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Abstract 

Multidimensional forced-choice (FC) questionnaires have been consistently found to 

reduce the effects of socially desirable responding and faking in non-cognitive assessments. 

Although FC has been considered problematic for providing ipsative scores under the 

classical test theory, IRT models enable the estimation of non-ipsative scores from FC 

responses. However, while some authors indicate that blocks composed of opposite-keyed 

items are necessary to retrieve normative scores, others suggest that these blocks may be less 

robust to faking, thus impairing the assessment validity. Accordingly, this article presents a 

simulation study to investigate whether it is possible to retrieve normative scores using only 

positively keyed items in pairwise FC computerized adaptive testing (CAT). Specifically, a 

simulation study addressed the effect of 1) different bank assembly (with a randomly 

assembled bank, an optimally assembled bank, and blocks assembled on-the-fly considering 

every possible pair of items), and 2) block selection rules (i.e., T, and Bayesian D and A-

rules) over the estimate accuracy and ipsativity and overlap rates. Moreover, different 

questionnaire lengths (30 and 60) and trait structures (independent or positively correlated) 

were studied, and a non-adaptive questionnaire was included as baseline in each condition. In 

general, very good trait estimates were retrieved, despite using only positively keyed items. 

Although the best trait accuracy and lowest ipsativity were found using the Bayesian A-rule 

with questionnaires assembled on-the-fly, the T-rule under this method led to the worst 

results. This points out to the importance of considering both aspects when designing FC 

CAT.  

Keywords: forced-choice format, ipsative data, multidimensional IRT, adaptive 

testing, item selection  
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On Bank Assembly and Block Selection in Multidimensional Forced-Choice Adaptive 

Assessments 

Recent meta-analytic studies provide evidence for the predictive validity of non-

cognitive domains, such as personality, motivation, and leadership over academic and job 

performances (e.g., Judge et al., 2013; Montano et al., 2017; Poropat, 2009; Richardson et al., 

2012). As a result, there has been an increasing interest in the assessment of these attributes 

in educational and occupational fields. In this sense, forced-choice (FC) questionnaires have 

been proposed as a means of attenuating the effect of socially desirable responding (i.e., self-

deception or faking) and acquiescence in the measurement of non-cognitive attributes (e.g., 

Cao & Drasgow, 2019; Cheung & Chan, 2002; Martínez & Salgado, 2021; Wetzel et al., 

2021), thus providing with more valid measurements than with traditional rating scale items.  

Differently from the traditional rating scale items (e.g., using Likert scales), the FC 

format consists of presenting the respondents with two or more stimuli (e.g., statements) in 

blocks.  Respondents are then instructed to rank the statements within a block from least like 

me to most like me. Instructions may be either to rank all the statements (i.e., full rank), or to 

partially rank them (e.g., pick one, select only the most and least preferable, etc.; for an 

overview on different types of blocks see Brown & Maydeu‐Olivares, 2018). In this sense, 

the simplest and most common FC format is with two statements, where respondents are 

instructed to pick the most preferable of each pair (e.g., Morillo et al., 2019). 

A major drawback for the FC format, however, is that it may provide with ipsative 

scores, such that a person’s score in each attribute depends on his own scores on other 

variables (e.g., scoring higher in one attribute implies scoring lower in the others), which 

prevents comparing respondents with each other. The interdependence between scale scores 

in FC response data is due to that endorsing the items measuring one attribute implies not 

endorsing the items measuring other attributes. One operational definition of pure ipsativity is 
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that the sum of scores across all traits is constant for all individuals. As a consequence of 

ipsativity, the validity of the scores is impaired. Specifically, pure ipsative scores hold a set of 

known unique psychometric properties (Clemans, 1966). For instance, due to the exact 

interdependence between the scales in a questionnaire, the sum of rows, or columns, in the 

trait covariance matrix must be zero, which also occurs with the trait intercorrelation matrix if 

trait variances are equal. Accordingly, in this case, the average trait intercorrelation between 

D ipsative scores from the same questionnaire is necessarily −
1

𝐷−1
 (Hicks, 1970, p. 172), 

since the sum of the off-diagonal elements should be -1 by rows (or by columns). On the 

other hand, the sum of the covariances between a given external criterion and a set of ipsative 

variables will also be zero (Clemans, 1966, p. 28), which implies that, when ipsative 

variances are the same, the sum (and thus the average) of the correlations between the 

ipsative scores and a given external variable will also be zero (Clemans, 1966, p. 28). The 

aforementioned unique psychometric properties, such as the negative intercorrelation bias 

and a mean validity of zero, can be taken as score ipsativity indicators. The following is a 

demonstration of these properties: 

Note that ∑ 𝐶𝑜𝑣(𝑋𝑑 , 𝑋𝑑′)
𝐷
𝑑=1 = ∑ (

∑ 𝑥𝑖𝑑𝑥𝑖𝑑′𝑁
𝑖=1

𝑁
− 𝑥̅𝑑𝑥̅𝑑′)

𝐷
𝑑=1 = 

∑
(∑ 𝑋𝑖𝑑)𝑋𝑖𝑑′

𝐷
𝑑=1

𝑁

𝑁
𝑖=1 − 𝑥̅𝑑′ ∑ 𝑥̅𝑑

𝐷
𝑑=1 = 𝐾 ∑

𝑥𝑑′𝑖

𝑁

𝑁
𝑖=1 − 𝑥̅𝑑′𝐾 = 0, 

since ∑ 𝑋𝑖𝑑
𝐷
𝑑=1 = ∑ 𝑥̅𝑑

𝐷
𝑑=1 = 𝐾, where K is a constant. 

Note that ∑ 𝐶𝑜𝑣(𝑋𝑑 , 𝑦)𝐷
𝑑=1 = ∑ (

∑ (𝑥𝑖𝑑,𝑦𝑖)
𝑁
𝑖=1

𝑁
− 𝑥̅𝑑𝑦̅)𝐷

𝑑=1 = 

∑
(∑ 𝑋𝑖𝑑)(𝑦𝑖)

𝐷
𝑑=1

𝑁

𝑁
𝑖=1 − 𝑦̅ ∑ 𝑥̅𝑑

𝐷
𝑑=1 = 𝐾 ∑

𝑦𝑖

𝑁

𝑁
𝑖=1 − 𝑦̅𝐾 = 0, 

since ∑ 𝑋𝑖𝑑
𝐷
𝑑=1 = ∑ 𝑥̅𝑑

𝐷
𝑑=1 = 𝐾, where K is a constant. 
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Modelling Forced-Choice Responses 

Recently, it has become clear that the ipsativity of the scores can be attenuated by 

correctly modeling the process of comparative judgements (e.g., Meade, 2004). Nowadays, a 

variety of models under the item response theory (IRT) framework exist to outline the 

decision process involved in force-choice responses, thus allowing to obtain normative scores 

(e.g., Brown & Maydeu-Olivares, 2011; Bunji & Okada, 2020; McCloy et al., 2005; Morillo 

et al., 2016; Stark et al., 2005). In general, these models consist of two major components: (1) 

a measurement model for the relationships between stimuli and attributes, and (2) a decision 

model for the choice between the stimuli (Brown, 2016). A common denominator for most of 

these models, however, is the understanding that the endorsement of a given statement (i.e., 

item) in a block (i.e., set of items) results from the comparison of independent evaluations 

about each statement (Brown, 2016). On the other hand, these models mainly differ on their 

conception of the process underlying the individual item evaluations.  

As an example for the comparative model component, the multi-unidimensional 

pairwise preference (MUPP) model proposed by Stark et al. (2005) outlines how the 

probability of endorsing an item in a pair, 𝑃(𝑦𝑖,𝑗) in Equation 1, results from an independent 

evaluation about the agreement with each item, 𝑃(𝑥𝑖,𝑗1) and 𝑃(𝑥𝑖,𝑗2).  

