of the direct value obtained
from the recursive formula in equation (3), as was
done in our aforementioned work.

Re�nement 2. In order to warrant that the sum of
leaf concept probabilities is 1 for any cognitive IC
model, such as the CondProbLogistic and Cond-
ProbCosine introduced in Lastra-Díaz and García-
Serrano (2015a), it is necessary to normalize the
overall sum of leaf probabilities to 1.

All new IC models share the same algebraic and com-
putational structure, being computed into six steps: (1)
estimation of the conditional probabilities; (2) building
of a total ordering of the concepts within the taxonomy;
(3) recovery of the concept probabilities p (ci) by using
the recursive formula in equation (3); (4) unit normal-
ization of the probability of the leaf nodes only for the
IC models based on non-linear transformations of the
conditional probability; (5) computation of each concept
probability p (ci) as the overall sum of the probability of
its subsumed leaves; and �nally, (6) computation of the
IC values from the concept probabilities. In this way,
the new steps (4) and (5) above eliminate the two afore-
mentioned drawbacks, but the four remaining steps are
identical to the original algorithm 1 in our previous work.
The two re�nements above lead us to the reformu-

lation of the algorithm 1 to build the well-founded IC
models introduced by Lastra-Díaz and García-Serrano
(2015a). The previous algorithm 1 is substituted by
the new algorithm to build the well-founded IC mod-
els, which is summarized in table 6. Unlike the previous
algorithm 1, the new algorithm only uses the iterative
top-down procedure de�ned by the recursive formula in
equation (3) in order to compute the probability of the
leaf nodes, not the probability of each concept as was
done in our aforementioned work. We recall that the
probability recovery algorithm de�ned by the top-down
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formula in equation (3) warrants that the overall sum
of the leaf probabilities is 1 if the conditional probabil-
ities p (cijcj) are well-de�ned and satisfy the constraint
in equation (1). This latter fact is formalized into the
proposition 2 below.
The New Algorithm in table 6 works on any type of

taxonomy, and satis�es all the structure axioms in de�-
nition 1. The algorithm includes the two modi�cations
proposed above in order to eliminate the two drawbacks
found in our previous method. Thus, the proposed algo-
rithm completely closes the algebraic and computational
de�nition of the family of well-founded IC models, and
it should be used in the design of any new intrinsic IC
model.

De�nition 1 (re�ned well-founded IC model)
Given a taxonomy of concepts C = (C;�C ;�), and an
IC model de�ned by the function IC : C ! R+ [ f0g,
we call it a re�ned well-founded IC model if it can
be written as IC (c) = �log2 (p (c)) where p (c) is a
concept-valued function as de�ned in equation (4), and
the functions p (cijcj) are the conditional probabilities
between any child concept ci and its parent concepts
cj, which satisfy the edge-based property as de�ned in
equation (1).

(1) Edge-based axiom. The sum of conditional probabil-
ities p (cijcj) of the children nodes ci on any parent
cj node must be equal to 1, as de�ned in equation
(1), where LA (ci) denotes the set of lowest ances-
tors (direct parents) of any concept ci.

X
8cijcj2LA(ci)

p (cijcj) = 1 (1)

(2) Leaf node probability axiom. The overall probability
of the leaf concepts sums 1, as de�ned in equation
(2), and they are computed using the iterative top-
down algorithm de�ned by equation (3).

P
ck2LC

p (ck) = 1 (2)

p : C ! [0; 1] � R

p (ci) =

(
1 , ci = �P

8cj2LA(ci)
p (cj) p (cijcj) , ci 6= � (3)

(3) Probability node axiom. The probability p (ci)
for each concept ci 2 C must be equal
to the sum of the probability of each sub-
sumed leaf concept ck 2 Leaves (ci) =
fck 2 C j ck �C ci ^ ck is a leaf conceptg, as de-
�ned in equation (4).

p (ci) =
P

ck2Leaves(ci)
p (ck) (4)

(4) Monotonicity. 8ci; cj 2 C, ci �C cj ) IC (ci) �
IC (cj)

The axioms (1), (2) and (3) above allow us to de�ne a
new family of well-founded intrinsic IC models based on
the estimation of the conditional probabilities p (cijcj)
for each edge of the taxonomy, as shown in table 7. The
axiom (3) is a su¢ cient condition for the satisfaction of
the axiom (4), thus, the new re�ned IC models satisfy
the monotonicity axiom by design. We call the new fam-
ily as re�ned well-founded IC models in order to distin-
guish it from our previous IC models, and to emphasize
the use of the new algorithm in table 6. In proposition
1, we show that given a taxonomy (C;�C ;�), the de�n-
ition of the concept probabilities according to axiom (3)
is a su¢ cient condition to get a well-founded probability
space, which moreover matches the standard axiomatic
construction of any discrete probability space. In addi-
tion, we show in proposition 2 that axioms (1) and (2) of
a well-founded IC model are su¢ cient conditions to build
a leaf-valued function p : LC � C ! [0; 1] that satis�es
axiom (2) above and the second premise of proposition
1. Thus, proposition 2 proves that any well-founded IC
model induces a well-founded probability space on any
base taxonomy, and the whole system is supported by
the structures derived from the conditional probabili-
ties. The proofs of both propositions are included in
appendix B of Lastra-Díaz and García-Serrano (2015a).

Proposition 1 Be a taxonomy C =(C;�C ;�) de�ned
by a partially ordered set (C;�C) with a distinguished
supreme element �, called the root, and LC the set of
leaves in C. If a set-valued positive function P is de�ned
from the leaf-valued function p as follows:

(1)
P : 2� ! [0; 1]

P (A) =
P

ck2LC\A
p (ck)

(2)
p : LC � C ! [0; 1]P
ck2LC

p (ck) = 1

then the following facts are satis�ed: (1) P is a prob-
ability measure, and (2) the triplet

�
�; 2�; P

�
is a prob-

ability space.

Proposition 2 Let a taxonomy C =(C;�C ;�) and LC
be the set of leaves in C. Given a concept-valued function
p de�ned by

p : C ! [0; 1]

p (ci) =

(
1 , if ci = �P

8cj2LAC(ci)

p (cijcj) p (cj) , otherwise

then P (LC) = 1, as given below:

P (LC) =
P

ck2LC
p (ck) = 1

4.1 The new family of IC models

This section introduces eight new intrinsic IC models
called CondProbRefHyponyms, CondProbRefUni-
form, CondProbRefLeaves, CondProbRefLogistic,
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New probability and IC recovery algorithm

Input: a rooted taxonomy C = (C;�C ;�)

Output
(1) p (cijcj) for each child and parent concepts.
(2) p : C ! [0; 1]� R
(3) IC : C � C ! R+[f0g

1: Compute the conditional probabilities p (cijcj).
2: Build a queue Q with a total ordering of the taxonomy

(C;�C ;�), such that every concept is in a subsequent position
to every one of its parent concepts
Remark: top-down computation of the leaf node probabilities

3: foreach ci 2 Q

4: p (ci)=

(
1 , if ci = �P

8cj2LAC(ci)

p (cijcj) p (cj) , otherwise

5: end foreach
Remark: normalization of the overall leaf node probability (only
if the p (cijcj) values do not satisfy axiom 1)

6: overallLeavesProb =
P

ck2Leaves(�)
p (ck)

7: foreach ci 2 Leaves (�)
8: p (ci)=

p(ci)
overallLeavesProb

9: end foreach
Remark: bottom-up computation of the node probababilities
Remark: for the computation of the probability of each node,
Leaves (ci) denotes the set of subsumed leaf concepts inclusive
ci.

