5

139989
7 folling plts

Filosofiay C. Educación

$$
\begin{gathered}
\text { K.02001533296 } \\
\text { F.A.059 } \\
\text { V. } 1
\end{gathered}
$$

139989

collections.

To the End of the Year mpcc,
A B R I D G D , A N I)
Difpofed under GENERAL HEADS.

V O L U M E I.
Containing all the
MATHEMATICAL PAPERS.
By $\mathcal{F O H N L O W T H O R P , ~ M . A . ~ a n d ~ F . R . S . ~}$
The FIF THEDITION, Corrected, In which the L A TIN Papers are now firt trainlated into E N G L IS IH.

$$
\mathrm{L} \mathrm{O} \mathrm{~N} D \mathrm{O},
$$

 D. Browne, T. Longman, h. Whitridge, C. Hitch, J. Hodges, S.Austen, R.Manby and H.S.Cox, A.Millar, J. and J. Rivington, and J. Ward.
MDCCXLIX.

$$
\begin{aligned}
& 14.017908,314 \frac{1}{2} \\
& \text { 2VOITD ACMAR } 3
\end{aligned}
$$

wen wno yity to thet odt of
 .

To the Honourable
Sir ISAAC NEWTON, Kt: PRESIDENT;

And to the
COUNCIL and FELLOWS OFTHE
Royal Society of London For the Advancement of
NATURALKNOWLEDGE,

THESE
MATHEMATICAL PAPERS, Abridged and Difpofed under General Heads, Are mof humbly Dedicated, by
Fobn Lowtborp.
-. 2monvam hps ypizuion
"obatel fo mainozatrost
 -i. 24 (1)

THE

P R E F
 AC E.

THE Philofophical Tranfactions baving met with general Applaufe and Encouragement for many Tears, it would be a needlefs Trouble to give any Hiftory of them: 'Tis enough to Say, that many of the Difcourfes were compofed, and all of them collected and publifhed by particular Members of the Royal Society. I Sall therefore employ thefe very few Pages, only to acquaint the Reader with my own Conduct in this Abridgment of them.

When I firft refolved upon this Undertaking, I had two Soris of Readers in view, whom I was defirous to Serve; thofe whe make ufe of Books for their private Inftruction or Entertainment, and thofe who confult them in order to publifh fomething of their own. To a Reader of the former Cla/s, I thonght it Jufficient too give bim the Subfiance of fo many curious Papers, in fuch Order as would beft fuit with the Courfe of thofe Studies that might denominate birn a general Scholar. But, for the Sake of the latter, I bave, in the Margin, given the Title and Author of each, Paper, and directed to the Number and Page of the Trarfactions or Collections, where be may meet weith the Original itfelf. To the former, 1 defggned this Abridgment to be as ufeful as the Volumes at large; andoto ferve the latter, inflead of a not inconvenient Repertorium.: And in the Profecution of this Defign, I bave generally confined inyelf to thefe Rules.
I. I have not only retained the Efential Parts of the Difcourfes, but I have kept in many Places to the very Words of their own Authors, (except where I was forced to vary them a little, to preferve the Connection:) For, I thought it very winvarrantable to obtrude any thing of mine under the Name of another Perfon.
II. But to fhorten the whole Work, wherever I found any Perfonal Addreffes, long and uinneceffary Excurfions, or pompous Citations of Books, I have taken the Liberty to fupprefs them; yet, I hope, without injuring the Force of the Author's Reafoning.

- III. I have omitted all. Accounts and Extracts of Books, wobich now, after formany Years Publication, Seem almof ufelefs: Yet, to put the Readers in mind of them, especially fuck as are about to furnish or enlarge their Libraries, I have added a Catalogue at the End of each Chapter to subich they chiefly belong; and I have aldo directed them to fuck Additions, Emendations, or Refutations, as ought to be confulted, when those Books fall under their Examination.
IV. I have aldo omitted all Heads of Inquiries and Experiments fimply proofed, without farther Profecution; believing that the Anfwers already given to many of them, and other Difcourfes upon the fame, or the like Subjects, will Sufficiently direct the Notice of an Inquifitive Reader.
V. The previous Calculations of Eclipfes, Lunar Appulfes, and Satellite Eclipfes and Occultations; also TideTables, and many other curious Papers of that kind, have long ago outlived the Reafon of their Publication.

V1. All Simple Catalogues of Natural Curiofities (as of Shells, Minerals, Plants, Animals, \mathcal{O}°.) without particular Descriptions of them, are little inftructive: and chiefly

Serve to enlarge the Hiftory of the Mufeum, where they are depofited: Which is no Part of the Defign of theje Volumes.
VII. I bave commonly omitted fuch Papers as bave been collected into juff Volumes by their own Authors. For this Reafon I bave omitted fome of thoje furprizing Microfcopial Difcoveries by the famous M. Leeuwenhoeck : But I farther confefs, I was alfo lefs inclined to infert them bere, becaufe moft of them treat of Subjects not at all convenient (in my Opinion) for common Readers.
VIII. But, to do all the Right I could to the ingenious Authors of thofe Papers, which the Limits of this Abridgment obliged me to omit, I bave, at the End of each Chapter, annexed their Titles, and fometimes a Soort Account of them.

Thefe are the Rules I bave carefully obferved thro' the whole Conduct of this tedious Work: Wherein I bave faithfully aimed at the General Good of all forts of Readers; if I bave failed in the Performance, tis for want of Judgment to do it better : But I am bold to fay, That if a kind Reception of this 乃ball encourage al like Abridgment of the Foreign Philofophical Journals, in the fame or a better Order, it will much facilitate the many Difcoveries fill ready to reward the Labours and Expences of all induftrious Promoters of Natural Knowledge.

(xvi)

Advertifement of the Bookfellers

 210 bis $\mathrm{SN}_{\text {nommeo }}$ divos to briz octs is

THE Pbilafoplicical Tranfactions, fince the Year 1700, having been abridged, and difpofed under General Heads, (after the fame Method with this Work) by Mr. FO NES, and by him publifined in Two Volumes: We thought it would tend to make the whole complete, if the feveral Indices of the Five Volumes were made into One; by which means the Reader will have but one Trouble in feeking any Particular he has occafion for. To the fame Purpofe we have thrown the Contents of the feveral Volumes together, and prefixed them to the Firf.

THE

CONTENTS
 OF

V OL UME the Firft.

C H A P. I.
Geometry, Aritbmetick, Algebra, Logaritbmotechny.
I. 1.

AN Idea of Mathematicks; by Dr. J.Pell Pag. I 2. Confider'd; by Meriennus
3. Anfwer'd; by Dr. Pell
4. To the Satisfaltion of Merfennus
5. The Approbation of Des Cartes
II. Some of Euclid's Propofitions demonfirated independently from the reff; by Mr . Afh
III. The Squaring of the Hyperbola; by the Lord Vijcount Brounker

10
IV. The Quadrature of a Circle; by M. Leibnitz

16
V. 1. Tangents to all Geometrical Curves; by Renatus Fran. Slufius
2. Lemmata whereby the preceding Method is demonftrated; by M.Slufius 22
VI. I. The Teftudo Veliformis Quadrabilis Æenigmatically propos'd; by V.V. 22
2. Solved; by Dr. Wallis 23
3. The Propofer's Solution demonftrated; by Dr. D. Gregory
VII. 1. The Quadrature of the Parts of
the Lunula, by Mr. J. Perks; a litthe varied by Dr. J. Wallis 29
2. Improved by Dr. Gregory ib.
3. By Mr. Cafwel 31
4. By Dr. Wallis ib.
VIII. The Dimenfion of Solids', generated by the Converfion of Hippocrates's Lunula; by M. Ab. de Moivre ib. IX. The Quadrature of a Portion of the Epicycloid; by Mr. Cafwell 33
X. A general Propofition for meafuring all Cycloids and Epicycloids; by Mr. Edm. Halley ib.
XI. 1. A Problem propofed by Mr.J. Bernouilli
2. Solv'd ; by
XII. The Ufe of Fluxions in the Solution of Geometrick Problems ; by Mr. Abr. de Moivre
XIII. 1. The Catena; by Dr. Dav. Gregory

41
2. The Animadverfions of airfwered; by Dr. D. Gregory 53 XIV. The Quadrature of Figures Geometrically Irrational ; by Mr. J. Craig 55

The CONTENTS.

XV. The Quadrature of the Logarithmick Curve; by Mi. J. Craig
XVI. A Quadratrix to tbe Circle, being the Curve deforibed by its equable Evolution; by 60
XiVII. The Dimenfions of a Sphere and Cylinder compar'd; by Dr. Wallis 61 XVIII. Improvements in England, in the Refolution of Equations in Numbers; by Mr. Jo. Collins

63
XIX. 1. The Confruation of Cubic and Biquadratic Equations; by a Parabola and a Circle; by Mr. Edm. Halley
2. The Number of Roots in fuch Equations, with their Limits and Signs; by the fame
XX. The Extraition of all Roots, without any previous Reduction; by Mr. Edm. Halley
XXI. A Metbod of raijing an infinite Multinomiat to any given Power; by M. Ab. de Moivre 96
XXII. The Extration of the Root of ans Infinite Equation ; by M. Abr. de Moivre 101
XXIII. The Docrrine of Exhauftions; by Dr. Wallis 103
XXIV. The Approximation of the Ancients in the Extraction of Roots, improv'd ; by Dr. Wallis 104
XXV. The Proportion of infinite Quantities ; by Mr. Edm. Halley 108
XXVI. Infinitely-infinite Fracions; by Dr. R. Wood 110
XXVII. 1. The Antiquity of the Numeral Figures in England; by Dr. J. Wallis II3
2. By Mr. Tho. Luffkin 114
XXVIII. The Conftrucion of Logarithms; by Mr . Edmund Halley
ib.
XXIX. Papers of lefs general Ufe omitted 122
XXX. Accounts of Books, with Additions, Emendations, \&cc. omittted - 123

C H A P. II.

Trigonometry, Surveying.

> 'AChorographical Problem, propofed by Mr. Richard Townley ; Solved by Mr. J. Collins
> p. 126 II. Three Chorographical Problems; Solv'd by a Member of the Philofophical Society at Oxford
III. An Error of common Surveyors, in comparing Surveys taken at long Intervals of Time, seith the Magnetick Needle, demonftrated by Mr. W. Molineux 131
IV. A nerw Level; by Mr. Butterfield 133 V. An Account of a Bock omitted ib.

C H A P. III.

Opticks.

1. Nerv Theory about Ligbt and Colours; by Mr. If. Newton p. 134
II. 1. Some Experiments propos'd in relation to this Theory; by... 141
2. Obfer-

The $C O N T E N T S$.

2. Obfervations on this Propofal; by Mr. Newton
P. 141
III. The genuine Metbod of examining this Theory; by Mr. Newton 142
IV. 1. Animaduerfions on this Theory; by R. P. Ign. Gafton Pardies 143
3. Anfwer'd by Mr. Newton 146
4. Some farther Objections; by R. P. Pardies

147
4. Anfwer'd by Mr. Newton 148
5. To the Satisfaction of P. Pardies 151
V. Some Confiderations on this Theory; by _ Anfwer'd by Mr. Newton ib.
VI. 1. Some Comiderations upon tbis Doctrine of Colours, from Paris; by 163
2. Anfwer'd by Mr. Newton 164
3. 1 Reply by Mr . N-
4. Anfwer'd by M. Newton
VII. 1. Animadverfions on this Theory of Light and Colours; by Mr. Fr. Linus

168
2. Anfwer'd by $\quad 169$
3. A Reply by Mr. Fr. Linus ib.
4. Anfwer d by Mr. Newton 170
5. The Experiment of Mr. Linus affirm'd; by $M r$. Gafcoign

171
6. Anfwer'd by Mr. Newton
7. Exceptions by Mr. Lucas
8. Anfwer'd by Mr. Newton

172
VIII. An Optical Experiment ; by Mr. Stephen Gray

I79
IX. 1. A Problem of Alhazen, folv'd by Chrift. Huygens
ib.
2. By M. Slufius 180
3. Otberwife ; by M. Slufius 182
4. Olberwife by M. Huygens 185
5. Fartber confider'd; by M. Slufius i ib.
6. By M. Huygens $\quad 187$
7. By M. Slufius

189
X. To find the principal Focus of Optick Glaffes univerfally; by Mr. Edm. Halley

191
XI. 1. The Generation of an Hyperbolical Cylindroid; by Sir Chritt. Wren.

195
2. The Application therenf 10 the Grinding of Hyperbolica! Optick Claffes; by $\operatorname{sir} \mathrm{Ch}$. Wren
XII. Why four Convex Glafies in a Telefcope beew Objecits ereit; by Mr. Willian Molineux 197
XIII. I. The Apertures of Telefcopes; by M. Auzout

199
2. Corfider'd by Dr. Hook ib.
XIV. To meafure Diffances at one Station; by M. Auzout 200
XV. To make a Plane Convex Glafs of a frall Sphere colleit the Rays at a great Diftance; by Dr. Hook ib.
XVI. I. Telefcopes and other Optick Glaffes; by Campani and Divini 201
2. By M. Hevelius and M. Huygens
3. By M. du Sons e ib.
4. By M. Burattini ib.
5. By ML. Francis Smythwick ib.
6. By an Artift at Paris ib.
7. By M. Borelli 202
8. Optick Lens's of Rock Cryftal ; by Euft. Divini 203
9. Of Water; by Mr. Stephen Gray $\begin{array}{r}i b,\end{array}$
XVII. I. The Advantages of Reflexion to Optic Inftruments; by Mr. Newton
2. A new Catadioptrical Telefcope, irvented by Mr. Newton 204
3. Approvid by M. Huygens de Zulichem 206
4. A fartber Account of this Inftrument ; by Mr. Newton 207
5. The A pertures, and Charges of theje Inforuments; by Mr. Newton ib.
XVIII. 1. Some Objections of $\mathrm{M}-$ An$\begin{array}{lr}\text { fruer'd by Mr. Newton } \\ \text { * a } 2 & 209 \\ \text { 2. The }\end{array}$

The CONTENTS.

2. The Confiderations of - Anfwer'd by Mr. Newton
3. Objections by M-

Anfwer'd by Mr. Newton
4. A Reply by M

Anfwer'd ; by Mr. Newton
XIX. I. A Catadioptrical Telefcope ; by M. Caffegrain

212
2. Confider'd ; by Mr. Newton ib.
XX. A Caradioptric Telefcope; by S. Salvetti

213
XXI. I. To make the Picture of any thing appear in a Light Room; by Dr. Hook
2. The Magick Lanthorn improv'd; by Sir Robert Southwell
XXII. A Way to belp Short-fightednefs; by Dr. Hook
XXIII. 1. Microfcopes ; by S. Divini
2. By S. Piet. Salvetti
3. By M. Leeuwenhoeck
4. By Mr. Butterfield
5. By Mr. Stephen Gray $\quad 216$
XXIV. 1. A Water-Microfcope; by $M r$. Stephen Gray ib.
2. Anotber 217
XXV. Microfcopes improv'd; by $M r$. Newton

218
XXVI. r. A Refiecting Microfcope; by Mr. Newton
2. By Mr. Stephen Gray ib.
XXVII. i. A Burning Concave at $\mathrm{L} y-$ ons; made by M. de Villette 219
2. Anotber by the fame 220
3. By S. Settela ib.
4. A Burning Concave in Germany ; by \quad ib.
5. By Dr. Hook 22 I
XXVIII. Concave Specula, nearly of a parabolick Figure; attempted by Mr. Stephen Gray ib. XXIX. To make the Globe LookingGlafs; by Sir Robert Southwell 222 XXX. Papers omitted ib.

ib. | XXX. Papers omitted | |
| :--- | :--- |
| ib. | XXXI. Accounts of Books omitted ib. |

C HAP. IV.
A) ronomy.

1. 1HE Obfervatory of TychoBrahe; by Mr. Gourdon P. 223 11. A nere Aftronomical Inftrument ; by ib. M. Weighelius
III. A Celeftial Globe ; by M. Didier l'Alleman 223
IV. A reay to meafure the Diameters of the Planets, and the Parallax of the Moon ; by Mr. Auzout

224
V. x. An Account of Mr. Gafcoign's Micrometer ; by Mr. Richard Townley

225
2. A Defription of it; by Dr. Hook 226
3. More Ways to meafure fmall Diftances intimated; by Dr. Hook

227
4. The Excellence of the Micrometer; by Mr. Flamfteed ib.
VI. 1. Plain Sights rejected; by Mr. Flamfteed 228
2. Plain Sights preferr'd to Telefcopick ; by M. Hevelius
VII. 1. Wby Celeftial Objects appear greater, when nigh the Horizon, than
when

The CONTENTS.

when bigber elevated; examin'd by Mr . William Molineux $\quad \mathrm{P} .228$ 2. T'bis Phænomenon confider'd; by Dr. Wallis
VIII. An Experiment of the Refraction of the Air; by Mr. Lowthorp 235
1X. To find the Parallax of the Fix'd Stars; by Dr. Wallis 238
X. Concerning the diffance of the Fix'd Stars ; by Mr. Fr. Roberts 240
XI. The Places of the chiefeft Fix'd Stars, according to the beft Ancient, Obfervers ; by Dr. Edward Bernard 241
XII. The Pleiades obferv'd ; by Mr. Flamfteed : 252 XIII. 1. A Nebulous Star; by M. Caffini 254
2. By Mr. Flamfteed ib. XIV. The firft of Aries a double Star; by Dr. Hook
XV. I. Changes among f t the Fix'd Stars; by S. Montanari
ib.
2. By M. Caffini
ib.
3. The New Star in Pectore Cygni; by M. Hevelius
4. 1. The New Star fub Capite Cygni;
2. by M. Hevelius
$i b$.
5. The Nebulofa in the Girdle of Andromeda; by M. Bullialdus 258
6. 1. The New Star in Collo Ceti ; by M. Bullialdus
2. By M. Hevelius
3. By M. Caffini
4. By M. Flamfteed
7. A nerv Star in Eridanus ; by M. Caffini
ib.
8. A new Star in Taurus ; by M. Carfini
ib.
XVI. 1. To find the Aphelia of the Planets
direerly, by M. Caffini ; confider'dly Mr. Nich. Mercator ib.
2. By Mr. Edmund Halley 258
XVII. I. The Obliquity of the Ecliptick, from the Obfervations of the Ancients; by Dr. Ed. Bernard 260
2. The Obliquity of the Ecliptick, and Elevation of the Pole continue unalter'd ; by

263
3. 1. A Juppofed Alteration of the Meridian Line ; by - 265 2. Confiderd by Dr. Wallis ib. XVIII. The Parallax of the Sun; by Mr. Flamfteed 265
XIX. To find the Sun's Ingrefs into the Tropical Signs ; by Mr. Ed. Halley
XX. The Solar Numbers corrected by Mr. J. Flamfteed 269
XXI. 1. Tbe Equality of Natural Days; by _Profeffor of the Mativematicks at Seville

270
2. Refuted by Mr. Flamfteed ib. XXII. An Equation-Table ; by M. Carfini

272
XXIII. Spots obferv'd in the Sun ; by Mr. Boyle

274
XXIV. 1. Spots obsery'd in the Sun; by
M. Picard
ib.
2. By M. Cafini \quad ib.
3. By feveral at London 277
4. By Dr. Hook ib.
5. By Mr. Hen. Siferius ib.
XXV. Spots objervid in the Sun ; by M. Caffini $i b$.
XXVI. I. Spots obferv'd in the Sun ; by Mr. Flamfteed and Mr. Halley 278
2. By M. Caffini , 279
XXVII. Spots obferved in the Sun; by Mr. Flamfteed
XXVIII. To find in what Proportion the Pla.

The CONTENTS.

Planets are enligbtned by the Sun; by M. Auzout
 P. 280
 XXIX. The Aequinoxes; by M. Wurczelbaur

XXXX. To obferve Solar Eclipfes; by Mr. Flamtteed
ib.
XXXI. 1. An Eclipfe of the Sun, June 22, Am2. 1666. at London; by Mr.
d7 Willoughby, Dr. Pope, Dr. Hook, and Mr. Phillips
2. At Paris; by Mr. Payen 281
3.2t Madrid; by the E. of Sandwich ib.
4. At Dantzick ; by Mr. Hevelius ib. XXXII. An Ecliple of the Sun, Fian. 23. (St. N.) 1675. ai Dantzick; by M. Hevelius
XXXIII. I. An Eclipfe of the Sun, fune I, 1676.at Weftmintter; by Mr. Francis Smithwick
2. At Wapping ; by Mr . Colfon 285
3. At Greenwich ; by Mi. Flamfteed ib.
4. Ai Townley; by Mr. Richard Townley

287
5. At Wingfield near Derby; by $M r$. Imman. Halton
6. At Paris ; by M. Caffini
$i b$.
7. At Dantzick; by M. Hevelius $i 8$.
8. At A vignon ; by M. Gallet 289 XXXIV. I. An Eclipfe of the Sun, Fuly 2, 1684, at Greenwich ; by Mr. Flamfteed
2. At Paris ; by M. Bullialdus 292
3. At the Obfervatory ; by M. Caffini
4. By M. de la Hire and Pothenot ib.
5. At the College of Lewis the Great ; by R.P. Fontenay 293
6. At Aix; by Mr. Gautier ib.
7. At Lyons; by R.P. Paule Hofte ib.
8. At the Bay de Rofes ; by M. Chaffelles
9. At Honfleur ; by M. de Glos 294
10. At Pau ; by R.P. Richaud ib.
11. At Avignon ; by R.P. Bonfa ib.
12. At Oxtord; by Dr. Ed. Bernard ib.
13. At Lisbon; by Mr. Jacobs 295
14. In Ireland; by Mr. A Ah and Mr. Malineux
15. At Bononia ; by St. Domin. Gulielmini
ib.
XXXV. 1. An Eclige of the Sun, May I, 168\%, at Oxford 296
2. In divers otber Places ib.
XXXVI. 1. An Eclipre of the Sun, Sept. 3, 1699, at Oxford ; by D. Gregory. 297
2. at Nuremberg ; by M. Wurtzelbaur ib.
3. By otbers 298
XXXVII. Cbanges likely to be difcovered in the Moon ; by M. Auzout 298
XXXVIII. To find the Parallax of the Moon ; by $\quad 300$ XXXIX. I. 1 Metbod for obfereing Lunar Ecliples; by Mr. Rook ib.
2. By M. Ja. Cafmi
XL. An Eclipfe of the Moon, Fuly 27 , (St. N.) 1665 , objerved at Dantzick; by M. Hevelius

305
XLI. An Eclipse of the Moon, June 6, Ann. 1666. by M. Hevelius ib.
XLII. An Eclipfe of the Moon, Sept. 19, Ann. 1670 , by M. Hevelius ib.
XLIII. 1. An Ecliple of the Moon, Sept. 8, 1671, at Ecton; by Mr. Palmer

307
2. At L.ondon; by M. Street ib .
3. By Dr. Hook ib.
4. At Paris ; by M. Bullialdus 308
5. At Dantzick; by M. Hevelius ib.
6. At Hamburgh; by Dr. Fogelius 309 XLIV. 1. An Ecliffe of the Moon, Jan. 1, 1674-5, at London; by Dr. Hook 309 2. $A t$

The CONTENTS.

2. At Derby ; by Mr. Flamiteed ib.
3. At Paris ; byi Mir. Builieldus p. 309
4. At Paris. by M. Cilfini, M. Picard, and M. Rosmer
ib.
5. Al Dantzick ; by M. Hevelius 31 I
6. At Seville; by S... Profeffor of Matkennaticks
XLV. 1. An Eclife of the Moon, fune 27, 1675. at London; by Mr. Flamfteed and Mr. Halley
7. At Paris; by ML. Bullialdus 316
8. By M. Caffini, M. Picard, and M. Roemer
XLVI. 1. An Ecliffe of the Moon, Dec. 22, 1675. al Greenwich; by Mr. Flamfteed
9. At London ; by Mr. Edm. Halley 318
10. Dy Mr. Colfon
ib.
11. At Paris ; by M. Caffini
ib.
12. By M. Bullialdus
13. At Strasburgh ; by M. Richelt 320
14. At Dantzick ; by M. Hevelius ib. XLVII. An Eclivese of the Moon, OEt. 29 (St. N.) 1678. at Paris; by M. Caffini

321
XLVIII. 1. An Eclipfe of the Moon, Aug. 19. m. 168 I . at Greenwich; by Mr. Flamfteed

325
2. At Paris ; by M. Caffini $\quad 326$
3. At Dantzick; by M. Hevelius ib. XLIX. 1. An Eclipfe of the Moon, Feb. 11. 1682. by Mr. Flamfteed, Mr. Halley, and Mr. Haynes 327
2. At Paris and Copenhagen 331
3. At Dantzick ; by M. Hevelius 33^{2} L. An Eclipfe of the Moon, Fune 17. m. 1684. at Greenwich ; by Mr. Flamfteed 335
1.I. 1. An Eclipfe of the Moon, Nov. 30 , (St. N.) 1685. at Dantzick; by M. Hevelius
2. Ai Nuremberg ; by M. G. C. Eimmart

339
3. By M. J. Ph. Wurtzelbaur ib.
4. At Lifbon ; by Mr. Jacobs ib.
LII. An Ecliple of the Moon, Nov. 19. 1686. at Dublin; by Mr. Will. Molineux
LIII. An Eclipfe of the Moon, Apr. 5 , 1688. at Moleua; by M. Timmerman
LIV. i. An Eclipfe of the Moon, Oct. I 9 , at Chefter ; by Mr. Edm. Halley
2. At Rotterdam ; by M. Ja. Cäfini ii.
LV. A Tranfit of the Moon above Venus, OEF.11. (St. N.) 1670, at Dantzick; by M. Hevelius 348
LVI. In Occultation of Saturn by the Moon, June I. (St.N.) 1671, at Dantzick; by M. Hevelius ib. LVII. A Tranjit of the Moon abave Jupiter, Sept. 30, (St. N.) 1671. at Dantzick; by Mr. Hevelius ib.
LVIII. An Occultation of the Pleiades, by the Moon, Feb. 23, 1671-2, at Derby; by Mr. Flamfteed
LIX. The Moon's Place, March 349 1671-2. by M. Caffini 350
LX. An Occultation of a Fix'd Star by the Moon, Feb. 29. (St. N.) 1675, at Paris ; by M. Caffini ib.
LXI. A Tranfit of the Moon above Jupiter, Fib 28 m. 1675-6, at Greenwich ; by Mr. Flamfteed

35 I
LXII. I. An Occultation of Mars by the Moon, Aug. 21, 1676, at Greenwich; by Mr. Flamfteed 35
2. At Oxford ; by Mr. Halley 353 3. At Dantzick; by Mr. Hevelius ib.
LXIII. An Occultation of Saturn by the Moon, Feb. 27 , (St. N.) 1678, at Paris; by M. Bullialdus

354
LXIV. 1. An Occultation of Jupiter, Fune 5, (N.S.) 1679, at Dantzick; by M. Hevelius
ib.
ib.
2. $4 t$

The CONTENTS.

2. AtParis; by M. Caffini \quad P. 355

 LXV. An Occultation of the Bull's-Eye, at Greenwich, Sept. 4, 1680, by Mr. Flamiteed356
IXVI. r. An Occultation of the Bull'sEye at Greenwich, OEt. 28, 1680, by Mi. Flamiteed
ib.
2. At London; by Mr. Halley, and Mr. Haines

357
3. At Ballafore in India; by Mr. Benjamin Harry
LXVII. 1. An Occultation of the Bull'sEye ai Dantzick, Fan. I. (St.N.) 168 r , by M. Hevelius
ib.
2. At Ballafore ; by Mr. Benj. Harry 35^{8}
3. At Avignon ; by Mr. Gallet
LXVIII. A Tranfit of the Moon, below the three fuperior Planets and Regulus, Sept. 27, (St. N.) 1682, at Dantzick ; by M. Hevelius ib.
LXIX. An Occultation of Regulus by the Moon, Feb. It, (St. N.) 1683, at Dantzick ; by M. Hevelius ib.
LXX. An Occultation of two Fix'd Stars by the Moon. and a Tranfit above a Third, Apr. 2. (St. N.) 1683, at Dantzick; by M. Hevelius 359
LXXI. An Occultation of a Fix'd Star, and a Tranfit above anotber, May 2, (St. N.) 168 3, at Dantzick ; by M. Hevelius

360
LXXII. An Occultation of Regulus by tbe Moon, May 4, (St. N.) 1683, at Dantzick ; by M. Hevelius ib.
LXXIII. I An Occultation of Jupiter by the Moon, March 31, 1686, at London; by Dr. Hook, and Mr. Halley
2. At Greenwich ; by Mr. Flamfteed

361
3. Ai Nuremberg; by M. Zimmerman
4. By M. Wurtzelbaur
ib.
ib.
5. At Dantzick ; by M. Hevelius 362
6. At Paris; by M. Caffini 364
7. At Avignon ; by R. P. Bonfa 365
LXXIV. 1. An Occultation of Jupiter by the Moon, April 28, 1686. by Mr. Haines and Mr. Halley ib.
2. At Avignon; by R. P. Bonfa ib.
3. At Dantzick ; by M. Hevelius ib.
LXXV. r. An Occultation of Saturn by the Moon, Marcb 19, 1686-7. at Totteridge ; by Mr.Ed. Haines 366
2. In Ireland; by Dr. Afh, Bp. of Cloyne
ib.
LXXVI, 1. Phafes of Saturn, Ann. 1665. at Maidenhead near Exeter ; by Mr. Wi!!. Ball
ib.
2. Ann.1666, at London; by Dr.Hook ib.
3. Ann. 1668 , at Paris ; by M. Huygens and M. Picart
ib.
4. Ann. 1670 , at Dantzick; by M. Hevelius ib.
5. At Paris; by M. Huygens $\quad 367$
6. At London; by Dr. Hook ib.
7. Ann. 1671 , at Paris ; by M. Caffini
8. By M. Huygens ib.
9. At Dantzick; by M. Hevelius ib.
10. At Derby, by Mr. Flamfteed ib.
11. At Paris; by M. Caffini ib.
12. Ann. 1675, at London; by Mr. Flamfteed ib. 13. At Dantzick; by M. Hevelius ib. 14. An. 1676, at Paris; by M. Caffini 368
LXXVII. I. Places of Saturn obferved, Ann. 1670, at Dantzick ; by M. Hevelius
ib.
2. An. 1677, at Paris; by M. Bullialdus ib.
LXXVIII. The Outermof Satellite of Saturn dijcover'd; by M. Caffini ib.
LXXIX. The Tbird Satellite of Saturn dijcover'd; by M. Caffini
37°

The CONTENTS.

LXXX. The two interior Satellites of Saturn diccover'd ; by M. Caffini 370 LXXXI. M. Huygens's Theory of the Fourth Satellite of Saturn, correetced by Mr. Halley
LXXXII. 1. The Theory of the five Satellites of Saturn ; by M. Caffini 377 2. By.... ib. LXXXIII. The Phafis of Jupiter ; by Dr. Hook
LXXXIV. I. The Revolution of Jupiter upon bis Axis; by S. Campani ib.
2. By Dr. Hook
3. By S. Divini
4. By M. Caffini
$i b$.
ib.
IXXXV. Places of Jupiter obferved by Mr. Flamfteed, at Derby 385 LXXXVI. 1. The Conjunctions of $\mathrm{Sa}-$ turn and Jupiter, Ann. 1682, and 1683. at Greenwich; by Mr. Flamfteed

390
2. At Dantzick ; by M. Hevelius 396 LXXXVII. The Mean Cunjunctions of Saturn and Jupiter ; by Mr. Flamfteed

399
LXXXVIII. I. The Shadows of Jupiter's Satellites obferved; by S. Campani 401
2. By M. Caffini, and otbers ibid.
3. By Dr. Hook 402
LXXXIX. 1. The Elongations of Jupiter's Satellites; by Mr. Flamfteed ibid.
2. An Inftrument for finding the Diftances of Jupiter's Satellites from his Axis ; by Mr. Flamfteed 406 XC. I. Eclipfes and Places of the Satellites of Jupiter obferved at Paris; by....

408
2. At Dantzick ; by M. Hevelius 409
3. Ai Derby; by Mr. Flamfteed ib.
4. At Paris; by M. Caflini 410
XCI. The Equation of the Motion of Light; by M. Romer

410
XCII. 1. The Theory of Jupiter's Satel-

lites ; by M. Caffini

iv.
2. M. Caffini's Tables for the Eclipfes of the firf ℓ Satellite of Jupiter, abridged and reduced to the Meridian of London ; by Mr. Edm. Halley ib.
3. Of the other three Satellites 42 I
4. M. Romer's Equation of Light defended

422
XCIII. The Phafes and Revolution of Mars about bis Axis ; by Dr. Hook 423
XCIV. The Parallax of Mars; by $\stackrel{42}{M} r$. $_{2}$ Flamiteed 424
XCV. I. Places of Mars oblerved at Derby ; by Mr. Flamiteed

$$
i b .
$$

2. $A l$ Dantzick; by M. Hevelius 425
XCVI. I. Spots in Venus ; by M. Burattini

425
2. The Rotation of Venus ; by M. Caffini
XCVII. A Place of Venus, obferv'd at Dantzick; by M. Hevelius 426
XCVIII. Mercury obferv'd in the Sun, 1690. at Nuremburgh ; by M. Jo. Phil. Wortzelbaur 426
XCIX. Mercury obferved in the Sun, Nov. 3, (St. N.) 1627. by M. Caffini 427
C. The Vifible Conjunctions of the inferior Planets with the Sun ; by Mr. Halley
ib.
CI. I. The Motion of the Comet, An.1664. prediz7ed by M. Auzout 436
2. Obferved by M. Auzout 437
3. By fome Englifh Aftronomers ib.
4. The Principles of M. Auzout's Hy pothefis; and the Motion of that Comet obferved by M. Caffini $\quad 437$
CII. 1. The Motion of the Comet, Ann. 1665. prediEted by M. Auzout 43^{8}
2. Obferved by M. Auzout
CIII. 1. A Comet, Ann. 1669 . at Bononia ; by M. Caffini
2. $1 t$ Lfbon; by.... ibid.
3. In Brafil; by P. Valentine Eftancel 439

The CONTENTS.

4. In Africa; by P. Pietro Sufarte 439 CIV. r. A Comet, Am. 167 1-2 at Dantzick; by M. Hevelius
5. At . . . by Mr. Newton
6. Ai Paris ; by M. Caffini
CV. 1. A Comet, Ann. 1677 . at Paris; by M. Caffini
7. At Dantzick ; by M. Hevelius ibid.
8. At Greenwich; by Mr. Flamfteed

445
CVI. A Comet in 1680 , obferv'd at Dantzick ; by M. Hevelius 446 CVII. A Comet, Ann. 1682 , at Dant-
zick ; by M. Hevelius
ib.
CVIII. A Comet, Ann. 1683 , at Dantzick; by the fame 448
CIX. A Comet in 1684, at Rome; by
S. Ciampini

45 I
CX. A Comet in 1686, at Leipfick; by M. Kirck
45^{2} CXI. A Comet 1698-9. at Paris; by M. Caffini
$i b$.
CXII. Papers of lefs general Ufe omitted 453
CXIII. Accounts of Books, and Emendations omitted

454

C H A P. V.
 Mechanicks, Acoufticks.

1. I. $H E \begin{aligned} & H E \text { General Laws of Motion; } \\ & \text { by Dr. Wallis }\end{aligned}$
2. By Sir Chr. Wren

459
3. By M. Huygens
4. Some Hiftorical Paffages relating to the e P Papers; by Mr. Oldenburg 461
II. The Synchronifm of the Vibrations made in a Cycloide ; demonftrated by a Perfon of Quality

463
III. 1. A Problem concerning the Line of the Quickeft Defcent between two Points given; propofed by M. Jo. Bernouilli
2. Solv'd by.
ibid.
3. T'be Demonftration ; by Mr.R. Sault
IV. How much the Defcent is quicker in the Cycloid, tban in a ftraight Line; by... 464 V. 1. Exait Portable Watches ; by M. Huygens

465
2. By Dr. Goth. Guil. Leibnitz ib.
VI. A Clock Afcendant upon an inclined Plain; by M. de Gennes

467
VII. A Clock Defcendant on a Plain inclined ; by $M r$. Maurice Wheeler 468 VIII. The Effects of Gravity in the Defcent of Heavy Bodies, and the Motion of Projects ; by Mr. Halley 471
IX. The Meafure of the Air's Refintance to Bodies moved in it; by Dr. Wallis $4^{8} 3$
X. I. Experiments to determine the PointBlank Diftance, the Charge of Powder, and the beft Size of Guns; propofed by Sir Robert Moray 49 r
2. Experiments for trying the Force of Great Guns; by Mr. Greaves 493
XI. Shooting by the Rarefaction of the Air; by Dr. Papin

494
XII. The Velocity wherewith the Air rufbes into an exhaufted Receiver; by Dr. Papin
XIII. Wind produced by the Fall of Water; by Dr. Walt. Pope 496 XIV. The beft Form of Horizontal Sails for a Mill; by Dr. Rob. Hook ib. XV. 1. An Account of Elying; by the fance
49^{9}
2. The
2. The Art of Flying; by S. Befnier P. 498
3. AFlying Chariot; by Fr. Lana 499 Sberon impracticable; by Dr. Hook ibid.
XVI. An Engine to make Linen Cloth; by M. de Gennes
XVII. Advantages of high Wheels experimented; by a Member of the Oxford Society
XVIII. A new fort of a Calam; defcribed by Sir R. B.

502
XIX. The Contrivance of a perpetual Motion, by ...; explained by Dr. Pa-
pin
And foeron infufficient by bim ibid.
XX. The Speaking-Trumpet improv'd; by J. Conyers

504
XXI. The Swiftnefs of Sounds, and their Reflections, or Echoes; by Mr. Walker
ibid.
XXII. The Doctrine of Sounds; by Narciffus, Bijhop of Ferns and Leighlin

506
XXIII. A Paper of lefs general Ufe omitted

512
XXIV. Accounts of Books and Additions omitted

C H A P. VI.
Hydroftaticks, Hydraulicks.

1. I. 10 weigh Water, and other Fluids; by-.. 514
2. A new A ræometer ; by M. Hom-
II. 1. A nerw Effay Inflrument; by Mr. Boyle
ibid.
3. Fartber confider'd; by... 515
III. The Weight of Water in Water; by
Mr. Boyle
IV. I. The Preffure of Water in great Deptbs; by a Perfon of Honour ibid.
4. By Dr. Oliver

520
V. 1. The Weight of divers Bodies tried by the Direcrion of the Philofophical Society at Oxford

521
2. The Specifick Gravities of feveral Bodies; by the Direction of the Philofophical Society at Oxford 522
3. By Mr. J. C.

V1. The different Weight of feveral Liquors in Winter and Summer; by Mr. Homberg

525
VII. Experiments about the Superficial Figures of Filuids, especially Liquors contiguous to other Liquors, and tbeir reflective Powers: by Mr. Boyle ib. VIII. 1. Why Bodies difolved froim in Menftrua fpecifically lighter tban themfelves; by Mr. W. Molineux 534
2. Confider'd ; by Mr. Tho. Molineux
IX. An Undertaking for raifing of Water ; by Sir Samuel Moreland 536
X. 1. A Siphon, performing the fame thing weith the Sipho Wirtemburgicus; by Mr. J. Davis ibid.
2. By Dr. Papin 537
3. By Dr. Salomon Reifelius bimfelf
XI. 1. A neve Way of raifing Water, A Enigmatically propofed; by Dr. Papin
2. Solved; by Dr. Nath, Vincent ib.

* ${ }^{2} 2$

3. By

The CONTENTS.

3. By Mr. R.A.
4. In a Letter, Julbcrib'd W. Tenon
ib.
5. By Dr. Papin
6. Several Objections made by M. Nuis, anfwer'd by Dr. Papin

542
XII. An Engine for raijing Water by the help of Fire; by Mr. Tho. Savery

543
XIII. An Hydraulique Engine ; by XIV. A cheap Pump; by Mr. Conyers ib. XV. Papers of lefs general Ufe (extraczed from a Book of Jo. Alph. Borellius de Motu Animalium) omitted
XVI Accounts of Books omitted 545 546

C H A P. VII.

Geography, Navigation.

'ANew Place for the firft Meridian; propofed by a Profeflor of the Mathematicks at Seville
II. 1. M. Huygens's Infiructions for finding the Longitude with PendulumWatches; enlarged by - 547
2. The Success of Pendulum-Watches ; by Major Holmes

555
III. I. Longitude from the Moon's Places; by ——Math. Profeffor at Seville 556
2. Confider'd by Mr. Flamfteed ib. IV. Longitudes from Lunar Occultations; by Mr. Halley

557
V. Longitudes by the Revolution of Jupiter upon bis Axis; by M. Caffini ib.
VI. I. Longitudes by the Satellite Eclipfes; by M. Hevelius
ib.
2. By M. Borelli
3. By Mir. Flamfteed
4. By Mr. Halley
ib.
559
V11. The Longitude and Latitude of Derby ; by Mi. Flamfteed
VIII. The Latitude of Eeton
IX. The Longitude and Latitude of Townley
ib.
X. The Latilude of Tredagh in Ireland ib.
XI. The Longitude of Oxford and Dantzick ; by Mr. Halley ib.
XII. 1. The Longitude of Paris; by M. Caffini
ib.
2. Again 56 I
3. By Mr. Flamifteed $\quad 562$
XIII. The Longitude of Strasburgh and Paris; by M. Bullialdus ib.
XIV. The Longitude of Avignon; by Mr. Halley ib.
XV. The Lougitude and Latitude of Several Places in France ib.
XVI. The Longitude of Lisbon; by $M r$. Jacobs
$i b$.
XVII. The Latitude of Madrid; by the Earl of Sandwich XVIII. 1. The Longitude of Seville and Uraniburg; by —— Matb. Profeffor at Seville $\quad 563$
2. By Mr. Flamfteed ib.
XIX. The Longitude of Copenhagen; by M. Picard $\quad 563$
XX. The Longitude of Rome and Uraniburgh ; by $M r$. Flamiteed ib. XXI. 1. The Longitude of Dantzick; by Mr. Halley ib.
2. The Latitude of Dantzick: by M. Hevelius
ib.
XXII.

The CONTENTS.

XXII. The Longitude of Nuremberg; by - P. $5^{6} 3$ XXIII. The Longitude of Mofcua, Leipfick, and Aleppo; by - 564 The Latitude of feveral Places in Ruffia ib.
XXIV. The Latitudes of fome remarkable Places; by Mr. Francis Vernon ib.
XXV. The Latitudes of Conftantinople and Rhodes, directed to A. B. U/her; by Mr. Greaves
ib.
XXVI. The Longitude of the Cape of Good Hope by Mr. Flamiteed
ib. XXVIII. The Longitude and Latitude of Ballafore in India; by Mr. Halley ib.
XXIX. The Longitude of Canton; by M. Caffini XXX. The Longitude and Latitude of Pekin; by Mr. Ja. Caffini ib. XXXI. The Latitude of St. Salvadore 570 XXXII. The Latitude of Bridge-Town ib.
XXXIII. A Defcription of Nova Zembla; by Mr. Nich. Witfon 550 XXXIV. A Map of France; by M. Picard, and M. de la Hire 571 XXXV. What a complete Treatije of Na vigation Bould contain; by Sir W. Petty ib.
XXXVI. The Collection of Secants, and the true Divifion of the Meridian, in the Sea-Chart ; by Dr. Wallis 572
XXXVII. Twe Problems in Navigation propos'd; by Mr. Nich. Mercator 576
XXXVIII. The Analogy of Logarithmick Tangents to the Meridian Line demonftrated ; by Mr. Halley 577 XXXIX. To find the Variation of the Compals at Sea; by — 584 XL. A Caution for obferving the Variation at Sea; by Mr. Edm. Halley 585
XLI. A Caution to Seamen bound up the Englifh Cbannel; by ib. XLII. Papers of lefs general Uje omitted XIII. 586 XLIII. Accounts of Dooks and Emendations omitted ib.

> C H A P. VIII. Arcbitecilure, Sbip-Building.

1. Tones fit for Building ; by II. The Cboice and Cbarges of Slate for cavering Houfes; by Mr. Sam. Coleprefs
III. Tbe beft Time of Felling Timber; by Mr. Rob. Plot
IV. The Difference of Timber in different Countries, and fell'd in diffe-

rent Seafons; by M. Ant. Van Leuwenhoeck
 592

V. 1. The Bridye at St. Efprit in France; by Dr. Tancred Robinfon
2. By Dr. Lifter

593
3. Compar'd with fome otber Bridges; by Dr. Tancred Robinfon ib. VI. A Bridge witbout any Pillar under

The CONTENTS.

it; from the fournal of the Philofophical Society of Oxford
P. 594
VII. An Aqueduct near Verfailles ib.
VIII. A very large Stone Chimney, with a peculiar Sort of Arch-work; by Dr. Wallis
IX. A new kind of Stairs; by M. Weighelius
X. Preferving of Ships from being Worm. eaten ; by - ib. XI. An Account of Lead-Sheathing; by Mr. J. Bulteel

XII. A Paper of lefs general Ufe omitted XIII. Accounts of Books omitted 597
ib.

C H A P. IX.

Perfpective, Sculpture, Painting.

1. A Perfpective Inftrument ; by Sir Chr. Wren
II. A new way of delineating by Parallel Vifual Rays, exactly obferving the Symmetry ; by Mr. St. Clare
III. A Metbod of cafting Statues of extraordinary Thinness ; by Mr. John Weichard Valvafor
IV. A Defcription of fome Simple Colours; by $M r$. Richard Waller 601
V. Io make China Varnifhes; by Dr. William Sherard 602
VI. An Examen of PiEtures propos'd; by M. Colbert 603
VII. Wax-work, and a new Kind of Maps in Low-Relievo, in France; by $-\frac{}{603}$
VIII. To colour Marble ; by ib. IX. An extraordinary Tincture given to a Stone ; by Dr. Salmon Reifel
X. Papersomitted 605
XI. Accounts of Books omitted ib.

> C H A P. X. Of $M u f i c k$.

1. $\begin{aligned} & \text { Fthe Trembling of Confonant } \\ & \text { Strings by Dr. Wallis } 606 \\ & \text { 1I. The Defeets of the Trumpet and } \\ & \text { Trumpet-Marine; by Mr. Francis } \\ & \text { Roberts } \\ & \text { III. The Divifion of the Monochord; by } \\ & \text { Dr. Wallis }\end{aligned}$ 610
IV. The Imperfection of an Organ; by

Dr. J. Wallis 612
V. A nere Tuning of the Lyra-Viol; by S. Salvetti

618
VI. The ftrange Effects reported of Mufick in former Times examin'd; by Dr. Wallis ib.
VII. Accounts of Books omitted 620

THE

C O N TENTS
 OF

V O L U M E the Second.

C H A P. I.
Pbysology, Meteorology, Pneumaticks:

1.HE New Regulation of the Academie des Sciences at Pa ris; by M. Geoffroy
p. 1
11. 1. The Cauje of the prefent Languid State of Philofophy; by M. Leibnitz
ibid.
2. By Dr. J. Wallis

2
III. A deep Cave in the Obfervatory at

Paris ; by M . . . ib.
IV. I. Barometers and Obfervations made with them
2. By Dr. J. Beal ibid.
3. By Dr. J. Wallis

6
4. By Mr. Boyle
5. At Cabo Cors in Guinea; by $M r$. Heathcot
6. In Jamaica; by Sir Will. Beefton
ib.
7. The lorveft Degree of the Barometer ; by the Bijbop of Cloyne
ib.
8. The Agreement of the Barometers at London and Townley; by Mr. Townley
V. A Portable Barometer; by Mr. Will. Derham

10
VI. I. To enlarge the Divifions of the Barometer; by Dr. Hook ib.
2. By 12
3. By Mr. Derham ibid.
4. By Mr. Stephen Gray ib:
VII. I. The Height of the Mercury, atthe Top of Snowden-Hill; by $M r$.Halley
2. Confider'd; by Dr. Wallis 14
VIII. At the $T_{0 \beta}$ of the Monument;Mr. Derhamib.
IX. The Heigbts of the Mercurial Cylinder, at any Eievation above the Surface of the Earth; by Mr. Halley ib.
X. I. The Reafon of the Afcent of the Quickfilver ; by Dr. Litter 18
2. By Mr. Edm. Halley 20
XI. I. The Caufe of the Sufpenfion of the Mercury, at an unufual Heigbt; by M. Huygens

23
2. $B y$

The CONTENTS.

2. By Dr. Wallis

XII. A Slatical Barofoope; by Mr. Boyle 28
XIII. The UJe of Barometers; by .. . 3^{2}
XIV. I. Thermometers and Obfervations made reith them; by Di. J. Beal ib.
2. By Dr. Wallis
ib.
3. A Thermonieter obferv'd at Sea; by Mr. Ja. Cunningham
XV. The Expanfion of Several Fluids, in order to afcertain the Divifions of the Thermometer ; by Mr. Edm, Halley
XVI. 1. Hygrofcopes ; by -.. 3^{6}
2. By Mr. Conyers
3. By Mr. Molineux
4. By Mr. Will. Gould
5. Another; by the fame
XVII. To observe the Strength of Winds; by ... ib.
XVIII. Remarks concerning the gradual Alleration of the Temperature of the Air in America and in Ireland, and Obfervations of the Weatber, Ann. 1675, by $\ldots \quad 42,43$
XIX. To meafure the Quantity of Falling Rain; by Mr. Townley
Obfervations of the Rain for 15 Years
44
XX. A Itifory of the Weather at Oxford, 1684. by Dr. Plot

46
XXI. The Weatber at Cape-Corfe, 1686 , and 1687 , by Mr. J. Hillier 53
XXII. The Rain at Grefham-College, London, in 1695 , and 1696
XXIII. The Weather 1697, at Upminfter in Efiex ; by Mr. Will. Derham
XXIV. The Weatber 1698 , at Upminfter; by Mr . Will. Derham 73
XXV. The Rain 1697, and 1698, at Townley; by Mr. Townley 86
XXVI. The Wealber 1698 , and 1699 , at Emuy in China; by Mr. J. Cun-
ningham ib.
XXVII. The Weatber 1699, at Upmin-
fter; by Mr. Will. Derham
XXVIII. 1. Hurricanes and Storms; by
$M r$. J. Templer 102
2. By the fame 103
3. By Sir George Mackenzy 104
4. By M r. Scarburgh ib.
5. By - .- ib.
XXIX. A Spout at Topfham near Exeter; by Mr. Zach. Maine ib. XXX. I. Prognoficks of the Wind; by Mr. J. Gill 105
2. Prognofticks of Hurricanes; by Capt. Langford
XXXI. An Experiment of the Evaporation of Water; by Mr. Edm. Halley 108
XXXII. The Evaporation of Water in a clofe Room at Grefham-College, 1693, by Mr. Edm. Halley 110
XXXIII. I. The Cbanges of Weather, from the Alterations of the Gravity of the Atmofphere; by Dr. Garden 118
2. By Dr. Wallis 122
XXXIV. The Circulation of Watry Vapours; by Mr. Halley 126 XXXV. The Caufe of Trade-Winds; by Dr.M. Litter 129
XXXVI. 1. The Caufe of Winds, and of the Cbinge of Weatber; by Dr. Garden

129
$\begin{array}{lr}\text { 2. By Mr. Will. Molineux } \\ \text { 3. By Mr. Halley } & 133 \\ \text { ib. }\end{array}$
3. By Mr. Halley
XXXVII. Obfervations on May-Dew; by Mr. Tho. Henfhaw 14 I XXXVIII. I. A kind of Dew like Butter, in Ireland ; by Mr. Rob. Vans 143
2. By tbe Bilbop of Cloyne ib. XXXIX. A Sbower of A/bes in the Archipelago ; by Capt. Will. Badily ib.
XL. A Shower of Ivy-Berries, miftrken for Wheat ; by Mr. Will. Cole 144
XLI. A

The CONTENTS.

XLI. A Shorwer of Fifbes in Kent; by Dr. Rob. Conny
XLII. Hail-fones of an extraordinary Bignefs ; by Dr. Nath. Fairfax
XLIII. Large Hail-fones in Flanders; by...
XLIV. 1. Extraordinary Hail in Wales, Chefhire, E'c. by Mr. Edm. Halley ib.
2. By ...

146 XLV. A Storm of Hail in Hertfordfhire, May 4, 1697, by Mr. Rob. Taylor
XLVI. r. A Storm of Hail in HerefordThire, fune 6, 1697, by ... ib.
2. By Mr. Edw. Llhwyd 148 XLVII. An unufual Sort of Snow ; by Mr. Jo. Chr. Beckman 148
XLVIII. Red Snow near Genoa, com. municated by S. Sarotti
ib.
XLIX. Obfervations on Snow ; by Dr. J. Beal
ibid.
L. The Nature of Snow; by Dr. Nehemiah Grew
LI. 1. A Freezing Rain in Somerfetfhire ; by Dr. J. Beal 150
2. At Oxford; by Dr. Wallis 152
LII. I. The Efferis of Cold in the Northern Countries ؛ by Mr. John Schefferus ib.
2. By Mr. Fehre ib.
LIII. I. The Effects of the Froft, 1683-4, by Mr. Evelyn

153
2. By Mr. Jacob Bobart 155
LIV. To preferve Ice and Sxowe ; by Mr. Ball

161
LV. Cold produced with Sal-Armoniac; by Mr. Boyle

161
LV1. 1. Experiments about Freezing; by S. Carolo Rinaldini $\quad 164$
2. By Dr. Lifter ib.
3. By Mr. Des Mafters $\quad 165$
LVII. Excefive Heats in Poland; by Mr. Fehre
LVIII. The Proportional Heat of the Sun, in all Latitudes; by Mr. Edn. Halley
ib.
LIX. 1. Accidents by Tbunder and Lightning at Oxford; by Dr. Wallis 169 2. In Hampfhire ; by Mr. Tho. Neal

172
3. At Stralfund in Pomerania; by \ldots. ib.
4. At Dantzick ; by Mr. Chr. Kirby 174
5. At Portfmouth ; by ... ib.
6. At Owndle ; by Mr. W. R. 175
7. On board the Suffolk, in the Bay of Bifcay ; by Dr. Oliver
ib.
8. Near Aberdeen in Scotland; by ... ib.
9. At Smyrna ; by Mr. R. Mawgridge
${ }^{176}$
10. In Northamptonfhire ; by Dr . Wallis 177
11. In Yorkfhire, 1698, by Mr.Ralph Thorefby

179
12. In Yorkfhire, 1700 ; by Mr.Ralph Thorefby ib.
LX. I. The Direction of Ship-Compaffes, cbanged with Tbunder and Ligbtning; by... 180
2. By Sir R.S. ib.
LXI. I. A fiery Exbalation, or Damp; by Mr. Maurice Jones $\quad 181$
2. By Mr. Edw. Llhwyd 182
LXII. Fairy-Circles; by Mr. Jeffop ib.
LXIII. 1. The Caufe of Lightning and Thunder ; confider'd by Dr. Litter

182
2. The Caufe of Hail, Lightning and Thunder; confider'd by Dr. Wallis

183
LXIV. I. Halos at Madrid; by the Earl of Sandwich

185
2. At Paris ; by $M . \ldots$ ib.
3. At Dantzick ; by M. Hevelius ib. 4. At Oxford; by Mï. Halleyib. LXV.

The CONTENTS.

LXV. 1. Parhelia obferv'd in France; by M.... 186
2. In Hungary ; by Dr. Edw. Brown ib.
3. At Dantzick ; by M. Hevelius 187
4. At Marienburg in Boruffia; by M. Hevelius
5. In Suffolk ; by M. Petto
ib.
6. At Canterbury ; by Mr. Stephen Gray
\%. At Canterbury ; by Mr. Stephen Gray

188
LXVI. 1. Rainbowes obferv'd in France; by M. Eftienne

188
2. At London; by Mr. Edm. Halley 3. At Chefter; by the fame ib.
LXVII. The Caufes of Halos and Parhelia; confider'd by M. Hugens
LXVIII. Optical Afertions concerning the Rainbow ; by Mr. Fr. Linus 194
LXIX. The Colours and Diameter of the Rainbow, from the given Proportion of Refraction, and the contrary; by Mr. Ed. Halley

195
LXX. A Strange Appearance near Upfal; by Dr. And. Spole
LXXI. An unufual Meteor; by Dr. Wallis

200
LXXII. 1. The Compreffion of Air under Water ; by M.- 201
2. The Calculation; by Mr. - 204
LXXIII. Effects of the varying Weight of the Atmosphere, upon Bodies under Water; by Mr. Rob. Boyle 204 LXXIV. To take exbaufted Receivers away from the Air-Pump; by Mr. Papin

206
LXXV. Seeds fown in the Exbaufted Recaiver; by - 207
LXXVI. Experiments concerning the Relation of Light and Air (in Bining Wood and Fi/h; by Mr. Boyle ib. LXXVII. Pneumatical Experiments; by the fame

215
LXXVIII. Experiments about the weakned Spring, and fome unobferved Effects of the Air ; by the fame 235 LXXIX. Pneumatical Experiments; by M. Papin ; directed by M. Hugens

240
LXXX. A Pneumatical Experiment; by M. Joh. Chr. Sturmius

252

> C H A P. II.
> Hydrology.

1. TO found the Depth of tbe Sea with-
out a Line; by Dr. Hook p. 257
II. To fetch up Water from any Depth; by the fame
III. Directions for obferving Tides; by Sir Rob. Murray $i b$.
IV. 1. Tides obferv'd at London; by Mr. Hen. Phillips $\quad 261$
2. Ry Mr. Flamfteed 26_{3}
3. At Dublin; by Mr. Will. Moly-
4. Nigh Plimouth ; by Mr. Sam. Coleprefs 264
5. In Hong-Road 4 Miles from Briftol; by Capt. Sam. Sturmy
6. At Chepftow ; by

265
7. A Table of the Wafbes in Lincolnfhire ; by Mr. Chr. Merret ib.
8. The Tides in France; by _ib.
9. I. At Bermudas; by Mr. Richard Norwood 268
2. Mr. Mr. Rich. Stafford ib.

The C O NTENTS.

10. At Cabo Cors Cafle, on the Coaft of Guinea; by Mr. Heathcot
V. I. An Hypothefis about the Flux and Reflux of the Sea; by Dr. Wallis ib.
11. Some Objections anfreered; by Dr. Wallis

275
3. The Variety of the Annual Tides, in Several Places of England; confidered by Dr. Wallis

278
4. Animadverfions upon Dr. Wallis's Hypothefis; by Mr. Jof. Childrey

279
5. Anfwer'd; by Dr. Wallis 283
VI. Mr. Newton's Theory of the Tides; explain'd by Mr. Halley 285
VII. Under Currents in the Downs, at the Streights Mouth, and in tbe Baltick; by Dr. Tho. Smith

288
VIII. The Irregular Flux and Reffux of the Euripus ; by F. Jacq. Paul Babin 289
IX. Extraordinary Tides about the Orkneys; communicated by Sir Rob. Moray

290
X. Extraordinary Tides in the Weft Ifles of Scotland; by the fame 291
XI. I. Extraordinary Tides at Tonqueen; by Mr. Fr. Davenport 292
2. A Theory of the Tides at Tonqueen; by Mr. Edm. Halley 295
XII. The differing Gravities of Sea Water, according to the Climates; by

297
XIII. A way to make Sea Water fweet; by Mr . Hauton
ib.
XIV. Sea-Water made frefs; by Dr. Mart. Lifter
ib.
XV. Wells of frefb Water near the Sea, at Bermudas; by Mr. Rich. Norwood

298
XVI. 1. To examine the Frefoness of Water; by Mr. Boyle
ib.
2. By Dr. Hook
XVII. An Ebbing Well in Weftphalia; by 305 XVIII. An Ebbing Well near Torbay ; by Dr . Will. Oliver
ib.
XIX. 1. The Zirchnitzer Sea in Carolina, defcribed by Dr. Brown 306
2. By M. J. Weichard Valvafor 307 XX. The Lake of Geneva; by - 317 XXI. The Lake of Avernus; by Dr. Tankred Robinfon 320 XXII. The Lake of Mexico ; by - ib. XXIII. An Inland Sea near Dantzick, yielding in Summer a poifonous SubAtance; by M. Kirby ib. XXIV. I. Some extraordinary Lakes in Scotland; by Sir George Mackenzy 321
2. By Mr. Ja. Frazer 322 XXV. 1. L ough Neagh in Ireland; by Mr. Will. Molyneux ib.
2. By Mr. Edw. Smith 324
XXVI. Petrifications; by Mr. Boyle 325
XXVII. By Mr. Phi. Packer ib. XX VIII. Petrifying Waters in Scotland; by Sir Rob. Sibbald
ib.
XXIX. The River Greatah, running under Ground; by Mr. Hugh Todd ib.
XXX. A CataraEt in Gottenburgh River ; by Mr. Gourdon
ib.
XXXI. River Water recover'd after Stinking; by —— 3^{26}
XXXII: 1. Inundations in Gafcoigne ; by M. - ib.
2. Some Effects of Vitriolate Waters; by Mr. J. Beaumont 328 XXXIII. An Inundation in Ireland; by Dr. Hook ib.
XXXIV. 1. Inandations in Yorkhire ; by $M r$. R. P. ibid.
2. In Mauricius Ifland; by M. Roel of Diodati

329
XXXV. The Origin of Fountains and

Rivers; by \quad c. \quad ib.