𝑃(𝑦𝑖,𝑗 = 1) =
𝑃(𝑥𝑖,𝑗1 = 1)𝑃(𝑥𝑖,𝑗2 = 0)

𝑃(𝑥𝑖,𝑗1 = 1)𝑃(𝑥𝑖,𝑗2 = 0) + 𝑃(𝑥𝑖,𝑗1 = 0)𝑃(𝑥𝑖,𝑗2 = 1)
, (1) 

where 𝑦𝑖,𝑗 represents the position of the selected item on the block (i.e., 1 or 2), and 𝑥𝑖,𝑗1 and 

𝑥𝑖,𝑗2 denote the latent responses of subject i to items 𝑗1 and 𝑗2 in the jth pair, respectively, 

being equal to 1 if respondent i endorses the item, and 0 otherwise.  
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Assuming the process outlined in Equation 1, a dominance pairwise preference model 

can be derived by specifying 𝑃(𝑥𝑖,𝑗1) and  𝑃(𝑥𝑖,𝑗2) through a two-parameter logistic (2PL) 

model defined in Equation 2:  

𝑃 (𝑥𝑖,𝑗𝑝 = 1|𝜃𝑖,𝑑𝑗𝑝
) = 𝜓logistic [𝑎𝑗𝑝 (𝜃𝑖,𝑑𝑗𝑝

− 𝑏𝑗𝑝)], (2) 

where the probability of agreement with each statement p in the jth pair depends on the 

discrimination and difficulty of the pth item (𝑎𝑗𝑝and 𝑏𝑗𝑝, respectively) and the ith person score 

in the dth latent trait (𝜃𝑖,𝑑𝑗𝑝
) under the logistic link function (𝜓logistic). To ease the 

comprehension of upcoming definitions, Equation 2 can be redefined into the slope and 

intercept parametrization as 

𝑃 (𝑥𝑖,𝑗𝑝 = 1|𝜃𝑖,𝑑𝑗𝑝
) = 𝜓logistic (𝑎𝑗𝑝𝜃𝑖,𝑑𝑗𝑝

+ 𝑐𝑗𝑝), (3) 

where 𝑐𝑗𝑝 = −𝑎𝑗𝑝𝑏𝑗𝑝 is the 𝑗𝑝 item’s intercept. 

By replacing the 𝑃 (𝑥𝑖,𝑗𝑝) terms in Equation 1 by the probability function of the 2PL 

(Equation 3), the MUPP-2PL (Morillo et al., 2016) simplifies to the logistic difference 

between parameters in 𝑃 (𝑥𝑖,𝑗1 = 1|𝜃𝑖,𝑑𝑗1
) and 𝑃 (𝑥𝑖,𝑗2 = 1|𝜃𝑖,𝑑𝑗2

): 

𝑃(𝑦𝑖,𝑗 = 1|𝜽𝑖) = 𝜓logistic[(𝐚𝑗1
′ 𝛉𝑖 + 𝑐𝑗1) − (𝐚𝑗2

′ 𝛉𝑖 + 𝑐𝑗2)] = 𝜓logistic(𝐬𝑗
′𝛉𝑖 + 𝑐𝑗), (4) 

where 𝛉𝑖 is a D × 1 vector containing the true attribute levels of the ith subject. Additionally, 

let 𝐚𝑗𝑝
′  be a 1 × D vector of discrimination parameters of item 𝑗𝑝 over the D attributes, being 

𝑎𝑗𝑝,𝑑 = 0 if item 𝑗𝑝 does not measure attribute d, the jth block scale parameter vector 𝐬𝑗
′ is then 

the difference between discrimination vectors for the first and second items in the block (i.e., 

𝐬𝑗
′ = 𝐚𝑗1

′ − 𝐚𝑗2
′ ). Similarly, parameter 𝑐𝑗 denotes the block threshold parameter, computed as 

the difference between item intercepts, being 𝑐𝑗 = 𝑐𝑗1 − 𝑐𝑗2. The detailed simplification from 

Equation 1 to Equation 4 can be found in Kreitchmann et al. (2021). 
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As it can be noted in Equation 4, the MUPP-2PL model is equivalent to the 

multidimensional compensatory logistic model (MCLM; McKinley & Reckase, 1982) for the 

difference of item response parameters. In practical terms, if both items are keyed in the same 

direction, the highest the 𝜃 measured by 𝑗2, the lowest is the probability of endorsing item 1, 

and vice-versa. Similarly, from a Thurstonian perspective of comparative judgment, the 

decision of endorsement of either statement relies on the difference between the utilities of 

the items (Thurstone, 1927) which monotonically increase with the attribute levels. In this 

sense, the MUPP-2PL and the Thurstonian IRT model (TIRT; Brown & Maydeu-Olivares, 

2011) are different parametrizations of the same model (logistic and normal link functions, 

respectively). In this study, the MUPP-2PL will be used, although, given the great similarity 

between the MUPP-2PL and the TIRT models, the conclusions here may be largely 

generalizable to the TIRT model for pairs. 

Challenges for the FC Format 

Although the ipsativity of FC scores may be attenuated by properly modelling the 

response process, some questionnaire characteristics can still lead to remnant ipsativity, 

undermining the precision and validity of the estimated scores (e.g., Frick et al., 2021). For 

instance, under the dominance framework, the S matrix (a J × D matrix with the s vectors of 

all blocks as defined in Equation 4) should be of full rank for the model to be identified 

(Brown, 2016). In addition, other aspects of the questionnaire design have been found to 

affect the reliability of the scores. For instance, Brown and Maydeu-Olivares (2011; 2018) 

indicate that more reliable score estimates can be obtained by: 1) including blocks of items 

with different keyed directions, 2) increasing the number of traits being measured, 3) 

assessing traits with more negative average intercorrelations (for positive or mixed item 

keying), and 4) increasing the number of items per block. Additionally, in a comprehensive 

study, Frick et al. (2021) observed that questionnaires only including blocks of items keyed in 
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the same direction (i.e., homopolar blocks) were generally problematic, providing with 

ipsative scores and reliabilities below acceptable levels. In this sense, within the non-adaptive 

assessment framework, Kreitchmann et al. (2021) found that the ipsativity derived from using 

only homopolar blocks may be reduced by optimizing the block assembly. Specifically, these 

authors found that even when using homopolar pairs only, optimizing the questionnaires by 

minimizing the asymptotic variances of the trait score estimators could improve substantially 

the recovery of the scores and provide with acceptable score precision. The effect of block 

assembly, however, is still unknown in adaptive assessment applications. 

Regarding the use of blocks with opposite-keyed items, there is currently an open 

debate (e.g., Bürkner et al., 2019; Lee & Joo, 2021; Ng et al., 2021) on whether, despite 

improving ipsativity, it may reduce the robustness of FC blocks against faking and social 

desirability, again compromising validity. On the one hand, Bürkner et al. (2019) postulate 

that if traits are oriented in the same direction as social desirability, positively keyed items 

will most likely be more socially desirable, whereas negatively keyed items will be 

undesirable. It is necessary to emphasize that the item keying referred here is relative to the 

direction of the social desirability, and not the original direction of the measured domain. 

Therefore, unequally keyed blocks are likely to have a clear socially desirable response and 

thus fail to control social desirability and faking. Additionally, in realistic scenarios, if 

respondents are able to identify and select the most socially desirable option in a block, that 

block will be uninformative for person parameter estimation (Wang et al., 2017) and may not 

improve the accuracy of trait estimates as initially expected. On the other hand, Wetzel et al. 

(2021) found that FC questionnaires containing blocks of opposite-keyed items were still 

more robust to faking than rating scale items. In this sense, it appears to be assumable that, 

when items truly have the same social desirability for respondents, the inclusion of opposite-

keyed items may solve ipsativity issues without compromising the validity of the assessment. 
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From a conservative standing point, however, it can be postulated that while the reliability 

and ipsativity of questionnaires using only equally-keyed blocks may be improved using 

longer or properly optimized questionnaires (e.g., Kreitchmann et al., 2021), the possible 

validity impairment caused by faking and social desirability may still be difficult to predict 

and prevent. Accordingly, this study aims to investigate whether, under realistic conditions, it 

is possible to retrieve reliable and valid scores with adaptive questionnaires using only blocks 

of items keyed in the same direction.  

