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Abstract

One of the main challenges of cognitive science is to explain the representation of conceptual knowledge
and the mechanisms involved in evaluating the similarities between these representations. Theories that
attempt to explain this phenomenon should account for the fact that conceptual knowledge is not static.
In line with this thinking, many studies suggest that the representation of a concept changes depending on
context. Traditionally, concepts have been studied as vectors within a geometric space, sometimes called
Semantic-Vector Space Models (S-VSMs). However, S-VSMs have certain limitations in emulating human
biases or context effects when the similarity of concepts is judged. Such limitations are related to the use of
a classical geometric approach that represents a concept as a point in space. Recently, some theories have
proposed the use of sequential projections of subspaces based on Quantum Probability Theory (Busemeyer
& Bruza, 2012; Pothos et al., 2013). They argue that this theoretical approach may facilitate accounting for
human similarity biases and context effects in a more natural way. More specifically, Pothos & Busemeyer
(2011) proposed the Quantum Similarity Model (QSM) to determine expectation in conceptual spaces in
a non-monotonic logic frame. To the best of our knowledge, previous data-driven studies have used the
QSM subspaces in a unidimensional way. In this paper, we present a data-driven method to generate these
conceptual subspaces in a multidimensional manner using a traditional S-VSM. We present an illustration of
the method taking Tversky’s classical examples to explain the effects of Asymmetry, Triangular Inequality,
and the Diagnosticity by means of sequential projections of those conceptual subspaces.

Keywords: Quantum Similarity Model, Semantic-Vector Space Models, Computational Linguistics,
Similarity

1. Introduction

Representational theories of concepts have had great importance throughout the history of psychology.
Historically, one of the first formalizations of that representation was done by means of semantic networks
and ontologies (Quillian, 1967), in which words were defined in a relational way (e.g., a dog is a mammal
and in turn a mammal is an animal). In this way, we can make inferences (a dog is an animal) applying
logical rules to a set of facts (a dog is a mammal). This type of formalization is successfully used in meaning
production systems, but it has some limitations in terms of expressive capacity (both facts and rules must be
provided a priori) and plausibility (it becomes difficult to account for context effects in meaning construction
processes) (Balkenius & Gérdenfors, 2016; Géardenfors, 1996). Both limitations have a significant impact
on psychological studies. Another early formalization, in addition to the aforementioned one, is the so-
called Meaning-Text Theory (MTT) (Zolkovskij & Mel’¢uk, 1967a,b; Mel’¢uk, L., 1974). This theory posits
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semantics as the foundation of the language model, thus rendering its postulates more congruent with the
methods proposed in this work. The conceptual representation in the semantic module of the language model
of the MTT will serve as the basic unit with which we can later engage within the syntactic, morphological,
and phonological modules. In the discussion of this work, we shall assess the compatibility of the proposed
data-driven method for generating semantic subspaces with the MTT model.

Another widely adopted trend in modelling is the use of Semantic-Vector Space Models (S-VSMs), which
aim to represent the semantics of concepts via vectors in high-dimensional spaces (Deerwester et al., 1990;
Blei, Ng, & Jordan, 2003; Mikolov et al., 2013; Pennington, Socher, & Manning, 2014; Joulin et al., 2016;
Peters et al., 2018; Devlin, Chang, Lee, & Toutanova, 2018) . One of the key features of these models is their
ability to automatically generate a high-dimensional space from the occurrence of words in text corpora.
In this approach, concepts can be represented as coordinates in a vector space, enabling the computation
of distance and similarity metrics between them. Initially, these models were primarily focused on the
acquisition of word meaning as an inductive tool and the perception of similarity through distance measures
(Chwilla & Kolk , 2002; Landauer & Dumais, 1997). However, the challenge of context sensibility emerged
very early, and increased the interest in the construction of concepts and the generation of inferences (Bhatia,
2017; Jones et al., 2011; Kintsch, 2000; Kintsch & Bowles, 2002; Lemaire & Denhiere, 2006; Mikolov et al.,
2013; Millis & Larson, 2008; Yeari & van den Broek, 2015). Moreover, some mechanisms have been used
to emulate the construction of meanings, where the retrieval context guides the inhibition or activation of
some components of the vectors that represent the words (Baroni & Lenci, 2009; Jorge-Botana et al., 2020;
Kintsch & Mangalath, 2011). This is particularly advantageous in the examination of metaphor (Kintsch,
2000; Kintsch & Bowles, 2002; Kintsch & Mangalath, 2011; McGregor et al., 2019), where rule-based models
have been demonstrated to be inadequate (Gardenfors, 1996). Nonetheless, these mechanisms have certain
weaknesses because they are highly dependent on their parametrization and have some difficulties to retrieve
the right contextualized content (Harati et al., 2021). Space models generating by both Count-based models
as LSA or Prediction-based models as word2vec, face similar challenges when simulating semantic tasks, such
as the potential asymmetry between similarities of terms or different bias produced by humans (Jorge-Botana
et al., 2020). In general, we can say that S-VSMs are able to explain a large number of cognitive processes
related with meaning construction, but they need excessive parametrization to handle the retrieval contexts
(see, for example, some ad-hoc adaptations like the Construction-Integration model by Kintsch (1988), or
the Yeari & van den Broek (2015) online reading model). Thus, these proposals do not provide a completely
natural mechanism to account for the context influence, which becomes a limitation when it comes to
formalizing a general theory of semantics, since we will not be able to account for a large number of basic
semantic phenomena in a naturalistic manner.

Today, neural network models such as recurrent neural networks (RNNs) and Transformers represent a
general-purpose mechanism to deal with contextualized representations of concepts. As a generalization,
it can be said that neural networks are a theoretical framework for modelling the formation of symbols or
concepts themselves in an auto-generative way. The concepts managed within these models are emergent
since they come from the interaction of the inputs with the weights of the connections of the net. In the
training process, the net learns what constrictions are useful to deal with the inputs and make the concepts
arise. Once a net is trained, it can activate concepts in an on-line manner by means of these constrictions.
The genesis of such concepts in RNN and Transformers is accounted by a mechanism sensible to the order.
They can maintain previous states to constrain further ones. Last words in a sentence are contextualized with
previous ones, so a concept is generated by a linked sequence. This is the key to what is called “contextualized
embeddings” in this kind of frameworks. Nonetheless, they have some issues that make them cognitively
unplausible. They need a huge sample to generalize the rules for concept formation, being unable to model
the fact that input received by humans is insufficient to explain their detailed conceptual knowledge they
have. This fact is usually called the “poverty of stimulus”. The most popular face of this phenomena is the
systematic compositionality, where neural networks have still a path to improve because they seem to work
by mere statistic (Lake & Baroni, 2018; Pannitto & Herbelot, 2022; McClelland, 2022). The same can be
said about S-VSMs mentioned in previous paragraphs (sce Jorge-Botana et al. (2020)). For this reasons,
rule-based logics remain valid for addressing issues that are difficult to formalize for distributional models
and neural networks, for example, the mentioned systematic compositionality. Although rule-based logic
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treats symbols or concepts as a-priori established entities and the genesis is out of it focus, the approach is
considered valid and useful to explain specific aspects of cognition. It manages established entities with rules
operating upon them. This framework is inadequate for simulate tasks related with meaning generation with
subtle connotations, but adequate for simulating tasks with subtle rule utilization. A joint proposal between
rule based and distributional models has been made recently by Gérdenfors (Osta-Vélez & Gérdenfors, 2022)
in which conceptual subspaces proposed in previous studies (Géardenfors, 1996) are combined with rules to
formalize expectations as instances of contextualized concepts. We will mention Géardenfors’s subspaces
later. In this line, a common ground exists where distributional theories can be integrated with symbolic
proposals, yielding mutual benefits. One way in which this rule-based logics framework has impacted NLP
models is by providing a foundation for incorporating context-sensitive representations of meaning into
these models (Abbott, 1999). For instance, a recurrent neural network (RNN) or transformer-based model
could be trained to consider relevant contextual assumptions when generating a semantic representation of
an cxpression (Sundermeyer et al., 2012), thereby improving the accuracy of the model in tasks such as
machine translation or information retrieval, where the interpretation of expressions is contingent upon the
context in which they are used (Manning et al., 2008).