The CONTENTS.

XXXVI. 1. Mineral Springs about Paderborn in Germany ; by - 331
2. At Bafil ; by 332
3. Near Yeoville in Somerfethire; by Dr. J. Beal
ib.
4. On Malvern Hill in Herefordmire; by the fame
ib.
5. At Farrington in Dorfethire ; by Dr. Highmore

333
6. In the Bifhoprick of Durham ; by Mr. Hugh Todd
ib.
7. In Glamorganifire ; by Mr. Aubry ib.
8. At Eglingham in Northumberland; by Dr. Cay
ib.
9. At St. Amand near Tournay ; by M. Geoffroy

334
XXXVII. A Spring that is near frozen; by Dr. J. Beal

335
XXXVIII. 1. The Baths in Somerfetfhire ; by Mr. Jof. Glanville 336
2. By Dr. Pierce 339
XXXIX. Batbs in Auftria and Hungary; by Dr. Ed. Brown
XL. At Uponum near Padua; by $M r$. Dodington

344
XLI. I. Hot Springs and otber Mineral Waters in Jamaica; by Sir W. Beefton
2. By Mr. Robert Tredway
XLII. Obfervations concerning Healing Springs; by Dr. J. Beal ib.
XLIII. Obfervations on Boiling Fountains and Subterraneous Streams; by Dr. Tancred Robinfon 349
XLIV. I. Salt Springs at Hall in Saxony, and at Lunenburg; by - 35 I
2. In Somerfethire ; by Dr. Highmore

351
3. In the Bi/boprick of Durham ; by Mr. Hugh Todd ib. XLV. 1. Salt Springs and Salt-making at Nantwich in Chełhire ; by Dr. Will. Jackfon 352
2. At Droitwich in Worcefterhire; by Dr. Tho. Raftal 35^{6}
XLVI. The Formation of Salt and Sand from Brine ; by Dr. Rob. Plot 360 XLVII. Obfervations on the Midland Salt-Springs; by Dr. Lifter 36r XLVIII. The Way of making Salt in France ; by Dr. 363 XLIX. In Lancafhire ; by Dr. J. Beal 364 L. In Germany ; by _ ib. LI. The Foints of a Girl made fiff by eating Salt ; by —— 365
LII. Papers of lefs General UJe omitted ib. LIII. Accounts, Refutations, and Emendations of Books, omitted
ib.

C H A P. III. Mineralogy.

I. 1. $\begin{aligned} & \text { O break bard Rocks; by M. Du } \\ & \text { Sons } \\ & \text { P. } 367\end{aligned}$
2. By Mr. Beaumont
II. Ookey Hole, and fome other Subterraneous Caverns in Mendip.Hills; by Mr. J. Beaumont
ib.
III. Elden Hole in Derbyfhire; by Dr. Plot

370
IV. I. Pen Park-Hole in Glocefterhire; by Capt. Sturmy ib.
2. By Capt. Collins 371
V. Air in Mines ; by Mr. J. Gill $\quad 372$
VI. Towork in Minos reilbout Air-Shafis; by Sir Rob. Moray ib.
VII. 1. Damps in Mines; by the fame

373

The CONTENTS.

2. By Dr. Ed. Brown
3. By Mr. Jeffop
4. By Mr. Roger Moftyn
5. By Mr. J. Beaumont
VIII. A Well and Earth in Lancalhire, taking Fire at a Candle; by Mr. T. Shirley

382
IX. A Subterraneal Fire in a Coal Mine, near Newcaftle; by Dr. Lucas Hodgefon

383
X. An Eruption of Fire near Fierenzola; by Dr. Rob. St. Clair
XI. An Hiftorical Account of the Eruptions of Mount Ætna; by Mr. Oldenburg

386
XII. An Eruption of Mount 压却, in 1669; by fome Englifh Merchants 387
XIII. I. An Account of Jeveral Burning Mountains in the Molucca Iflands; fent to M. Nich. Witfen; by
2. $B y$

391
3. $B y=$ 392
4. $B y$ 393
5. $B y=$
6. $B y=$
7. By Mr. Nich. Witzen
XIV. I. An Earthquake near Oxford, 1665 ; by Dr. Wallis
2. By Mr. Rob. Boyle
3. By Dr. J. Beal
XV. An Earthquake at Oxford, 1683 ; by Mr . Tho. Pigot
ib.
XVI. An Eartbquake in the Midland Counties, 1683 ; by the fame 400
XVII. I. An Earthquake in Sicily 1692-3; by Mr. Martin Hartop
ib.
2. By P. Aleffandro Burgos

401
3. By the Noble Vincentius Bonajutus
XVIII. An Eartbquake at Lima, 1687 ; by P. Alvarez de Toledo
\qquad
\square
\square tavia ; Sent to Mr. Nich. Witzen; by ... ib. XXII. The Caufe of Eartbquakes and Vulcano's ; by Dr. Mart. Lifter 420
XXIII. Subterraneous Oaks in SomerfetPhire ; by Dr. J. Beal 4! 3 XXIV. Wood found under Ground in LincolnThire ; by - ib. XXV. Foffile Wood near York; by Dr. Richardfon
ib.
XXVI. Foffile Wood in Craven ; by Dr. M. Lifter 424 XXVII. Wood found in Stone; by Mr. J. Beaumont 425
XXViII. Foffile Sbells in Italy ; by S. Manfredus Septalius ib. XXIX. Fofile Sbells in France ; by M. de Martel ib. XXX. Foffile Sbells in feveral Places in England; by Mr. M. Lifter ib. XXXI. Foffile Sbells in Kent ; by Dr. Griff. Hatley 426
XXXII. Foffile Sbells in Berkfhire; by Dr. Ja. Brewer 427
XXXIII. Foffils, Sbells and Fibhes in Lincolnfhire ; by Mr. Abr. de la Pryme 428
XXXIV. Gloffopetræ; by Dr. Lifter 43 r XXXV. The Foffile Tongue of a Paftinaca Mariana; by Dr. HansSloane ib. XXXVI. Horns of an American Deer, found

The CONTENTS.

> found under Ground, in Ireland ; by Dr. Tho. Molineux
XXXVII. An Elephant found under Ground near Erfurt in Germany; by Wilh. Ern. Tentzelius
43^{8}
XXXVIII. Mineral Maps; by Dr. M. Lifter
XXXIX. Schemes of Sand and Clay; by the fame ibid. XL. A Sand-Flood at Downham in Suffolk ; by Mr. Tho. Wright 455
XLI. An Hungarian Bolus; by 457
XLII. The Soap Earth from Smyrna; by Dr. Edw. Smith ib. XLIII. The Ufe of the Turkifb Rufma; by Mr . Smith 45^{8}
XLIV. Coal-Mines in Somerfethire; by Mr. J. Beaumont
ib.
XLV. 1. A Subterraneous Fungus; by Mr. Jeffop

458
2. By Dr. Lifter
XLVI. A Mineral Fuice; by Dr. Lifter
ib.
XLVII. A blacki/s Stone in Shrophire, yielding Pitch, Tar, and Oil; by Mr. Martin Ele ib.
XLVIII. A Mineral Balfam in Alfatia; by

460 XLIX. A Mineral Balfam near Italy ; by S. M. Antonia Caftagna ib.
L. Ofteocolla about Frankfort on the Oder ; by John Chrift. Beckman 46 I
LI. Black-Lead ; by Dr. Plot

462
LII. Irifh Slate; by —— ib.
LIII. Cbalk, and fome otber Bodies, not properly Stones, though commonly reputed $f o$; by Dr. Fred. Slare ib.
LIV. Injeerfeet Stones in Scotland; by Dr. George Garden $\quad 463$ LV. A Stone-Quarry near Maeftricht; by.... ib. LVI. Quarries and Rocks in Auftria and

Hungary, E'c. by Dr. Edw. Brown 464
LVII. White Marble in Ireland; By Dr. Afh, Bijbop of Cloyne
ib.
LVIII. Stones growing at the end of a $R u / b ;$ by Sir R. Redding ib. LIX. I. The Icy Mountain Gletfcher; by M. Muraltus
2. By . . . to M. Juftel ib.
LX. The Formation of Cryftals; by P. Francifco Lana ib.
LXI. An odd figur'd Iris; by Dr. Lifter 466
LXII. Tranfparent Pebbles; by Dr. Litter ib.
LXIII. 1. Diamonds; bv... 467
2. By the Earl Marßal of England ibid.
LXIV. 1. The Produciion of Amber; by M. Jo. Shefferus ib.
2. By M. Hevelius ib.
3. An Account of Anber ; by M. Phil. Jac. Hartman 473
LXV. An odd fort of Amber; by M. Hevelius
LXVI. White Amber ; by M. Kirkby 494
LXVII. The Electrical Power of Stones in relation to Vegetable Rofin; by Dr. Lifter
ib.
LXVIII. A Catalogue of Electrical Bodies; by Dr. Rob. Plot
ib.
LXIX. I. Ambergreece, a Vegetable Production; by.... communicated by Mr. Boyle

495
2. An Animal Produstion; by Mr. Robert Tredway ib.
LXX. 1. The Production of Coral ; by

> S. Paulo Buccone ib.
2. By M. Guifony 496
LXXI. 1. Trochitæ and Entrochi defcri-
bed; by Dr. Lifter ib.
2. By Mr. Ray 500
3. By Mr. J. Beaumont ib. LXXII.
LXXII. 1. The Aftroites ; by Dr. Lifter 506
2. By Mr. Ray

508 LXXIII. Lapides Juctaici ; by Dr. Li fter ib. LXXIV. r. Virtues of the OAtracites ; by Dr. Cay
2. By Dr. Lifter ib.
2. BV 1. Several regularly Figur'd Stones by Mr. Edw. L.hwyd ib.
2. By Dr. Sloan

514
LXXVI. I. The Giants Cauferway in Ireland; by Sir Rich. Buckley
2. By Dr. Sam. Foley
ib.
3. By Dr. Tho. Molyneux 516
4. A furtber Account of the Giants Cauferray ; by the fame

518
LXXVII. The Growth of Spar, and the Formation of Rock Plants; by Mr. J. Beaumont

522
LXXVIII. A Rock of Natural Salt in Chefhire ; by Mr . Adam Martindale

526
LXXIX. The Salt-mines in Tranfilvania and Hungary ; by Dr. Brown ib. LXXX. Sal-Gemme Mines in Poland; by... 527 LXXXI. I. The Nitron of Egypt, and the Nitrian Water examin'd; by Dr. Charles Leigh

529
2. The Original of the Nitre of Egypt; bv Dr. Lifter 532 LXXXII. The Pyrites and Lapis Calcarius confider'd; by Dr. Tancred Robinfon

533
1.XXXIII. The Spontaneous Firing of the Pyrites, by Dr. Fred. Slare ib. LXXXIV. A Mineral at Liege, yielding Brimfone and Vitriol; by Sir R. Moray
ib.
LXXXV. 1. Sulpbar, Vïtricl, Allum and. Minium, from a Slone in Sweden; by Sir Gilb. Talbot
2. The fame in England ; by... ib. LXXXVI. Grcen Copperas Works; by

Mr. Daniel̂ Colwal
535
LXXXVII. Oil of Vitriol increafing in WVeight; by Dr. William Gould
I XXXVIII. Wbite Vitriol ; by Dr. Lifter
LXXXIX. Allum Works; by Mr. Dan. Colwal 54 I
XC. Experiments about Vitriol, Sulpbur, and Allum; by ... 544
XCI. The Efforefcence of cerlain Mineral Globes; by Dr. Lifter 551
XCII. I. Amianthus; by ... ib.
2. By Mr. Edw. Lloyd 552
XCIII. 1. Incombuftible Clotb; by Mr. Nic. Waite ib.
2. By.... 553
3. By Dr. Rob. Plot ib.
XCIV. Lapis Calaminaris; by Mr. Giles Pooley 557
XCV. I. To vitrify Antimony ruith Carwk; by Dr. Lifter

558
2. The Virtue of Antimony; by
XCVI. A black Bining Sand from Virginia examin'd by Dr. All. Moulen ib.
XCVII. A black Sand from Italy; by $M r$. Butterfield $\quad 560$
XCVIII. To make Metal run fmooth and clofe ; by at Frankfort, on the Maine ib.
XCIX. 1. Iron Works in Glocefter hire ; 3y Mr. Hen. Powle

561
2. In Lancafhire ; by Mr. JohnSturdy

562
3. By Dr. Lifter

563
C. The true way of making Steel; by Dr. M. Lifter ib.
CI. 1. Copper-Mines in Hungary ; by Dr Edw. Brown 565
2. In Lanca hire and Cumberland; by Mr. Dav. Davies to Dr. Litter 566
3. By.... to the fame ib. cII.

The CONTENTS.

CII. To make Brafs ; by Mr. Tho. Povey 568
CIII. 1. The Tin Mines in Devon and Cornwall ; by ... ib.
2. By Dr. Ch. Merret 575
CIV. 1. Lead Mines in Somerfethire; by Mr. Jof. Glanvill 576
2. A farther Account; by the fame

577
3. In Germany ; by ...

579
CV. The poijonous Quality of Lead-Ore; by Mr. J. Beaumont
CVI. The way of making Cerufs; by Sir Philiberto Vernatti ib.
CVII. I. The Quickfilver Mines in Friuli; by Dr. Walter Pope
2. By Dr. Edw. Brown
CVIII. Mercury found in Plants; by S. Manfred Septalius
CIX. T'be Incalefcence of Mercury with Gold; by B. R.
CX. The Silver-Mines in Hungary ; by Dr. Edw. Brown 586
CXI. The Gold Mines in Hungary; by the fame

588
CXII. The extreme Ducility and exceeding Minutenefs of the Confituent Parts of Gold; by Mr. Edm. Halley 590 CXIII. 1. A Mineral iike Leaf Gold near Mexico; by an Englifh Gentleman at Seville 591
2. The Ufe of Mercury in Separating Silver from the Ore; by the Jame Englifh Gentleman 592
CXIV. The Art of Refining; by Dr. Chrift. Merret 594
CXV. Experiments of Refining Gold with Antimony ; by Dr. Jonathan Goddard

598
CXVI.P apers of lefs general Ufe omitted 602 CXVII. Accounts of Books omitted ib.

C H A P. IV.
 Magneticks.

1. 2. Oadtone found in DevonThire;

Lby Dr. Edw. Cotton p. 604
2. By Mr. J. Beaumont
ib.
II. 1. 2. Magnetical Obfervations; by

3. By Mr. Sellers

4. By Mr. Samuel Coleprefs
III. The Refpect of the Needle to a Piece of Iron, beld Perpendicular, in Several Climates; by... 605
IV. 1. The Polarity of Iron; by $M r$. J. C.
5. By Mr. Ballard
V. The Declination of the Needle obferv'd;
by Mr. Ja. Cùnningham 610
VI. I. Magnetical Variations, near Bri-
ftol ; by Capt. Sam. Sturmy ib.
6. At Paris; by Mr. Petit ib.
VII. Magnetical Variations preditted; by Mr. Hen. Bond 613
VIII. A Theory of the Magnetical Variations by Mr. Edm. Halley

The CONTENTS.

1X. 1. An invariaible Compats; by M. $\begin{aligned} & 623 \\ & \text { de la Hire }\end{aligned}$ 2. The Principle examined; by $\quad 625$
X. An Account of a Book omitted $\quad 626$

CHAP. V.

Botany, Agricullure.

1. T_{O} preferve the Specimens of Plants; by Sir Robert Southwell p. 626
II. I. An odd kind of Mußfroom; by Dr. Lifter
2. By Mr. Ray

627
3. Another fort of Mu/broom; by Dr. Lifter
ib.
III. The Flowers and Seeds of Muflorooms; by the fame
ib.
IV. Trufles ; by Dr. Tancred Robinfon ib.
V. A firange fort of Rye in France; by
VI. To make Malt; by Sir Robert Moray
VII. I. The Granaries in London; Dr. Merret
2. At Zurich ; by Dr. Pell
3. At Dantzick and Mufcovy ; by
VIII. I. Turnip and Potato Bread; by Dr. Beal ib.
2. Turnip-Bread; by Mr.Sam. Dale ibid.
IX. The Culture of Maize; by Mr. Winthorp

633
X. I. Improvements to be made by Maize ; by Sir Richard Buckley
2. Confider'd ; by Mr. Ray 638
XI. An extraordinary Spirit of Sugar; by Dr. Lucas Hodgefon ib.
XII. The Culture of Saffron; by Mr. Chr. Howard

638
XIII. Melons order'd ; by M. de la Quintiny XIV. S. Dog-Mercury ; by Mr. T. M. 643

2. By Dr. Sloan
ib.
XV. Hemlock; by Dr. Nath. Wood ib. XVI. 1. A Poifonoss Root like Hemlock; by the faine 644
3. By Mr. J. Ray ib. XVII. 1. Hemlock Water-Droproort; by Mr. Fr. Vaughan ib.
4. By Mr. Ray

645 XVIII. The Horned Poppy; by Mr. James Newton ib. XIX. The Helmontian Laudanum; by Mr. Boyle
ib.
XX. The UJe of Opium among the Turks; by Dr. Edw. Smith $\quad 646$ XXI. Mackenboy; by the Bi/bop of Cloyne 647 XXII. Tbe Snake-Root ; by Mr. Banifter ib.
XXIII. Devils-bit; by Sir Tho. Mayerne 648 XXIV. Alcanna; by ib. XXV. Aloe-Americana; by Dr. Merret ib. XXVI. The Tartarian Lamb; by Dr. Hans Sloan

649 XXVII. A fort of Seeds which clarify Water; by the fame ib.

* d
XXVIII.

The CONTENTS.

XXVIII. The true Amomum, or Tugus of the Philippine Ines; by P. G. Camelli
XXIX. The Ahmelia from Ceylon; by Dr. Hotton

651
XXX. 1. Nux Pepita, or Faba Sancti Ignatii ; by Dr. Sloan
2. $B y$
3. By P. Geo. Camelli
4. By Dr. Hotton

XXXI Cberries rave 55 . Cbur bri Mis 65 weithered; by Dr. Chr. Merret 656 XXXII. 1. The Sorbus Pyriformis ; by Mr. Edm. Pitt
2. $B y-\quad$ ib.
XXXIII. A Double Pear; by - ib.
XXXIV. An unufial Way of Propagating Mulberry Trees, in Virginia, for the Silk-Work; by ib.
XXXV. Cboice of Firuit-Trees, for fpeedy Propagation and pleafant Liquor; by Dr. J. Beal

657
XXXVI. An eafy way of raiing Fruit Trees, by Mr. Lewis
XXXVII. 1. The beft Seafon of Iranf planting; by Mr. Rich. Reed ibid.
2. By Dr. J. Beal
XXXVIII. Blofoms do not fortbrevith difcover a Blaft; by the fame
XXXIX. 1. Cider; by Mr. Richard Reed
2. An excellent Drink from Apples and Mulberries; by Mr. Sam. Coleprefs 660
XL. Vines; by Mr. J. Templer ib. XLI. To make Mufcadine-Wine; by M. de Martel ibid.
XLII. The Way of making Vinegar in France; by ib.
XLIII. Orange.Irees; by... 661
XLIV. 1. One individual Fruit, balf Orange and balf Lemon; by $\quad \mathrm{ib}$.
2. By Mr. -
ib.
3. By Pet. Natus

662
XLV. An Account of the Coffee Sbrub; by Dr. H. Sloan ibid. XLVI. An Account of Coffee; by Mr. J. Houghton $\quad 66_{3}$
XLVII. The Cacao-Tree; by - 665
XLVIII. The Jamaica Pepper-Tree; by Dr. Sloan 666
XLIX. Cinnamon and Milium; by M. J. 668
L. The wild Cinnamon Tree; by Dr. H. Sloan ibid.
LI. The true Cortex Winteranus ; by the fame

669
LII. An Account of the Propagation of Elms from Seed; by Sir Rich. Buckley

671
LIII. A fort of Sugar from Maple; by
ibid.
LIV. Oak prepared for Tanning; by Mr. Ch. Howard of Norfolk ib. LV. A Dwarf-Oak from New England; by Mr. Fr. Willoughby $\quad 672$ LVI. The Way of making Pitch, Tar, Rozin, and Turpentine; by Mr. Tho. Bennet ibid. LVII. A fort of Miffeltoc in Jamaica; by Dr. H. Sloan : ib.
LVIII. The Silver-Pine, from the Cape of Good Hope ; by the fame 675 LIX. Anotber Corniferous Tree from the Cape of Good Hope; by the Same ib. LX. 1. Obfervations and Experiments concerning Vegetation and the running of Sap; by Dr. J. Beal, and Dr.E. Tonge 676
2. By Mr. Willoughby, and Mr. Ray 685
3. By Dr. Lifter

689
LXI. T'be Circulation of Sap; by the fame 692
LXII. I. The Defcent of Sat in Winter; by Mr. Rich. Reed
2. By Dr. J. Beal 693
LXIII.

The CONTENTS.

LXIII. I. Veins in Plants, obferved by Dr. M. Lifter
2. By Dr. Wallis

694
699
LXIV. The Nature and Differences of the Fuices of Plants ; by Dr. Lifter
ib.
LXV. Herbs of the fame Make and Clafs, for the Generality bave the fame Virtue; by Mr. Ja. Petiver

707
LXVI. The Separated Bark of a Tree, reunited to the Tree; by Dr. Cha. Merret

709
LXVII. Obfervations concerning the Barking of Trees; by \mathcal{S}. Malpighi
LXVIII. 1. Experiments of the Barking of Trees; by Mr. Tho. Brotherton 710 2. By R. H.
LXIX. The Communication of the Parts of the Tree, with the Parts of the Fruit ; by Dr. J. Beal

713
LXX. Obfervations concerning Vegetation; by the fame

715
LXXI. Some Thougbts and Experiments concerning Vegetation ; by Dr. J. Woodward 716
LXXII. Ground Fertiliz'd by Froft; by Dr. J. Beal

731
LXXIII. Ground improv'd by Brine; by Dr. Jackfon
ib.
LXXIV. Improvements with Salt; by Dr. J. Beal
ib.
LXXV. Improvements in Cornwal, with Sea-Sand ; by Dr. Dan. Cox
LXXVI. A fandy Soil manured with Clay; by Dr. Lifter
LXXVII. Improvements by Marling; by Mr. Tho. Wright
ibid.
LXXVIII. Improving and draining the Bogs and Lougbs in Ireland ; by Mr. William King

735
LXXIX. 1. The Motion of a Bog in Ireland; by 740
2. By Mr. Hohohane 742
LXXX. The Spanin Sembrador, and its Ufes; by the Earl of Sandwich ib.
LXXXI. Agrefick Oljervations and Improvements; by Dr. J. Beal 744
LXXXII. Improvements of Agriculture; by Dr. M. Lifter 751
LXXXIII. To make Plants grow to an extraordinary bignefs; by M -
LXXXIV. Gardening improved ; by ${ }^{752}$ Sloan ib.
LXXXV. The Success of a New Stove; by Sir Dudly Cullum

753
LXXXVI. To make Fruit and Flowers grow in Winter ; by Sir Rob. Southwell
ib.
LXXXV II. To keep Fruit or Flowers the whole Year; by the fame ib. LXXXVIII. Remedies for decayed EverGreens; by Mr. J. Evelyn 754 LXXXIX. Cautions about expofing EverGreens; by Mr. Jac. Bobart ib. XC. Papers of lefs general Ufe omitted 755 XCI. Accounts of Books and Additions omitted

C HAP. VI.

Zoology.
1.

0Rfervations in the ordering of SilkWorms ; by Mr. Edward Digges
p. 759
II. The Natures and qualities of Silk; by Mr. Will. Aglionby

* d_{2}
III. The
III. The Connaught Worm; by Mr. William Molineux 761
IV. The true Origin of Caterpillars; by Dr. Geo, Garden $\quad 762$
V. Objervations on a Glowe.Worm; by Mr. J. Templer
VI. The Flying Glorv-Worm; by Mr. Rich. Waller
VII. An odd fort of Maggots; by Dr. Litter

766
VIII. Swarms of firange and micikicvous Injeris in New-England; by -u ibid.
IX. The Libella; by M. Poupart ib. X. Of fpontanecus Gencration; by $M r$. Ray
XI. 1. The Grain of Kermes, its UJe, and the Fly form'd out of it ; by Mr. Verney
ib.
2. The Infeit Husks of the Kermes-Kind; by Dr. M. Lifter

769
XII. Obfervations on Vegetable Excrefcencies, and Infects generated in them; by the fame

771
XIII. The Gall-Bee ; by Mr. Benj. Allen

772
XIV. 1. Ichneumon Wafps, and the manner of laying their Eggs in the Bodies of Caterpillars ; by Mr.Fr. Willoughby
2. By Dr. Lifter
XV. Hair-Worms; by the fame

773
XVI. Some Obfervations about Bees; by Dr. Geo. Garden

775
XVII. 1. The Generation of a fort of Bees, in old Willows; by Sir Edm. King ibid.
2. By Mr. Fr. Willoughby

776
3. By Dr. Lifter
4. By Mr. Fr. Willoughby
XVIII. A Arange fort of Bees in the

Welt-Indies; by M. Villermont
778
XIX. An early Swarm of Bees; by Mr.
XX. A Bee-houfe ufed in Scotland; by Mr. H. Oldenburgh ib. XXI. Swarms of Locufts in Wales; by Mr. Edw. Floyd $\quad 780$ XXII. Green Worms in Wales; by the fame 781
XXIII. Swarms of Beetles in Ireland; by Dr. Tho. Molyneux ib. XXIV. The Vafa Tefticularia of a Beetle ; by Dr. Swammerdam $\quad 785$ XXV. A Flying Hart; by - ib. XXVI. A Musk-fcented Infect feeding upon Henbane ; by Dr. Lifter 786
XXVII. 1. Otber Musk-fiented Infects; by Mr. J. Ray ib.
2. By Dr. M. Litter ib.
XXVIII. 1. The Cochineel-Fly; by $\frac{-}{787}$
2. $B y$ - 788
3. Figures of the Cochineel-Fly; by Dr. Tyfon
ib.
XXIX. The Death-Watch; by Mr. Benj. Allen ib.
XXX. I. The Mufca Lupus in Virginia ; by M. J. Banifter

789
2. A Note; by ib.
XXXI. A Viviparous Fly; by Dr. M. Lifter

790
XXXII. 1. A kind of Worms eating out Stones; by M. de la Voye ib.
2. Another fort eating Mortar 791
XXXIII. A Scolopendra; by Mr. J. Kay ib.
XXXIV. A Swarm of Flying Grafloppers in Languedoc; by - communi. cated by M. Juftel ib. XXXV. The Generation of Fleas; by S. Diacincto Ceftone ib. XXXVI. The Emmet or Ant; by Sir Edm. King 79^{2}
XXX VII. I. The Aid Tuice of Pijmires; by Mr. J. Ray

794
2. Another

The CONTENTS.

2. Another Inject yielding an Acid fuice; by Dr. M. Litter 795 XXXVIII. Mufk-fcented Ants; by the fame
XXXIX. A Table of Spiders found in England; by the fame 796
XL. 1. Spiders darting their Thbreads into the Air and froinming in it ; by the fame

797
2. By. Dr. Hulfe 798
3. By Mr. J. Ray 799
4. By... ib.
5. By Dr. Lifter
ib.
XLI. The Innoxioufness of Spiders and Toads; by Dr. Nath. Fairfax 800
XLII. Spiders tinge Water of a Sky-colour; by Dr. Fairfax
ib.
XLIII. The Anatomy of a Rattle-Snake; by Dr. Edw. Tyfon
ib.
XLIV. A Way of killing Rattle-Snakes; by Cap. Silas Taylor
XLV. The breeding of Snakes and Vipers; by ib.
XLVI. Experiments made with Vipers; by Mr. Tho. Platt
XLVII. The Symptoms attending the Bite of a Serpent; by Mr. Aar. Goodyear

816
XLVIII. A Stone bealing the biting of a Serpent ; by Sir Philiberto Vernatti 817
XLIX. Obfervations on Jeveral Poijons; by Sir Theod. de Mayern
ib.
L. A Salamander; by Steno 819
LI. Obfervations on a Camelion; by Dr. Jonath. Goddard
LII. Oifervations about the Lumgs of Frogs; by S. Malpighi 820
LIII. The Production of Tadpoles; by Mr. Rich. Waller

821
LIV. The Stomach of a Lecch; by Dr. Edw. Tyfon 822
LV. The Anatomy of a Leech; by M. Fran. Poupart
ib.
L.VI. An extraordinary Leech which tor-
ments the Szuord-Fi/b; by S. Paulo Boccone 824
LVII. The odd Turn of fome Sbell Snails; by Dr. M. Lifter 825
LVIII. 1. Some fort of Virginian Snails; by Mr . J. Banifter ib.

$$
\text { 2. By Dr. Lifter } 826
$$

3. By Mr. J. Banitter ib.
LIX. Tbe Purple-Fifs; by Mr. Will. Cole ib.
LX. Obfervations on a Tortoije; by Sir Geo. Ent. 828
LXI. A Tortoife living tbree Days without a Head; by M. .. 829
LXII. 1. A fort of Oyfters in Eaft-India; by M. Witzen
ib.
4. By Dr. Lifter ib.
LXIII. Sbining Worms in Oyfers; by M. Auzout ib .
LXIV. The Origin of Pearl; by Mr. Chriftophorus Sandius 830
LXXV. Pearl-Fifbing in Ireland; by Sir Rob. Redding

831
LXVI. The Anatomy of a Scallop; by Dr. M. Lifter 833
LXVII. A fort of Cockles in Eaft-India; by M. Witzen 834
LXVIII. Stones in the Heads of Crarvfilib; by Mr. Ch. King 835
LXIX. Cancelli, or Soldiers; by Mr. Will. Cole
ib.
LXX. 1. A Stellar-Fijb; by Mr. Winthorp
ib.
2. By 836
3. By Mr. Fran. Willoughby 837
LXXI. 1. A Scolopendra Marina; by Dr. Tho. Molyneux ib.
2. By Mr. Dale 839
3. By Dr. Molyneux ib.
LXXII. A Way of catcioing Carps; by Mr. J. Templer 840
LXXIII. Eels dijcovered plentifully in Frofts, in Somerfethire; by Dr. J. Beal

1 XXIV

The CONTENTS.

LXXIV. Two very large Eels; by Mr. Dale
ib.
LXXV. 1. The Generation of Eles; by Mr. Benj. Allen

841
2. By Mr. Dale
ib.
LXXVI. Objervations on the Anatomy of a Porpefs ; by Mr. J. Ray 842
LXXVII. A venomous Scratch with the Tooth of a Porpefs; by Dr. Lifter 845
LXXVIII. Poijonous Fi/b about the $\mathrm{Ba}-$ hania Iflands; by Mr. J. L. 846
LXXIX. 1. Whales and Whale-Fiffing about Bermudas; By.... ib.
2. By....
3. By Mr. Richard Norwood 848
4. By Mr. Richard Stafford ib.
LXXX. 1. The Uje of Air-Bladders in Fifbes; by...
2. By Mr. Boyle ib.
3. By Mr. Ray
LXXXI. The Eyes of Firb; by Dr. Allen Moulen
LXXXII. The Structure of the internal Parts of Filh ; by Dr. Ch. Prefton 851
LXXXIII. The Wild Goofe; by Dr. M. Lifter

852
LXXXIV. The Barnacle; by Sir Rob. Murray

853
LXXXV. I. The Scotch Barnacle and French Macreufe; by Dr. Tancred Robinfon
2. The Macreufe; by Mr. Ray 854 LXXXVI. The manner of batcbing Cbickens at Cairo; by Mr. J. Graves 855
LXXXVII. To breed up Pbeafants and Partridges; by Sir Edm. King 856 LXXXVIII. I. Swallows found in Lakes in Winter; by Mr. J. Shefferus ib.
2. By M. Hevelius
I.XXXIX. The Rail; by Dr. Tho. Molineux

857
XC. The Wood-craker; by Mr. Ray XCI. The Silk-Tail ; by Dr. Lifter ib.
XCII. 1. The Humming-Bird; by Mr. Ja. Winthorp
ib.
2. By Mr. Oldenburg ib.
3. By Mr. Hamerfly
ib.
4. By Dr. Neh. Grew 858
XCIII. Obfervations in the Diffecion of
a Paroquet ; by Mr. Rich. Waller ib.
XCIV. Obfervations in the Diffection of an Oftridge ; by Dr. Edw. Brown 860
XCV. Tbe Cuntur of Peru; by Dr. Hans Sloan 863
XCVI. 1. Obfervations on the Heads of Forols; by Dr. Allen Moulen ib.
2. By Mr. J. Clayton 866
XCVII. The Anus of Forols applied in Malignant Diftempers ; by Mr. J. Templer

867
XCVIII. I. A Blemifs peculiar to the Eyes of Horfes ; by Dr. Rich. Lower 867 2. By.... 868 XCIX. A Horn banging at the Neck of an Ox; by S. Malpighi ib.
C. A Lamb fuckled by a Weather; by Mr. Tho. Kirke 872
CI. Grafs found in the Wind Pipes and Lungs of fome Animals; by Mr. Rob. Boyle
ib.
CII. 1. A Murrain in Switzerland ; and its Cure; by Dr. Wincler 873
2. By Dr. Fred. Slare ib.
CIII. The Dijeafes of Dogs; by Sir Theodore Mayern 874
CIV. Obfervations in the Diffection of a Rat ; by Mr. Rich. Waller ib.
CV. 1. Sable Mice; by Sir Paul Rycaut
ib.
2. By .. 875

2
CVI.

The CONTENTS.

CVI. The Ruffian Way of curing Caftoreum; by.... 876
CVII. The $M u / k-q u a \beta$; by ... ib. CVIII. The Anatomy of a Mexican Mu/kHog ; by Dr. Edward Tyfon
ib.
CIX. The Anatomy of a Female Opoffum ; by Dr. Edward Tyfon 884 CX. A monftrous double Turkey; by Sir J. Floyer
CXI. A monftrous Colt ; by Mr. R. Boyle ib. CXII. A monftrous Calf; by Mr. David Thomas

903
CXIII. A monftrous Calf with trwo Heads; by Sir Rob. Southweli ; ib. CXIV. Two monfrous Lambs; by $M r$. Coleprefs
CXV. A monftrous Pig; by 904 CXVI. Two monjitous Pigs; by Sir J. Floyer
CXVII. The Anatomy of a monfrous double Cat; by Dr. Mullen 905 CXVIII. An Animal refembling a Whelp,
voided per Anum by a Male Greybound; by Mr. Edm. Halley 907
CXIX. A Bitch with Puppy, tho She bad loft the Spleen; by.... ib. CXX. A Cow with four Calves; by Sir J. Floyer 908 CXXI. A Hen with a perfeit Cbick in the Ovarium; by ib.
CXXII. An Egg found witbin another Egg; ly.... ib. CXXIII. Ova found in a Coro ; by.... ib.
CXXIV. The Ova, after a fecond Conceptton, difperfed in the Abdomen of a Bitch, tho the Cornua Uteri zeere filld with the Bones and Flef/ of a former Conception; by.... ib.
CXXV. 1. The modern Theory of Generation; by Dr. Geo. Garden 911
2. By Sir J. Floyer 915
CXXVI. Papers of lefs general Ufe omitted
CXXVII. Accounts of Books omitted ${ }^{916}$ ib.

THE

CONTENTS
 O F
 V O L U M E III. Part I.

C H A P. I.

The Structure, External Parts, and common Tcguments of Human Bodies.
I. 1.

AAn Iri/b Man of an extra-
ordinary Size ; by Dr. Plot ordinary Size ; by Dr. Plot

2. By Dr. Molineux

II. 1. A prodigious Os Frontis; by the fame
2. Giants; by the fame
,
III. A Man of a ftrange imitating Nature, by Dr. George Garden
IV. A Negro Boy, dappled with white Spots; by Mr. Will. Byrd
V. Pbyfiognomy; by Dr. Gwither
VI. The Pores in the Skin; by Dr. N. Grew
VII. The Pores in the Skin wholly obfirutied by Nocturnal Air; by.... 10
VIII. 1. The great Effells of Touch and Friction; by....
2. Cures dont by Mr. Greatrix, the Stroaker; communicated by Mr. Thorefby
IX. I. A Girl in Ireland with borny Excrefcencies; by Mr. St. George Afh 12 2. A Boy in France with borny Excrefcencies; by Mr. Locke ${ }^{13}$
X. 1. A Body after being long buried almoft converted into Hair ; by ib.
2. By M. Chr. Arnold 14
3. Obfervations of Hair found in feveral Parts of the Body; by Dr. Edw. Tyfon
4. An Obfervation confonant to it upon the diffecting a Morbid Body ; by Dr. Sampion by Sir Edm. King
XII. A Cbild about fix Years old, who in the Face was as large as a full grown Woman; by Dr. Henry Sampfon 20 XIII. Corpulency miftaken for a Dropy; com. by Mr. Greeenhill

> C H A P. II.
> The Head.

1. $\left.\begin{aligned} & \text { Ifcoveries concerning the Brain; by } \\ & \text { S. Malpighi }\end{aligned} \right\rvert\,$
II. 1. A living Birth witbout a Head, at ${ }_{23}$ Paris; by M.....

The CONTENTS.

2. An odd Fœetus weitbout a Brain; by M. Dennis

23
3. 1. A Cbildbornalive without a Brain; by M. Le Duc
2. By Dr. Ch. Prefton 24
4. An Infant, with the Brain deprefs'd into the Hollow of the Vertebre of the Neck; by Dr. Edw. Tyfon 26
5. A Cbild born without a Brain; by M. Buffiere
ib.
6. One Hemifphere of the Brain Sphacelated ruith a Stone in it; by Dr. Ed. Tyfon
III. An Hydrocephalus; by Mr. J. Friend

28
IV. The Difeezion of a Lady, wwo died of an Apoplexy; by Dr. Will. Cole
V. The Deatb and Diffection of S. Malpighi, who died of an Apoplexy; by Jean Marie Lancifi
VI. The Differion of a Boy who died fuddenly; by Dr. Cha. Prefton
VII. The falling Sicknes; by Dr. Turberville
VIII. A Periodical Pally; by Dr. William Mufgrave
IX. An odd Convoulfion in the Cbeek; by Dr. Dawbeny Turberville
X. A Periodical Convulfion; by Dr. Will. Cole
XI. A Periodical Difeafe of the Convulfive kind; by the fame
XII. Difcoveries in the Optick Nerve; by S. Malpighi

38
XIII. I. A Man who becomes blind, after Sun-fet; by Dr. Pet. Parham ib.
2. By Dr. Will. Briggs 39
3. A Solution of this extraordinary Cafer; by the fame
ib.
XIV. A Duplicity of Vifion, and a Gutta Serena; after great Pains in the Head, and Convulfive Fits; by the fame

40
XV. Several remarkable Cajes relatizg to tbe Eyes; by Dr. Dawbeny Turberville

41 XVI. An eafy Help to a decay'd Sight; by - ibid. XVII. An Experiment concerning Deafnefs; by Dr. Will. Holder 42 XVIII. The Organs of Hearing; by Dr. Raymund Vieuffens 43 XIX. 1. The Struiture of the Nofe; by M. du Vernay 57 2. By The Orizinal of e Potrus: 58 XX. I. The Original of a Polyfus; by M. Giles
2. $B y-\quad$ ibid.
XXI. I. The Organs of Tafte; by S. Malpighi
2. By S. Fracaffati 59
XXII. A new Salival Duct difcovered; by Ca p. Bartholine ib. XXIII. Accounts of Books and Additions omitted 60

> C H A P. III. Tbe Neck. Tbe Tborax.
I. $\triangle \begin{gathered}\text { Conjecture at Difpofitions from the } \\ \text { Modulation of the Voice }\end{gathered}$ 61
II. An Argument for the Ufe of Laryngo-
tomy ; by Dr. Will. Mufgrave 62 III. The Strusture of the Lungs; by Mr. J. Templer

The CONTENTS.

IV. An Experiment concerning the Manner of Refpiration; by Dr. Rich. Lower
V. A Supply of Frefh Air, neceflary to Life; by Dr. R. Hook 67
VI. Tbe Cbief Ufe of Reffiration; by Dr. Will. Mufgrave
VII. 1. A Polypus of the Lungs; by Mr. Rob. Clark
ib.
2. By Dr. Lifter
ib.
3. A Polypus of the Lungs; by M. Buffiere
VIII. T'be Motion of the Heart; by Mr. Templer
IX. 1. A ftrange Pericardium ; by M. De Martel

70
2. A Glandulous Subfance found between the Heart and Pericardium;
. 4 by - ib.
X. A Polypus in the Heart; by Mr. Wih. Gould $\quad 70$
XI. A great Quantity of Liguon forind in the Thorax ; by Dr. Nath. Fairfax
XII. An Hydrops Pectoris ; by ${ }^{76}$. Sam. Doudy
XIII. Warm Water injecied into the Thorax of e Bitcb; by Dr. Will. Mufgrave
ibid. XIV. The Paffage of the C.byle to the Breafts ; by M. 79
XV. A fudden and exceffive Swellinig of a Woman's Breaft; by Dr. W. Durfton ib.
XVI. An aged Woman of 60 Years old giving Suck to ber Grandcbild, in Germany; by $\quad 80$ XVII. A Paper omitted Sa XVIII. Accounts and Emendations of Books omitted

C H A P. IV.

The Abdomen.

AN Abjcefs in the Liver, Stones in the Gall Bladder, and conjoyn'd Kidneys; by Dr. Edw. Tyfon 8 I II. A Liver appearing Glandulous to the Eye ; by Mr. J. Brown
III. The Texture of the Spleen; by 3 . Malpighi
IV. The UJe of the Spleen by M. Mich. Behm
V. Obfervations about the Spleen and Lirjer ; by S. Jacomo Grandi 85
VI. A Dijeajed Spleen; by Dr. N. Grew
ib.
V1I. A Polypus in a Dog near the Spleen;
by Dr. Will. Mufgrave 86
VIII. The Structure of the Glands; by Sir Edm. King IX. The Ufe of the Glands; by Gafp. Bartholine ibid. X. The Spiral Structure of the Fibres of the Inteftines; by Dr. Will. Cole 89
XI. The Motion of the Stomach and Guts; by Dr. Ch. Pitt91

XH. The Cure of a Horse faked into the Stomach; by Dr. J. Wallis 92
XIII. A Knife cut out of the Stomach; by Mr. Will. Clerk ib. XIV. A Knife fwallowed by a Lad in Saxony; by

The CONTENTS:

XV. Two Copper Fartbings fwallowed by a Child in Worcefter; by Mr. Henry Underhill
XVI. 1. A Dijeafe caus'd by froalloreving Stones; by Sir Ch. Holt
ib.
2. Remarks on it ; by Dr. Hans Sloan 94
XVII. Prunc Stones breaking out at the Navel; by Mr. Greenhill ibid. XVIII. A rufty Needle breaking out at tbe Side; by the fame
ib.
XIX. The Glandulæ Miliares; by Dr. M. Lifter
ib.
XX. A Bed of Glands in the Stomach of a Fack; by Mr. Mufgrave
ib.
XXI. 1. Experiments concerning Digeftion ; by Mr. Ch. Leigh
2. Dy Mr . Mufgrave
XXII. The Manner of Concoition; by Dr. Clopton Havers
ib.
XXIII. I. The Colour of the Chyle in the Lafteous Veins; by Dr. Lifter 102
2. The LaEleals frequently convey Liquors that are not white; by Dr. Will. Mufgrave 103
XXIV. The Diffribution of the Cbyle; by Dr. Lifter
XXV. Cbylification; by Mr. W. Cowper
XXVI. An ill Digeftion by too much Study; by Mr. Chrift. Kirkby 111
XXVII. Four Men living on Water without Food 24 days; by... ib.
XXVIII. A Ruminating Man; by Dr. Fred. Slare
ib.
XXIX. A Bulimia; by Dr. James Burrough

112
XXX. The Order of all the Bowels inverted; by Dr. Hen. Sampfon ib.
XXXI. The Cœecum of a Bitch out out; by Dr. Will. Mufgrave ibid.
XXXII. The Cœecum dilated, with an almoft Liquid Matter; by M. Giles
XXXIII. The Coenm extended with Cherry-fones by Mr. Knowles 114. XXXIV. The Ufe of the Inteltinum Cuecum ; by Dr. M. Lifter ib. XXXV. I. An infallible Cure of Dyfenteries; by M. 115
2. Some Notes; by Dr. Hans Sloan 119
XXXVI. A Convolvulus, and an unujual Rupture of the Mefentery; by Dr. Swammerdan ib. XXXVII. The Fœeces difcharged at an Ulcer in the Groin; by Dr. Will. Earnihaw

120 XXXVIII. The Lumbrici Lati and Cu curbitini; by Dr. M. Lifter ib. XXXIX. The Lumbricus Latus; by Dr. Edw. Tyfon 122 XL. The Lumbricus Teres; by the Jamic 131 XLI. Lumbrici Teretes found in an ulcerated Ankle; by Dr. M. Lifter 133 XLII. A Remedy for Worms in Cbildren; by Sir Theodore Mayern 134 XLIII. The Lumbricus Hydropicus; by Dr.Edw. Tyfon ib. XLIV. 1. A Worm voided by Urine; by Mr. Matthew Milford 136 2. By Mr. Ent ib. XLV. I. Animals vomited by a Cbild at Sheffield ; by Mr. Jeffop ib.
2. By a Cbild near Rippon; by Dr. Lifter ib.
3. By a Man at York; by the Saine ib.
XLVI. 1. An Account of Worms fourid in feveral Parts of the Body; by Mr. Tho. Dent 138 2. Furtber confirm'd by Mr. Mark Lewis
XLVII. The long Worm in the Flefs, in the Ealt-Indies ; by 139
XLVIII. Obfervations on a Man wibo

The CONTENTS.

died of a Dropfie by Dr. Nath. Fairfax XLIX. A Dropfie miffaken for Gravidation; by Dr.
ib.
L. Obfervations on a Maid who dy'd of an Afcites; by $M r$. J. Turner 141
LI. Obfervations on a Woman who dy'd of a Dropfie, after the Paracentelis; by Dr. Ch. Prefton

142
LII. A Cure for the Dropfie ; by Sir Theod. Mayern

144
LIII. A large difeafed Kidney; by Mr. Will. Cowper ib.
LIV. Four Ureters in an Infant; by Dr. Edward Tyfon 147
LV. A Paffage of Urine to the Bladder, diftinet from the Ureters; by M. . .

148
LVI. A Scbirrbous Bladder containing in it Bags of Serous Matter; by Dr. Edward Tyfon
ib.
LVII. Suppreffions of Urine (not caus'd by a Stone) cur'd with Acids; by Dr. Edward Baynard $\quad 149$
LVIII. A Stone taken from a Woman; by Dr. Beal

150
LIX. 1. Many Stones taken from one Bladder ; by Dr. Nath. Fairfax ib.
2. By M. Cafparus Wenland
ib.
3. By Mr. Chr. Kirkby
I.X. Stones in the Kidneys; by tbe fame 151
LXI. Large Stones voided by a Woman; by Dr. Garden
ib.
LXII. Two large and odly Bap'd Stones in the Kidneys; by Dr. Fred. Slare ib.
LXIII. A very great Stone of the Bladder; by ib.
LXIV. Stones voided per Penem; by Dr. Cole

152
LXV. A large Stone voided by a Woman; by ib.
LXVI. A large Stone voided by a Woman; by Dr. Tho. Molineux ib.
LXVII. An extraordinary Stone in the

Kidney; by Dr. Rob. Witty ${ }^{1} 50$
LXVIII. Two Stones lodg'd 20 Years in the Meatus Urinarius; by Mr. Charles Bernard

LXIX. A prodigious Stone in the Bladder;

 by Dr. Chr. PreftonLXX. A Stone cut from the Bladder, whicb adber'd to it; by the fame ib.
LXXI. I. Three feveral Stones voided by a Boy in Scotland ; by Sir Robert Sibbald
ib.
2. The Cbeat detected; by Dr. Jo. Wallace

156
LXXII. Broken Stones voided; by Sir Rob. Sibbald
ib.
LXXIII. I. A Stone cut out from under the Tongue; by Dr. Litter ib.
2. A Stone bred at the Root of the Tongue ; by M. Bonavert 157
3. By ... 158
LXXIV. A Stone in the Glandula Pinealis ; by Sir Edm. King ib.
LXXV. Stones found in the Heart; by

LXXYVI Stones found in the 159
LXXVI. Stones found in the Lungs; by Mr. Ch. Kirkby ib.
LXXVII. Stones found in the Gall Bladder; by Mr. J. T. 160 LXXVIII. Stones found in the Stomach, Kidney and Gall-Bladder; by Mr. William Clerk ib.
LXXIX. Stones voided by Siege; by Dr. Sam. Threapland 161
LXXX. A Bullet voided by Urine; by Dr. Nath. Fairfax
LXXXI. A Sbell found in the Kidney; by Dr. Rob. Pierce 163
LXXXII. A Stone growen to an Iron-Bodkin in the Bladder; by Dr. Lifter ib.
LXXXIII. A Bodkin cut out of the Bladder of a Woman; by Mr. Proby ib. LXXXIV. A Stone from the Bladder, with a Flint in it; by Dr. Geo. Garden 165
2

The CONTENTS.

IXXXV. A Slone from the Bladder, with Hair grozeing on it ; by Dr. Jo.Wallace
ib.
LXXXVI. A Slone in the Bladder of a Dog; by S. . . . ib. LXXXVII. A Stone fafter'd to the Backbone of an Horfe; by the fame
LXXXVIII. A Stone taken out of the Beilv of an Hore ; by Dr. H. P. 166 LXXXX. 1. A Stone in the Bladder of an Ox; by Dr. Johnfton

168
2. By Dr. M. Lifter
ibid.
XC. 1. A prodigious Number of Stones voided by a Woman at Bern in Switzerland; by Dr. Sigifm. Konig ib.
2. An Examen of thefe Stones; by Dr. Frederick Slare

179
3. A further Trial; by the Jame 180
XCI.r.The Production of Stones inAnimals; by Dr. Fred. Slare

18:
2. The Generation of the Stone; by Dr. Tho. Molineux

185
XCII. Stones extracted from Women with. out cutting; by the Jame in ib.
XCIII. A large fone cut from a Woman; by Mr. Bafil Wood 188 XCIV. A new Way of cutting for the fone; by a Hermit in France; by M. Burfiere
ib.
CVX. The Way of cutting for the fone in the Kidney; by Mr. Ch. Bernard 191
XCVI. An extracrdinary Situation of the Vafa Præparantia; by Dr. Fairfax
XCVII. I. The Teftes examin'd; by Vadlius Dachirius Bonglarus ibid. 2. By ... $\quad i b$. XCVHI. I. The Texture of the Teftes; by Dr. Tim. Clark ibid.
2. By Sir Edm. King
3. By Dr. de Graef
4. By ...
5. By S. Malpighi
XCIX. The Vafa deferentia; by Dr. Timothy Clark
ib.
C. Trwo new Glands near the Proftate Glands weith their Excretory DuEts, iately difcover'd; by Mr. Will. Cowper

197
CI. T'be ftructure of the Uterus; by S. Malpighi

200
CII. r. A Woman witb a double Matrix; by M. Benoit Vaffal 209
2. By... ib.
CIII. A Woman Hydropical in the external Tunick of the Uterus; by Mr . Turner 210
CIV. A Woman Hydropical in ber Left Teficle; by Dr. Hen. Sampion 211
CV. A Dropsie in one of the Ovaries of a Woman; by Dr. Hans Sloan 212
CVI. An Embrio of four Weeks; by Dr. Phil. Ja. Hartman 213
CVII. The Refpiration and Nourifment of a Fœetus in Utero Materno: by Dr. Ch. Prefton 214 CVIII. An Egg found in the Tuba Fallopiana of a Woman; by M. Buffiere 215
CIX. A Fœus form'd in the Ovarium; by M. de S. Maurice 217
CX. I. A Fœtus lying witbout the Uterus, in the Belly; by M. Saviard 218
2. By Dr. Fern 219
CXI. A Fœus in the Right Horn of the Uterus; by the fame 221
CXII. A Woman with Cbild, notwithfanding a Coalefcence of the Vagina Uteri ; by ib.
CXIII. A Cbild 26 Vears in the Motber's Belly; cut out of the Uterus; by Dr. Bayle 222 2. By ... 218 CXIV. The Bones of a Fœetus voided per Anum, fome Years after Conception; by Dr. Ch. Morley

223
CXV. A Fœotus voided at an ulcerated

Navel;

The CONTENTS.

Navel ; by Mr. James Brodic 224 CXVI. The Bones of a Fcetus voided above the Os Pubis; by.... ib. CXVII, A Falle Conception; by Dr. Witliam Cole ${ }^{\text {a }}$ CXVIII. 1. A Preternatural Conception in Staffordfhire; by Mr. Sampfon Birch
2. By Dr. Ed. Tyfon ib:
CXIX. 1. Extraordinary Effects of the Strength of Imagination; by $\mathrm{Dr} . \mathrm{St}$. Geo. Afh. Bp. of Cloyne 227
2. By Dr. Cyprianus ib.
CXX. Papers of lefs general UJe omitited 228
CXXI. Accounts of Books omitted ibid.

C H A P. V.

The INwours, and General Affections of the Body.

THE vifible Circulation of tbeBlood; by Mr. Will. Molyneux 230
11. Tbe Quantity of Blood in Men, and the Celerity of its Circulation; by Dr. Allen Moulin
ib.
II. 1. A Metbod of transfufing Blood; by Dr. Lower

231
2. By 232
IV. Confiderations concerning Iransfufions of Blood; by...
ib.
V. I. Experiments of Transfufing Blood; by Dr. Lower
2. The Transfufion of the Blood of a Calf into a Sheep, by the Veins only; by Sir Edm. King
13. The Transfufion of the Blood of a mangy into a found Dog; by Nr.
Tho. Cox
4. The Transfufion of the Blood of a

2 Loung into an Old Dog; by Mr. Gayant ib. 5. The Tranfufion of the Blood of Calves into Dogs ; by Mr. Dennis ib.
6. A very plenitiful Trañsfufion, expe2w rimented upon a Bitco; by $\frac{\text { ibid. }}{\text { id }}$
7. The Transfufion of the Blood of four Weathers into a Horfe ; by Mr. Denys
8. The Transfusion of the Blood of one

Lamb into anotber; by S._- ib.
9. The Transfufion of the Blood of a Lamb into a Spaniel; by $S . \rightarrow \mathrm{ib}$.
VI. A Metbod of Transfufing Blood into the Veins of Men; by Sir Edm. King

225
VII. Trarsfufion praitijed upon a Man in London; by Dr. Rich. Lower, and Sir Ed. King 226
VIII. I. The Effects of feveral Liquors mix'd with the Blood warn frome the Veins : by Mr. Rob. Boyle 227
2. By $M r$. Oldenburg ib.
IX. Liquors injected into toe Veins of Dogs; by S. Fracaffati ib.
X. I. Mercury injected inio the Veins of Dogs; by Dr. A. Moulin ans 228
2. By Dr. Ch. Pitt $\quad 229$
XI. 1. Medicated Liquors injeeted into buman Veins; by Dr. Fabritius ib.
2. Medicines injected into buman Veins; by ib.
XII. An Objervation upon Blood grown cold ; by S. Fracaffaci $\quad 230$
XIII. Some Efferts of Air upon Blood, explain'd by an Experiment of the Cbange of Colour in a clear Liquor, upon the Admiffion of Air ; by Dr. Fred. Slare.
XIV.

The CONTENTS.

XIV. 1. Wbite Blood; by ...

234
2. By Dr. Lower
3. By Dr. J. Beal
23.5
XV. 1. The confituent Parts of buman Blood; by Dr. Raym. Vieuffens
2. The Opinion of the College of Pbyficians at Rome, concerning Dr. Vieuffens's Analogy of buman Blood; by J. Maria Lancifi

242
XVI. A Arange kind of Bleeding in a little Cbild ; by Mr. Sam. du Gand 247 XVII. A Pcriodical Evacuation of Blood, at the end of the Fore-finger: by Mr. Afh
XVIII. Ait Eruption of Blood, at the Giandula Lachrymalis ; by Dr . Clopton Havers
ib.
XIX. An admirable Efence for flancling Blood; by Mr. Denys

248
XX.I Experiments made with this Liquor; by Dr. Walter Needham, and Mr. Richard Wifeman

248, 249
2. By Mr. Denys \quad ibid.
3. By -
XXI. Experiments made with Mr. Colebatch's Styptick; by Mr. Will.Cowper

251
XXII. Some Animals baving Lungs, yet wanting the Arterious Vein; by Dr. Swammerdam

252
XXIII. An Aneurifma of the Arteria Aorta; by ME. Lafage ibid.
XXIV. A Communication of the Ductus
findThoracicus rwith the Emulgent Vein; bidi by M. Pecquet
XXV: 1. A Communication between the Ductus Thoracicus, and the inferior Vena Cava ; by theefonue

255
2. Annotations; by Dr. Needham 256
XXVI. The true Ufe of the Lympbatick Veffels ; by M. Louys de Bills 258 XXVII. A Convulfive Rbeumatifn; by Dr. Rob. Pitt
XXVIII. The Probable Caufes of the Pain in Rbeumatifms; by Dr. E. Baynard 260 XXIX. The Pneumatick Engine apply'd to Cupping-Glafles; by Mr. Luffkin 261
XXX. The Operation of a Blijter, weben it cures a Fever; by Dr. Will. Cockburn 262
XXXI. Obfervations on Epidemical Difempers ; by Dr. Tho. Molyneux 268
XXXII. Exotick Difeafes propagated by Trade and Lnfeciion; by Dr. Lifter 270
XXXIII. An Experiment conceraing the Plague; by Dr. Jo. Bapr. Alprunus ib.
XXXIV. An univerfal Prefervative againft Infection; by Dr. Jaco. Joh. Wencellaus Dobrzenky de Nigro Ponte

272
XXXV. An Hydrophoby ; by Dr. M. Lifter
ibid. XXXVI. Ain Hydrophoby ; by Dr. Roger Howman 276 XXXVII. A Cbild bit by a mad Dog; by Mr. J. Turner 277
XXXVIII. Two Boys in Ireland, bit by a mad Dog ; by Mr. Keneda $\quad 278$ XXXIX. 1. Cures for mad Dogs, or any thing bit by them; by Sir Rob. Gordon
2. Several Receipts for the Bile of a mad Dag; by sir Theo. Mayern 280
3. 1.: A. Cure for the Bitings of a mad Dog; by Mr. Geo. Dampier 281 2. A Remark; by Dr. Hans Sloane ibid
XL. Perfons fuppofed to be fung by Ta. rantula's ; by Dr. Tho. Cornelio 282
XLI. A Contumacious Faundice, attended

The CONTENTS.

xith an odd Cafe in Vifion; by Mr. Sam. Dale
XL.II. Divers Infances of Peculiarities both in Merr and Brutes; by Dr. Nath. Fairfax, and Mr. Oldenburg
XLIII. Several Obfervations on different Maladies ; by M. Gaillard, 284 XLIV. Papers of lefs general Ufe omitted 287
XLV. Accounts of Booksomitted ib.