Adaptive Forced-Choice Assessment 

Despite the challenges stated above, the use of computerized adaptive testing (CAT) 

is known to offer a substantial increment in trait estimate precision, which may likely provide 

with reliable normative scores. Accordingly, several CAT applications exist for measuring 

non-cognitive traits with the FC format, for instance the Navy Computer Adaptive 

Personality Scales (NCAPS; Houston et al., 2006), the Global Personality Inventory - 

Adaptive (GPI-A; CEB, 2010), or the Tailored Adaptive Personality Assessment System 

(TAPAS; Drasgow et al., 2012; Stark et al., 2014). 

Block Bank Assembly 

In the FC framework, the assembly of block banks has its peculiarities. On the one 

hand, banks may be composed of independent blocks as in traditional CAT, by assigning 

each item to a single block, which allows for the calibration of the block bank with FC 

responses before the FC CAT implementation. Under this method, the maximum bank size 

will be 𝑀 𝑉⁄ , being M the size of the item pool and V the number of items per block. 

Alternatively, blocks may be assembled on-the-fly, in the sense that, given the item 

parameters obtained from the calibration with single-stimulus responses, the block 

parameters can be anticipated as in Equation 4. Therefore, the suitability of each possible 
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combination of items can be calculated for each respondent and the best blocks are 

administered. TAPAS and NCAPS, for instance, are examples of on-the-fly applications. 

Compared with traditional banks, on-the-fly implementations have a much larger block search 

space, including thousands of possible blocks. For multidimensional FC CAT on-the-fly, the 

size of the search space (B) is defined in Equation 5. 

𝐵 = (
𝑀
𝑉

) − ∑ (
𝑀𝑑

𝑉
)𝐷

𝑑=1 , (5) 

where (
𝑀
𝑉

) denotes the total combinations of the M items in the pool in blocks with 

size V, and (
𝑀𝑑

𝑉
) indicates the number of unidimensional blocks formed with the items 

measuring each dth dimension. For instance, for the 240-item bank measuring 5 dimensions, 

with 48 items per dimension, the total number of possible pairwise combinations is 

(
240

2
)  = 28,680, which reduces to B = 23,040 after excluding the ∑ (

48

2
)5

𝑑=1  = 5,640 

unidimensional pairs. Although unidimensional pairs may be included, it was the authors’ 

decision not to include them in this study. In this sense, as can be inferred from Equation 4, 

unidimensional homopolar blocks may be little informative since the block discrimination 

over dimension d will be the subtraction of the discriminations of the two items regarding this 

dimension. In order to be informative, unidimensional blocks must be composed of items 

with very divergent discriminations in that dimension, which may make it easier to identify 

the most desirable response (Cao & Drasgow, 2019, p. 1349). 

Each bank assembly procedure has its pros and cons. For instance, due to its reduced 

size and the conditional independence between blocks (if items are not repeated in multiple 

blocks), traditional (i.e., fixed) block banks allow for the calibration with forced-choice 

responses, and thus enable the inspection of the psychometric properties of the blocks before 

the FC CAT implementation. On the other hand, CATs assembled on-the-fly provide with a 
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much larger search space and many more suitable blocks for each 𝛉 profile, improving the 

measurement for all subjects. Nevertheless, an actual calibration with FC response data is not 

feasible for blocks assembled on-the-fly, which may have unpredictable effects on the 

validity of the assessment. For instance, while there is evidence of the invariance from rating 

scales to FC parameters when respondents are expected to respond honestly (Lin & Brown, 

2017; Morillo et al., 2019), the invariance does not necessarily hold when respondents try to 

fake (Lee & Joo, 2021). In this sense, if a block has a more desirable option in situations in 

which faking is expected, assuming the parameters from the single-stimulus item calibration 

may provide with artificially inflated scores in the dimension measured by the more desirable 

items. This, in turn, may also compromise the fairness of the assessment, as these more 

fakeable blocks may not be presented systematically to all respondents. Finally, whereas FC 

CATs formed on-the-fly account for the full combinatorics of multidimensional blocks, the 

choice on how to combine the items to assemble the reduced fixed banks may affect the 

performance of the assessment. For instance, as it is known from previous literature (e.g., 

Brown, 2016) and will be further detailed, the combination of item scale parameters in the 

blocks may determine the normativity of the estimated scores. Conversely, given the breadth 

of the search space in FC CATs formed on-the-fly, the performance of the FC CAT on-the-fly 

may be greatly influenced by the block selection rules, as there may be a margin for 

suboptimal selection rules to present respondents with only suboptimal blocks. 

There is currently a lack of studies about the effect of the different FC CAT bank 

assembly procedures (i.e., using a fixed block bank versus assembling blocks on-the-fly) over 

the precision of the score estimates. In addition, as it will be further detailed, different selection 

rules may present respondents with blocks with different scale parameters combinations, thus 

possibly affecting the normativity/ipsativity of the scores (Brown & Maydeu‐Olivares, 2018; 

Morillo, 2018, pp. 63-100). Therefore, it is also crucial to investigate how the selection rules 
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may affect the ipsativity (consequently, the predictive validity) of the FC scores in each bank 

assembly method. Finally, item and block exposure with the different selection rules and FC 

CAT assembly methods should be considered as they may affect test security, since 

overexposed items or blocks may allow respondents to know the “ideal” response beforehand 

(Chang, 2004). Specifically, overly exposed items or blocks may facilitate test security 

breaches, as they are more likely to be remembered by the respondents. If the blocks are known 

beforehand, future respondents may receive specific training on how to respond to achieve the 

desired score. 

Block Selection Rules 

In general terms, the Fisher information function is the starting point for most CAT 

selection rules, as it quantifies the information about the unknown 𝛉 in the observations 

(Mulder & van der Linden, 2009). In unidimensional CAT, the item selection can be very 

straightforward, since choosing items with the maximum Fisher information for the 

respondent’s latest 𝜃 estimate is equivalent in practice to minimizing the asymptotic standard 

error of that 𝜃. In multidimensional FC contexts, however, the Fisher information function 

becomes a D-dimensional square matrix and the different decomposition methods may lead 

to different outcomes. For instance, in a two-dimensional questionnaire (i.e., D = 2), the 

Fisher information function of block j under the MUPP-2PL model (as in Morillo et al., 

2016) is given by: 

𝐈𝑗(𝛉) = [
𝑠𝑗,1

2 𝑃𝑗(𝛉)𝑄𝑗(𝛉) 𝑠𝑗,1𝑠𝑗,2𝑃𝑗(𝛉)𝑄𝑗(𝛉)

𝑠𝑗,1𝑠𝑗,2𝑃𝑗(𝛉)𝑄𝑗(𝛉) 𝑠𝑗,2
2 𝑃𝑗(𝛉)𝑄𝑗(𝛉)

]. (6) 

where 𝑃𝑗(𝛉) is the probability of endorsement of the first item in the jth block, as in Equation 

4, and 𝑄𝑗(𝛉) = 1 − 𝑃𝑗(𝛉). Under the assumption of conditional independence between 

blocks (i.e., without repeating items in block), the test information matrix becomes: 
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𝐈(𝛉) = ∑𝐼𝑗(𝛉)

𝐽

𝑗=1

. (7) 

The asymptotic variance-covariance matrix for maximum-likelihood trait estimators can be 

defined as (van der Linden, 2006): 

Var(𝛉̂|𝛉) = 𝐈(𝛉)−1 =

[
 
 
 
 

∑ 𝑠𝑗,1
2 𝑃𝑗(𝛉)𝑄𝑗(𝛉)𝑗

|𝐈(𝛉)|

∑ 𝑠𝑗,1𝑠𝑗,2𝑃𝑗(𝛉)𝑄𝑗(𝛉)𝑗

|𝐈(𝛉)|

∑ 𝑠𝑗,1𝑠𝑗,2𝑃𝑗(𝛉)𝑄𝑗(𝛉)𝑗

|𝐈(𝛉)|

∑ 𝑠𝑗,2
2 𝑃𝑗(𝛉)𝑄𝑗(𝛉)𝑗

|𝐈(𝛉)| ]
 
