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Abstract. A (planar and cocompact) non-Euclidean crystallographic (NEC) group
∆ is a subgroup of the group of (conformal and anti-conformal) isometries of the
hyperbolic plane H2 such that H2/∆ is compact. NEC groups are classified alge-
braically by a symbol called signature. In this symbol there is a sign + or − and,
in the case of sign +, some cycles of integers called period-cycles have an essential
direction. In 1990 A.H.M. Hoare gives an algorithm to obtain the signature of a
finite index subgroup of an NEC group. The process of Hoare fails in some cases
in the task of computing the direction of period-cycles. In this work we complete
the algorithm of Hoare, this allows us to construct a program for computing the
signature of subgroups of NEC groups in all cases.

1. Introduction

A (planar) non-Euclidean crystallographic group ∆ is a discrete subgroup of the
group of (conformal and anti-conformal) isometries of the hyperbolic plane H2. We
shall consider only cocompact NEC groups, i. e. we assume that H2/∆ is compact.
The algebraic structure of ∆ is given by a symbol called signature (see [12] and [9]):

(g;σ; [m1, ...,mr]; {(n11, ..., n1s1), ..., (nk1, ..., nksk)})

where g is the genus of the surface H2/∆, σ = + or − is the orientability character of
H2/∆, [m1, ...,mr] is the set of branch indices (periods) of the covering H2 → H2/∆
with values in interior points of H2/∆, one period for each branch value, and the
ordered sets (period-cycles) of branched indices: (n11, ..., n1s1), ..., (nk1, ..., nksk),
correspond to branched values in the k boundary components of H2/∆.

Two signatures:

(g;σ; [m1, ...,mr]; {(n11, ..., n1s1), ..., (nk1, ..., nksk)})

(g′;σ′; [m′1, ...,m
′
r]; {(n′11, ..., n

′
1s1), ..., (n

′
k1, ..., n

′
ksk

)})
1
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are considered equivalent if:

1. g = g′; σ = σ′;

2. r = r′; (m′1, ...,m
′
r) = (m′ε(1), ...,m

′
ε(r)), ε ∈ Σ{1, ..., r}

3. k = k′; si = s′δ(i), δ ∈ Σ{1, ..., k},
4. Let α = (1, ..., si) ∈ Σ{1, ..., si}

If σ = σ′ = +, either:

a. For all i, (ni1, ..., nisi) = (n′δ(i)θi(1), ..., n
′
δ(i)θi(si)

), θi = αli , 0 ≤ li ≤ si, or
b. For all i, (nisi , ..., ni1) = (n′δ(i)θi(1), ..., n

′
δ(i)θi(si)

), θi = αli , 0 ≤ li ≤ si
If σ = σ′ = −, for each i, i = 1, ..., k, either:

a. (ni1, ..., nisi) = (n′δ(i)θi(1), ..., n
′
δ(i)θi(si)

), θi = αli or

b. (nisi , ..., ni1) = (n′δ(i)θi(1), ..., n
′
δ(i)θi(si)

), θi = αli

Following the terminology in [9]: in the orientable case (σ = +) corresponding pair
of period-cycles are all paired in the same way, all directly or all inversely. In the
non-orientable case, some are paired directly and some inversely.

Two NEC groups are isomorphic if and only if they have equivalent signatures.
Each NEC admits a canonical presentation, the geometrical type of the generators
and the word expressions of relations of a canonical presentation is given by the
signature.

If Γ is a finite index subgroup of∆ then Γ is also an NEC group. From a presentation
of ∆ and the action of the generators of such presentation on the cosets ∆/Γ, the
Reidemeister-Scherier method, provides a non-canonical presentation of Γ. But to
obtain the signature of Γ from a non-canonical presentation is not an easy task.

If ∆ ≤ Isom+(H2) then we say that ∆ is a Fuchsian group and there is a direct
method of Singerman [10] to obtain the signature of a subgroup Γ of ∆. If ∆ is a
generic NEC group this method was extended to NEC groups by Hoare in [6] (see
also examples in [11]). The Hoare method uses a canonical presentation P of ∆
and the coset graph H(∆,Γ,P) with vertices the right cosets of Γ in ∆ and edges
labelled with the generators of P.
The computation of the signature of subgroups of NEC groups has been carried
out many times to solve different problems (see for instance [3]), one of the most
popular applications is the determination of topological properties of the real part
of real algebraic curves (see [4] and [2]). The consideration of algebraic curves that
are not regular coverings of the Riemann sphere will be a field where Hoare method
will be applied in maximal generality (see [5]).