C H A P. VI.

The Bones, Foints and Mufles.

THE Bones of a Skeleton united, with. out Fointing or Cartilage; by Dr. Bern. Conner 289
II. 1. Bony Excrefcencies on a Human Scull; by Mr. Dupre
2. Remarks on thefe Excrefcencies; by Mr. Will. Cowper
III. Nesu Teeth in two aged Perfons; by Mr. Sam. Coleprefs

293
IV. A Remarkable Infance of an abjolute Command of the Foints and Mufcles; by - ibid.
V. Tbe great Tendon above the Heel after an intire Divifion of it, fitcch'd and cur'd; by Mr. Will. Cowper 294
VI. Accounts and Emendations of Books omitted

C H A P. VII.

Monfers.

I. AMonfrous Birth, like a Monkey, at Paris; by M.
11. Truins faftened together at the Breaft; by S. Jac. Grandi ib.
1II. Twins faftened togetber at the Breaft; by Dr. Will. Durfton ibid.
1V. A Twin-Female-Infant united below the Diapbragm; by Dr. S. Morris 298
V. A double Birtb join'd at the Breaft, in Somerfethire ; by Mr. A. P. 299
VI. Two monftrous Birtbs in Scotland ; by Dr. Geo. Garden 300 VII. A monftrous Boy; by S. Jac. Grandi ibid.
VIII. A monftrous Cbild; by Mr. Chrift. Krahe ibid. IX. An Hermapbrodite at London; by Dr. Tho. Allen 301 X. An Hermapbrodite at Thouloufe; by M. Vecay

CHAP.

The CONTENTS.

C H A P. VIII.
Thbe Period of Human Life.

1. $\triangle N$ Anatomical Account of Tho. A Parre; by Dr. Harvey p. 302
II. 1. The great Age of Henry Jenkins; by Mrs. Anne Savile
2. By Dr. Tancred Robinfon 303
3. By Mr. Hill

304
III. Several Aged Perfons in the North of England; by Dr. M. Lifter ib.
IV. The great Age of tze Perfons in Ireland; by Dr. Tho. Molineux 305
V. Longevity, and the Caufes of Natural Death; by Mr. de Martel

305
VI. The Motions of Dijeafes, and the Birtbs and Deaths of Animals in different Times of the Natural Day; by M. Pafchal 307
VII. Death at no certain Hours of the Tide ; by Mr. Benj. Allen ib. VIII. An Account of a Book omitted 308

C H A P. IX.
Pbarmacy, Cbymiftry.
I. 1. THree Queries relating to the Entalia, Dentalia, Blatta, Byzantina, Purpura, and Buccina of the Sbops; by Mr. Sam. Dale

308
2. Anfwer'd; by Dr. Lifter
ib.
II. Stones in feveral Animals; by Mr. Will. Clerk
III. Cold Diftillation; by Dr. Jo. Beal 311
IV. The great Ufe of Digefion, Fermentation, and Triture; by Dr. Joel Langelot
ib.
V. The Volatilization of Salt of Tartar elucidated; by Dr. Dav. Vonder Becke
VI. An odd Salt extracted out of a Metallick Subftance; by P. Fr. Lana
VII. Volatile Salt and Spirit extralled out of all Sorts of Plants; by Dr. Daniel Cox

322
VIII. r. No Alcalizate Salt in any Subject, before the AEtion of Fire upon it; by the fame 325
2. No fenfible Difference among the Fix'd and Volatile Salts, and Vinous Spirits; by the fame

327
IX. Vegetable Salts extracted ; by S. Fr. Redi

336
X. To find the exait 2uantity of volatile acid Salts contain'd in acid Spirits; by M. Homberg 341
XI. Four Sorts of factitious Sbining Subftances ; by Mr. Olenburg

342
XII. 1. The Bononian Phofphore loft; by - 353
2. Statues of the Bononian Stone; by S. Malpighi
ib.
XIII. A Phofphorus; by Mr. Robert Boyle
ib.

$$
\text { * f XIV. } A v
$$

The CONTENTS.

XIV. An Account of Dr. Kunkel's Phofphorus; by Joh. Chr. Sturmius 354
XV. I. Experiments with the Liquid and Solid Phofphorus; by Dr. Fred. Slare ibid.
2. A Parallel betwixt Ligbtning and a Phofphorus; by tbe fame 357 XVI. Some Cbymical and Medical Obfervations; by the Heer Mich. Behm 35^{8}
XVII. Cbymical Experiments; by Dr. Fred. Slare

359
XVIII. A Catalogue of Oils, that do eitber make an Effervefcence, and a
great Noife, with Explofion, or take Fire upon the Affufion of the Compound Spirit of Nitre; by the fame 35^{8} XIX. A clear Sulphureous Spirit, wobich being mix'd with a volatile Alcali, gives a red Colour; by Mr. Edw. Coles

367
XX. Two clear inflammable Liquors, which being mix'd, give a Carnation Colour; by M. Geoffroy ib. XXI. A frangely Self-moving Liquor; by Mr. Rob. Boyle
ib. XXII. A Paper of lefs general Ufe omitted XXIII. Accounts of Books omitted 369

THE

C
O N T
E

N

TS OF

V O L U M E III. Part II.

C H A P. I.
Grammar.

'AN Effay towards an univerfal Alpbabet ; by Mr. Lodwick p. 373
II. An Efay towards an Univerfal Primer; by the fame 378
III. Some Obfervations on Languages; by Mr. Edw. Lhwyd
IV. Some Objervations and ConjeEfures concerning the Chinefe CbaraEters; by R. H.
V. 1. Two Perfons deaf and dumb, taugbt to Speak, and to underfand a Language; by Dr. J. Wallis $\quad 388$
2. A furtber Account; by - 392 VI. A Metbod of inftruEting Perfons deaf and dumb to Speak and underftand a Language ; by Dr. J. Wallis 393
VII. A Paper of lefs general UJe omitted VIII. Accounts of Books omitted ibid.

C H A P. II.
Cbronology, Hifory, Antiquities.

1. 2. To find the Year of the Julian II. Several Cbronological Problems folv'd; by the fame 401
III. The Kubricks for the Seat of Eafier, according to the Julian Account, explained ; by Dr. Wallis 402 IV. 1.

The CONTENTS.

IV. 1. A Report of the Confultation upon

 Mr. Dee's Propofal for Reforming the Calendar, An. 1582; by the Lord Treafurer Burleigh 4042. The Reformation of the Calendar confider'd, An. 1645 ; by Mr. J. Greaves 405 3. Ann. 1699 ; by Dr. Wallis ib. V. The Julian Account not to be chang'd for the Gregorian ; by the fame 406
VI. The Conclufion of the Proteftant States in Germany, An. 1699, for Reforming the Calendar; by

408
VII. A new Luni-Solar-Year, and a perpetual Almanack; by Mr. R. Wood

409
VIII. The Time and Place of Cæfar's Dejcent upon Britain ; by Mr. Edm. Halley
IX. Roman Urns, and otber Antiquities near York ; by Dr. M. Lifter 415
X. A Roman Pottery near Leeds; by Mr. Ralph Thoresby 418
XI. The Excellency of Roman Bricks and Plaftering; by $\quad 419$
XII. An old Eartben Veffel found near York; by... ibid.
XIII. A Roman Wall and Multangular Tower at York ; by Dr. M. Lifter ibid.
XIV. Several Roman Antiquities about York and Leeds ; by Mr. Thorefby 421
XV. A Roman Coffin, and other Roman Antiquities and Coins; by Mr. Ralph Thorefby
ibid.
XVI. A Roman Pavement, near Roxby in Lincolnhire; by M. A. de la Pryme

422
XVII. A Roman Altar ; by Dr. M. Lifter

423
XVIII. Two Raman Altars in Northumberland; by Mr. Ralph Thorefby 424
XIX. Some Roman Infcriptions; by Dr.

M. Lifter

425
XX. A Roman Allar at Chefter; by Mr. Edmund Halley ibid.
XXI. Some Roman Infcriptions found near Durham ; by Mr. Chr. Hunter

426
XXII. Some Roman Coins; by Mr. Ralph Thorefby
ibid.
XXIII. Moulds for Coining or Counterfeiting Roman Money; by Mr. Thorefby ibid.
XXIV. A Roman Sbield; by Mr. Thorefby

427
XXV. The Roman Way, called Highftreet in Lincolnfhire ; by Mr. Abr. de la Pryme

428
XXVI. A ftrange Well, and fome Antiquities found at Kirbythore ; by Mr. Tho. Machil

XXVII. Runick Infcriptions at Beaucaftle ; by Mr. Will. Nicholfon
XXVIII A Runick Incrittion 433
XXVIII. A Runick Infcription on the Font at Bridekirk ; by Mr. Will. Nicholfon

XXIX. An Ancient Monument at Foultflam in Norfolk; by Sir P. S. 436 XXX. 1. Some Saxon Coins found in Suffolk; by the fame ibid. 2. Remarks; by W. W. 43^{8} 3. An Addition; by Mr. Sam. Dale 441
XXXI. I. A Piece of Saxon Antiquily found in Somerferfhire ; by Dr. Will. Mufgrave ibid.
2. By Dr. George Hicks 44^{2} XXXII. The Verval Procefs upon the Dijcavery of an ancient Sepulchre in France; communicated by M. Juftel 443
XXXIII. I. The Figures of fiveral Antiquities; by...
2. $B y$... 446 XXXIV.

The CONTENTS.

XXXIV. 1. An uncommon Infcription on a very great Bafis of a Pillar, lately dug up at Rome; ly Mr. Adrian Auzout Page 446
2. Explain'd by Dr. Voffius 447 XXXV. An ancient Sepulcbre near Rome; by...

448
XXXVI. An Etrufan Infiription; by Mr. Octavian Pulleyn ib. XXXVII. The Catacombs at Rome ; by Mr. Ja. Monro
ib.
XXXVIII. Objervations in a Voyage from Venice to Smyrna; by Mr. Fr. Vernon

451 XXXIX. I. A Voyage from England to Conttantinople ; by Dr. Tho. Smith 456
2. Hiforical Obfervations relating to Conftantinople; by the fame 465
3. An Account of Prufa in Bithynia, and the Obfervations in Turkey con. tinued; by the fame

473
XL. 1. A Voyage of fome Englifs Mercbants at Aleppo to Tadmor; by Mr. Timothy Lanoy, and Mr.Aaron Goodyear
2. A fecond Voyage to Tadmor; by .: . communicated by Mr. Tim. Lanoy, and Mr. Aaron Goodyear

492
3. An Account of Tadmor; by Mr. Will. Hallifax

503
4. Remarks on thefe Antiquities; by Mr. Edm. Halley 518
XLI. An Infiription in the Language of the Palmyreni ; by Mr. Octavian Pulleyn 526
XLII. I. Draugbts of feveral Infcriptions, and Cbaracters at Perfepolis; by Mr. F. A.
ib.
2. The Ruins of Perfepolis; by M. Nich. Witten

527
XLIII. Obfervations in Upper Egypt; by F. Brothais ib.
XLIV. An Account of the Porphyry Pillars in Egypt ; by Dr. Rob. Huntington

528
XLV. I. Some uninown ancient Cbaracters; by Mr. Flower

530
2. Remarks; by Mr. Fran. Afton ib.
XLVI. A Paper omitted

531
XLVII. Accounts of Books and Emiendations on:ittied

> C H A P. III.

Voyages and Travels.
I. Everal Obfervations in Lincolnhire; by Mr. Ch. Merret
II. Oibervations at Chefter; by Mr. Edm. Halley
III. An Account of Snowdown-Hill; by Mir. Edm. Halley
ib?
IV. Obfervations in Scotland ; by Mr. Ja. Frafer

538
V. Obfervations in Scotland ; by Sir George Mackenzy
VI. Strange Beans, frequently caft afocre on the Orkneys; by Dr. Hans Sloan 540
VII. A Defcription of the Ifland Hirta ; by Sir Rob. Moray 541
VIII. Objervations in the Nortb Illes of Scotland; by Mr. Martin Martin 543
IX. Several Things in Ireland in conimon with the Weft Indies; by Dr. Tho. Molyneux

Molyneux
X. 1. Obfervations made in a Voyage from England to the Caribbe Illands; by Dr. Scubbs 546
2. Some of thefe Objervations furtber confider'd; by Mr. Norwood, jun. 559
XI. Obfervations made at Barbadoes; by Dr. Tho. Towns 560
XII. An Obfervation in Bermudas; by Mr. Rich. Norwood

561
XIII. Obfervations in New-Providence, Bermudas and Virginia; by Mr. Richard Stafford
XIV. A Voyage to New Caledonia in Darien ; by Dr. Wallace
XV. Obfervations in Mexico; by
XVI. I. Obfervations in New-England ; by Mr. J. Winthorp
2. By Mr. Benjamin Bullivant . 565
XVII. The Adrantage of Virginia for Building Ships; by ... 566
XVIII. An Account of Virginia ; by Mr. Tho. Glover
ib.
XIX. A Vojage to Virginia, and an $A c$ count of that Country; by Mr. J. Clayton

575
XX. An Account of Maryland ; by Mr. Hugh Jones
XX1. Obfervables near Frankfort on the Oder ; by Joh. Chr. Beckman 603
XXII. Some Communications from Italy; by... ib.

Pet. Sylvefter
603
XXIV. I. Obfervations in Turkey; by Dr. Ed. Brown 605
2. By... ib.
XXV. Medical Obfervations in the Nortb. ern Countries ; by Dr. Phil. Lloyd 606
XXVI. An Account of Iceland ; by Dr. Paulus Biornonius 609 XXVII. A Summary Relation of the Difcoveries about the North Eaft Paffage; by.... 6 ro XXVIII. Obfervations in two Voyages 10 the Ealt Indies; by Mr. Richard Smithfon 614 XXIX. Obfervations in the Eaft Indies; by S. Philibert Vernatti 617 XXX. Obfervations in the Eaft-Indies; by ... 618 XXXI. Obfervations in Japan; by M. 620
XXXII. Obfervations in Hollandia Nova; by Mr. Witfen

622
XXXIII.. Obfervations in Brazil and in Congo ; by Mich. Angelo de Guattini, and Dionyfius of Placenza 623 XXXIV. Obfervations at Cape Corfe; by Mr. J. Hillier 623 XXXV. Obfervations in Weft-Barbary, from Cape Spartel to Cape de Geer: by Mr. Jezreel Jones XXXVI. Papers of lefs General UJe oimitted 631 XXXVII. Accounts of Books omitted 632

C H A P. IV.

Mícellancous Papers.

1. 2. A New Lamp; by Mr. Boyle 2. Another ; by Dr. Robert St. Clare 635
1. Perpetual Lamps in Imitation of the Sepulcbral Lamps of the Ancients; by Dr. Rob. Plot

636
III. An Account of an Engine that confumes Smoke; by M. Juftel 638
IV. Some Suggeftions for Remedies againft Cold; by
V. Obfervations about finining Fifs; by Dr. J. Beal
ibid.
VI. I. Obfervations about Jinining Fleßh; by Mr. Boyle
2. By Dr. J. Beal

641
644
VII. Obfervations about the Refemblances and Differences between a Burning Coal, and 乃ining Wood ; by Mr. Rob. Boyle
VIII. An Account of the Damages that bappen'd at Portland, Feb. 1695-6. com. by Sir Robert Southwel 649
IX. The Death of a Dog, on Firing fome Vollies of Small--Bot; by Mr. Rob. Clarke
X. To preferve fmall Fœus's by Mr. Rob. Boyle
ibid.
XI. A Microfcopical Animal dijcovered; by S..... ibid.
XII. Microfcopical Obfervations; by Mr. J. Harris ibid.
XIII. Microfcopical Animals; by Mir. Steph. Gray 653
XIV. Obfervations on the Animalcula in Pepper-Water, \&xc. by Sir Edm. King 654
XV. Mifcellaneous Experiments; by Sir Rob. Southwel

656 XVI. To give Iron a Copper Colour; by the fame 657
XVII. To gild Gold upon Silver; by the fame ib.
XVIII. To paint Glass in Marble Colours; by the fame 658 XIX. An Imitation of China Di/bes; by
XX. The Chinefe Way of making Gold Thread; by Dr. Hans Sloan ib. XXI. To counterfeit Opal ; by Mr. S. Coleprefs
ibid. XXII. Some Obfervations toucbing Colours and Dyes; by Dr. M. Lifter ibid.
XXIII. The Weft-India Way of drefing Buck and Doe-Skins; by Sir Robert Southwel 661
XXIV. The Strength of Memory; by Dr. Wallis ibid. XXV. The Credibility of Human Tefimony; by.... 662 XXV1. General Bills of Mortality in London; by ... 665
XXVII. The Number of the Houfes and Heartbs in Dublin ; by Capt. South ibid.
XXVIII. The Number of People in Ireland, An. 1695-6; by the fame 666
XXIX. A Lift of the Sea-faring People in Ireland, An. 1697; by the fame ibid.
XXX. The Number of the Romifh Clergy in

The CONTENTS.

in Ireland, An. 1698 ; by Capt. XXXVI. An Aritbmetical Paradox conSouth Burials, in Frankfort on the Maine ; by Dr. Fred. Slare rials, in Old, Middle, and Lower Mark in the Dominions of the El. of Brandenburgh Lives, drazen from the Bills of Mortality at Brellaw ; by Mr. Edm. Halley tereft and. Annuities; refolv'd by Mr. Adam Martindale; with Explications, by Mr. J. Collins $\quad 678$
cerning the Cbances of Lotteries; by Mr. Fr. Roberts $\quad 679$ XXXVII. Papers cverlook'd, till 'twas too late to infert them in their proper Places, viz.

1. A Difeafed Kidney; by S. Malpighi 682
2. The Phofphorus Metallorum ; by Sir Rob. Southwel
ib.
3. The Texture of Ivory; by Dr. Nehem. Grew ib.
XXXVIII. Papers of lefs general Ufe omitted 683 XXXIX. Letters and other Papers; by M. Ant. Leeuwenhoeck, omitted ibid.
XL. Accounts of Books omitted 686

The CONTENTS of Vol. IV. Part I.

 The M A T HE M A T I C A L Papers.C H A P. I.
Geometry, Aritbmetic, Algebra, Logaritbmotecbny.

1.HE Proportion of Matbematica? Points to eachotber; by the Hon.Fr. Robartes, E/q; Page I
II. Some Properties of Conic Seetions deduc'd from the Nature of Focus's; by Mr. Abr. de Moivre
III. Tangents to Curves, deduced from the Dotrine of the Maxima and Minima; by Mr. H. Ditton
IV. A Method of Squaring fome kinds of Curves, or of reducing them to more fimple ones; by Mr. Abr. de Moivre
V. The Quadrature of a Curve of the third Order, communicated by Mr. Abr. de Moivre
VI. A Specimen of a general Metbod to determine the Quadratures of Figures; by Mr. J. Craig
VII. A Problem of finding other Curves equal in Length to any given Geometrical Curve; folved by Mir. J. Craig
VIII. The Conftruction and Properties of a nerw Quadratrix to the Hyperbola; by Mr. Perks
IX. Of the Length of Curve Lines; by Mr. J. Craig
X. A general Solution of a Problem (concerning Curves) propofed in the Leipfic AEts, Oct. 1698; by

45
XI. Mr. Leibnitz's Problem (concerning Curves) folved by Dr. B. Taylor 46
XII. T'be Conftruction and Nieafure of Curves; by Mr. C. Maclaurin 51 XIII. A metiood of defcribing all kinds of

Curves by onty giving the Angles and rigbt Lines; by Mr. C. Maclaurin 57 XIV. The Dostrine of Combinations, and Alternations improved and completed; by Major E. Thornycroft
XV. An univerfal Solution (viz. Analytical, Geometrical and Mecbanical) of Cubic and Biquadratic Equations; by Mr. John Colfon 66
XVI. An analytical Solution of Equations of the $3 \mathrm{~d}, 5$ th, 7 th, 9 th, E'c. Powers; 2. by Mr. Abr. de Moivre 77
XVII. I. The Method of Approximating (in extracting the Ronts of Equations in Numbers) improved; by Dr. B. Taylor 80
2. A General Series for expreffing the Root of any Quadratic Equation; by the fame

86
3. A new Metbod of computing Logarithms; by the fame 87
XVIII. 1. A Treatife of infinite Series's, the firft Part; by P. R. de Monmort 90
2. An Appendix on the fame Subject; by Dr. B. Taylor

130
XIX. The Newtonian differential Metbod illuftrated; by Mir. J. Sterling 141
XX. A general Melbod of making Logarithms; by Mr. J. Craig 156 XXI. A new Method of making Logarithms; communicated by Mr. J. Long 160
XXII. A Letter from Monfieur l'Abbé Conti, to Mr. Leibnitz (concerning the Invention of the Metbod of Fluxi-

The CONTENTS.

ons, witb Mr. Leibnitz's Anfwer 162
XXIII. Dr. Taylor's Apology againft Mr.
J. Bernouilli
XXIV. A Vindication of Mr. J. Gregory; by Dr. D. Gregory
XXV. A Paper omitted
${ }_{1} 6_{5}$ XXVI. Accounts of Books, \&c. omitted ib.

C H A P. II.

Opticks.

'S$I R$ Ifac Newton's Experiments on Light and Colours repeated; by Dr. J. T. Defaguliers 173 11. An Experiment to confirm Sir Iface Newton's Doerrine of the Refrangibility of the Rays of Light; by the fame 18 I
III. An univerfal Sphærico-Catoptric Theorem; by Mr. H. Ditton 184
IV. A way for Myopes to ufe Telefcopes without Eye-Glaffes, E厅c. communicated by Dr. J. T. Defaguliers 188
V. Experiments upon Metals with the D. of Orleans's Burning-Glafs; by Monf. Geoffroy

190
VI. Experiments with Monfieur Villette's Burning-Glafs; by Dr. J. Harris, and Dr. J. T. Defaguliers 19^{8}
VII. A Pocket Microfcope; by Mr. J. Wilfon

199
VIII. The Manner of making Microfcopes; by Dr. A. Adams

203
IX. An Account of a Book omitted 205

C H A P. III.

Aftronomy.

1. \bigcircF Caffini's Orbit of Planets; by Dr. Gregory

206
II. The Newtonian Solution of Kepler's Problem demonitrated; by Dr. John Keil

208
III. The Parallax of the Sun to be found, by feeing Venus between the Sun and the Earth; by Dr. E. Halley 214
IV. Of the Maxima and Minima occurring in the Motions of the Heavenly Bodies; by Mr. Abr. de Moivre 220
V. Of a newstar in Collo Cygni, by Mr. G. Kirch

222
VI. A Hiftory of the nere Stars for the laft 150 Years; by Dr. E. Halley 224
VII. Luid Spots or Nebula amongit the fixt Stars; ly - 225
VIII. Of the Cbange of Latitude of fome of the fixt Siars, by Dr. E. Halley 227
IX. Of Mock-funs and circular Arches; by Dr. E. Halley 228
X. 1. Spots obferved in the Sun, in June 1703; by Mr. S. Gray

229
2.-on the fame; by Mr. W. Derham 230
3.-on the fame, 1704; by Capt. Stannyan $\quad 23^{2}$
4.-on the fame, from 1703 to 1708; by Mr. W. Derham
5.-on the fame, from 1508 to 1711;by Mr. W. Derham 240
_Mr. Crabtrie's Opinion of tbefe Spots 241
XI. An Eclipfe of the Sun, June 12, 1694, in New-England; by Mr. T. Bratule 247
XII. An Eclipfe of the Sun, Nov. 23,1703,
in New-England; by the fame 249 XIII. 1. An Eclipfe of the Sun, May 1, 1706, obferved at Greenwich; by Mr. J. Flamitead

249
2.-at Canterbury; by Mr. S. Gray

250
3.-at Horton in Yorkfhire, by Mr.

Abr. Sharp. 251
4.-at Bern in Switzerland, by Capt. Stannyan ibid.
5.-at Geneva; by Mr. J.C. Facio 252
6.- at Marfeilles; by Monficur Chazelles and Father Laval

253
7. -at Zurich, by Dr. J. J. Scheuchzer

254
XIV. An Eclipfe of the Sun, Sept. 3, 1708, at Upminfter; by Mr. W. Derham

255
XV. I. Obfervations on the Total Eclipfe of the Sun, A pril 22, 1715. at London; by Dr. E. Halley
ibid.
2.-Accounts of the fame from abroad 266 XVI. An Ecliple of the Sun, Feb. 19,1718, at Nurenburgh, by M. Wurtzelbau, and at Berlin; by Mr. G. Kirch 268
XVII. An Eclipfe of the Moon at Cambridge New-England, Feb. 11,1700 ; by Mr. T. Brattle
ibid.
XVIII. 1. An Eclipfe of the Moon, Dec. 12. 1703. at Cambridge in New-England; by Mr. T. Brattle 269
2.- on the fame at London; by Mr. J. Hodgfon, with Remarks

271
XIX. An Eclipfe of the Moon, April 5, 1907. at Bofton in New-England; by Mr. T. Brattle ibid.
XX. on the fame at Zurich; by the tve Doctors Scheuchzer's 272 XXI. An Eclipfe of the Moon, Sept. 18 , 1708. at Upminfter; by Mr. W. Derham

275
XXII. The Account of the Moon's Eclipfe at Streatham, Feb. 2, 1709-10. compared with tbe Calculation; by Mr.

H. Crefiener
 ibid.
 XXIII. An Eclipe of the Moon, Jan. 12, 1ク11-12. at Upminfter; by Mr. W. Derham 277 XXIV. An Eclipfe of the Moon, Oct. 30, 1715. at Wanflead; by Mr. J. Pound 278
 XXV. Aftronomical Obfervations for 1711, and 1712, at Greenwich; by Mr. J. Flamftead 28 I XXVI. - the fame for 1713 ; by the fame 291

XXVII. Obfervations of the Occultations of the fixt Stars by the Moon, ufeful for finding the Longitude, with a Catalogue of the Places of the Hyades, E3c. by - 298
XXVIII. An Account of the Caufe of Venus being feen in the Day-time, for Several Days togetber; by Dr. E. Halley 300 XXIX. The Occultation of a Star by the Moon, and an Eclipfe of the Moon following in Nov. 21, 1713; by Mr. F. Blanchini 302
XXX. The Occultation of Jupiter by the Moon, July 14, in the Morning, 1715. at Wanttead; by Mr. J. Pound 303
XXXI. The Occultation of a fixt Star in Gemini by J upiter, Jan. 11, 1717. 304 -and a Tranfit of Mars below the Northern Star in the Forebead of Scorpio, Feb. 5, 1717.305 XXXII. Emerfions of the firf Satellite of Jupiter, in 1713. at Rome; by Mr. F. Blanchini 306
XXXIII. A Tranfit of Jupiter's fourth Satellite over the Disk of the Planet, Feb. 1719. Communicated by Mr. J. Pound

307
XXXIV. Tables for computing the EclipSes of Jupiter's firft Satellite; by Mr. J. Pourd
$30 \$$ * g 2
XXXV.

The CONTENTS.

XXXV. Obfervations on fome of the primary Planets, and the Occultation of a fixt Star, by Jupiter; by the fame 318 XXXVI. A Rectification of the Motions of the five Satellites of Saturn, with Obfervations; by the fame

320
XXXVII. Caffini's Tables of the Motions of Saturn's Satellites corrected 323 XXXVIII. A Collection of Aftronomical Ohfervations, for 1717,1718 ; by

329
-of an Eclipre of the Moon, Aug. 29, 1718, alWanftead; by Mr. J.Pound

334
XXXIX. A Collection of Aftronomical Obfervations, for 1719 ; by - 336 XL. Obfervations on the Comet, 1664 , at Rume; by Mr. J. Ray

$$
\text { XLII.-a Comet, } 1718 \text {, at Berlin; by the }
$$ fame

XLIII. A mall Telefcopical Comet, June 10, 1717; by Dr. E. Halley 344 XLIV. Papers omitted 345 XLV. An Account of a Book omitted ib.

> C H A P. IV.
> Mecbanics, Acouftics.
I. I. Ofind a Solid of the leaft Refi-
ftance; by Mr. J. Craig 346
2. On the fame; by Mr. N. Facio 348
II. To find a Line of the Quickeft Defcent;
by Mr. J. Craig
III. To find the Curve wobich a falling Body would defrribe, \&c. by Mr. J. Machin 351
IV. The Laws of Attraction, Ec. by Dr. John Keill

353
V. Tbe Lawes of the Centripetal Force; by the fame

359
VI. Of the Inverfe Problem of the Lawes of the Centripetal Force, with Re-
marks on Bernouilli; by the fame 367 VII. To find the Centre of Ofcillation; by Dr. B. Taylor

384 VIII. Of the Motion of a Stretcht String; by the fame

391
IX. The Invention of making Clocks to keep Time weith the Sun's Apparent Motion afferted; by Mr. J. Williamfon 394
X. Experiments and Obfervations on the Motion of Sound; by Mr. W. Derham 396
XI. Of the Nature and Properties of Sound; by G. Grandus $\quad 414$
XII. A Paper omitted 423

C H A P. V.
Hydroftatics, Hydraulics.

'OF the Afcent of Water between two Glafs Planes; by Dr. B. Taylor 423
II. The Caufe of the A fcent and Sufpenfion of Water in Capillary Tubes; by Dr.
J. Jurin ibid.
III. The Astion of Glafs Tubes upon Wa-ter and Quickfilver; by the fame 428IV. Of the Motion of running Waters; bythe fame435
V. The Heffian Bellows impros'd; by Mr.D. Papin447
VI. An Account of a Book omitted 449

CHAP. VI.

Geograpby, Navigation.
I. Demonftration of the Number of
Acres, in England; by Dr. N.
Grew
II. The Difference of Longitude between London and Cambridge, in NewEngland; by Mr. J. Hodgfon 45 I
III. The Longitude of the Cape of Good Hope, ξ^{c}. by Dr. E. Halley ib.
IV. Of the Variation at Paraïba, and the Longitude of the Magellan Streigbts, \&c. by the fame

453
V. The Variation in 1706. in the Atlantic, and Æthiopic Oceans; by Mr. J.

Maxwell 455
VI. The Nautical Meridian Line mechanically divided, \&cc. by Mr. J. Perks 456
VII. I. A newo way of drazeing a Meridian Line; by Mr. S. Gray 461
2.- on the fame; by the fame 462 VIII. An Inftrument for finding the Meridian; by Mr. W. Derham

464 IX. Of a Meridian Line drawn througb France, $\delta^{\circ} c$. communicated by Monf. Geoffroy 468
X. A Paper omitted $\quad 469$

C H A P. VII.
Mufic.

'THE Thbory of Mufic reduced to Arithmetical and Geometrical Profortions; by Mr. T. Salmon 469
II. Of the Antient Greok and Roman Lyre, and a Paffage in Horace explained thereby;" by Dr.T. Molyneux 474

The CONTENTS of Vol.IV. Part II.

 The PHYSIOLOGICAL Papers.C H A P. I.
Pbyjiology, Meteorology, Pneumatics.

I. Scale of the Degrees of Heat; by-
II. An Account of Dr. Hook's Marine Barometer; by Dr. E. Halley
III. A new Barofcope; by Mr. Cafwell 6
IV. A newe Thermometer; by Monfieur Geoffroy
V. The Caufe of the Variation of the Barometer, E®c. by Dr. J. T. Defaguliers ib.
VI. Experiments made with the Barometer inSwitzerland; by Dr. J. J.Scheuch.
VII. Zer Obervations on the Weather, Ec. in ${ }^{16}$ a Voyage to China, 1700; by Mr. J. Cunnigham 18 VIII. A Regifer of the Weather, 1700 at Chufan in China; by the fame -26
IX. A Regifer of the Weather, for 1692 in Elfex; by Mr. J. Locke 4^{8}
X. I. Obfervations on the Weather, Rain, Winds, E'c. for 1699, 1700,1701 , 1;02; by Mr. W. Derham

The CONTENTS.

2.- on the fame for 1703,1704 ; by the fame
3.-on the fame for 1705 ; by the fame 74
XI. Tables of the Barometrical Altitudes, \&xc. for 1708. at Zurich in Switzerland; by Dr. Scheuchzer; and of tbe Rain at Pifa in Italy, by Dr. Tilli, Zurich, by Mr. Scheuchzer, and at Upminfter, for 1707,1708 . with Remarks, by Dr . W. Derham

77
XII. The Quantity of Rain at Upminfter for 18 rears, compared with the Rain at Paris; by Mr. W. Derham 100
XIII. A Storm of Rain at Denbigh in Wales; by

101
XIV. 1. A Water-Spout obferved in the Downs; by Mr. P. Gordon 103
2. Spouts in the Mediterranean; by Dr. A. Stuart ib.
3. A Spout in Yorkfhire; by Mr. Abr. de la Pryme 106
4.-Anotber; by the fame 107
5. Another in Lancafhire; by Dr. R. Richardfon 108
XV. Of a Storm of Hail in Yorkfhire; by Mr. R. Thorefby

109
XVI. 1. Obfervations on the great Storm, Nov. 26, 1702 ; by Mr. W. Derham ib. 2.-on the fame in Suffex; by Mr. J. Fuller

112
3.-on the fame; by Mr. Leuwenhoek ib.
XVII. The Hiftory of the great Froft, 1798 ; by Mr. W. Derham

113
XVIII. 1. Strange Efferts of Thunder and Lightning is Ireland, comnunicated by Mr. S. Molyneux
2. Thunder and Lightning at Ipf. wich; by Mr. O. Bridgman 128
3. -The Effecis of the jame at Colchefter; by Mr. J. Nelion 129 4. Tbunder, and Ligbtring, and Rain, in York ©hire; by Mr. R. Thorefy 130 5.-in York fhire; by the fame 131 6.-is Devonfhire, by Nir. J. Cham-
berlayne
ib.
XIX. A Fiery Meteor, Sxc. in Jamaica; by Mr. H. Barham ib. XX . A Lunar Rainbow in Derby fhire, communicated by Mr. R.Thorefby 132 XXI. A Glade of Light in the Heavens, 1706; by Mr. W. Derham 133 XXII. A Pyramidal Appearance in the Heavens, 1707; by the fame ib. XXIII. A Metcor in Yorkfhire; by Mr. R. Thorefby 134 XXIV. I A A trange Meteor, or Aurora Borealis in Ireland, 1707; by Mr. Neveib. 2.-Another 1706, communicated by Mr. W. Derham

135
XXV. An Account of feveral extraordinary Meteors; by Dr. E. Halley ib.
XXVI. 1. An Account of Lights, E^{2}. Jeen in the Air, March 6, 1715-16; by Dr. E. Halley 139
2.- Of the fame feen on the Ocean 151
3.-a Return of the fame 152
XXVII. 1. Two Northern Aurora's in

Kent, 1717; by Mr. E. Barrel 153 2.-one of them feen at London; by M. Folkes, E/q;

154
XXVIII. An Account of an extraordinary Meteor, March 19, 1718-19; by Dr. E. Halley 156
XXIX. I. Of an extraordinary Aurora Borealis, Nov. 10. 17 19; by Dr. E. Halley 163 2.- of the fame in Devon/hire; by W. Maunder 164
3.-Of the fame at Dublin; by- 165
XXX. An Aurora Borealis, Dec. I I. 1719 in Surrey; by Mr. T. Hearne 167
XXXI. Of Northern Aurora's feen abroad; by Dr. T. Robinfon

168
XXXII. Experiments on the Motion of Pendulums in Vacuo; by Mr. W. Derham ib.
XXXIII. s. Gunpowder fir'd in Vacuo; by Mr. F. Hawkfbee

171
$2-16 e$

The CONTENTS.

2. - the Quality of the Air produc'd by XXXVI. 1. Experiments to find bow Gunpowder; by the fame Page 172 XXXIV. The Defcent of Malt-Duft in Vacuo; by the fame

173
XXXV. An Experiment to prove an Interfperfed Vacuum; by Dr. J. T. Defaguliers
much the Refiftance of the Air relards Falling Bodies; by the fame 175 2.-Some farther Experiments on the fame Subject; by the fame 178 XXXVII. Papers of Mr. Hawkfbee's omitted 180

'OF the Lake Vetter, in Sweden; by Dr . U. Hearne
Dr. E. Halley
188
III. Of an Eruption of Waters in Yorkfhire; by Mr. R. Thorefby 192
IV. Of Inundations in Ireland; by Mr. Neve 193
V. Of the Lake Lough-Neagh in Ireland; by $M r$. F. Nevills ib.
VI. The Eruption of a Burning-Spring in Shropfhire; by $M r$. R. Fiopton 195 VII. Of a Chalybeat Water at Canterbury; by Dr. Sc. des Moulins $\quad 196$ VIII. An Examen of the Spaw Waters; by Dr. F. Slare 198 IX. Of the Nature and Vertues of the Pyrmont Waters; by the fame 201 X. Accounts of Books omitted 204

C H A P. III. Mineralogy.

1. THE way of Colouring Marble;
II. A 2uarry of Marble in Ireland; by Mr. F. Neville 206
III. A Colliery blown up near Newcaftle, communicated by Dr. A. Charlett ib.
IV. I. An Eruption of Mount Vefuvius in 1707 ; by the Hon. J. Valetta 207
2.-otber Eruptions in 1717; by Mr. E. Berkely 209
V. An Earthquake in the North of England, 1703; by Mr. R. Thorefby 211
VI. i. Of Subterraneous Trees in HatfieldChace; by Mr. Abr. de la Pryme 212
2. - on the fame Subject; by the fame 218
VII. Subterraneous Trees ai Dagenham in Effex, by Mr. W. Derham 219
VIII. I. Strange Bones dug up near Can-terbury-And of an Inthmus between Dover and Calais; by Mr. W. Somner
3. -on the fame; by Dr. J. Wallis 227
3.-on the fame Subjeef; by the fame 233
4.-on the fane-by the fame
IX. 1. An Account of large Teeth dug up in Ireland; by Mr. F. Neville ${ }^{236}$ 2.-Remarks on them; by Dr. T. Molyneux 237 3.- Further Remarks; by Dr. E. HalX. An Account of large Bones found near Colchefter; by Mr. J. Luff kin 245 XI. I. Coins, ξ° c. found under Ground in Lincolnfhire; by 246 2.-A Remark; by Mr. R. Thorefby 248
XII. Of an uncommon Sinking of the Earth in Kent; by Mr. J. Sachette ib. XIII. Part of a Hill Sinking doren in Ireland, communicated by the Bi/hop of Clogher

250
XIV. Of the funk Ifland in the Humber recover'd from the Sea; communicated by M. J. Chamberlayne ${ }^{251}$ XV. Of the Sinking of three Oaks into the Ground in Norfolk, communicated by Mi. P. le Neve

The CONTENTS.

XVI. I. Of the Moffes, $\xi^{\circ} c$. in Scotiand; by the Earl Cromerty Page 253 2.-On the fame; by Sir Hans Sloane 256 XVII. Of the Strata in Coal Mines; by J. Strachey, Efq; 260 XVIII. 1. Of the Foffils, $\varepsilon^{2} c$. of Reculver Cliff; by Mr. S. Gray 263 2. - A Remark; by Sir Hans Sloane ib. XIX. 1. Some Remarks on Foffils; by Mr. E. Lhuyd

264
2. Of Harwich Cliff, and its Foffils, by Mr. S. Dale
ib.
XX. An Account of Land and River-fhells found under Ground; by Mr. J. Morton

270
XXI. An Account of the Skeleton of an Animal imprefs'd in Stone; by Dr.
W. Stukeley
XXII. Of Cryftal, Iron and Copper Ore; by MIr. R. Thorefby 274 XXIII. Of the Luminous Qualities and Electricity of Amber, Diainonds, and Gum-Lac; by Dr. Wall 275
XXIV. A Ireatije on Amber; by Fatber G. J. Camelli

279
XXV. I. Of the Lapis Afbetus, and the Way of making the incombuftible Cloth; by J. Campani 282
2.-Afbettus in Scotland; by Mi. J. Wilfon

283
3.-the jame; by Mr. P. Blair 285
XXVI. Papers omitted ib.
XXVII. Accounts of Books omitted 286

C HAP. IV.
Magnetics.

' OF the Invention and Improvements of the Mariner's Compafs; by Dr. J. Wallis 286 II. 1. Magnetical Experiments and Obfervations; by Mr. W. Derham 290
III. I. Experiments concerning the Proportion of the Power of the Loadftone at Different Diftances; by Mr. F. Hawk fbee
2. - Anotber Experiment on the Jame; by Dr. B. Taylor

297

C H A P. V.

Agriculture, Botany.

'F the Manuring Lands by Sea-1
Shells in Ireland; by the Lord Arcbbibop of Dublin 298
II. Of the Manuring Lands by Sea-Sand in Devonfhire; by Dr. A. Bury 301
III. Obfervations relating to the Motion of the Sap in Vegetables; by Mr. R. Bradley 302
IV. Of the Parts and Ufe of the Flower in Pisints; by Mr. S. Moreland 305 V. Of the quick Propagation of Moldinefs in a Melon; by Mr. R. Bradley 308
VI. Of the Hulbanary of Canary-Seed, by Mr. E. Tenifon

309
VII. Experiments on Vegetation; by Mr. Abr. de la Pryme

310
VIII. The great and Speedy Vegetation of Tuinips, commznicated by J. T. Defaguliers

311
IX. Of the Culture of Tobacco in Ceylan; by Mr. Strachan 312
X. Of a Tartarian Plant called Gin-feng or Ninzin; by Fatber Jartoux ${ }^{11} 4$
XI. A raliaftrum, a new Genus of Plants (of robich Gin-feng is a Species) communicated by Monjieur Vailiant to Dr. W. Sherard

319
XII. Of a new Plant from Brafil called Iquetaia; by Monfieur Marchand 321
XIII. Of the Atmella, and its Litbontriptic Vertue; by Dr. P. Hotton 322
XIV. Of the Jefuits Bark; by Dr. W. Oliver

323
XV. Of a new Kind of Walnut-Tree; by Monficur Reneaunse
ib.
XVI. Papers omitted 325

XV11. Accounts of Books omitted
326
THE

THE

1
ONTEOF
VOLUME V. PartI.
C H A P. I.
Zoology, and the Anatomy of Animals.
I. I.

0N Man's feeding on Flefh, and of Carnivorous Animals; by Dr. J. Wallis
P. 1
2. On the fame; by Dr. E. Tyfon

4
3. On the fame; by Dr. J. Wallis

1I. Infects in Spain, by Dr. J. P. Breynius
III. Infects in the Barks of Elms and A fhes; by Sir Matth. Dudley
IV. Worms in Heads of Sheep; by Mr. J. Thorpe
V. Obfervations on Silk-Worms, and their Silk; by Mr. H. Barham.

19
VI. On the Silk of Spiders; by Monf. Bon
VII. The Pediculus Ceti; by Sir R. Sibbald
VIII. I. Obfervationson the Death-Watch; by Mr. W. Derham 26
2. The Hifory of that Infect; by the fame
IX. Of the Migration of Birds; by the fame
X. Strange Birds in Wales ; by Mr. E. Lhuyd
XI. Of a Puppy receiving no Nourifhment at the Mouth; by Mr. S. Brady ib.
XII. A Monftrous Calf; by Dr. A.Adams ibid.
XIII. The Head of a Monftrous Calf; by Mr. J. Craig 35 XIV. Yellow Gurnard defrib' d; by Dr. E. Tyfon ibid. XV. Experiments with Poifons on Animals; by W. Courten, Efq; 3^{8}
XVI. Of the Contagious Difeafe among $/ \mathrm{t}$ the Cows, 1714. Communicated by Mr. T. Bates
XVIII. Hydatides inclos'd in a StonyCruft in a Sheep's Kidney; by Mr. W. Cowper
XIX. The Bones of a dead Foetus taken out of the Uterus of a Cow; by Mr. B. Sherman ibid.
XX. The Defcription of the Wood-pecker's Tongue; by R. Waller, Efq; 55 XXI. The Natural Hifory of the Flaminso; by Dr. J. Douglas

The CONTENTS.

XXIV. On the Parts of Generation in aFemale Elephant. And Microfco-pical Obfervations on the Skin; by Mr.Lewenhoeck 167XXV. A Male Opoffum diffected; by Mr.
W. Cowper 169
XXVI. Obfervations on the Opoffum 177 And a new Class of Terreftrial Brute- Animals, by Dr. E.. Ty fon 178
XXVII. Papers omitted 183
C H A P. II.
ANATOMY, DISEASES. A general Paper, and of the Skin.

1. O
Dfervations in a Courfe of Ana
tomy of Marchett's at Padua;

by Mir. J. Ray
184
II. Of an unufual Blacknefs in the Face;
III. The Itch caufed by Animalcules; by Dr. Bonomo
ibid.
IV. Accounts of Books omitted

> C H A P. III. The Head.

1. \triangle Experiment to difcover the Caufe of the Motion of the Dura Ma-
ter; by Dr. H. Ridley
201
II. A Bone taken from the Falx of the

Dura Mater, Ěc. by Mr. Chefelden
204
III. The Optic Nerve wafted; by the fame
ibid.
IV. Of a remarkable Fracture of the Scull; by Mr. C. Amyand ib.
V. A Bullet lying in the Head near thirty Years; by Dr. R. Fielding 205
VI. Obfervations on the Strueture of ant Human Ear; by Dr. A. Adams 206
VII. Obfervations on Incifions on the Cornea; by Dr. Gandolphe
ib.
VIII. An Uncommon Kind of Convulfions; by Dr. J. Freind 208
IX. Strange Epileptic Fits; by Dr. C. Leigh 211
X. An extraordinary Apoplectic Cafe; by Dr. A. Adams 212 XI. Accounts of Books omitted 213

C H A P. IV.
The Neck, the Thorax, the Heart.
I. \triangle Large Tumour in the Neck, with a Bony Subftance; by Dr. J. Douglas 213
II. A Tunour in the Neck full of Hydatides; by Mr. A. Hewnden

216
III. A frange Cancer, by Mr. J. Ray
IV. Of an extraordinary Wen cut of the Cheek. Communicated by D. T. Bower ibid. V. A Scirrhous Tumour in the Breaft; by Mr. T. Greenhill 219 V1. A Scirrhous Tumour, included in a Cytis,

The CONTENTS.

Cyltis, in the Breaft ; by Mr. R. Ruffel
VII. A Polypus in the Vena Pulmonalis. And the Structure of that Veffel; by Mr. W. Cowper

221
VIII. A Diffection of a Perfon who died of an Afthma; by the fame

222
IX. 1. An Apoftemation of the Lungs cur'd ; by Dr. J. Wright

223
2. On the fame; by Mr. W. Cowper 227 X. Of the Left Vencricle of the Heart pro-
digioufly Diftended; by Dr. J. Dou-
glas
235
XI. Trvo Cajes of a Dropiy; by Mr. W. Chefelden 233
XII. The Vena Azygos inferted into the Right Auricle, E8c. by the fame ib.
XIII. i. Of the Force of the Heart; by
Dr. J. Jurin
ibid.
2. Anfwer'd by Dr. James Keill $24 \uparrow$
3. Defended; by Dr. J. Jurin 247
XIV. A Paper omitted 253?
XV. An Account of a Book omilled. it.

C H A P. V.

The Abdomen.

'F the Secretions in an Animal Body; by Mr. S. Moreland 254
II. Of the Glands in the Human Spleen; by Dr. J. Douglas

256
III. Two, and three Spleens found in one Body; by Mr. W. Chefelden 257
IV. Of an Ulcer in the Rigbt Kidney; by Dr. J. Douglas ibid.
V. 1. Of Poreder'd Blue pafing the Lacteals ; by Dr. M. Lifter
2. On the fame; by Dr. W. Mufgrave ibid.
VI. A Dijeafe caus'd by fwailowing Pebble Stones; by Sir Ch. Holt 260
VII. r. The Mijchiefs from Swallowing the Stones of Fruit ; by Mr.H. Vaughan 261
2. A Plumb-Stone in the Guts for thirty Years; by Mr. J. Yonge ibid.
3. Inflances of the Mijchiefs from Plumb Stones ; by Sir Hans Sloane 26_{4}
4. Anotber Cafe; by Mr. R. Thorelby 265
5. Another by Dr. Holbrooke
ib.
6. On the fame ; by Dr. W. Cole 266
7. Another Cafe of the Stones of Bullace and Sloes; by Mr. W. Derham 267
VIII. An unufual Colic; by Dr. Davies 268
IX. Of a Cbild witb the Inteftines, ξ° c. in the Thorax ; by Sir Ch. Holt 169
X. An extraordinary Effect of the Cholic; by Mr. St. Andrè 270
XI. A Difection of a Perfon tbat died of the lliac Paffion ; by Mr. H. Vaughan 272
XII. The Inteftines grown Cartilaginous; by Dr. A. Mefaporitus
XIII. I. Of an extraordinary Coftive. Perfon; by Mr. B. Sherman ib.
2. A Remark on tbis Cafe; by Mr. W. Cowper

274
XIV. A Diffection of a Cbild Emaciated; by Dr. P. Blair

275
XV. A Piece of the Gut of a Dog cut out, and cur'd ; by Mr. J. Shipton ib.
XVI. Nails, Keys, \&rc. found in the Stomach of an Idiot; by Mr. C. Amyand 278
XVII. Of a Stone voided by Stool, wobich bad obftrukted the Duttus Communis Bilarius; by Dr. W. Mufgrave 279
XVIII. An Account of a Ball voided by Stool; by Mr. R. Thorefby 280 * h_{2} XIX. Of

The CONTENTS.

XIX. Of Hydatides voided by Stool ; by Dr. W. Mufgrave 28 I
XX. Of Hydatides voided with the Urine; by Dr. Davies
XXI. I. Of a Bunch of Hair voided withb the Urine; by $M r$. J. Yonge 284
2. Obfervations on the Bunch of Hair; by Mr. Lewenhoeck ibid.
3. Replied to; by Mr. J. Yonge 285
XXII. Of feveral folid Bodies voided with the Urine; by the fame

286
XXIII. Of two large Stones voided by the Urethra; by Dr. T. Bullen 288
XXIV. Of a Diffection of a Perfon that died of the Stone ; by Mr. R. Thorefby ibid.
XXV. Experiments relating to the Cure of the Stone; propos'd by Dr. F. Slare 289
XXVI. of a Triple Bladder; by $M r$. Buffiere
ibid.
XXVII. 1. A Dropfical Body diffected; by Mr. J. Lafage 291
2. Another; by Mr. H. Vaughan ib. XXVIII. An Hydropical Cafe, weith the Gall-Bladder very much diftended; by Mr. J. Yonge

291, 292
XXIX. A prodigious Dropfical Woman (fuppofed to bave continued many Years with Cb̄ild) diffecited; by Dr. Hollings
XXX. Of an Hydrops Ovarij, with a Figure of the Glandulæ Renales, and Uterus, in a Puerpura; by Dr. J. Douglas

294
XXXI. Of Ealls of Hair taken from the Uterus and Ovaria of Women; by Mr. J. Yonge 300
XXXII. Of the Diffection of a Puerpera; by Dr. P. Silvettre

303
XXXIII. Of the greateft Part of a Fœetus voided by the Navel; by Mr. C. Birbeck

305
XXXIV. The Bones of a Fcetus voided tbrough an Impofthume in the Groin; by Sir P. Skippon 306
XXXV. Of Extra-Uterine Fretus's; by Mr. J. Yonge ibid. XXXVI. I. A Monftrous Birth; by Mr. R. Taylor
2. Anotber in Ireland; by Mr. Neve ib. XXXVII. I. A Child crying in the Womb; by Mr. W. Derham 310
2. On the fame; by the fame ib.
XXXVIII. Of a Womran who bad the Small-Pox, delivered of a Child baving the fame Diftemper; by Mr. W. Derham
XXXIX. The Human Allantois difcovered; by Dr. R. Hale

314
XL. An Account of a Book omitted 324

C H A P. VI.

The Humours and general Affeciions of the Body.

'AN Account of the Difection of a Morbid Body; by Mr. W. Cowper II. Experiments relating to the Specific Gravity of Human Blood; by Dr. J. Jurin
III. Figures of the Veins and Arteries (prejented to the R. S. by Mr. Evelyn)
explain'd, with feveral Anatomical and Chirurgical Obfervations; by Mr. W. Cowper 334
IV. Offifications in the Coosts of the Arteries; by the fame 347
V. An Anatomical Account of Old Bayles (Juppos'd to bave been 130 Years old) by Dr. James Keill
VI. 1.

The CONTENTS.

VI. 1. A firange Hamorrhage; by Mr. E. Monginot

355
2. An Eruption of Blood from feveral Parts of the Body; by Dr. A. Mefaporitus
35^{6}
VII. An extraordinary Periodical Hemorrhage in the Thumb; by Dr. W. Mufgrave

359
VIII. A Woman rebo bad the Menfes till feventy Years of Age; by Mr. J. Yonge
IX. Of a Perfon who bad a new Set of Teerh after eigbty Years of Age, and of the Virtues of Sugar ; by Dr. F. Slare
[353]
X. An extraordinary Sleepy Perfon; by Dr. W. Oliver
XI. A great Quantity of Opium taken reitbout caufing Sleep
[357]
XII. A Deaf and Dumb Perfon recovering bis Speech and Hearing after a Fever; by Mr. M. Martin
XIII. An Account of a Woman who bad
lain fix Days in the Snow, weitbout any Nourifhment ; by Mr. Bowdich [358]
XIV. A prodigious Scurvy at Paris, 1699 ; by Monf. Poupart [359]
XV. Of a Calenture; by Dr. W. Oliver 364
XVI. 1. A remarkable Cafe of the Hydrophobia; by Mr. Abr. de la Pryme 366
2. Three Cafos of the Hydrophobia; by Dr, R. Mead

367 XVII. I. The Hiftory of the Inoculation of the Small-Pox; by Dr. E. Timoni 370
2. On the fame, by Dr. J. Pylarinus 377 XVIII. Remarks on the Plague at Copenhagen, 1711 , communicated by Mr . J. Chamberlayne 3^{81}
XIX. Of the Antiquity of the Venereal Dijeafe; by Mr. W. Beckett

382
XX. Accounts of Books omitted 3^{86}

C H A P. VII.

The Bones, Foints, and Mufcles.

'HO R N-like Excrefcencies on the Fingers; by Dr. R. Wroe by $M r$. W. Chefelden
III. I. A Callus, fupplying the Lofs of Part of the Os Femoris; by Mr. B. Sherman

388
2. 1 Callus, fupplying the Lofs of Part of the Os Humeri; by Mr. J. Fawler ib. IV. An Obfervation on a Fracture of the Neck of the Thigh-Bone; by Dr. J

Douglas
ib. V. A large Tumour on the Thigh ; by Mr. C. Amyand $\quad 389$
VI. 1. Afirange Gangrene on the Thigh; by Mr. Calep ib.
2. On the fame; by Mr. W.Cooper 390 VII. I. Obfervations on the Fibres of the Mufcles, by MIr. Lewenhoeck ib.
2. The Texture of the Mufcles; by Mr.Muys

393
VIII. Accounts of Books omitted $\quad 394$

C H A P. VIII.

Pbarmacy, Cbymiffry.

1. 2. Problem, to find the true Dofes of cines, propos'dby Dr. W.Cockburn 394
1. Solv'd by the fame

395
3. The Practice of thofe Medicines, zerith Tables of the Dores; by the fame 397
II. The Principles of Purgatives ; by Mons. Bolduc 403
III. Of the Root Pareira Brava; by Dr. Heivetius 404
IV. Of the Internal UJe of Cantharides; by Mr. J. Yonge
$\stackrel{405}{V}$

The CONTENTS.

V. Obfervations on the Taftes, and Virtues of the Plants of the Sweet Clafs ; with Remarkson Monf. L'Emery's Chymi-cal Analy fis of them ; by Sir J. Floyer

V1. The Manner of making Styrax Liquida,

 communisated by Mr. J. Petiver 417VII. Of the Indian Varnifh; by Dr.J. del Papa
ib.
ib.

XI. An Account of a Book omitted 435
IX. Obfervations on the Diffolutions and 420 Fermentations, which may be call'd Cold ; by Monf. Geoffroy 421
X. Dr. J. Freind's Defence of bis Chymical Leetures 428

The CONTENTS of Vol. V. Part II.

C H A P. I.
Manufcripts, Printing.

Printing, to 1465 ; by $\quad 12$ 3. On the fame; by Mr. J. Bagford 18 4. An Account of Mr. Bagford's Colo lection for an Hiftory of Printing; by $M r$. H. Wanley
C H A P. II.Cbronology, Hiftory, Antiquities.
${ }^{1} \cdot \mathrm{~T}$
HE Rule for finding Eafter; by
R. Thornton, Efq; communi
cated by R. Thorefby
2. Explanation of the Rule for finding Eafter ; by Mr. J. Jackman ib.
II. An Account of Norman Coins found at York; by Mr. R. Thoreby $\quad 30$
III. An Account of fome Swedifh Coins ; by the fame
ib.
IV. Pewter Money Coin'd by the late King James in Ireland; by Mr. T. Putland

31
V. Roman Antiquities near the Devizes in Wilthire ; by Mr. J. Clarke ib.
VI. Roman Coins found in Yorkfhire; by Mr. R. Thorefby
VII. Roman Coins near Edlington in

York hire; by the fame
VIII. A Roman Votive Momument at York; by the fame 35
IX. 1. The Veftigia of a Roman Town at Adell in York fhire; by the fame 37
2. Roman Monuments at Adell; by the fame

40
X. A Leaden Coffin found in a Roman Burying-place at York; by the fame 41
XI. Two Roman Infcriptions at York, proving that the Ninth Legion refided there; by the fame ib.
XII. Remarks on a Fragment of a Roman Inficiption in the North of England; by- 43
XIII. 1. A Roman Inscription at Caerleon; by Mr. W. Rice

The CONTENTS.

2. Conjectures on it ; by Dr. J. Harris 44
XIV. Roman Infcriptions and Antiquities in York Thire ; by Mr. C. Hunter ib. XV. Antiquities at Corbridge in Northumberland ; by Dr. H. Todd 47
XVI. 1. A Roman Infcription, near Lanchefter; by Dr . C. Hunter

49
2. Remarks on the fame; by R. Gale, Efq;
XVII. Roman, French, and Irinh Infiriptions, and Antiquities, in Scotland and Ireland ; by Mr. E. Lhuyd 57
XVIII. The Various Reading of an Etrufcan Infoription on a Statue of Tages, E®c. by Dr. G. Hickes

58
XIX. A Pagan Temple, and unknown Characters at Cannara in Salfet; by Dr. A. Stuart
XX. i. A Roman Sudatory at Wroxeter in Shropfhire ; by Mr. T. Lyfter 6I
2. On the Jame ; by Dr. J. Harwood 62
3. Of the Hypocaulta of the Ancients; by. Mr. W. Baxter
ib.
XXI. A Mofaic Work at Leicefter; by Mr. S. Carte 63
XXII. Of a Teffelated Pavement, and other Roman Antiguities near EatBourne inSuffex; by Dr. J. Tabor ib. XXIII. Of the Situation of the Ancient Carteia, and olber Roman Towens near Gibraltar; by J. Conduitt, E/q; 83 XXIV. Urns, and Sepulchral Monuments in Ireland ; by Mr. F. Neville 95 XXV. Urns in Norfolk, Communicated by Mr. P. le Neve 97
XXVI. 1. Ancient Brafs Inftruments in Yorkmire; by Mr. R. Thorefby 98
2. A Dijcourje on thein; by Mr. T. Hearne

99
XXVII. Ancient Trumpets, Ξ^{2}. in Ireland; by Mr. F. Neville 109
XXVIII. Papers omitted Iro
XXIX. Accounts of Books omitted ib.

C H A P. III.
 Travels, Vojages.