A more natural way to represent conceptual knowledge comes from a recent proposal based on Quantum
Cognition (Batchelder et al., 2018; Busemeyer & Bruza, 2012). The term Quantum in these proposals
is not just an analogy. Conversely, it uses some parts of the formalization of the Quantum Probability
Theory from a geometric approach to introduce a plausible mechanism by which concepts are represented
as subspaces. The fact that a concept is represented in a subspace implies that concepts have potential
meanings. A meaning only emerges (or is substantiated) at the retrieval moment and depending upon a
given specific context, usually past events. In this vein, Pothos & Busemeyer (2011) developed the Quantum
Similarity Model (QSM) based on hypothetical conceptual subspaces and sequential projections of a state
vector in such subspaces. Each concept is represented by a subspace, with the most important features of
the concept as its basis. These conceptual subspaces are located in a higher order Hilbert space ' of high
dimensionality. All these representations and operations are based on the logic of Quantum Probability
Theory. Thus, although the representation continues to be geometric, the entities (concepts) are no longer
represented as points or coordinates but as complete subspaces (we deal with this later). Consequently,
thanks to the nature of quantum dynamics, it is possible, for example, to naturally capture the order effect
in similarity estimations between concepts (e.g., the similarity measure of China and Korea do not have
the same estimation as the similarity of Korea and China). It is important for the understanding of this
work to review the fundamentals of these models, previously formalized by Pothos & Busemeyer (2011);
Busemeyer et al. (2011); Busemeyer & Bruza (2012); Pothos et al. (2013); Yearsley et al. (2015). There are
four fundamental elements in the quantum similarity model: concepts, mind state, updating by sequential
projections and compatibility.

1.1. Concepts

From a quantum point of view, concepts are represented as subspaces within a semantic space H4 C H
(a Hilbert space H) with finite dimensionality N, spanned by an orthonormal set of basis vectors V =
{IV1),...,|Vn)}. From now on, we will call this space H as the container space, represented by dimensions
el, e2 and e3 in Figure 1. All subspaces are referenced in that container space, so we can imagine that the
concepts China and North Korea are represented in the container basis by the one- and two-dimensional
subspaces also depicted in Figure 1. Concretely, North Korea subspace Hioreqa C H is spanned by Vi oreq C

THilbert spaces represent a powerful mathematical tool in the study of infinite-dimensional spaces, particularly in the analysis
of quantum systems (Von Neumann, 2018). These spaces are complete, normed vector spaces equipped with a notion of length,
or norm, and a means of measuring the distance between two points in the space. The defining characteristic of a Hilbert
space is the presence of an inner product, which enables the calculation of orthogonality and projections in the space (Von
Neumann, 2018). The application of Hilbert space operations in finite Vector Space Models (VSMs) provides a versatile and
sophisticated framework for the analysis and manipulation of complex systems. This approach has proven to be particularly
useful in the study of quantum systems and has led to significant advancements in our understanding of these systems (Von
Neumann, 2018).



Figure 1: Meaningful subspaces representation (based on Duran et al. (2016)). Assuming that the container space U is defined
according to a canonical basis B = {e1, e2, ..., e300}, and that C is a two-dimensional subspace with basis C = {c1,c2}, and K
is a one-dimensional subspace with basis K = {k1 }, the relationship between the China and North Korea vectors is identified
in U, since the set {c1,c2,k1} share a common reference, which is the basis of the original latent space U. Note that eq, ez
and e3 represent B = {e1,ea, ..., e300} in this figure.



V with only one vector in its basis (k1 in Figure 1), and China subspace Hchinge C H is spanned by
Vehina C V, that has two vectors in its basis (¢l and ¢2 in Figure 1). This way of representing concepts is
a qualitative change with respect to the classical perspective, in which concepts are only points defined by
vectors in a vector space, that is, a concept is a set of scores in the components of a vector of the container
space.

1.2. Mind State

The mind state is represented by a n-dimensional vector in the container space (7, the Hilbert space),
called state vector 1. Initially, this vector represents a neutral thought with a certain potential of collapse
on each of the subspaces representing the concepts, i.e., the state vector can be instantiated into something
concrete due to thinking about a concept represented with a subspace. Thus, we will speak about amplitudes
between the state vector and each of the subspaces. Technically speaking, collapsing is when the mind state
is projected onto a subspace, the probability of collapsing being equal to g(A) = ||P4|S)||?, where P, is
a matrix operator that projects the mind state in the subspace of the concept A. Since a vector-matrix
multiplication returns a vector, the squared norm (the squared amplitude) of that vector is a scalar that
indicates the probability of collapsing. In Figure 1, we can observe that there is a state vector 1 that has
a relative amplitude with respect to China and North Korea subspaces. To identify the projectors for each
subspace, the outer product operation is used. A projector of a subspace is calculated with the sum of the
outer products of each basis vector with itself as follows:

P = |v1) (] + [v2) (02| + .. + |vn) (val, (1)

being the subspace of A spanned by a basis with n vectors {vq,vs,...,v,}. For example, we can obtain
the projector of China summing up the outer products of the vectors that spanned the China subspace. If
the subspace of China has a basis of two vectors, the vectors China; and Chinas, the outer product of the
first is noted as |China;)(China,| and the outer product of the second is |Chinas)(Chinas|. The projector
is the sum of both outer products: Poping = |Chinay)(Chinai| + |Chinas){Chinas|.

Once we have the projector, we can project the vector state 1) onto the China’s subspace as Pcopina|9),
and calculate the probability of collapsing as ||[Pchina|S)||?>. When the state vector is projected onto China’s
subspace, the state vector is no longer a neutral state, but it is instantiated in China’s subspace. This vector
may be projected in another concept subspace; that is, thinking about other concepts after China. This
process is explained in the next section.

1.8. Updating by sequential projections

When a state of mind is concrete — that is, the state vector takes the form of a specific vector in a
concept subspace — it is susceptible to being updated. State updating happens when the already collapsed
state vector is again projected onto another concept subspace. It is, in essence, a sequential projection of
the state vector in several concept subspaces, so that the state is taking several forms according to previous
projections. A state vector changes its meaning as it is projected from different points of view; that is, is
projected in different concepts. For example, we will be able to obtain a sequence of projections thinking
first, about. Korea and then about China (Equation 2). The resultant state vector is one specific vector in
China’s subspace determined by the previous projection in Korea’s subspace (Arrows 1 and 2 in Figure 1).