10: foreach ci 2 Q
11: p (ci)=

P
ck2Leaves(ci)

p (ck)

12: IC (ci)= �log2p (ci)
13: end foreach

Table 6: New algortihm for the computation of the re�ned well-founded IC models.

CondProbRefCosine, CondProbLogisticLeaves, Cond-
ProbRefCosineLeaves and CondProbRefLeavesSub-
sumersRatio, and a new corpus-based IC model called
CondProbRefCorpus. From the latter list, the �rst
�ve intrinsic IC models and the CondProbRefCorpus
IC model are derived from the corresponding IC
models introduced by Lastra-Díaz and García-Serrano
(2015a) by using the new algorithm to compute the
probability and IC values detailed in table 6. On
the other hand, the new intrinsic IC models called
CondProbLogisticLeaves, CondProbRefCosineLeaves
and CondProbRefLeavesSubsumersRatio are based
on three new methods to estimate the conditional
probabilities p (cijcj). The CondProbLogisticLeaves
and, CondProbRefCosineLeaves IC models combine the
conditional probability function pLeaves (cijcj) with two
di¤erent cognitive-based non-linear similarity functions
previously introduced in our aforementioned work.
Because of the good performance exhibited by the

Sánchez et al. (2011) IC model in combination with our
coswJ&C similarity measure, we propose the CondPro-
bRefLeavesSubsumersRatio IC model which is a refor-
mulation of the Sánchez et al. (2011) IC model based
on the general framework proposed by the family of IC
models introduced herein. This new IC model is based
on the fact that the di¤erence in IC values between child
and parent concepts in a tree-like taxonomy matches the

logarithm of the conditional probability p (cijcj). This
latest observation inspired the family of IC-based simi-
larity measures introduced by Lastra-Díaz and García-
Serrano (2015b), and from it follows that the Sánchez
et al. (2011) IC model can be reformulated as the ratio
between child and parent concepts of the function � (x)
in table 7. The function � (x) is called Sánchez-Batet-
Isern estimator, because � (x) can be interpreted as a
taxonomical estimator of the concept probabilities. Pre-
cisely, the CondProbRefLeavesSubsumersRatio IC model
de�nes a well-de�ned probability space from the kernel
function of the Sánchez et al. (2011) IC model, and this
same strategy could be used in order to reformulate other
IC models, or taxonomy-based conditional probability
estimators, in the general framework proposed by our
family of IC models.
Table 7 shows the de�nition of the new family of IC

models. For the formulas in table 7, Hypo (ci) and
Leaves (ci) denote respectively the set of subsumed con-
cepts and subsumed leaf concepts for any concept ci 2 C,
without including the base concept ci. Unlike our pre-
vious work, each concept probability denoted by p� (ci)
is de�ned as the sum of the probability of the subsumed
leaf nodes in equation (4), instead of the value directly
obtained from the top-down formula in equation (3).
The probability values p (ci) of the non-leaf concepts
that are obtained from the top-down formula in equa-
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New IC models in this work De�nition
CondProbRefHyponym ICCPRefHypo (ci)= �log2

�
p�Hypo (ci)

�
pHypo (cijcj) = jHypo(ci)j+1P

8ck j cj2LA(ck)
(jHypo(ck)j+1)

CondProbRefUniform ICCPRefUni (ci) = �log2
�
p�Uniform (ci)

�
pUniform (cijcj) = 1

jchildren(cj)j
CondProbRefLeaves ICCPRefLea (ci) = �log2 (p�Leaves (ci))

pLeaves (cijcj) = jLeaves(ci)j+1P
8ck j cj2LA(ck)

(jLeaves(ck)j+1)

CondProbRefLogistic

ICCPRefLog (ci) = �log2
�
p�Log (ci)

�
pLog (cijcj) = 'l (x) � pHypo (cijcj)
'l (x : k) =

1

1+e
�k(x� 1

2 )
; k� = 8

CondProbRefCosine
ICCPRefCos (ci) = �log2 (p�Cos (ci))
pCos (cijcj) = 'c (x) � pHypo (cijcj)
'c (x) = 1� cos

�
�
2x
�

CondProbRefCorpus
ICCPRefCorpus (ci)= �log2 (p� (ci))
pcorpus (cijcj)= maxf1;f(ci)gP

8ck j cj2LA(ck)
maxf1;f(ck)g

CondProbRefLogisticLeaves

ICCPRefLogLeaves (ci) = �log2
�
p�LogLeaves (ci)

�
pLogLeaves (cijcj) = 'l (x) � pLeaves (cijcj)

'l (x : k) =
1

1+e
�k(x� 1

2 )
; k� = 8

CondProbRefCosineLeaves
ICCPRefCos (ci) = �log2 (p�CosLeaves (ci))
pCosLeaves (cijcj) = 'c (x) � pLeaves (cijcj)
'c (x) = 1� cos

�
�
2x
�

CondProbRefLeavesSubsumersRatio ICCPRefLeaSubRat (ci)= �log2 (p�LeaSubRat (ci))

pLeaSubRat (cijcj) =
�(ci)
�(cj)P

8ck j cj2LA(ck)

�(ci)
�(cj)

� (c) = jLeaves(c)j
jsubsumers(c)j + 1

Table 7: New set of IC models proposed into the family of well-founded IC models. Unlike our previous work, each
concept probability denoted by p�(ci) is de�ned as the sum of the probability of the subsumed leaf nodes, instead of
the value directly obtained from the recursive formula in equation (3). The new IC models are computed using the
new algorithm detailed in Table 5. Hypo(ci) and Leaves(ci) denote respectively the set of subsumed concepts and
leaf concepts for any concept ci 2 C, without including the base concept ci.

tion (3) are only temporary values whose aim is to obtain
the estimated probability value of each leaf concept. The
new IC models are computed using the new algorithm
detailed in table 6. The CondProbRefLogistic, CondPro-
bRefCosine, CondProbLogisticLeaves and CondProbRe-
fCosineLeaves IC models do not satisfy the edge-based
axiom de�ned by equation (1) in de�nition 1 because
of they integrate a non-linear monotone transformation
in their de�nition that prevents it, thus, the weights of
the taxonomy used with the coswJ&C similarity mea-
sure in table 2 are set to jIC (ci)� IC (cj)j instead of
�log2 (p (cijcj)).