'OBervations in Natural Hiftory in Shrophire ; by Mr. G. Plaxton II 2
11. Obfervations in Natural Hiftory in Yorknire ; by Dr. R. Richardfon 115
III. 1. Obfervations in Natural Hiftory, Ecc. in Wales; by Mr. E. Lhuyd in 7 2, 3, 4, 5, 6. Furtber Obfervations; by the fame

118, 120
IV. Obfervations in Natural Hiftory, \mathcal{E}° c. in Scotland ; by the fame

123
V. 1. Obfervations in Natural Hiftory, and Antiquities in Ireland; by the fame

125
2. Furtber Obfervations; by the fame 126
VI. Medical Obferyations in Scotland; by Mr. M. Martin

127
VII. Remarkables in a fourney tbrougb Denmark and Holland; by Dr. W. Oliver

128
VIII. Remarkables in feveral Parts of Europe ; by Mr. C. Ellis

134
IX. 1. Obfervations in Italy ; by Dr.J.P. Breynius 136
2. Remarks on a Manufcript, Eci. from Schethammer 140
X. Obfervations about Rome and Naples; by Dr. T. Robinfon 142
XI. A Fourney to the Top of Pike Teneriffe; by Mr.J. Edens

148
XII. The Icy Mountains in Switzerland; by W. Burnet, Efq; 153
XIII. An Account of the Cape of Good Hope ; by Mr. J. Maxwell .3 ib. XIV.

The CONTENTS.

XIV. Extraits of Letters from New-England; from Dr. C. Mather 159 XV. Of the Branrines in the Indies; by Mir. J. Marfhal
XVI. An Account of the IFand of Cluyan in China, and of the Chinefe; by Mr . J. Cunningham

171
XVII. The Way of taking and taming Elephants in the I/Rand of Ceilan; by Mr. Strachan $\quad 176$
XVIII. The Ways of catching Forol and Deer in Ceilan, $\mathcal{E}^{\circ} c$. by the fame 179
XIX. Objervations on Corals, Rubies, \&c. and the Gods of the Ceilanere; by the fame 18 I
XX. Of the Mechanic Arts and Pbyic of the Indians, in a Letter from Bengal;
by Fatber Papin
182 XXI. 1. Of the Difcovery of the New Philippine Iflands; by Fatber P. Clain 8_{5}
2. On the fame; by Father LeGobien 189 XXII. Of a Paflare by Land to California, and a Defcription of that Country ; by Fr. Maria Picolo 191
XXIII. I. Of a New Inand rais'd out of the Sea, May 12, 1707, in the Archipelago; by Dr. W. Sherard 196
2. From the Paris Gazette ib.
3. By Monf. Bourguignon 197
4. By Fatber Goree

201
XXIV. Of Luminous Appearances in the Wakes of Ships in the Sea; by Father Bourzes

213
XXV. Accounts of Books omitted $\quad 215$

> C H A P. IV. Mifcellaneous Papers.

'A
N Attempt to find the Age of the World, by the Encrease of the Saltnefs of the Sea; by Dr. E. Halley 216 II. Two Deaf Perfons, who underfand what is faid to them by the Motion of the Lips; by R. Waller, Efq; 219
III. Of a Perfon that could neither write nor read, yet could caft up Sums zwith great Exactuefs ; by Mr. J. Locke ib. IV. A remarkable Skin of a Fiih's Stomach; by Mr. R. Thorefby 220
V. 1. Microfcopical Obfervations on Green Weeds in Water, and the Animalcula found with tbem; by Mr. Lewen, hoeck
ibid.
-2. Remarks on the foregoing Obfervations, Communicated by Mr. C. 225
3. Furether Obfervations; by the rame 227
84. Microfcopisal Remanks and Obfer-
boo enitions; by Communicated by Sir
C. H,
. VIX
5. Of Microfcopes, Esc. by Mr. Lew. enhoeck

238
VI. Of the Regularity in the Births of both Sexes; by Dr. J. Arbuchnot 240
VII. Rules for Correcting the Common Computations of Interelt ; by Mr. T. Watkins

243
VIII. A Solution of a Problem of Mr. de Moivre's, in bis Treatife of the Value of Chances; by Mr. N. Bernouilli 255
IX. A Neru Syftem of the Paffage of the Drink and Urine; by Monf. Morin, (a Paper over-look'd) 264
X. Two Anatomical Objervations, (overlook'd) by Mr. W. Chefelden 266
XI. Papers omitted ibid.

XH. Papers of Lewenhoeck's omitted ib. XLII. Accounts of Books omilted 267

A N

Alphabetical Index OF THE

Names of the AUTHORS;

WHEREIN

The Numeral Letters diftinguifh the Volumes, ii. denotes the fecond Part, (in the IVth and Vth Vols.) and the Figures fignify the Pages: The Numbers following immediately after the Names, or without any Marks, direct to the Papers Abridg'd and Inferted; thofe after *, to the Titles of Books; and thofe after ${ }^{* *}$, to the Titles of the Papers Omitte d

MR. E. A. III. 526. Mr. R. A. I. 539.
David Abercromby, M. D. *II. 230.
F. Chriftopher D'Acugna, * III. 634.

Dr. Archibald Adams, IV. 203. V. 34, 206, 212.

William Aglionby, Efq; F. R. S. II. 760.
Albatenius, * I. 454.
Ulyfles Aldrovandus, * II. 253.
Alhazen, I. 172.
M. Didier l'Alleman, Mafter Watch-maker at Paris, I. 223.
Benjamin Allen, M. B. II. 772, 788, 841. III. 307. * II. 366.

Thomas Allen, M. D. F. R. S. III. 301:
M. J. B. Alliot, Confeiller du Roy, Medecin Ordinaire de fa Majefté, go de la Baftile. * III. 223.

Johannes Baptifta Alprunus, M. D. and Phyfaciang of the Houfoold to the Empress Eleonora. III. 270.

Claudius Amyand, E/q; F. R.S. V. 204, 278, 389.

Mr. Robert Anderfon, * I. 126.
Monf. St. André, V. 270.
F. Stephanus de Angelis, a Venetian, *I. 125, 455.

Don Anthelm Cartbufian of Dijon, * I. 456.
Apollonius Perg. *I. 124.
John Arbuthnot, M. D. F. R. S. V. ii, 240.
Archimedes, * $\mathrm{I}_{{ }^{*}{ }_{\mathrm{i}}} 125$.

An INDEX of the Authors Names.

M. Chr. Amold, Ecclefafies E P. P. Nurub. III. 14.

Jofephus de Aromatariis, Favorni F. * II. 757.

Dr. St. George Afh, Lord Bißbop of Cloyne, I. 8, 295, 366. II. 9, 143, 464, 644. III. 12, 227, 248.

Francis Afton, E/q; F. R. S. III. 357.
M. Adrian Auzout, I. 199, 200, 224, 280, 298, $436,437,43^{8}$. II. 611,829 . III. 446. *I. 456. ** I. 453.

B.

SIR R. B. I. 502.
K. B. *II. 254 .
W. B. of London, Goldfmith, * II. 603.
J. B. * II. 755 .
F. Jacques Paul Babin, a Fefuit, II. 289.
C. Gafper Bacherus. * I. 125.

Capt. William Badily, II. 143.
Mr. John Bagford, V. ii. 18.
Mr. Thomas Baker, Reczor of Bifhop-Nympton in Devonfhire, I. 126.
Philippus Baldxus, a Dutch Minifter, * III. 633.

Chriftianus Adolphus Balduinus, ** III. 370.
Mr. William Ball, I. 366. II. 161.
Mr. Ballard, II. 608.
Mr. John Banifter, II. $647,789,825,826$. **III. 63 I.
Alonza Barba, II. 600.
S. Gieronymo Barbato, Publick Profeflor of PraEtical Phyfick at Padua, and Phyjician at Venice, * III. 230.
Paul Barbette, III. 22.
Henry Barham, Efl? F. R. S. IV. ii. 13i. V. 19.
19.
Jacobus Barnerus, Ph. E Med. D. * III. 22. 372.

Ifaac Barrow, D. D. Mafier of Trinity-College, Mathem. Profelf. Lucaf. and R. S. S. * I. 124, 126. ** III. 531.

Erafmus Bartholinus, *I. 126,456 . * II. 255 , 603.

Thomas Bartholinus, * II. 253, 918. III. 22, 632.

Cafpar Bartholinus Thom. F. III. 59, 86. * II. $255,9^{18}$. * III. 228.
Petro Sancto Bartoli, * III. 532.
—— Bate, M. D. ${ }^{*}$ III. 371.
Thomas Bates, Efq; F. R. S. V. 4^{8}
Mr. William Baxter, V. ii. 62.
Francifcus Bale, M. D. III. 222. * III. 229.
Edward Baynard, M. D. III. 149, 260.
John Beal, D. D. Recfor of Yeovil in Somerfet-
fhire, and one of his Majcfy's Cbaplains, II. 3, $32,148,150,33^{2}, 335,345,364,396,423$, $633,657,659,676,693,713,715,731,744$, 840, 869. III. 150, $215,311,639,644$. * II. $366,758,759 .^{* *}$ II. $252,365,602$, 916. * *III. 683.

Ludovicus de Beaufort, Parifinus, M. D. * IT. 255.

John Beaumont, jun. of Stony-Eafton in Somerfethire, Gent. II. $328,368,381,425,458$, 500, 522, 579, 604. * II. 255.
M. de Beauplan, * * II. g16.
M. Bechamel, * III. 634 .

David von der Becke, a German Pbilofopher and Pbyfacian at Minden, III. 316. * III. 372.

Joh. Conradus Beckerus, M. D. * V. 253.
Mr. William Beckett, F. R. S. V. 382 .
Joh. Chrift. Beckman, Profefor at Fsankfort, II. 148, 461. III. 603.
Sir William Beetton, Governor of Jamaica. II. 344.

The Heer Mich. Behm, Conful of Dantzick, III. 84. 358.

Uleg Beig, a King, and famous Afronomer, Great Grand-Cbild to Tamberlain, aud one of his Succeffors, * I. 455.
Laurentius Bellinus, * III. 22, 60, 80.
M. Belon. * III. 633.

Mr. Tho. Bent. II. 672.
Mr. Edward Berkley, IV. ii. 209.
Dr Edwaid Barnard, Afironomy-Profefor at Oxford, I. 241, 260, 294. * III. 397. 532.

Mr. Charles Bernard, F. R. S. III. 154. 191.
M. Bernier. * III 633.
M. John Bernouilli, Mathem. Profefor at Groningen, I. $35,463,55 \mathrm{I}$.
M. James Bernouilli, * I. 456 .

Nicholas Bernouilli, L. L.D. F. R. S. V. ii. 255.

Mr. Will. Berry, * I. 454.
Sieur Befnier, Smith of Sable, in the County of Maine, I. 498, 500.
William Beveridge, D. D. * III. 538.
Godefredus Bidloo, M. D. * II. 918. III. 22, 224.
M. Louys de Bills, III. 258.
M. de Billy, a Fefuit, III. 398.

Dr. Paulus Biornonius, in Iceland, III. 60g.
Mr. Chriftopher Birbeck, V. 305.
Mr. Sampion Birch, Alderman and Apothecary at Stafford, III. 226.
J. Birchenfhaw, Efq; I. 620.

An INDEX of the Authors Names．

Patrick Blair，M．D．F．R．S．IV．ii．28j．V．82， 275.

Dr．Francis Blanchini，F．R．S．IV．302， 306.
Gerhardus Blafus，M．D．＊III． 60 ．
M．De Blegny，Cbirurgeon to the French ${ }^{\text {Oueen，}}$ ＊III． 230.
M．François Blondel，of the Academy Royal of sciences，${ }^{\text {I I．}} 597$.
Mr．Jacob Bobart，II．155，754．
Signior P？ulo Bocconc of Sicily，F．R．S．If．49j， 824．＊11．254，757．＊＊II． 252.
Herman Boerhave，M．D．${ }^{*}$ IV．ii． 326 ．
Mart．Bogdanus，＊III． 22.
John Bohn，Phil．Eo Med．D．Eo in Acad．Lip－ fienfi Prof．Publ．＊III． 372.
1．Bohun，Fellow of New－College，Oxon．＊II． 257.

Monf．Bolduc，R．Ac．Sc．V． 403.
Idw．Bolnelt，Med．Reg．Ord．＊III． 371.
Monf．Bon，Pref．R．S．Sc．Mont．Ill．3名2．V．2I．
The Noble Vincentius Bonajutus，II． 400.
M．Bonavert，III． 157.
Mr．Henry Bond，Sen．Matbematicinn，and Teacher of Navigation，II．613．${ }^{*}$ I． 587.
Theophilus Bonetus，＊III． 22.
R．P．Bonfa，I．294， 365 ．
Vadlius Dathirius Bonglarus，III．194．
Dr．Bononio，V． 199.
Joh．Alphonf．Borelli，one of the Royal Academy of Sciences at Paris，and Math．Praf．at Pifa，
I． 157,202 ．＊II． $599,602,919 .{ }^{* *}$ I． 545.

Olaus Borrichius，Med．Regius $\underbrace{\circ}$ in Acad．Hafn． Prob．Publicus，＊III．371， 372.
M．Bourdelot，＊II． 917.
M．De Bourges，Prefire，＊III． 633.
Father Bourzes，V．ii． 213
Thomas Bower，M．D．F．R．S．V． 217.
Mr．Samuel Bowditch，V．［358．］
The Honourable Robert Boyle，Efq；F．R．S． I． $274,514,519,525$. II． $8,28,161$ ， 204，206，215，235，298，325，395，495， $645,849,902$ ．III． $2 \hat{j}^{2}, 353,367,378$ ， $634,641,646,650$ ．＊II． $254,256,257,366$ ， 600．III． $227,370,688$ ．${ }^{* *}$ II． 252,365 ， 602， 916 ．＊＊III． 631 ．
Mr．Richard Bradley，F．R．S．IV．ii．302， 308.
Mr．Samuel Brady，V． $34 \cdot$
Tycho Brahe，${ }^{*}$ I， 454 ．
Tho．Branker，M．A．＊I． 124.
Mr．Thomas Brattle，IV．247，249，268，269， 288.

Dr．James Brewer，II． 427.
Joh．Phil．Breynius，M．D．F．R．S．V．10．V． ii． 136.
Orlando Bridgman，Efq；F．R．S．IV．ii． 128.
William Briggs，M．D．Pbyjcian to St．Tho－
mas＇s Hoppital，and F．R．S．III．39， 40. ＊III． 60.
Mr．James Brodie，III． 224.
Benjaminus Brookhuyfen．＊II．grg．
F．Brothais，III． 527.
Tho．Brotherton，of Hey，in the County of Lan－ cafter，$E_{f q} ;$ II． 712.
Lord Vifraint Brounker，I． 10.
Edward Brown，M．D．F．R．S．II．185， 306, $339,373,464,526,565,582,586,588$ ． 860．III．605，632， 633 ．
Mr．John Erown，Surgeon at St．Thomas＇s Hoppi－ tal，III． 83.
Mr．Sam．Brown，Surgeon at Fort St．Gcorge， ＊＊II． 755 ．
Manuel Bryennius，＊I． 620.
Mr．Buckley，Chief Surgeon at Fort St．George， ＊＊II． 2 ご 2 ．
Sir Richara Buckley，F．R．S．II． $5^{14}, 637,671$.
Dr．Bullen，II．V． 288.
M．Ifmael Bullialdus，I．250，292，308，309， 316， $319,354,562 .{ }^{*} 1.455$.
Mr．Benjamin Bullivant，III． 565.
Mr．John Bulteel，＊＊I． 596.
Johannes Buno，＊I． 586 ．
P ．Filippo Buonanni，＊II． 917.
Signior Burattini，of Poland，I．201， 425.
P ．Aleffandro Burgos，II． 401.
Lord Treafurer Burleigh，III． 404.
Dr．Tho．Burnet，II． 255 ．
Tho．Burnet，Scoto－Britannus，M．D．Med．Reg． Ord．＊III． 22.
William Burnet，Efq；F．R S．V．ii． 153.
Dr．James Burrough，III． 112.
Sig．Franc．Jof．Burrhi，${ }^{*}$ III． 60.
Dr．Arthur Bury，IV．ii． 301.
Herman Bufchoff，Sen．of Utrecht；refiding at Batavia in the Ealt－Indies，＊III．22， 296.
M．Buffiere，F．R．S．III． $26,69,188,215^{\circ}$ V． 74,289 ．
M．Butterfield，Matbematical Infirument－maker to the French King，I．133， 215. II． 560.
William Byrd，Efq；F．R．S．III． 8.
c．

MR．J．C．I．523．II． 606. Dr．C．＊III． 296.
$\bar{M} r$ ．Ralph Calep，V． 389.
P．Geo．Camelli，II．649，652．IV．ii， 279. ＊＊V． 183.
Signior Giofeppe Campani，I．201， $383,401$. ＊I．456．IV．ii． 282.
Leonardus Capuanus of the Academy of the In－ veftigantes，${ }^{*}$ II． 602.
Mr．Samuel Carte，V．ii． 63.
Renatus des Cartes，＊II．254，255．
Rob：

An INDEX of the Authors Names.

M. Caffegrain, I. 212.

Sign. Joh. Dom. Caflini of the Royal Academy of Sciences at Paris, and F. R. S. I. 254, 260, $272,274,277,279,287,292,309,316$, $318,321,326,350,355,364,367,368$, $370,377,384,401,410,425,427,437$, $438,440,443,452,557,560,569$. * I. 454, 455, 456. ** I. 453.
M. Jac. Caffini, R. Acad. Par. Socius, I. 340 , 569.

Sig. Marc. Antonio Caftagna, II. 460.
The Earl of Caflemain, *I. 587.
Dr. John Cafwel, I. 31, 33:
Mr. Cafwel, F. R. S. IV. ii. 6.
Pietro Cavina, I. 455.
Dr. Cay, II. 333, 508. * II. 366.
Marc-Antonio Cellio, Del Academia Fifico-Mattematicadi Roma, * III. 372.
Julius Celfus, * III. 531.
Sign. Diacinto Ceftone, of Leghorn, II. 792.
R. P. Claudius Franc. Milliet de Chales, S. 7 . * I. 124.

John Chamberlayne, E/q; F. R. S. IV. ii. 131, $251 . V .3^{81}$.
M. de la Chambre, * III. 634.

Sieur Chapuzeau, * II. 603.
M. Moyfe Charas, Apotecaire Artife du Roy, Fardin Royal des Plantes. * II. 917. * III. 371.

Dr. Arthur Charlett, Mafier of Univerfity-College in Oxford, IV. ii. 206.
Walter Charlton, M. D. * III. 224 .
L'Abbe de la Charmoye, * III. 531.
M. Chaffelles, I. 293.

Stephanus Chauvinus, * II. 253.
Mr. William Chefelden, F. R.S. V. 204, 233, $257,387 . \quad$ V. ii. 266.
Nicholas Chevalier, * II. 603.
Mr. Jofeph Childrey, II. 279.
Petrus Chirac. Med. Ev Profeflor Regius Monfpelienfis, * III. 81, 229.
Fathor Clain, V. ii. 185.
Sig. Ciampini, I. 45 I.
Timothy Clarck, M. D. Phyfician in Ordinary 10 his Majefy, III. 194, 197.
Mr. Will. Clark, ${ }^{*}$ II. 603.
Mr. Robert Clarke, III. 68, 6;0.
Mi. Clark, V. ii. 31 .

Carolus Claromontius, M. D. * III. 632.
Mr. John Clayton, Refior of Crofton at Wakefield in Yorkfhire, II. 866. III. 755.
Mr. William Clerk, Surgeon, III. 92, 160, 310.

Sieur du Clos, Confeiller ह゚ Medecin Ordinaire du Roy, * II. 366.

Philippus Cluverius, M. D. F. R. S. * I. 586.
M. Colbert, I. 603.

William Cockburn, M. D. F. R. S. III. 262. * V. 324. * III. 289. V. 394, 395, 397.

Mr. William Cole, of Brifol, II. 144, $8_{2} 6$, 835.

William Cole, M. D. III. 29, 35, 89, 152, 224. V. 266. * III. 223, 228, 289. *V. 213.

Mr. Edward Coles, III. 367.
Mr. Sam. Coleprefs, I. 570,588 . II. 264, 297, 605, 660, 903. III. 293.
Mr. John Collings, F. R. S. I. 63, 126. IlI. 399, 401, 678.
Greenville Collins, Captain of the Merlin Yatck, II. 371.

Mr. Colfon, I. $285,318$.
Mr. John Colion, F. R. S. IV. 66.
Daniel Colwal, E/q; II. 535, 541.
Johannes Comelinus, Senator Amitelodamenfis, * II. 757.

Confufius Sinarum Pbilofopbus, * III. 687.
R. P. Louis le Comte, S. J. Mathemat. du Roy, * III. 633^{-}

John Conduitt, Efq; F. R.S. V. ii. 83.
Mr. John Conyers, I. 504, 544.
Mr. John Coniers, Apothecary, II. 37.
Bernard Connor, M. D. F. R. S. III. 28g. *III. 633.

Dr. Rob. Conny, II. 144.
Roger Cook, $E \int_{q}$; * II. 756. III. 687.
M. de Cordemoy, * II. 919. III. 397.

Dr. Thomas Cornelio, a Neopolitan Pbilofopher and Pbyfician, III. 282. * II. 255.
Ferdinand Cofpi, Marquis of Petreoli, * II. 253.
Mr. Roger Cotes, late Plumian Profefor of Afronomy and Experimental Philofophy, and F. R. S. ** IV. 171.
Dr. Edward Cofton, Archdeacon of —II. 604.

Charles Cotton, E/q; * II. 756.
William Courten, E/q; V. 38.
Mr. Abraham Cowley, * II. 756.
Mr. William Cowper, Surgeon, F. R. S. III. 107, 144, 197, 251, 292, 294. V. 54, 169, $221,222,227,274,325,334,347,390$. * III. 296.

Daniel Coxe, M. D. F. R. S. II. 732. III. 322, 325, 327.
Mr. Tho. Coxe, MII. 224.
Mr. William Crabtree, * I. 455. IV. 241.
Mr. John Craig, I. 126. * I. 55, 59.

An INDEX of the Authors Names.

The Reverend Mr. H. Creffener, F.R.S. IV. 275.

The Right Honourable the Earl of Cromerti, IV. ii. 253 .

Ralph Cudworth, D. D. ${ }^{*}$ III. 687.
Sir Dudly Cullum, II. 758.
Richard Cumberland, D. D. * III. $5 \boldsymbol{j}^{2}$.
Mr. James Cunningham, Surgeon, II. 33, 86, 610,

* * II. 252. IV. ii. 18, 26. V. ii. 173.

Dr. Cyprianus, III. 227.

D.

MR. Samuel Dale, II. $633,839,840,841$, 282. III. 441. * III. 369. **II. 916 ,
IV. ii. 264, * IV. ii. 326 . ** V. ii. 266.

Mr. George Dampier, of Exmouth, III. 28
Capt. William Dampier, *II. 634 .
Michael Dary, *I. 126.
Sieur Daffić. * I. 597.
Mr. Francis Davenport, II. 292.
Mr. Davies, V. 268, 283.
Mr. David Davies, II. 563 .
Mr. John Davis, Minifer of Little Leak in Northamptonhhire, I. 536.
Lucas Jacobion Debes, M. A. Provoft of the Churches of Feroe, * III. 633.
Mr. Tho. Dent, III. 138.
11. J. Denys, III. 23, 224, 225, 248, 249. III. 228.

Mr. William Derham, Rector of Úpminfter, II. $10,12,14,61,73,90$. IV. 230, 235, 240, $255,257,277,396,464$. IV. ii. 62, 67, 74, $77,100,100,113,133,135,168,219,290$, 291. V. 26, 28, 33, 267, $310,313$.

Joh. Theoph. Defaguliers, L. L. D. F. R. S. IV. $173,181,188,198$. IV. ii. 10, 171, 175, 17 8 , 311 .
M. Des Maftres, II. 165 .

Edmund Dickenfon, M.D. V. ii. III.
Isbrandus de Diemerbroek, Med. Eo Anatom. Profefior. * III. 22. * * III. 80.
Mr. Edward Digges, II. 759.
M. Roel of Dioclati, Supreme Direcior of the Council of Miauricius, II. 329.
Dionyfius of Placenza, III. 605.
Diophantus Alexandrinus. * I. I2.4.
Mr. Humphrey Ditton, IV. 7,184 .
Euflachio Divini, I. 201, 203, 215,383.
Dr. Jaco. Joh. Wenceflaus Dobrzensky de Nigro Punte, Docior of Pbilofophy and Pbyfick, and Profefor extraordinary of them at Prague. III 272 .
M. Dodart, M. D. * II. 756 .

John Doddington, Efq; bis Majefy's Refident at

Venice. II. 344.
Joh. Dolxus, D. D. Archiater Haflo-Caflellanus, * III. 22.

Jo. Battifta Donius, a Florentine Patrician, * III. 632.

Mr. Sam. Doudy, Apothecary, F. R. S. III. 78.
James Douglas, M. D. F. R.S. V. $63,213,231$, 256, 257, 294, 388. * V. 121 .
James Drake, M. D. F. R. S. ** V. 253.
Carolus Drelincourt. * III. 23, 229.
Francis Drope, B. D. * II. 75^{8}.
M. le Duc, Sworn Surgeon at Paris, II. 24.

Sir Matthew Dudley, Bart. F. R. S. V. 13.
Mr. Sam. Dugard, Reitor of Forton in Shropfhire, III. 247 .
M. Duncan, M. D. * II. gig.
M. Dupre, Surgeon, and firf Ayde Major to the Holtel-Dieu in Paris, III. 291. * III. 296.
Dr. William Durfon, Pbyjcian at Plymouth. III. 79, 297.

E.

DR. William Earnfhaw, Medicus Alceftrenfis, III. 120.
M. J. Edens, V. ii. 148.

Dr. Ehm. *IV. ii. 204.
M. G. C. Eimmart, I 339. II. 612.

Mr. Martin Ele, II. 459.
Mr. Ch. Ellis, V. ii. It, 134°
Joh. Sig. Elfholtius, Elecr. Brandenburg. Medicus, * III. 292, 370. * * III. 683.

Sir George Ent, Knt. M. D. II. 828. III. $1_{2} 6$. * III. 80, 288.
P. Valentine Eftançel, S. 7. I. 439.
M. Eftienne, II. 188.

Mich. Etmullerus, * III. 22.
Euclid, * I. 123.
John Evelyn, Efq; F. R.S. II. 153, 754. II. 755. III. 532, 632.

Antonius Eygel, M. D. Eo Prač. Amftelodamenfis, *III. 22.

$$
F \text {. }
$$

R Aphael Fabretti Urbinat. * I. 597.
1 Honorat. Fabri, S. 7. * I. 126. II. 255.
Dr. Fabritius, Pbysciian in Ordinary to the city of Dantzick, III. 229.
Mr. Chr. Facio Duiller, F. R.S. IV. 252.
Mr. Nicholas Facio, F. R. S. IV. 34^{8}.
Mr. John

An INDEX of the Authors Names.

Mr. John Fawler, late Surgeon to the Sick and
Wounded at Deal. V. 388.
Nathaniel Fairfax, M. D. II. 144. 800. * III. 140. 150. 161. 194. 283.

Joh. Jac. Fcrgulon. * I. 124.
D. P. de Fermat, Senator Tho!ofanus. * I. 124.

John Michael Febre, M. D. Chief Sacretary 10 Prince Ratzivil. II. 165. * II. 757^{-}
M. Felibien. * I. 60 j.

Dr. Fern. III. 219, 221.
Dr, Robert Fielding. V. 205.
Mr. Flamflecd, Math. Reg.F. R. S. I. 227. 228. 252.254.260. 265. 269. 270. 278, 279, 280. 285. 291. 309. $315 \cdot 317 \cdot \hat{3} 25 \cdot 327 \cdot 335 \cdot 349$. $351 \cdot 356 \cdot 361 \cdot 367 \cdot 385 \cdot 390 \cdot 399 \cdot 402 \cdot 406$. 409. $424 \cdot 445 \cdot 556,557 \cdot 560$. 562. II. 263. IV. 249. 281. 291. *I. 543. ** I. 453. II. 365.

Mr. Flower. III. 530.
Sir John Floyer. II. 902. 904.908.915. V. 406.
Dr. Fogelius. I. 309.
The Reverend Dr. Sam. Foley. II. 515.
Martin Folkes, Efq; F. R. S. IV. ii. 154.
Carolus de la Font, M. D. Eg Acad. Avenion. Prof. Primar. *III. 289.
R. P. Fontenay, S. J. Profefor of the Mathematicks. I. 293. 330. *I. 456.
Dr. Daniel Foot. *II. 366. ** II. 365 .
Samuel Fortrey, E/q; * III. 686.
M. Des Fourneillis. * II. 254 .

Sign. Fracaftati, Profeffor of Anatomy at Pifa in Italy. III. 59. 227. 230. * III. 6́. * * III. 228.

Johannes Francus. * II. 918.
Mr. Frank. I. 297.
Mr. Ja. Frafer, Minifler of Kirkhill near Inverneffe. II. 322. III. 538.
Marchefe Marco Antonio della Fratta. * II. 603.
Roland Freart, Sieur de Cambray. * I. 605.
Carolus du Frefne, Dominus du Caugi, Regi a Conf Eo Francix apud Ambianos 2ueffor. * III. 398.

Mir. John Freind. III. 28. V. 208. 428 . *V. 435.
M. De Froidour. * * III. 683.

John Fryer, M. D. F. R. S. ${ }^{\text {* III. } 633 .}$

G.

M. Gadroys. ** III. 288. M. Gaillard, the Son, M. D. of the Faculty at Toloufe. III. 284.
Roger Gale, $E / g ;$ F. R. S. V. ii. 50.
Theoph. Gale, M. A. *II. 397.
Dr. Gandolph, V. 206.
M. Gallet. I. 289.358.

George Garden, D. D. of Aberdeen. II. 118.
129.465.752.775.911.III. 8. 151. 165.300. Chritianus Fredericus Germannus, Pijyjfcus Chemunicenfis, Academicus Curiofus, FIII. 230.

Joh. Ludovicus Ganfius, M. D. * II. 603.
Mr. Gafcoign of Liege. I. 171, 218.
Gaffendus. * II. 365 .
Jacobus Gavetus, M. D. * V. 386.
M. le Prior Gautier. I. 293.
M. Gayant. III. 224.

Mich. Geddes, Chancellor of the Cathedral Chureti) of Sarum. * III. 532.
M. De Gennes. I. 467.499.
M. Geoffroy, F. R. S. II. 1. 334. III. 367. IV. 190. 468. IV. ii. 10. V. 421. * * II: 252.
M. Giles, Sworn Surgeon at St. Come, III. 5^{8}. 113.

John Gill, II. $105,372$.
M. Jof. Glanvil. II. $336,576,577$. * II. 252.

Chrift. Glafier. * III. 37 I.
Francis Glifion, M. D. F. R. S. II. 915. IIT.
M. De Glots, Profeffor of the Mathematicks, I.
M_{r}^{294}. Tho. Glover, Surgeon in Virginia, III. 566.

Jonathan Goddard, M1. D. II. 598, 819.
Johannes Goedartius, M. D. Effurtenfis \mathcal{E}° Coll. Nat. Curiof. Socizs, * II. 917.
Charies Goodall, M. D. * III. 22.
Mr. Aaron Goodyear, Mercbant, II. 816. III. 489, 492.
Patrick Gordon, M. A. ${ }^{*}$ I. 587.
Patrick Gordon, M. A. F. R. S. IV. ii. 103.
Mr. Gourdon, F. R. S. I. 223. II. 325 -
Sir Rob. Gordon, 279.
Father le Gobien, V. ii. I89.
Father Goree, V. ii. 201.
Egidius Francifcus de Gottignies Bruxellen. S. 7. in Coll. Romano Math. Profelf. * I. 126.
Dr. Gottwald, * V. 386.
Dr. William Gould, F. R. S. II. 41, 42, 537. III. 70.

Joh. Andreas Graba, * II. 918.
Regnerus de Graeff, M. D. III. 196. * III. 229.

Antonius le Grand, * II. 254, 919.
S. Jacomo Grandi, Pub. Anat. at Venice, III. 85, 297, 300.
Dr. Guido Grandus, F. R. S. IV. 414.
Mr. Stephen Gray, of Canterbury, I. 179, 203, $216,217,218,221$. II. 12, 187, 188. III. 653. IV. 229, 250, 461, 462. IV. ii. 263.

An INDEX of the Authors Names.

Mr. John Greaves, Savilian Profelfor of Alro-
nomy ai Oxon. I. 493 . II. 855. III. 405. *III. 633.

Mr. Greenhill, III. 21, 94. * IV. 134. V. 219.
David Gregory, M. D. Afron. Profefor Sarvilianus, EG R.S.S. I. 26, 29, 41, 53. 297. IV. 196, 206.

Ja. Gregory, Scotus, R.S.S. * I. 455. ** I. Griff. Hatley, M. D. of Maidfone in Kent, II. 122.

Neh. Grew, M. D. F. R. S. II. 148, 853. III. 9, 85, 682. IV. 449. * II. 757, 758. 371. ** III. 684.

Mr. Grillet, * III 634.
Fran. Maria Grimaldus, S. 7. ${ }^{*}$ I 222.
Hermannus Grube, M. D. * III. 371. Guarinus. * II. 255 .
Michael Angelo de Guatini, III. 623.
M. Guifnoy, II. 495.
S. Domin. Gulielmini, I. 295.
M. Gafper de Gurye S. de Montpoly. III. 288.
D_{r}. Gwither. III. 8.

H.

R.Mr. H. ${ }^{379}$ * III. 63 .
Mr. Edward Haines, R. S. S. I. 296, 327, 357, 366.

Mr. Richard Haines. * III. 687.
Richard Hale, M. D. V. 314.
The Honourabie Sir Matthew Hale, Lord Cbief Tnjfice of his Majefy's Court of King's-Bench. * III. 531 .

Mr. Edmund Halley, F. R. S. I. $33,67,72$, $87,108,114,191,258,266,278,296,315$, $318,341,353,357,360,410,427,471,557$, $559,562,563,568,577,585$. II. 13, 14, 20, $33,108,110,126,133,145,165,185,188$, 195, $285,295,590,613,907$. III. 412,425 , 518, 537, 669. *I. 454, 456.** I. 453 . * II. 252,365 . IV. $214,224,227,228,255$, 300, 344,45 I, 453 . IV. ii. $4.135,139,15$ e, 163, 188, 244. V. ii. 216.
Mr. William Hallifax, III. 503.
Imman. Halton, Efq; I. 287.
J. B. du Hamel, R. S. L. EG Regice Scientiarum Acadentica à Secretis. * II. 254, 919.
Mr. Hamerfly of Coventry, II. 857.
Mr. John Harris, M. A. Reetor of Winchelfea, in Suffex, and F. R. S. III. 650 .
Walter Harris, M. D. * III. 371.
Mr. Benjamin Harry, Mafter of the Ship Berkly-1 Caifle, I. $357,358$.

Philippus Jacobus Hartman, Phil. EO Med. D. Prof. Med. Extraord. Hiporiarum Ordinar. S. R. 'F. Nature Curioforsm Collega, II. 473. 11I. 203. * * II. 602.
Mr. Martin Harton, II. 400.
William Harvey, M. D. III. 302.
John Harwood, L. L. D. F. R. S. V. ii. 62.
426.

Clopton Havers, M. D. F. R. S. III. $96,248$. * III. 300.
M. Hauton, II. 297:

Mr. Francis Hawksbee, F. R. S. IV. ii. 171, 172, 173. V. 161 from 166, to 180, 181, 182, 196, 197. ** V. 206. 286.
Mr. Thomas Hearne, IV. ii. 167. V. ii. 99.
Dr. Urban Hearne, Phyfician to the King of Srweden, and F. R. S. IV. ii. 183.
Mr. Heathcot, II. 9, 268, 613.
Wolfgangus Erneftus Heidel, Wermatienfis, *I. 687.

Jo. Frid. Hekelius. * I. 580.
F. M. B. V. Helmont. * * III. 397.

Dr. Helvetius, V. 404 .
Louis Hennepin, Mifionaire Recollet. * III. 632.

Nathaniel Henihaw, M. D. F. R. S. * II. 257.

Tho. Henfhaw, E/q; II. 141. ** III. 632.
Joh. Ferdinandus Hertodt, M. D. * II. 757.
M. Hevelius, I. 201, $228,254,256,258,281$, $284,288,305,308,311,320,326,332,336$, $346,353,357,358,359,360,362,363$, $364,366,368,396,409,425,426,439,443$, $446,448,557,563$. II. $185,187,473,493$, 612,856 . * I. $454,455,456$. * I. 453 .
Mr. Anthony Hewnden, V. 216.
George Hicks, D. D. III. 442. V. ii. 58. * III. 532.

Nath. Highmore, M. D. II. 333, 35 1. * II. 366. * III. 229.

Abraham Hill, E/q; III. 304. ** III. 632.
Mr. J. Hillier, II. 53. III. 62.
Ph. de la Hire, Regius Profeffor, Eo Regie Scientiarum Acadenice Socius, I. 292, 330, 562 . II. 623.

Mr. Tho. Hobbes of Malmsbury. * I. 125. 255.

Nicholaus Hobokenus. * III. 229.
J. Bapt. Hodierna. * I. 456.

Nathaniel Hodges, M. D. * II. 252.
Mr. James Hodgfon, F. R. S. IV. 271, 45 I.
Dr. Lucas

An INDEX of the Authors Names.

Dr. Lucas Hodgefon, Pbyfician at Newcaftle, Mr. Jezreel Jones, III. 626.
II. 383,638 .

Fred. Hoffman, Fred. F. M. D. * II. 603.
D_{r}. William Holbrooke, V. 265.
William Holder, D. D. F. R.S. III. 4z. *I. 602. III. 397.

Dr. Hollings, V. 293 .
Major Holmes, I. 555°
Sir Charles Holt, III. 93. V. 260, 269.
M. Homberg, Cbymif, at the Acadeny at Paris, I. 514, 525. III. 341 .
Dr. Hook, Profefor of Geometry in GreflamCollege, and F. R. S. I. 199, 200, 213, 214, 221, 226, 227, 254, 277, 280, 296, 307, 309, $350,368,367,383,402,423,498,499$. II. 10, 257, 260, 304, 328. III. 67. *I. 454, 455, 456. ** I. 222,586 . II. 25^{2}. III. 63 I.

Mr. Richard Hopton, IV. ii. 195, 322.
Johan. Van. Horn, M. D. ${ }^{*}$ III. 229.
Jeremias Horrox. ** I. 453.
R. P. Paul Hofte, I. 293.

Peter Hotton, M. D. Botanick Profeflor of the Leyden Phyjzk Garden, II. 651, 655.
Mr. John Houghton, F. R. S. II. 663.
The Honourable Charles Howard, Esf; of Norfolk, II. $638,67 \mathrm{I}$.
Roger Howman, M. D. of Norwich, III. 276.
Mr. William Hughs, * II. 756.
Dr. Hulfe, II. $79^{8 .}$
Mr. Chr. Hunter, of Newcaftle upon Tine, III. 426. V. ii. 44, 49.

Dr. Rob. Huntington, III. 528. * III. 633.
Gregoire Huraet, ** I. 116 .
M. Chriltian Huygens de Zulichem, I. 179, 185 , 187, 206, 366, $367,371,460,465,547$. II. 23, 189, 240. * I. 118, 125, 222, 455, 586.

J.

MR. J. Jackman, V. ii. 27. William Jackfon, M. D. II. 352, 731.
\bar{M}_{1}. Jacobs, an Englifh Merchant at Lisbon, I. 295, 335, 339.
Fran. Jeffop, Efq; of Bromhal in Yorkhire, II. 182,375,458. III. 136. * II. 255.
Dr. Johnfton of Pomfret, III. 168.
Mr. Maurice Jones, Rector of Dol Gelhu in Wales, II. 18 I .

Mr. Hugh Jones, III. 600. * * II. 252.
J. Jofielin, Gent. * III. 632.
M. Ifnard. * IT. 917.

James Jurin, M. D. Secretary to the Roval Sociefy, IV. $423,428,435$. V. $233,247,326$.
M. Juftel, R. S. S. JI. 791. III. $443,638$.

K.

MR. Jonathan Kay, V. 217. James Keill, M. D. IV. $353,359,367$. V. 244, 353. *V. 386.

John Keill, M. D. late Savilian Profefor of Geometry at Oxford, F. R.S. IV. 45, 57,63, 69, 208, 238.
Mr. Keneda, an Apothecary in Edinburgh, III. 278.

Mr. White Kennet, Vicar of Ambrofden, * III. 532.

Jon. Kepler. * I. 454.
Theod. Kerkringius, M. D. * II. 603. III. 22, 224. * * III. 228.

John Kerfey, Mathemat. * I. 125.
Francifcus Kiggelarius. * II. 754.
Mr. William King, Fellow of the Dublin Society, II. 735.
Sir Edmund King, F. R. S. II. 775, 792, 835, 856. III. 17, 86, 158, 195, 223, 225, 226, 654.

Mr. Charles King, II. 831.
Mr. Gottfried Kirch, IV. 222, 268, 349.
Athanafius Kircher. * II. 602. III. 398, 633.
M. Kirch, I. 297, 452.
M. Chr. Kirkby, IL. 174, 320, 494. III. 150, ${ }^{1515}{ }^{15} 5$.
Mr. Tho. Kirke of Cookridge in Yorkhire, II. 872.

Juftus Klobius, D. in Acad. Witteberg. * II. 603.

Mr. Knowles, Surgeon, III. 114 .
Dr. Sigifmundus Konig, Pbyfcian of Bern in Switzerland, III. 158.
Dr. Kornmannus, Pbyfician in Germany, * II. 917.
M. Chriftopher Krahe, III. 300.

Dr. David Krieg, V. 420.
M. Joh. Kunkle, Gentleman of the Bedchamber to the Elector of Brandenburgh. * III. 372.

An INDEX of the Authors Names.

L.

MR. J. L. II. 846. D. Fredericus Lachmund, * II. 602.

Diogenes Laërtius, * II. 252.
M. Lafage, III. ${ }^{25} 5^{2}$. V. 291.

Mr. Francis Lamb, * 454.
Petrus Lambecius, Hiforiographer, and LibraryKeeper to the Emperor, * III. 397.
P. Francifco Lana, S. F. I. 499, 500. II. 465. III. 323. * II. 254. ** II. 252.

Jean Marie Lancifi, Prof. Anat. Rom. III. 31. 242. *II. 755.

Dr. Joel Langelot, Cbief Pbyfician to the Duke of Holftein, III. 311.
Capt. Langford, II. 105.
Mr.Tim. Lanoy, Merchant, III: 489, 492.
Sieur de Launay, * II. 255.
Francifcus du Laurens, * I. 123.
Mr. Anthony Lawrence, ** II. 758.
M. Anthony Van Leewenhoeck, F. R. S. I. 215 , 592. IV. ii. 112. V. 167, 284, 390. V, ii. $220,238,266$. ** III. 683.
S. Lorenzo Legati, Philof. Phyjac. É Gr. Profeff. in Bononia, * II. 253.
Gothofred. Gulielm. Leibnitz, F. U. D. E Confiliarius Moguntinus, I. 16, 465. II. 1. * I. 126, 513 .
Charles Leigh, M. D. II. 529. III. 95. V. 211. * II. 366.

Nich. Lemery, M. D. * III. 371.
Sir Roger L'Efrange, * III. 686.
Mr. Lewis, of Tottenham-Highcrofs, II. 658.

* III. $39^{8 .}$

The Reverend Mr. George Lewis, ** III. 397.
Mr. Mark Lewis, III. 138.
Michael Leyferus, * III. 22.
Mr. Francis Linus, I. 168, 169, 171. II. 194. Martin Lifter, M. D. F. R. S. I. 593. II. 18, 129, 164, 182, 297, $3^{61}, 420,424,425$, $43^{1}, 45^{2}, 459,466,494,496,506,508$, $510,532,540,551,558,563,626,627$, $689,694,699,731,758,766,769,778$, $779,784,786,790,793,795,796,797$, $825,829,833,845,852,857$. III. 68, $94,102,106,114,120,133,136,156,163$, $168,270,272,304,308,415,419,42 \hat{3}$, 425,65 . * II. 366,017 . III. 23 . ** II. 602, 755, 915. III. 685. V. 259. *V. 201.

Mr. Edw. Lhwyd, Cimeliarc. A/bmol. Oxon. II. $148,182,510,552,77 \%, 778$. III. 379.
IV. ii. 264. V. 34. V. ii. $57,117,118$, 120, 123, $125,126$.
Philip Lloyd, M. D. III. 606.
Mr. Lock, III. 13. IV. ii. 48. V. ii. 219.
Mr. Francis Lodwick, F. R.S. III. 373, 378.
Mr. Joha Long, B.D. Fellow of C. C. C. in Oxon. IV. 160.
Richard Lower, M. D. F. R.S. II. 85\%. III. 66, 223, 226, 231, 234. * III. 80, 81, 292.

John Lowthorp, M.A. I. 235.
Staniflaus de Lubienietz, * I. 456.
Mr. Anthony Lucas, I. 172.
Dan. Ludovicus, Medicus Ducal. Saxo-Gotharus, * II. 370.

Mr. Tho. Luffkin, of Colchefter, I. 114 - III. 26 I.
Mr. John Luff kin, IV. ii. 245, 246.
Lycophron Chalcidenfis, * III. 398.
Mr. John Lyfter, V. ii. 6i.

M.

A F. M. ${ }^{*}$ II. 917. Mr. T. M. in Salop, II. 643.
$\bar{M} r$. Tho. Machil, of Kirbythore in Weftmoreland, III. 430 .
Mr. John Machin, Profefor of Aftronomy at Greham-College, and Secretary to the Rojal Society, IV, $35^{1 .}$
Sir George Mackenzy, II. 104, 321. III. 539.

Mr. Colin Maclaurin, Profefor of Mathematicks in the New College at Aberdeen, IV. 51, 57.

Mr. Zachary Maine, II. 104.
Joh. Dan. Major, Phy. Eo M. D. * II. 603.
S. Marcel. Malpighi, Pbilofoph. E Med. Bononienf. छ R. S. S. II. 709, 820, 868. III. $23,38,59,84,197,200,353,682$. II. 759, 917,919 . III. $60,223,292$. ** III. 228.

Carlo Ant. Mancini, * I. 222. ** I. 222.
S. Manfredi, * I. 455.

Marcus Mappus, M. D. Profiff. Senior EO Archiater Argentinenfis, * II. 757.
Alexand. de Marchettis, in Pifan. Acad. Philo Profelf. * I. 513.
Joannes Marius, Pbyf. at Ulm, * JI. 918.
M. L'Abbé Mariotte, of the Royal Academy of Sciences, * I. 514. III 60.
Narciffus Marfh, Lord Biflop of Ferns and Leighlin, I. 506.
Mr. John Marfhall, V. ii. 165.

An INDEX of the Authors Names.

Monf. Marchand, R. Ac. Sc. IV. ii. 321.
Luigi Ferdinando Conte Marfigli, * III. 372.
Lud. Ferd. Marfilius, * IV. ii. 326.
M. De Martel of Montauban, II. 425 , 660. III. 70, 305.
Mr. Martin Martin, III. 543. V. [357.] V. ii. 127.

Mr. Adam Martindale, II. 526. III. 678.
Cotton Mather, M. D. P. R. S. V. ii. 159.
Nir. William Maunder, IV. ii. 164.
M. De S. Maurice, M. D. III. 217.
Mi. Rob. Mawgridge, Kettle-Drummer to his Majefy, and Surgeon to the Trumbull-Galley, II. 176 .

Mr. John Maxwell, IV. 455 . V. ii. 153.
Sir Theod. de Mayerne, II. 648, 817, 874. III. $134,144,280$.
Johin Mayow, L. L. D. Eo Med. * III. 80, 230, 296, 371.
Richard Mead, M. D. F. R. S.. V. 367.
P. Mergerlinus, Math. Profefor at Bafil, * III. 531.

Marcus Meibomius, * I. 597.
Joh. Henry Meibomius, * II. 759.
Mengoli, Dottor dell una Eo laltra Legge, छo P. P. de Scienza Mechaniche nello fudio Bologna, * I. 620.
Mr. Nicholas Mercator, Holfatus, S. R. S. I. 260, 576. * I. 127, 455°
Chriftoph. Merret, M. D. F. R. S. II. 575,594, $631,648,6 ; 6,709$. * II. 253.
Mr. Chr. Merret, of Lin. II. 267. III. 533.
P. M. Merfennus, I. 5 .
D. Antonius Mefaporitus, M.D. V. 273, 356.
M. Mallement de Meffange, * I. 125.

Le S. Maynard, Seig. d'Mernè, * III. 531.
Mr. Matthew Milford, III. ${ }_{1} 6$.
Raymundus Minderetus, Cb. Pbyfic. of the Elect. Court of Bavaria, * III. 289.
Hen. à Moinichen, * III. 22.
M. Abr. de Moivre, F. R. S. 101. IV. $3,15,24,77$. ${ }^{* *}$ V. ii 266 .

Dr. Andr. Molimbrochius, of Leipfic, * II.
Antonius Molinettus, Pbil. छo Med. Venet. * III. 60.

Samuel Molineux, Efq; F. R. S. IV. ii. 126.
William Molineux, E/q; F. R. S. I. 131, 197, $228,295,340,534$. II. $40,133,263,322$, 761. III. 230. * I. 222, 454 .

Thomas Molyneux, M. D. F. R.S. I. 536. II. $432,516,518,781,837,839,857$. III. I, $2,152,185,268,305,554$. IV. 474. IV. ii. 237.

Francifcus Moncæius, * III. 687.
Dr. Francis Monginot, V. 355 .
D. Petrus Remundus de Monmort, F. R. S. IV. 90.

Mr. J. Monro, III. 448.
S. Montanari, Profeflor of the Mathematicks in Bononia, I. 254. * I. 455.
Sir Jonas Moor, Mafter Surveyor of bis Majefy's Ordnance, * I. 124, 597.
Sir Rob. Moray, Kt. F. R. S. I. 491. II. 260 , 290, 291, $372,373,533,630,853$. III. 541. ** II. 365. III. 631.

Mr. Rob. Morden, * I. 454.
Henry Moore, D. D. * III. 687.
Sir Sam. Moreland, K.t. and Bar. I. 536. * I. 126.

Andreas Morellas, an Helvetian, III. 532.
Monf. Morin, V. ii. 264.
Samuel Morland, Gent. F. R. S. IV. ii. 305, V. 254.

Chr. Love Morley, M. D. II. 4×3.
Charles Morley, M. D. III. 223.
Robert Moryion, M. D. Botanift to bis Majefy, and Profelfor of that Science in Oxon, * II. 756, 757.
S. Morris, M. D. of Petworth in Suffex. III. 298.

John Mortimer, Efq; F. R.S. * IV. ii. 326.*
Richard Morton, M. D. * III. 289.
Dr. Morton, IV. ii. 270.
Mr. Roger Moftyn, of the Inner-Temple, II. 378.

Allen Moulen, M. D. F. R.S. II. 559, 850, 863, 905. III. $230,238$.
Mr J. Moxon. * I. 514, 587.
Wilhelm. Johan. Muller van Harburgh. * III. 634.

Andræas Mullerus, Greiffenhagius. * III. σ_{33}.
Abraham Munting, M. D. Ev Profelf. Botan. at Groningen. * II. 753 .
M. Muraltus, of Zurich, II. 465 .

William Mufgrave, M. D. F. R. S. III. 33, $62,68,78,86,94,96,103,112,44^{1}$. V. 259 , $279,281,359, * 394 . \mathrm{V}$. ii. 110, 111.
Pietro Maria Mutoli, * I. 456 .

An INDEX of the Authors Names.

N.

N.I. 165.

Pet. Natus, a Flerentine Pbyjacian, II. 652.

Tho. Neal, E/fq; High Sheriff of Hampihire, II. 172.

Walter Needham, M. D. III. 248, 24.9, 256.
Peter le Neve, Efg; Norroy, King at Arms, and F. R.S. IV. ii. 252. V. ii. 97.

Mr. Neve, IV. ii. 134,193 . V. 309.
Francis Nevil, Efq; IV. ii. 193, 206, 236. V
ii. 95,109 .

Mr. Ifaac Newton, Math. Profell. Luc. E* F. R. S. I. $134,141,142,146,148,151$, $164,170,171,175,203,204,207,209$, 211, 212, 218, 440. II. 28\%. * I. $5^{1} 4$.
Mr. James Newton, II. 645.
Mr. William Nicholfon, III. 433, 435.
Mr. Richard Norwood, Reader of the Mathemat. Lond. II. $268,298,848$. III. 561 . * I. 587

Mr. Richard Norwood, Jun. III. 559.
Ant. Nuck, * III. 60.
M. Nais, I. 542.

Francifc. Wilhelm. Liber Baro de Nuland, * II. 254.

0.

MR. Oldenburgh, I. 461. II. 386, 778 857. III. 227, $283,34^{2}$. ** I. 586 . II. 365,755 . III. 291.

Johan. Ericus Olhoffius, Secretary to the Repub. of Dantzick, * I. 454.
Dr. William Oliver, I. 520. II. 175, 305. IV. ii. 323 . V. [353] 364. V. ii. 128.
D. Anton. Hugo de Omerique, Sanlucarenfis. * I. 126.

Oppianus, * II. gr8.
P. Cherubin D'Orleans, Capucin, * I. 222. Mr. Ofburn, I. 295.
Johan. Ott. Scaphus Helvet. * I. 222.

P.

MR. A. P. in Somerfethire, III. 209. H. P. M. D. F. R.S. III. 166.
J. P. * I. 126.

Mr. R. P. Vicar of Kildwick in Yorkfhire, II. 328.
R. P. * II. 366.

Ds. Antonius Pacchionus, * V. 213.
Mr. Philip Packer, F. R. S. II. 325.

Mr. Palmer, I. 307.
Dr. Jofeph del Papa, V. 417.
M. Papin, IV. 447. V. ii. 182.
R. P. Ignace Gafton Pardies, S. F. Profefor of the Mathematicks in the Parilian College of Clermont, I. 143, 147, 151. * I. 125, 454, 514. II. 915.
D. Peter Parham, Pby. at Norwich, III. 3^{8}.

Samuel Parker, M. A. III. 688.
D. Papin, M. D. F. R. S. I. 494, 495,503 , 537, $53^{8}, 530,542$. II. 206, 239. * 1 . 546. III. 68́.
M. Pafchal, III. 307.

Simon Paulus, Med. Reg. in Dania, II. 753.
M. Payen, I. 28 I .

Joh. Nicholaus Pechlinus, M. D. P. Serenif:
Cimbrix Principis Reg. Archiater, * II. 757. III. 80.
M. Pecquet, III. $253,255^{\circ}$ * III. 60.

John Pell, D. D. I. 1, 6. II. 633 . * I. 124.
Mr. John Perks, Mafter at the Hopitial at Old Swynford in Worcefterfhire, founded by Tho. Foley, Efq; I. 29.
M. Claude Perault, * I. 597. III. 60.

Mr. Perks, IV. 37, 456 .
Le Sieur Petit, Confeiller de Rov, Eo Intendant des Fortifications, II. 610. * II. 256.
Mr. James Pettiver, F. R. S. II. $25 \hat{3}, 707$. V. 417. * II. 253, 754. ** II. 252, 755. ** IV. ii. 325,326 . ${ }^{* *}$ V. 183 .

Mr. Petto, a Divine in Suffolk, II. 187.
Sir John Pettus, Kt. II. 600.
Sir William Petty, Kt. F. R. S. I. 659. * I. 514. III. 686. ** I. 512. II. 365° III. 683.
J. Con. Peyerus, III. 229.

Julius Pflugk, Equ. Saxonicus, * III- 397.
Mr. Hen. Phillips, I. 280. II. 26 I.
M. Picard, of the Royal Academy of Sciences at Paris, I. 274, 316, 331, 366, 563, 571 .
Robert Pierce, M. D. of Bath. II. 339. III. 163.

Mr. Tho. Pigot, Fellorw of College in Oxon, and F. R. S. II. 396, 400.
Archibald Pitcarm, M. D. * III. 292.
Alexander Pitfield, Efq; F. R.S. * II. 914.
Mr. Edm. Pitt, Alderman of Worcefter. II. 6;6.
Dr. Chr. Pitt, III. 91, 229.
Robert Pitt, M. D. III. 259.
Mr. Tho. Plat, II. 814.
Sir Hugh Plat, * II. 758.
Mr. George Plaxton, V. ii. 112.
C. Plinius, * II. $253,756$.

An INDEX of the Authors Names.

Robert Plot, L. L. D. and F. R. S. 45, 360, 370, 462, 494, 553. * II. 366. III. 632.

Leonard Plukenet, M. D. F. R. S. II. 753.
Dr. Edward Pocock, * II. 254 .
Dr. Johannes Polenus, R.S.S. * IV. 449 .
Porphyrius, * I. 620.
Joh. Dav. Portzius, Phil. E\% Med. D. * Ir. 759.

Dr. Walter Pope, I. 280,496 . II. 5^{80}.
M. Pothenot, I. 292.

Joh. Potter, Coll. Lincoln. Oxon. * IIr. 398.
Mr. Giles Pooley, of W rington, II. 557.
Tho. Povey, Efg; F. R. S. II. 568.
The Reverend Mr. James Pound, F. R. S. IV. $278,303,307,308,310,318,334$.
Le Sieur François Poupart, II. 766, 822.
Monf. Poupart, V. [369.]
Hen. Powle, E \int_{q}; II. 561.
Dr. Cha. Prefton, II. 85 1. III. $24,32,36,142$, $155,214$.
Mr. Proby, of Dnblin, III. 163.
Mr. Abr. de la Pryme, Reader of Trinity-Church in Hull, II. 428. III. 422,428 . IV. ii. $106,107,212,218,310$. V. 366.
Claudius Ptolomæus, * I. 620.
Mr. Oetavian Pulleyn, III. 448.
Mr. Tho. Putland, V. ii. 3 I.
Jacobus Pylarinus, M. D. V. 377.
M. Dela Quinininy, II. 6_{4}.

Q.

R.

R.
R. * I. 125.
M. B. R. II. 5^{83}.

Mr. W. R. II. 175.
Jo. de Raei, Phil. in Athenceo Amftelod. Prof. Prim. ${ }^{*}$ II. 254.
Bernardinus Ramazzinus, in Mutinenfi Lyceo Med. Praf. * II. 366.
Dr. Ramazzini, ** V. 183.
Dr. Tho. Raltel, of Droitwich, II. 356.
Dr. Leonart Rauwolf, * III. 633 .
Mr. John Ray, F. R. S. II. 500, 508, 627, $638,644,645,685,768,786,791,794$, 799, 842, 849, 857. * II. 254, 255, 756, $757,9^{18}$. III. 632, 633. IV. 339. V. 184.

Sir Rob. Redding, II. 464,831 . III. 1,636 .
I. 589. II. Sig. Francefco Redi Academico della Crufca, III. 339. * II. 253, 917, 918. III. 371.

Rich. Reed, Efq; at Lugwardine in Hereford. flire, II. 658, 659, 693, 778.
Monf. Regnart, V. 53.
Dr. Salomon Reifelius, Chief Phyfacian to the Duke of Wirtemburgh, I. $53^{8,604 .}$
Jo. Reikius, * I. 586.
Dirick Rembrantz van Nicrop. III. 633.
Monf. Reneoume, R. Ac. Sc. IV. ii. 323.
Mauritius van Reverhorft, Med. Cand. Lugd. nunc Profefl. Anat. Hagre Comitis, * IlI. 228.

Carew Reynel, Efq; * III. 686.
Michael Angelo Ricci, * I. 126.
Joh. Baptift. Riccioli, S. F. * I. 455 -
Mr. William Rice, V. ii. 43.
Dr. Richardfon, II. 423. IV. ii. 108. V. ii. 115.
R. P. Richaud, Profeflo of Math. and Theol. I. ${ }^{29} 4^{\circ}$
M. Richelt, Profeff. Mathematum Julius, I. 320.

Hen. Ridley, M. D. * III. 60. V. 201.
S. Car. Rinaldini, Philofoph. Eo Math. in the Univerfity of Padoua, II. 164.
M. Riquet, ** III. 683 .

Francis Roberts, E/q; F. R. S. I. 240,607. III. 679. IV. 1.

Tancred Robinfon, M. D. F. R. S. I. 593. II. $320,349,533,627,853$. III. 304° IV. ii. 168 V. ii. ${ }^{142}$. * II. 757.
M. Romer, of the Royal Academy of Sciences, I. 309, 316, $410,422$.
M. Jaques Rohault, * II. 255.