PChinaPKorea|S> (2)

1.4. Compatibility

The concept of compatibility is key in quantum probability. If we are able to represent two concepts using
the same basis, they will be compatible. However, if two concepts cannot be represented using the same
basis, they will be considered incompatible, and we will only be able to understand the collapsing probability
between the two concepts sequentially. We could consider events as compatible if the one-dimensional
subspace of Korea were one of the dimensions of the two-dimensional subspace of China. This way, both
concepts could be understood within a framework of compatible dimensions, by using just one dimension
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to describe Korea and two dimensions to describe China. In our case, we will define concept subspaces as
of incompatible bases, each concept being represented by a basis of unitary orthonormal vectors that will
be interpreted as the main potential characteristics of that concept. In Figure 1, we can see that the state
vector can be explained by two different bases ( North Korea or China), cach with different dimensionality,
so we can represent the state of ambiguity between the two concepts. In addition, each of the vectors of one
basis can be explained by the linear combination of all the vectors of the other basis and also by the vectors
of the container space. It is important to note that the reciprocity law must be fulfilled between each of
the vectors representing the basis of the first concept and each of the vectors representing the basis of the
second concept (Busemeyer & Bruza, 2012).

The Quantum Similarity Model (Pothos & Busemeyer, 2011) is based on this general framework. Ac-
cording to this model, we can run successive projections, starting from a neutral state vector, to calculate the
probability of the collapse of the system on different concepts sequentially. Taking the example of Figure 1,
we can calculate the similarity between North Korea and China as follows:

||PChinaPK0rea|w> ‘ |2
=[P orea 2. P ina orea 2
1P koreal )| - [P Chinal¥xcorea) (3)

PKorea|w> 2
= ||PKorea|'l/J>||2 : HPChina—H
[P Koreal )|

In the last expression, ||PchinaP Korea|?)||?represents the similarity between North Korea and China
(Pothos & Busemeyer, 2011). The dynamics of the QSM is detailed in the studies of Duran et al. (2016);
Pothos & Busemeyer (2011); Pothos et al. (2013, 2015); Yearsley et al. (2014, 2015, 2017). In these papers,
the authors aim to show the potential of the QSM to successfully model several cognitive biases.

For the QSM, the mind state is only a potential state, and the meaning of a concept is only determined in
the presence of a context, being the concept constructed and not statically recovered. According to this, some
previous studies have already alluded to the term aberrant to define vectors representing non-contextualized
terms in a semantic-vector space (Jorge-Botana et al., 2010, 2011). In quantum terms, degenerated also
alludes to the same purpose. Thus, a polysemous term not represented in any concrete concept subspace
will possess degenerate meanings (Aerts et al., 2011), and only upon contacting the context of a subspace
will it collapse into a concrete meaning. Other studies have alluded to this state as ground-state, cognitively
defined as the state in which a concept is not evoked; that is, when it does not come into the focus of
conscious experience and is not influenced by any context (Gabora et al., 2020). The conclusion is that a
concept has infinite possible states depending on the context, and is never experienced in the ground-state.
In the same way, in QSM there are no neutral situations (Pothos & Busemeyer, 2011); whenever a person
is asked about the similarity of two concepts, they will not be able to judge it in absolute terms, but from
a pre-established point of view. For example, if asked about the similarity between ball and moon with a
preeminence of the point of view of the form, it is possible that they will be judged as equal but, if there is a
preeminence of the point of view of the game, they will be judged as different, with neutrality of the point of
view not being preeminent (Aerts et al., 2011). All these analogies regarding the construction of meanings
already have formal apparatus in Quantum models in physics, so that Gabora & Aerts (2002) suggest a
formalism for their treatment, proposing the so-called conteztualization theory of language. Nonetheless,
no data-driven study has been done (that is, there is no empirical evidence using corpus-based conceptual
subspaces). As such, it is not clear what the actual vectors are that would generate the basis of the China
subspace, nor how the degenerate vectors will be represented in a space that determines a context such
as the China subspace. Both questions need a data-driven approach (corpus-based) to their formalization.
Till now, only a tentative approximation has been done with the HAL model, but without a full fit to the
quantum similarity model (Busemeyer & Bruza, 2012).The primary objective of this study is to present a
method for the identification of both the basis and dimensionality of concepts subspaces with the aim of
formalizing the Quantum Similarity Model (QSM) on multidimensional subspaces derived from VSMs. In
this case, a textual based model as LSA as a S-VSM.



2. QSM on the rails of a S-VSM

Today, several authors have proposed the use of the mathematical framework provided by Quantum
Probability Theory to capture the meaning of words within S-VSMs (Aerts et al., 2013; Blacoe et al., 2013;
Gonzalez & Caicedo, 2011; Jaiswal et al., 2018). The challenge now is to define a method that allows to
automatically identify concept subspaces in the common reference of a container space. This way, we need
to determine which is the container space, and how we can identify the position of the vectors that span each
concept subspace in it. The use of a data-driven approach is well suited, as the subspaces will be formed
based on the data rather than the researcher’s input.

Studies by Aerts & Czachor (2004) and Bruza & Cole (2006) were cornerstones, since they suggested
that some S-VSMs such as LSA (Deerwester et al., 1990) or the HAL (Hyperspace Analog to Language
model) (Lund & Burgess, 1996) could be considered formal Hilbert’s spaces, and thus act as a container
space (Blacoe et al., 2013). The use of S-VSMs will be the basis of our study to identify concept subspaces
in a data-driven environment. Such a data-driven environment has the advantage that the vectors of the
basis of cach concept subspace are not gencrated rationally, as in previous studies (with the exception of
the proposal of Busemeyer & Bruza (2012)). Conversely, the locations of those vectors and their distances
are extracted by the inferences of a model sensitive to massive cooccurrence.

To this end, we chose to use LSA (Deerwester et al., 1990), as this model has been widely studied in the
field of concept representation and has been tested in many cognitive tasks. Another reason is that it provides
an orthonormal and well-suited space for QSM. LSA is a method that models the acquisition of meaning from
texts by acquiring meanings from concepts (words) presented in different contexts (documents). From the
LSA point of view, what happens in our mind when processing language is not different from what happens
in any other cognitive process. Thus, we must have a system that facilitates the mapping of information
acquired by experience into a format in which our mind can process and store it as language (Landauer &
Dumais, 1997). LSA makes use of a linguistic corpus, which ideally contains all the concepts that a human
being can acquire, to represent semantic properties given relations between words. Thus, the final product
is a system that represents words as vectors whose dimensions map the information acquired by experience
with texts. However, the information contained in an entire linguistic corpus is too granular to represent
human semantics. Just as a human being does not consider all the stimuli received to generate a semantic
representation of concepts, in LSA we must reduce the dimensionality of a linguistic corpus to summarize
its information and make it operational. Thanks to this dimensionality reduction, we can represent the
information contained in a corpus in a simplified way, which makes it possible to establish relationships
between concepts that a priori are not found in the same contexts but are deeply related. Specifically,
LSA uses a technique called Singular Value Decomposition (SVD) that allows us to extract N orthonormal
dimensions that represent the information contained in a corpus, in a reduced form. It is important that
these dimensions are orthonormal and non-interpretable since they act as a symbolic coordinate axis of the
semantic properties which allows us to represent each of the concepts contained in the corpus by means of
n-dimensional vectors. Hypothetically, the latent dimensions represent a closed semantic world that we can
define as a container with all the potential knowledge; that is, the Hilbert’s space in QSM terms.