Our first goal was to make a program code in order to automatize this process but
we find some diffi culties in the algorithm presented by Hoare in the case when H2/Γ
is an orientable surface. In this case the period-cycles of the signature of Γ have an
esential directed order, i. e. there are NEC groups with signatures differing only
in the direction of the cyclic order of some of their period-cycles and that are not
isomophic (see [9]). Hence the determination of this direction is a crucial problem.
The method to obtain such orders, given by Hoare in [6], fails in some special cases
(see the example in Section 4). To solve this diffi culty we present a new method in
order to obtain the direction of the period-cycles in the signature of Γ when H2/Γ
is an orientable surface (Section 5).

We have made a MATLAB program for the Hoare method with our modifications
providing the signature of a subgroup Γ of an NEC group ∆ in all possible cases,
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starting from the image of the generators of a canonical presentation of ∆ by the
coset representation ∆→ ∆/Γ. The code and documentation about the programs
are in open access in:

http://e-spacio.uned.es/fez/collection/bibliuned:DptoMF-FCIE-Articulos

2. Fuchsian and NEC Groups

Let H2 be the upper half-plane model of the hyperbolic plane. The group of con-
formal automorphisms of H2 is Aut+(H2) = {z → az+b

cz+d : a, b, c, d ∈ R, ad− bc > 0}.
We shall denote Aut(H2) the group of conformal and anticonformal automorphisms
of H2 (Aut(H2) = Aut+(H2) ∪ {z → az+b

cz+d : a, b, c, d ∈ R, ad− bc < 0}).

A subgroup ∆ ⊂ Aut(H2) is called an NEC (non-Euclidean crystallographic) group
when the orbit space H2/∆ is a compact surface. If ∆ ⊂ Aut+(H2) we say that ∆
is a Fuchsian group, otherwise we call it proper NEC group. The orbit space H2/∆
is a compact surface that can be bordered and non-orientable.

Every NEC group has a canonical presentation of ∆ with canonical generators:
x1, ..., xr (elliptic isometries), ci0, ..., cisi i = 1, ..., k (reflections, we shall call cij , cij+1

contiguous reflections), e1, ..., ek (connecting generators, elliptic or hyperbolic isome-
tries) and either aj , bj j = 1, ..., g (hyperbolic isometries, in case of an orientable
surface) or dj j = 1, ..., g (glide reflections, in case of a non-orientable surface). The
relations are:

(1) xmi
i

(2) cisieici0e
−1
i (connection relation)

(3) c2ij
(4) (cij−1, cij)

nij

(5) e−1
1 ....e−1

k x−1
1 ...x−1

r [a1, b1]....[ag, bg] in case H2/∆ orientable (long relation)
(6) e−1

1 ....e−1
k x−1

1 ...x−1
r d2

1...d
2
g in case H2/∆ non-orientable (long relation)

(see reference [9])

Topologically H2/∆ is a genus g surface with k boundary components, that we shall
say that is uniformised by ∆. Also H2/∆ has an orbifold structure with r conic
points of orders m1, ...,mr and si corner points in the i-th boundary component
with orders ni1, ..., nisi .

The signature of ∆ is defined by:

(g, σ, [m1, ...,mr], {(n11, ..., n1s1), ..., (nk1, ..., nksk)})
where g is the genus, the numbers m1, ...,mr are called proper periods, the brackets
(nj1, ..., njsj ) period-cycles and the numbers nij are periods.

The hyperbolic area of the surface H2/∆ is given by:

S∆ = 2π(ηg + k − 2 +

r∑
i=1

(1− 1

mi
) +

1

2

k∑
j=1

sj∑
l=1

(1− 1

njl
))

being g the genus, η = 2 for orientable surfaces, η = 1 for non-orientable ones, and
k the number of connected components of the boundary.

A finite index subgroup Γ of ∆ is also an NEC group and determines a [∆ : Γ]-fold
Klein morphism H2/Γ→ H2/∆ ([1]), and a formula:

SΓ = S∆[∆ : Γ]

That is known as Riemann-Hurwitz formula.
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Let ∆′ be another NEC group with signature:

(g′, σ′, [m′1, ...,m
′
r], {(n′11, ..., n

′
1s′1

), ..., (n′k1, ..., n
′
ks′k

)})

then ∆′ and ∆ are isomorphic as abstract groups if and only if the signatures are
equivalent, as defined in the introduction.