Mr. Rook, F. R. S. Profeffor of Afronomy at Grefham-College, I. 300. ** III. 631.
Hen. Van Roonhuyfe, Pbyfician in Ordinary at Amfterdam, * III. 22, 296.
Mr. J. Rofe, his Majefiy's Gardener at his Rojal. Garden at St. James's. * II. 759.
Donato Rofetti, S. T. D. Canon of Leghorn and Tutor in the Mathemat: to the Duke of Savoy, * I. 456. * II. 257.

Olaus Rudbeckius, Profelf. of Anat. and Hiftory at Upfal in Swetheland, * III. 531. * V. ii. 110.

Mr. Richard Ruffel, V. 220.
Fredericus Ruyfchius, M. D. Botan. Profeff. * II. 757.

Sir Paul Rycaut, F. R. S. II. 874 .
Wilhelmus ten Ryne, M. D. TranfifalanoDaventrienfis, III. 296.

An I NDEX of the Authors Names.

J.S. M. D. Pbyfician in Ordinary to bis Majefy, * 111.633.
Sir P. S. III. 436.
Sir R. S. II. 180.
Mr. R. S. ${ }^{*}$ III. 687.
Mr. John Sackette, IV. ii. 248.
Mr. John St. Clair, I. 598.
Dr. Robert St. Clair, II. 385. III. 635. * II. 366.
Cl. Salmafius, * II. 756.

Tho. Salmon, M. A. IV. 469. *. 620.
Will. Salmon, Profefor of Pbyyck,* III. 371.
Sieur de Salnove, ${ }^{*}$ III. 686.
Signior Pietro Salvetti of Florence, one of the Great Duke's Pbyjficians, I. 213, 315, 618.
Ariftarchus Samius, * II. 255.
Aylet Sammes, of Chrift's-College in Cambridge, * III. 532.

Henry Sampfon, M. D. III. $16,20,112,211$.
Sanctorius, * III. 23.
M. Chriftophorus Sandius, II. 830.

His Excellency Edward Earl of Sandwich, Am-bafjador-Extraordinary to the King of Spain, F. R. S. I. 281, 562 . II. $185,74^{1}$. * II. 603.
D. Dominicus Sanguinetus, * V. 386.

Sig. Sarotti, the Venetian Refident, II. 148.
Mr. Tho. Savery, I. 543.
M. Saviard, Sworn Surgeon at Paris, III. 218.

Mrs. Anne Savile, III. 303.
Mr. R. Sault, I. 463.
Mr. Scarburgh, II. ${ }^{0} 04$.
M. Joh. Schefferus, Prof. in the Swedifh Univerfity at Upial, II. 152, 473, 856. * III. 633.
G. Ch. Schelhammer, M. D. * V. ii. 140.

John James Scheuchzer, M. D. Mathematical Profefor at Zurich, and F. R. S. *V. ii. 216.
D. G. Schultius, I. 297.

Auguftino Scilla, Pittore Academico della Fusina, * II. 256.

Jac. Sidelius, * III. 22.
Mr. Ab. Seller, * III. 532.
Mr. Sellers, II. 604.
R. P. Michael Senefchallus, S. F. * III. 531.
W. Sengwerdius, Masb. \&o Pbyfic. ins Acad.

Altdorf, P. P. D. * II. 917.
Sig. Setalla, of Milan, I. 220. II. 425,58 a
Mr. Abr. Sharp, IV. 251.
Dr. Richard Sharrock, * II. 758.
Dr. Will. Sherard, I. 602.
Dr. William Sherard, F. R. S. late Conful at Smyrna, IV. ii. 319. V. ii. 196.
E.dw. Sherburn, E/q; * I. 454.

Rob. Sherringham, Cantab. Coll. Gonvillii ©i Caii Socius, * IIF. 532.
Mr. B. Sherman, V. 54, 273, 388.
Mr. John Shipton, V. 275 .
Dr. Tho. Shirley, Pbyjic. in Ord. to his Majefly. II. 382. * II. 757.

Sir Robert Sibbald, Pbyfician and Geographer to the King, and Fellow of the College of Phyficians at Edinburgh, II. 325. III. 155, 156. V. 25. * II. 918. III. 632. ** II. 916.
M. Henricus Siferus, I. 277.

Dr. Peter Sylvefter, F. R. S. III. 603. V. 303. * * II. 602.

George Sinclare, * II. 256.
Sir Philip Skippon, V. 306.
Fred. Slare, M. D. R.S.S. II. 462, 533, 879. III. III, 151, 179, 180, 181, 230, 354, 357, 359, 667. IV. ii. 198, 201. V. 289, [356]
Hans Sloan, M. D. S. R. S. II. $410,419,43$ I, $514,643,651,662,666,668,669,672,675$. 752,863 . III. $94,119,212,281,542,658$. *II. 756. ** II. 252 .
Sir Hans Sloan, Bart. Vice-Prefident of the Royal Society, IV. ii. 256, 263. V. 264. *V. ii. 215.

Renatus Fran. Slufius, Canon of Liege, and CounSellor to bis Electoral Highnefs of Cologn, I. 19, $22,180,182,185,189$. * I. 126.
Francis Smethwick, Efq; F. R. S. I. 201, 284.
Tho. Smith, D. D. F. R.S. II. 288. III، 456. 465, 473. * III. 633.
Dr. Edw. Smith, F. R. S. II. $457,458,646$.
Jo. Smith, M. D. * III. 308.
Mr. John Smith, Miniffer of the Royal African Company at Cabo Corfo in Guinea, * II. 755.

John Smith, Gent. * III. 687 .
Mr. Rich. Smithfon, III. 614.
Mr. Edw. Smyth, Fellow of Trin. Coll, in Dublin, II. 324°
Theon Smyrnxus, *I. 124.
Mr. William Somner, IV, ii. 222. * III. 53 z.

An INDEX of the Authors Names.

M. Du Sons, Mathematician, I. 201. II. 367.

Capt. South., III. 665, 666, 667.
Sir Robert Southwel, F. R. S. I. 214,222 . II. 371, 626, 753, 903. III. 649, 6,6, 657, 658, 661, 662.
D. Andreas Spole, Afrozom. Profefl. is Acad. Upfalienfi, II. 200.
M. Spon, M. D. of Lyons, * III. 532,633 .

Mir. Spotiwood, Surgesn at Tangier, ** II. 752.
Dr. Tho. Sprat, * II. 252.
Mr. Richard Stafford, of Bermudas, II. 268, $8+8$.
Capt. Stanian, IV. 232,251.
Mr. Nicholas Staphurtt, Chymical Operator for the Company of Apotbecaries, * 111. 371.
Chriltianus à Steenvelt, Surgeon to the Ho/pital at Leyden, * III. 229.
S. Nic. Steno, II. 819. *II. 25j, 918, g19. III. 296.

Mr. Nicholas Stephenfon, * I. 124, 455.
Mr. James Sterling, IV. i 1.
Mr. Strachan, IV. ii. 312. V. ii. 176, 179, 181.
John Strachicy, Efq; IV. ii. 260.
Agidius Strauchius, * III. 531.
Mr. Street, I. 307.
Dr. Alex. Stuart, IV. ii. 103. V. ii. 60.
Dr. Stubbs, III. 546.
William Stukely, M. D. R. S. S. IV. ii. 272.
Mr. John Sturdie, of Lancafhire, II. 562.
M. Joh. Chrilt. Sturmius, Profeff. of Math. E* Pbilof. at Altdorf in Germany, II. 252, 612. III. 354. * II. 253:

Capt. Sam. Sturmy, II. 265, 370, 610.
S. Pietro Sufarte, S. F. Rector of Macao in the Eaft-Indies, I. 439.
Joh. Swammerdam, M. D. Amftelodamenfis, II. 785. III. 119, 252. *II. 912. 913. III. 80. 224.

Tho. Sydenham, M. D. * III. 229, 289.
Joh. Bapt. Sylvaticus, * III. 22.
Franc. de la Bos Sylvius, * III. 22, 289.
William Sympfon, M. D. * II. 336. III. 372.

T.

MR. J. T. III. 160. Dr. John Tabor, V. ii. 63.
Matth. Tachenius, M. D. * III. 371 .
Sir Gilb. Talbot, F. R. S. bis Majefy's Envoy Extraord. in Denmark, II. 534 .
R. P. Andreas Taquet, S. F. ${ }^{*}$ I. 124.

Joh. Baptift. Tavernier, Baron of Aubonne, * III. 633.

Brook Taylor, L. L. D. Bate Secretary to the Royal Society, 1V. 46, 80, 86, 87, 138, 165, 171, 205, 384, 391, 423. IV. ii, 297. * IV. 205.

Mr. Rob. Taylor, Apoth. at Hitchin in Hertfordfhire, II. 147.
Capt. Silas Taylor, II. 814.
Padre Balthazer Tellez, Provincial of the Fefuits in Portugal, III. 634.
Mi. J. Templer, of Braybrook, in Northampt. II. 102, $103,660,763,840,867$. III. 64, 69.

Mr. Tennifor, * III. 68 s .
Mr. Edward Tennifon, IV. ii. 309.
W. Tenon, I. 539.

Wilh. Ern. Tentzelius, Hiforiographus Ducalis Saxonicus, II. $43^{8 .}$
Theodofius, I. 117.
M. Thevenot, * III. 633. ** II. 602, 916.

Mr. Alban Thomas, ${ }^{* *}$ IV. ii. 286.
Mir. David Thomas, II. 903.
Ralph Thoresby, Efq; F. R. S. II. 179. III. iI, $418,421,424,426,427$. IV. ii. 109, 130, $131,132,134,192,211,248,274$. V. 265, 280, 288. V. ii. $27,30,32,34,35,37,40$, 41, 18, 220.
Major Edward Thornycroft, IV. 60.
John Thorpe, M. D. F. R. S. V. 16.
Dr. Sam. Threapland, of Hallifax, III. 161.
Malachias Thrufton, M. D. * III. 80.
Edw. Thwaites, ̀̀ Coll. Regin. Oxon. * I. 586
Plato Tiburtinus, * I. 454.
Matth. Tillingius, M. D. ${ }^{*}$ III. 371 .
M. Timmerman, Mathematician at Mofcua, I. 340.

Dr. Emanuel Timone, V. 370.
Mr. Hugh Todd. F. of Univerf. Coll. Oxon, and Chaplain to the Lord Bißbop of Carlifle, II. 325, 333, 35 I.
Hugh Todd, D. D. V.ii. 47.
P. Alvarez de Toledo, a Francifcan Fryar, II. 410.

Ez. Tonge, D. D. II. $276,676,684$. ** II. 755 .
Geo. Tonital, M. D. * II. 366.
Richard Townley, of Townley in Lancahire, $E_{\text {/q; }}$ I. 126, 225, 287. II. 9, 43, 44, 86.
D_{r}. Tho Towns, in Barbadoes, III. 560.
Tho. Trapham, M. D. * III. 632.
Franc. Travaginus, Med. Venet. * II. 602. III. 371.

Mr. Rob. Tredway, II. 345, 495 .
Johannes Trethemius, * III. 687.
Joh. Georgius Trumphius, Saxo. Med. Licentiat. * II. 603.

Dr. Dawbeny Tuberville, of Salisbury, III. 34, 41.
M. Pitton

An INDEX of the Authors Names.

M. Pitton Tournefort, de I'Academie Royal des Sciences, Dozzeur en Medicine de la Faculté de Paris, Eo Profefleur en Botanique au Fardin Royal des Plantes, II. 757.
Mr. John Turner, Surgeon, III. 141, $210,277$.
Edw. Tyfon, M. D. F.R.S. II. 788, 800,822 , 876, 884. III. 14, 26, 27, 81, 122, 131, 134 , 147, 148, 226. V. 4, 35, 178. *II. 918.
V.

V.V. I. 22. Ds. Jofephus Valletta, Nobilis Neapolitanus, IV. ii. 207.
Ant. Maria Valfalva, M. D. in Univerfitate Bononienfr Anatomicus Profefor, Eo Nofocomii incurabilium Chirurgus, * V. 213.
M. John Weichard Valvafor, Liber Baro. R.S.S. I. 599. II. 307.

Mr. Rob. Vans, of Kilkenny in Ireland, II. 143.
Sig. Gio. Michaele Vanflebio, * III. 634.
Bernhardus Varenius, M. D. ${ }^{*}$ I. 586.
M. Penoit Vaffal, Surgeon, III. 209.

Dr. Francis Vaughan, Pbyfician in Ireland, II. 644.

Mr. Henry Vaughan, V. 261, 272, 291.
M. Veay, Pbyfician at Tholoufe, III. 302.

Georgius Hieronimus Velihius, * II. 253.
Sir Philiberto Vernatti, Prefident in Java major, II. 579, 817. III. 617.
M. Du Vernay, III. 57. *III. 60.
M. Verney, Apothecary at Montpellier, II. 768.

Franc. Vernis, * III. 371 .
Mr. Francis Vernon, I. 564. III. 45I. * III. 633.

Dr. Raymund Vieuffens, of Montpellier, M. L. E゚ S. R. S. III. 43, 235 * III. 60.
M. De Vilette, of Lyons, I. 219, 220.
M. De Villermont, I. 778.

Dr. Nath. Vincent, F. R. S. I. 538.
Vitruvius, * I. 597.
Ds. Vincentio Viviani, F. R. S. ${ }^{*}$ IV. 171.
Mr. Underhill, of Worcefter, III. 93.
Dr. Goth. Voightius, * III. 372, 687.
Joh. George Volkamer, M. D. * II. 365 . III. 634.
M. de la Voye, II. 790.

W.

J.
W. Gent. II. 755, 756.
W. W. III. 438.
loh. Jacobus Wagnerus, M. D. * III. $6 \hat{j}^{2}$.

Mr. Nicholas Waite, Mercbant of London, II. 552.

Mr. Walker, late of Brazen-Nofe Coll. Oxon. I. 504.

Dr. Wall, IV. ii. 275.
Dr. Jo. Wallace, F. R. S. III. 156, 165, 56r. * III. 632.

Richard Waller, E/q; F. R. S. I. 601. II. 76_{4}, 821, 858, 874. * I. 587. II. 253. ** I. 605.

Richard Waller, E/g; late Secretary to the Royal Society, V. 55. V. ii. 219.
Johan. Wallis, S. T. D. Geomet. Profelf. Savilianus, Oxon. Eo R. S. S. I. 29, 31, 61, 103, $104,113,233,238,265,296,457,483,572$, $595,598,606,612,618$. II. $2,6,14,25$, $32,122,152,169,177,183,200,268,275$, $278,283,395,699$. III. $92,388,393,405$, 406, 66i. * I. 124, 126, 454, 708. III. 397, 53I. II. 252, 365. IV. ii. 227, 233, 286. V. 1, 9.

Mr. Humfry Wanley, F. R. S. V. ii. 1, 25.
Mr. Chr. Wafe, * I. 597.
Mr. Tho. Watkins, F. R. S. V. ii. 243.
John Webb, Efq; * III. 398, 634 .
Mr. John Webfter, Practitioner in Pbyfick and Chirurgery, * II. 603.
Georgius Wedelius, M. D. * III. 372.
M. Weighelius, Profel: of the Math. in the Univerf. of Jena in Upper Saxony, I. 223, 596.
D. Chriftianus Ludovicus Welfchius, * II. 756.
M. Cafparus Wendland, Chirurgeon of the City of Dantzick, III. 150.
Maur. Wheeler, M. A. Rector of Sibbertoft in Northamptonfhire, I. 468.
Dr. Tobias Whitaker, Phyjc. at Norwich, * II. 366.

John Wilkins, D. D. F. R. S. * III. 397.
Mr. Jofeph Williamion, IV. 394.
Mr. Wilfon, IV. 199.
Mr. James Wilfon, IV. ii. 283.
Thomas Willis, M. D. in Univ. Oxon. Prof. Sedleianus, E゚ S. R. S. * II. 919. III. 60. 229, 371.
Joh. Valentine Willius, Med. Reg. Caftrenfis Dan. * III. 289.
Francis Willoughby, of Middleton in Warw. $E_{\int_{q}} ;$ F. R.S. I. 280. II. $572,685,772,776$, 837, * II 918.
Dr. Wincler, Chief Pbydician of the Prince Palatine, II. 873.

An INDEX of the Authors Names.

John Winthorp, $E_{/_{q}}$; Governour of Connecticut William Wotton, B. D. F. R. S. *III. 297.
in New-England, II. $633,836,857$. III. 564.
Mr. Richard Wifeman, III. $248,249$.
M. Nicholas Witfen, one of the principal Burgomaflers at Amfterdam, 1. 570 . II. 324, 829 , 834. III. $5^{27}, 622 .{ }^{*}$ I. $587,597$.

Rob. Wittie, M. D. III. 152. * II. 366.
Rob. Wood, L. L. D. Mafter of the Mathematical School at Chrift's Horpital, I. IIo. III. 409.

Dr. Nath. Wood, Pbyficion at Kilkenny in Ireland, II. 643, 644.
Mr. Bafil Wood, Surgeon, III. 188.
John Woodward, M. D. of the Coll. of Physce. Profelf. of Pbyjck in Grefham-College, and F. R.S. II. 716 * II. 255.
M. Jo. Phil. Wortzelbaur, I. $280,297,339,361$, 426.

James Wright, M. D. V. 223.
Sir Chriftopher Wren, L. L. D. Regior. Adiffciorum Prefect. R. S. S. I. 195, 196. 459.
Tho. Wright, $E f_{q}$; of Downhain Arenarum in Suffolk, II. $455,734$.

Y.

A^{1}Ndrew Yarranton, Gent. * III. 68% Mr. James Yonge, F. R. S. V. 199, 26r, $284,285,286,291,292,300,309,360,405$,

Z.

J. Jac. Zimmerman, I. 36 I . Joh. Zwelfer, M. D. * IlI. 371.

THE

Mathematical Papers,

Publish'd and Dispers'd

IN THE

Philofophical Tranfactions
 COLLECTIONS

 A N D

 A N D}
Difpos'd under General Heads.

Geometry, Algebra, Aritbmetick, Logaritbmotecbny.
I. I. क्रो S S to what I formerly confider'd, about the Improvement ${ }_{\text {Dr. J. Pells }}$ of the Mathematical Sciences, the Refult was chiefly this: Idea of be Ma-
 and Leifure neceffary for thefe Studies, no wonder if they N. $5 \cdot p \cdot 127^{\circ}$ make no greater Progrefs in them. Therefore it feems probable to me, that by the Help of the following Means, a tolerable good Remedy may be found for this Evil. That is, if,
§. I. A Mathematical Monitor (as we may call it) be $\operatorname{compos}^{\prime}$ d, which may give proper Anfwers to thefe three Queftions. I. What Advantages and of Vol. 1.
what Kind, may be expected from the Study of Mathematicks? 2. What Helps are now in being for attaining fo aivantagcous a Knowledge? 3. What Order is to be obferved in making ufe of chofe Aifitances? Therefore this Monitor fhould contain,

1. An eafy and perfpicuous Difoourfe upon the Limits or Extent of the Mathematieal Ares, and of the condiderable Advantages that will accrue, not only to the Perfons themfelves that ftudy them, but likewife to a Nation that abounds in fkilful Mathematicians.
2. A Catalogue of Mathematicians, and of Works publinh'd by them; which is to exhibit, 1. A Synoptis of all kinds of Mathematical Books, whisther fuch as are already publifh'd, or fuch as are yet unpablifind, and, being in Manufeript, lie concealed in publick Libraries; proper Numbers or References being affix'd to every Kind. 2. A Chronological Catalogue of all the celebrated Mathematicians, difpofed according to the Ages in which they flowined; always fubjoining the Year of our Lord in which their Works were firft printed. 3. A Catalogue of the fame Works, according to the Series of Ycars, in which they were printed in any Language. In digefting of which I woull pro. ceed in fuch Manner, that marking the Year of our Lord, I would add (as in common Catalogues) the Names of all the Mathematical Books that were publifh'd that Year, in any Country or any Language; 1. Shewing in cach how much the Volume contain'd, by marking not only whether it was in Folio, Quarto, Eic. but the whole Number of Pages, fo that the Bulk of the Work might eafily be known. 2. Before the Title mentioning the Year, to which any one might turn back, who fhould deffre to know when the Book was wrote, and when it was lat publifh'd in any Language. 3. Marking in the Margin after the Tide, 1. The Year in which any Work was laft printed. 2. The Number referring the Reader to the Synoplis, which was given in the firt Page of the Catalogue. Now by the Help of thefe Numbers any one might eafily and readily run through all the Mathematical Books belonging to one Subject.
3. An Admonition to the Studious, which are the bef Books in every Kind, in what Order and Method they are to be read, what is to be chofen and what omitted in reading fome of the minor Mathematicians, how we are to proceed fo as to retain every Thing in Memory.
4. An Exhortation and Encouragement to all thofe, who are fufficiently provided with Wealth, Opportunity, and Ingenuity for the Purfuit of thefe Studies; that, 1. Having Regard to the great Advantages that fedotind from hence not only to themfelves but to all Mankind in general. 2. As likewife to that pure and fincere Pleafure which arifes from the Search of hidden Truths, and from ftriving with difficult Problems and the Conqueft of them; that they may feriounly apply themfelves to the Advancement of Science, and fo much the rather, as, 3. More expeditious Mechods are now found out than were known to our Anceftors, which fave us much Labour, Time, and Expence. Then an Exhortation to all fuch as are eminent for fetting a right Value on thefe Studies, and are likewife diftinguifhed for Power and Wealth (which furely may be made inftrumental to perpetual Fame, if prudently difpenfed) that they
may become Patrons to ingenious Men of this Kind, by propofing handfome Rewards to the moft deferving of them, to encourage them to complete fuch Difcoveries as their own Genius's may prompt them to. Laftly, To all Princes and Commonwealths, who cannot eafily procure a greater Ornament to their Dominions, than by making it their Endeavour, I. That they may abound with Perfons fkilled in thefe Arts. 2. That the Way leading to them may be made as little laborious and expenfive as poffible. 3. That Mathematical Ge nius's may be more publickly known, and meet with fuch Encouragement as they fhall deferve.

For this end it will be very neceffary that,
§. 2. A Publick Library may be founded, which may be furnim'd with all the Books abovementioned, and with one Inftrument of every Sort that has been yet invented; and belides may have an Endowment fufficient, 1. To purchafe Copies of all the Mathematical Books that Mall be yearly publifh'd any where abroad. 2. To maintain a Library-keeper, whofe Bufinefs it fhould be,

1. To read over all the Books of this Kind, which are publin'd in his own Country. I. Suppreffing thofe which are not wrote according to the Rules of Art, that their Miftakes may not lead their Readers into Error. 2. To admonifh Authors, left they fhould only republifh Things already known, and treated of by others.
2. On Peril of their Reputation that they fhould approve of notable Inventions, and heartily recommend the Inventors to proper Patrons.
3. To receive, to enter into their Catalogue, and difpofe in their proper Repofitories, one Copy of the Books fo read over; when prefented to the Library well bound up, at the Charge of the Author or Bookfeller.
4. To give a civil and ready Anfwer to any ftudious Perfon, who fall confult him about any Problem, whether it is already folved or no; left he hould attempt any Thing that is well done already, or on the contrary furprefs his Difcoveries, out of Fear they may be ahready known, and perhaps difcuffed in fome of the Books of the Library.
5. To receive, Eic. all Manufcripts that may be prefented to the Library, or bequeathed to it by Legacy.
6. To keep a conftant Literary Correfpondence with all Perions of this Kind, that refide in foreigi Countries; lelt he Ahould be ignorant of what Books are publifh'd there.
7. To take Notice among his Countrymen, who are fitteft and moff expert in inftructing others in thefe Arts.
8. To have an Acquaintance with all kinds of Artificers, who excel in the conftructing of Niathematical Inftruments and Contrivances, whether they work in Wood, Loadftones, Metal, Glafs, E?c.
9. After a fair Trial to give their Teflimony, both of fpeculative Knowledge and practical Dexterity, to practical Men of all Kinds, whether Matters of Ships, Surveyors, Accomptants, ε_{c}. that fuch as have Occafion for this Kind of Men may not be impofed on by ignorant Pretenders, to their great L.ofs.

(4)

The Catalogue will eafily inform, which in fuch a Multitude of Books that almoft overwhelm the World, belong only to this Kind of Study. The Library will exhibit a Copy of every fuch Bork, and inform where more Copies may be bought. It will alfo be a Kind of Storehoufe both to Natives and Foreigners, whence they may eafily learn, what Afiifances that Country can fupply to thefe Studies.

And this, in my Opinion, is the readieft Way of making ufe of the Helps we are already in Poffeffion of. If more are wanting, it will be neceffary, that by the Affitance of fkilful Artifts,
§.3. The three following new Treatifes may be compofed and publifhed.

1. Mathematical Pandects, containing, as perfpicuoully, methodically, compendiounty, and ingenioufly as can be done, whatever may be collected, or deduced by Way of Corollary, from the Mathematical Books or Difcoveries made before our Time; quoting the mott ancient Authors in which they are found, at the End of every Period or Propofition ; and fo marking in all the following Authors where they have been caught in a Theft, or where they have borrow'd without making any Acknowledgment, or (what is worft of all) have boldly claimed to themfelves the Inventions of others. By this means that large Library would be contracted into a much narrower Compafs, to a great faving of Labour, Time, and Expence for thofe that come after; and this much more than any one would imagine at prefent. But now fince this Work would hardly make a portable Volume, there fhould be prepared alfo,
2. A Mathematical Companion, containing in a Manual (and therefore as concifely as may be) all the moft ufeful Tables, with Precepts to fhew their Application to folving of Problems, whether of pure Mathematicks, or applied to other Subjects.

Finally, that we may not always be confined to Books in this Kind of Learning, there fhould be contrived,
3. The Self-fufficient Mathematician, or an Inftruction to fhew how any Mathematician, who is no Enemy to Labour, may acquire fo much Skill, that without the A fiffance of Books or Inftruments he may attain the Solution of any Mathematical Problem, and that as eafily as another would folve it by turning over Books.

And this is that Idea of Mathematicks which, in my Manner, I have long ago figured to myfelf; being always firmly perfuaded, that then only we can hope for Affiftance in great Undertakings, when we have conceived an exact Idea of them in our Minds, and of the moft appofite Means of putting them in Execution. And if we cannot exprefs this Idea in fact, yet it is fomething to come as near it as may be. I imagine this is fo far from being above human Power, that I think the Induftry of one Man alone to be equal to it, who is not hindered by his own domeftick Affairs, or immerfed in a Multitude of bufy Cares. For it is evident that the Library and Catalogue may eafily be provided, if Money is not wanting. And as to the Pandects above defcribed, if the Tafk of compofing them were committed to me, I fhould impofe upon myfelf much feverer Conditions than I have mention'd there. For firft I would
delineate the infallible Procefs of human Reafon in the Inventigation of whatever it propofes to itfelf, by fhewing how it proceeds from the firft Principles or Rudiments, by an uninterrupted Chain, to the moft fublime as well as the loweft Application of them. Which Art perhaps Men would not be long without, if hereafter they fhould carefully examine, by what Means, fuch Thoughts have arofe in the Minds of certain Men whom they admire, how fuch apt Means have been found out to attain fuch an End. How thefe Pandects may be abridg'd into a Manual, fuch as may be fit for common ufe, may not be difficult to underftand. But fo to fix them in their Minds, that they fhall have no farther Need of Books (which is what is aimed at by our Self-fufficient Mathematician) will be thought by moft to exceed the Power of the human Mind ; fince no one that I know of has yet ventured to conceive fuch a Thing in his Mind. Yet I believe that Men will difmifs fomething of their Incredulity, when they confider ferioully with themfelves what Arts have been found out for ftrengthening the Imagination, for affifting the Memory, and for directing the Reafoning Faculty, and what wonderful Effects may be produced by their Conjunction and conftant Exercife.
2. It feems to me much more advifeable, if inftead of all that Apparatus, confider'd, of. which the Author of the Idea propofes, about collecting the various Writings ${ }^{1639}$, by Mernus, i ioid. p. of the Mathematicians, only the beft and moft deferving were felected. And ${ }_{335}$. firft thofe ancient Authors fhould be chofen, whofe Works are ftill extant; as Euclid, Apollonius, Arcbimedes, Theodofus, Pappus, Ptolemy, with their other Fragments and Manufcripts which have not yet feen the Light, fome of which are in Golius's Cuftody at Leyden, and fome are preferved at Rome. Then the more modern may be added to thefe, as Vieta, Clavius, and our Herigor. In like manner among the Opticians, fhould be chofen Vitellio, Kepler, Aquilonius, and Dom. de Villes. Among Arithmeticians after Diaphantus, the beft are Cardan, Tartaglea, and your Countryman Nepper. For Spherical Triangles, and their Computation by Logarithms, you have Briggs, Gordan, Pitifcus, Suellius, and our Morinus. For Aftronomical Matters, after Ptolemy and fome Arabians, all thofe fhould be procured who have compofed Tables, as Alphonfus, Fobrs. Regiomontanus, Kepler, and our Duretus. And to be brief, for Fortification and Mufick, eight or ten Authors might be felected, who have moft excell'd in the Practice. In like manner for Mechanical Affairs, the Forces of Motion, Machines, and Water-works; fo that ten or twelve Authors being perufed, thofe that are curious in fuch Matters may be eafily fatisfied. And if twelve Men of good Underftanding, having a friendly Correfpondence with each other, would take this Affair upon them, to that each of them might compofe a Treatife upon a Science, in one convenient and perfpicuous Volume; fuch Things being fupplied as are wanting in others, and unneceffary Things being pared away; without doubt we might have in twelve Volumes, in a thort and nervous Manner, all that could be defired in this Matter. And in. my Opinion, whatever belongs to Mathematicks, either pure or mixt, might be comprehended in thofe twelve Volum So So one might deliver all the neater Part of Philofophy in three Books, and all the liberal Arts or mechanic Arts in three more;

(6)

fo that Learning might be attained at a fmall Price. Now as to Mathematical Inftruments, it would be of little Confequence to have an Apparatus of all that have hitherro been invented. It would be better to have four or five which are beft in their Kind, and which fhall be judged to be more convenient than any other.
A.frecraby Dr. 3. If I underftand you right, learned Sir, you approve of all I have faid, Pell, ibid. p. -37. only you think I require a greater Apparatus than is neceffary. You are of Opinion, that not all the Mathematical Books and Inftruments frould be collected, which I contend for, but only the beft hould be felected. I fhould not oppofe this your Opinion, if it was agreed on by all, in fuch a Multitude of Authors which was the beft, which fhould have the Preference before all others; and if I had this only in view, that fomething of Labour and Expence might be faved to the Studious in thefe Arts. Butfince I made it my Wifh, to have the moft perfect Foundation for the whole Ambit of the Mathematicks, I ought to delineate no other Scheme, than what might completely anfwer fuch a Defign. The principal Part of fuch a Defign, as I perfuade myfelf, muft confift in fuch an univerfal Library as I have defribed. Iought not to defpife any Attempt, much lefs to condemn any one unheard, that fhall throw in his Mite, and endeavour to promote this Undertaking. And if I may give my Judgment, the moft trivial Writing or Mathematical Infrument hould be preferved, one Copy at leaft even for its Errors, in fome certain accefiible Place of every Country. For we fee many Things that have been ingeniounly invented, in the ruder Inftruments of former Ages, which are now not only worthy of obferving, but even of being imitated: As fome Writers of a lower Cla/s may give very good Hints, and affift the Invention of thofe of a happier Genius; for we can often point at an Exesllence which we cannot arrive at ourfelves. We fee many Lemmata that have been well demonftrated by this Kind of Writers ; yet becaufe of fome ore fundamental Fallacy, their whole Superftructure has come to the Ground. If you think many are to be rejected, as well for their Trifling and Verbofity, as for Error and falfe Conclufions; you fhould confider how different are the Notions and Tafte of Mankind, nor fhould you eftinate others by your own Sagacity. For there are fome who can underftand nothing, unlefs repeated to them an hundred Times, and that almoft in the fame Words; thofe Tautologies therefore are adapted to this Sort of People. And becaufe we mutt always begin from Things more known, but the fame Things are not more known to all; we muft make very different Beginnings: So that you can hardly find a Learner, but who may be aflited by a rude Intloument on thpolifhed Author, and therefore he that undertakes the Office of a Mathematical Monitor fhould not be jgnotant even of thele. So that the complete Colleetion of Books before-mention'd feems to me to be quite neceffary.

Now the more I am difpleafed with thofe minute Mathematicians, the more I fhould winh for a Library of this Kind, as being the only Mechod of curing that Ficentious Itch of Scribbling. For thole prating Pretenders, ever trifling in a childifh Manner, while they would feem to accommodate thembelves to
the Capacity of Youth; may fee that there are already more than enough, who have compiled Rudiments of this Kind. And they who fondly aim to advance the Marhematical Sciences by an Infinity of new Difcoveries, when they fee fo many empty Paradoxes which have been condemned and laughed at by the Publick, may rake Warning by the Mifcarriages of others. But efpecially the Plagiaties, thofe Pefts of all good Literature, will not have the Impudence to vend as their own any old Books, or any Part of them, which perhaps have not been printed more than once. On the oiher hand, Men of Candour and Ingenuity, able to deliver their Thoughts in a handfome Manner, when they fee to many have gone before them, on almoit every Subject, will be caution'd not to produce any Thing to the Publick but what is new and their own. Now what has been treated of already may be eafily known, either by confulting fuch an ample Libiary, or if they will not be at this Trouble, they may be inform'd by the Library. keeper himfelf, to whofe Cuflody I have committed it. And thele are the Reafons in general, which I camot retract, why I hould prefer fuch an Univerlal Library as is above deferibed.
4. I had no fooner read your Letter, learned Sir, but I became wholly yours, and was seady to fubferibe to your Opinion, which I intirely approve: And likewife an unuftual Artour of Mind hurried me on; fo that I would recommend this Undertaking of yours, great as it is, to the great Ones of the World, if I could have free Accefs to them. But where is the King, that will make a Begianing? For I cannot but call it a truly Royal Defign.
5. I infpected the Mathematical Idea only by the bye, and now only remem- Tbe fudgment ber, that I found nothing in it from which I Mould diffent; and I much ap- and Approbation proved chat, firlt, an Inventory of the whole Mathematical Furniture was there of Des Cartes, 1640 . Ibido exhibited, and then the Self.fufficient Mathematician was defcribed, as contain- $\hat{p} .144^{\circ}$. ing every Thing in himfelf. Almoft in the fame Senfe I am ufed to diftinguifh two Things in the Mathematicks, the Hiftory and the Science. By the Hiftory, I mean all that is already found, and is committed to Books. And by the Science, the Skill of refolving all Queftions, and therefore of finding by one's own Induttry whatever can be found by human Ingenuity in that Science. He that pofleffes this Faculty does not much want Foreign Affiftance, and therefore may very properly be call'd felf-fufficient. Now it is much to be wifh'd, that this Mathematical Hiftory, which lies difperfed in many Volumes, and is not yet intire and complete, were to be all collected into one Book. Nor for this Purpofe would there be any Occafion to be at the Charge of feeking or purchafing Books. For fince Authors tranfcribe many Things from one another, nothing is extant any where which may not be fomewhere found in any Library that is but moderately furnifh'd. Nor is Diligence in collecting all Things fo neceffary, as Judgment to reject what is fuperfluous, and Knowledge to fupply fuch Things as are not yet found out. Now if fuch a Book were at hand, from thence any one might learn the whole Mathematical Hiftory, and a good Part of the Science alfo. But if any one fhould defire to have the whole that belongs to the Practice, as Inltruments, Machines, Engines, \mathcal{E}^{c}. if

He was a King, and had the Wealth of the whole World at Command, he could not fupply the neceffary Expences. Neither indeed is there any Occafion for them. It is enough if he can defcribe them all, and either knows how to make fuch as are wanting himfelf, or can fet Artificers to work upon them.

Some of Eucijd's Propofitions, demoriftrated independently from tbe reff, by Mr. Afh. N. 162 . P 672 . 3^{2}. 1. E,

"TIHE Propofitions which I fhall endeavour to demonftrate independently from all ochers, flall be thefe; the 32d and 47th of the Firft Book; moft of the Second and Fiftb Books; the ift and 16th of the Sixtb; with their Corollaries. In order to demonftrate the 32 d ; I fuppofe it known what is meant by an Angle, Triangle, Circle, External Angle, Parallels, and that the Meafure of an Angle is the Arch of a Circle intercepted between its Sides; that a Right Angle is meafur'd by a Quadrant, and two Right Angles by a Semi-
Fig. r. circle. I fay then, that in the Triangle A B C, the External Angle BCE is equal to the two oppofite Internal ones A B C, B A C; for let a Circle be drawn, C being the Center, and BC the Radius; and let CD be cirawn parallel to A B, thofe two Lines being always equidiftant, will buth have the fame Inclination to any third Line falling upon them; that is, (by the Definition of Angle) they will make Equal Angles with it: For if any Part of C D (for Inftance) did incline more to B C than to A B, upon that very Account they would not be parallel; it follows therefore that the Angles A B C, BCD, are equal: Alfo B A C $=$ D C E, becaufe A E falls upon two Parallels; but the External Angle BCE $=\mathrm{BCD} \uparrow \mathrm{DCE}$, which was before prov'd to be equal to A B C, B A C. 엉 $E . D$. Hence may be inferr'd as a Corollary, That the three Angles of every Triangle are equal to two Right ones; for the Angles A C B + B C E, are meafur'd by a Semicircle, and therefore equal to two Right Angles: Corollaries alfo from $20,22,3^{1 \cdot 3 . E . h e n c e}$ are the 20th, 22d, and 31ft of the T'bird Book, which contain the Properties of Circles; whofe Deduction from hence is moft natural and obvious.
47. 1. E. In order to demonftrate the 47 th, 1 fuppofe the Meaning of the Terms made ufe of, to be known; and that two Angles or Superficies are equal, when one being put on the other, it neither exceeds, nor is exceeded. This being allow'd, I fay, the Sides about the Right Angle are either equal or unequal; if equal, let all the Squares be defcrib'd; the whole Figure exceeds
Fig. 2. the Square of the Hypotenufe B C, by the two Triangles M, V, and exceeds alfo the Squares of the other two Sides, A B , A C, by the two Triangles, A B C, and S; which Exceffes are equal, for M is equal to A B C, the two Sides about the Right Angle, being two Sides of a Square upon A B, by Suppofition cqual to A C, and the third Side equal to B C ; therefore the whole Triangles are equal. After the fame manner, S and V are proved to be equal; therefore the Square of C B is equal to the Squares of the two other Sitles. 2 E. D.

But if the Sides be unequal, let the Squares be defcribed, and the Parallelogram L Q compleated; the whole Figure exceeds the Square upon BC, by three Triangles, $\mathrm{X}, \mathrm{R}, \mathrm{Z}$; and exceeds alfo the Square L A, A D, by the Triangle A B C, and the Parallelogram P Q: Which Excefles, I fay, are

(9)

equal ; for Z is equal to $A B C$, the side $O C=B C, C D=A C$, the Angle $D=A$, and $O C D=B C A$; which is manifeft, by taking the common Angle A C O, out of the two Right Angles B C O, A C D; therefore by Superimpofition the whole Triangles are equal. In like manner X is proved equal to $A B C$, alfo R ; and the Parallelogram $\mathrm{P} Q$ to be double of the Triangle A B C: Thus the Exceffes being proved equal, the Remainders alfo will be equal ; viz the Square of BC to the Square of A B, AC. Q.E. D. Manifeit Corollaries from hence are the 35 th and 36 th of the Third ${ }_{35}, 36,3 \cdot \mathrm{E}$. Book; alfo the 12 th and 13 th of the Second.

The firft Ten Propofitions of the Second Book are evidently demonftrated, 12, is. . . E. only by fubftituting Species or Letters inftead of Lines, and multiplying ${ }_{1}, 2$, , \&c. 2 E. . them according to the Tenor of the Propofition: Thus, to inftance in one or two, Call the whole Line A, and its Parts B and C, therefore $A=B+C$,
and confequently $\mathrm{AA}=\mathrm{BB}+\mathrm{CC}+2 \mathrm{BC}$, which is the very Senfe of the Fourth of the Second Book. Thus alfo, Let a Line be cut into equal Parts F, F, and let another Line, S, be added thereto; 'tis manifeft, that 4 FF $+4 S F+2 S S=2 \mathrm{FF}+2 \mathrm{FF}+2 S S+4 \mathrm{SF}$; which is the Tentb Propofition of the fame Book.

Almoft the whole Doctrine of Proportionals, viz. Permutation, Inverfion, Converfion, Compofition, Divifion of Ratio's, and Proportion ex aquo; and confequently the moft ufeful Propofitions of the Fifth Book, are clearly demonItrated by one Definition, and that is of Similar or Like Parts, which are faid to be fuch as are after the fame manner, or equally contain'd in their Wholes: Thus the Antecedents A and C, are either equal to their Confequents, or greater, or lefs; if equal, the thing is manifeft; if lefs, then (by

Fig. 4.
4.2.E.

צо. 2. . .

Fig. 6 the Definition of Proportionals) A and C are Like Parts of B and E; therefore what Proportions the whole, B and E , have to one another, the fame will A and C have; which is Permutation: Likewife E:C::B:A, which is Inverfion. So alfo if from Proportionals you take Like Parts, the Remainders will be proportional; whence Converfion and Divifion are demonftrated: And if to Proportionals you add Like Parts, the Wholes will ftill be proportional; which is Compofition, $E_{c} c$. If the Antecedents be greater than the Confequents, the Confequents will be Like Parts of them, and the Demonftration exactly the fame with the former.

The firft of the Sixtb Book is prov'd, by confidering the Generations of the Parallelograms, which are produced by drawing or multiplying the Perpendicular upon the Bafis; that is, taking it fo often as there be Parts and Divifions in the Bafc: Therefore the fame Proportion that R X fingle, hath to N X fingle, the fame hath R X multiplied by X Z, that is, repeated a certain number of times, to N X multiplied by X Z , that is, repeated the fame number of times; which is as much as to fay, $\mathrm{R} \mathbf{X}: \mathrm{NX}$: : Paral. R Z : Paral. N Z. Now that this Propofition is alfo true in Oblique-angled Parallelograms, is proved, becaufe they are equal to the Rectangled ones upon the fame Bafis, and between the fame Parallels, as does thus independently appear ; the Triangles $R Q X$, and $M P Z$, are equal; for $R X=M Z, Q X=P Z, R M$ $=Q P$; therefore adding to both $M Q ; R Q=M P$; if therefore from thefe Vol. I.

(10)

equal Triangles you take what is Common, viz. ML Q , the Remainders will be equal, RXLM $=$ QL ZP; to both which add XL Z, and the whole Parallelograms will be equal, $\mathrm{R} Z=\mathrm{Q} Z . \mathscr{S}^{2} E . D$. That Triangles alfo having a common Balis, are in the Proportion of their Altitudes, dives hence follow; becaufe they are the Halves of Parallelograms upon the fame Bafis. This alfo is true, and the Demonfration exactly the fame, in Prifms, Pyranids, Cylinders, and Cones, having the fame Bafis.

To prove the 16 th of the Sixth, I fuppofe the 4 Lines, A, B, C, E, to be proportional, that is, granting A and ${ }^{\prime}$ ' to be the leffer Terms, the fame way that A is contained in B , fo is C in E ; and that D is the Denominator of the Ratio; 'twill follow then, that B is made up of A, multiplied by D, and E of C , multiplied by D ; fo that $\mathrm{AD}=\mathrm{B}$, and $\mathrm{CD}=\mathrm{E}$; draw therefore the Extremes upon one another, that is, A upon CD, and the Means, that is, C upon A D; the Factors being the fame, I fay, the Products A CD, and CAD, are the fame, and confequently equal. 2 E.D.

The Problem propofed by M. Comier, (with Oftentation enough) as if it contain'd fomething New, though in reality it be nothing but the Old Bufine's of doubling the Cube, a little difguifed, is eafily folved Algebraically, as follows,
ris. s

III. Let A B be one Afymptote of the Hyperbola E d C ; and let A E,

The Squaring of tbe Hyperthla, by and B C, be parallel to the other: Let alfo A E be to BC, as 2 to 1 ; and ${ }^{\text {the }}$ Erounker. V Ifount let the Parallelogram A B DE be equal to 1.
$\stackrel{\text { Brounker. }}{\text { N. }}$ SF: P. 645 .
Fig. 9.

Suppofing the Reader knows, that E A $\propto\}, \mathrm{KH}, \beta \mu, d \theta, \gamma x, \delta \lambda, \varepsilon \mu$, C B, ${ }^{\circ}{ }^{\circ}$ c. are in an Harmonick Series, or a Series Reciproca-Primanorum, feus Aritbmetice Proportionalium, (otherwife he is referr'd for Satisfaction to Aritbin. Infinitor. Wallifi, Prop. $87,88,89, \xi^{c}$.) I lay,

(II)

ABC dEA $=\frac{1}{1 \times 2}+\frac{1}{3 \times 4}+\frac{1}{5 \times 6}+\frac{1}{7 \times 8}+\frac{1}{9 \times 10}, \delta_{c}$
$\mathrm{E} d \mathrm{DE}=\frac{\mathbf{1}}{2 \times 3}+\frac{\mathbf{1}}{4 \times 5}+\frac{1}{6 \times 7}+\frac{1}{8 \times 9}+\frac{1}{10 \times 11}, \delta_{c}$.
$\mathrm{E} d \mathrm{C} y \mathrm{~B}=\frac{1}{2 \times 3 \times 4}+\frac{1}{4 \times 5 \times 6}+\frac{1}{6 \times 7 \times 8}+\frac{1}{8 \times 9 \times 10}, \delta_{c} c$.
For (in Fig. 10. and 11.) the And (in Fig. 12.) the Triangle,
Fig. 10, II, I2. Parallelogram,

$$
\begin{aligned}
&(\mathbf{1 2}) \\
& \text { Note, } \frac{1}{2} \mathrm{CA}=d \mathrm{D}+d \mathrm{~F} \\
& \frac{1}{2} d \mathrm{D}=b r+b n \\
& \frac{1}{2} d \mathrm{~F}=f \mathrm{G}+f k \\
& \frac{1}{2} b r=a q+a p \\
& \frac{1}{2} b n=c s+c m \\
& \frac{1}{2} f \mathrm{G}=e t+c l \\
& \frac{1}{2} f k=g u \frac{1}{2} g h, \& c c .
\end{aligned}
$$

And that therefore in the firt Series half the firf Term is greater than the Sun of the two next, and half this Sum of the Second and Third greater than the Sum of the four next; and half the Sum of thofe Four greater than the Sum of the next Eight, $\delta^{\circ} c$. in infinitum. For $\frac{1}{2} d \mathrm{D}=b r+b n$; but $b n>f \mathrm{G}$, therefore $\frac{x}{2} d \mathrm{D}>b r+f \mathrm{G}, \mathcal{E r c}^{2}$. And in the Second Se. ries, half the fecond Term is lefs than the Sum of the two next, and half this Sum lefs than the Sum of the four next, \mathcal{E}^{c} c. in infinium.

That the firt Series are the even Ternis, viz. the 2d, 4th, Gth, 8th, 10 th, $\mathcal{E}^{\circ} \mathrm{c}$. and the fecond the odd, wiz, the $1 \mathrm{ft}, 3 \mathrm{~d}, 5 \mathrm{th}, 7$ th, 9 th, $\mathcal{E}^{\circ} \mathrm{c}$. of the following Series, Ėc.

Whereof a, being put for the Number of Terms taken at Pleafure,

$$
\frac{\mathbf{1}}{a^{2}+a}
$$ is the laft, $\frac{a}{a+x}$ is the Sum of all thofe Terms from the Beginning, and I $a+1$ the Sum of the reft to the End.

That $\frac{1}{4}$ of the firf Term in the third Series is lefs than the Sum of the two next, and $\frac{1}{4}$ of this Sum lefs than the Sum of the four next, and $\frac{2}{4}$ of this laft Sum lefs than the next eight, I thus demonftrate:

Let a be equal to the third or laft Number of any Term of the firft Column, viz. of Divifors;

(13)
$\frac{16 a^{3}-48 a^{2}+56 a-24}{64 a^{5}-384 a^{5}+880 a^{4}-960 a^{3}+496 a^{2}-96 a}=$ B.
$\frac{64 a^{5}-384 a^{5}+928 a^{4}-115^{2} a^{3}+736 a^{2}-192 a}{64 a^{5}-384 a^{5}+880 a-960 a^{2}+496 a^{2}-96 a^{2}} \mathrm{~A}=\mathrm{B}$.
And $4^{8} a^{+}-192 a^{3}+240 a^{2}-96 a=$ Excefs of the Numerator above the Denominator.

But the Affirmat. $>$ the Negat.
That is, $\left.4^{8} a^{+}+240 a^{2}>192 a^{3}+96 a\right\}$
Becaufe $a+5 a^{2}>4 a^{3}+2 a>$ if $a>2$. $a^{2}+5 a>4 a^{2}+2$
Therefore
B $>\frac{1}{4} \mathrm{~A}$.
Therefore one fourth of any Number of A, or Terms, is lefs than their fo many refpective B ; that is, than twice fo many of the next Terms. 2. E. D.

By any one of which three Series it is not hard to calculate, as near as you pleafe, thefe and the other like Hyperbolic Spaces, whatever be the rational Proportion of AE to BC; as for Example, When AE is to BC, as 5 is to 4. (Whereof the Calculation follows, after that where the Proportion is, as 2 to I; and both by the Tbird Series.)

Firtt then, when (in Fig. 9.) AE : B C :: 2 : I.

```
        2\times3\times4) 1.(0.0416666666]0.0416666666
        4\times5\times6) I. (0.0083333333}
        6x 7x 8) I. (0.0029761904}
    8\times 9x10) 1. (0.0013888888)
10\times11\times12) I.(0.0007575757 (0.0004578754
14\times15\times16) I. (0.0002976190)
16\times17\times18) 1.(0.0002042484
18\times19\times20) I. (0.0001461988
20\times21\times22) I. (0.0001082251
22\times23\times24) I. (0.0000823452
24\times25\times26) I. (0.0000641026
    0.0007306482
26\times27\times28) I. (0.0000508758
28\times29\times30) 1. (0.0000410509
.30\times31\times32) I. (0.0000336021)
```

```
32\times33\times34)1.(0.0000278520)
34\times35\times36) 1. (0.0000233426
36\times37\times38) I. (0.0000197566
38\times39\times40) 1. (0.0000168691
40\times41\times42) I. (0.0000145180
42\times43\times44) 1. (0.0000125843
44\times45\times46) 1. (0.0000109793
46\times47\times48) I. (0.0roooog6361
48\times49\times50) 1. (0.0000085034
50\times51\times52) I. (0.0000075415
52\times53\times54) 1. (0.0000067193
54\times55\times56) 1. (0.0000060125
56\times57\times58) I. (0.0000054014
58\times59\times60) I. (0.0000048704
60\times61\times62) I. (0.0000044068
62\times63\times64) I. (0.0000040002)
0.0001829939
0. 0416666666
o. O110095237
0. 0029019589
0. 0007306482
3)0.0001829939(0.0000609980
0. 05679179
\(+0.00006100\)
0. \(05685279<\mathrm{E} d \mathrm{C} y\)
```

But 0.0007306482?
0. 0001829939 - \because
0. 00004583155

Therefore 0.05679179
+o. $000045^{8} 3$
+o. 00001528
0. $05685290>\mathrm{E} d \mathrm{C} y$.

For it has been demonftrated, That $\frac{\pi}{4}$ of any Term in the laft Column is lefs than the Term next after it; and therefore that $\frac{T}{3}$ of the latt Term, at which you fop, is lefs than the remaining Terms; and that the Total of thefe is lefs than $\frac{7}{4}$ of a third Proportional to the two laft.

(15)

And therefore ABCyE being $=0.75-0.57$

$$
\begin{aligned}
& \text { and } \mathrm{E} d \mathrm{C} y>0.05685279 \text { —— and }<0.05685290 \\
& \text { And A BC } d \mathrm{E} \text { is }<0.69314720 \text { —— and }>0.69314709
\end{aligned}
$$

But when AE:BC::5:4, or as E. A to K H; then will the Space Fig. g. ABCE, or now, the Space A HKE (AH= $\left.\frac{1}{4} A B\right)$ be found as follows.

$$
\left.\begin{array}{c}
8 \times 9 \times 10) \text { i. }(0.0013888888] 0.0013888888 \\
\left.\begin{array}{l}
16 \times 17 \times 18) \\
18 \times 19 \times 20) \\
\text { I. }
\end{array} \begin{array}{l}
\text { I. }(0.0002042484 \\
32 \times 33 \times 34)
\end{array}\right) \text { i. }(0.0001461988
\end{array}\right\} 0.0003504472
$$

o. $0018564299<$ Eab

But 0.0003504472
o. $0000878204>\div$
o. 00002200737

Therefore 0.0018271564
to. 0000220074 +o. 000007335^{8}
0. $0018564296>$ E $a b$

Therefore EMb (Fig. 12.) being $=9.025$
E $a b>0.0018564292$ and <0.0018564996
EMba (Fig. 12.) or EKM (Fig. 9.) >0.02685643 <0.02685650
A HKE<0.22314356 <0.22314349

Therefore, The Logar. of 10 , is to the Log. of 2 , as 2, 302585 , to 0.693147.
IV. The Quadrature of the Circle, or the turning it into an equal Share, or

The Quach ature of a Circle, by M. Leibnitz, Pbil. Coll. N. 7. f. 204. any other Right-lin'd Figure, (which depends upon the Ratio of the Circle to the Square of its Diamerer, or of the Circumference to its Diameter) may be underttood to be fourfold, to wit, either by Calculation, or by Linear Conftruction; and each of them again may be either perfectly exact, or elfe almoft, or pretty near. The Quadrature by accurate Calculation, I call the Analytical; That which is done by accurate Conftruction, I call the Geometrical: That which is done by Calculation pretty near, I call the Approach; that which is by Conftruction pretty near, I call Mechanical.

The Approaches have been furtheft carried on by Ludiolph van Ceulen : Vieta, Hugenius, and others, have given feveral Mechanical. The accurate Geometrical Conftruction may be had, by which not only an entire Circle may be meafured, but any Section or Arch of it alfo; which is by an exaet and ordinate Motion, but fuch notwithfianding as fuits with Tranfeendental Curves, which erroneoully are accounted Mechanical, though in truth they are as Geometrical as thofe which are commonly fo efteemed; though they are not Algebraical, nor can be reduced to Equations Algebraical, or of certain Degrees; they having Degrees proper to themfelves, which though they be not Algebraical, are yer neverthelefs Analytrical.

The Analytical Quadrature, or that which is made by accurate Calculation, may be again fubdivided into three Kinds; namely, into the Analytical Tranfcendent, the Algebraical, and the Arithmetical. The Analytical Tranfeendent is to be obtained, amongft others, by Equations of Degrees indefinite, hitherto confidered by none: As if $\mathrm{X}^{\mathrm{x}}+\mathrm{X}$ be equal to 30 , and X be fought, it will be found to be 3 ; becaufe $3^{3}+3$, is $27+3$, or 30 .

The Algebraical is done by Vulgar Numbers, though irrationally, or by the Roots of common Equations; which for the general Quadrature of the Circle, or its Sectors, is indeed impoffible. Now there remains the Arithmetical Quadrature, which is performed by certain Series exhibiting the Quantity of the Circle exact by a Progreffion of Terms (firft) Rational, fuch as I fhall here propound.
I have found therefore, that if the Square of the Diameter be put 1 , the Area of the Circle will be-
 15 17
diminifhed (that it may not be too big) by a third Part; and again (becaule hereby too much is taken away) being augmented by one fifth; and again (becaufe by this laft too much is added) diminifhed by one feventh; and fo onward, continually.

IAnd the firf Quantity will be too great, viz. T. but the Error?
will be lefs than
The next too little, viz. 1 - - , but the Error will be lefs than (ce 8 a as $\frac{1}{3}, \mathbf{1}$ The 3 d , too much, viz. I -+ -, but, $\mathcal{E} c$. The 4 th too little, viz. $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}$, but, $\mathcal{E}_{c} \cdot \cdots \cdot \frac{1}{5 \delta_{c} c .}$
The whole Series contains all the A pproaches together, or the Values both greater than they ought to be, and lels than they ought to be.
So that by continuing the Series, the Errors may be made lefs than any FraEtion given, and confequently lefs than any affignable Quantity. Whence it follows, that the whole Series muft give the true Value. And though the Sum of the whole Series cannot be exprefled by one Number, and that the Series be infinitely continued; yet becaufe it confifteth of one regular Method of Progreflion, the whole may fufficiently enough be conceived by the Mind. And if V an Ceulen could have given a Rule by which his Numbers 314159 , \mathcal{E}^{3} c. could have been continued in infinitum, he would have given us the Arithmetical Quadrature exact in whole Numbers, which we have here done in Fractions.

There are feveral things relating to this Quadrature which might be taken notice of, efpecially one, viz. That the Terms of this our Series, $\frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}$, $\frac{1}{9}, E^{2} c$. are of Harmonical Progrefion, or in a continued Harmonical Progreffion; as will be evident to any one that fhall examine them. And a Series made by fkipping, as $\frac{1}{1}, \frac{1}{5}, \frac{1}{9}, \frac{1}{13}, \frac{1}{17}$, Bc. is alfo of Harmonical Progref- 2. fion. And $\frac{1}{3}, \frac{1}{7}, \frac{1}{11}, \frac{1}{15}, \frac{1}{19}$, Bc. is alfo a Series of Harmonical Proportionals. Wherefore fince the Circle is $\frac{1}{1}+\frac{1}{5}+\frac{1}{9}+\frac{1}{13}+\frac{1}{17}, \delta_{c}$. -$\frac{1}{3}-\frac{1}{7}-\frac{1}{11}-\frac{1}{15}-\frac{1}{19}$, Bc. by fubftracting the latter partial Series from the former partial Series, the Circle will be the Difference of two Series in Harmonical Progreffion. And becaufe the Sum of any Number of Terms in Harmonical Progreffion, how many foever, may by fome Compendium be obtained ; hence Compendious Approaches (if after Van Ceulen there be any need of them) may be deduced; if one would in this our Series take out the Terms affected with the Sign -, by adding the two next into one, +

D
$\frac{1}{1}-\frac{1}{3}$, and $+\frac{1}{5}-\frac{1}{7}$, and $+\frac{1}{9}-\frac{1}{11}$, and $+\frac{1}{13}-\frac{1}{15}$, and $+\frac{1}{17}-$ $\frac{1}{19}$ and fo onward, he will have a new Series for the Magnitude of the Circle, namely, $\frac{2}{3}$ (that is, $\left.\frac{1}{1}-\frac{1}{3}\right)+\frac{2}{35}$ (that is, $\left.\frac{1}{5}-\frac{1}{7}\right)+\frac{2}{99}$ (that is $\left.\frac{1}{9}-\frac{I}{1 i}\right) \delta^{2} c$. Wherefore

The Square infcrib'd being $\frac{\mathrm{r}}{4}$
The Arca of the Circle fhall be $\frac{1}{3}+\frac{1}{35}+\frac{1}{99}+\frac{1}{195}+\frac{1}{323}$, $E^{\circ} c$.
But the Numbers $3,35,99,195,323, \Xi^{2} c$. by Skipping are taken out of the Scries of Square Numbers, $4,9,16,25, \mathcal{V}^{\circ} c$. diminifhed by an Unite, and fo made the Series $3,8,15,24, \mho^{\circ} c$. out of the Members of which Series, every fourth after the firf, is a Number of this our Series. But I have found (which is worth nothing) the Sum of this infinite Series, $\frac{1}{3}+\frac{1}{8}+$ $\frac{x}{15}+\delta^{c} c$, to be $\frac{3}{4}$. Nay \quad and by culling out by fingle Skipping, as $\frac{1}{3}+\frac{1}{15}+\frac{1}{35}, E^{\circ} c$, the Sum of this infinite Series maketh $\frac{2}{4}$ or $\frac{1}{2}$. But if out of this again another Progreffion be culled by fingle Skipping, as $\frac{1}{5}+\frac{1}{35}+\frac{1}{99}, \varepsilon^{2} c$. the Sum of that infinite Series fhall be the Semicircie, the Square of the Diameter being 1. Now becaufe by the fame Means the Arithmetical Quadrature of the Hyperbola is obtain'd, I thought it not amifs to reprefent to View the whole Harmony.
 the Circle A B CD, whofe Infribed Square is
the Hyperbola CBEHC, whofe Power, ABCD, is $\} \frac{1}{4}$
Fig. 3.
To the Afymptotes A F, A E, at Right Angles to each other, let there be defcribed the Curve Line of an Hyperbola GCH, whofe Vertex is C; and A B CD, the Power or Square, to which every Rectangle made of the Ordi-
nate, as EH, and the intercepted Part, A E, is always equal. About this Square let a Circle be drawn, and let the Hyperbola be continued from C to H , fo that $\mathrm{A} E$ be double to AB . Then putting AE to be I, AB fhall be $\frac{\mathrm{I}}{2}$, and its Square, $A B C D$, Mall be $\frac{1}{4}$, and the Circle, (whofe Power ABCD is infrrib'd) Ahall be $\frac{\mathbf{r}}{3}+\frac{\mathbf{r}}{35}+\frac{\mathbf{1}}{99}$, ε^{2} c. but the Portion of the Hyperbola CBEHC (whofe Power infcrib'd is the fameSquare $\frac{1}{4}$) which reprefents the Logarithm of the Ratio of AE to $A B$, (or of 2 to is) fhall be $\frac{1}{8}+\frac{1}{48}+\frac{1}{120}$, Ec.
V. 1. Let any Curve D Q be given, all the Points of which may be re- Targertst to all ferred to any given Right Line EAB, by the Right Line D A; whether curves; by ReEAB be the Diameter, or any other Line, or any other Lines are given at the fame time, any of which, or their Powers, enter the Equation of the Curve, it matters little.