We are aware that LSA has many limitations, and we know that there are other models that currently
outperform LSA in various tasks (Jorge-Botana et al., 2020). This is why we do not limit the use of the
proposed method to a specific computational model such as LSA, but rather propose a series of algorithms
that can be used with any container space in which all concept subspaces can be represented. However, it
is important to note that this container space must be composed of a basis of orthogonal vectors in order
for it to be considered a Hilbert space (Von Neumann, 2018), and thus, be able to represent the vectors of
the different subspaces within it. LSA can ensure this condition as it uses truncated SVD to perform the
dimensionality reduction of the term-document matrix. However, other methods such as word2vec, Glove ,
or even more modern methods based on RNN and/or Transformers such as BERT or GPT, do not prioritize
the orthogonality of the space, sacrificing it to find a more accurate representation of each term. From
our perspective, we believe that a model that captures the different nuances of a concept from a subspace
with base vectors that represent these different "directions" in which we can understand a term, will have a
greater explanatory power for the same term in different contexts. This has led us to, for now, only consider
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the application of our method using an LSA-based container space, although this does not mean that we
reject the use of other computational language models, nor the application of subspace composition methods
without the consideration of a higher-order container space as proposed in Mu et al. (2017); Li et al. (2018);
Yang et al. (2018); Shimomoto et al. (2021), assuming in this case that the subspaces of the different terms
do not share a common space, and making it impossible for this reason to apply the QSM as conceived in
this work for calculating similarities or distances between concepts.

To generate that space with LSA, we will use journalistic texts containing articles between the years 2018
and 2019 from two Spanish newspapers ( El Mundo and El Pais) as the corpus. This corpus is composed by
243.320 documents and it has a total vocabulary of 33.503 words. We get a 300-D latent semantic space,
after applying the log-enthropy to the term-document matrix, making use of the Gallito Studio tool (Jorge-
Botana et al., 2013). With this container space and based on a previous approximation by Martinez-Mingo
et al. (2020), we propose a method for the identification of concept subspaces.

3. Multidimensional Subspaces Estimation Method

Busemeyer & Bruza (2012) discussed a method for delimiting subspaces in S-VSMs. In their work,
they suggested an ad-hoc method in which a concept subspace can be determined by the weighted sum
of different inputs in a HAL semantic vector space, generating groups of inputs for each characteristic of
that concept subspace (Busemeyer & Bruza, 2012). Nonetheless, this proposal has limitations concerning
the orthonormality of subspaces. The preliminary proposal of Martinez-Mingo et al. (2020) pursued an
approximation generating conceptual subspaces via clustering K-means technique. Taking a target word, its
closed semantic neighbors (for example its 100 semantic neighbors) were extracted from the LSA semantic
space. Then, the K-means clustering technique was applied to group the semantics of that neighborhood
into K clusters. Subsequently, the centroid of each cluster was calculated. The subspace was obtained by
applying an orthogonalization of the centroids. Nevertheless, K-means solution is relatively unstable, and
the bases of the subspaces fluctuate.

The present study aims to settle a robust and more operational implementation of multidimensional
subspaces in S-VSMs. As has been said, the current proposal starts from an already estimated LSA semantic
space, which is used to estimate the initial coordinate solution of the subspaces of each of the concepts.
The proposed method to generate the concept subspaces can be divided into three steps: container space
generation, contour extraction, and estimation of the deserved dimensionality of the subspace. This method
aims to overcome previous limitations as to the non-orthonormality of subspaces and the instability of
preliminary proposals. As we will see, this proposal seems to illustrate some classic cognitive biases of the
QSM.

3.1. Container space generation

We begin by generating a semantic vector space, the container space H € R3%, of 300 dimensions
(Rehder et al., 1998) using LSA. This container space will be spanned by a set of orthonormal vectors
V = {|V1),...,|[Vn)} that contains all the knowledge on which concepts can be represented. In our illustration,
we are using a journalistic corpus based on samples from two Spanish newspapers. It is important to use a
vector space model that guarantees the orthonormality of the dimensions that defines it, and LSA’s SVD
guarantees that the dimensions of the resulting matrices are orthonormal (Landauer et al., 2013).

3.2. Contour extraction

We define a contour for a specific concept as a set of n-dimensional vectors representing the words most
related to the word that labels the target concept (for example, China). Therefore, the contour is a set of M
vectors A = {|A1),...,|An)} that are actual points in the container space H. This contour is used to find the
basis of the subspace H 4 of concept A. In order to define those points, we are going to extract the nearest
neighbors of a specific concept (e.g., the first 10 terms and the last term of the China contour can be seen
in Table 1), understanding as nearest neighbors those concepts that have a higher similarity with our target
concept. Similarity phenomena in LSA and other S-¥SMs usually follow a negative logarithmic function,
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where only a few neighbors have high similarities with each concept (Jorge-Botana & Olmos, 2014). The
challenge is to identify the similarity threshold in which that contour ends. In other words, which semantic
neighbor should be the last of that contour?

Table 1: China Contour

Dim. 1 Dim. 2 Dim. 3 Dim. 4 Dim. 300
Chinese 2.53 1.20 -2.02 0.65 -0.29
Beijing 0.48 0.37 -0.27 0.11 -0.03
Jinping 0.13 0.14 -0.01 0.02 -0.01
Asian 0.61 0.13 -0.47 0.20 -0.05
Taiwan 0.11 0.07 -0.06 -0.01 -0.01
Shanghai 0.13 0.02 -0.09 0.08 -0.02
Xi 0.26 0.18 -0.04 0.02 0.01
Xi Jinping 0.03 0.03 -0.01 0.01 0.00
People’s Republic 0.02 0.01 -0.01 0.01 0.01
Hong Kong 0.28 0.17 -0.15 0.00 0.00
Geopolitical 0.18 0.14 -0.06 -0.02 0.02

In estimating a threshold, we have been inspired by the work of Rekabsaz et al. (2017). Following
Rekabsaz et al. (2017) reasoning, we wonder how the semantic neighborhood of a very uncertain word and
the form of the function that matches the similarities of its neighbors could be. Answering this question
provides a suitable reference to compare the behavior of this uncertain word with a target word and find
the similarity threshold of the contour of the latter. The point at which similarities of the neighbors of the
uncertain word coincide with similarities of the neighbors of the target word is the threshold of the target’s
contour. The sense of this method is to find the point at which the similarities of the neighbors of the target
word behave as those of the neighbors of the uncertain word. In addition to this, we added an additional
correction based on the semantic diversity of the target word. This correction consists in weighting the
threshold (similarities of the neighbors) of the uncertain word by a factor based on the semantic diversity of
the target. This weighting allows to obtain bigger contours as diversity of target words increases. Formally,
the procedure is as follows:

1. The sum of all vector terms in the container space is calculated as in Equation 4. The result of this
sum is a vector that represents the uncertain word. We name that word as superterm.

K
Superterm = g Ay, (4)
i=1
where A; is each word vector in the container space and K is the number of dimensions of the same

space.

2. A list of similarities of each word of the space with this superterm is calculated using the cosine.
This list is defined by each word and its similarity with the superterm. We sort that list to draw a
distribution of similarities.

3. The Semantic Diversity of the target word is calculated. Semantic Diversity is the degree in which a
word appears in different contexts. This index is calculated with the method of Hoffman et al. (2013)
as follows:

P P,
Diversity(w;) = Z Z costFy, Pi) ) ) (5)

mxm
Jiwi €Pj kiw, € Py
where w; is the target word, m is the number of paragraphs in which w; appears, P; and Py are the
paragraphs with index j and % respectively, and P; and Pj their vector representation with index j

9



colour

— china

Similarity

| —— weighted superterm

0 100 200 300
Number of Neighbors

Figure 2: The figure shows the sorted similarity function between the superterm vector and all words in the corpus corrected
by the semantic diversity of the target word, and the sorted similarity function between the vector of the target term and all
words in the corpus.

and k in the container space. Expressed in natural language, this formula takes all the paragraphs in
which the target word appears and calculates a similarity measure (cosine) between them. To have
a central measure, a mean of all the similarities is calculated and a —log operation is applied to it.
Thus, diversity is sensible to the disparity of the paragraphs that the target word occurs in.