3. Sketch of Hoare’s algorithm

For the sake of completeness we present a sketch of the Hoare algorithm in ref [6],
after that we will show an example where the procedure is unable to compute the
direction of period-cycles in the signature of subgroups of NEC groups.

We start from an NEC group ∆ and a canonical presentation P. Let ϕ : ∆ →
Σ{0, ..., n− 1} be a homomorphism, of transitive image. Then we want to get the
signature of the subgroup Γ = ϕ−1(Stab(0)) (this homomorphism can be seen as
the action of ∆ on the right cosets of Γ in ∆). Equivalently, Hoare in [6], gives a
way of understanding his algorithm using the Shreier graph H(∆,Γ,P) (graphical
method). The graph H(∆,Γ,P) has as vertices the cosets of ∆/Γ, two vertices i, j
are joined by an edge labelled with a generator a of P if ϕ(a)(i) = j.

(1) Let xi an elliptic canonical generator of P of order n. To each orbit of
length m of ϕ(xi) corresponds a proper period of order n/m in the signa-
ture of Γ (of course if n = m there is no such period). In terms of the
graph H(∆,Γ,P), this proper periods correspond to cycles of length m in
H(∆,Γ,P) formed by edges with label xi.

(2) Let c a reflection of P. If ϕ(c)(i) = i, we shall say that c produces a
reflection c_i of Γ: the c_i are the loops of H(∆,Γ,P) with label c.

(3) If x, y are contiguous reflection generators such that xy has order n, for
each orbit of the group < ϕ(x), ϕ(y) > of length m, we can have two cases:
(a) The orbit has two cosets (i, j) (may be i = j) fixed by reflection

generators (one with label x and the other with label y, if m odd, or
both fixed by the same element, ϕ(x) or ϕ(y), if m is even). In this
case we say that the corresponding reflection generatons of Γ are linked
and produce a period cycle of order n/m. In terms of H(∆,Γ,P) this
step is directly interpreted using paths labelled alternatively with two
contiguous reflections and joining two reflection loops

(b) The orbit has not fixed classes for reflection generators of P, then it
yields an elliptic generator of order 2n/m. In this case we consider
bicoloured cycles (with two reflection labels) in H(∆,Γ,P).

(4) Now the cycles of period cycles of the signature of Γ are given by the periods
obtained in 3.a in cycles of linked reflections of Γ. This process give us an
order (up direction) for period-cycles.

(5) In this case the approach using H(∆,Γ,P) is more natural: the sign in
the signature of Γ is + if and only if the vertices of H(∆,Γ,P) can be
bicoloured, in such a way that edges labelled with conformal generators of P
join vertices with the same colour and the edges labelled with anticonformal
generators join vertices with two different colours (except reflection loops)
(see [8])

(6) Using Riemann-Hurwitz relation we can compute the genus of H2/Γ.
(7) Assume the sign of the signature of Γ is +. In this case Hoare gives two

methods to obtain the direction of period-cycles. The first one needs to
construct a complete presentation for Γ (of a special form see [7]) and adjust
the directions of period-cycles to satisfy some relations, but there is no an
algorithm to do that and we shall present an example where this method
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does not give an answer (we call this process the long/connection relations
method). For the second method, using H(∆,Γ,P), the words of Hoare
are: “we determine the directions of the period-cycles of Γ by a process
which traverses each edge of H(∆,Γ,P) twice, once in each direction”. The
problem is that there are cycle-periods obtained from cycles of reflection
loops in H(∆,Γ,P) with only one vertex and no edges of H(∆,Γ,P) (see
how works this procedure in Example 1 of [6], where the use of paths with
more than a vertex is essential). Hoare’s method to obtain the direction
of period-cycles of Γ works in many cases, but when ∆ has more than one
period cycle and in relatively simple cases his method fails.