In the Analytical Equation, for the more ealy Explanation, let D A be Slufus. n. 90. always called v, and $\mathrm{BA} y$. And let E B, and all the other given Quantities, be denoted by Confonants.
Then fuppofe the Line D C to be drawn, touching the Curve in D , and meeting EB (produced if neceffary) in the Point C; and let C A be always called a. Now to find AC , or a, this will be the general Rule.

1. Rejecting thofe Parts of the Equation in which y or v are not found, let all thofe be fet on one Side of the Equation in which is y, and thofe on the other Side in which is v, with their Signs + or -. For Diftimetion Sake we will call this the Right Side, and that the Left.
2. On the Right Side, let there be prefixt the Exponent of the Power of v to all the Parts, or, which is the fame thing, let the Parts be multiplied by it.
3. Let the fame thing be done on the Left Side, that is, prefix to each Part the Exponent of the Power of y : And farther, in each of the Parts tet one y be changed into a.

I fay that the Equation fo form'd will fhew the Manner of drawing the Tangent at the given Point D. For when it is given, at the fame time are given y and v, and the other Quantities which are expreffed by Confonants; and then a will be known alfo.

If the Rule fhall feem to be any thing obfcure, it may be thus illuftrated by fome Examples. Let this Equation be given, $b y-y y=v v$; in which let E B be $b ; \mathrm{BA}, y ; \mathrm{DA}, v$; and let a or A C be fought, fucti as DC being joined nay touch the Curve DQ in D . By the Rule nothing is here to be rejected, becaufe either y or v is found in every Part of the Equation. Alfo it is fo difpoled, that all the Parts in which y is found are on one Side, and all in whicin there is v are on the other. Therefore we need only prefix D 2

(20)

to each the Exponents of the Powers of y and v; and on the Left Side one y is to be changed into a. Therefore it will be $b a-2 y a=2 v v$. If fay now, that this Equation will fhew the Manner of drawing the Tangent to the Point D; that is, $a=\frac{2 v v}{b-2 y}=\mathrm{AC}$.

Thus if the Equation $q q+b y-y y=v v$ were given, the Equation for the Tangent would be the fame as the former; for we muft reject $q q$ as the Rule preicribes.

Thus from the Equation $2 b y y-y s=v 3$, we have $4 b y a-3 y y a=$ $3 v^{3}$, or $a=\frac{3}{4 b y-3 y y}$. And from the Equation $b b y+z y y+y^{3}=$ $q v v$, we fhall have $b b a+2 z y a+3 y y a=2 q v v$, and thence $a=$ $\frac{2 q v v}{b b+2 z y+3 y y}$. And from $b++b y^{3}-y^{4}=q q v v+z v^{3}$, we fhall have $3 b y y a-4 y^{3} a=2 q q v v+3 z v^{3}$, and then $a=\frac{2 q q v v+3 z v^{3}}{3 b y y-4 y^{3}}$.

And in all other Equations of this kind I think no Difficulty can arife. Perhaps there may be fome in fuch Equations, fome Parts of which confift of Products of y into v. As $y v, y y v, y^{3} v^{2}$, and fuch like. But this Difficulty will be but a light one, as will appear from thefe Examples. For let there be given $y^{3}=b v^{2}-y v^{3}$. Now there is nothing to be rejected from hence, fince y or v is found in all the Parts or Terms.

But that they may be difpofed as the Rule prefcribes, the Term $y v^{2}$ is to be affumed twice, and placed as well on the Right Side of the Equation, in which are thefe Terms that have v, as on the Left Side, where are the Terms that have y; fince $y v^{2}$ contains both y and v. Therefore we muit make $y^{3}+v^{2} y=b v^{2}-y v^{2}$. Then changing, as before, this Equation into another $3 y y a+v v a=2 b v v-2 y v v$, we hall have $a=$ $\frac{2 b v v-2 y v v .}{3 y y+v v}$.

For the Rule is to be fo underftood, that on the Left Side the Power of v is not confidered, and therefore the Exponent of v^{2} is not to be prefixed to $y v^{2}$, but only that of y. And on the contrary on the other Side, the Power of y is not to be confidered in $y v v$, but only that of v, and to this its Exponent is to be prefixed. Thus if the Equation were $y^{\prime}+b y^{\ddagger}=2 q q y^{3}-$ $y^{2} v^{3}$, we muit make $y^{5}+b y^{4}+v^{3} y^{2}=2 q q v^{3}-y^{2} v^{3}$, and we hould have the Equation for the Tangent $5 y^{+} a+4 b y a+2 v^{3} y a=6 q^{2} v^{3}-$ $3 y^{2} v^{3}$, and thence $a=\frac{6 q^{2} v^{3}-3 y^{2} v^{3}}{5 y^{+}+4 b y^{3}+2 v^{3} y}$.

And in thete Examples I think I have comprehended all the Variety of Cafes that can be propofed. But perhaps it may be of fome ufe to apply what I have delivered in general, to fome particular Curve. Therefore let the Curve B D be given, which has this Property, that taking any Point in it D, if $B D$ be joined, and $D E$ be raifed perpendicular to it, meeting the

Right Line BE in E, the Right Line DE may always be equal to the given Right Line BF.

That we may have an Equation in Analytical Terms, make $\mathrm{DA}=v$, $\mathrm{BA}=y, \mathrm{BF}$ or $\mathrm{DE}=q$. Therefore it will be $\mathrm{E} \mathrm{A}=\frac{v v}{y}$. Ard fince the Square of $D E$ is equal to the two Squares of $D A$ and $A E$, we fhall have the Equation $q q=\frac{v^{2}}{y^{2}}+\tau^{2}$; or $q^{2} y^{2}=v^{4}+y^{2} v^{2}$; which for the Tangent, as prefcribed by the Rule, is to be reform'd to $q q y^{2}-v^{2} y^{2}=v^{4}$ $+y^{2} v^{2}$, and $2 q q y a-2 v^{2} y a=4 v^{4}+2 y^{2} v^{2}$, whence $a=\frac{2 v^{4}+y^{2} v^{2}}{q^{2} y-v^{2} y}$.

Now how fuch Equations are to be reduced to eafier Terms, for the Sake of the Conftruction, will be no Myftery to fkilful Mathematicians. As in this Example, becaufe the Reftangle B A E is fuppofed equal to the Square of AD, if EA be called e, it will be $v v=y e$, and $v^{4}=y^{2} e^{2}$, and $q q=$ $y e+e e$. Therefore inftead of them fubftituting their Values in the Equation, it becomes $a=\frac{2 y^{2} e^{2}+y^{2} e}{e^{2} y+e y^{2}-e y^{2}}$, or $a=\frac{2 e y+y y}{e}$, that is, $a e=$ $2 e y+y y$, and adding $e e$ on both Sides, $a e+e e=e e+2 e y+y y=$ $\bar{e}+y^{2}$. So that the three Quantities $e, e+y, a+e$, or E A, E B, EC, are in continual Proportion; whence the Conftruction becomes very eafy.

But whereas we feem to have fuppofed hitherto, that the Tangent is always to be drawn towards B, when it may happen from the given Quantities, that it should be either parallel to AB, or fhould be drawn the contrary Way ; we muft now determine how this Diverfity of Cafes is to be diftinguifhed in Equations. A Fraction therefore being made for the Value of a, as in the foregoing Examples, the Parts of the Numerator and the Denominator are to be confidered, as alfo their Signs.
I. For in both if either all the Parts have the Sign + , or at lealt if the Affirmative prevail over the Negative, the Tangent mult be drawn towards B.
2. If in the Numerator the Affirmative prevail over the Negative, but are equal in the Denominator, a Line drawn through D parallel to $\mathrm{A} B$ will touch the Curve in D: For in this cafe a will be of an infinite Length.
3. If as well in the Denominator as in the Numerator the affirmative Parts are lefs than the Negative; then all the Signs being changed, the Tangent mult fill be drawn towards B: For this cafe coincides with the firf.
4. If in the Denominator they prevail, but in the Numerator are lefs; the Tangent mult be drawn on the contrary Side, that is, AC mult be taken towards E .
5. Laftly, if in the Numerator the affirmative Parts are equal to the Negative, however they may be in the Denominator, then a will become nothing. Therefore either A D will be the Tangent, or E A, or parallel to it, which is eaflly known from the given Quantities. Now all the Yariety of hefe Cafes may be thewn by the Equation to the Circle.

(22)

Fig. 16.

Fig. 17.

Fig. 18.

For let there be a Semicircle whofe Diameter is E B, and let D be any given Point in it, from whence let fall the perpendicular $\mathrm{D} A=v$. Make $\mathrm{B} \mathrm{A}=y, \mathrm{BE}=b$; the Equation will be $b y-y y=v v$. And drawing the Tangent DC, it will be A C or $a=\frac{2 v v}{b-2 y}$. Now if b be greater than $2 y$; the Tangent mult be drawn towards B ; if equal, it is parallel to E B; if lefs, it muit be drawn towards E . See $1,2,4$.

Again, let there be given another Semicircle inverted, whofe Points are to be conceived as referred to a Right Line parallel to the Diameter, and equal to the fame, as in the Scheme. The Parts being denominated as before, and making $\mathrm{N} \mathrm{B}=d$, the Equation will be $b y-y y=d d+v v-2 d v$. Therefore A C or $a=\frac{2 v v-2 d v}{b-2 y}$. Now fince by the Example we have fuppofed v always to be lefs than d; if b is greater than $2 y$, the Tangent muft be drawn towards E ; if equal, it will be parallel; if lefs, then changing all the Signs, it muft be drawn towards B; as $4,5,3$. But no Tangent would be drawn, or E. B itfelf would be the Tangent, if we flould fuppofe N B to be equal to the Semidiameter, or $2 d=b$ as at $n .5$.
Lattly, let there be another Semicircle, whofe Diameter N B is perpendicular to the Right Line B E, to which its Points are fuppofed to be referred. Let NB be cailed b, and let the other Parts be named as before. The Equation will be $y y=b v-v v$, and thence $a=\frac{b v-2 v v}{2 y}$. Now if b is greater than 2τ, the Tangent muft be drawn towards B ; if lefs, towards E ; if equal, D A iffelf will be the Tangent. As by $1,4,5$.

And this, I think, is all the Variety of Cafes, which can be obferved from the Confideration of Equations.

The Lemmata, arbercby tbe pre ceding Mecbod is densinfrated, by
M. Slufius. 21. 95. p. 60;9. 3. 97. p. 612 2. $^{\circ}$ June, An. 167°
(I) The Difference of two Dignities of the fame Degree, applied to the Difference of the Sides, will give the feveral Patts of the inferior Degree of a Binomial of the Sides. Thus $\frac{y^{3}-x^{3}}{y-x}=y^{2}+y x+x^{2}$; as is eafy to prove. (2.) There are fo many Parts arifing from a Binomial of any Degree, as the Exponent of the Dignity next above has Units. That is, three in the Square, four in the Cube, $E^{\circ} c$. And this is generally known.
(3.) If the fame Quantity is applied to two others, whole Ratio is given, the Quotients will be in the fame Ratio reciprocally.

By thefe Lemmata my Method may eafily be demonftrated, they being here difpofed in fuch an Order, as will naturally lead to the Demonftration.

The Tefludo
Veliformis
Quadrabilis位nigmatically propos'd by V.V. T. Ig5. p. 58 \%. Jin. AD. 1693°
VI. I. A Geometrical \notin IG $M A$, concerning the wonderful Structure of a Hemijpherical Cupala wibicion is quadrable. By D. Pio Lifci, a minute Matbematician.
Among the venerable Monuments of ancient learned Greece, there is fill in Being, and for ever will endure, a moft Augut Temple dedicated to Divine Geomotry, of a Circular Ichnography, which is cover'd by a Cupola

(23)

perfectly Hemifpherical within. But in this there are the equal Areas of four Windows, (difpofed about and upon the Bafe of the Hemifphere) of fuch a Configuration, Amplitude, and of fuch Irgenuity, that thefe being taken away, the remaining curved Superficies of the Cupola, adorned with curious Mofaick Work, is capable of a true Geometrical Quadrature.

Now it is inquired, which is that quadrable Part of the curved Hemifpherical Superficies, which is like a diftended Nautical Sail, and by what Art or Method the Geometrical Architect attained to it; and laftly, what quadrable Geometrical Plain is it equal to?
2. A Day or two ago, juft as I was going to Bed, I received (learned Sir) $\frac{\text { Solved by Dr. }}{\text { Walls, }}$, bido your Letter, which being very bufy I could not anfwer Yefterday. Within $p .587$. was inclofed a little printed Paper, which, you fay, you received from Florence, to be tranfmitted to me.

That Paper contains a Geometrical Ænigma, which when ftript of its verbal Difguife feems to infinuate the following Probiem. From the curved Superficies of a Hemirphere to cut off four equal Segments, fo that what remains fhall be capable of Quadrature.

And at the fame Time it gives us a Hint, that fomething yet remains among the Grecian Monuments, by means of which this may be done.

I imagine this to be the Quadrature of the Lunula of Hippocrates of Cbius.
For whereas Arcbimedes has demonftrated, that the curved Superficies of an Hemifphere is equal to two great Circles of the fame Sphere, that is, to four Semicircles; and Hippocrates of Cbius has taught us how to fquare a certain Lunula: If from every Quarter of this Hemifpherical Cupola fo much be taken away as that Lunula is deficient from a Semicircle, the Remainder will be equal to the Square that may be infcribed in the great Circle of the Sphere, on which the Hemifpherical Cupola infifts.

Now if befides the Ænigmatical Involution of the Problem, any Hiftorical Fact about a Temple fhould be intended, I fhould imagine the Temple here meant is that of Sancta Sopbia at Confantinople.

SCHOLIUM.] By the Quadrature of the Lunula of Hippocrates of
Fig. 19\% Cbius, (mentioned in the firft Book of Ariftotle's Phyficks, and in the Commentaries of Simplicius upon that Place) the Semicircle A B D being divided into two Quadrants, A C D, B C D, if the Subtenfe of the Quadrantal Arch A D be adapted, bifected in H by the Radius C E, and if Center H the Semicircle A D F is defcribed: Becaufe of the Square of the Right Line A D being fubduple of the Square of the Right Line A B, the Semicircle A D F will be fubduple of the Semicircle A B D, and therefore will be equal to the Quadrant A CD. Now taking away the common Segment A D E from each, the remaining Lunula A ED F will be equal to the remaining Triangle A D C. And four fuch Lunula will be equal to four fuch Triangles, that is, to the whole Square ADB G infcribed in the Circle.

Again, by what Archimedes has demonftrated, the Surface of the Sphere is equal to four of its greai Circles; and therefore the curved Superficies of

(24)

an Hemippliere is cqual to four fuch Semicircles, and a Quadrant of fuch an Hemirpherical Surface is equal to one Senicicrcle.

Let the Circle A D B G be now the Bife of a curved Femifpherical Surface, whofe Pole is P, its Axis C P perpendicular to the Plain of the Bafe, and one of its Quadrants D P A, which is bifected by a Plain E P C paffing through the Axis.

Alfo for the Convenience of Calculation, let the Radius of the Circle be call $\mathrm{d} R$, the Diameter $D=2 R$, the Periphery P, and the Arch exhibited a.

And putting the Quadrantal Arch DEA $=a=\frac{r}{4} \mathrm{P}$, the Semicircle ABD is $a \mathrm{R}=\frac{1}{7} \mathrm{RP}$: The Triangle $\mathrm{ADC}=\frac{1}{\geqslant} \mathrm{R}^{2}=\frac{1}{4} \mathrm{RD}$. And the Remainder of the Semicircle, when this Triangle is taken away, will be R P-RD; an cqual to which is to be taken away from D P A, a Quadrant of the curved Hemifpherical Surface, equal to the Semicircle A B D, that the Remainder may be equal to the exhibited Triangle A D C.

Now fince this may be done various Ways, by what we have fhew'd long ago, An. 1659. (at the End of the Treatife of the Cycloid then publifh'd, p. 122. at §68.) and again Air. 1670, (in the Treatife concerning Motion, C. V. P. 24.) concerning a Plain Figure, which is equal to any Figure in a Spherical Surface, that is terminated by any Circles greater or leffer. It may be thus done in the limplent Manner.

Since the Segments of a Spherical Surface, cut off by parallel Plains, are proportional to the Segments of the Axis; (which obtains likewife in the exhibited Superficies D P A of the Quadrantal Cuneus) if in the Axis C P there be taken, as the Semicircle $\frac{1}{7} \mathrm{RP}$ to the Semicircle except the Triangle $\frac{1}{4} \mathrm{RP}-\frac{1}{4} \mathrm{RD}$, that is, as P to $\mathrm{P}-\mathrm{D}$, fo CP to CY : (or, which is the fame thing, as P to D , fo $\mathrm{C} P$ to PY :) A Plain through Y Z, parallel to the Bafe, will cut off a Portion of this curved Superficies, adjoining to the Pole, which will be equal to the Triangle A D C. And the fame being done in the other Quadrants of the curved Surface, the whole fo cut off, conterminous to the Pole, will be equal to the whole Square infcribed in the Bafe, and it will be diftended as was required. 2. E.F.

Or thus more concifely. The curved Surface of the Hemifphere, (being equal to two great Circles) will be equal to R P. And the Square infcribed in a great Circle $=2 R R=R D$: And that is to this as P to D . And therefore, becaufe of the Segments of the Surface cut off by the parallel Plains, (being proportional to the Segments of the Axis) taking C P to P Y as P to D, not only the whole Superficies will be equal to $R P$, but alfo the Portion at the Pole, cut off by the Plain ZY, will be equal to R D, or to the Square infcribed in the Bafe. 2 E.F.

If it be faid that we proceed here upon the Prefumption of the Quadrature of the Circle, or of the Ratio of the Perimeter of the Circle to its Diameter; this is true indeed, but not to be objected here. Becaufe the propofed Ænigma does not require, that the Portions of the Hemifpherical Surface which are cut off, or which are call'd the Windows, hould be quadruble, but only the remaining Portion. And indeed if both were required, the abfolute

Geometrical Quadrature of the Circle would be required at the fame time; which it is plain is not yet found.

As to the manual Conftruction of the Cupola; upon a plain Bafe, fituate out of the Bafe of the Hemifphere, but contiguous to it, whofe two Sides meet in an Angle at A, within the protracted Right Lines D A, G A, (that there may be a free Profpect from the Windows on each Side) let a good ftrong Foundation be laid; fo that as the Supenftructure rifes higher, its Edge may ftretch out, fupported by an Angle, making an Arch of a Circle as D Z, arifing to the Height Y. And let the fame be done at the other Angles D, B, G. Laftly upon thefe Structures, as it were fo many Columns raifed to the fanne Height, let the Cupola be placed, fo excavated within, as the Surface of an Hemifphere requires. And thus the whole Work is finifhed as was required.

Otherwife. The fame thing may be done, if any Square $\mathrm{Q} Q$ be given, for the Square inforibed in the Bafe, which is lefs than the curved Hemifpherical Superficies. For it muft be made, as R P the curved Hemifpherical Superficies, to Q Q the given Square, fo C P the Axis of the Hemilphere, to PY the Portion of the Axis that is adjacent to the Pole. Then the Plain Z Y, parallel to the Bafe, will cut off a Portion of the Spherical Superficies which is capable of Quadrature, as being really equal to the given Square QQ.

The fame may be perform'd thus, but with more Trouble.
Since a Quadrant of the curved Hemifpherical Surface D P A, as is thewn above, is equal to the Semicircle A B D, and its Segments cut off by Plains parallel to the Bafe are proportional to the Segments of the Axis; in the Quadrantal Arch D P let there be taken P Q an Arch of 60 Degrees; (which was fuggefted to me by Mr. Cafwell.) Then a Circie QTS defcribed with the Pole P will bifect the Axis, becaufe of the Verfed Sine of 60 Degrees being equal to half the Radius: So that it will divide the Quadrant D P A of the curved Hemifpherical Superficies into two equal Segments. One of thefe, which is the Quadrilineum D QTSA, will be equal to the Circular Quadrant BCD; and the remaining Trilineum PQTS will be equal to the Quadrant A C D: Whence if the Bilineum ORSI be alfo taken away, equal to the Segment of the Circle $A D E$; the remaining Trilineum PQRS will be equal to the Triangle A D C. And four fuch, in the four Quadrants of the Hemifphere, will be equal to the Square infcribed in the Bate. But that Bilineum may be had by what we have formerly proved in the Piaces above cited.

The fame may be thus done more univerfally.
Q being any where taken in the Arch D Z, fo that $D Q$ may not be greater than $D \mathbf{Z}$; and how much the Quadrilineum DQTSA is deficient from the whole to be taken away, fo much let the Bilineum QR S T fupply. The Remainder will be equal to the Triangle A D C.

And therefore if Q be taken in D, fo that the Quadrilineum may vanifh; the Bilineum muft be taken equal to the whole that is to be taken away. Vol. I. E

Fig. 1g,

The Propofer's Solurion demonPirated, by Dr. D. Grigory. N. 207. p. 25 . Jan. An. 1694°

But if Q is taken in Z, fo that there is no Occafion for the Bilineum, the Quadrilineum will be equal to the whole that is to be taken away.

And all the fame Things, concerning the Quadrilineum and Bilineum, which together compleat the whole to be taken away, are alike to be accommodated, mutntis mutandis, if inftead of the Square infcribed in the Bafe, any other Square $Q Q$ is fubftituted, which is not greater than the whole Surface of the Hemifphere.

After this was wrote, and in the Prefs, I was informed, that the learned Mr. Leibnitz had given an Anfwer to this Problenn, and that it was inferted in the Journals of Leipfick for the Month of Fune 1692. Upon which Ifopt the Prefs for fome Weeks, that I might get a Sight of it, which with fome Difficulty I at laft obtained. There I faw that that great Man was of my Opinion, that the Problem is not of that Kind which is called Determinate, but may be folved in a great Variety of Manners, or rather infinite Ways.

The Author of this Ænigma has now given us a very ingenious and ready Conftruction of his Problem, in an Italian Treatife on the Formation and Menfuration of all Vaults and Cupolas, dedicated to the Grand Duke of Tufiany; wherein he has been pleafed to give us his Name, by V V. the laft Difciple of Galileus: Whereas before he concealed it by a Tranfpofition of the Letters, as in an Anagram, under the feigned Name of D. Pio Lifci, pufillo Geometra.

But now the Ænigma is converted by the Author into the following Problem: Upon the Surface of an Hemijpbere to affign a Portion equal to a given Square. Which he thus conftructs.

Let the Sphere, whofe Axis is equal to the Side of the given Square, be reprefented by the Circle A C B D, which is vertical in the propofed Sphere, whote Horizontal Diameter is A B, and Center E. Let the Sphere be perforated by two upright Cylinders, whofe common Sections with the Plain ACBD are the Circles BLEG, AHEI, defcribed with the Diameters EB, EA. I fay the Thing is done; that is, from every Hemifphere, for Inftance the upper ACB, four bilinear Figures are taken off by the perforating Cylinders, two on the anterior Side, and two on the pofterior, which are fimilar and fimilarly pofited, fo that the remaining Hemilpherical Superficies is equal to the Square of the Line A B. And becaufe the Hemifpherical Superficies, when the four faid Bilinear Spaces are taken away, reprefents a Sail filled and extended by the Wind, and alfo an Hemifpherical Cupola admitting Light by four Windows, which being conftructed upon a Circular Bafe A E B, refts upon it at the Points A, E, E, B. This he calls, according to a Right he has, The Quadruple Florentine and Veliform Cupola.

Then the Author in his Treatife delivers many Things which regard the Practice ; how by the Amiftance of the Lathe and Cylindrical Auger to make Models of this, as well as of five other Cupolas. And for this purpofe, he conftructs fome other curious Problems; the Demonftrations of all which are omitted by the Author, but will eafily follow from what is here delivered.

It appears plainly, that the four Windows in the Hemifphere, conftructed as above, are Figures equal, fimilar, and fimilarly pofited. It only remains, that
that we flould prove the remaining Hemifpherical Superficies is capable of a true Geometrical Quadrature.

In the Point E, equal to the Line E. A, let a Line be fuppofed to be erected, perpendicular to the Plain C A D B ; and upon the Periphery ACBD let there be an erect Cylindrical Superficies of the fame Height. It is commonly known, that a Portion of the Spherical Surface, comprehended between two Plains parallel to the Circle $\mathrm{A} B C D$, is equal to the Portion of the Cylindrical Superficies between the fame Plains; and that like Portions of thefe Rings, cat off by Plains mutually interfecting one another in the Perpendicular erected at E, are equal alfo. Now by drawing innumerable Plains parallel to the Bafe ACBD, if in the Cylindrical Superficies Parts are conceived to be defcribed in the aforefaid Manner, equal to the correfpondent Spherical Parts; that which is reprefented by the Perforation of the Superficies, and taken away oppofite to it, will be equal to it. So that it appears the remaining Superficies after the Perforation is equal to the remaining Cylindrical Superficies, excepting that which is determined by the faid innumerable Plains, and is oppofite to that which is taken away. Let any Diameter PM be drawn, cutting the Periphery A HE any how in H . Join HA, and through H let $R T$ be drawn perpendicular to $A B$, and parallel to DC drawn through E, meeting the Periphery A CBD in R and T, and the Periphery A IE in I . Upon the Diameter R T let a Semicircle be drawn, whofe Periphery is cut by HS and IQ perpendicular to R T, in the Points S and Q. Let the Plain of this Semicircle be conceived to be perpendicular to the Circle $A B C D$. Whence the Periphery RSQT will be in the Hemifpherical Superficies, and the Right Line H S, now perpendicular to the Plain A C B D, will be the Height of the perforating Cylindrical Superficies above the Point of the Bafe H. And the fame Thing obtains in every Point of the perforating Cylindrical Superficies, viz. that its Height to the Superficies of the Sphere above any Point H of the Bafe, is the Right Line HS produced as before. But HS is equal to H A, the Right Sine of the Arch M A, becaufe either of them is a mean Geometrical Proportional between PH and HM ; one in the Circle M AP, the other in a great Circle of the Sphere, paffing through the Points M, S, and P.

If in the Perpendicular to the Plain A CBD erected at E, from E be taken a Right Line equal to HS or HA, and from its Extremity parallel Lines are drawn to PM and UN; the Plain drawn through them will be parallel to the Plain ACBD, and thefe Lines will pafs through the Points S and Q, and being produced as far as the Cylindrical Surface conforibed about the Hemifphere, from the Sides of the Cylinder will cut off Right Lines, which will likewife be equal to H S or HA , and will include Arches equal and correfpondent to the Arches MN and VP. Now if another Plain Parallel to this at a very fmall Diftance be conceived to be drawn in like Manner, by what is already fhewn, thefe two will mark out in the Cylindrical Surface a Portion of a Ring, equal to the Portion between the faine Plains, which is taken away from the Hemifpherical Superficies by its Per-

(28)

foration. Now if the fame Conftruction is fuppofed to be made at every Point in the Periphery A HE, all the Portions in the Cylindrical Superficies circumfcribed about the Hemifphere, generated and marked out in the Manner aforefaid, will be equal to the Spherical Superficies taken away by the Perforation. Therefore the remaining Hemifpherical Surface will be equal to the remaining Cylindrical Surface, compofed of all the Right Lines HA, erected at the refpective Points M, N, V, and P, or to the Figure of the Right Sines of the Semiperipheries $A C B, A D B$; that is, by what has been long known to Geometricians, to four Times the Square of the Radius A E, or finally to the Square of the Diameter A B. And fince the two intire Figures contained by the common Section of the aforefaid perforating Cylindrical Surface with the Surface of the Sphere, are equal to the four Halves of the fame; it is plain that the remaining Hemifpherical Superficies A CB, taking away the four Bilinear Spaces as in the Conftruction aforegoing, is equal to the Square of the Diameter A B. थ.E.D.

If the Semiperiphery AHE is fo inflected, that it may coincide with the equal Quadrant of the Periphery A R C; the Point H will fall upon the Point M, becaure of equal Arches AH, AM; and HS the Altitude at H of the Cylindrical Surface infifting upon A HE, will coincide with its equal I A , the Altitude at M of the Figure of Right Sines erected upon A MC ; and the fame Thing obtains in all other Points. Whence the Curve which is the common Interfection of the Spherical Surface with the Cylindrical Surface, inflected upon the Bafe A HE, though it does not lie in the fame Plain, yet will coincide with it as faid before, and therefore is equal to the Curve that terminates the Figure of Right Sines; that is, to the common Section of the Cylindric Surface erected upon the Quadrantal Arch AR C, with the Plain cutting the Plain of the Bafe in the Right Line B A at half Right Angles; or to a Quarter of the Elliptical Curve whofe leffer Axis is A B, and its greater Axis is double in Power to the fame. Therefore the Perimeter of the Quadrable Florentine Sail, confitting of four fuch Arches, is equal to the Perimeter of the aforefaid Ellipfis.

Moreover it will not be amifs to add, that the Superficies of two perforating Cylinders within the Sphere, are equal to the Spherical Surface remaining after the Perforation, or to a double Florentine Sail, that is, to the double Square of the Diameter. And this appears from hence, that the Florentine Sail is equal to four Figures of Right Sines of the Quadrant, and the perforating Superficies is alfo equal to the fame, becaufe it is congruous with them, if the Inflection is as above.

I fhall only add one Word more, that the Confideration of the Figure of Right Sines, (the Parts alfo of which are eafily changed into Squares) are fufficient for the Demonftration of all thofe Things, which are delivered concerning other Solids wrought by the Turning-Lathe, or perforated by a Cylinder, and their Superficies; by the moft acute Geometrician V. V. (Vincentio Viviani, if I miftake not) the very worthy Difciple of Galileus; when he inftructs us in the Conftruction and Menfuration of Vaults or Cupolas. Particularly the Surface of the Roman Boat-Jike Cupola [Volla a Scbifo alla Ro-
mana] confifts of eight Figures of the Right Sines of the Quadrantal Arch, and therefore is equal to the Florentine Veliform Cupola. Whence it appears how two Cupolas may be conftituted upon equal Squares, one of which is fhut up on all Sides, the other perforated by Windows, each of which is double to the Square of the Bafe.
VII. 1. Draveing the freight Lines $E A$, and $E B$ (cutting the $\operatorname{Arc} A B$ in G,) and on $A G$, a Perpendicular $E F$, (which woill therefore pafs to the Center C, beaufe bifecting $A G$ at Right Angles;) the Right-lined Triangle AFE is equal to $A D E$, the propofed Portion of the Lunula.

The Demondration is to this purpofe; viz. A D B being a Quadrantal Arc; the Angle A G B will be three Halves of a Right Angle; (and its conjunct Angle E G A, half a Right Angle) and that Angle (being external to the Triangle A G E) is equal to the two oppofite Intervals G E A + E A G. Whereof GE A (becaufe an Angle in the Semicircle A E B) is a Right Angle, and therefore E A G is half a Right Angle, (as are alfo F E G, and F E A) and the three Triangles A F E, GF E and G E A, each of them half a Square. And A G to AE, as $\sqrt{ } 2$ to 1 , (proportional to the refpective Radii of the two Circles.) And the like Segments A D G, A E, in their refpective Circles (as the Squares of their refpective Radii) as 2 to 1. And therefore the Semifegment A F D, equal to the Segment A E ; and confequently (one taking from the Triangle as much as the other adds to it) the Portion of the Lunula A D E, equal to the Triangle AFE. थ.E.D.

If the Point E chance to be in K (the middle of the Arc A E B), there will be no Interfection at G (the Points G, B, being then coincident, but without any Difturbance to the Demonftration) : If it happen beyond it, toward B , then G will be on the other fide; and what is here faid of $E G B$, mult be accommodated to E G A.

The Ground of the whole Procefs is plainly this: The Angle A C E, being an Angle at the Center of the greater Circle, but at the Circumference of the Leffer, the Line CDE (as it paffeth from C A to C B) doth, in the fame Proportion, divide the Quadrantal Arc A D B, and the Semicircular A E B: Whence all the reft doth naturally follow.
2. If you compleat the two Circles, whofe Arcs contain the Lunula of Hippocrates, the fame is true as well of the Points in the other Semicircle A C B, as of thofe in the Semicircle A E B, and for the fame Reafons; as appears in the Scheme annexed, wherein I have mark'd the Points in the Semicircle ACB,

Impreved by Dr. Gregory, ibid. p. 414. Dec. An. 1699.
Fig: 24 (correfpondent to thofe of Mr. Perks, in A E B) with the correfpondent fmall Letters in the Roman and Greek Alphabets.

If Mr. Perks had made his Conftruction univerfal, by making both E A and E B meet with the greater Circle, (which he might have done by protracting thefe Lines and the greater Circle till they meet) he might have found that the Portions of the Spaces $\mathrm{A}: \mathrm{CM}, \mathrm{B} \mathrm{HCN}$, (fuppofing MCN parallel to A B) are Quadrable as well as thofe of Hippocrates's Lunula, and that E A γ be-

The Quadrature of tbe Parts of tbe Lunula, by Mr. J. Perks, a little varied, by Dr. J. Wallis, N. 259.P.4ir. Dec. An. 1699. Fig. 23.

(30)

ing a ftreight Line, the Portion A E D of Hippocrates's Lunula, is to $A \varepsilon \delta$ (the Correfpondent of $\mathrm{A}_{\varepsilon} \mathrm{CM}$) in duplicate Proportion of C_{ε} to $\mathrm{A}_{\varepsilon} ;$ for $\mathrm{ER} \varepsilon$ (at R the Center of the leffer Circle) is, in this Cafe, a Right Angle.

Moreover, If you take any Point ε, in the Semicircle A C B, and proceed according to Mr. Perks's Conffruction univerfaliz'd, as abovefaid, you will find, on the one fide, the Trilineum $A=\delta(c o n t a i n ' d$ by the $\operatorname{Arcs} A \varepsilon, A \delta$, and she Atreight Line $\varepsilon \delta$) equal to the Reetilineal Triangle $A \in \varnothing$; and on the other fide, the Trilineum contained by the Arc Be (the Complement of \& A to the Semicircumference) and the Arc Bd (the Complement of A δ to the fourth Part of the Circumference) and the flecight Line εd, (that is the Trilineum BHC d diminifhed by the Segment C s) to be equal to the Rectilineal Triangle $\mathrm{B}_{\varepsilon} f_{\text {; }}$; and that thofe two Spaces $\mathrm{A}_{\varepsilon \delta}$, and the Difference of BHCd from the Segment C_{ε} (Parts of the Lunula $A C B g \gamma A$) taken together, are equal to the Triangle ACB, as well as to the two Spaces A E D and BED, Parts of the Lunula of Hippocrates.

So that upon the whole it appears, that the two Circles (containing the Lunula of Hippocrates) being compleated, this Lunula, A E B G A, and the other, A CBgy A, make up one Syftem, and are conjugate Figures.

For, drawing a ftreight Line CDE , or $\mathrm{C} \varepsilon \delta$, or $\varepsilon \mathrm{C} d$, at pleafure, thros C, the Center of the greater Circle, and cutting thofe two Circles, the Space contained within two Arcs of thefe two Circles, and Part of the faid ftreight Line (as AED , or $\mathrm{A} \varepsilon \delta$, or $\mathrm{BH} \varepsilon d$) is equal to the rectilineal Triangle $\mathrm{A} E \mathrm{~F}$ or $\mathrm{A} \varepsilon \phi$, or $\mathrm{B} \varepsilon f$, refpectively.

And fo it happens, that if this Line going out from C, be on the fame fide of the Diameter M N with the Lunula of Hippocrates, the aforefaid Space (which receives a perfect Quadrature) is Solitary ; fuch as are the Parts of Hippocrates's Lunula, and of the two Spaces, $\mathrm{A}_{\varepsilon} \mathrm{CM}, \mathrm{BHCN}$ (which therefore are Parts of the Lunula, more nearly relating to one another.)

But if that Line going out from C be on the other fide of MN , then the Space which is equal to the Rectilineal Triangle is the Difference of two Mixtilineal Figures (the one a Trilineum, the other a Segment of the leffer Circle), as is abovefaid; neither of which can be fquared feverally.

All thefe Particulars are plain from Mr. Perks's Demonftration; which, with a little Variation (fuch as is ufual in the different Cafes of the fame Theorem), is applicable to them all; tho' perhaps he was not aware of it.

The like was done (without any Demonftration) by M. Tjchirnbaufe, in the AEFa Lipfie 1687, to this purpole: If from any Point E, in the Circumference of the leffer Circle, we let fall on $A B$ a perpendicular Line cutting it in L, and draw the Line CL; the Triangle CAL is equal to the Portion of the Lunula A ED (and confequently the Triangle CBL equal to the Portion BED) ; which I Chall demonftrate fo as the Demonftration may alfo reach the Portions of the conjugate Space A C Bg A A.

For the Triangles AC B , AE F, are Like Triangles, each being the Half of a Square; and therefore, by 19 El . 6. the Triangle A C B is to the Triangle AEF in the duplicate Proportion of BA to A E, that is, by 8 El. 6 . as $B A$ is to $A L$: But, by $I E l .6$, the Triangle $A C B$ is to the Triangle ACL

(3I)

ACL as BA is to AL : Therefore, by $9 E l$. 5 . the Triangles ACL and AEF are equal: But the Triangle AEF is (by Mr. Perks) proved equal to the Portion AED; and cherefore the Portion AED is allo cqual to the Triangle A C L.
3. On the Center B, Mr. Cafwell draws by A a third Circle, which forms $\begin{gathered}\text { M Mr. Caf }\end{gathered}$ another Lunule than that of Hippocrates; and he doth (very dextrounly) well, ib.p. \uparrow. 17 . fquare the Portions of this Lunula; and doth hereby let us into a new Syflem, which may be purfued in like manner as Dr. Gregory hath done that of Hippocrates.
4. M. Tccbirnbaufe, letting fall from E (on A B) a Perpendicular E L, By Dr. Wallis, determines the Angle A LC equal to the Portion A D E; which being add ibid. mitted, we may thus divide the Lunula in any given Proportion; if we divide A B at L in fuch given Proportion, CL will, in the fame Proportion (becaure of the common Alritude) divide the Triangle A C B (which is equal to the whole Lunula), and LE (erected at Right Angles on A L B) will determine the Point E ; from whence if we draw to C the fireight Line EC, this will, at DE, divide the Lunula in the fame Proportion.

Mr. Perks, on EDC drawing the Perpendicular A F, determines the Semiquadrate AF E equal to the propofed Portion A DE ; which Semiquadrate is a Like Figure, and alike fituate to A E as is A C B to A B.

And therefore (becaufe Like Figures are in duplicate Proportion of their sefpective Sides) if we fo infribe $A \mathrm{E}$, as that the Square of $\mathrm{A} E$ be to the Square of A B in fuch given Proportion, the Lunula will, at D E, be fo divided as is required.
And this will hold (if duly applied, according as the different Cafes may require) though E be taken (in the Continuation of the Semicircle) beyond A; for, ftill like Figures will be in duplicate Proportion of their refpective fides, and $C E=C D=D E$; and the lame is yet improveable much further.
VIII. If upon BC you take any two Points D, E, and draw the Perpen- Tb Dinenfico of diculars D H, E M, meeting B A in I and L, and cutting a Portion FGMH, Solids generated of the Lunula; the Solid generated by the Converfion of this Portion about of Hippocartess the Axis B C, is equal to a Prifm, whofe Bafe is I L M H, and Height the $\begin{gathered}\text { Lunula, by h. } \\ \text { Ab. de Moiree, }\end{gathered}$ Circumference of a Circle whofe Diameter is B C ; and the Solid generated by N. $265 \cdot p .624 \cdot$ the Semicircle B K A, is equal to a Prifm or Semicylinder, whofe Bafe is the Semicircle BKA, and Height the Circuinference of a Circle whole Diameter is BC.

Having bifected BA in R , and BC in P , the Surface generated by the Converfion of the Arc HM about the Axis BC, is equal to $\frac{c}{r} \times \mathrm{BP} \times H \mathrm{M}+\mathrm{BR} \times \mathrm{DE}$ (fuppofing the Ratio of the Radius to the Circumference to be as r to c) and the Surface generated by the Semicircumference BK A is equal to a Rectangle whofe Bafe is the Sum of that Semicircumference and Diameter B A, and Height, the Circumference of a Circle,
whofe Diameter is B C. As for the Surface generated by the Arc G F, 'tis well known that it is equal to a Rectangle, whofe Bafe is the Circumference of a Circle whofe Radius is B C, and Height D E; therefore the Surface generated by the Converfion of the Portion M H F G is known.

Fig. 27.

Fig. 27.
解

If upon B A, you take any two Points I, L, and draw I N, LV, perpendicular to it, cutting the Quadrant in O and T , and the Circumference in N and V; the Solid generated by the Converfion of the Portion O N V T about the Axis B A, is equal to a Prifm whofe Bare is I O T L, and Height the Circumference of a Circle whofe Diameter is B A.

Having bifected BA in R, and drawn C R meeting the Quadrant in G, the Surface generated by the Converfion of the Arc O T about B A, is equal to $\frac{c}{r} \overline{\times C G \times 1 L-C R \times O T}$.

Bifect DE in I; thro' the Center draw S Q, parallel to BC, meeting the Circumference BKA in S, BK parallel to AC in V, and the Lines DH, EM , in N and O ; the Solid generated by the Converfion of the Portion FGMN about the Axis AC, is $\frac{6}{r} \times \frac{1}{\frac{2}{3}} \mathrm{MO}^{3}-\frac{1}{3} \mathrm{NH}^{3}+\mathrm{PC} \times \mathrm{N} \overline{\mathrm{OMH}}$ $\overline{\mathrm{CY} \times \mathrm{DNOE}-\frac{\mathrm{EG}^{3}}{}+\frac{1}{3} \mathrm{DF}^{3}}$; and the Solid generated by the Segment KBS is $\frac{c}{r} \overline{\mathrm{X}^{\frac{2}{5}} \mathrm{VK}^{3}+\mathrm{PC} \times \mathrm{BVKS} \text {; therefore the Solid generated by }}$ the Semicircle $B K A$ about $A C$, is $\frac{c}{r} \overline{\times P C \times V Q A K+P C \times B C Q V}$ $-\frac{1}{4} \mathrm{AC}^{3}+\frac{2}{3} \mathrm{VK}^{3}+\mathrm{P} \overline{\mathrm{C}} \times \mathrm{BVKS}$, which by due Reduction, will be found equal to the Solid generated by the Converfion of the fame Semicircle about the Axis BC.

The Solid generated by the Portion O N V T, about the Axis CP, is equal to $\frac{c}{r} \overline{\times \frac{1}{3} L} V^{3}-{ }^{5} N^{3}-\frac{1}{3} Q \bar{T}^{3}+\frac{1}{3} \mathrm{PO}^{3}+\mathrm{CS} \times \mathrm{PQI} \mathrm{L}$.

From the Points M, H, drop the two Perpendiculars M Z, H W, upon C A prolonged, if need be; the Surface generated by the Converfion of the Arc $H M$, about the Axis $C A$, is equal to $\frac{c}{r} \overline{\times P C \times H M}$ $\overline{-R A \times W \bar{Z}}$, when the Point Z is next to C; or $\frac{c}{r} \overline{P C \times} \overline{H M+R A \times W Z} \bar{W}$, when the Point W is next to it.

Thofe that will think it worth their while to beftow fome little Pains to find the Demonftration of this, may folve the following Problem.

Any two Conic Sections being given, forming a Lunula by their Interfection, and a Right Line being given by Pofition, about which, as an Axis, this Lunula is imagined to turn, To find the Solid generated by the Converfion of any of its Parts, cut off by Lines perpendicular to that Axis, or parallel to it, or making any given Angle with it; as alfo the Surfaces made by that Converfion.

1X. Suppofe D P V to be Half of an exterior Epicycloid, V B its Axis, Tbe Quadrature V the Vertex, V L B Half the generant Circle, E its Center; D B the Bafe, of a Prrition of C its Center: Bifeet the Arc of the Semicircle V B in L, and on the Center C, M. cigctoid, by thro' L, draw a Circle cutting the Epicycloid in P: Then, I fay, the Curvili- N. 217 . p. 113.
Hro' L, draw Cirle C E The near Triangle VLP will be $=\mathrm{BE} q$ in $\frac{\mathrm{CE}}{\mathrm{CB}}$; that is, the Square of the Semidiameter of the generant Circle, will be to the Curvilinear Triangle V LP, as C B, the Semidiameter of the Bafe, to C E; which C E in the exterior Epicycloid is the Sum of the Semidiameters of the Bafe and Generant; but in the interior Epicycloid $\mathrm{D} p u$, it is the Difference of the faid Semidiameters.

COROLL. I.] In the interior Epicycloid, if C E is $\frac{1}{2}$ C B, the Epicycloid then degenerating into a Right Line, the Quadrature of the Triangle l $p u$, will be in effect the fame with the Quadrature of Hippocrates Cbius.

COROLL. II.] If the Semidiameter of the Bafe is fuppofed infinite, the Epicycloid then being the common Cycloid, the Area of the faid Triangle will be equal to the Square of the Radius of the Generant; and fo it falls in with that Theorem which Lalovera found, and calls Mirabile.

The general Propofition from whence I deduced the abovefaid Quadrature, is this, viz. The Segments of the generant Circle are to the correfpondent Segments of the Epicycloid, as CB to $2 \mathrm{CE}+\mathrm{C}$ B. For Example; Suppofe F m G, the Pofition of Part of the Generant, when the Point F of the exterior Epicycloid was defigned, then the Segment FmGn is to the Segment DFnG, as CB to $2 \mathrm{CE}+\mathrm{CB}$; and confequently the whole Epicycloid to the whole Generant in the fame Proportion; which is the only Cale demoriftrated by M. de la Hire.

It follows alfo, that in the Vulgar Cycloid its Segments are triple of the correfpondent Sectors of the Generant ; which was firt fhewn by Dr. Wallis.

> X. The Area of the Cycloid or Epicycloid, whether it be primitive, or contract- Agemenal Propsed, or dilated, is to the Area of the generating Circle; and alfo the Areas ring fill Cyydorius of the generated Parts in the fame Curves, to the Areas of the analogous and apiryciords, Segments of the Circle; as the Sum of the double Velocity of the Center Hy Malicy, n. 218 . and the Velocity of the Circular Motion, to the Velocity of the Circularp.125. Motion.

Demonfration. Let any Epicycloid Y PSQV B be defcribed, by the Re- Fig 30; volution of the Circle VLB, upon the Circular Bafe Y M N B. Let the

(34)

Center of the generating Circle be c, and drawing $c \mathrm{MK}$, let the Circle infift upon the Bare in the Point M , and let S be the delineating Point. Now dividing the Motions, by the Circular Motion firt let the Point S be tranfferred to R, that the Arch SM may be increafed by the indivifible Particle RS ; then let the Center c go forward to C. By this Motion the Segment R S M being tranflated to the Situation QTN, the Point Q will reach the Curve. It is plain that the Triangle R S M is the Moment or Fluxion of the Area of the Circular Segment: But the Trapezium QSM N is the Fluxion of the Area of the Curvilinear Space generated at the fame Time. Now fince $S M, R M, Q M$, are fuppofed to differ from one another only by a Point, conceive the little Area QSMN to confift of three Sectors R M S, RMQ, MQN; and therefore the little Area RMS is to the little Area QSMN, as the Angle RMS to the Sum of the three Angles $R M S+R M Q+M Q N$. But the Angles RMQ+MQN are equal to the Angles $\mathrm{MCN}+\mathrm{MKN}$, or to the Angle $c \mathrm{MC}$; becaufe of the Lines $\mathrm{R} M, \mathrm{Q} \mathrm{N}$ inclined to one another in an Angle equal to M K N, and becaufe of the Angle M Q N being half M CN, by Eucl. 20. III. Therefore the Angle R M S is to the Angles R M S $+c$ M C, that is, (by the fame) the $\operatorname{Arch} \frac{1}{2} \mathrm{RS}$ to the two Arches $\mathrm{C} c+\frac{1}{2} \mathrm{RS}$, or RS to 2 $\mathrm{C} c+\mathrm{RS}$, as the little Area R SM to the little Area QSM N; or as the Moment of the Circular Segment QTN, to the Moment QS Y M N of the Epicycloid generated at the fame Time. And as thefe Moments are always in the fame Ratio, wherever the Point Q is taken, it is plain that the Areas themfelves QT N, Q S Y M N, generated by thefe Moments, have the fame conflant Ratio, or that of the Velocity of the Circular Motion R S, to the double Velocity of the Center adding the Circular Motion, or 2 $\mathrm{C} c+\mathrm{RS}$; alfo as the Area V B Z to the Area QVBN, and therefore the Semicircle V L B to the Curvilinear Space V Q Y N B. So that the Propofition is manifeft. Now there is no other Difference in the Manner of demonftrating, if the generating Circle moves upon an Arch of a concave Bafe, except that the Angle $c \mathrm{MC}$ in this Cafe is the Difference of the Angles MCN and M K N. But if the Bafe be a Right Line, then MKN vanifhing, and becaufe of the Parallels $\mathrm{R} M, \mathrm{QN}$, the Proof becomes eafier. Now in all thefe Curves there are quadrable Portions, analogous to thofe Portions in the primary Cycloid, which the learned Dr. Wallis has found to be capable of perfect Quadrature: Which eafily follows from the Premifes.

With Center K through the Point \mathbf{Q} draw the Circular Arch Q Z , and draw Z B cutting off a Segment Z L B, equal to the Segment QTN; then bifect the Semicircle VB in L, and through the Point L, with the fame Center K defcribe the Arch P L, cutting the Epicycloid in P, the generating Circle in T, and the Chords QN, Z B, in y and X. Now let the Arch $\mathrm{V} \mathrm{Z}=a$, and its Sine $=s$, the generating Radius $=r$, and the Radius of the Bafe $=\mathrm{R}$. And make the Arch CE, or the Motion of the Center, $=$ m. It is plain that the Sector C K E has the fame Ratio to theSpace Xy NB, as the Square of K E. has to the Difference of the Squares of K L and KB ; or as $\mathrm{RR}-2 \mathrm{R} r+r r$ to $2 \mathrm{Rr}+2 r r$; that is, as $\mathrm{R}+r$ to 2%,

(35)

or KE to BV ; and therefore the Rectangle $\mathrm{BE} \times \mathrm{CE}$, or $r m$, is equal to the Space $\mathbf{X} y$ N B. But the Space V Z B is equal to the Rectangle $\frac{1}{2} a r+$ $\frac{x}{2} s r$; and therefore according to our Propofition it will be, as a to $2 m$, fo is $\frac{1}{2} a r+\frac{1}{2} s r$ to $\frac{m a r+m s r}{a}$, which is equal to the Curvilinear Space QVZLBNQ . From this fubftract the Space $\mathrm{X} y \mathrm{NB}=r m$, and there will remain the Space $\mathrm{Q} V \mathrm{ZX} y=\frac{m r s}{a}$. And fince the Spaces ZXL, Q y T are equal to each other, the Space QVLTQ will alfo be equal to $\frac{y^{2} r s}{a}$. Therefore whenever a to m, or the Circular Motion to the progreffive Motion of the Center, Mhall be in a given Ratio; the perfect Quadrature of the Curvilinear Spaces QVLT Q will be given alfo. Alfo the whole Space V P L, to the Square of the Radius BE, will be in the fame Ratio of the Motions m to a, that is, in every primary Epicycloid in the Ratio of the Radii K E to K B; which is the Propofition of Mr. Cafwell. But the leffer Spaces QVLTQ will be to one another as the Sines of the Arches VZ; and the Triangular Spaces QT P, by the fame way of arguing, will be as the verfed Sines of the Arches QT or Z L, and are therefore quadrable. In like manner it may be proved, that the Spaces $\mathrm{P} \Lambda \Upsilon, p \mathrm{~L} u, p \lambda \Upsilon$, are always to the Square of the Radius BE (in all thefe Figures) in the aforefaid Ratio of m to a; and their Portions $p q t$ as the verfed Sines of the intercepted Arches $q t$. But the remaining Segments, as $q t \Upsilon \Lambda, q t \Upsilon \lambda, \mathcal{\text { I }} c$. will be as the Right Sines of the Complements of the fame Arches $q t$.

Now the Ratio of the Velocities m to a is compounded of the Ratio of the Radii K E, BE, and the Ratio of the Angles that are equably defcribed at the fame Time CKE, VEZ; and therefore that Ratio of the Angles being given, all the forefaid Epicycloidal Spaces will allo be fquared.
XI. I. A Curve is required with this Property, that the two Segments (of a A Probiem proo Right Line drawn from a given Point through the Curve,) being raifed bernowill. J.
 fame Sum. We leave it to Analyfts to exbibit a general Solution.
2. The Problem (if I rightly underftand it) may be thus propofed. A solved by If. No Curve K IL is required with this Condition, that if a Right Line P K L be ${ }^{\text {ibid. } p \cdot 389 .}$ any how drawn from fome given Point or Pole P , meeting the fame Curve in two Points K and L; the Powers of its two Segments PK and P L, drawn from the given Point P to thofe Points of meeting, if they are raifed to an equal Heigit, (that is, either Squares, or Cubes, or Biquadrates, \mathcal{E}° c.) in every Pofition of that Right Line they may make the fame Sum, P Kq $+\mathrm{PL} q$, or $\mathrm{P} \mathrm{K}^{\mathrm{cub}} .+\mathrm{P} \mathrm{L}^{\mathrm{cub}} . \mathcal{E}^{2} \mathrm{c}$.

Solution. Through any given Point A let an infinite Right-Line be drawn A DB given in Polition, meeting the moveable Right Line PKL in the Point D; and call A D, x; and PK or PL, y; and $\operatorname{let} \mathrm{Q}$ and R be Quantities any how compofed of any given Quantities and the Quantity x; and let the Relation between x and y be denoted by this Equation, $y y+\mathrm{Q}_{\mathrm{y}}+$

(36)

$\mathrm{R}=0$. And if R be a given Quantity, the Rectangle of the Segments $P K$ and $P L$ will be given. If Q be a given Quantity, the Sum of thofe Segments (conjoined by their proper Signs) will be given. If $Q Q-2 R$ is given, the Sum of the Squares ($\mathrm{P} \mathrm{K} q+\mathrm{P} \mathrm{L} q$) will be given. If Q $3 Q R$ is a given Quantity, the Sum of the Cubes ($P K^{\mathrm{cub}}+\mathrm{P} \mathrm{L}^{\mathrm{cub}}$) will alfo be given. If $Q^{+}-4 Q^{2} R+2 R^{2}$ be a given Quancity, then the Sum of the Biquadrates ($\mathrm{PK} q q+\mathrm{P} \mathrm{L} q q$) will alfo be given. And fo on ad infinitum. Therefore let it be provided, that $\mathrm{R}, \mathrm{Q}, \mathrm{Q}^{2}-2 \mathrm{R}, \mathrm{Q}, \mathrm{Q}^{2}-2 \mathrm{R}$, $\mathrm{Q}^{3},-3 \mathrm{QR}, \varepsilon^{2} c$. may be given Quantities, and the Problem will be refolved. 2 E.F.
In the fame manner Curves may be found, which fhall cut off three or more Segments having the like Properties. Let there be an Equation $y^{3}+\mathrm{Q} y^{2}+$ $R y+S=0$; where $\mathrm{Q}, \mathrm{R}, \mathrm{S}$, denote Quantities compofed of any given Quantities whatever, and of the Quantity x any how involved; in which Cafe the Curve will cut off three Segments. Now if S be a given Quantity, the Solid contained by thofe three will be given. If Q be a given Quantity, the Sum of three fuch will be given. If $Q Q-2 R$ be a given Quantity, the Sum of the Squares of three fuch will be given.

Tbe Ufo of Flaxions in sbe SoJusion of Geome. sisk Problems; by Mr. Abr. de Moivie. n. 216. p. 52 .

Mas. An. 1695°
XII. Here you have a Method for the Quadratures of Curvilinear Figures; for the Dimenfion of Solids generated by the Rotation of a Plain, and of their Superficies; for the Rectification of Curves; and for the Calculation of their Centers of Gravity. But before I go any farther, I would have you underftand, that I make ufe of what the great Neroton has demonftrated, in Pag. 251, 252, and 253 of his Philofophical Principles, about the momentary Increments or Decrements of Quantities, which either increafe or decreafe by perpetual Flux; and efpecially that the Moment of any Power $\mathrm{A}^{\frac{n}{m}}$, is $\frac{n}{m} a A^{\frac{n}{m}-r}$

Therefore the Fluxion $\frac{n}{m} a A^{\frac{n}{n}-1}$ being given, on the contrary we may find the flowing Quantity $A^{\frac{n}{\cdots}}$, firft by removing a from the Fluxion. Secondly by increafing the Index of the Fluxion by Unity. And thirdly, by dividing the Fluxion by the Index fo increafed by Unity.

The Abfcifs of the Curve in what follows fhall be denoted by x, its Fluxion by \dot{x}; the Ordinate by y, and its Fluxion by \dot{y}.

This fuppofed, to proceed now to Quadratures, firft let the Value of the Ordinate be obtained, by means of the Equation expreffing the Nature of the Curve. Secondly, let this Value be multiplied by the Fluxion of the Abrcils, and the Rectangle hence arifing will be the Fluxion of the Area. Laftly, from this Fluxion of the Area let its Fluent be found, and we Shall have the Area required.

Let the Equation $x^{m}=y^{n}$ be propofed, exprefling the Nature of any Pa raboloid, in which the Value of the Ordinate will be $y=x^{\frac{\mathrm{m}}{\mathrm{n}}}$; which if multiplied by \dot{x}, the Rectangle $x^{\frac{m}{0}} \dot{x}$ will be the Fluxion of the Area. Therefore the Area required will be $\frac{n}{m+n} x^{\frac{m}{n}+1}$, or putting y for $x^{\frac{m}{n}}$, it will be $\frac{n}{m+n} x y$.

Again, let a Curve be propofed whofe Equation is $x^{4}+a^{2} x^{2}=y^{2}$, (which is the firft among Mr. Craig's Examples) then affuming $x \sqrt{x x+a a}=y$, the Fluxion of the Area will be $x \dot{x} \sqrt{x x+a}$. Now as it is involved in a Radical Sign, let us fuppofe $\sqrt{x x+a a}=z$; whence $x x+a a=z^{2}$, and therefore $x \dot{x}=z \dot{z}$; and putting $z \dot{z}$ and z for $x \dot{x}$ and $\sqrt{x x+a a}$, the Fluxion freed from Surds will be $z^{2} z$. This if we bring back to its Original $\frac{x}{3} z^{3}$, and reftore $\sqrt{x x+a a}$ for z, we fhall have $\frac{1}{3} x \overline{x x+a a} \sqrt{x x+a a}$ for the Area required.