5 Evaluation

The goals of the experiments described in this section
are as follows: (1) the experimental evaluation of the
proposed IC models and their comparison with the state-
of-the-art methods; (2) a new experimental study onto
the state of the art in ontology-based similarity mea-
sures; (3) a detailed statistical signi�cance analysis of
the similarity measures and IC models; (4) the replica-

tion of previously reported methods and results; (5) a
new comparison between intrinsic and corpus-based IC
models; (6) a study into the impact of the IC models on
the IC-based similarity measures; (7) a comparison of
the computational cost of the ontology-based similarity
measures; (8) a new con�rmation of the �ndings in our
previous aforementioned works on the refuted outperfor-
mance of the intrinsic IC models over the corpus-based
ones; and (9) a new con�rmation of the achievements of
the family of intrinsic IC models and IC-based similarity
measures.

5.1 Methods evaluated herein

In order to compare the new family of IC models in table
7 with the state-of-the-art IC models, as well as provid-
ing a conclusive image of the state of the art of the prob-
lem, we implemented and evaluated all the IC models in
tables 4, 5 and 7, as well as all the IC-based similarity
measures in table 2 and the remaining ontology-based
similarity measures shown in table 1. One IC model in-
troduced by Blanchard et al. (2008) is evaluated herein
for the �rst time. To the best of our knowledge, we
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evaluate herein all WordNet-based intrinsic IC models
reported in the literature, with the only exception of the
IC model very recently introduced by Ben Aouicha et al.
(2016b). Therefore, the experiments reported herein are
the largest experimental survey of intrinsic IC models
and ontology-based similarity measures reported up to
date, which are based on a same code implementation.
For all the similarity measures and IC models, the

depth is de�ned as the length of the shortest ascending
path from each concept to the root. For the Zhou et
al. IC model, the authors de�ne the depth starting at
1 for the root concept. All methods have been imple-
mented in a Java software library called HESML, which
has been developed by the authors in order to replicate
all methods evaluated herein. HESML was also used
in our two aforementioned works on IC-based similarity
measures and IC models, and it is going to be introduced
and released in another forthcoming paper, Lastra-Díaz
and García-Serrano (2016), together with a set of re-
producible experiments and a replication dataset called
WNSimRep v1.
In order to compare the intrinsic and corpus-based

IC models, we use as baseline a corpus-based Resnik IC
model based on the Wordnet-based frequency �le called
�ic-treebank-add1.dat� included in Pedersen (2008b),
which was also used as a baseline in Lastra-Díaz and
García-Serrano (2015a), having been the best perform-
ing corpus-based IC model in Lastra-Díaz and García-
Serrano (2015b).

5.2 Experimental setup

We follow the same experimental setup de�ned by
Lastra-Díaz and García-Serrano (2015a), including the
same preprocessing steps, evaluation metrics, baselines,
management of polysemic words and reporting of the
results. In addition, we include for the �rst time a de-
tailed pairwise statistical signi�cance analysis between
each pair of IC models and IC-based measures. We use
the noun database of Wordnet 3.0, Miller (1995), and the
�ve most signi�cant word similarity benchmarks shown
in table 8. For each word pair, we select the highest
similarity value between the pairwise comparison of the
sets of concepts evoked by each word.
Some preprocessing was necessary for the Agirre203

and SimLex-999 datasets to carry out the experiments.
For the Agirre203 dataset, it was necessary to remove
two word pairs containing verbs not present in the noun
database of Wordnet 3.0, such as the pairs (drink,eat)
and (stock,live). In addition, it was also necessary to
change the term �media�for �medium�, and �children�
for �child�, because these terms do not appear directly
in noun database. For this reason, we only used 201
nouns instead of 203, thus, this subset is called here-
after Agirre201. In the case of SimLex-999, it contains
666 nouns, but the word �august� is not included as
synset in WordNet 3.0, thus, we only used 665 nouns
from the SimLex-999 dataset, and this subset is called
hereafter SimLex665. Finally, the MC30 dataset in-
troduced by Miller and Charles (1991) is made up by
30 noun pairs; however, two word pairs are commonly

Reference Acronym #wp Description
Rubenstein
and Good-
enough
(1965)

RG65 65 65 noun pairs ranging a
similarity between 0 and
4.

Miller and
Charles
(1991)

MC28 28 Subset of RG65

Agirre
et al.
(2009)

Agirre201 201 Pure similarity subset of
Finkelstein et al. (2002)
with similarity in the
range 0 to 10.

Pirró
(2009)

P&Sfull 65 Modern replication of
RG65

Hill et al.
(2015)

SimLex665 665 Noun subset of SimLex-
999 with similarity in the
range 0 to 10.

Table 8: Word similarity benchmarks used in our exper-
iments

ommited because of they were not included in previ-
ous versions of WordNet. For this reason, we use the
MC28 dataset as de�ned at (Resnik, 1995, table 3) and
(Li et al., 2003, p.875), together with the original hu-
man similarity judgements introduced by Rubenstein
and Goodenough (1965). The datasets corresponding to
the similarity benchmarks shown in table 8 are included
in the HESML distribution.

5.3 Evaluation metrics

As evaluation metrics, we use the Pearson correlation
factor, denoted by r in equation (5), and the Spearman
rank correlation factor, denoted by � in equation (6).
For a detailed review of the latter metrics, we refer the
reader to (Lastra-Díaz and García-Serrano, 2015a, §5.3).

r =

Xn

i=1

�
Xi �X

� �
Yi � Y

�qXn

i=1

�
Xi �X

�2qXn

i=1

�
Yi � Y

�2 (5)

� = 1�
6
Xn

i=1
d2i

n (n2 � 1) ; di = (xi � yi) (6)