4. A list of similarities of each word of the space with the target word is compiled. Again, this list is defined
by each word and its similarity with the target word. We also sort that list to draw a distribution of
similarities of the target word. Then, a threshold is estimated for this sorted distribution of similarities.

5. Each of the values of the sorted list with the similarities of the superterm are modified following
Equation 6.

5
1 + Dtarget/lo’

where S is the vector of similarity values of the superterm (the list of sorted similarities), Dygrger is
the decile of the Semantic Diversity corresponding to the target word, and Syeighteq is the similarity
vector of the superterm modified by the Semantic Diversity.

6. Once the previous steps are done, we have two distributions: one with the sorted similarities of the
target word with all the words in the space, and another with sorted similarities of the superterm with
all the words corrected by the semantic diversity of the target. We can now calculate the crossed point
of both distributions to define the similarity threshold for the target word contour. All words with
a similarity above the threshold to the target word will be included in its contour. Taking the term
China as an example, as shown in Figure 2, we determine a contour of 91 semantic neighbors.

(6)

Sweighted =

From a psychological perspective, we can consider this contour as a set of elements that can shape
the basic characteristics of the target concept. This interpretation is consistent with many other cognitive
models (Busemeyer & Bruza, 2012). Thus, we will use these elements when forming the basis that represents
the subspace of a concept; for instance, the concept of China.

3.3. Estimation of subspace dimensionality

As stated above, V4 = {|Va4,),...,|Va, )} is the basis of concept A subspace (H4). This basis contains
the main characteristics of the concept in a vectorial form. It is also the reference to judge the world with
the point of view of the concept A. Following the formal definition, this basis has K vectors (thus K
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Figure 3: Cloud graphs of the most representative terms of the four dimensions that define the China subspace.

components), K being determined by the number of main directions we can extract from the contour of
that concept. Thus, we need to specify K. To identify it, we determine the optimal number of orthogonal
directions or main components that we can extract from the contour of a target word. The Parallel Analysis
(Horn, 1965) is used to estimate the optimal dimensionality in Principal Component Analysis (PCA). Having
a matrix filled with the vectors of the words of the contour (extracted from the container space), we can
apply the Parallel Analysis to identify how many principal directions must be preserved in a further PCA
decomposition. Then, K would be the number of principal components that the Parallel Analysis indicates
to preserve, and the eigenvectors of such decomposition are the vectors of the basis of the concept subspace.

Tn our China example, the Parallel Analysis extracted 4 components. These four directions, which are
the eigenvectors extracted in a PCA decomposition of the contour matrix, would be the basis of the China
subspace, with each of them having a specific latent meaning and being orthogonal to the others.

Then, we can say that the China subspace deserves 4 components, having a subspace composed of a basis
whose vectors, the 4 eigenvectors preserved from the PCA decomposition, are identified in the container
space, so that they share the same reference with the rest of the basis for other concepts. Subspaces identified
by this method can now be used to implement the projections of the state vector into them, as proposed
by Pothos & Busemeyer (2011). At this point, we can interpret that our example subspace represents the
fundamental characteristics of the target concept according to the LSA model. In Figure 3, we can see a
visual representation of the main directions of the China subspace. Please note that the results obtained
in this study are not experimentally validated, so they are merely examples of application of the method
presented.

4. Exemplifying Cognitive Biases with Multidimensional Subspaces

In this section, we exemplify that the effects reported by Tversky (1977) can be managed through concept
subspaces identified by this method, now applying the QSM (Pothos & Busemeyer, 2011). We want to make
clear that we do not pretend to make substantive inferences but to illustrate how our method works using
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some well-known examples of cognitive biases. Below, we present different cognitive biases, reported by
Tversky (1977), which we hypothesize we will be able to manage with our method.

4.1. Asymmetry Effect

Asymmetry is a well-known effect when people must judge the similarity between two concepts. If people
are asked for the similarity of North Korea and China, they estimate it to be bigger than the one between
China and North Korea. To make this asymmetry patent, Tversky (1977) conducted an experiment in
which he asked participants: “Which of the following phrases do you prefer to use?”, and asked them to
select “Country A is similar to country B” OR “Country B is similar to country A”. In his best-known
example (China vs. North Korea), Tversky observed that 66 of the 69 participants judged the similarity
between Korea and China, from now on sim(Korea, China), to be greater than sim(China, Korea). Many
other examples were used in Tversky’s study to demonstrate this effect.

As previously stated, this is a major problem in modeling cognitive biases if S-VSMs’ ordinary distances
in a space are used because the distance between two concepts will always be the same regardless of the
order. Subjects will determine that there is a greater similarity when the less salient concept, or variant,
is presented first and the more salient object, or prototype, second, than when they are presented in the
reverse order. Kintsch (2014) noted that fact and adapted the similarity measure in S-VSMs to be sensible
to the claim of Tversky (1977); that is, the similarity estimation is conditioned to the amount of information
that a subject has about each of the concepts studied, always using n-dimensional LSA vectors to represent
concepts, and not conceptual subspaces represented by a set of n-dimensional LSA vectors that compose
a new orthogonal basis for the concept. In this section, we show operatively the Asymmetry effects of the
classic examples of Tversky (1977) about countries, but using the standard apparatus of QSM with concept
subspaces and projections. Importantly, our proposal is data-driven since it uses real sources of texts. We
also hypothesize that the Asymmetry effect, given that there is no context effect in this case, would be
mainly determined by the deserved dimensionality of the stimuli studied, with the concept with higher
dimensionality being more salient.

This way, to make the asymmetry effect operative it is necessary to estimate the different subspaces for
all the stimuli. As we have already extracted the China subspace, the next step will be to obtain the North
Korea subspace. Eight dimensions are estimated for the North Korea subspace using our method 2. Thanks
to this method we are able to extract new information from the subspaces. For example, we can observe the
correlation matrix of the vectors of the bases of both subspaces (Figure 4) and determine the characteristics
they share. We can infer that the subspaces of both concepts are incompatible (they clearly do not share
the same basis vectors), but there are some main shared features (please note that this correlation matrix
is just a first exploration of both subspaces).

Next, we need to estimate the similarities between the two concepts in different orders to account for the
Asymmetry effect. To do this we must first calculate the projectors Pcping and P goreq Of the two subspaces,
using Equation 1. Once we have the two subspaces’ projectors, we need to set values to the initial state
vector 1) to start with. Our choice is to initialize 1) with no bias toward either subspace, optimizing the
values of the ¢ initial state by minimizing ||P rorea|)]]? — ||[Pchinal®)||> = 0. We use the stats library
(R Core Team, 2022) for this purpose. In other words, the state vector will be in an intermediate position
between the two subspaces (Pothos & Busemeyer, 2011).

Having the state vector ¥, we can now formalize the asymmetry taking similarity values but changing
the order. For this purpose, the squared magnitude of the sequential projections in both orders is calculated,
obtaining the following results:

Sim(China, Korea) = ||P koreaP China|)||? = 0.277
Sim(Korea, China) = ||P chinaP Korea|)||* = 0.236

2We must keep in mind that the corpus used is a journalistic corpus from 2018 to 2019, so we cannot assume that this
fits human semantics, even less than was the case with the results of Tversky’s experiment, since this was carried out in a
completely different geopolitical context.
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Figure 4: Correlation matrix of the extracted dimensions for China and North Korea.

As a result, there is an asymmetry between the similarities depending on the order effect. Theoretically,
this could be explained by the salience of both concepts given the generation of subspaces (Duran et al.,
2016). It secems that North Korea deserves a higher dimensionality than China according to this journalist
corpus, which would cause it to have a higher weight when calculating similarity, with North Korea being
the prototype and China the variant. This effect due to the salience of the concepts is congruent with
Tversky (1977) interpretation (although the direction of asymmetry was opposite to the judgment of his
experimental subjects, maybe due to the historical context).