 
 
 

, (8) 

where  

|𝐈(𝛉)| = [∑𝑠𝑗,1
2 𝑃𝑗(𝛉)𝑄𝑗(𝛉)

𝑗

] [∑𝑠𝑗,2
2 𝑃𝑗(𝛉)𝑄𝑗(𝛉)

𝑗

] − [∑𝑠𝑗,1𝑠𝑗,2𝑃𝑗(𝛉)𝑄𝑗(𝛉)

𝑗

]

2

. (9) 

 

 

Several information-based selection rules exist for multidimensional CAT, 

representing different decomposition methods of 𝐈(𝛉) or Var(𝛉̂|𝛉) (e.g., Luecht, 1996; van 

der Linden, 1999). For instance, blocks may be selected to maximize the trace of the Fisher 

information matrix (T-rule; e.g., Joo et al., 2020). However, as it can be observed in 

Equations 6 to 9 on a two-dimensional MUPP-2PL model, although the T-rule being 

proportional to the sum of 𝑠𝑗,1
2  and 𝑠𝑗,2

2 , the asymptotic error variances are also related with 

the determinant of the information matrix, which in turn will be higher for lower 𝑠𝑗,1𝑠𝑗,2 

products. Consequently, selecting blocks with the T-rule does not necessarily reduce the error 

of 𝛉̂. Alternatively, the D-rule consists of selecting blocks that iteratively maximize the 

determinant of the questionnaire information matrix at time j. Using the latest 𝛉̂, the 

questionnaire information obtained by administering a given block l at time j can be 

anticipated by adding up the information provided by all previously applied blocks (𝐈𝑗−1) plus 

the information of block l at time j, thus the D-rule can be defined as Equation 10:  
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maximize |𝐈𝑗−1(𝛉̂
𝑗−1) + 𝐈𝑗𝑙

(𝛉̂𝑗−1)|. (10) 

Similarly, this approach can be extended to iteratively minimize the sum of the asymptotic 

variances of 𝛉̂ for each questionnaire with length j (i.e., minimizing the trace of 𝐈𝑗
−1; A-rule): 

minimize tr[𝐈𝑗−1(𝛉̂
𝑗−1) + 𝐈𝑗𝑙

(𝛉̂𝑗−1)]
−1

 (11) 

As pointed out by Segall (1996), the use of the posterior information matrix instead of 

Fisher information matrix improves the efficiency of Bayesian 𝛉 estimators by accounting for 

prior information of 𝛉. Thus, Bayesian D and A-rules (noted here as D* and A*) can be 

defined by using the posterior information function (𝐈𝑗
∗) by adding the inverse of the trait 

variance-covariance matrix (𝚽) to the questionnaire information matrix (see Equation 12). 

Please note that Bayesian and non-Bayesian T-rule are equivalent, since adding constant 𝚽−𝟏 

to every block information matrix will lead to the same mode of 𝐈𝑗𝑙
(𝛉̂𝑗−1), thus selecting the 

same block l. A comprehensive comparison between T, D and A-rules can be found in 

Mulder and van der Linden (2009). 

𝐈𝑗𝑙

∗ = 𝐈𝑗−1(𝛉̂
𝑗−1) + 𝐈𝑗𝑙

(𝛉̂𝑗−1) + 𝚽−𝟏 (12) 

Goals of the Present Study 

The main goal of this study is to investigate whether adaptive assessments can 

facilitate the recovery of normative scores with questionnaires composed only with 

homopolar item pairs, as well as to identify the necessary conditions for its occurrence. 

Specifically, this study addresses, through simulation, the effect of 1) bank assembly 

procedures (a fixed randomly assembled bank, a fixed optimally assembled bank, and blocks 

assembled on-the-fly), and 2) block selection rules (i.e., T, and Bayesian D* and A*-rules) 

over the accuracy and ipsativity of trait scores, as well as overlap rates. Additionally, 

different questionnaire lengths and trait structures (independent or positively correlated) are 

studied, and a non-adaptive questionnaire is included as baseline in each condition. 
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Simulation Study 

Method 

Item Pool Generation 

Five-dimensional 240-item pools with 48 items per dimension were simulated to 

emulate a real FC personality CAT under the five-factor model (Costa & McCrae, 1992). 

Two FC CAT lengths were defined: J = 30 and 60, with 6 and 12 items per dimension, 

respectively. For each item pool, the item discrimination parameters (𝑎𝑗𝑝) were sampled from 

a U(0.5, 2.5) distribution, and item difficulty parameters (𝑏𝑗𝑝) from a U(-2.0, 2.0) distribution 

(𝑐𝑗𝑝 values were later calculated as 𝑐𝑗𝑝 = −𝑎𝑗𝑝𝑏𝑗𝑝). Twenty replications were conducted for 

each condition. As it is often done in CAT studies (e.g., Mulder & van der Linden, 2009), the 

item bank is assumed to be precisely calibrated, thus the true model parameters were taken as 

known to compute the trait scores.  This allows to compute the upper-limit performance of 

the adaptive assessment and what is expected to obtain in practical settings provided the item 

parameters are accurately estimated (e.g., Sorrel et al., 2021). The R codes used for data 

generation and the simulation study are available from the corresponding author upon 

request. 

Block Bank Assembly 

As previously mentioned, three bank assembly procedures were considered: 1) 

randomly assembling a fixed block bank, 2) optimally forming a fixed block bank, and 3) 

forming blocks on-the-fly. For the first, a fixed 120-block pool was generated by randomly 

pairing all the items from the 240-item pool without repetition, with every block measuring 

two dimensions. For the optimal fixed bank, items were paired using a genetic algorithm to 

maximize the average posterior marginal reliability of 𝛉 (Kreitchmann et al., 2021), also 

constrained to two-dimensional blocks and no item repetition. Differently, for FC CAT on-
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the-fly, a pairwise FC block bank was defined with all possible two-dimensional item pairs, 

with length B defined by Equation 12. 

𝐵 = (
𝑀
2

) − ∑ (
𝑀𝑑

2
)

𝐷

𝑑=1

 (12) 

where (
𝑀
2

) denotes the total of pairwise combinations of the M items in the pool, and (
𝑀𝑑

2
) 

indicates the number of unidimensional pairs formed with the items addressing each dth 

dimension. For the 240-item bank measuring 5 dimensions with 48 items per dimension, the 

number of possible (both one and two-dimensional) pairwise combinations was 

(
240

2
)  = 28,680, which reduced to B = 23,040 after excluding the ∑ (

48

2
)5

𝑑=1  = 5,640 

unidimensional pairs. 

Respondent Data Generation 

As in Brown and Maydeu-Olivares (2011), the true latent trait correlation matrix (𝚽) 

was set as either a five-dimensional identity matrix (I5) or as the one observed for the revised 

NEO personality inventory (NEO PI-R; Costa & McCrae, 1992) with empirical data (see 

Table 1). To analyze the recovery of the trait estimates in each condition and replication, true 

𝛉 were drawn from 𝑀𝑉𝑁(𝟎,𝚽) for 1,000 simulees. Forced-choice response data were then 

generated given the probabilities under the MUPP-2PL model using the true parameters of 

the selected blocks for each FC CAT or non-adaptive questionnaire analyzed. Aiming to 

investigate effect of remnant ipsativity over the criterion validity of the scores, an external 

variable 𝜉 with standard normal distribution was simulated with correlation of 0.3 with 𝛉. 