4. Example where direction of period-cycles cannot be found by
Hoare method

Let ∆ be a group with signature

(0; +; [2, 2]; {(6, 12, 24), (6, 12, 24)})
and canonical presentation:

(1) Generators:
x1, x2 elliptic of order 2
c10, c11,c12, c13 reflections of first period cycle
c20, c21,c22, c23 reflections of second period cycle
e1, e2 connection generators

(2) Relations:
x2

1, x
2
2, c

2
ij

(c10c11)6, (c11c12)12, (c12c13)24, c13e1c10e
−1
1

(c20c21)6, (c21c22)12, (c22c23)24, c23e2c20e
−1
2

e−1
1 e−1

2 x−1
1 x−1

2

We consider the homomorphism with transitive image: ϕ : ∆→ Σ{0, 1, 2, 3} defined
by:

x1 → (0, 1) x2 → (0, 1)
c10 → (0, 3) c11 → (0, 2) c12 → (0, 2) c13 → (0, 3)
c20 → (0, 3) c21 → (0, 3) c22 → (0, 2) c23 → (0, 3)
e1 → id e2 → id

We want to compute the signature of the subgroup Γ = ϕ−1(Stab(0)).

Using Hoare algorithm we have that Γ has:

(1) Genus 2
(2) The sign of signature Γ is + (bipartite sets {0, 1}{2, 3})
(3) Proper periods: 2, 2, 2, 2, 12, 6
(4) Four period-cycles (each period cycle of ∆ generates two) with periods:

(a) 6, 12, 24
(b) 2, 12, 8
(c) 6, 12, 24
(d) 8, 4, 6

But both connection generators have associated the identical permutation, so it is
not possible to use the long/connection relations to obtain the relative direction of
period cycles. The second method of Hoare does not work since there are paths of
linked reflection loops with only one vertex:

c10_1, c11_1, c12_1, c13_1 and c20_1, c21_1, c22_1, c23_1.
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There is no edges to be traversed twice in the paths defining these period-cycles.

5. A new algorithm to get the direction of period-cycles

Let ∆ an NEC group with signature:

(g,±, [m1, ...,mr], {(n11, ..., n1s1), ..., (nk1, ..., nksk)})

We want to compute the signature of Γ ⊂ ∆ with [∆ : Γ] = n. There is a repre-
sentation ϕ : ∆→ Σ{0, 1, ..., n− 1} given by the action of ∆ on the right cosets of
∆/Γ.

We consider a canonical NEC presentation P of ∆. Assume that the reflections
generators of P are:

c10, ..., c1s1 , ..., ci0, ...cisi , ..., cko, ..., cksk

being (cijcij+1)nij+1 = 1

Note that the presentation P gives an order to the period-cycles in the signature
of Γ.

Assume that Γ has sign + in its signature. There is a bipartition of the vertices in
the coset graph H(∆,Γ,P) as described in [6], so we can assign a “colour”(black
or white) to each vertex.

We start on a vertex t of H(∆,Γ,P) where there is reflection generator cij of ∆
such that ϕ(cij)(t) = t, i.e. the edge in H(∆,Γ,P) starting in t and with label cij
is a loop. It gives place to a reflection generator cij_t of Γ.

If t is white then we consider the sequence:

t1 = ϕ(cij+1)(t), t2 = ϕ(cij)(t1), t3 = ϕ(cij+1)(t2), t3 = ϕ(cij)(t3), ...

Until tp = tp+1 (it is possible t = t1).

If p is even then the colour of tp is also white (as we pass from one to the other
multiplying by an even number of reflections). One part of the sequence of reflec-
tions of a period cycle of Γ will be cij_t, cij+1_tp and their product has order

nij+1
p+1 .

Then we have a period nij+1
p+1 in the period-cycle that we are constructing in the

signature of Γ. We restart the procedure with the generator cij+1 that fixes the
white vertex tp i.e. ω(cij+1)(tp) = tp, in this way we shall obtain the next period
in the period-cycle in an allowed direction for the signature of Γ.

If p is odd then the colour of tp is black (as we pass from one to other multiplying an
odd number of reflections). We obtain a period nij+1

p+1 and we restart the procedure
(for a black vertex) with the generator cij that besides t fixes also the vertex tp.
The process applied to cij and tp will provide the next period in the direction of
the period-cycle.

Now if t is black we have:

t1 = ϕ(cij−1)(t), t2 = ϕ(cij)(t1), t3 = ϕ(cij−1)(t2), t3 = ϕ(cij)(t3), ...

Until tp = tp+1 (it is possible t = t1).

If p is even then the colour of tp is also black. We have a period
nij+1
p+1 and we restart

the procedure with the generator cij−1 that fixes the vertex tp i.e. ϕ(cij−1)(tp) = tp.