But that it may farther appear with what Eafe thefe Quadratures may be obtained, I will ftill add one Example more. Let the Equation of the Curve be $\frac{x^{z}}{x+a}=y^{2}$; therefore $y=\frac{x}{\sqrt{x+a}}$, and then $\frac{x \dot{x}}{\sqrt{x+a}}$ will be the Fluxion of the Area. Let us fuppofe $\sqrt{\overline{x+a}}=z$, whence $x=z z-a$, and $\dot{x}=2 z \dot{z}$. Therefore $\frac{x \dot{x}}{\sqrt{x+a}}=2 z_{z}^{z}-2 a \dot{z}$, and therefore $\frac{2}{3} z^{3}-2 a z$, or $\frac{\overline{2} x-\frac{4}{3} a}{3}$ $\sqrt{x+a}$ will be the Area required.

But it often happens that fome Curves, fuch as the Circle, Ellipfis, or Hyperbola, are of fuch a Nature, that it would be in vain to endeavour to free their Fluxions from Surds; and then the Value of the Ordinate muft be reduced to an infinite Series; then every Term of this Series being multiplied by the Fluxion of the Abfcifs, as above, the Fluent of every Term muft be feparately found, and the new Series thus arifing will exhibit the Quadrature of the Curve propofed.

With the fame Eafe this Method may be accommodated to the Dimenfion of Solids form'd by the Rotation of a Plain, by affuming for their Fluxion the Product of the Circular Bafe into the Fluxion of the Abfifs. Let the Ratio of the Square to the infrribed Circle be called $\frac{n}{I}$, the Equation belonging to the Circle is $y y=d x-x x$, and therefore $4 x-\frac{d x \dot{x}-\frac{x^{2} \dot{x}}{n}}{n}$

(3^{8})

is the Fluxion of a Portion of the Sphere, and confequently $4 x^{\frac{\frac{x}{2}}{2} d x^{2}=\frac{1}{4} x 3}$ is the Portion itfelf. The Cylinder circumfrribed about this is $4 x \frac{d x x-x s}{n}$, and therefore the Ratio of the Portion of the Sphere to the circumfcribed Cy . linder is as $\frac{x}{2} d-\frac{1}{3} x$ to $d-x$.

The Rectification of Curves will be obtained, if the Hypothenufe of the Right-angled Triangle, whofe Sides are the Fluxions of the Abfcifs and Ordinate, is confidered as the Fluxion of the Curve. But Care muft be taken in the Expreffion of that Hypothenufe, that one of the Fluxions only may remain, and only one of the Indeterminate Quantities, which muft be that whofe Fluxion is retained. This will be plain from the Examples.

Fig. 32. From the given Right Sine C B , to find the Arch A C, making A B $=x$, $\mathrm{CB}=y, \mathrm{OA}=r$; let $\mathrm{C} E$ be the Fluxion of the Abfcifs, E D the Fluxion of the Ordinate, and C-D the Fluxion of the Arch C A. The Property of the Circle is $2 r x-x x=y y$, whence $2 r \dot{x}-2 x \dot{x}=2 y \dot{y}$, and therefore $\dot{x}=\frac{y \dot{y}}{r-x} . \quad$ But C D $q=\dot{y} \dot{j}+\dot{x} \dot{x}=\dot{j} \dot{y}+\frac{y^{2} \dot{j}^{2}}{r r-2 r x+x x}=\dot{j} \dot{y}+\frac{y y \dot{j} \dot{y}}{r r-y y}$ $=\frac{r r \dot{y} \dot{y}}{r r-y \dot{y}}$. Therefore $\mathrm{CD}=\frac{r \dot{y}}{\sqrt{r r-y y}} \cdot$ But $\frac{r \dot{y}}{\sqrt{r r-y y}}$ is the Product of $\frac{1}{\sqrt{r r-y y}}$ into $r \dot{j}$, or of $\left.\overline{r-y y}\right)^{-\frac{1}{2}}$ into $r j$; fo that if $\left.\overline{r r-y y}\right)^{-\frac{1}{2}}$ be reduced to an infinite Series, and all its Terms multiplied by $r \dot{j}$; and if we find the Fluent of every Term, we Shall have the Length of the Arch A C.

In a like manner the Arch may be found from the verfed Sine being given. Let us refume the Equation found above $2 r x-2 x \dot{x}=2 y$, which becomes $\dot{j}=\frac{r \dot{x}-x \dot{x}}{y}$. But $\mathrm{CD} q=x \dot{x}+j \dot{y}=x \dot{x}+\frac{r r_{x \dot{x}}-2 r x_{x x}+x x_{x x}}{y y}$ $=\dot{x} \dot{x}+\frac{r \dot{x} \dot{x}-2 r x_{\dot{x}} \dot{x}+x x_{x} \ddot{x}}{2 r x-x x}$, or reducing all to the fame Denominator, and expunging thofe which deftroy one another, 'tis $\mathrm{CD} q=\frac{r r_{\lambda x}}{2 r x-x x}$, or $\mathrm{CD}=\frac{r_{x}}{\sqrt{2 r x-x x}}$. Therefore the Length of the Arch A C will eafily be obtained, by what has been above delivered.

Sometimes the Fluxion of the Curve is found more eafily by a Comparifon between the fimilar Triangles CED and CBO. For we fhall have this
 $\frac{r_{x}}{\sqrt{2 r x-x x}}$.

(39)

The Curve-line of the Cycloid may be known in the fame manner. Let A L K be a Senicyloid, whofe generating Circle is A D L. Any Point B being affumed in the Diameter A L, let BI be drawn parallel to the Bafe L K, meeting the Periphery of the Circle in the Point D. Let the Rectangle A EIB be compleated, and draw F H parallel to EI, and infinitely near it, cutting B I produced in G, and the Curve AK in H. Make $\mathrm{A} L=d, \mathrm{AB}=\mathrm{EI}=x, \mathrm{GH}=x$. It is known that the Right Line $B G$ is every where the Aggregate of the Arch AD, and of the Right Sine B D; hence it is manifeft that the Fluxion I G is the Aggregate of the Fluxions of the Aich A D, and of the Right Sine BD. Now the Fluxion of the $\operatorname{Arch} \mathrm{AD}$ is found to $\mathrm{be}=\frac{\frac{x}{3} d x}{\sqrt{d x-x x}}$, and the Fluxion of the Right Sine BD is $=\frac{d x-2 x x}{2 \sqrt{d x-x x}}$. And therefore IG $=\frac{d x-x x}{\sqrt{d x-x x}}$, and I Hq
 $\frac{\dot{x} \sqrt{ } d}{\sqrt{ } x}=d^{\frac{1}{2}} x^{-\frac{1}{2}} x$; and therefore $\mathrm{AI}=2 d^{\frac{\pi}{2}} x^{\frac{x}{2}}=2 \sqrt{ } d x=2 \mathrm{AD}$.

This Conclufion may be deduced with very little Trouble from the known Property of the Tangent. For fince its Particle IH is always parallel to the Chord A D, it caufes the Trangles I G H and A B D to be fimilar. Whence AB. AD :: GH.IH. That is, $x, \sqrt{ } d x:: x . I \mathrm{H}=\frac{x \sqrt{ } d x}{x}=d^{\frac{1}{2}} x^{-\frac{1}{2}} x$.

Now by the Affiftance of the Fluxion IH we may find the Area of the Cycloid. The Fluxion of the Area AEI is the Rectangle EI $\mathrm{G}=\frac{d x_{x}-x^{2} x}{\sqrt{d x}-x_{x}}$ $=x \sqrt{d x-x x}$. But the Fluxion of the Portion A B D does not differ from this; therefore the Area AEI and the correlpondent Portion of the Circle A B D are always equal.

Let A B be the Curve of a Parabola, whofe Axis is AF, Parameter a. Make $\mathrm{A} \mathrm{E}=x, \mathrm{E} \mathrm{B}=y, \mathrm{~A} \mathrm{~B}=z, \mathrm{BD}=x, \mathrm{D}=y, \mathrm{BC}=z$; and affuming an Equation exprefling the Nature of the Parabola, fuppofe $a x=y y$, it will be $a x=2 y \dot{y}$, whence $x=\frac{2 y \dot{y}}{a}$. But $\mathrm{B} \mathrm{C} q=\mathrm{BD} q+\mathrm{CD} q$, that is, $z \dot{z}=\dot{x} \dot{x}+\dot{y} \dot{y}=\frac{4 y^{2} \dot{y} \dot{y}}{a a}+\dot{y} \dot{y}=\frac{4 y^{2} \dot{y} \dot{j}+a a \dot{y} \dot{a}}{a a}$, and therefore $z=j \frac{\sqrt{A y y+a a}}{a}$, or which is all one $z=\dot{y} \frac{\sqrt{y^{2}+\frac{1}{4} a^{2}}}{\frac{x}{z} a}$. If therefore this

Fig. 34.
this Quantity is reduced to an infinite Series, the Curve A B may thence be known.

Fige 35°
Now it eafily appears, that if the Hyperbolical Space were given, this would be given alfo, and vice ver $\int \hat{a}$. For $\frac{1}{2} a \dot{z}=\dot{y} \sqrt{y y+\frac{1}{4} a} a$, and therefore $\frac{1}{2} a z$ will be equal to the Space whofe Fluxion is $\dot{y} \sqrt{y y+\frac{1}{4} a}$. But this Space is nothing elfe but the exterior equilateral Hyperbola, whofe Semiaxis $\mathrm{B}=\frac{3}{2} a$, the Abrciffa $\mathrm{AE}=y$, and the Ordinate $\mathrm{EG}=x$.

For the Menfuration of the Superficies produced by the Converfion of a Curve about its Axis, there mult be affumed for its Fluxion a Cylindrical Superficies, whofe Altitude is the Fluxion of the Curve itfelf, and whofe Diftance from the Axis is the Ordinate belonging to this Fluxion.

Fig. 32.
For Example, let A C be the Arch of a Circle, which by revolving about the Axis AB may generate a Spherical Superficies, which we undertake to meafure. The Fluxion of the Arch DC is already found to be $\frac{r_{x}}{\sqrt{2 r x-x x}}$. If we multiply this by the Circumference belonging to the Radius, BC , that is by $\frac{c}{r} \sqrt{2 r x-x x}$, (fuppofing the Ratio of the Circumference to the Radius to be $=\frac{c}{r}$) we fhall have the Fluxion of the Spherical Surface $=c \dot{x}_{\text {, }}$ and therefore the Surface itfelf is $c x$.

As to what belongs to Centers of Gravity, having found the Fluxion of the Superficies or Solid, and multiplying this into its Diftance from the Vertex, we muft then return back to the Fluent. This divided by the Superficies or Solid itfelf, will give the Diftance of the Center of Gravity from the Vertex.

Let the Center of Gravity of all the Paraboloids be to be found. Their Fluxion is thus expreffed in a general Manner $x^{\frac{m}{n}}$, which multiplied by x becomes $x^{\frac{m}{2}}+{ }^{\prime} \dot{x}$, whofe flowing Quantity $\frac{n}{m+2 n} x^{\frac{m}{n}+{ }^{2}}$ being divided by the Paraboloids Area $\frac{n}{m+n} x^{\frac{m}{n}+t^{\prime}}$ will give $\frac{m+n}{m+2 n} x$ for the Diftance of the Center of Gravity from the Vertex.

The Center of Gravity in a Portion of a Sphere is found much in the fame Manner. For its Fluxion $4 \frac{d x x-x x_{x}}{n}$ being drawn into x becomes 4 $\frac{d x^{2} \dot{x}-x^{3} \dot{x}}{n}$, of which the Fluent is $4^{\frac{1}{3} d x^{3}-\frac{1}{4} x^{4}}$, which divided by the Solidity

Solidity of the Portion, that is, by $4 \frac{\frac{1}{2} d x^{2}-\frac{\gamma}{8} x^{3}}{n}$, produces $\frac{\frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{4}} d-\frac{1}{4} x}{} x$, or $\frac{4 d}{6 d}$ - $-\frac{3 x}{4 x} x$, for the Diftance of the Center of Gravity from the Vertex.
XIII. 1. Prop. I. Prob.] To find the Relation between the Fluxion of the Tbe Catena; by Axis, and the Fluxion of the Ordinate, in the Curve called Catenaria.

Let F A D be a Chain hanging by its Ends F and D, whofe loweft Point, or Vertex of the Curve, is A, its Axis A B perpendicular to the Horizon, Dr. Div. Gregory. N. 23It.p. 637. Aug. An. and its Ordinate B D parallel to the fame. We are to find the Relation between $\mathrm{B} b$, or $\mathrm{D} \delta$, and $d \delta$; fuppofing the Point b to be infinitely near B, and $b d$ to be parallel to B D , as alfo $\mathrm{D} \delta$ parallel to B A .

It appears from Mechanicks, that three Powers conftituted in Æquilibrio have the fame Ratio as three Right Lines that are parallel to their Directions, or which are inclined to them in a given Angle, being terminated by their mutual Concourfe. So that if $\mathrm{D} d$ denotes the abfolute Gravity of the Particle $\mathrm{D} d$, (as would neceffarily be in a Chain every where equally thick) then $d \delta$ will reprefent that Part of the Gravity that acts perpendicularly upon $\mathrm{D} d$, by which it is brought about, (becaufe of the Flexibility of the Chain moving about d) that $d \mathrm{D}$ endeavours to reduce itfelf to a vertical Situation. Therefore if δd, or the Fluxion of the Ordinate B D, be fuppofed conftant, the Action of Gravity exerted perpendicularly upon the correlpondent Parts of the Chain $d \mathrm{D}$, will alfo be conftant, or every where the fame. Let this be expounded by the Right Line a. Again, by the Mechanicks before cited, D δ, the Fluxion of the Axis A B, will denote the Force, which is exerted according to the Direction of $d \mathrm{D}$, which is equivalent to the aforefaid Endeavour of the heavy Line $d \mathrm{D}$ to reduce itfelf into a Vertical Situation, and which prevents its doing fo. Now this Force arifes from the heavy Line D A drawing according to the Direction $d \mathrm{D}$, and therefore (cateris paribus) is proportional to the Line D A. Therefore δd, the Fluxion of the Ordinate, is to d D, the Fluxion of the Abfeils, as the conftant Right Linie a is to the Curve D A. QE.F.

COROL.] If the Right Line T D touches the Catenaria, and meets the. Axis B A produced in T , it will be $\mathrm{B} \mathrm{D}: \mathrm{B} \mathrm{T}::(d \delta: \delta \mathrm{D}::) a$. Curve D A .

Prop. II. Theor.] If to the Perpendicular AB as an Axis, with Vertex A, an Equilateral Hyperbola $A H$ be deforibed, whofe Semiaxis $A C$ is equal to a; and to the fame Axis and Vertex, a Parabola AP be drawin, whofe Parameter is equal to four Times the Axis of the Hyperbola; and if the Ordinate HB of the Hyperbola be continually produced, till HF is equal to the Curve AP; I fay the Curve $F A D$, in which the Points F and D are found, (fuppofing $B D$ $=B F$) will be the Catenaria.

(42)

Make $\mathrm{AB}=x$, then $\mathrm{B} \dot{b}=x$, and $\mathrm{BH}=\sqrt{2 a x+x x}$. Whence by the Method of Fluxions, the Fluxion of $\mathrm{BH}=\frac{\dot{x}_{x}+x \dot{x}}{\sqrt{2 a x+x x}}=m b$. Again, becaufe the Parameter of the Parabola A P is $=8 a$, 'tis $\mathrm{BP}=\sqrt{8 a x}$. Whence $n p$ the Fluxion of BP will be $\frac{2 a_{x}}{\sqrt{2 a_{x}}}$. So that the Fluxion of the Curve $\mathrm{AP}=$ $\mathrm{P} p=\sqrt{n p \times n p+\mathrm{P}} n \times \mathrm{P} n=\sqrt{\frac{4 a^{2} x^{2}}{2 a x}}+\dot{x}^{2}=\frac{\sqrt{2 a x^{2}+x \dot{x}^{2}}}{x}$ which by multiplying both Numerator and Denominator into $\sqrt{2 a} \mp x$ becomes $\frac{2 a x+x x}{\sqrt{2 a \%+x x}}$. And fince H E is every where equal to AP , the Fluxion of the Right Line $H F$, that is $m b+s f$, will be equal to $\frac{2 a x+x x}{\sqrt{2 a x+x x}}$. But it is already found that $n: b=\frac{a x+x \dot{x}}{\sqrt{2 a x+x x}}$. Whence $s f=\frac{a x}{\sqrt{2 a x+x x}}$, which is the Fluxion of BF the Ordinate to the Axis of the Catenaria. Therefore the Fluxion of the Curve AF, or $\mathrm{Ff}=\sqrt{s f^{2}+\mathrm{Fs}}=$ $\frac{\sqrt{a^{2} x^{2}}}{2 a x+x x}+x^{2}=\frac{a x+x x}{\sqrt{2 a x+x x}}$ of which the Fluent is $\sqrt{2 a x+x x}$, as juft now found. Therefore $A F=\sqrt{2 a x+x x}$. And it appears that the Fluxion of the Ordinate B F, or $\frac{a x}{\sqrt{2 a x+x x}}$, is to \dot{x} the Fluxion of the Abfcifs A B, as the given Line a to the Curve AF; which is the Property of the Catenaria found above. Therefore the Points of the Catenaria are rightly determined by the foregoing Conftruction. Q.E.D.

COROL. I.] From the Conftruction it appears, that B F, the Ordinate of the Catenaria, is equal to the Parabolical Curve A P, taking away B H the correfpondent Ordinate of the conterminate Hyperbola A H.
2. From the Demonftration it appears, that the Curve of the Catenaria A F is equal to BH the correfpondent Ordinate of the conterminate equilateral Hyperbola. For fince the Fluxions of thefe Lines are equal, and the Lines themfelves are nafcent at the fame Time, it is plain they muft be always equal. Whence the Chain being given, AC or a will be given alfo, as being equal to the Semiaxis of the Equilateral Hyperbola whofe Vertex is A, and Ordinate equal to the Abrcifs AB of the Chain AD.
3. All Catenaria are fimilar to one another, fince they are generated by a like Conftruction of like Figures fimilarly pofited. Whence two Right Lines alike inclined to the Horizon, drawn through the Vertices of the Chains,
will cut off fimilar Figures, and Portions of the Chains which are proportional to the Right Lines fo custing them off.
4. If the Chain QA D is fufpended at the Points Q and D , whiel: are at unequal Heights, the Part of the Curve F A D contiinues the fame as if it had been fufpended at the Points F and D, which are equally high; becaute it is all one whether the Point F be fixt to the Horizontal Plain or not.
5. If the Force of the Chain, drawing according to the Direction $d \mathrm{D}$, be denoted by $\mathrm{D} a$; let it be divided (as is commonly known) into the Force $d \delta$, according to a Horizontal Direetion, and a Force \dot{D}, according to a Vertical Direction. Therefore in the Extremity of the Chain, the Force of approaching directly to the Axis, is to the Force of perpendicular Defcent in the fame; or the Part of the futtaining Force acting according to the Direction B D, is to a Part of the fame acting according to the Direction D δ, as the Semiaxis of the conterminate Hyperbola A H, is to D A the Length of the Chain to the Vertex of the Curve. Whence when the Chain is given, this Ratio is given. And in the fame Chain fufpended more or lefs loofely, that Horizontal Force is as the Axis of the conterminate Hyperbola, fince D A remains the fame, when the Extremes of the Chain are equally high.
6. In a Vertical Plain, but in an inverted Situation, the Chain will preferve its Figure without falling, and therefore will conftitute a very thin Arch or Fornix : That is, infinitely fmall, rigid, and polifh'd Spheres, difpofed in an inverted Curve of a Catenaria, will form an Arch, no Part of which will be thruft outwards or inwards by other Parts, but the loweft Parts remaining firm, it will fupport itfelf by means of its Figure. For fince the Situation of the Points of the Catenaria is the fame, and the Inclination of the Parts to the Horizon, whether in the Situation F A D, or in an inverted Situation, fo that the Curve may be in a Plain which is perpendicular to the Horizon; it is plain that it muft keep its Figure unchanged as well in one Situation as the other. And on the contrary, none but the Catenaria is the Figure of a true and legitimate Arch or Fornix. And when Arches of other Figures are fupported, it is becaufe in their Thicknefs fome Catenaria is included. Neither would it be fuftained, if it were very thin, and compofed of nippery Parts. From Corol. 5. before, it may be collected, by what Force an Arch or Buttrefs preffes a Wall outwardly to which it is applied. For this is the fame with that Part of the Force fuftaining the Chain, which draws according to a Horizontal Direction. For the Force which in the Chain draws inwards, in an Arch equal to the Chain drives outwards. All other Circumftances, concerning the Strength of Walls to which Arches are applied, may be geometrically determined from this Theory, which are the chief Things in the Conftruction of Edifices.
7. Inftead of Gravity, if any other Power exerts its Force, acting in like manner upon a flexible Line, the fame Curve will be produced. For Ex-
ample, if the Wind be fuppofed equable, and fhould blow according to Right Lines parallel to a given Line; the Line thus inflated by the Wind would be the fame as the Catenaria. For fince all Things obtain in this other Force, as we have fuppofed in Gravity, it is evident the fame Line muft be produced.

Prop. 3. Theor.] The Hyperbola aforefaid AH remaining, if tbrough A a Right Line $G A L$ be draron perpendicular to the Axis $A B$, and a Curve $K R$ be defcribed of fuch a Nature, that $B K$ may be a third Proportional to the Rigbt Lines $B A$ and $A C$, and to $A C$ be applied a Reefangle $A V$ equal to the interminate space $A B K R L A$; the Concourje F of the Right Lines HB, V G, will be at a Cateneria.

For by Conftruction'tis $\mathrm{BK}=\frac{a a}{\sqrt{2 a x+x x}}$. Therefore the Fluxion of the Space ABKRLA is $\mathrm{BK} k b=\mathrm{BK} \times \mathrm{B} b=\frac{a a_{x}}{\sqrt{2 a x+x x}}$. And fince BF $=\frac{\mathrm{ABKRLA}}{A C}$, and AC is given; its Fluxion will be $\mathrm{BF}=\frac{a \dot{x}}{\sqrt{2 a x+x x}}$. But in the Conflruction of the foregoing Propofition, the Fluxion of the Ordinate $\mathrm{BF}=\frac{a \dot{x}}{\sqrt{2 a x+x x}}$. Wherefore this Conftruction comes to the fame as the Conftruction of the foregoing Propofition, and confequently the Point F is at a Catenaria. 2. E. D.

COROL.] As in the foregoing Propofition the Catenaria is defrribed from the given Length of the Parabolical Curve; fo in this its Defcription depends on the Quadrature of the Space, in which $x x y y=a^{4}-2 a x y y$. For BK or $y=\frac{a a}{-\sqrt{2 a x+x x}}$.

Prop. 4. Theor.] The Space AG F contained by the Catenaria $A F$, and the Right Lines $F G, A G$, parallel to $A B, B F$, is equal to the Reetangle under the Semiaxis $A C$, and D H the Diftance of the Ordinates in the Hyperbola and Catenaria.

For $\dot{\mathrm{D}} \mathrm{H}=\dot{\mathrm{B}} \mathrm{H}-\dot{\mathrm{B}} \mathrm{D}=$ (by Prop. 2. of this) $\frac{a_{\dot{x}}+\dot{x}}{\sqrt{2 a} \bar{x}+x \dot{x}}-\frac{a_{\dot{x}}}{\sqrt{2 a x+x \dot{x}}}$ $=\frac{x \dot{x}}{\sqrt{2 a x+x x}}$. Wherefore the Fluxion of the Rectangle under the given Line AC and HD is $\frac{a x \dot{x}}{\sqrt{2 a x+x x}}=x \times \frac{a \dot{x}}{\sqrt{2 a x+x x}}=f s \times \mathrm{FG}=$ the Fluxion of the Space A GF. And fince thefe Figures are nafcent together, it
it follows that the Rectangle under AC and DH is equal to the Space AGF. 2.E.D.

COROLL.] Hence it follows that the Space F A D, comprehended by the Chain F A D and the Horizontal Right Line F D, is equal to the Rectangle under FD and B A, fubftracting the Rectangle under either Axis of the Hyperbola A H, and DH the Excels of the Right Line BH, or of the Curve A D, above the Ordinate B D.

Prop. 5. Theor.] If the Rectangle L E, equal to the Hyperbolic Space $A L H$, be applied to the Right Line $A L$, the Point E will be the Center of Equilibrium of the Catenarian Curve AFD.

Let a heavy Curve F A be conceived to be poifed upon the Axis G L. From the Doctrine of the Center of Gravity it follows, that the Moment of the Weight F A is expounded by the Surface of an upright Cylinder erected upon F A, and cut off by a Plain paffing through G L, making half a Right Angle with the Plain of the Curve. And the Fluxion of this Surface, or $\dot{\mathrm{F}} \mathrm{A} \times F \mathrm{~F}$, is equal to the Fluxion of the Space $\mathrm{A} L H$, or $\dot{\mathrm{B}} \mathrm{H} \times \mathrm{HL}$; becaufe $\dot{\mathrm{F}} \mathrm{A}$ and $\dot{\mathrm{B}} \mathrm{H}$, as alfo F G and HL , are equal. And therefore, fince they are nafcent at the fame Time, the faid Superficies of the erect Cylinder is equal to the Hyperbolical Space A L H. Therefore this applied to the heavy Line itfelf AF, or to the Right Line AL which is equal to it, it produces a Breadth A E equal to the Diftance of the Center of Gravity from the Axis of Libration G L. Hence E will be the Center of Equilibrium of the Curve F A D, Jying equally on each Side of the Axis A B. 2. E. D.
$C O R O L$. 1.] The Spaces A BH L, B A H, and A G F, are in Arithmetical Proportion. For the Fluxion of the Space A L H $=\frac{a_{x}+x x}{\sqrt{2 a x+x x}} \times x=$ $\frac{\overline{a x+x} \times x}{\sqrt{2 a x+x x}}=\frac{\sqrt{2 a x+x x-a x}}{\sqrt{2 a x+x x}} \times x=x \sqrt{2 a x+x x}-\frac{a x_{x}}{\sqrt{2 a x+x x}}=$ Fluxion of the Space B A H, leffened by the Fluxion of the Space A G F, by Prop. 4. of this. And as thefe three Figures are nafcent at the fame Time, it will be B AH-A GF $=(\mathrm{ALH} \Rightarrow) \mathrm{BL}-\mathrm{BAH}$. So that 2 BAH $=B L+A G F$. Whence it follows that the Spaces BL, B A H, and A G F, are in Arithmetical Proportion.
2. The Center of Gravity of the Catenaria defcends lower, than that of any other Line of the fame Length, and having the fame Extremities. For every heavy Body defcends as low as it may. And fince a Figure defcends juft fo much as its Center of Gravity defcends, a heavy flexible Line will fo difpofe itfelf, as that its Center of Gravity will be lower than if it affumes any other Figure. And from this Property of a heavy flexible Line, all its other Properties might be eafily deduced.

(46)

3. If upon any Curves having the fame Length, and the fame Limits D and F as the Catenaria F A D, upright Cylinders were cut by a Plain paffing through DF; of the Cylindrical Superficies fo cut off, the greateft is that which infifis upon the Catenaria. For thefe Superficies, if the Angle made by the Plains is half a Right Angle, applied to the Curves themfeives, which in the pretent Cafe are of the fame Length, produce Breadths equal to the Diftances of the Centers of Gravity of the Curves from the Right Line D F. Now as in the Catenaria this Diftance is the greateft, becaufe of the greateft Defcent of the Center of Gravity, the Cylindric Surface to be applied will alio be the greatef. And becaufe there is the fame Ratio of Cylindricai Surfaces cut off by a Plain, containing any Angle with the Plain of the Bafe, as when the laid Angle is half a Right Angle, the Propofition obtains univerfally.

LEMMA.] If upon any Ordinate $F B$ perpendicular to the Axis $A B$ of axy Curve A F Q that is defcribed by the Evolution of anoiber Curve K V, from the correspondent Point V in KV a perpendicular V R is let fall, meeting the Ordinate in R; if the Fluxion of the Axis $A B$ renains the fame, the Flitxion of the Fluxion of the Ordixate B F, the Fluxion of the Curve AF, and the Right Line $F R$, will be continual Proportionals.

Let the little Right Line F f be produced, till it meets the next Ordinate $W \varphi$ in 0 . And becaufe by the Hypothefis $\mathrm{F} s=f \mathrm{~W}$, it will be of $=\mathrm{F} f$, and therefore 0ϕ will be the Fluxion of $f s$, that is, the Fluxion of the Fluxion of the Ordinate. Moreover the Triangles $O \varphi f$ and $f \mathbf{F R}$ are equiangular, becaufe $0 \phi f$ is equal to the Alternate $\phi f r$, and $f \circ \varphi=(\mathrm{Ffr}=$) $\mathrm{F} f \mathrm{R}$, becaufe their Difference $\mathrm{R} f r$ vanithes in Refpect of either of them, fince $R r$ is nothing in Comparifon of $f r$. Therefore it is $0 \varphi . \phi f:: f F$. FR. But ϕf and $f \mathrm{~F}$ are equal, fince they only differ by the Fluxion of each. Therefore o $\varphi \cdot f F:: f F . F R$. 2. E. D.

Fig. 36. Prop. 6. Probl.] To find the Curve $K V$, by the Evolution of which the Catenaria A F 2 is defcribed.

Make A B $=x$, and $\mathrm{B}=y$, as before. Then by Prop. 2. of this, 'tis $\dot{y}=\frac{a \dot{x}}{\sqrt{2 a x+x x}}$, or $2 a x \dot{j} \dot{j}+x x \dot{y} \dot{y}=a a x \dot{x}$. Then by Newton's Method now in common ufe, 'tis $2 a \dot{x} \dot{y}^{2}+4 a x \dot{y} \bar{y}+2 x \dot{x} \dot{y}^{2}+2 x^{2} \ddot{y} y=2 a^{2} \dot{x} \dot{x}$ $=0$; (for $\ddot{x}=0$, becaufe x is a conftant Quantity.) Therefore $"=$ $\frac{-a \dot{x} \dot{y}-x \dot{x} \dot{y}}{2 a x+x x}=\frac{\overline{a+x} \times a x^{2}}{2 a x+x x \times{ }^{\prime} 2 a x+x x}$, by fubitituting inftead of j its Value $\frac{a \dot{x}}{\sqrt{2 a x+x x}}$; (for the Sign - prefixt to the Quantity; only fhews, that the Place of the Point R in refpect of F, is oppofite to the Place of the

Point F in refpect of B , fince the Curve $\mathrm{A} F \mathrm{Q}$ is concave towards the Axis A B.) And by the fecond Prop, of this, $\mathrm{F} f=\frac{\overline{a+x} \times x}{\sqrt{2 a x+x x}}$. Wherefore by the foregoing Lemma, FR $=\frac{\mathrm{F} f q}{j}=\frac{\overline{a+x^{2}}}{2 a x+x x} \times \frac{2 \dot{x}^{2}}{2 a x+x \times} \times \sqrt{\frac{2 a x+x x}{a+x} \times \frac{a}{a x^{2}}}$ $=\frac{\overline{a+x} \times \frac{\sqrt{2 a x+x x}}{a} \text {. Again, becaufe of the Right-angled Triangles }}{}$ Fsfand FRV, having equal Angles f Fs and VFR, becaure VFs is the Complement of each to a Right Angle, it is $F s: s f:: F R: V R$, or $\dot{x}:$ $\frac{a x}{\sqrt{2 a x-1 x x}}:: \frac{\overline{a+x} \times \sqrt{2 a x+x x}}{a} . V R$, which therefore is equal to $a+x$. Therefore this is the Nature of the Curve K V, that if AB be called x, it will be $\mathrm{FR}=\frac{\overline{a+x} \times \sqrt{2 a x+x x}}{a}$, and $\mathrm{VR}=a+x$. 2. E. I.

COROL. I.] AC:CB::BH:FR. For this is the Property of the Right Line F R found above.
2. The Right Line C B is equal to BI or VR; for each of them is equal zo $a+x$.
3. The evolving Right Line VF is a third Proportional to the Lines A C and $C B$. For becaufe of equiangled Triangles $f F s$ and $V F R$, it is $s F$: Ff::FR:VF. $O_{\dot{x}}: \frac{a \dot{x}+x \dot{x}}{\sqrt{2 a x+x}}:: \frac{a+x \times \sqrt{2 a x+x x}}{a}$ VF, which therefore is equal to $\frac{\overline{a+x_{i}^{2}}}{a}$. Whence it is $a: a+x:: a+x$. VF, which alfo is the Radius of a Circle which is equicurved to the Catenaria in the Point F.
4. When the Point F falls in A , or when the Vertex is defcribed by Evolution, that is, when $x=0$, the Value of the evolving Right Line VF, which in this Care is K A, becomes $\frac{a+{ }^{2}}{a}=a$. That is, the Point K, where the Curve V K meets the Axis, is as much above the Vertex A of the Chain, as C is depreffed below the fame. Whence the Diameter of a Circle, equicurved to the Chain at its Vertex, is equal to the Axis of the conterminate Hyperbola A H. Therefore the Chain A D and the Hyperbola A H have the fame Degree of Curvature at the Vertex A: For it is generally known that the aforefaid Circle is equicurved to the Equilateral Hyperbola A H in the Vertex A. Alro this appears from the Nature of the Chain iffelf, by what is demoniftrated Prop. 2. of this. For the nafcent Line FH $=$ A P $=$ the nafcent $\mathrm{BP}=\sqrt{8 a x}$ is double to the nafcent Line BH or $\sqrt{2 a x+x x}$

(4^{8})

$=$ (when x vaninhes) $\sqrt{2 a x_{0}}$. And therefore the fame Point is both in the nafcent Hyperbola and the nafcent Catenaria, That is, the nafcent Hyperbola A H coincides with the nafcent Catenaria A D, and therefore thefe Lines are equicurved at the Vertex A.
5. The Curve K V is a third Proportional to the Right Line A C, and the Curve A F, or the Right Line A L. For from the Nature of Evolution $\mathrm{KV}=\mathrm{VKA}-\mathrm{KA}=\mathrm{VF}-\mathrm{KA}=\frac{\frac{\overline{a+x^{2}}}{a}-a=\frac{a^{2}+2 a x+x^{2}}{a}, ~}{a}$ $-a=\frac{2 a x+x x}{a}$. And therefore $a: \sqrt{2 a x+x x}:: \sqrt{2 a x+x x} . \mathrm{KV}$. But $\sqrt{2 a x+x x}=$ AF, by Cor. 2. Prop. 2. Whence A C : A F :: AF. K V.
6. The Right Line KI is double to AB. For fince BI $=B C=C A$ +AB , it will be $\mathrm{A} I=C \mathrm{~A}+2 \mathrm{AB}$. But $\mathrm{AK}=\mathrm{C} A$, by Corol. 4. of this. Whence $K I=2 \mathrm{AB}$.
7. The Rectangle of $A C$ and $B R$ is equal to twice the Hyperbolical Space BAH. For FR $\times \mathrm{AC}=\frac{\overline{a+x} \times \sqrt{2 a x+x x}}{a} \times a=\overline{a+x} \times$ $\sqrt{2 a x+x x}=x \times \sqrt{2 a x+x x}+a \times \sqrt{2 a x+x x}=\mathrm{AB} \times \mathrm{BH}+$ $\mathrm{AC} \times \mathrm{BH}=\mathrm{AB} \times \mathrm{BH}+\mathrm{AC} \times \mathrm{BD}+\mathrm{AC} \times \mathrm{DH}$. Therefore $\mathrm{FR} \times$ $A C-B D \times A C=B R \times A C=A B \times B H+A C \times D H$. But by Prop. 4. of this, 'tis AC×DH $=$ Space AGF. And therefore BRX $\mathrm{AC}=\mathrm{ABHL}+\mathrm{AGF}=2 \mathrm{BAH}$, by Cor. 1. Prop. 5.

Fig. 3^{8}
Prop. 7. Theor.] If in the Logaritbmic Curve $L A G$, whole given Subtangent HS is equal to the Rigbt Line a, (determined Cor. 2. Prop. 2. of this) a Point A be taken, whole Diftance $A C$ from the AJymptote $H P$ is equal to the Subtangent HS ; and from the Points H and P, any bow taken in the Afymptote, equally diftant from the Point C, if Ordinates HL, PG are erected to the Logaritbmic Curve, to balf the Sum of which HD or PF are made cqual; the Points D and F will be in the Catenaria correfponding to the Right Line $A C$.

Make $\mathrm{AB}=x$, and therefore C B or DH , the half Sum of the Ordinates IH L, PG, will be $a+x$; let the half Difference of the fame be called y. Then HL $=a+x+y$, and $\mathrm{PG}=a+x-y$. And fince from the Nature of the Logarithmic Curve C A is a mean Proportional between thefe, it will be $a a+2 a x+x x-y y=a a$, and therefore $y=\sqrt{2 a x+-x x}$. So that HL $=a+x+\sqrt{2 a x+x}$, and $\mathrm{PG}=a+x-\sqrt{2 a x+x x}$. Therefore the Fluxion of H L , or $l \mathrm{~m}$, is $\frac{a^{\dot{x}}+x \dot{x}+\dot{x} \sqrt{2 a x-x x}}{\sqrt{2 a x+x x}}$.

(49)

And becaufe of fimilar Triangles $l m \mathrm{~L}$ and LHS, it is LH:HS:: $/ \mathrm{m}$: m L. Whence $m \mathrm{~L}$ or $d \delta$, the Fluxion of BD , is equal to $\frac{a \dot{x}}{\sqrt{2 a x+x \dot{x}}}$. That is, the Curve A D derived from the Logarithmic Curve in the foregoing Manner, is of fuch a Nature, that it its Axis is called x and its Fluxion \dot{i}, the Fluxion of the Ordinate B D will be $\frac{a \dot{x}}{\sqrt{2 a x+x x}}$. But this is the very Property of the Catenaria to which a belongs, as demonftrated in Prop. I. of this. Therefore the Curve F A D above defcribed is no other but the Catenaria. 2, E.D.

COROL. I.] As by the Help of the Logarithms the Catenaria may be defcribed, fo on the contrary by means of the Catenaria, which is conftructed by Nature herfelf, the Logarithm of a given Number, or rather of a given Ratio, may be found. As fuppofing C A to be Unity, whofe Lugarithm is equal to 0 , let us find the Logarithm of the Number $C Q$, or of the Ratio between C A and CQ. To the Right Lines CQ and C A let the third Proportional be CV, and let half the Sum of CQ and CV be CB. The Ordinate to the Catenaria from B , that is BD , is the Logarithm required. The Reafon is plain from the Propofition.
2. On the contrary, if from the Logarithm given CH or CP the correfpondent Number HL or P G were required, or the Ratio HL to C A, or PG to C A; from H or P let a Perpendicular be raifed, meeting the Catenaria in D or F; and let CR be made equal to HD or PF, that is to C B, and let it be terminated at the Horizontal Line A R. Then will AR be the Semidifference of the Lines required LH, GP, as HD or CR is their Semifum, by what is demonftrated above about the Nature of the Catenaria. (For in three Quantities that are Geometrically proportional, fuch as HL, C A, P G, the Square of the half-fum of the Extreams leffened by the Square of the Mean, is equal to the Square of the half-Difference of the Extreams.) And therefore $C R+A R$ and $C R-A R$ are the Numbers HL or GP, belonging to the given Logrithm CH or CP .
3. From the Demonftration it is evident, that as $H D$ the half Sum of the Ordinates HL, P G, of the Logarithmick Curve, applied perpendicularly to CH in H , is the Ordinate of the Catenaria; fo the half Difference of the fame HL, P G, applied perpendicularly to C A in B, is the Ordinate of the equilateral Hyperbola deferibed with Center C and Vertex A; and therefore, by Cor. 2. Prop. 2. of this, is equal to the Catenaria A D: For $y=$ $\sqrt{2 a x+x x_{1}}$. And fince it is fhewn in the foregoing Corollary, that A R alfo is the half Difference of the Right Lines H L, PG, it is plain that A R is equal to the Portion of the Catenaria A D. Whence by the Way a Method is difcovered, from the Chain A D being given to find C the Center of the conterminate Hyperbola, or that Point in the Alymptote of the Loga-

Yos. I.

(50)

rithmick Curve GL. For if AR is taken equal to the Chain AD, and from the middle Point of the Right Line B R a Perpendicular to it is raifed, this will meet $\mathrm{B} A$ the Axis of the Chain in the Point required C, as very plainly appears. For thus $C R$ will be equal to $C B$.
4. Hence alfo it follows, that if the Angle BD T be made equal to ACR, the Right Line D T will touch the Catenaria in D. For thus in the fimilar Triangles D B T and C AR, it will be D B:BT::C A:AR, or the Curve A D which is equal to it. And therefore by Corol. Prop. I. of this, DT touches the Catenaria.
5. It alfo follows, that the Space A CHD is equal to the Rectangle of C A and A R. For becaufe A Y D, by Prop. 4. is equal to the Triangle under C A and A D-B $=$ (by Corol. 3. of this Prop.) $\mathrm{AR}-\mathrm{A} \mathrm{Y}=\mathrm{YR}$, the Propofition is plain. And becaufe C A is given, it is evident that the Space A C HD is as the Curve A D, or its Fluxion Hd is as the Fluxion of this D d.
6. If through the Point K , where CR meets HD , a Line K Z is drawn parallel to PH, meeting the Right Line A C in Z , and C E be taken equal to half the Sum of BC, C Z; the Point E will be the Center of Equilibrium of the Curve F A D.

Upon F A D let it be conceived, that the upright Superficies of a Cylinder is erceted, and cut by a Plain through PH, at half a Right Angle with the Plain of the Curve FA D. This Superficies will expound the IVIoment of the Curve FA D, when librated upon the Axis PH; and its Fluxion is $\mathrm{DH} \times \mathrm{D} d+\mathrm{PF} \times \mathrm{Ff}=2 \mathrm{BC} \times \dot{\mathrm{A} D}=2 \overline{\mathrm{x} a+x} \times \frac{a \dot{x}+x \dot{x}}{\sqrt{2 a x+x x}}=$ $\frac{2 a a \dot{x}+4 a x \dot{x}+2 x x \dot{x}}{\sqrt{2 a x+x x}}=\frac{a a \dot{x}}{\sqrt{2 a x+x x}}+\frac{a a \dot{x}+a x \dot{x}}{\sqrt{2 a x+x}}+\frac{3 a x \dot{x}+2 x x \dot{x}}{\sqrt{2 a x+x \dot{1}}}$, of which the Fluent is $a \times \mathrm{BD}+a \sqrt{2 a x+x x}+x \sqrt{2 a x+x x}=$ $C A \times B D+C B \times A D$. Wherefore $C A \times B D+C B \times A D$ is equal to the aforefaid Cylindrical Superficies, (for they are nafcent together) which is equal to the Moment of the Curve F A D, when poifed upon the Axis PH. Whence the Diftance of the Center of Gravity of the Curve FAD from the Point C is $\frac{C A \times B D+C B \times A D}{2 A D} \xrightarrow{\infty}$ or $\frac{C A \times B D}{A D}+\frac{1}{2} \frac{C B}{}$. Moreover becaufe of $Z \mathrm{~K}$ parallel to AR , it is $\mathrm{AD}: \mathrm{BD}:: \mathrm{AR}: \mathrm{ZK}::$ $C A: C Z$, whence $C Z=\frac{C A \times B D}{A D}$, and therefore $C E$, which by Confiruction is equal to $\frac{1}{2} B C+\frac{1}{2} C Z$, will be equal to $\frac{1}{2} \frac{C A \times B D}{A D}+\frac{1}{2} B C$. That is, the Center of Gravity of the Curve FAD, and the Point E deter-

(51)

mined by the Conftruetion, will be equally diftant from C ; but being in the fame Right Line, and fituate the fame Way, they muft neceffarily coincide.

The Coincidence of the Point E, as above determined, with the Center of Equilibrium determined Prop. 5. of this, may be thus hewn fynthetically. By Corol. s. Piop. 5. 'tis $2 \mathrm{BAXX}=\mathrm{AYD}+\mathrm{BA} \times \mathrm{AR}$. Whence AH $+2 \mathrm{BAX}=\mathrm{ACHD}+\mathrm{BA} \times \mathrm{AR}=$ (by the foregoing Corol) ARX $C A+B A \times A R$. That is, $B D \times A C+2 B A X=A R \times C B$, or $B D X$ $A C=A R \times C B-2 B A X$. Whence $B D \times A C+A D \times B C=A D$ $x B C+A R \times C B-2 B A X=2 A D \times B C-2 B A X=2 A D X$ $A C+2 A D \times A B-2 B A X$. And by applying to $2 A D$, it will be $\frac{B D \times A C}{A D}+\frac{1}{2} C=A C+\frac{A B \times A D-B A X}{A D}=C A+\frac{A R X}{A R}$. But $\frac{A R X}{A R}$ is the Diftance of the Center of Equilibrium of the Chain from the Vertex A, by Prop. 5. and therefore by the fame $C A+\frac{A R X}{A R}$ is the Diftance of the Point E from C , and $\frac{\mathrm{BD} \times \mathrm{AC}}{\mathrm{AD}}+\frac{1}{3} \mathrm{BC}$ is the Diftance of the fame E from the fame C, by this Corol. Whence it appears that thefe two Determinations of the Point E come to the fame, becaufe C A + $\frac{A R X}{A R}=\frac{B D \times A C}{A D}+\frac{1}{2} B C$.
7. The Center of Gravity of the Space PF A DH is in I, the middle Point of the Right Line C E. For fince the Center of Gravity of the Fluxion of AD , or $\mathrm{D} d$ and $\mathrm{F} f$, is diftant as far again from PH , as the Center of Gravity of the Fluxion of ACHD, or DHbd and FPpf, and $\overline{\mathrm{D}} d+\mathrm{F} f \times \mathrm{AC}$ is given, equal to $\mathrm{D} d b \mathrm{H}+\mathrm{F} f p \mathrm{P}$; it is plain that the Center of Gravity E of the Fluent F A D is as far again diftant from PH, as the Center I of the Fluent P F A D H. But I fhall prove this otherwife, after the manner of the foregoing.

Let an erect Cylinder be fuppofed to be raifed upon the Figure P F A D H, and cut off by a Plain paffing through PH, making half a Right Angle with the Plain of the Bafe; that Solid will reprefent the Moment of the Figure PFADH, when poifed upon the Axis PH. The Fluxion of this Solid or of the aforefaid Moment, (that is, the Solids ereeted upon PFfp and HD $d j$) is produced, if the Moment of the Fluxion, or the Fluxion of the Moment of A D, is drawn into the given Line $\frac{1}{2}$ AC. For by Corol. 5. of this Propofition, HD $d b=\mathrm{D} d \times A \mathrm{C}$. Wherefore the flowing Moment itfelf is produced by multiplying the Moment of the Curve F AD in refpect of the Axis PH, determined by the foregoing Corollary, that is, $\mathrm{C} A \times B D+C B \times A D$ into $\frac{1}{2} A C$; and therefore it will be $\frac{1}{2} \mathrm{AC} \times \mathrm{AC} \times$

(52)

$B D+\frac{1}{2} A C \times C B \times A D$. Now if this be applied to the librated Figure PFADH, or $2 \mathrm{CA} \times \mathrm{AD}$, by Cor. 5. of this Prop. there will arife the Diftance of the Center of Gravity of the Figure PF A D H from the Axis PH, equal to $\frac{1}{2} \frac{C A \times B D}{A D}+\frac{1}{2} C B$, which is equal to half the Right Line C E, as above determined.
8. If through the Point N , where D T the Tangent to the Catenaria in D meets the Line A R, a Right Line be drawn parallel to B C, meeting a Right Line through E parallel to AR in the Point O ; this Point O will be the Center of Gravity of the Curve A D. For by Corol. 6. the Center of Gravity of the Curve A D is in the Right Line EO. But it will be alfo demonftrated, that it is in the Right Line N O, and therefore will be in the Point O. Let D A be conceived to be librated about the Axis HL; the Moment of this is the Curve D A, drawn into the Diftance of the Center of Gravity from HL, and therefore its Fluxion is $\mathrm{DA} \times \mathrm{H} b,(\mathrm{H} b$ is the Fluxion of the Diftance of the Axis of Libration from the Center of Gravity) which is equal to $\sqrt{2 a x+x x} \times \frac{a x}{\sqrt{2 a x+x x}}=a \dot{x}$. And therefore the Moment of the weighty Curve D A, librated about the Axis HL, is $a x$. Therefore the Diftance of the Center of Gravity from the fame Axis is $a x$ applied to A D, or $\frac{A C \times D Y}{A R}$. But becaufe DT touches the Catenaria, by Cor. 4. of this Prop. the Angle BDT or DN Y will be equal to A CR. And the Angles at A and Y are right; therefore in the equiangular Triangles $R A C$ and $D Y N$, 'tis $R A: A C:: D: Y N$. Whence $Y N=$ $\frac{A C \times D Y}{R A}$, that is, $Y N$ is the Diftance of the Center of Gravity of the Chain A D from the Axis H L; or the faid Center is in the Right Line NO.
9. If upon I a Right Line be drawn parallel to $A R$, meeting $O N$ produced in W ; the Point W will be the Center of Gravity of the Space A CHD. For by Corol. 7. this Center is in the Right Line IW; and it will be fhewn prefently, that it is in N W , and therefore is the very Point W. For in the fame manner as in the foregoing, the Fluxion of the Moment of the Space A CHD, librated about HL, is fhewn to be ACHDX $\mathrm{H} b=\mathrm{AC} \times \mathrm{AD} \times \mathrm{H} b=a \times \sqrt{2 a x+x x} \times \frac{a \dot{x}}{\sqrt{2 a x+x x}}=a a x_{0}$. And therefore the Moment of the Space A C H D, librated about H L, is equal to the Fluent of the Fluxion $a a_{x}$, that is to $a a_{x}$. This therefore applied to the Space itfelf ACHD, or $a^{\sqrt{2}} \sqrt{2 a x+x x}$, gives the Diftance of the Center of Gravity of the Space A CHD from HL, that is $\frac{a x}{\sqrt{2 a x+x x}}=$ $A C \times D Y$
$\frac{\mathrm{ACXDY}}{\mathrm{RA}}$. But in the foregoing Corollary it is Shewn, that $\mathrm{YN}=$ $\frac{A C X D Y}{R A}$. Therefore the Center of Gravity of the Space ACHD is in N W. And by thefe two lalt Corollaries the Center of Gravity is found, of any Portion of a Catena that does not reach to the Vertex A, or of any Space of a Catenaria, comprehended by any Portion together with Right Lines.
ro. Hence are meafured the Superficies and Solids produced by the Rotation of a Catenaria, or of any Space comprehended by that and Right Lines, revolving about a given Axis. For the Figure generated by Rotation, as is commonly known, is equal to the revolving Figure drawn into the Periphery that is defrribed by the Center of Gravity in the Rotation; which Periphery is given, fince its Radius is given, or the Diftance of the Center of Gravity from the given Axis. Thus if the Catenaria A D revolves about the Axis A. B, the Periphery defribed by the Center of Gravity O will be $\frac{\pi}{\rho}$ A N, if \widetilde{T} denotes the Ratio of the Periphery of a Circle to its Semidiameter ; and therefore the Superficies produced by the Rotation of the Catena A D, will be $\frac{\pi}{\rho}, \times \mathrm{AN} \times \mathrm{AD}=\frac{\pi}{\rho} \times \mathrm{AN} \times \mathrm{AR}$. That is, a Circle whofe Radius is equal in Power to the double of the Reftangle R A N, will be equal to the Superficies produced by the Rotation of the Chain A D about the Axis A B. In like manner it may be fhewn, that a Solid generated by the Rotation of the Space ACHD about AC, is equal to a Cylinder whofe Bafe is the aforefaid Circle, and its Height equal to A C. And fo may the Superficies and Solids be meafured, that are produced by the Rotation of thefe Figures about any other given Axis. For when the Centers of Gravity are known, the reft will eafily follow.
2. What has been objected by an Anonymous Author, in his Animad- Tbe Arimadvorverfions upon our Demonftrations concerning the Catenaria, is this. AEF. finns of . . G... Lipf. M. Feb. An. 1699. That I have undertaken to demonftrate, after my gory. N. 259.pe Manner, a Matter found out and publin'd by others feven Years ago. This 4 Ag . Dcc. An. is true, and I cannot find any thing in this that is Blame-worthy. Thofe great Men Huygens, Leibnitz, and Bernouill, have difcovered and communicated many Properties of the Catenaria, but without Demonftration. I have contrived Demonftrations, which was the Thing I undertook to do.

But was this Matter (that is, the Nature and primary Properties of the Catenaria) found out and publifhed by others? Surely that Property of the Catenaria, in Cor. 6. Prop. 2. was not at all mentioned by others before the Publication of thefe Demonftrations; although, if I am not miftaken, it may be reckoned among its primary Properties, is the moft ufeful of all, and molt eafily reduced to the common Purpofes of Life. From all Ages Architects

(54)

Tiave made ufe of Arches in publick Buildings, as well for Strength as Teatuy. Yet what was the true Geometrical Figure of an Arch, was not known before my Demonfrations came out.

The firf Thing he finds Fault with is, that I affirm fome Things are plain from Mechanicks, which he thinks fhould have been explained and applied more difincly. As I underrook to demontrate fome Theorems to Geomecricians, I did not think it neceffary to purfue every Thing very minutely. Bue that I may oblige the Animadverter, I will now demonftrate that Lemmo, Prop r. becaule I cannot exprefs it more fully than I have already done, in the following Words:
"Three Powers conftituted in Equilibrio have the fame Ratio as three "Right Lines, which are parallel to the Directions of the Powers, or are " inclined in a given Angle, and terminated by their mutual Concourfe."

As lippole three Powers are in Equilibrio, that either draw, prefs, or any how afe according to three Right Lines P A, P B , P C; and let the three Right Lines EF, F D, DE, be inclined to thefe Directions in any Siven Angle; that is, let the Angles E A P, F B P, D C P, be equal : I lay the Powers A, B, C, are to one another as the Right Lines F E, F D, DE.

Let the Right Lines A P, B P, C P, be produced to G, H, K.
In the Quadrilaterum F A B P , becaule by Hypothefis the external Angle EAP is equal to the internal and oppofite Angle PBF, the two internal oppoite Angles F A P and FBP will be equal to two Right Angles; and fince all the four internal Angles are equal to four Right Angles, the other two Angles F and A B P oppofite in the fame Quadrilaterum, will alfo be equal to two Right Angles. But A P B and B PG make two Right Ones; therefore the Angle F is equal to BPG. In like manner D and E may be thewn equal to BPK and APK .

Now becaufe the three Powers are in Equilibrio, they are immoveable, and therefore any one of them in refpect of the two others that remain in FEquilibrio, may be confidered as a Fulcrum. If B is the Fulcrum, by a moft known Theorem in Mechanicks, the Power A is to the Power C, as the Sine of the Angle BPK to the Sine of the Angle BP G, that is, as the Sine of the Angle D to the Sine of the Angle F; that is, as the Right Line FE to the Right Line DE. Again, fuppofing C the Fulcrum, the Power A is to the Power B, as the Sine of the Angle C P H to the Sine of the Angle C P G, or the Sine of the Angle B P K to the Sine of the Angle A P K; that is, the Sine of the Angle D to the Sine of the Angle E, or as the Right Line FE to FD. Therefore the three Powers A, B, and C, are as the Right Lines F E, FD, and DE. 2, E. D.

We mutt now fay fomething about the Application of this Mechanical Lemma. If the abfolute Gravity of the litte Line $d \mathrm{D}$, expounded by $d \mathrm{D}$, as faid above in Prop. 1. is conceived to be collected in its Center of Gravity M, and this heavy Line, by Virtue of its Gravity, endeavours to defcend according to the Direction MF perpendicular to $d \mathrm{D}$; the Power drawing according to M D, which is in EEquilibrio with the faid heavy Line, by the forego

(55)

foregoing Lemma is to its Momentum or Power drawing according to MF, as $\delta \mathrm{D}$ is to δd. For the Angle $\delta \mathrm{D} d$, in which $\mathrm{D} \delta$ is inclined to MD , is equal to the Angle $d_{\varepsilon} F$, in which $d \delta$ is inclined to MF, for each is the Complement of the Angle d to a Right Angle. And this will obtain, as the Animadverter acknowledges, if the aforefaid Weight (as in the vulgar Mechanicks) incumbing upon the Plain MF, is drawn by Help of a Pulley at M , by another Weight incumbing upon MD : Then this will be to that as $\mathrm{D} \delta$ to $d \delta$.

Other Things remaining as before, if the Manner of Application of thefe Powers is changed, fo that to the middle Point M of the flexible Line d D, whofe Extremity d is fixt, a Weight be applied exerting its Force according to MF; (for in defcending it would deferibe an Arch with Center d and Ra dius $d \mathrm{M}$) the Force of this Weight to bend the flexible Right Line at M, would be infinite in refpect of the Force of its abfolute Gravity. And the Force drawing according to MD , which is required in order to prevent the aforefaid bending, would alfo be infinite in refpect of that which was before required, to fupport the Weight M in the Plain MF. So that the Powers which in the former Manner of Application were expounded by $d \delta$ and $\delta \mathrm{D}$, muft now be expounded by infinitely greater Lines, which are ftill proportional to the former. For as before, the Weight M draws according to the Direction M F, and the Power fuftaining it according to M D; and that thefe two are in Æquilibrio appears from the Parts of the Chain being at reft. Therefore the Ratio of thefe remains the fame as before. But the Caufe which extends into a Right Line the flexible Line d D, (whofe Extremity d is immoveable, and to whofe middle Point M a Weight is applied, which is indeed infinitely little, but whofe Force by this Manner of Application is made infinitely greater, and therefore in the Language of the Animadverter becomes affignable) is the Weight of the Chain $\mathrm{D} A$, which is proportional to its Length. This therefore to the conftant and affignable Quantity a, (proportional to the conftant but not affignable Quantity $d \delta$) is as $D \delta$ to δd. And thus I hope it will appear to the Animadverter, that I have proved the Conclufion to be true, without making any erroneous Pofitions.
XIV. Let ACF be a Semicircle, whofe Diameter is AF; ADE is a tbe quadraure Curve Geometrically irrational, whofe Ordinate B D cuts the Semicircle in of Fizizures GeoC. Now let the Quaritities be thus reprefented. The Diameter AF $=2 a$, zional, by M_{1} the Abfcifs $A B=y$, the Arch $A C=v$, and the Ordinate $B D=z$. Let ${ }_{232}$ J. Craig. No . $z=r v y^{\mathrm{n}}$ be a general Equation, expreffing the Natures of the Geometri- Sepp. An. 1697 cally irrational Curves A D E, in which r denotes any given and determinate Quantity, and n the indefinite Exponent of the indeterminate Quantity y. I fay the Area of the Curve will be

$$
\mathrm{ABD}=\frac{r v y^{n}+1}{n+1}=q v+\sqrt{r y-y y} \text { into } \frac{r a}{n-(-1)^{2}} y^{n}+\frac{2 n r a^{2}+r a^{2}}{n \times n+b^{3}}
$$

$y^{n-}++\frac{a \mathrm{D} \times 2 \overline{n-7}}{n-4} y^{n-5}+\frac{a \mathrm{E} \times 2 \overline{n-9}}{n-5} y^{n-5}, \delta^{2} c$.
Concerning this infinite Series the following Things are to be observed. (I.) That the Capitals A, B, C, D, E, $\mathcal{\sigma}_{c}$. denote the Coefficients of the Terms immediately preceding. Thus $\mathrm{A}=\frac{\mathrm{ra}^{2} \times \overline{2+1}}{n \times n+1}, \mathrm{~B}=\frac{a \mathrm{~A} \times 2 \overline{n-1}}{n-1}$, $\mathrm{C}=\frac{a \mathrm{~B} \times 2 \overline{n-3}}{n-2}$, and fo on. (2.) That if the Exponent n reprefents any integer affirmative Number, or is $=0$; or if $2 n$ be an odd Number, then the Quadrature of the Space ABD is exhibited by a finite Quantity, because of the Series breaking off in there Cafes. (3.) That q reprefents the lat Term fo breaking off. (4.) That all thole Figures in which the Series breaks off have a Portion Geometrically quadrable, which is eafily affigned by the Series itself. For if the Abrcifs y is taken equal to $\frac{1}{n+1} \frac{1}{x n q-\frac{1}{1} q \frac{1}{n+1}}$, the Area belonging to this Abfcifs will be Geometrically quadrable. (5.) That only the irrational Term $\sqrt{2 a y-y y}$ is to be multiplied into the Terms that follow it.