Please insert Table 1 here 



FORCED-CHOICE BANK ASSEMBLY AND SELECTION RULES 17 

 

 

Block Selection Rules 

The adaptive algorithm was defined to present each respondent with a tailored 

assessment with length J under each selection rule and FC CAT assembly method. An initial 

set of blocks addressing each of the dimensions measured is required to obtain the first trait 

estimates (e.g., Mulder & van der Linden, 2009). For greater comparability of the block 

selection rules performance and aiming not to inflate the overlap rates due to the selection of 

the same blocks in the beginning of the FC CAT, the first three blocks administered to each 

examinee were chosen at random (e.g., Kaplan et al., 2015), constrained to having at least 

one block measuring each dimension (e.g., 1-2, 3-4, 4-5), and these three initial blocks were 

fixed across the different selection rules. A schematic description of the adaptive algorithm is 

presented in Figure 1. 

Please insert Figure 1 here 

 

The non-adaptive FC questionnaires used as baseline comparison were generated by 

assembling the 240 simulated items into J pairs using a genetic algorithm that maximizes the 

average posterior marginal reliability of 𝛉 (Kreitchmann et al., 2021). As described by 

Kreitchmann et al. (2021), the optimized criterion is inversely proportional to a weighted A*-

rule, minimizing ∑ 𝑡𝑟[𝐈(𝛉𝑞)
−1

]𝑞 𝑤(𝛉𝑞) across a set of Q 𝛉 vectors, being 𝑤(𝛉𝑞) the 

normalized density of vector 𝛉𝑞, i.e., ∑ 𝑤(𝛉𝑞)𝑞 = 1. Under all conditions, the number of 

blocks measuring each pair of dimensions, among the (
5
2
) = 10 dimension pairs, was 

constrained to be equal for all dimension pairs (3 and 6 for J = 30 and 60, respectively). 



FORCED-CHOICE BANK ASSEMBLY AND SELECTION RULES 18 

 

 

Analyses 

Trait Score Accuracy. For each simulated data set, the trait scores were estimated 

using Maximum-a-Posteriori method with Quasi-Monte Carlo quadrature in mirt package 

(Chalmers, 2012) using the true model parameters. Two indices were calculated to evaluate 

de recovery of trait scores: 1) the true reliability, calculated through the squared correlation 

between true and estimated 𝜃 (𝑟𝜃𝜃̂
2 ), and 2) the root-mean-square error between estimated and 

true 𝜃 (RMSE𝜃̂; Equation 13).  Both RMSE𝜃̂ and 𝑟𝜃𝜃̂
2  were computed for each dimension 

separately and then averaged across the five traits. In addition, the shape of the average 

conditional standard errors of 𝜃 under each assembly method was graphically analyzed for 𝜃 

values between -2 and 2.  

RMSE𝜃̂ = √∑
(𝜃𝑛 − 𝜃𝑛)

2

𝑁

𝑁

𝑛=1

, (13) 

where N denotes the simulated sample size.  

Trait Score Ipsativity. As indicated in the introduction section, ipsative scores have a 

set of unique psychometric properties that affect the the validity of the assessments. In this 

sense, aiming to approximate the ipsativity of the scores, two indicators were calculated to 

quantify the degree to which the validity of the assessment are impaired: 1) the trait 

intercorrelation bias (Bias𝚽̂; Equation 14), and 2) the average correlation between 𝛉̂ and the 

simulated 𝜉 criterion (𝑟̅𝜉𝛉̂), disattenuated dividing by the true reliabilities 𝑟𝜃𝜃̂
2 . 

Bias𝚽̂ = 𝚽̂ − 𝚽 (14) 

The Bias𝚽̂ and 𝑟̅𝜉𝛉̂ were Fisher Z-transformed prior to calculating correlation 

differences or means across the five traits, and later backtransformed to the correlation metric 

(e.g., Corey et al., 1998). 



FORCED-CHOICE BANK ASSEMBLY AND SELECTION RULES 19 

 

 

Item and Block Exposure. As previously mentioned, knowing how the selection 

rules may affect item and block exposure is crucial in the search for valid educational and 

personnel selection assessment, as overexposed items or blocks may compromise test 

security, thus allowing respondents to know the “ideal” response beforehand (Chang, 2004). 

In this sense, item (𝑇̅𝑀) overlap rates (Equation 15) were used to quantify the average 

proportion of items that are shared by two random respondents (Chen et al., 2003). Similarly, 

the calculation of block overlap rates (𝑇̅𝐵; Equation 16) was adapted from Equation 15. 

𝑇̅𝑀 =
𝑀

𝐾 · 𝐽
· 𝑆𝑟𝑀

2 +
𝐾 · 𝐽

𝑀
 (15) 

𝑇̅𝐵 =
𝐵

𝐽
· 𝑆𝑟𝐵

2 +
𝐽

𝐵
 

(16) 

where M and B are the item and block bank sizes (i.e., M = 240, and B = 120 or 23,040), K is 

the block size (i.e., K = 2), and 𝑆𝑟𝑀
2  and 𝑆𝑟𝐵

2  are the variances of the item and block exposure 

rates across all items/blocks. In addition, as can be inferred from Equations 15 and 16, high 

overlap rates are also indicative of extreme usage pattern (i.e., with high exposure variances, 

thus with few overexposed items). 

Effect Sizes. Finally, the effects of the manipulated factors over each of the indicators 

were synthesized through multiple analyses of variance (ANOVAs), one for each assessment 

procedure (i.e., non-adaptive test, FC CAT with a fixed random bank, FC CAT with a fixed 

optimal bank, and FC CAT on-the-fly) and indicator. For the adaptive assessment 

applications, the selection rule was outlined as a within-group factor in mixed-effects 

ANOVAs. Partial 𝜂2 and generalized 𝜂2 (Olejnik & Algina, 2003) effect sizes were used to 

quantify the relevance of these effects in fixed-effects and mixed-effects ANOVAs, 

respectively. All analyses were conducted using R software (R Core Team, 2020) and 
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ANOVAs were performed with the Type III sum of squares using the afex package 

(Singmann et al., 2020). 

Results 

Trait Score Accuracy 

The values of the trait estimate accuracy indicators are listed in Table 2. In 

accordance with the previous literature (e.g., Brown & Maydeu-Olivares, 2011), the number 

of items per trait (and, consequently, the test length) and the true trait intercorrelations are 

expected to affect the accuracy of the scores. Accordingly, across all assessment methods, the 

score precision was greatly affected by the questionnaire length (𝜂2 from 0.93 to 0.98, see 

Table 3), with a minimum of 𝑟𝜃𝜃̂
2  = 0.63 using the T-rule in FC CAT on-the-fly with J = 30 

and Φ = NEO PI-R, and a maximum of 𝑟𝜃𝜃̂
2  = 0.91 with the A*-rule in FC CAT on-the-fly 

with J = 60. The true trait intercorrelations, on the other hand, had an effect over the accuracy 

of the scores only under adaptive measurements, and depended further on the pairing 

procedure (random or optimal) used to form the fixed banks, and on the selection rules under 

on-the-fly applications. Specifically, the reduced accuracy caused by the average positive true 

trait intercorrelations (i.e., Φ = NEO PI-R) was negligible when fixed questionnaires or fixed 

block banks were optimized to maximize the average marginal posterior reliabilities. 

Additionally, regarding CATs assembled on-the-fly, the recovery of the scores in 

questionnaires using the A*-rule was less affected by Φ than the other rules. 

Similarly, the selection rule alone had an important impact over the accuracy of the 

scores in adaptive assessments. In this sense, the A*-rule consistently provided with the most 

precise 𝛉 estimates, whereas the T-rule provided with the most inaccurate. As anticipated in 

the Introduction section, such effect was stronger in on-the-fly assessments (𝜂2 from 0.98 to 

0.99) as the size of the combinatorial space gave a greater margin for the selection of many 
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more suboptimal blocks under suboptimal rules (i.e., T and D*-rule). Accordingly, as it will 

be described further, the profile of scale parameter combinations (e.g., both 𝑎𝑗𝑝 high, or one 

𝑎𝑗𝑝 and the other 𝑎𝑗𝑝 low) of the selected blocks differed under each rule. In summary, using 

A*-rule provided with the most accurate trait scores regardless of the adaptive bank assembly 

method. Under this rule, questionnaires assembled on-the-fly offered very high score 

precision, with 𝑟𝜃𝜃̂
2  ranging between 0.84 and 0.91. 