If p is odd then the colour of tp is white (as we pass from one to the other multiplying
an odd number of reflections) and we have a period nij+1

p+1 . We restart the procedure
(for a white vertex) with the generator cij that besides t fixes also the vertex tp.
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Equivalently: If we are in a white vertex we look at the orbits of the action of
the dihedral group 〈ϕ(cij), ϕ(cij+1)〉 there must be one that contains t and another
vertex tp fixed by cij+1 (if the length of the orbit is odd) or by cij if the length is
even. If we are in a black vertex we look at the orbits of the action of the dihedral
group 〈ϕ(cij−1), ϕ(cij)〉 and also there must be one that contains t and another
vertex tp fixed by cij−1 (if the length of the orbit is odd) or by cij if the length is
even.

After a finite number of steps we come back to the vertex t and the generator cij
and we have an oriented cycle. We continue the process with the loops that have
not yet used to obtain all the directed cycles of the signature of Γ.

Note that we have two situations when we must do a “change of direction”, passing
from orbits of 〈ϕ(cij), ϕ(cij+1)〉 to orbits of 〈ϕ(cij−1), ϕ(cij)〉 or viceversa:

• When the colour of the vertex change.
• When the length of the previous orbit is even.

Proof.

The canonical presentation P of ∆ is associated to a canonical fundamental polygon
F in H2 (see [9]). The region F has an orientation that produces an orientation in
∂F and an order to the sides of F . The fixed point line of the reflection generator
cij of P contains a side of F , then the order of the sides of F gives an order to the
reflection generators and also to the period cycles in the signature of ∆. This order
on the reflection generators is expresed by the order cij , cij+1.

If {Γ, g1, ...,Γgn−1} is a set of right cosets representatives of ∆/Γ then:

FΓ = F ∪ g1(F) ∪ ... ∪ gn(F)

is a fundamental polygon of FΓ.

The orientation of FΓ given by the orientation of F , produces an orientation on
H2/Γ. Such orientation gives an orientation to the components of ∂H2/Γ that
provides the direction of period-cycles of Γ that we are looking for. Hence the
direction of period-cycles is given by orientation of ∂FΓ.

We give colour white to the polygons F and giF , where gi is orientation preserving
and black to the other ones, this coloration does not depends on the representatives
gi since there is a sign + in the signature of Γ and the characterization in 5 of Section
3 (see [8])

In the white regions the order on the sides given by the orientation of FΓ will be
the same that the order on the sides of ∂F but the contrary in the black regions.
Let cij be a canonical reflection generator of ∆ such that ϕ(cij−1)(v) = v and
cij_v be the corresponding reflection generator of Γ. If v corresponds to a white
polygon, the following reflection generator to cij_v will be either cij+1_w or cij_w′ .
The colour of w or w′ is given by the orientation preserving or reversing character
of the transformation in 〈cij , cij+1〉 sending the polygon corresponding to v to the
polygon with label w or w′. Finally if v corresponds to a region black the following
reflection generator to cij_v is cij−1_w or cij_w′ . This justify the method above. �

Example.

Using this method to the example in Section 4 we have that the signature of Γ is:

(2; +; [2, 2, 2, 2, 12, 6]; {(6, 12, 24), (8, 12, 2), (6, 12, 24), (8, 4, 6)})

We resume the computation below:
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Bicolouration: White vertices: 0, 1, black vertices: 2, 3.

Starting reflection generator: c10_1. Path of linked reflections (path with only one
white vertex): c10_1, c11_1, c12_1, c13_1.

• Directed period-cycle: (6, 12, 24).

Starting reflection generator: c10_2 (black vertex, backward direction)

Orbit containing 2 of 〈ϕ(c10) = ϕ(c13), ϕ(c12)〉: {0, 2, 3}. The following reflection
generator is c12_3 (black vertex), period: 24/3 = 8

Orbit containing 3 of 〈ϕ(c12), ϕ(c11)〉: {3}. The following reflection is c11_3 (black
vertex), period: 12

Orbit containing 3 of 〈ϕ(c11), ϕ(c10)〉: {0, 2, 3}. The following reflection is c10_2

(black vertex), period: 6/3 = 2.

• Directed period-cycle (8, 12, 2)

Starting reflection generator c10_1. Path of linked reflections (in a white vertex):
c20_1, c21_1, c22_1, c23_1.

• Directed period-cycle: (6, 12, 24).

and c20_1, c21_1, c22_1, c23_1.

The reflections in the last period are: c20_2 (conjugate to c23_2), c22_3, c21_2.