In order to compare the performance of the IC mod-
els, we use the average Pearson and Spearman correla-
tion values for each pair (IC model, IC-based similarity
measure) on all datasets. The statistical signi�cance of
the results is evaluated by using the p-values resulting
from the t-student test for the di¤erence mean between
the Spearman correlation values reported by each pair
of IC models or IC-based similarity measures. The p-
values are computed by using a one-sided t-student dis-
tribution on two paired sample sets. For the p-values
between IC models, we use the vectors of the average
Spearman correlation values over each IC-based similar-
ity measure (rows in table 11) as a paired sample set,
whilst for the similarity measures we use the vectors of
Spearman correlation values of each similarity measure
over all datasets (rows in table 12). Our null hypothesis,
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denoted by H0, is that the di¤erence in the average per-
formance between the compared IC models or IC-based
measures is 0, whilst the alternative hypothesis, denoted
by H1, is that their average performance is di¤erent. For
a 5% level of signi�cance, it means that if the p-value is
greater than 0.05, we must accept the null hypothesis,
otherwise we can reject H0 with an error probability of
less than the p-value.
The Spearman rank correlation metric can represent

better the use of the similarity measures in most rank-
based selection tasks in NLP and IR, because it �pro-
vides an evaluation metric that is independent of these
data-dependent transformations �, (Agirre et al., 2009,
§6). In addition, most similarity measures are monotone
transformations from previous measures. Therefore, a
statistical signi�cance analysis based on the Spearman
correlation shows the intrinsic di¤erences and similari-
ties between methods in a more conclusive manner than
an analysis based on the Pearson correlation. Likewise,
in order to compare the IC-based similarity measures, we
selected for each measure its best performing IC model
according to the average Spearman correlation values
shown in table 11.

5.4 Results obtained

Table 9 below shows the computational cost of each sim-
ilarity measure on the MC28 dataset. The remaining
data tables are included in the appendix next to the
bibliography. Tables 10 and 11 show in each cell the av-
erage Pearson and Spearman correlation values respec-
tively obtained in the evaluation of each IC model with
any IC-based similarity measure on all datasets. Ta-
ble 12 shows the Pearson and Spearman correlation val-
ues obtained by each ontology-based similarity measure
on all datasets. In order to make the interpretation of
the resulting p-values easier, tables 13 and 14 show a
summary of the statistical signi�cance analysis between
the IC models and ontology-based similarity measures,
whilst the raw p-values are shown in tables 25 and 26.
Each row in tables 13 and 14 shows an �x�whenever the
method in the row header obtains a statistically signif-
icant higher performance than the method in the col-
umn header. Thus, the rows show the methods that
are outperformed by each method on the left, whilst the
columns show the methods that outperform each method
at the top. Finally, tables 15 to 24 in the appendix show
all raw data tables for the cross-evaluation of the IC
models and IC-based similarity measures on all datasets.

6 Discussion

6.1 Comparison of the IC models

Looking at tables 10 and 11, the following conclusions
can be drawn: (1) the Seco et al. (2004) IC model obtains
the highest average Pearson and Spearman correlation
values on all datasets and IC-based similarity measures,
as it is the best performing IC model on average; (2)
a large set of IC models made up of the models intro-
duced by Seco et al. (2004), Blanchard et al. (2008),

Similarity measure Overall
(msec)

Avg
(msec)

Ratio

Sánchez et al. (2012) 480 17.14 0.66
Pirró and Seco (2008) 696 24.86 0.96
Pirró and Euzenat (2010) 703 25.11 0.97
Garla and Brandt (2012) 715 25.54 0.98
Meng and Gu (2012) 716 25.57 0.99
Jiang and Conrath (1997) 722 25.79 0.99
Resnik (1995) (baseline) 726 25.93 1.00
Lin (1998) 728 26.00 1.00
Lastra-Díaz and García-
Serrano (2015b), cosJ&C

735 26.25 1.01

Hadj Taieb et al. (2014b) 774 27.64 1.07
Al-Mubaid and Nguyen
(2009)

38016 1357.71 52.36

Wu and Palmer (1994) 42514 1518.36 58.56
Gao et al. (2015) 44343 1583.68 61.08
Li et al. (2003), strategy 9 45201 1614.32 62.26
Meng et al. (2014) 48499 1732.11 66.80
Zhou et al. (2008b) 50343 1797.96 69.34
Pedersen et al. (2007) 53504 1910.86 73.70
Leacock and Chodorow
(1998)

53921 1925.75 74.27

Li et al. (2003), strategy 4 54278 1938.50 74.76
Li et al. (2003), strategy 3 54607 1950.25 75.22
Rada et al. (1989) 56172 2006.14 77.37
Lastra-Díaz and García-
Serrano (2015b), coswJ&C

172490 6160.36 237.59

Table 9: Overall running time and average time per word
pair for each similarity measure in the MC28 dataset
with the following PC setup: Windows 8.1 x64, Java
1.8, Intel Core i7-5570 @ 2.40 GHz, 8 Gb RAM. The
rows are arranged in ascending order according to the
running time reported for each similarity measure. All
the similarity measures have been implemented and eval-
uated within a same software library developed by the
authors. The last row shows the running time ratio as
regard the baseline de�ned by the Resnik measure.

Sánchez et al. (2011), Sánchez et al. (2012), Meng et al.
(2012), Yuan et al. (2013) and Adhikari et al. (2015) ob-
tain on average a higher Pearson and Spearman corre-
lation values than the corpus-based IC model de�ned as
baseline; (3) the new IC models called CondProbRefHy-
ponyms and CondProbRefCosine obtain on average a
higher Pearson and Spearman correlation values respec-
tively than the baseline IC model, and the Zhou et al.
(2008a) IC model also obtains on average a higher Spear-
man correlation value than the baseline IC model; (4)
most of our family of well-founded IC models and the
Hadj Taieb et al. (2014a) IC model obtain on average
a lower Pearson and Spearman correlation values than
the baseline IC model; and (5) the Hadj Taieb et al.
(2014a) IC model obtains on average the lowest Pearson
and Spearman correlation values among all IC models,
and its average performance is much lower than the re-
maining IC models.
Tables 15 to 24 allow the following conclusions to be

drawn: (1) the Sánchez et al. (2011) IC model obtains
the highest Pearson correlation value with our coswJ&C
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similarity measure in the RG65 dataset; (2) the Resnik
IC model obtains the highest Pearson correlation value
with the J&C similarity measure in the MC28 dataset;
(3) our new CondProbRefUniform IC model obtains the
highest Pearson correlation value with the FaITH sim-
ilarity measure in the Agirre201 dataset; (4) the Yuan
et al. (2013) IC model obtains the highest Pearson cor-
relation value with the FaITH measure in the P&Sfull
dataset; and (5) the Seco et al. (2004) IC model obtains
the highest Pearson correlation value with the Zhou et al.
(2008b) similarity measure in the SimLex665 dataset.
In addition, an analysis of the raw Spearman corre-
lation values on all datasets allows the following con-
clusions to be drawn: (6) the Meng et al. (2012) IC
model obtains the highest Spearman correlation value
with our coswJ&C measure in the RG65 dataset; (7)
the Resnik IC model obtains the highest Spearman cor-
relation value with our coswJ&C measure in the MC28
dataset; (8) our new CondProbRefUniform IC model ob-
tains the highest Spearman correlation value with the
Lin (1998), FaITH and Meng and Gu (2012) similarity
measures in the Agirre201 dataset; (9) the Sánchez et al.
(2011) IC model obtains the highest Spearman correla-
tion value with our coswJ&C similarity measure in the
P&Sfull dataset; and (10) the Yuan et al. (2013) IC
model obtains the highest Spearman correlation value
with the Zhou et al. (2008b) similarity measure in the
SimLex665 dataset.