Please insert Table 2 here 

 

Please insert Table 3 here 

 

Figure 2 illustrates the shape of the distribution of average conditional standard errors 

of 𝛉 for each assessment method and 𝚽 with A*-rule and J = 60. Non-adaptive assessments 

and CATs with optimally assembled banks offered higher average standard errors for extreme 

𝛉, which may be due to the optimization criterion used in the genetic algorithm (maximize 

the marginal posterior reliabilities). As exposed in Kreitchmann et al. (2021), the criterion 

used considers the density of  𝛉 for the optimization, which leads to lower standard errors for 

the most populated 𝛉 values. Although this may be manipulated while optimizing a fixed test 

or a block bank (e.g., van der Linden, 1996), on-the-fly implementations showed better results 

without the necessity of prespecifying the desired shape for the standard errors. Finally, the 

shapes of the average conditional standard error distribution were similar in the remaining 

conditions, so they were omitted from the figure. 

Please insert Figure 2 here 
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Trait Score Ipsativity 

The average results for the trait intercorrelation bias and the estimated criterion 

validity of the scores under the different assessment conditions are presented in Table 4. In 

general, Tables 2 and 4 present a very similar pattern, thus the table with effect sizes is 

omitted for the ipsativity indicators. The best score ipsativity results (Bias𝚽̂ closer to 0 and 

𝑟𝜉𝜃̂ closer to 0.3) were obtained with the A*-rule in FC CAT on-the-fly. Similar to the 

accuracy results, the pairing procedure (random or optimal) had an important effect over the 

ipsativity indicators in CATs with fixed banks (𝜂2 = 0.53 for 𝑟𝜉𝜃̂ and 𝜂2 = 0.77 for Bias𝚽̂ ), 

while the selection rule had a major effect in applications on-the-fly. Additionally, the T-rule 

also offered the worst ipsativity results. In this sense, although reliability was acceptable in 

some conditions (𝑟𝜃𝜃̂
2  = 0.74 to 0.78 with Φ = Identity), FC CATs on-the-fly with the T-rule 

provided with close to fully ipsative scores (i.e., Bias𝚽̂ close to −1/(𝐷 − 1) = −0.25 and 

average criterion validity close to 0). 

Please insert Table 4 here 

Item and Block Exposure 

The item and block overlap rates are listed in Table 5. As it can be inferred, overlap 

rates for the non-adaptive assessment were always 1.0 and were omitted from the table, since 

the same questionnaires were used to score all the respondents. Additionally, item and block 

overlap rates are the same in fixed bank FC CAT implementations, as each item is presented 

only in one block. Also as expected, the overlap rates increased with questionnaire length 

under adaptive assessments, as the ratio between FC CAT length and pool size increased (see 

Equations 15 and 16). Regarding the difference between adaptive assessment methods, item 

overlap was greater for FC CAT on-the-fly, indicating that a small proportion of the items 
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was administered with a greater frequency. Nonetheless, block overlap was substantially 

lower for on-the-fly implementations, indicating that although some items were overexposed, 

they were paired differently for each respondent. Additionally, a difference in overlap rates 

for random and optimal fixed banks was observed, for which optimizing the bank assembly 

also offered an advantage in overlap, regardless of the selection rule used. 

Please insert Table 5 here 

On the one hand, as it can be inferred from Equations 6 to 9, the better overall 

performance of the A*-rule in FC CATs on-the-fly may be associated with maximizing the 

scale parameters for each dimension separately throughout the FC CAT while pairing items 

with different scale parameters in each block (e.g., for the two-dimensional case, maximizing 

𝑠𝑗,1 and 𝑠𝑗,2 in different blocks, while minimizing the product 𝑠𝑗,1𝑠𝑗,2). On the other hand, the 

worse results for T-rule may relate with the fact that it maximizes all the scale parameters in 

each block, thus providing with higher estimator variances. To illustrate it, Figure 3 presents 

the distribution of item scale parameters for the most exposed blocks for FC CATs on-the-fly 

under each selection rule in one replication for the 60-block condition. Accordingly, the high 

item overlaps in Table 5 reflect the fact that an important part of the item bank is less 

frequently administered under either of the selection rules. For the A*-rule, for instance, item 

pool design including both low and high scale parameters should help to reduce the item 

overlap rate. 

Please insert Figure 3 here 

Discussion 

Due to the risk of ipsativity by using only homopolar blocks in FC questionnaires, the 

implementation of adaptive assessments may be crucial to retrieve reliable and valid FC 

scores. In addition, different bank assembly procedures and information-based block 
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selection rules may derive into different assessment reliabilities and validities. Accordingly, 

this study aimed to investigate the effect of different adaptive assessment methods (i.e., with 

a fixed randomly formed FC bank, with a fixed optimally assembled FC bank, or with blocks 

assembled on-the-fly), and selection rules (i.e., T, D* and A*-rules) on the accuracy and 

validity of the scores they provide, as well as their impact on test security. 

 

Main Findings 

As a general summary, this study provided with empirical evidence that, with the 

proper optimization criterion (A*-rule), it is possible to retrieve reliable and valid scores using 

only homopolar FC blocks. Consistent with CAT literature (e.g., Mulder & van der Linden, 

2009), the selection rules had a substantial effect over trait recovery under adaptive 

assessments, especially in FC CAT on-the-fly, being T-rule and A*-rule the ones offering the 

worst and the best score precision, respectively. In addition, according to previous studies 

(e.g., Brown & Maydeu-Olivares, 2011; Brown & Maydeu‐Olivares, 2018; Frick et al., 2021) 

even better results should be expected from questionnaires in more favorable conditions (i.e., 

measuring more traits, or including more items per block). 

Comparing with the other assessment methods, using FC CAT on-the-fly offered a 

substantial improvement in reliability, ipsativity and block overlap rates, also achieving low 

average standard errors of 𝛉̂ throughout the 𝛉 continuum. On the other hand, item overlap 

rates were higher with this FC CAT format. It can be hypothesized, however, that the “ideal” 

response in the pairwise FC format depends on both items in a pair. Therefore, a high item 

overlap may not compromise test security, as knowing individual items beforehand may not 

facilitate faking block responses. Accordingly, low block overlap rates should be pursued to 

enhance FC test security. Additionally, the main limitation for FC CAT on-the-fly is that the 
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parametric invariance from graded response (Equation 3) to FC blocks (Equation 4) must be 

assumed. Despite the existing evidence supporting the invariance assumption (Lin & Brown, 

2017; Morillo et al., 2019), it is an important aspect to take into consideration. If there is any 

suspicion that this assumption may not hold, optimizing the blocks using the single-stimulus 

item parameters (as in Kreitchmann et al., 2021) and re-calibrating the block parameters with 

FC responses would allow to exclude any non-invariant block. Using non-optimized (i.e., 

randomly assembled) fixed banks, on the other hand, would not be recommended, as it 

provided with the worse ipsativity. 

It should be noted that in general, the results found here were not entirely consistent 

with most previous simulation studies. Frick et al. (2021), for instance, found that 

questionnaires composed with all positively keyed items provided with biased trait estimates 

and did not achieve acceptable overall reliability and ipsativity. Low reliabilities were also 

found by Bürkner et al. (2019) when measuring up to five dimensions with only equally 

keyed items, although higher reliabilities were found when measuring thirty dimensions. 