• The last directed period-cycle is (8, 4, 6)

6. A more complex example

The new algorithm quickly gives the signature of rather complex cases as the ex-
ample that follows, that could not be solved using the original Hoare algorithm:

Let ∆ a group with signature:

(2;−; [4, 4]; {(24, 6, 12), (6, 12, 24)})
with the generators of a canonical presentation:

{a1, a2, x2, x2, e1, e2, e3, c10, c11, c12, c13, c20, c21, c22, c23}

And ϕ : ∆→ Σ{0, 1, ..., 7} defined by:
a1 → (0, 1)(2, 5)(3, 4)(6, 7) a2 → (0, 1)(2, 3)(4, 5)(6, 7)
x1 → (0, 2, 4, 6)(61, 7) x2 → (0, 4)
c10 → (1, 2) c11 → (0, 1)(3, 4) c12 → (0, 1)(2, 3)(6, 7) c13 → (0, 3)
e1 → (0, 2, 4)(1, 3)
c20 → (0, 3)(4, 7) c21 → (1, 2) c22 → (1, 4) c23 → (1, 6)(0, 3)
e2 → (0, 4, 6)(1, 3, 7)

We want to compute Γ = ϕ−1(Stab(0)).

We sumarize our calculations below:

Vertices fixed by reflections (giving reflection generators):

c10 : {0,3,4,5,6,7}, c11 : {2,5,6,7}, c12 : {4,5}, c13 : {1,2,4,5,6,7}, c20 : {1,2,5,6}, c21 :
{0,3,4,5,6,7}, c22 : {0,2,3,5,6,7}, c23 : {2,4,5,7}, c30 : {1,2,5,6}, c31 : {0,3,4,5,6,7},
c32 : {0,2,3,5,6,7}, c33 : {2,4,5,7}
Orbits of dihedral groups:
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ϕ 〈c10, c11〉 = {0, 1, 2}{3, 4}{5}{6}{7}, ϕ 〈c11, c12〉 = {0, 1}{2, 3, 4}{5}{6, 7}, ϕ 〈c12, c13〉 =
{0, 1, 2, 3}{4}{5}{6, 7}
Equivalence from c13_i to c10_j , i→ j : 1→ 3, 2→ 4, 4→ 0, 5→ 5, 6→ 6, 7→
7

Second period-cycle:

ϕ 〈c20, c21〉 = {0, 3}{1, 2}{5}{6}{4, 7}, ϕ 〈c21, c22〉 = {0}{1, 2, 4}{3}{5}{6}{7}, ϕ 〈c22, c23〉 =
{0, 3}{1, 4, 6}{2}{5}{7}
Equivalence from c23_i to c20_j , i→ j : 2→ 2, 4→ 6, 5→ 5, 7→ 1

Bipartition of vertices: {0, 2, 4, 6} white, {1, 3, 5, 7} black.
Applying the Hoare method with the new algorithm for direction of period-cycles we
get (w,b indicates the colour of the vertex and the direction of the scan w(forward),
b(backward)):

c10_0(w), c11_2(w), c12_4(w), c13_4(w) dihedral orders (8, 2, 12, 1).

c10_3(b), c13_1(b), c13_2(w), c10_4(w) dihedral orders (1, 3, 1, 12).

c10_5(b), c13_5(b), c12_5(b), c11_5(b) dihedral orders (1, 12, 6, 24).

c10_6(w), c11_6(w), c11_7(b), c10_7(b), c13_7(b), c13_6(w) dihedral orders (24, 3, 24, 1, 6, 1).

c20_1(b), c23_7(b), c22_7(b), c21_7(b), c21_4(w), c22_2(w), c23_2(w), c20_2(w) dihedral
orders (1, 24, 12, 3, 4, 24, 1, 3).

c20_5(b), c23_5(b), c22_5(b), c21_5(b) dihedral orders (1, 24, 12, 6).

c20_6(w), c21_6(w), c22_6(w), c23_4(w) dihedral orders (6, 12, 8, 1).

c21_0(w), c22_0(w), c22_3(b), c21_3(b) dihedral orders (12, 12, 12, 3).

.

So the signature of Γ is:

(16; +; [2, 4, 4, 2, 4, 4, 4, 4, 4, 4, 6]; {(8, 12, 2), (3, 12), (12, 6, 26),

(24, 3, 24, 6), (24, 12, 3, 4, 24, 3), (24, 12, 6), (6, 12, 8), (12, 12, 12, 3)})
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