4.2. Triangular Inequality

Related to the Asymmetry effect and the violation of the space distances, Tversky (1977) also reported
the Triangular Inequality. Triangular Inequality determines that the distance between two points A and B
will always be smaller than the sum of the distances between points A and C and points C and B. That
is, if we follow space laws, the side of a triangle must be mandatorily smaller than the sum of the other two
sides.

Distance(A, B) < Distance(A, C) + Distance(C, B)

In terms of similarity, Triangular Inequality is explained as follows: Dissimilarity(A, B) will always be
smaller than the sum of Dissimilarity(A, C')+ Dissimilarity(C, B). This would be the same as saying that
Sim(A, B) will always be greater than the sum of Sim(A4,C) + Sim(C, B) (Duran ct al., 2016).

Similarity(A, B) > Similarity(A, C) + Similarity(C, B)

Nonetheless, people do not seem to follow classic space laws in their judgments. In his study, Tversky con-
sidered A = Russia, B = Jamaica, and C = Cuba. Space laws would predict that Sim(Russia, Jamaica)
is always smaller than the sum of Sim(Russia, Cuba) and Sim(Cuba, Jamaica). People contradict space
laws in terms of distances and similarities and thus violate Triangular Inequality. However, in S-VSMs
we cannot consider that the similarity works as a linear transformation of the distances. For example,
working with n-dimensional vectors in LSA to represent words, the violation of Triangular Inequality can
be accounted for with cosines, even when it is impossible with Euclidean distances. If we use cosines in
our container space, Sim(Russia, Jamaica) = 0.0252, and Sim(Russia, Cuba) + Sim(Cuba, Jamaica) =
0.4829, which means a violation of Triangular Inequality. Nevertheless, by working with Euclidean dis-
tances instead of similarity measures, this violation of the geometric model does not occur, resulting in
Dist(Russia, Jamaica) = 10.5879, and Dist(Russia, Cuba) + Dist(Cuba, Jamaica) = 12.0881. Tversky
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(1977) formalized his model by applying theoretical functions to experimental data, but not by using ap-
proaches based on Semantic Models. For this reason, there are still subtle issues in Semantic Space Models
outside of Tversky’s approach. Other authors such as Kintsch (2014) did develop their work on this type
of Semantic Models, but there are still some inconsistencies between distance and similarity measurements
in demonstrating the violation of Triangular Inequality. We believe that these inconsistencies are due to
the use of one-dimensional subspaces to represent the concepts, the results being equivalent to those of the
classical model, and therefore we propose the use of our method to estimate multidimensional subspaces to
test the Triangular Inequality using quantum distance and similarity measures.

In this way, our objective is to formalize how to deal with Triangular Inequality violation using the
formal apparatus of QSM in a data-driven manner, using multidimensional subspaces instead of vectors to
represent concepts in order to find violations of this principle with distance and similarity measures. It
is important at this point to consider the characteristics of the different quantum distance and similarity
measures proposed for semantic spaces and concept representation in the current literature. On the one
hand, Gabora & Aerts (2002) propose a distance measure, called conceptual distance, as a function of the
probability of change from a state p to a state ¢ under the influence of a context e as follows:

W(@,,0) = /201 — Vi@, e,0)), (7)

where (g, e,p) is the probability of this change. In our case, we will understand that the probability of
this change is given by the squared length of the projection of the state vector onto the subspace representing
the first concept multiplied by the projection of the updated vector on the subspace of the second concept.
The formalization is as follows:

wa,e,p) = — A= B =[[{A]¢) - (Blea)]?, (8)

With A representing the event p, ¥ the state e, and B the event q. Working with projectors, this will
result in p(q,e,p) = ||[PpPalw)||?. Although this distance measure perfectly suits the representation of
concepts by subspaces that we propose in this paper, it has a dynamic nature, it being possible to represent
the order effect by measuring the distance between subspaces, but not to take a simultaneous measurement
of the distance between the two subspaces. (g, e,p) implicitly has a sequence of a transition. In other
words, it does not allow us to determine a concrete distance between two subspaces independently of the
order to measure the Triangular Inequality effect.

On the other hand, we have the distance measure proposed by Zuccon et al. (2009), in which only the
maximum dimensionality between the two subspaces compared is taken into account to obtain a distance
measure that takes all the vectors of both bases to be calculated (Equation 9), so the result will be the
same, regardless of the order in which the concepts are evaluated. This simultaneous measure is calculated
as follows:

ds(Su,Sy) = | maz(m,n) — ZZ wilvs), 9)

i=1 j=1

where {|u1), ..., |u,)} is the basis for Sy, and {|v1), ..., |v,)} is the basis for S,,. Thus, we make use of the
latter measure of distance in this paper to account for the Triangular Inequality effect.

Considering similarity measures, we have the measures proposed by Pothos & Busemeyer (2011) in the
QSM that we have already discussed previously. However, these measures are dynamic too, so in this case
we must use a static measure as also proposed by Zuccon et al. (2009). Starting from Equation 9, Zuccon
et al. (2009) define a static similarity measure between subspaces as follows:

1_ ds(bu, Sv)

stm(Su, Sv) = mazx(m,n) ’

(10)



We use the following concepts in order to show the Triangular Inequality effect: United States (US),
Palestine, and Israel 3. If we use the vector representation of the concepts from the container space, as
expected, the violation of Triangular Equality can be observed with similarity measures such as cosine,
being Sim(U S, Palestine) = 0.048, and Sim(Israel,US) + Sim(Israel, Palestine) = 1.023. On the other
hand, using Euclidean or subspaces distance measures this violation does not occur, being for the Euclidean
distance Dist(US, Palestine) = 11.178, and Dist(US, Israel) 4+ Dist(Israel, Palestine) = 13.3, and for the
subspaces distance Sdist(US, Palestine) = 0.935, and Sdist(US, Israel)+Sdist(Israel, Palestine) = 1.125.

Let us see what happens if we use multidimensional subspaces to determine the similarity and dis-
tance measures. Using our method, we extract sixteen dimensions for the US, three dimensions for
Palestine, and eight dimensions for Israel. First we see how the Triangular Inequality assumption
is again violated by taking the Zuccon et al. (2009) measure of similarity between subspaces, being
Sim(US, Palestine) = 0.007, and Sim(Israel,US) + Sim(Israel, Palestine) = 0.011. However, for sub-
space distance measures, Triangular Inequality is not violated, being Sdist(US, Palestine) = 4.031, and
Sdist(Israel,US) + Sdist(Israel, Palestine) = 6.799. In this scenario, the Triangular Inequality remains
valid for measuring distances between subspaces. However, it is important to emphasize that, although the
Triangular Inequality is a fundamental assumption for distance measures using Euclidean distance, this is not
necessarily the case for measuring distances between subspaces or conceptual distances, being theoretically
possible to violate this assumption using this framework.

4.3. Diagnosticity Effect

Finally, we study how to formalize the Diagnosticity effect reported by Tversky (1977), using the QSM.
The Diagnosticity effect consists of introducing a context effect given by a concrete concept when calculating
the similarity between another pair of concepts. Thus, when calculating the similarity between concepts
A and B, we must consider the influence of the contextual information determined by concept C. In a
famous study proposed by Tversky, subjects were presented with two different experimental tasks. In the
first experiment, two set of individuals were asked to group different countries, changing from a sequence
{a,b,p,c} to a sequence {a.b,q.c}. We see an example of this task in Figure 5. When the alternatives
were Sweden, Poland, and Hungary, the majority of participants grouped Austria with Sweden (49%), and
Poland with Hungary. However, if presented with the options Sweden, Norway, and Hungary, Hungary was
grouped with Austria in most of the cases (60%) and not Sweden (14%). In a second experiment, Tversky
asked two different groups of participants with different contextual information ( Poland or Norway) to sclect
the country more related to the target (in this case Austria), and could demonstrate that the proportion
of participants that selected a specific country, like Sweden, changed on average a 9% depending on the
context. This doesn’t mean that the participants changed the grouping strategy as in the first task.