Additionally, differently from the expected (e.g., Brown & Maydeu-Olivares, 2011; Frick et 

al., 2021), having positive average true trait intercorrelations (Φ) only affected the reliability 

and ipsativity of the scores when questionnaires were not properly optimized (i.e., with the 

randomly assembled fixed bank or FC CAT on-the-fly with the T-rule). These inconsistencies 

may indicate that the FC questionnaires with all positively keyed items used in previous 

studies differed from this study in some respects. Possible explanations for the 

inconsistencies may be that, in previous studies, the item combinations were not optimized 

(i.e., blocks were not made to minimize the standard errors of measurement), or the scale 

parameter/factor loading distributions were narrower. For instance, while Frick et al. (2021) 

simulated standardized loadings ranging from 0.65 to 0.95, the scale parameters generated in 

the present study ranged from 0.28 to 0.86 in factor analysis metric. Similarly, Schulte et al. 
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(2021) indicated that with lower and normally distributed factor loadings, the true reliabilities 

provided with the TIRT model were generally unacceptable. As indicated in Equations 8 and 

9, the determinant of the Fisher information matrix, and consequently the asymptotic 

estimator variances, are greatly affected by the product of the item scale parameters. In other 

words, if item scale parameters are too similar, the determinant will be close to 0, and 

estimator variances will be too high. In this sense, the empirical data appears to support the 

fact that the scale parameters of personality items often have high variability. For instance, 

using the Big Five Triplets (Wetzel & Frick, 2020), Frick et al. (2021) found standardized 

loadings for the positively keyed items (with neuroticism reversed to emotional stability) 

ranging from 0.07 to 0.90 (approximately from 0.12 to 3.51 in 𝑎𝑗𝑝 logistic IRT 

parametrization), with an average of 0.60 (average 𝑎𝑗𝑝 of 1.26). As suggested by a reviewer, a 

follow up simulation was conducted to investigate the effect of the bank assembly methods 

and block selection rules with normally distributed item discrimination. Specifically, the 

parameter distribution proposed by Schulte et al. (2021) was replicated, with factor loadings 

drawn from a truncated N(0.50, 0.16) within the limits of 0.1 and 0.9. The results can be 

found at https://osf.io/tyhfk/. As a summary, the true reliabilities were lower with the normal 

discrimination parameter distribution, although they were still generally acceptable 

[comparing Tables 2 (uniformly distributed item parameters) and S2 (normally distributed 

item parameters) the decrease in average reliability was small, 0.044 with SD = 0.017]. In 

comparison with the results with uniform item discriminations, the effect of optimizing the 

questionnaires through bank assembly or block selection rules had a lower impact on the 

normativity of the questionnaires. The main conclusions of this article, however, remained 

the same: 1) the forced-choice questionnaires using homopolar blocks only provided with 

acceptable reliability and ipsativity when the item bank was properly optimized (i.e., 

https://osf.io/tyhfk/
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minimizing the expected trait estimator variances); 2) the effect of the block selection rules 

over the recovery of the trait estimates was especially important when using FC CAT 

assembled on-the-fly, being T-rule and A*-rule the ones offering the worst and the best score 

precision, respectively; and 3) the FC CAT on-the-fly offered an improvement in the recovery 

of trait estimates in comparison with FC CAT using fixed banks.  

Limitations and Future Directions 

Some limitations of this study are acknowledged. First, as briefly addressed in the 

Introduction section of this article, the way items are matched in terms of social desirability 

may have an important effect over the validity of the assessment. In this simulation study, 

however, the information on the social desirability of the items was not accounted for in the 

block selection rules. In this sense, recent studies (e.g., Pavlov et al., 2021; Wetzel et al., 

2021), have proposed methods for forming blocks based on the distances or agreements 

between social desirability ratings across items. From the authors’ perspective, there is no 

reason to suspect that the social desirability matching should affect the formation of A*-

optimal FC CATs. In the future, this social desirability constraints may be easily incorporated 

to the selection rules.  

Second, this study focused on the recovery of trait scores with homopolar FC blocks 

composed of only two items. In this sense, several new studies have been incorporating 

blocks of more than two items (e.g., Lee & Joo, 2021; Sass et al., 2020; Wetzel et al., 2021; 

Wetzel & Frick, 2020), as they provide with more bits of information per block used. As 

pointed out in previous literature (e.g., Brown & Maydeu-Olivares, 2011), increasing the 

number of items per block should benefit even more the normativity of the trait scores. 

However, other aspects should be considered. For instance, due to the dependencies between 

the different pairwise comparisons in each block (e.g., between items 1 and 2, 1 and 3, and 2 

and 3), the score reliability was found to be overestimated with blocks of more than two 
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items (Lin, 2021). Additionally, as found by Sass et al. (2020), subjects report performing 

pairwise comparisons to respond to FC questionnaires regardless of the number of items per 

block, thus being the number of pairwise comparisons an indicator of cognitive effort while 

responding. In this sense, FC questionnaires of pairs and triplets were found to provide with 

similar reliabilities when the number of pairwise comparisons was the same (i.e., 20 triplets 

versus 60 pairs, both with 60 pairwise comparisons; Frick et al., 2021). The findings with 

item pairs in the present article can be regarded as the lower limit performance under the 

simplest FC format that is used in practice (e.g., Morillo et al., 2019). Although other formats 

are expected to improve FC CAT performance in terms of true reliability, there is no reason 

to believe that the effect of the manipulated factors should be different.  

Third, due to the size of the block search space, the implementation of FC CAT on-

the-fly may require a great deal of computational power in order to select the blocks within 

reasonable time. Although this was not a problem with the simulation conditions included in 

this study, bigger item pools or larger block sizes may increase the search space 

exponentially. The block exposure rates presented in Figure 3 of this study indicate that 

blocks with certain characteristics were rarely used (e.g., with both item discriminations low). 

Accordingly, future studies may consider investigating how to reduce the search space of FC 

CAT on-the-fly, filtering out the blocks that may not contribute to measure the trait 

continuum.  

Fourth, as previously mentioned, this study assumed item parameters to be invariant 

between those obtained with single-stimulus responses and those from FC pairs. That it, this 

assumption implies that the probability of agreement with each individual statement (Equation 

3) does not depend on the other statement with which an item is paired. As extensively 

discussed in the introduction of this article, this may not be always the case. For instance, if the 

items in a pair strongly differ in social desirability, respondents may tend to select the most 
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desirable item regardless of their true agreement with each item. Consequently, if this 

invariance assumption does not hold, using information-based optimization criteria computed 

with the item parameters estimated from single-stimulus responses may not lead to optimal 

questionnaires. Therefore, it is of extreme importance to account for the social desirability of 

the items assembled in the same block. In other words, as a starting point, one should avoid 

forming blocks that may not be invariant. In this sense, a few approaches for social desirability 

matching have been proposed recently (e.g., Li et al., 2022; Pavlov et al., 2021; Wetzel & Frick, 

2020). Specifically, using social desirability ratings of the items, the requirement of similar 

social desirability ratings could be set as a constraint in the construction of FC assessments 

(i.e., non-adaptive questionnaires, fixed block banks, or setting the search space for FC CAT 

on-the-fly). Additionally, the invariance assumption could be empirically tested by 

recalibrating the blocks with FC responses. To this end, a demonstration on the estimation of 

the MUPP-2PL for pairwise FC responses using the mirt package (Chalmers, 2012) in R was 

made available at https://osf.io/cy5z8, although other software exist (e.g., Brown & Maydeu-

Olivares, 2012; Bürkner, 2019). If there is any suspicion that the invariance of some blocks 

may not hold, practitioners may consider assembling larger questionnaires/block banks using 

the single-stimulus parameters in order to have a margin for excluding the blocks that might be 

uninformative in the FC context. As previously pointed out, the assumption of invariance is a 

key limitation for FC CAT on-the-fly, as it may not be feasible to calibrate the complete bank 

(with every possible block) given the breadth of the search space. As an attempt to provide 

evidence for the invariance, a subset of the block bank could be calibrated with FC responses.  