6.2 The statistical signi�cance of the
IC models

Table 13 allows the following conclusions to be drawn.
First, the Seco et al. (2004) IC model obtains a statis-
tically signi�cant higher average Spearman correlation
value than the remaining IC models with the only ex-
ception of the Sánchez et al. (2011) IC model. Second,
Seco et al. (2004) and Sánchez et al. (2011) are the only
IC models that are not outperformed in a statiscally sig-
ni�cant manner by another IC model. Third, the Seco
et al. (2004), Sánchez et al. (2011) and Yuan et al. (2013)
IC models obtain a statistically signi�cant higher aver-
age Spearman correlation value than the baseline de�ned
by the corpus-based Resnik IC model, thus, this small
set of state-of-the-art intrinsic IC models outperform the
best performing corpus-based IC model, con�rming the
H3 hypothesis positively. Fourth, the Hadj Taieb et al.
(2014a) IC model obtains a statistically signi�cant lower
average Spearman correlation than all of the IC mod-
els. Fifth, most of our intrinsic IC models obtain a
statistically signi�cant lower average Spearman correla-
tion than the rest of the IC models, with the exception
of the CondProbHyponyms, CondProbCosine, CondPro-
bRefHyponyms, CondProbRefLeaves and CondProbRef-
Cosine IC models. Sixth, the Zhou et al. (2008a), Meng
et al. (2012) and Yuan et al. (2013) IC models only
obtains a statistically signi�cant lower average Spear-
man correlation than the Seco et al. (2004) IC model,
whilst the Adhikari et al. (2015) IC model is only out-
performed by another two IC models. Thus, the Zhou
et al. (2008a), Meng et al. (2012), Yuan et al. (2013) and

Adhikari et al. (2015) IC models follow the Seco et al.
(2004) and Sánchez et al. (2011) IC models in terms of
performance in the average Spearman correlation. How-
ever, looking at table 10, we see that the performance
measured by the Pearson correlation of the Zhou et al.
(2008a) IC model is much lower than the remaining IC
models. And seventh, among the twenty-�ve IC models
analyzed, the Resnik IC model de�ned as baseline ob-
tains a statistically signi�cant higher average Spearman
correlation than other ten models, and it is statistically
outperformed by only three intrinsic IC models, thus,
there is no a statistically signi�cant di¤erence between
most instrinsic IC models and the baseline, a fact that
con�rms the hypothesis H2 positively.
Finally, the hypothesis H8 behind the re�nement and

the new IC models introduced in this work is posi-
tively con�rmed by the data obtained in our exper-
iments. Looking at table 13, we see that the new
IC models CondProbRefUniform, CondProbRefLeaves,
CondProbRefCosine and CondProbRefCorpus, obtain a
statistically signi�cant higher average Spearman corre-
lation than their corresponding non-re�ned IC models
CondProbUniform, CondProbLeaves, CondProbCosine
and CondProbCorpus. However, the CondProbRefHy-
ponyms and CondProbRefLogistic IC models are not
able to obtain a statistically signi�cant higher perfor-
mance than their corresponding models CondProbHy-
ponyms and CondProbLogistic.

6.3 Comparison of the similarity
measures

Table 12 shows that our coswJ&C similarity measure
combined with the Sánchez et al. (2011) IC model ob-
tains the highest Spearman correlation values in all
datasets, with the only exception of SimLex665, the
highest Pearson correlation values in the RG65 (0.8870)
and MC28 (0.8710) datasets, as well as the highest over-
all average combined Pearson and Spearman correlation
values (0.7708) shown in the last column and the high-
est overall average Spearman correlation value (0.7579).
We point out that the highest Pearson correlation value
(0.8809) in the MC28 dataset is obtained by the J&C
similarity measure with the Resnik IC model, as shown
in table 17, whilst the Seco et al. (2004) IC model is
used for the overall comparison in table 12, because this
latter IC model is the best performing IC model for the
J&C measure in terms of the Spearman correlation.
Table 12 also shows that the Zhou et al. (2008b) simi-

larity measure obtains the highest Pearson (0.6237) and
Spearman (0.6101) correlation values in the SimLex665
dataset and the highest overall average Pearson correla-
tion value (0.7859). In addition, the Zhou et al. (2008b)
measure obtains the second best overall performance.
The Hadj Taieb et al. (2014b) similarity measure ob-
tains the highest Pearson correlation value (0.7123) in
the Agirre201 dataset. The FaITH similarity measure in-
troduced by Pirró and Euzenat (2010) obtains the high-
est Pearson correlation value (0.9082) in the P&Sfull
dataset when it is combined with the Yuan et al. (2013)
model.
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Table 12 shows that a small set of similarity mea-
sures obtain a higher overall performance than the base-
line de�ned by J&C measure, as well as the Resnik and
Lin similarity measures. This small set of outperforming
measures is made up of our coswJ&C and cosJ&C sim-
ilarity measures and the measures introduced by Zhou
et al. (2008b), Pirró and Seco (2008), Hadj Taieb et al.
(2014b) and Gao et al. (2015). In addition, a large set of
ontology-based similarity measures obtain a higher aver-
age Pearson correlation value than the baseline de�ned
by the J&C similarity measure.
The coswJ&C similarity measure, in combination

with the Sánchez et al. (2011) IC model, obtains the
best overall performance de�ned by the average of the
Pearson and Spearman correlation values, as shown in
last column of table 12. In addition, the coswJ&C
similarity measure outperforms the remaining measures
in the Spearman correlation metric. Looking at ta-
ble 18, we can see another very meaningful and unex-
pected fact: the coswJ&C similarity measure obtains
the highest Spearman correlation value in the MC28
dataset with all the IC models, excluding the Hadj Taieb
et al. (2014a) IC model. We attribute the good perfor-
mance of the coswJ&C similarity measure in the Spear-
man metric to the novel method for computing the dis-
tance between concepts that is de�ned by our distance
diswJ&C introduced in Lastra-Díaz (2014) and Lastra-
Díaz and García-Serrano (2015b), which de�nes an IC-
based weighted graph as a generalization of the clas-
sic Jiang-Conrath distance. On the other hand, this
diswJ&C measure requires the computation of the length
of the shortest path on a non-uniform and real-valued
weighted graph using the Dijkstra algorithm, whose
computation time is longer than for the case in which
only the edge count is required, as happens for the rest
of the hybrid IC-based similarity measures shown in ta-
ble 2. For this reason, the coswJ&C measure reports the
highest computational cost in table 9, which is roughly
three times greater than most hybrid IC-based similarity
measures.
The data in table 9 allows the hypothesis H5 and