A version of Equation 2, presented above for calculating the similarity between two concepts is used by
Duran et al. (2016) in a first proposal to formalize the Diagnosticity effect in terms of similarities given a
context. Taking Duran et al. (2016) formalization, to estimate the similarity between Austria and Sweden
in the Poland context, we could use the following formula:

Sim(Austria, Sweden) = ||PswedenP Potanalt’)||? =

(11)
||PSweden|w%oland>H2 : |‘PP0land|w/>||2v

1" being the Austria vector in the H container space. Please note that v’ is no longer considered a
neutral vector between Austria and Sweden. Now, v’ is considered the vector representing Awustria in the
container space. In sum, to estimate the similarity between Austria and Sweden in the Poland context,
Austria is taken as a vector from the container space, and it is projected into the subspace representing
Poland and then projected into the subspace representing Sweden. Austria is therefore a coordinate, and
the two other countries are multidimensional subspaces created using our method.

3Since the geopolitical context is not the same as in 1977, different countries have been used to exemplify this effect.
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Figure 5: Figure taken from Tversky (1977) work representing the diagnosticity effect with two sets of countries. The percentage
of subjects who selected each country (as grouped with Austria) is presented below the country.

This way, we can perform the procedure using multidimensional subspaces, generating these similarities
from the point of view of the QSM to check how the context effect works with this type of space. We will need
to extract the subspaces for Poland (13 components), Sweden (13 components), Norway (19 components),
and Hungary (12 components). Given Poland as an intermediate context, the similarity between Austria and
Sweden is 0.692 and the similarity between Austria and Hungary is 0.724. Given Norway as an intermediate
context,, the similarity between Austria and Sweden is 0.707 and the similarity between Austria and Hungary
is 0.692. The results indicate that the Diagnosticity effect is not replicated in a vector space model such as
LSA with multidimensional spaces using the Duran et al. (2016) proposal. In both cases, the context is not
decisive in generating a change in the similarity between Austria and the Swedish-Hungarian pair. Indeed,
using a context closer to Sweden produces the so-called attraction effect (Yearsley et al., 2021). This effect
is detailed below.

Yearsley et al. (2021) propose the existence of two differentiated effects that would come into competition
in this type of forced-choice task given a contextual stimulus: the grouping effect and the attraction effect.
The grouping effect occurs when, in the presence of a distractor between an initial stimulus and two target
stimuli, the subject tends to group the distractor with one of the target stimuli and thus groups the initial
stimulus with the remaining target stimulus. The attraction effect occurs when, in the same experimental
situation, the subject tends to group the initial stimulus with both the distractor and one of the target
stimuli, generating an attraction effect by the distractor. It is worth to mention that these effects are
congruent with the behaviour observed in Tversky’s second experimental task, since in the first task the
grouping strategy is being forced. In this paper we propose two models that try to approach the experimental
reality from different perspectives, formalizing the tentative processes that could be operating to make that
Diagnosticity effect arise. We again implement these formalizations in a data-driven environment. We name
the first process as contextualization and the second as perplezity.

4.8.1. Conteztualized Similarity

This approach, more congruent with the sencond experimental task of Tversky study, consists of repre-
senting the degenerate concepts of the container space H as concepts contextualized in a subspace; that is,
to transform the 300 — D vector that represents a word in H into the basis of a concept subspace. It is just
a change of basis from a 300 — D to a k — dimensional subspace that represents a context. A degenerate
vector of the container space is instantiated from the point of view that is represented by a concept subspace.
We determine a context through a concept subspace to represent the previously degenerate vectors in the
ground state in this context C as:

(HclAq), (12)
where H¢ is the context subspace and A; is the ith word label representation of a concept in the container
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space (#). This allows us to obtain the similarities between contextualized words; that is, similarities
between vectors that have a specific meaning due to a context. The contextualized similarity is calculated
as follows:

[{(HelAr) - (Hol|A2)|? (13)

The previous formula could be interpreted as the similarity between the concept A; within the context
C and the concept As within the context C. For example, having the two contexts in the Tversky task,
Poland and Norway, we estimate the concept subspace for both. The resulting subspaces are Hp and Hy,
respectively. Now, we can represent the Austria vector in the Polish context as (Hp|Austria), being the
similarity between Austria and Sweden Sim(Austria, Sweden) = ||[(Hp|Austria) - (Hp|Sweden)||>. The
context of Poland envelops both Sweden and Austria when similarity is calculated. In the Polish subspace,
we obtain that sim(Austria, Sweden) = 0.765, and sim(Austria, Hungary) = 0.805. On the other hand, in
the Norway subspace we obtain that sim(Austria, Sweden) = 0.748, and sim(Austria, Hungary) = 0.827.
In these results we can observe the two effects previously explained, with an attraction effect occurring
between Awustria and Hungary in the Polish context, and a grouping effect again between Austria and
Hungary in the Norwegian context. In this way we expect that, if the distractor and the main stimulus are
related to similar characteristics of the context, this will produce an attraction effect, whereas in case the
distractor has a strong relationship with the characteristics of the context and the main stimulus does not
have this same type of relation, a grouping effect with the remaining concept will be produced.

4.3.2. Similarity after Perplexity

The second approach to model the Diagnosticity effect is focused on formalizing the grouping behaviour
of the first task in Tversky’s study. Returning to Tversky’s experimental situation, when we are forced to
select one of the three countries, Sweden, Poland, and Hungary, to be grouped with Austria, people tend
to group Poland and Hungary and choose Sweden. The main assumption of this model is that the subject
perceives two similar alternatives ( Poland and Hungary) and discards the common properties of these two to
make a judgment about the similarity between the initial stimulus ( Austria) and the third element (Sweden).
We formalize this fact in three distinct phases:

1. Grouping: the subject identifies the most plausible pair of alternatives ( Poland and Hungary) among
all possible sequences of concepts presented (Poland, Sweden, and Hungary). Since cach country is
represented as a concept subspace, in order to identify that pair we use the Zuccon et al. (2009) distance
measure between subspaces (Equation 9). The subject identifies the smallest distance between two
countries and forms the most plausible pair. This generates additional perplexity between that pair
and causes other characteristics to be used to compare the rest of the concepts. In other words, the
common features of the pair are inhibited when similarity is estimated. This inhibition takes place in
the next phase.

2. Discarding perplexed properties: once the most plausible pair is identified, the subject inhibits the
common features existing in that pair of subspaces. To estimate the similarity between the initial
stimulus Austria and the remaining target stimuli Poland, Sweden, and Hungary, perplexed properties
are inhibited from Awustria. To formalize this process, we search for the intersection between the most
plausible pair of subspaces using the method of Ben-Isracl (2015). This intersection represents the
perplexed properties. The Ben-Israel (2015) method takes the singular value decomposition (SVD) of
the product of the projectors (Pp and P¢) of the subspaces B and C (being these two subspaces the
most plausible pair) as follows:

PPc = XXV*, (14)

and then computes the projector representing the intersection of the two subspaces as:

PBﬂC = Z XiX?. (15)
i=1
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Thus, once the perplexed properties of the most plausible pair have been identified by means of the
intersection, we subtract the projector of this intersection from the projector of the target stimulus
(Austria) as follows:

'\ =Pa — Pgnc. (16)

Now, we have inhibited perplexed properties from the Austria subspace. There is a dead angle in the
subspace of Austria represented by P’,. This fact has consequences in the similarity calculation of the
next phase.