Finally, the authors chose to investigate the feasibility of using only positively-keyed 

items, as it represents the most adverse condition in FC questionnaires (see Frick et al., 

2021). Although the results found here in this condition were very good, providing with 

reliable and normative scores under proper optimization criteria, the inclusion of opposite-

https://osf.io/cy5z8
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keyed items should also improve the reliability and validity of the scores if there are no 

faking attempts. In this sense, empirical studies are still needed to determine under which 

assessment conditions the inclusion heteropolar blocks may be appropriate (without affecting 

the robustness to faking), and when it may not.  
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Tables 

Table 1 

Trait Correlation Matrix Observed in the NEO PI-R (Costa & McCrae, 1992) with 

Neuroticism Reversed to Emotional Stability 

 ES EX OE AG CO 

ES 1     

EX 0.21 1    

OE 0 0.4 1   

AG 0.25 0 0 1  

CO 0.53 0.27 0 0.24 1 

Note. ES = emotional stability; EX = extraversion; OE = openness to experiences; AG = 

agreeableness; CO = conscientiousness.  
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Table 2 

True reliability and RMSE for Different Assessment Methods, Questionnaire Lengths (J), 

Selection Rules, and Trait Intercorrelation Matrices (Φ). 

Φ J 

Non-Adaptive 

Assessment 
Adaptive Assessment 

Random Bank Optimal Bank On-the-fly 

T D* A* T D* A* T D* A* 

   True Reliability (𝑟𝜃𝜃̂
2 ) 

Identity  
30 0.75 0.77 0.78 0.78 0.80 0.80 0.81 0.74 0.79 0.84 

60 0.84 0.84 0.84 0.84 0.87 0.87 0.88 0.78 0.87 0.91 

NEO PI-R 
30 0.76 0.73 0.75 0.76 0.78 0.80 0.81 0.63 0.78 0.84 

60 0.84 0.82 0.83 0.83 0.87 0.87 0.88 0.68 0.87 0.91 
 

  Root-Mean-Square Error 

Identity 
30 0.50 0.48 0.47 0.47 0.46 0.45 0.44 0.51 0.46 0.41 

60 0.40 0.40 0.40 0.40 0.36 0.36 0.36 0.47 0.37 0.31 

NEO PI-R 
30 0.50 0.52 0.50 0.49 0.47 0.45 0.44 0.61 0.47 0.41 

60 0.40 0.42 0.42 0.41 0.37 0.36 0.35 0.57 0.37 0.31 

Note. 𝚽 = true trait correlation matrix; J = number of blocks (of two items); T = T-rule; D* = 

Bayesian D-rule; A* = Bayesian A-rule. The standard deviations of the indicators across 

replications ranged from 0.004 to 0.015.  
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Table 3 

Eta Square Effect Sizes for the ANOVAs of Trait Estimate Accuracy Indicators 

 Non-Adaptive 

Assessment 

Adaptive Assessment 

 Random Bank Optimal Bank On-the-fly 

 𝑟𝜃𝜃̂
2  RMSE𝜃̂ 𝑟𝜃𝜃̂

2  RMSE𝜃̂ 𝑟𝜃𝜃̂
2  RMSE𝜃̂ 𝑟𝜃𝜃̂

2  RMSE𝜃̂ 

Within-group effects  

Selection Rule - - 0.20* 0.15* 0.51* 0.43* 0.99* 0.98* 

Selection Rule × J - - 0.10* 0.06* 0.17* 0.09* 0.45* 0.63* 

Selection Rule × 𝚽 - - 0.03* 0.02* 0.07* 0.04* 0.91* 0.85* 

Selection Rule × J × 𝚽 - - 0.02* 0.01* 0.02* 0.01* 0.02 0.00 

Between-group effects 

J 0.98* 0.98* 0.94* 0.93* 0.98* 0.98* 0.94* 0.94* 

𝚽  0.02 0.02 0.58* 0.51* 0.11* 0.06* 0.84* 0.74* 

J × 𝚽 0.02 0.02 0.08* 0.03 0.05* 0.02 0.02 0.00 

Note. J = number of blocks (of two items); 𝚽 = true trait correlation matrix; 𝑟𝜃𝜃̂
2  = true 

reliability; RMSE𝜃̂ = root-mean-square error; * p < 0.05. The non-significant interaction 

effects across all ANOVAs are omitted and large effects (i.e., 𝜂2 ≥ 0.14) are bolded.  
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Table 4 

Trait Intercorrelation Bias and Average Disattenuated Correlation Between Scores and 

Criterion for Different Assessment Methods, Questionnaire Lengths (J), Selection Rules, and 

Trait Intercorrelation Matrices (Φ). 

Φ J 

Non-Adaptive 

Assessment 
Adaptive Assessment 

Random Bank Optimal Bank On-the-fly 

T D* A* T D* A* T D* A* 

  Trait Intercorrelation Bias 

Identity 
30 -0.07 -0.12 -0.11 -0.10 -0.08 -0.07 -0.06 -0.20 -0.14 -0.05 

60 -0.05 -0.08 -0.08 -0.08 -0.05 -0.04 -0.04 -0.19 -0.09 -0.04 

NEO PI-R 
30 -0.06 -0.14 -0.12 -0.10 -0.08 -0.06 -0.05 -0.32 -0.13 -0.04 

60 -0.04 -0.09 -0.09 -0.08 -0.05 -0.04 -0.04 -0.30 -0.08 -0.03 

   Disattenuated Criterion Validity 

Identity 
30 0.23 0.15 0.17 0.19 0.22 0.23 0.25 0.03 0.13 0.25 

60 0.25 0.21 0.21 0.22 0.25 0.26 0.26 0.05 0.20 0.27 

NEO PI-R 
30 0.31 0.24 0.25 0.27 0.29 0.30 0.31 0.05 0.24 0.30 

60 0.30 0.26 0.27 0.27 0.30 0.30 0.30 0.08 0.27 0.30 

Note. 𝚽 = true trait correlation matrix; J = number of blocks (of two items); T = T-rule; D* = 

Bayesian D-rule; A* = Bayesian A-rule. The simulated criterion validity was 0.3 for all traits. 

The standard deviations of the indicators across replications ranged from 0.002 to 0.026.  
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Table 5 

Item and Block Overlap Rates for Different FC CAT Assembly Methods, Questionnaire 

Lengths (J), Selection Rules, and Trait Intercorrelation Matrices (Φ). 

Φ J 

Random Bank Optimal Bank On-the-fly 

Item/Block Overlap Item Overlap Block Overlap 

T D* A* T D* A* T D* A* T D* A* 

Identity 
30 0.43 0.43 0.44 0.39 0.40 0.40 0.73 0.71 0.64 0.04 0.03 0.03 

60 0.61 0.61 0.63 0.56 0.57 0.60 0.81 0.81 0.78 0.03 0.02 0.02 

NEO PI-R 
30 0.45 0.45 0.47 0.40 0.40 0.43 0.74 0.70 0.64 0.05 0.03 0.03 

60 0.63 0.63 0.65 0.57 0.58 0.62 0.82 0.82 0.78 0.04 0.03 0.03 

Note. 𝚽 = true trait correlation matrix; J = number of blocks (of two items); T = T-rule; D* = 

Bayesian D-rule; A* = Bayesian A-rule. The standard deviations of the indicators across 

replications ranged from 0.001 to 0.017.  
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Figures 

Figure 1 

Schematic of the Adaptive Algorithm. 

1. Randomly administer three blocks addressing the 5 dimensions measured (e.g., 1-2, 

3-4, 4-5). 

2. Remove from the bank every block that includes the items already administered. 

3. If the maximum number of blocks for a given dimension pair is reached (3 and 6 

for J = 30 and 60, respectively), remove from the bank all blocks measuring this 

pair of traits. 

4. Calculate 𝛉̂ with Expected-A-Posteriori method. 

5. Select the block that best optimizes the criterion (T, D* or A*) for the current 𝛉̂. 

6. Remove from the bank every block that includes the items already administered. 

7. If the maximum number of blocks for a given dimension pair is reached, remove 

from the bank all blocks measuring this pair of traits. 

8. Repeat Steps 4 to 7 until FC CAT length J is achieved. 

9. Calculate final 𝛉̂. 
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Figure 2 

Average Conditional Standard Errors of Estimates for Different Assessment Methods and 

Trait Intercorrelation Matrices (Φ) using A*-Rule and 60 blocks.
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Figure 3 

Distribution of Scale Parameters in Pairs for Different Selection Rules Under Assessments 

On-the-fly (with one replication with 60 blocks). 

 