the following conclusion introduced in Lastra-Díaz and
García-Serrano (2015b) to be con�rmed: despite the
coswJ&C and Zhou et al. (2008b) similarity measures
outperforming the remaining similarity measures on av-
erage, the computational cost and the performance of
these measures, as well as the remaining hybrid IC-based
similarity measures, prevent their use in practical appli-
cations. Thus, a practical option is to use our cosJ&C
similarity measure, which obtains the third best overall
performance, despite there being no statistical signi�-
cant di¤erence between it and the measures introduced
by Pirró and Seco (2008) and Hadj Taieb et al. (2014b).
Indeed, the general conclusion that we advance here is
that the performance margin between the state-of-the-
art ontology-based similarity measures is very narrow.
An interesting point is that the three similarity mea-

sures on top of table 12 are derived from the Jiang-
Conrath distance. The coswJ&C similarity measure
is a generalization of the Jiang-Conrath measure based
on an IC-based weighted graph, whilst the Zhou et al.

(2008b) similarity measure is a linear combination of it
with the Leacock and Chodorow (1998) similarity mea-
sure. On the other hand, the cosJ&C similarity mea-
sures is a monotone transformation of the Jiang-Conrath
distance. Thus, the measurement strategy introduced by
Jiang and Conrath (1997) leads the state of the art of
the problem.

6.4 The statistical signi�cance of the
similarity measures

Table 14 allows the following conclusions to be drawn:
(1), our coswJ&C similarity measure and the measure
introduced by Zhou et al. (2008b) obtain a statistically
signi�cant higher average Spearman correlation value
than the baseline de�ned by the J&C measure, and
they are the only measures that outperform the base-
line; (2) our coswJ&C similarity measure, and the mea-
sures introduced by Zhou et al. (2008b) and Meng et al.
(2014), are the only measures that are not outperformed
by other measures in a statistically signi�cant manner;
(3) the Zhou et al. (2008b) similarity measure obtains
a statistically signi�cant higher average Spearman cor-
relation value than all of the measures, with the only
exception of the coswJ&C and Meng et al. (2014) simi-
larity measures; (4) the Wu and Palmer (1994) similarity
measure obtains a statistically signi�cant lower average
Spearman correlation value than all of the remaining
measures; (5) our coswJ&C similarity measure and the
measure introduced by Zhou et al. (2008b) obtain a sta-
tistically signi�cant higher average Spearman correlation
value than all of the classic IC-based measures, whilst
our cosJ&C measure and the Garla and Brandt (2012)
measure statistically outperform the Resnik and Lin sim-
ilarity measures; and �nally, (6) the Rada et al. (1989)
similarity measure and all measures derived from it, such
as the measures introduced by Leacock and Chodorow
(1998) and Pedersen et al. (2007), together with the
Al-Mubaid and Nguyen (2009) measure, are only out-
performed in a statistically signi�cant manner by our
coswJ&C similarity measure, and the measures intro-
duced by Zhou et al. (2008b) and Meng et al. (2014).
In summary, conclusions (1) and (2) above prove hy-

pothesis H1 on the outperformance of the path-based
similarity measures by a group of state-of-the-art IC-
based similarity measures. Conclusion (5) above proves
the hypothesis H4 on the outperformance of the classic
IC-based similarity measures by a small set of state-of-
the-art methods. On the other hand, the conclusion (6)
above is very signi�cant because it proves for the �rst
time that only this small set of state-of-the-art IC-based
similarity measures have been able to obtain a statis-
tically signi�cant higher average Spearman correlation
value than the family of path-based similarity measures.
If we reproduce the statistical signi�cance analysis in ta-
ble 14 using the average Pearson correlation as sample
set, we could see that most IC-based similarity measures
obtain a statistically signi�cant higher average Pearson
correlation than the path-based measures, a fact that
endorses the common belief that the path-based similar-
ity measures have been de�nitively outperformed by the
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family of IC-based similarity measures. However, the
results shown in table 14 reopen the debate. We argue
that the lack of a statistically signi�cant di¤erence be-
tween the Garla and Brandt (2012) and Pedersen et al.
(2007) similarity measures, and thus any other measure
derived from Rada et al. (1989), is mainly responsible
for the lack of a statistically signi�cant di¤erence in per-
formance reported by Alonso and Contreras (2016) for
the use of the two aforementioned measures in a bio-
medical IR task. The latter facts endorse our idea that
research into the area should focus on the improvement
in the performance based on the Spearman rank corre-
lation, because this latter metric could predict the ex-
pected performance in applications based on similarity
measures better.
We note other signi�cant fact. Our coswJ&C sim-

ilarity measure, and the measures introduced by Zhou
et al. (2008b) and Meng et al. (2014), are all hybrid IC-
based similarity measures that integrate an IC model
with any path-based feature. Among the latter afore-
mentioned measures, the coswJ&C similarity measure is
the only one that de�nes a real IC-based weighted graph,
whilst the other two measures integrate a pure edge-
counting measure in their formulas. Our experimental
results and the signi�cance analysis show that the IC-
based weighted distance on a taxonomy, as proposed by
the coswJ&C similarity measure, is currently the best
approach for maximizing the Spearman rank correla-
tion value, thus, this type of taxonomical feature should
be explored in future developments into ontology-based
similarity measures, despite its high computational cost.

6.5 Impact of the IC models on the
similarity measures

The last four rows in tables 10 and 11 show a set of sta-
tistics considering the Pearson and Spearman correlation
values reported by each similarity measure (column) as a
random variable evaluated on all IC models. These sta-
tistics allow the following conclusions to be drawn: (1)
most IC-based similarity measures exhibit a moderate
standard deviation in the Pearson and Spearman corre-
lation values as regard the set of IC models; (2) most
IC-based similarity measures in table 11 exhibit a peak
ratio greater than 1.0 times their standard deviation, a
fact that supports our H6 hypothesis which states that
most IC-based similarity measures perform better with
a speci�c IC model; and (3) the standard deviation of
the Spearman correlation of the IC-based similarity mea-
sures as regards the IC models is statistically signi�cant
lower than the standard deviation of the Pearson corre-
lation, a fact that is supported by a p-value of 0.0073
between both random sets. This latter fact means that
the performance of the IC-based similarity measures as
a function of the IC models is more stable in terms of
the Spearman rank correlation than the Pearson metric.
We conclude that every similarity measure should be

used with its best performing IC model in any practical
application. However, there is no strong evidence con-
�rming that the outperformance of a similarity measure
in any word similarity benchmark can be extrapolated to

other applications (see our discussion in section 3). Our
most signi�cant conclusion as regards the IC models is
as follows: the two best performing and preferred IC
models by most IC-based similarity measures, and thus,
the most practical IC models, are those introduced by
Sánchez et al. (2011) and Seco et al. (2004).