3. Decision: finally, the subject will analyze the potential relationship between the updated target stim-
ulus (Austria) and the rest of the options as:

IP5P,[v)]?
[PcP s |v)]|? (17)
IPoP 402

Although, as we have warned on several occasions, the results of applying this approach with the current
corpus are largely arbitrary, we present some preliminary results in Table 2 using the above example of the
Diagnosticity effect.

Table 2: Diagnosticity effect with Poland as a distractor. In this case the most plausible pair is formed by Poland and Hungary.

Austria Similarity Austria Perplexed Similarity
||PPolandPAustria|¢>||2 o 0.714 ||PPolandP£4uStTia|¢>||2 ) 0.014

/
||PHu7Lga7"yPAust'r‘ia|w>|2| 0.700 ||PHu'nga'r‘y}3Austria|w>|2| 0.012
IPSwedenP Austrial¥) 0.678 P swedenPAysirig )] 0.027

As we can see in the results, eliminating the intersection between Poland and Hungary from the Austria
projector, the similarity between Austria and Sweden (0.027) increases with respect to the other two countries
(0.014 and 0.012 respectively). Thus, it is possible to formalize a grouping effect by removing information
shared by two subspaces from a third subspace. In our example, we have subtracted the information of the
conjunction of the Hungarian and Polish subspaces from the Austrian subspace, thus obtaining a higher
similarity of Austria with Sweden after this transformation.

5. Conclusions

We consider that the idea of using subspaces to represent word meanings is broadly consistent with the
MTT (Zolkovskij & Mel'¢uk, 1967a.b; Mel’¢uk, L., 1974), and can be seen as a way of providing a geometric
representation of the relationships between words, based on their semantic properties. In MTT, words
are seen as carriers of meaning, and the meaning of a word is determined by its relationship with other
words in a given context. This is similar to the idea of using the context or “contour” of a word in a LSA
space to generate a subspace representation, as the subspaces capture the relationships between different
contexts or usage examples of the word. The main advantage of representing contextualized concepts with
QSM (with a state vector and a sequential projections) is that it permits to account for the formation
of concepts in a natural way, including the separations from prototypical structures (Rosch, 1975). The
prototype of China, for example, can be seen as the area of the subspace of China (and the potential vectors
within that subspace) that is activated by the most frequently occurring contexts. However, the concept
of China can also be instantiated far from this prototype due to varying contexts (e.g. “Chinese companies
in the US tech industry”). It is well understood that concepts are not homogeneous and discrete classes,
and Rosch’s Prototype Theory posits categories as heterogeneous and non-discrete classes, with certain
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members being more representative of the category than others, known as prototypes. Nevertheless, it is
not feasible to define a category by necessary and sufficient conditions. Therefore, a prototype is not the
exemplar with the necessary and sufficient conditions, but rather the sum of the typical features of the
category’s exemplars (Rosch, 1975). The definition of the prototype has been criticized, as it is an assembly
of a category’s conditions and, taking into account the variability of the exemplars that could belong to
it, could result in a very atypical and aberrant prototype that nobody recognizes. This may be the case
for “homonymous” categories. For example, the prototype of the “clock” category may include “the tower
of London”. In contrast, the Quantum Similarity Model is more versatile in dealing with prototypes since
conditions are highly contextualized. Each concept is defined in a subspace with a basis that spans all
potential categories that it could belong to. The category of “the tower of London” is contextualized because
it depends on the previous context in the sequence. The “tower of London” in the context of time is not
the same as “the tower of London” in the context of buildings, they are different vectors located in different
areas of the subspace. As a result, the prototype of a category never assembles a unique and static “tower of
London”, this is impossible in terms of the Quantum Similarity models. Therefore, the theory that supports
Quantum Similarity is context-centered. In contrast, with the Rosch simple assembly, it is not possible
to have an exemplar in an area of the subspace not related to a context. We can consider that Rosch’s
prototype model arises naturally from the Quantum Similarity Model.

In this same line, “conceptual subspaces theory” proposed by Gérdenfors (2004) argues that concepts can
be represented by subspaces in a multidimensional space, where each subspace contains features that are
relevant to a particular context. This allows for a more flexible and contextualized representation of concepts,
which is in line with our findings that the QSM is capable of accounting for the formation of concepts in a
natural way, including separations from prototypical structures. Moreover, Gardenfors’ conceptual subspaces
theory offers an advance over the prototype theory by providing a more nuanced and precise representation
of concepts, allowing for the representation of subtle variations and differences between different instances of
a category. This is particularly useful in the context of natural language processing, where words can have
multiple meanings and contexts can drastically affect their interpretation. This way, we state that QSM and
conceptual subspaces theory offer complementary approaches to understanding the nature of concepts, and
their integration can lead to a more comprehensive understanding of how concepts are formed and processed
in the human mind.

In the present study, we propose a formal implementation of the Quantum Similarity Model (QSM)
within the rails of a semantic-vector space model like the LSA. To achieve this aim, a new method for
generating subspaces has been proposed. In addition, different cognitive biases were used to illustrate the
usefulness of this method to emulate context influence in a more natural way. We have proposed some ways
to formalize the Asymmetry, Triangular Inequality, and Diagnosticity effects to exemplify the possibilities
of the QSM over a data-driven model of representation as LSA.

With respect to the Asymmetry effect, the order of the projections and the dimensionality of the concept
subspaces seem to be the most important variables for the results. The prototype and the variant of the
studied pairs are determined according to the dimensionality obtained in the subspaces, the prototype
being always the term with the highest dimensionality. This difference in dimensionality has proved to be
determinant in finding an asymmetry between the similarities in pairs of concepts, depending on the order.
Regarding the Triangular Inequality violation, we must say that in previous theoretical models, the similarity
is interpreted as an inverse function of the distance in geometric models (something extensively discussed
in Tversky’s work). This is not the case with the Euclidean Distance and the Cosine in S-VSMs. For this
reason, Triangular Inequality seems to be violated even with simple cosines, without the need to apply either
the quantum model or the generation of subspaces (please note that such was not the case for Euclidean
Distances). In any case, we have also shown how to calculate simultaneous distances between subspaces to
emulate the Triangular Inequality effect in the framework of the QSM and LSA. Finally, we have proposed
some ways to formalize some of the cognitive processes that could be involved in the Diagnosticity effect,
using the QSM approach and the generation of concept subspaces; for example, the attraction effect for
similarity evaluation or the consequences of grouping a pair of stimuli, as described by Tversky (1977). For
this purpose, we present two new similarity measurements, ’contextualized similarity’ and ’similarity after
perplexity’. We demonstrate how these approaches effectively work with Tversky’s experimental tasks. They

19



allow us to better understand the complex relationship between context, perplexity, and similarity.
Overall, this paper is an illustration of how to work with data-driven subspaces in the QSM. The added
value is that it offers a data-driven method to manage concepts as potential areas with some conceptual and
mathematical tools. In future research, we aim to collect experimental data from human subjects in order to
validate the effectiveness of the proposed methods in simulating human biases within the context of natural
language processing. Although with some limitations, this work opens up a wide range of possibilities for
new research in the field, from the refinement of methods for generating concept subspaces in vector space
model contexts to the development of explanatory language models using subspaces to represent concepts.
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