6.6 New state-of-the-art results

The new state-of-the-art in intrinsic IC models and in-
trinsic IC-based similarity measures is set by the Sánchez
et al. (2011) IC model in combination with our coswJ&C
similarity measure, and the Seco et al. (2004) IC model
in combination with the Zhou et al. (2008b) similar-
ity measure. Likewise, these two latter intrinsic IC-
based similarity measures obtain a statistically signi�-
cant higher performance than the remaining methods.
Thus, the four aforementioned methods are convincing
winners among the families of IC models and ontology-
based similarity measures. The coswJ&C similarity
measure obtains the highest average Spearman corre-
lation value and the highest overall averaged Pearson-
Spearman correlation value on all datasets, as well as
the highest Spearman correlation value in four of the
�ve datasets evaluated, and the highest Pearson corre-
lation values in the RG65 and MC28 datasets. On the
other hand, the Zhou et al. (2008b) similarity measure
obtains the highest average Pearson correlation value on
all datasets and the highest Spearman correlation value
in the SimLex665 dataset.
The set of classic IC-based similarity measures, de-

�ned by the Resnik, Lin and Jiang-Conrath measures,
have also been de�nitively outperformed in a statistically
signi�cant manner by a small set of IC-based similarity
measures developed during the last decade, among which
we �nd the similarity measures introduced by Zhou
et al. (2008b) and the coswJ&C measure introduced
by Lastra-Díaz and García-Serrano (2015b). In addi-
tion, the J&C similarity measure and its two monotone
transformations, our cosJ&C measure and the Garla
and Brandt (2012) similarity measure, obtain a statis-
tically signi�cant higher average Spearman correlation
than the Resnik and Lin similarity measures, and the
cosJ&C obtains a statistically signi�cant average Pear-
son correlation value than the J&C similarity measure.
However, we also prove that there is no a statistically sig-
ni�cant di¤erence between the two aforementioned pairs
of outperforming IC-based similarity measures.
According to the results obtained, the two similar-

ity measures with the best overall performance are
the two hybrid IC-based similarity measures de�ned by
the coswJ&C introduced by Lastra-Díaz and García-
Serrano (2015b) and the Zhou et al. (2008b) measure.
However, their computational cost prevents their prac-
tical use in comparison with other measures, such as the
cosJ&C introduced by Lastra-Díaz and García-Serrano
(2015b) and the Hadj Taieb et al. (2014b) measure.
There is no statistically signi�cant di¤erence between
these two latter measures. The cosJ&C measure ob-
tains a higher Spearman correlation on average than the
Hadj Taieb et al. (2014b) measure, whilst the Hadj Taieb
et al. (2014b) measure obtains a higher Pearson cor-
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relation on average than the previous one. Thus, the
cosJ&C and Hadj Taieb et al. (2014b) measures are,
statistically speaking, the best option from the afore-
mentioned set of similarity measures with a practical
computational cost.

6.7 Monotone transformations.

The Spearman rank correlation value is invariant to
monotone transformations from any similarity measure,
thus, its exhaustive evaluation for all the similarity mea-
sures and IC models has con�rmed that a lot of similarity
measures are monotone transformations of other classic
measures, as well as the �ndings of other unknown cases.
For instance, the Spearman correlation metric reported
by the FaITH similarity measure introduced by Pirró
and Euzenat (2010) reveals that it is a monotone trans-
formation of the Lin measure like the measure intro-
duced by Meng and Gu (2012). Indeed, there are many
cases like these. For instance, the similarity measure in-
troduced by Leacock and Chodorow (1998), the simPath

measure of Pedersen et al. (2007), and the simLi_s3 mea-
sure of Li et al. (2003), all which are monotone trans-
formations of the Rada et al. (1989) measure, whilst the
simpath_IC measure of Garla and Brandt (2012) and
the simcosJ&C measure introduced by Lastra-Díaz and
García-Serrano (2015b) are monotone transformations
of the J&C similarity measure as de�ned in table 2.
We con�rmed experimentally that in all of the afore-
mentioned cases, the transformed measures preserve the
Spearman correlation values obtained by their respec-
tive base measures, di¤ering only in their Pearson cor-
relation values. Table 3 shows a factorization of the lat-
ter similarity measures that proves the aforementioned
monotonicity relationships.
As a consequence of the aforementioned monotonic-

ity relationships, there is a reduced number of di¤erent
strategies to estimate the degree of similarity using an
ontology-based similarity measure, despite many simi-
larity measures having been proposed in the literature.
We argue that the monotonicity relationships between a
large set of similarity measures are the main cause be-
hind the lack of a statistically signi�cant di¤erence be-
tween most of the similarity measures evaluated herein.
Thus, the research community should explore either new
measurement methods or new similarity models in order
to bring about signi�cant progress in the state of the
problem. On the other hand, the results obtained by the
measures introduced by Meng and Gu (2012), Garla and
Brandt (2012), Pirró and Euzenat (2010) and Lastra-
Díaz and García-Serrano (2015b), prove that a proper
scaling and normalization of the similarity measures is a
good strategy to improve the Pearson correlation met-
ric slightly. Therefore, the research should focus on the
search for a signi�cant improvement in the Spearman
correlation metric, which is also closely related to the
measurement strategy and similarity model used.

6.8 Computational complexity

Table 9 compares the running time of each similarity
measure in the evaluation of the MC28 dataset. The

feature-based measure of Sánchez et al. (2012) obtains
the lowest running time, making it the fastest among all
of the measures. As we expected from an analysis of their
de�nitions, all non hybrid IC-based similarity measures
obtain a running time that is almost identical to that re-
ported by the Resnik measure de�ned as baseline. The
small di¤erences are only attributable to the activity of
the operating system during the experiments, because
these IC-based similarity measures share the same IC-
based factors. On the other hand, the hybrid IC-based
similarity measures exhibit a running time of between
52 and 237 times greater than the baseline, making our
coswJ&C similarity measure the slowest among all of
the measures. Thus, the computational complexity of
the hybrid IC-based measures is roughly two orders of
magnitude greater than the complexity of the remain-
ing IC-based similarity measures. Despite all hybrid IC-
based similarity measures using the same implementa-
tion of the Dijkstra algorithm in our software library,
our coswJ&C similarity measure requires the measure-
ment of the length of the shortest path between concepts
on a non-uniform and real-valued weighted graph, whilst
the rest of the hybrid IC-based similarity measures only
require the edge count to be obtained, thus, the Dijsktra
algorithm is much faster in this latter case.

6.9 Con�rming our hypotheses

The hypotheses H1, H2, H3, H4, H5, H6 and H8 in-
troduced in section 1.2 have been positively con�rmed
by the data obtained from our experiments, they having
been answered in the discussion above. Finally, hypoth-
esis H7 on the outperformance of the state-of-the-art
IC-based similarity measures on the best corpus-based
similarity measures in the SimLex666 dataset, is also
con�rmed by comparing the best Pearson and Spearman
correlation values obtained by most IC-based similarity
measures in tables 23 and 24, with the results for these
metrics reported for the best corpus-based method in
the SimLex dataset (Pearson=0.599, Spearman=0.591),
as reported in a recent benchmark by Banjade et al.
(2015).

6.10 Contradictory results

We obtained several contradictory results in our exper-
iments, con�rming the same �ndings reported in our
aforementioned works, as well as other new ones. For
instance, Meng and Gu (2012) and Meng et al. (2014)
report Pearson correlation values of 0.8804 and 0.8817
respectively with the Seco et al. (2004) IC model in the
RG65 dataset, whlist we obtained 0.8596 and 0.8486 re-
spectively. Gao et al. (2015) report a Pearson correla-
tion value of 0.885 for their similarity measure in the
RG65 dataset with an unknown corpus-based IC model,
whilst we obtained 0.87098 herein. Adhikari et al. (2015)
report the following Pearson correlation values of 0.86,
0.86 and 0.84 for their IC model in the MC30 dataset
with the Resnik, Lin and Jiang-Conrath similarity mea-
sure respectively, whilst we obtained 0.8211, 0.8410 and
0.8331 in the MC28 dataset. These facts con�rm the re-
producibility problems in the area. Thus, we invite the
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research community to reproduce the methods and ex-
periments reported in the literature in order to con�rm
or refute the results reported herein.

7 Conclusions and future work

We have introduced a re�nement of our recent family
of well-founded Information Content models, eight new
intrinsic IC models and one new corpus-based IC model
and a very detailed experimental survey on WordNet.
We have proven that the proposed re�nement improves
the performance of our family of well-founded IC models,
and six of our new IC models obtain rivaling results as
regard the state-of-the-art intrinsic IC models, making
the new CondProbRefHyponyms and CondProbRefCo-
sine IC models our best performing IC models.
The Seco et al. (2004) and Sánchez et al. (2011) IC

models set the state of the art for the IC models, and the
Seco et al. (2004), Sánchez et al. (2011) and Yuan et al.
(2013) IC models are the only intrinsic IC models that
statistically outperfom the best performing corpus-based
IC model used as baseline. However, we prove that there
is no statistically signi�cant di¤erence between most in-
trinsic IC models and the corpus-based Resnik IC model
de�ned as baseline. Therefore, the aforementioned set of
intrinsic IC models can be considered as a practical al-
ternative to the corpus-based ones, and they should be
selected in accordance with the IC-based similarity mea-
sure used. On the other hand, the detailed experiment
survey carried-out herein allows a very signi�cant con-
clusion to be drawn: despite the research e¤ort made
during the last decade, the Seco et al. (2004) IC model
is still the state of the art on average.
The new state-of-the-art in intrinsic IC models and in-

trinsic IC-based similarity measures is set by the Sánchez
et al. (2011) IC model in combination with our coswJ&C
similarity measure, and the Seco et al. (2004) IC model
in combination with the Zhou et al. (2008b) similarity
measure. The set of classic IC-based similarity measures,
de�ned by the Resnik, Lin and Jiang-Conrath measures,
have also been de�nitively outperformed in a statistically
signi�cant manner by a small set of IC-based similarity
measures developed during the last decade, among which
we �nd the similarity measures introduced by Zhou et al.
(2008b) and the coswJ&C introduced by Lastra-Díaz
and García-Serrano (2015b). In addition, the J&C sim-
ilarity measure and its two monotone transformations,
our cosJ&C measure and the Garla and Brandt (2012)
similarity measure, statistically outperform the Resnik
and Lin similarity measures, and the cosJ&C similarity
measure obtains a statistically signi�cant higher average
Pearson correlation value than the J&C similarity mea-
sure. However, we also prove that there is no a statis-
tically signi�cant di¤erence between the two aforemen-
tioned pairs of outperforming IC-based similarity mea-
sures.
Despite our coswJ&C similarity measure and the

Zhou et al. (2008b) measure setting the state of the art
of the problem, their computational cost prevent their
practical use in comparison with other measures, such
as the cosJ&C introduced by Lastra-Díaz and García-

Serrano (2015b) and the Hadj Taieb et al. (2014b) mea-
sure. There is no a statiscally signi�cant di¤erence be-
tween the two latter aforementioned measures. Thus,
the cosJ&C and Hadj Taieb et al. (2014b) measures are,
statistically speaking, the best option from the afore-
mentioned set of similarity measures with a practical
computational cost.
We have proven that the state of the art in ontology-

based similarity measures and concept similarity models
is led by the family of IC-based measures, more speci�-
cally by the measures derived from the Jiang-Conrath
similarity measure. In addition, we have made an-
other signi�cant �nding. Contrary to the common be-
lief among the research community, only a small set of
state-of-the-art hybrid IC-based similarity measures de-
rived from the J&C measure obtain a statistically sig-
ni�cant higher average Spearman correlation value than
the family of path-based similarity measures, a fact that
explains some unexpected results in applications based
on similarity measures reported in the literature, such
as that reported by Alonso and Contreras (2016).
Finally, as forthcoming activities, we are going to in-

troduce and releasing HESML in a forthcoming paper
Lastra-Díaz and García-Serrano (2016), which is a new
scalable Java software library of ontology-based semantic
similarity measures and IC models. In addition, HESML
will be released with a replication dataset called WN-
SimRep v1, as well as a set of reproducible experiments
which allow automatically reproducing all the results re-
ported in our two aforementioned works and herein. The
aforementioned forthcoming paper is part of a novel inni-
tiative on computational reproducibility recently intro-
duced by Chirigati et al. (2016), whose pioneering work
is introduced by Wolke et al. (2016) with the aim of aid-
ing the exact replication of several dynamic resource al-
location strategies in cloud data centers evaluated in an-
other companion paper Wolke et al. (2015). Our repro-
ducible experiments are based on ReproZip, which is a
virtualization tool introduced by Chirigati et al. (2013b)
and Chirigati et al. (2013a), whose aim is to warrant the
exact replication of experimental results onto a di¤erent
system from that originally used into their creation.
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9 Appendix

See summary tables 10, 11, 12, 13 and 14. All raw data
resulting from the evaluation is shown in tables 15 to 26
next the bibliography.
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