Example 1.] Let $z=v$. Now becaufe in this Cafe 'cis $r=1, n=0$, therefore $\frac{r a}{n+\left.1\right|^{2}} y^{n}$ is the lat Term breaking off. Therefore $q=a$, and ABD $=v y-a v+a \sqrt{2 a y-y y}$. Therefore by Note 4, if there be taken the Abfciffa $y=a$, that is, if the Ordinate paffes through the Center of the Circle, the Portion belonging to it will be Geometrically quadrable: For then Area $=a a$, or the Square of the Radius.

Example 2.] Let $z=\frac{v y}{a}$. Becaufe in this Cafe $r=\frac{1}{a}, n=1$, therefore $\frac{2 n r a a+r a a}{n \times n+1^{2}} y^{n-1}$ is the lat Term breaking off, fo that $q=\frac{3 a}{4}$, whence AB D $=\frac{v y^{2}}{2 a}-\frac{3 a v}{4}+\frac{y+3 a}{4}, \sqrt{2 a y-y y}$, wherefore by Note 4, if we take $y=\frac{\sqrt{3 a a}}{2}$, the Geometrically quadrable Area belonging to

(57)

Example 3.] Let $z=\frac{v y^{z}}{a a}$, in this Cafe $r=\frac{r}{a a}, n=2$, and therefore $\frac{A \times 2 n-1}{n-1} y^{n-2}$ is the laft Term breaking off. Therefore $q=\frac{5 e}{6}$; fo that by the infinite Series it will be
$\mathrm{ABD}=\frac{6 v y^{3}-15 a^{3} v+\overline{2 a y^{2}+5 a^{2} y+15 a^{3}} \times \sqrt{2 a y-y y}}{18 a^{2}}$.
And therefore by Note 4, if we take $y=\sqrt[3]{\frac{5 a^{3}}{2}}$ the Area belonging to this Ab fcifs will be Geometrically quadrable; that is, the Area $\frac{2 a y z+5 a^{2} y+15 a^{z}}{18 a}$ $x \sqrt{2 a y-y y}$.

Secondly, let A C F be a Parabola, whofe Axis is A E, Vertex A, and Parameter B A. And let A D G be a Curve Geometrically irrational; whofe Ordinate B D cuts the Parabola in C. Make the Abfcifs A B $=y$, the Ordinate $\mathrm{BD}=z$, and the Arch of the Parabola $\mathrm{A} C=v$. And let the general Equation, expreffing the Natures of an Infinity of irrational Curves, be $z=r v y^{n}$, in which r denotes a given determinate Quantity, and n the indefinite Exponent of the indeterminate Quantity y. I fay the Area
$\mathrm{ABD}=\frac{r y^{\mathrm{n}+1} \times v}{n+1}-q v+\sqrt{2 a y}+y y$ into $\frac{r}{n+2 \times n+1} y^{n+8}$
$-\frac{r a}{\overline{n+2} \times \overline{n+1}} y^{n}+\frac{r a a \times \overline{2 n+1}}{n \times \overline{n+2} \times\left.\overline{n+1}\right|^{n}} y^{n-1}-\frac{a \mathrm{~A} \times \overline{2} n-1}{n-1} y^{n}=$
$+\frac{a \mathrm{~B} \times \overline{2 n-3}}{n-2} y^{n-3}-\frac{a \mathrm{C} \times \overline{2 n-5}}{n-3} y^{n-4}, \mathcal{E}_{c}$.
Concerning this Series thefe Things are to be obferved. (I.) That the great Letters A, B, C, \mho_{c}. reprefent the Coefficients of the preceding Terms refpectively. (2.) That if the Exponent n is an affirmative Integer, or equal to nothing, or likewife if $2 n$ be an odd Number, then the Quadrature may be exhibited by a finite Number of Terms, the Series breaking off of itfelf. (3.) Then is q equal to the laft Term breaking off. (4.) That of the Terms multiplying the Quantity $\sqrt{2 a y+y y}$, the laft breaking off is to be doubled. (5.) That all thofe Figures in which n is an Integer pofitive and odd Number, or more generally, all the Figures in which the final Term has the Sign + , have a Portion Geometrically quadrable, which is eafily affigned by the Series, by taking the Abfcifs as in Not. 4. of the foregoing Series.

Example 1.] Make $z=v$. Becaufe in this Cafe $r=1, n=0$, therefore the Term laft breaking off is $-\frac{r}{n+2} \times \frac{a}{\pi+1} y^{n}$, whence $q=-\frac{a}{2}$ Vol. I.
by Not. 3. And becaure in this Cafe $-\frac{a}{2}$ is the final Term, therefore $=_{a}$ is the laft Term to be multiplied into $\sqrt{2 a y+y}$, by Not. 4. and therefore $\mathrm{ABD}=v y+\frac{a v}{2}+\sqrt{2 a y+y} \times-\bar{i} y-a$.

Example 2.] Let $z=\frac{v y}{a}$. Becaule in this Cate $r=\frac{1}{a} \quad n=\mathrm{x}$, thereFore the Term breaking off is $\frac{r a a+2 \overline{n+1}}{n \times \overline{n+2} \times \overline{n+1}}, y^{n}=\frac{a}{4}$. Whence $q=$ $\frac{a}{4}$, and $\frac{a}{2}$ is the laft Term to be multiplied into $\sqrt{2} a y+\overline{y y}$. Therefore $\mathrm{A} \mathrm{B} \mathrm{D}=\frac{v y y}{2 a}-\frac{a v}{4}+\sqrt{2 a y+y y} x-\frac{y y}{6 a}-\frac{y}{12}+\frac{a}{2}$. And if we take $y=\sqrt{a} \frac{a}{2}$, the quadrable Area belonging to this Abriifs will be $\frac{x}{12}$ $\sqrt{\sqrt{2 a^{4}+\frac{a a}{2}}} \times 5 a-\sqrt{\frac{a}{2}}$.
*. 133.p. 785" Tbirdly.] Let ACF be a Semicircle, A DE a Curve Geometrically irrational, whofe Ordinate B D cuts the Semicircle in C. Let the Quantities be reprefented as before, that is, the Diameter A $F=2 a$, the Abfcifs A $B=y$, the Arch $\mathrm{AC}=v$, the Ordinate $\mathrm{BD}=z$. And let the Equation expreffing the Natures of the Curves A D E be $z=r v^{2} y^{n}$, in which r denotes any given determinate Quantity, and n the indefinite Exponent of the indeterminate Quantity y. I ay the Area is

$$
\begin{aligned}
& \Lambda \mathrm{B} D=r v^{2} y^{a}+1-q v^{2}+v \sqrt{2 a y-y y} \text { into } \frac{2 r a}{n+1)^{2}} y^{a}+ \\
& \frac{2 r a^{2} \times \overline{2 n+1}}{n \times n+1)^{2}} y^{n-1}+\frac{n \mathrm{~A} \times \overline{2 n-1}}{n-1} y^{n-2}+\frac{a \mathrm{~B} \times \overline{2 n-3}}{n-2} y^{n-3} \\
& +\frac{a \mathrm{C} \times \overline{2 n-5}}{n-3} y^{n-4}+\frac{a \mathrm{D} \times 2 \overline{n-7}}{n-4} y^{n-5}, \exists_{c} c_{0}-\frac{2 Y a^{5}}{n+1} y^{n}+x- \\
& \frac{2+a^{3} \times \overline{2 n+1}}{n \times n+1} y^{n}-\frac{a^{3} \mathrm{~A} \times 2 \overline{2 n-1}}{\overline{n-1})^{2}} y^{n}-\frac{a^{2} \mathrm{~B} \times \overline{2 n-3}}{\overline{n-1)^{2}}} y^{n}-3, \\
& \mathrm{~B}_{6}
\end{aligned}
$$

Of this Theorem thefe Things are to be obferved; (r.) That it is compounded of two infinite Series, of which the firt (connected by the Sign -+) is multiplied into o $\sqrt{2 a y-y y}$; but the 'Terms of the latter (affected with the Sign -) are abfulute. (2.) That in the former the great Letters $A, B, C, D, \mho^{2} C$. denote the Coefficients of the Terms that precede the n: Airo in the latter they have the fame Values as in the former. (3.) That
dhe Quadmature is extibited by a finite Quantity, when n is an Integer pofisive Number, or equal to nothing, or when $2 n$ is an odd Number. For in thetec Cafes both the Series break off. (4.) That $2 q$ is equal to the laft Term breaking off of the former Series.

Exainple 1.] Let $z=\frac{v^{2}}{a}$. Becaufe in this Cafe $n=0, r=\frac{1}{a}$, therefore it will bc Area A B D $=\frac{y v^{2}}{a}-v^{2}+2 v \sqrt{2 a y-y y}-2 a y$.

Corol. The intire Figure A FE is equal to a double Square, the Side of which is ACF, taking away the Square of the Diameter.

Example 2.] Let $z=\frac{y v_{\mathrm{s}}}{a^{2}}$. Becaufe in this Cafe $n=1, r=\frac{r}{a^{2}}$, thereFore the Ares will be A BD $=\frac{y^{2} v^{2}}{2 a^{2}}-\frac{3}{4} v^{2}+v \sqrt{2 a y-y y} \times \frac{\bar{v}}{2 a}+\frac{3}{2}$ $+\frac{1}{4} y y-\frac{3 a y}{2}$.

Example 3.] Let $z=\frac{y \cdot v^{3}}{y a^{3}}$. Becaufe in this Cafe $n=2, r=\frac{1}{a^{2}}$, the Area will be A B D $=\frac{y^{1} v^{z}}{a^{3}}-\frac{5}{6} v^{2}+v \sqrt{2 a y-y y} \times \overline{\frac{2 y^{2}}{9 a^{2}}+\frac{5 y}{9 a}+\frac{5}{3}}$ $-\frac{2 y^{7}}{27 a}-\frac{5 y^{2}}{18}-\frac{5 a y}{3}$.
XV. Let ONF be a Logarithmick Curve, whofe Alymptote is A R, in ? which let fuch a Point A be taken, that its firt Ordinate AO may be equal to the Subrangent, or to Unity. The Curvilinear Space A O NM is re-
 A M, and by the Logarithmic Curve O N.
From O draw OE parallel to $A \mathrm{M}$, cutting MN in E . I fay that the Rectangle of the Scgments $M E, E N$, is cqual to the Space required.

Demonfration.] Make the Ordinate $\mathrm{MN}=z$, the Subtangent $\mathrm{A} O$ or $\mathrm{ME}=s$, and to the Axis A R let another Curve HGQ be conftrufted, whofe Equation is $2 s z=x x$, where its Ordinate $\mathrm{GM}=x$. I lay it is the Quadracrix of the Logarithmic Curve, according to the Foundation of my Method: That is, its Subnormal is equal to the refpective Ordinate of this, as according to the Calculation belonging to that Method may appear. Therefore according to what I have explained elfewhere, if to G be drawn GC perpendicular and equal to the Line GM, and allo H D preallel to GC, meeting the Lines $G M, C M$, in B and $D_{;}$it will be Trapezium
$\mathrm{GBDC}=\mathrm{AONM}$. But GBDC=GMC-BMD=$=\frac{1}{2} x x-\frac{1}{2}$ $\mathrm{BM} q=s z-\frac{1}{2} \mathrm{HA} q$. But $\mathrm{HA}=\sqrt{ } 2 \mathrm{AO} q$ by the Nature of the Curve HGQ . Therefore $\mathrm{GBDC}=s z-\mathrm{AO} q=\mathrm{AO} \times \overline{\mathrm{MN}-\mathrm{AO}}=$ $M E \times \overline{M N}-\overline{M E}=M E \times E N$. Therefore alfo AONM=MEx EN. Q.E.D.

A Quadratix ro tbe Circle; being the Curve defcribid by iss E Quable Evolution, by \ldots. .
N. $260 . p$ p. 445 Јал. Ап. 1700. Fig. 44.
XVI. 1. By the Equable Evolution of a Circle, I mean fuch a gradual Approach of its Periphery to Rectitude, as that all its Parts do together, and equally, evolve or unbend; or fo that the fame Line becomes fucceffively a lefs and lefs Arc of a reciprocally greater Circle.
2. Let A H K A be the Periphery of a Circle, A E a Tangent to the Point A. Let this circular Line be fuppofed cut or divided at A, and then to unbend (like a Spring,) its upper End remaining fixed to its Tangent A E, whilft the other Parts do equally evolve or extend themfelves through all the Degrees of lefs Curvature (as in A B D, A M C, E己c.) till they become ftreight in Coincidence with the Tangent A E.
3. Let A M C be the evolving Curve in any middle Pofition between its firft and lait. Join the fix'd End A, and the moving End C, by the Chordline AC, interfecting the firt Circle at H ; I fay, that AMC is a like Segment to $\mathrm{A} n \mathrm{H}$, cut off in the firft Circle by the Chord AH: For, by the Suppofition, $\triangle M C$ is the Arc of a Circle, having AE a Tangent common both to it and AnH; and both Arcs are terminated in the fame RightLine AC.
4. Hence the Curve A D C E (defcribed by the moving End of the Periphery in its Evolution) may be thus confructed: Let the Circle A HKA be by Bifections divided into any number of equal Parts; let H be one of the Points of fuch Divifion: Then fay, As the Number of equal Parts in the Arc A $n \mathrm{H}$, is to the Number of Parts in the whole Periphery A H K A; fo is the Chord A H, to a fourch Line, which let be AC in AH produc'd. So is C a Point in the Curve A D C E.
5. Dern. Upon A C deferibe A M C, an Arc like to the Arc AnH. Whence AH:AC::AnH:AMC. But by Conftruction, A H:AC:: A $n H:$ Periph. AHK A; therefore is the Arc A MC equal to the whole Periphery AHKA, and like to the Arc A $n \mathrm{H}$: Confequently A M C reprefents the evolving Periphery, in a Pofition like to the Arc A $n \mathrm{H}$, and C is the defcribing Point.
6. After the fame manner may be found other Points, thro' which the Curve may be drawn : But here (as in the old Quadratrix of Dinoftratus) the Point E cannot be precifely determined; but the Curve may be brought to near it, that its Flexure or Tendency will fo lead to the Point E, that AE Shall be near enough to the Truth for common Ufes.
7. Suppofing the Point E found, a Tangent to any Point of the Curve may be drawn; and fuppofing a Tangent drawn, the Point E may be determined; the Property of the Tangent being this, that fuppofing R T a Tan-

(6i)

gent to the Point C, and C A, C E, drawn from C to each End of the rectify'd Circle, the Angle A CT (the leffer Angle that A C makes with the Tangent) is equal to ACE, the Angle made by the two Lines drawn from C.
8. Let c be a Point in the Quadratrix indefinitely near to C ; and draw $\mathrm{A} c$ interfecting A HK A in b, and A M C in o. To A c as a Chord, draw the Arc A $m c$, like unto the Arc Anb: To the Point C of the Arc A MC draw the Tangent $C L=A E$, and join $L A$; fo is $O C$ an indefinitely little Particle of the Arc coincident with its Tangent.
9. Becaufe of the like Segments $A n b A, A M \circ A, A m \subset A$, as Chord Ac to Chord Ao, fo is Arc A $m c(=A M C)$ to Arc A $m o$: Or, Ac: $\mathrm{A}_{0}:: \mathrm{A}_{\mathrm{m}} c\left(=\mathrm{A}_{\mathrm{MC}}\right): \mathrm{A}_{\mathrm{M}} 0$; and dividing, $\mathrm{A}_{c}-\mathrm{A}_{0}\left(=c_{0}\right): \mathrm{A}_{0}::$ $\mathrm{A} m_{c}-\mathrm{AM}_{0}\left(=\mathrm{C}_{0}\right): \mathrm{A} \mathrm{M}_{0}$: That is, $\mathrm{c}_{0}: \mathrm{A}_{0}:: \mathrm{C}_{0}: \mathrm{A}_{0}$; and alternately, co:Co::A0:AMo. Put AC for Ao, and AMC for A Mo (as differing infinitely little) and then 'tis $c 0: C 0:: \mathrm{AC}: \mathrm{A} M \mathrm{C}$. But by Conftruction $C L=A E=A M C$, whence $c o: C 0:: A C: C L$; and the Angle LCA = Coc, (oc being infinitely near to A C, is therefore parallel to $i t$;) and therefore Coc, ACL, are like Triangles.
10. Becaufe of C $L=A E$, Angle E A C $=L \mathrm{CA}$, (C L and E A being Tangents to the two ends of the fame Circular Arc A M C, make equal Angles with its Chord A C) and A C common to both, the Triangles EAC, and A C L, are like and equal: therefore are all three Coc, A CL, EAC, like Triangles. Whence it follows, That the Angle A CE (in the Triangle EAC) is equal to the Angle oc C (in the Triangle coC) but oc C=ACT, becaufe oc and AC are parallel; therefore the Angle ACE = ACT. 2 E. D.

X VII. In a certain Epifte of mine, in Vol. 3. of my Mathematical Works, ${ }^{\text {Tbe }}$ a Dimenfions zimong other Merhods for Quadratures are to be found thefe two. One I callicylinder cummthe Method of Convolution and Evolution, the other the Method of Com-par'd; by D. plication and Explication. By Help of thefe I fhew, which is the fimpleft p. $547 . \mathrm{An}$. Manner of meafuring all Curve Figures, and particulariy the Cycloid.

By a like Artifice may be fhewn how to compare the Sphere and Cylinder, which Arcbimedes thought fit to chufe for his Monument.

If to the Baîs P, equal to the Circumference of a Circle, a Height R be affumed equal to Radius, there will be made a Rectangular Parallelogran = R P. This may be conceived as compofed of an infinite Number of fmall Parallelograms, of the fame Height, according to the received Method of Indiviíbles.

Now if the Vertices of all thefe are conceived to be contracted into one Point, fo that of thofe minnte Parallelograms as many Triangles may be made, having the fame Bafis and an equal Height; each will be half of each of the others, and therefore all of all; and the Bafe being bent into the Circumference of a Circle, a Circle will be made whofe Radius is R and Center C, which therefore is half the Parallelogram, or $\frac{1}{2}$ R P.

This is Arcbimedes's Dimenfion of a Circle, which is equal therefore to a Right-angled Triangle, one of whofe Sides about the Right Angle is equal to the Periphery, and the other to the Radius of the propofed Circle. For $\frac{1}{2} \mathrm{R}$, or half the Altitude of the Triangle, drawn into P the Bafe, exhibis the Magnitude of that Triangle $\frac{1}{2} \mathrm{R} P$, which is equal to the Circle. And the fame may be accommodated to the Circular Sector, taking the Arch A: inftead of the Periphery P.

Again, if to that Parallelogram $=\mathrm{R} P$, as a Bafe, be taken in like manner an Altitude R, in order to a Hemifphere; there will be made a Parallelepiped $=$ RRP. This in the fame manner may be conceived as compofed of an infinite Number of fmall Parallelepipeds of the fame Height, infifting upon the minure Areas of that Plain ; of all which the common Altitude is R , and the Aggregate of Bafes $=\mathrm{R} . \mathrm{P}$. Now if this Parallelogram, the Magnitude R P continuing, be fuppofed to be bent into a Cylindrical Surface (whofe Bafe P is now bent into the Periphery of a Circle, and whofe Altitude is R) that thofe minute Parallelepipeds may be changed into fa many Wedges, or Prifms with Triangular Bafes, each of which are half their refpective Parallelepipeds, and therefore all are half of all; having for their Vertices fo many Points C, or minute Lines, in the Axis of the Cylinder, and thus filling it up ; the Cylinder will become half the Parallelepiped, or $\frac{1}{2} \mathrm{RRP}$.

Or in order to come at the intire Sphere, if on each Side is taken the Altitude R, fo that the whole Altitude may be $\mathrm{D}=2 \mathrm{R}$, and if a Convolution be made in like manner, a Cylinder will be produced as before, confifting of Wedges or Prifms infinite in Number, having their Points or Vertices in the Axis of the Cylinder, which will be equal to $R R P=\frac{1}{2} R P \times 2 R$, equal to the Product of $\frac{1}{2}$ R P, or the Circular Bafe, into the Altitude 2 R : Or which is the fame Thing, it will be equal $\frac{1}{2} R \times 2 R P$, or equal to the Product of $\frac{1}{2} R$, the half of the common Altitude of the Wedges, into the Ag gregate of the Bales 2 R P.

Which Aggregate of the Bafes is the curved Cylindric Superficies itfelf, which is equal to $\mathrm{P} \times 2 \mathrm{R}$, or to the Product of P the Periphery of the Circular Bafe drawn into the Altitude $2 R$, or equal to $\frac{1}{2} \mathrm{RP} \times 4$, four of the great Circles of the Sphere. To which if we add the two oppofite Circular Bafes, there will be made the whole Superficies of the Cylinder circumfcribed to the Sphere, equal to fix great Circles, $\frac{1}{2} \mathrm{RP} \times 6={ }_{3} \mathrm{RP}$. And the Magnitude of the Cylinder, $=R \mathrm{RP}=\frac{1}{2} \mathrm{P} P \times 2 \mathrm{R}$, equal to the Product of the Circular Bafe $\frac{1}{2}$ R P drawn into the Altitude 2 R , as before.

Now if the Vertices of all there Wedges that conftitute the Axis of the Cylinder, are conceived to be contracted into one Point, fo that thefe Wedges or Prifms may now become fo many Pyramids, being on the fame Bafes and the fame Height; each will be of each, and therefore all of all, in a Proportion fubfefqui-tertial or as $\frac{x}{8}$ to $\frac{1}{2}$; and the Superficies which before was curved Cylindrical, will now become Spherical becaufe of all its Points being equally remote from the Center, the Aggregate of the Bafes remaining as before $=2$ RP, or equal to four great Circles; we fhall then have the
whole Superficies of the Sphere $=2 \mathrm{RP}=\frac{1}{2} \mathrm{RP} \times 4=$ four great Circles: and equal to the whole curved Cylindrick Surface, and the Parts refpectively equal to the Parts that belong to the fame Parts of the Axis; alfo the Magnitude of the Sphere $\frac{2}{3} R \mathrm{RP}=\frac{1}{3} \mathrm{RP} \times 2 \mathrm{R}$, equal to the Produet of $\frac{2}{3} \mathrm{R}$, a third Part of the common Altitude of all the Prifms, drawn into 2 R P the Aggregate of the Bafes, which is now become the Spherical Surface.

Therefore both the Superficies and Magnitude of the Cylinder circumfcribed to the Sphere, is fefqui-alter to the Superficies and Maginitude of the infcribed Sphere, or as 3 to 2: There becaufe the Proportion is as fix great Circles $=3 \mathrm{P} P$ to four great Circles $=2 \mathrm{R}$ P; here becaufe the Proportion is as R R P to $\frac{2}{3}$ R R P: Which is the very Invention of Arcbimedes fo much celebrated.

The fame would be had a little forter, if in the Parallelepiped upon the plain Bafe 2 R P of the Alticude R, compofed of minute Parallelepipeds, all their Vertices were immediately fuppofed to be contracted into one Point C : That the Aggregate of the Bafes continuing as before $=2 \mathrm{RP}$, thofe Pa sallelepipeds may be reduced to fo many Pyramids, having their Vertices meeting at the Center of the Sphere, whofe Radius R is the common Altitude of all the Pyramids, and the Spherical Superficies is the Aggregate of all the Bafes. For \div R, a third Part of the common Altitude, drawn into ${ }_{2}$ R P the Aggregate of the Bafes, exhibits as before the Magnitude of the Sphere $\frac{2}{3}$ R R P, and the Surface of the Sphere $=2$ R P .

In like manner this may be accommodated to the Spherical Sector, by drawing $\frac{1}{5} R$, a third Part of the common Altitude of all the Pyranids in it, into a Portion of the Spherical Surface cut off by a Plain: Which is to the whole Spherical Surface, as the Part cut off of the Diameter or Axis is to the whole Diameter; as was Shewn above.

Now the Reafon of this whole Procefs depends on thefe Principles. That a Figure compofed of Triangles is half the Figure compofed of Parallelograms, upon the fame Bafes and of equal Height. That I call a Convolute Figure, and this an Evolute. And that a Figure of Pyramids is a third part of a Figure of Parallelepipeds, on the fame Bafes and equal Height. That I call a Complicate Figure, and this an Explicate. Theie Principles may be accommodated in a thoufand Manners to Curvilinear Figures, whether Supericial or Solid, however perplexed and intricate.
XVIII. I. It hath been obferved by divers of this Nation, that in any Improemerts in Equation, howfoever affected, if you give a Root, and find the abfolute Eneland in tive Number or Refolvend, (which Vieta calls Homogeneum Comparationis;) and Requations in again give Roots and find more Refolvends; that if thefe Ronts, or rather Numbers, by Mr. Rank of Roots, be affumed in Arithmetical Progrefion, the Refolvends, as.N. 46. to their firt, fecond, or third Differences, $\mathcal{E}_{c} c$. imitate the Laws of the pure Apt. An. 166 g . Powers of an Arithmetical Progieffion, of the fame Degree, that the higheft Power, or firt Term of the Equation is of. E. s. In this Equation a a a $3 a a+4 a=N$.

(64)

To wit, the 3 d Differences of thofe Abfolutes are equal, as in the Cubes of an Arithmetical Progrefion.
2. To find what Habitude thofe Differences have to the Coefficient of the Equation, 'tis beft to begin from an Unit.
3. In any Arithmetical Progrefion, if you multiply Numbers by Pairs, you fhall create a Rank of Numbers whofe fecond Differences are equal ; and if by Ternaries, then the third Differences of thofe Products fhall be equal, And how to find the greateft Product of an Arithmetical Progreffion of any Number of Terms having any common Difference affigned, contained in any Number propofed, is fhewed by Pafcal in his Tract Du Triangle Aritbmetique, where he applies it to the Extraction of the Roots of Simple Powers.
4. It appears, how this Rank may be carried eafily by Addition, till you have a Refolvend either equal or greater or lefs than that propofed.
5. When you have a Majus and Minus, you may interpole as many more Terms in the Arithmetical Progreffion as you will, that is to fay, Subdivide the common Difference in the Arithmetical Progreffion, and render it lefs; and then renew, and find the Refolvends, which are eafily obtained out of the Powers and their Coefficients, which are fuppofed known, and may be readily raifed from a Table of Squares and Cubes, $\mathcal{E}^{\top} c$, with which kind the Reader may be furnifhed in Guildini Cenirobaryca, and Babington's Fireworks. By this means you may obtain divers Figures of the Root ; and then the General Method of Vieta and Harriot runs away more eafily, and is fo far improved, that after any Figure is placed in the Root, moft certain Characters are given to know, by Aid of the fubfequent Dividend and Divifor, whether the Figure before affinmed be too great or too fmall: Or, laftly, it may be well concluded, that as in Logarithms, when you propofe fuch an one as is not abfolutely given in the Canon, you do, by proportional Work, ufing the Aid of their firft Differences (when their abfolute Numbers differ by Unite) find the abfolute Numbers true to 5 or 6 Places farther than the Canon gives it (the Reafon whereof is, that the firft Differences do likewife agree to about the fame Number of Places); that, I fay, the like may be done in Equations, after divers of the firt Figures of the Roots are found, provided there be the like Agreement in the firft Differences of the Interpoled Refolvends.

Moreover, we ought here to take notice of a more fubtile kind of Interpolation, common to all Gradual Ranks or Progreffions of Numbers, wherein Differences happen to be equal: Of which kind the Reader may find Examples in Briggii Aritbmetica Logaritbmica, © Trigonometria Britannica, relating to Logarithms, Sines, and the Powers of an Arithmetical Progreffion:

But the Method there delivered may be rendered more eafy and general, viz. by Aid of a Table of Figurate Numbers, by deriving Generating Differences fought from thofe given; a Doctrine that eafly flows from Mercator's. Logaritbmotecbria, and of ufe in the Cafe in hand, fhould we fuppofe thefe Powers and their Coefficients unknown, or a Table of Squares and Cubes wanting, and give nothing more than a few Refolvends belonging to equal Moments or Spaces. And this may likewife be of good Ufe in Gauging, when having the Contents of a Solid, for every three Inches more or lefs given, without knowing the Dimenfions of the Figure, and even in moft Cafes, when the Differences are progreffive of one Kind, without knowing the Figure itfelf, having hothing given but its Contents at feveral equal parallel Dittances, each fuch Diftance may be fub-divided, and made as many as you pleafe, and the refpective Contents found by this general Method of Interpolation.
av After one Root is obtained, the Methods of Huddenius and others will deprefs the Equation fo as to obtain more, and confequently all of them.
6. It is cafy by a Table of Figurate Numbers to give the Sum of any fuch Rank, or any Term in it relating to a known Part of the Series of Equals or Roots; bute converfo, giving the Refolvend to find the Root, comes to an Equation as difficult as that propofed ; as in Dr. Wallis's "Chapter of Figurate Numbers.
7. Some affirm, they can give good Approaches for the obtaining a Root of any pure Power, affected Equation, or for the finding any of the mean Proportionals in any Rank between the two Extremes given.
8. Others pretend to have found out the Method (incited thereto by an Example in Albert Gerard's Invention Nouvelle en Algebre, à Amferdams 1629) fo much, by comparing of Equations, to increafe or diminifh the unknown Root of an Equation, as to render it a whole Number (or lefs differing therefrom than any Error affigned) and by Albert Gerard's Method of Aliquot Parts to find the fame, and thereby the Root fought, altho' it be a mixt Number, Fraction, or Surd.

Probably this may fympathize with what is promifed by the learned Huddenius in Ainnexis Geometrice Cartefanc, where he faith he intended not then to publifh certain Rules he had ready; whereof one was to find out all the Irrational Roots both of Literal and Numeral Equations: This mutt be underftood, when fuch Roots are polfible; for 'tis certain there are Infinite Equations, whofe Roots are no ways explicable, either in Whole or Mixed Numbers, Fractions or Surds, and can be no otherwife explained, but by a quamproxime.
9. The Autbor of tbis Narrative confidering that the Conic Sections may Toid. p. 932 . be projected from leffer Circles placed on the Sphere, and thence eafily (otherwife than hitherto hath been handled) defcribed by Points, and that by their Interfections, fome Spherick Problem is determined; accordingly, he found that this following Problem, according to the various Situation of the Eye, and of the projecting Plan, would take in all Cafes.

(66)

The Difances of an unknown Star are given from two Stars of known Decliuation and Right Afcenfon; the Declination and Right Afrenfion of the unknown Star is required.

And faith, He hath obferved, that, admitting the Mechanifm of dividing the Periphery of a Circle into any Number of equal Parts, or (which is equivalent) the Ufe of a Line of Chords, that this Problem, wherever the Eye be placed, may be refolved by plain Geometry, and yet the Eye fhall bé fo placed, as to determine it by the Interfection of the Conic Sections; confequently thofe Points of Interfection (the Species and Polition of the Figures being given) may be found without defrribing any more Points than thofe fought; and the Lengths and Ordinates falling from thence on the Axes of either Figure calculated by Mixed Trigonometry, and hence likewife the Roots of all Cubick and Biquadratic Equations found by Trigonometry.

For giving, from the Mejolabe of Slufius, the Scheme that finds thefe Roors, it will then be required to fit thofe Sections into Cones, which have their Vertex either in the Center, or an affigned Point in the Surface of the Sphere, to which they relate as projected, and proceed to the Refolution of the Problem propofed; and how to fit in thofe Sections, fee the feven Books: of Apollonius, Mydorgius, the 3d Volume of Des Cartes's Letters, Leotaudi Geometria Practica, Anderfonii Exercitat. Geometrice.

As to the Problem itfelf, it is determined on the Sphere by the Inter fections of the two leffer Circles of Diftance, whofe Poles are the known Stars. And this Problem hath divers Geometrick Ways of Refolution.

1. By plain Geometry (in the Senfe before mentioned): Suppofing a Plain to touch the Sphere or the North Pole; if the Eye be at the South Poie, projecting thofe Circles into the faid Plane, they are ftill Circles (by reafon of the fub-contrary Sections of the vifual Cones) whofe Centers fall in the Sides of the Right-lined Angle, made by the projected Meridians, that pafs thro' the known Stars; and thus the Problem is eafily folved in this Marner.
2. If it be required to be performed by Conic Geometry; In one Cafe it may be done, by placing the Eye at the Center of the Sphere, and projecting as before; to wit, when the longer Axes of the Figures being produced, concur above the Vertex: Here the Problem is determined by the Interlections of two Conic Sections (whereof a Circle cannot be one, unlefs its Center be in the Axis of the other Figure): And in this fecond Cafe, thefe Points of Interlection fall in the fame Right Line or projected Meridian they did before, but at a more remote Diftance from the Pole Point, to wit, in the former Suppofition the Polar Diftance was meafured by a Right Line, that was the double Tangent of half the Arch; here it is the Tangent of the whole Arch. Hence it is evident how one Projection may beget another, yea, infinite others, altering the Scale, and how the leffer Circles in the Stereograpbick Projection help to defrribe the Conic Sections in the Gnomonick Projection: But (to reduce the Matter to the common Radius) if we fuppofe two Spheres equal, and fo placed about the fame Axis, that the Pole Point of the one flall pafs thro' the Center of the other, and the Touch-Plain to pafs thro' the faid Center or Pole Point; and that a Jeffer Circle hath the

(67)

fame Pofition in the one as in the other: then, if the Eye be at the South Pole of the one, it is at the Center of the other ; and any projected Meridian drawn from the projected Pole Point to pafs thro' both the Projections of thefe leffer Circles, the Diftances of the Points of Interfection are the Tangents of the half and the whole Arch of the Meridian fo interfected. But as to the Points of Interfection, which determine the Problem propofed, they may be found without the Aid of the former Way, from a Gromonick and Stereograpbick Method of meafuring and fetting off the Sides and Angles of Spherical Triangles in thofe Projections, which is neceffary in what follows.
3. If the Problem is to be performed by mixed Geometry, as by a Circle, and either a Parabola, Hyperbola, or Ellipfis, the Circle may be conceived to be the fub-contrary Section of a Cone projected by the Eye at the South Pole, and any of the reft of the Sections by the Eye at the Center of the Sphere.
4. If by any of the Conick Sections however pofited, the projecting Plane may remain the fame; but the Eye mult be in fome other Part of the Surface of the Sphere, and not in the Axis.
XIX. 1. The Conftruction delivered by Des Cartes, which eafily finds the Tbe Cinfruation Roots of all Cubic and Biquadratic Equations, wherein the fecond Term is ${ }_{q}{ }_{q}$ fuadrataic and E wanting, I may here fuppofe as known: Yet fince the following depends puations by a p_{a-}. upon it, I hall here fubjoin the Rule taken from his Geometry, changing a few Things (as I hope) for the better.

When the fecond Term is wanting, all Cubic Equations may be reduced to this Form, $z^{3}{ }^{*} a p z: a a q=0$. And all Biquadratics to this, $z^{* *} a p z^{*}$: $a a q z: a^{3} r=0$. Where a denotes the latus rectum of any given Parabola, which may be ufed in the Conflruction; or making $a=1$, the Equations will be $z^{3} p z: q=0$, and z^{*}. $p z^{2}: q z: r=0$.

Now the Parabola F A G being given, whofe Axis is ACD K L, and its latus rectum a or Unity, let A C be its half, and let it always be placed from the Vertex A within the Figure. Then take $\mathrm{CD}=\frac{1}{2} p$, in the Line AC continued towards C, if in the Equation it is - p, or the other Way if it thall be -1 . Then from the Point D , or from C if $p=0$, the Perpendicular to the Axis $\mathrm{DE}=\frac{1}{2} q$ is to be raifed, to the Right Hand if it Chall be - q, but on the other Side of the Axis if it fhall be $+q$. Then a Circle detcribed with Center E, and Radius A E, if the Equation be only Cu bic, will cut the Parabola in fo many Points F and G, as it has true Roots, of which the Affirmative, as G K, will be to the Right Side of the Axis, and the Negative, as F L, will be on the Left Side.

Bur if the Equation is Biquadratic, the Radius of the Circle A E muft be fncreafed or diminifhed, by adding if it is - r, or fubtracting if it is $+r$, the Rectangle ar from its Square, or the Plain contained by the latus rectums and the given Quantity r; which is eafily done Geometrically. Now the Interfections of this Circle with the Parabola will exhibit all the true Roots of the Biquadratic Equation, by letting fall Perpendiculars to the Axis;

(68)

the Affirmatives to the Right Side of the Axis, and the Negatives to the Left Side. But I leave to Des Cartes, its Inventor, the Demonftration of the whole.

Here it is to be obferved, that I endeavour always to have the Affirmative Roots on the Right Side of the Axis, to avoid that Confufion that will neceffarily arife, from a Multitude of Cautions and Exceptions, the Reafon of which would by no means be evident.

Thefe Things being premifed, that we may come to the Conftruction of fuch Equations alfo, where the fecond Tern is prefent; the Rule for taking away the fecond Term mult be confidered, and for reducing the Equation to another, which may be contructed by the foregoing Mechod. Now all the Cubic Equations of this Clafs may be reduced to this Form, $z^{3}: b z^{2}$: a $p z: a^{2} q=0$, or to this, $z^{3}: b z^{2}:{ }^{*} a^{2} q=0$. And the Biquadraticks to this $z^{+}: b z^{3}: a p z^{2}: a^{2} q z: a^{3} r=0$, or to this $z^{+}: b z^{3}:_{*}: a^{2} q z$: $a^{3} r=0$, or to this, $z^{+}: b z^{3}: a p z^{2}:^{*}: a^{3} r=0$, or laftly to this, z^{4} : $b z^{3}:{ }^{*}: a^{3} r=0$. Out of all thefe, as they may be differently connected by the Signs + and 一, there arifes a valt Variety. Whence a general Rule comprehending them all muft needs be very difficult and obfcure, unlefs it be treated in the following Manner, and fo delivered from its Perplexities.

In Biquadratics the fecond Term is taken away, by making $x=z \not \frac{1}{\ddagger} b$, if it be $+b$ in the Equation ; or $x=z-\frac{1}{q} b$, if it be $-b$. Hence in the firt Care $x-\frac{1}{4} b$, and in the fecond $x+\frac{1}{4} b$, is equal to z; and in any Equation propofed inftead of z fubftituting its equal Quantity, there arifes a new Equation in which the fecond Term is wanting, all whofe Roots x either exceed or are deficient from the Root fought z, by a given Difference $\frac{x}{4} b$.

Example 1. $z^{1}+b z^{3}-a p z^{2}-a^{2} q z+a r=0$. Make $x-\frac{T}{4} b=z$, then $x=-\frac{1}{2} b x+\frac{1}{10} b^{2}=z, x^{3}-\frac{3}{4} x^{2} b+\frac{16}{} 6^{2}-\frac{1}{64} b^{3}=z^{3}$, and $x^{t}-b x^{3}+\frac{3}{8} b^{2} x^{2}-\frac{1}{16} b^{3} x+\frac{1}{256} b^{t}=z^{2}$. Hence by Subftitution $x-b x^{3}+\frac{3}{8} b^{2} x^{2}-\frac{1}{16} b^{3} x+\frac{1}{25} b=+z$

$$
+b x^{3}-\frac{3}{4} b^{2} x^{2}+\frac{3}{16} b ; x-\frac{1}{64} b_{t}=-b z^{3}
$$

$$
-a p x^{2}+\frac{1}{2} a b p x-\frac{1}{16} a p b^{2}=-a p z^{2}
$$

$$
-a^{2} q x+\frac{1}{4} a^{2} b q=-a p q z
$$

$$
\vdash a^{3} r=+a^{3} r
$$

${ }^{3}$ The Sum of all there becomes a new Equation, in which the fecond Term is wanting, and which therefore may be conftructed by Cartes's Rule ; putting inftead of $\frac{1}{2} p$ half the Coefficient of the third Tern divided by a or the la-
tui red tum, that is, $-\frac{3 b b}{16 a}-\frac{1}{2} p$; and instead of $\frac{1}{2} q$ half the Coefficlient of the fourth divided by a, or $+\frac{b^{3}}{16 a^{2}}+\frac{p b}{4 a}-\frac{1}{2} q$. The Parts affected with the Sign + are to be placed on the Left Side of the Axis, and thole affected with - on the Right Side, that the Center of the Circle may be had, as is requifite for the Conftruction; fo that the Interfections of this with the Parabola, by Perpendiculars let fall upon the Axis, may exhibit all the true Roots \%, the Affirmatives on the Right Side of the Axis, and the Negatives on the Left Side. For fince $x-\frac{1}{4} b=z$, by drawing a Line parallel to the Axis, on its Right Side and at the Diftance $\frac{1}{4} b$, thole Perpendiculars terminated at this Parallel will exhibit all the Roots z, the Affirmatives to the Right Hand and the Negatives to the Left. As for the Radius of the Circle, it will be had by adding the negative Parts, and fobtracing the affirmative Parts of the fifth Term divided by a a, from the Square of the Line A E drawn from the Center E (when found) to the Vertex of the Parabola A. And this may generally be done by taking instead of the Line AE the Line A O, which is terminated at O the Interfection of the Parabola and the aforefaid Parallel. For its Square contains (as may eafils be proved) all the Parts of the fifth Term accruing to the new Equaton, by taking away the fecond Term: And it only remains that the Square of EO may be increafed, if there is $-r$ in the Equation, or diminished if there is $1-r$, by the Addition or Subtraction of the Rectangle a r; whence the Square of the Radius of the Circle required is composed.

This is Mr. Baker's Method of finding the Central Rule, but free from all his Cautions, and cary enough. The only Difference arifes from hence, that I determine the Center of the fame Circle by the Axis, and he by the Parallel to the Axis; and that I always find the affirmative Roots on the Right Side of the Axis, which he places fometimes on the Right and formetimes on the Left.

As for what belongs to Cubic Equations, they muff be reduced to Biquadratics, before they can be conftructed by the fame general Rule. And this is done by multiplying the Equation propofed by its Root z, whence a Biquadratic Equation arifes, in which the lat Term, or r, is wanting. Wherefore taking away the fecond Term, and the Center E. being found, the Line $\mathrm{E} O$ is the Radius of the Circle; fince ar $=0$, and in the new Equation the whole fifth Term arifes, by only taking away the fecond Term.

Example 2.] $z^{2}-b z^{2}+a p z+a a q=0$. This multiplied by z becomes $z-b z+a p z^{2}+a a q z=0$. To take away the fecond Term make $x-1-\frac{1}{4} b=z$.

Then $x^{4}+b x^{3}+\frac{3}{8} b_{2} x^{2}+\frac{1}{16} b_{3} x+\frac{1}{256} b^{2}=z+$

$$
-b x^{3}-\frac{3}{4} b^{2} x^{2}-\frac{3}{16} b^{3} x-\frac{1}{64} b y=-b z^{3}
$$

$$
\begin{aligned}
&(90) \\
&+\quad a p x^{2}+\frac{1}{2} a b p x+\frac{1}{16} a p b^{2}=+a p z^{3} \\
&+a^{2} q x+\frac{1}{4} a^{2} b q=+a^{2} q z
\end{aligned}
$$

In this new Equation, half the Coefficient of the third Term divided by a, that is $-\frac{3 b b}{16 a}+\frac{1}{2} p$, is to be ufed inftead of $\frac{1}{2} p$; and half the Coefficient of the fourth Term, divided by $a a$ or the Square of the latus rectum, that is - $\frac{b^{3}}{16 a^{2}}+\frac{p b}{4 a}+\frac{\tau}{2} q$, is to fupply the Office of $\frac{1}{2} q$ in Cartes's Conftruction. Whence the Center E is determined. Then a Parallel being drawn to the Axis at the Diftance of $\frac{1}{4} b$, on its Left Side, becaufe of $x+\frac{1}{4} b=z$, and let the Interfection of this with the Parabola be O. A Circle defcribed with Center E, and Radius E O, will cut or touch the Parabola in fo many Points at the Equation has true Roots; which Roots or Values of z are exhibited by Perpendiculars let fall from thofe Points upon the Parallel to the Axis ; the Affirmatives to the Right Hand, and the Negatives to the Left.

If in the Equation either the third or fourth Term, or both fhall be wanting, there will be no Difference to be obferved in inveftigating the Central Rule, but the Quantities p or q vanihing, thofe Parts of the Lines C D and D E arifing from thofe Quantities will be abfent ; fo that we muft proceed with the remaining Coefficients of the third and fourth Terms in the new Equation, as is prefcribed in the foregoing Examples.

Hitherto we have purfued Baker's general Method, than which we can expect none that will be eafier or readier ; whether a Parabola is affumed for the Conftruction, or any other Curve, and when the Equation afcends to the Biquadratic. And whilf I am writing this there occurs to me a Geometrical Effection of the Central Rule, which is expeditious beyond Hope, and will abundantly fatisfy the Curious in thefe Matters.

The Parabola N A M being defcribed, whofe Vertex is A, its Axis A B C, and latus rectum a, let the Equation be reduced to this Form, $z^{4}: b z^{3}$: ap $z^{2}: a^{2} q z: a^{3} r=0$; or to this, $z^{3}: b z^{2}: a p z: a^{2} q=0$, if it be a Cubic Equation. Then at the Diftance of $\mathrm{BD}=\frac{1}{4} b$ let the Line DH be drawn parallel to the Axis, to the Left Hand if it Be - b, or to the Right if $+b$, meeting the Parabola in the Point D , from whence let fall BD perpendicular to the Axis. In the Line A B continued towards B make $\mathrm{BK}=\frac{1}{2} 0$, and draw the Line DK both ways indefinitely. Then make $\mathrm{KC}=2 \mathrm{AB}$ in the Axis always continued beyond K ; and if the Quantity p is affected with the Sign - , take $\mathrm{CE}=\frac{1}{2} p$ alfo towards the fame Side, but contrariwife if it is $+p$; and from the Point E let there be raifed EF perpendicular to the Axis, or from the Point C if the Quantity p is abfent, meeting in F the Line D R produced if need be; which Point F is the Center of the Circle required if q be abfent, but if it be prefent in FE, continued if need be, mult be taken a Line $F G=\frac{1}{2} q$, to the Left if it is $+q$, but
to the Right if $二 q$. And the Point G will be the Center of the Circle proper for the propofed Conftruction, and its Radius will be the Line G D, if r is wanting or if the Equation is only Cubical. In the Biquadratics the Square of this muft be increafed or leffened, according as it is $-r$ or $+r$, by the Rectangle of r and the latus rectum. The Circle being thus defcribed, a Perpendicular being let fall upon the Line DH from its Interfections with the Parabola, thofe that are on the Left Hand, as N O, will always reprefent the negative Roots of the Equation, and thofe on the Right Hand, as M L, the affirmative Roots.

Cubic Equations are conftructed otherwife, and fomething more fimply; by a Rule of Van Schootens, by which alfo the Roots are referred to the Axis. But becaufe the Inventor himfelf does not deliver his Manner of finding it, nor the Demonftration of his Invention, it may not be amifs to thew here the Foundation of the fame, and to make the Geometrical Effection fomething more neat, and to free it from fome Cautions in which it is involved.

This Rule is derived from hence, that every Cubic Equation may be reduced to a Biquadratic, in which the fecond Term is wanting. This is done by multiplying the Equation propofed into $z-b=0$, if there is $+b$ in the Equation; or into $z+b=0$, if it be -b. Then the new Equation fo produced will have the fame Roots with the Cubic, and another befides equal to $-b$, if there is $-b$ in the Equation; or on the contrary.

Suppofe we were to conftruct $z^{3}-z^{2} b+a p z+a a q=0$. Multiply. this by $z+b$; it becomes $z^{4}-b z^{3}+a p z^{2}+a^{2} q z$

$$
\left.\begin{array}{l}
-b z^{3}+a p z^{2}+a^{2} q z \\
+b z^{3}-b^{2} z^{2}+a b p z+a^{2} b q
\end{array}\right\}=0 .
$$

Here the fecond Term is wanting, and the Coefficient of the third - $b b$ $+a p$ gives $-\frac{b b}{2 a}+\frac{\bar{y}}{2} p$ to be fubftituted for $\frac{x}{2} p$ or CD in Cartes's Confruction; and of half the Coefficient of the fourth Term is made $+\frac{1}{2} q+$ $\frac{b p}{2 a}$, to be ufed inftead of $\frac{x}{z} q$ or D E, and fo the Center of the Circle fought is determined. Then becaufe one of the Roots of the new Equation is given, which is - or $+b$, a Point alfo in the Circumference will be given, and therefore the Radius. Laftly, the Circle being deferibed, Perpendiculars let fall upon the Axis from its Interfections with the Parabola will exhibit the Roots of the Equation, the affirmative and negative as mentioned before.

Now the Center of the Circle is found by a very ealy Conftruction, which is preferable to all others in Cubic Equations. Let A be the Verrex and A F the Axis of the defcribed Parabola A M D. At a Diftance equal to b let DK be drawn paralle! to the Axis, at the Right or Left Hand according as it is $+b$ or $-b$, which meets the Parabola in the Point D. With Centers D and A, and with equal Radius's, let occult Arches be defcribed interfecting one another on both Sides, and through the Points of Interfection draw

(72))

draw the indefinite Rignt Line P C, which may be perpendieular to the fups: pofed Line A D at its middle, and meet the Axis at the Point E. From E , either below or above according as there is either - p or $+p$ in the E quation, make $\mathrm{EF}=\frac{2}{2} p$; and from F , or from E if p is wanting, draw the Perpendicular FG meeting the Line BC in the Point G; aud in GF produced make $\mathrm{GH}=\frac{1}{2} q$, to the Right if there is $-q$ in the Equation, or otherwife to the Left. Then will H be the Center required, and H D the Radius of the Circle; which will fhew all the Roots as before, by means of Perpendiculars let fall from its Interfections with the Parabola to its Axis. 1

The Number of Roors in fucb Equations, with - beir Limits ard Signs; by Mr.至dm. Halley. N. 190 . p. 389. Nov. An. 1687 It appears from Des Cartes and from what has been already faid, as well in Cubics as in Biquadratics, that the Roots may be reprefented by letting: fall Perpendiculars upon the Axis, or a given Diameter of the given Parabola, from the Interlections of that Curve with a Circle. And fince a Circle cutting a Parabola mult cut it either in four or in two Points, it is plain that in Biquadraticks there muft neceffarily be two or four true Roots, either affirmative or negative; as alfo if perhaps the Circle may touch it, in which we may infer an Equality of two Roots of the fame Sign. But in Cubicks, becaufe one of the Interfections is required for the Conftruction, the one or the three remaining reprefent the one or the three Roots, as in the Cafe of Contact, whence it is plain that there are found two equat Roots, and that the Problem from whence the Equation refults is truly a plane Problem.

Therefore all Cubic Equations however affected are explicable with one or with three Roots, as always poffible; admitting negative Roots for true onies. So Biquadraticks, of which the laft Term r is affected with the Sign -, are explicable by two or four. But if there is $+r$ in the Equation, and it is fo great as that $\sqrt{G D q-a r}$ is lefs than that a Circle can reach the Parabala in any Point, when defcribed with that Radius and the Center G; the given Equation is totally impoffible, nor is it explicable by any Root affirmative or negative. But of this more afterwards.

Now whereas there is fo great a Difference between the Cafes of Cubick and Biquadratick Equations, as that they cannot be comprehended together; I fhall firf treat of Cubicks, and then of the other. Now Cubicks may be conftructed by an infinite Number of Circles in a given Parabola, but Biquadraticks with one only, at leaft in this Method. And that becaufe by putting $z-e$, or any Indeterminate, equal to nothing, the Cubick Equation is reduced to a Biquadratick, having the fame Roots with the Cubick, and another befides wh.ch is equal to e. Whence it is that the Cubick may be conftrueted by fo many different Circles as there are different Values of e, that is infinite. But among thefe Conftructions that is by far the moft eafy, which I gave above in the laft Paragraph. Yet there is another not much inferior to it, which feems more accommodated to the Difcovery of the Number of the Roots and their Limits, and which derives its Original from taking away the fecond Term, by fuppofing (as is commonly done) $x=z+$ or - the third Part of the Coefficient of the fecond Term. Here it follows:

The Parabola ABY being given, its Vertex A, its Axis A E, and its latus rectum a; let the Equation be reduced to the ufual Form $z^{3}: b z^{2}$:
a $p z: a^{2} q=0$. Then at the Diftance $\frac{\tau}{3} b$ let B K be drawn parallel to the Axis, to the Right Hand if it be $+b$, or elfe to the Left Hand, meeting the Parabola in B. And let an indefinite Perpendicular be erected D P on the middle of the fuppofed Line A B, meeting the Axis in the Point G. From B let fall BC perpendicular to the Axis, and let GE be always made equal to A C with its Direction downwards. From E make EH $=\frac{1}{2} p$ with its Direction upwards if it be $+p$ in the Equation, but otherwife downwards, and from the Point H (or from E if p be wanting) let the Perpendicular HQ be raifed meeting the indefinite Line DP in the Point 0 . Laftly in the indefinite Line HQ Qmake $\mathrm{OR}=\frac{1}{\approx} q$, to the Right from O if it be $-q$, to the Left if $+q$. Then a Circle defcribed with Center R, and Radius R A, will cut the Parabola in fo many Points as the Equation propofed has true Roots, and thefe will be the Perpendiculars Z Y let fall from the Points of Interfection Y upon B K parallel to the Axis; of which thofe on the Right Side of B K will be the affirmative Roots, and thofe on the Left Side the Negative.

The Convenience of this Conftruction confits in this, becaufe it is performed by a Circle paffing through the Vertex, juft as if the fecond Term were wanting. Therefore for determining the Number of Roots, it is enough to know the Properties of the Locus or the Curve-Line whith diftinguifhes the Spaces, where if the Center of the Circle be placed that paffes through the Vertex of the Parabola, its Circumference will cut it either in one or in three Points: That is, to define the Nature of the Curve, upon which fhall fall the Centers of all the Circles, that pafs through the Vertex and then touch the Parabola.

But that Locus is the Paraboloid, which with the great Wallis we will call Semicubical, or in which the Cubes of the Ordinates are to one another as the Squares of the Portions of the Axis refpectively. Its latus rectum is $\frac{27}{8}$ of the latus recilum of the given Parabola, and its Vertex is the Point V, A V being half the latus rectum of the fame Parabola. That is, if Unity Be affigned for the latus rectum of the given Parabola, $\frac{8}{27}$ of the Cube of the Ordinate will be equal to the Square of the Part of the Diameter, or the Cube of $\frac{2}{3} \mathrm{VH}$ will be equal to the Square of $H \mathrm{R}$, if R be the Center of the Circle that paffes through the Vertex of the Parabola, and afterwards touches it. This is that Curve which firt of all Mortals our Mr. Neil demonftrated to be equal to a Right Line, who on this Account has been celebrated among the chief of Geometricians. And its Properties have been iinquired into by the learned Dr. Wallis, at the End of his Book concerning the Ciffoid, and Huygens, Prop. 8, 9. of the Evolution of Curve Lines, and other ingenious Men whofe Writings the Reader may confult. This Curve being defrribed on each Side of the Axis of tibe Parabola, that is, VNI, and VPX, will comprehend a Space, in which if the Center of the Circle be put, which paffes through the Vertex A, that Circle will cut the Parabola in three other Points. But the Spaces that are more remore from the Axis

(74)

will fupply the Centers of Circles which will cut the Parabola but in one Point befides the Vertex.

Thefe Things being rightly underfood, we fhall now proceed to determine the Number of the Roots. And firft let the fecond Term be wanting, and let the latus rectum be Unity, or $\mathrm{A} V=\frac{1}{2}$. In the Conftruction VH is $\frac{1}{2} p$, and $\mathrm{HR} \frac{1}{2} q$. And as $\frac{1}{2} p$ is to be put upwards from V if it be $1-p$, the Center of the Circle is always to be placed without the Space L V X, and therefore the Equation is explicable by one Root only, affirmative if it be - q, negative if $\frac{1}{} q$, which Roots are inveftigated by Cardan's Rules. But if it is $-p$, then $\mathrm{VH}=\frac{1}{2} p$ muft be taken below, and it may happen that HR may fall between the Axis and the Curve V X or V L, namely if the Cube of 2 VH or $\frac{1}{3} p$ is greater than the Square of $\frac{1}{2} q$, or $\frac{1}{27} p^{3}$ greater than $\frac{1}{4} q q$, in which Cafe there are three Roots, two negative if it is $-q$, and one Affirmative equal to their Sum; or if it is $+q$, then two affirmative and one negative. But if $\frac{1}{2 \eta} p^{3}$ is lefs than $\frac{1}{4} q q$, then only one Root is found, affirmative if it is $-q$, but negative if $+q$. And thefe Things are commonly taught by thofe who treat of this Part of Geometry.

Now let all the Terms be prefent, and firf let this Equation be propofed $z^{3}-b z^{2}+p z-q=0$, to which we have adapted Figure 51 . In the Conftruction of this, $\mathrm{BC}=\frac{1}{3} b, \mathrm{~V}, \mathrm{G}=\frac{1}{2} \mathrm{AC}=\frac{1}{18} b b, \mathrm{VE}=\frac{1}{6} b b$, $\mathrm{VH}=\frac{1}{6} b b-\frac{1}{2} p, \mathrm{GH}=\frac{1}{9} b b-\frac{1}{2} p$, or $\frac{1}{2} p-\frac{1}{9} b b$, hence $\mathrm{HO}=\frac{1}{27} b^{3}-\frac{1}{6} b p$, or $\frac{1}{6} b p-\frac{1}{27} b^{3}$, and HR, or the Diftance of the Center of the Circle R from the Axis, is always the Difference between $\frac{1}{6} b p$ and $\frac{1}{27} b^{3}+\frac{1}{2} q$; which if they are equal, the Center falls in the Axis; if $\frac{1}{6} b p$ is greater than $\frac{1}{27} b^{3}+\frac{1}{2} q$, it falls to the Left of the Axis, but if lefs, to the Right. If the Square-root of the Cube of $\frac{2}{3} \mathrm{VH}$, (that is, of $\frac{1}{9} b b-\frac{1}{3} p$, which we may call d_{3}) that is, if $\checkmark d d d$ is greater than HR , or the Difference between $\frac{1}{27} b^{3}+\frac{1}{2} q$ and $\frac{1}{6} b p$, the Center R is found within the Space HPV, which is circumfcribed by the Paraboloids V P X and VNL, and the indefinite Right Line DNP. And therefore the Circle will cut the Parabola in three Points Y, Y, Y, fituate to the Right Hand of the Line BK, and therefore the Equation has three affirmative Roots.

Roots. But the Center being without this Space, N UP, it can be explained but by one affirnative Root. Here we may take Notice, that the Right Line D P that touches the Paraboloid V P X in the Point P, EP being $\frac{1}{27} b^{3}$, will cut the other V N L in the Point N, fo that letting fall the Perpendicular N F upon the Axis, V F will be a fourth Part of E V, or $\frac{1}{24} b b$, but NF will be $\frac{1}{108} b^{3}$. But VW, which from the Point V being drawn perpendicular to the Axis, and meets the Line D P in W , is equal to $\frac{1}{54} b^{3}$, or $\frac{1}{2} \mathrm{EP}$.

Hence we may fafely conclude, if in the Equation p is greater than $\frac{I}{3} b b_{3}$ or q greater than $\frac{I}{27} b^{3}$, there is only one Root to be had, and that affirmative. Therefore Des Cartes's Rule is not true, (pag. 70. Edit. Amff. 1 659) wherein he afferts, that fo many true Roots are to be had as in the Equation there are Changes of the Signs + and -; nor is it to any Purpofe that Scbooten in his Commentaries excufes this Miftake. For infinitely more Equations may be contrived of the foregoing Form, having three Changes of the Signs, which have but one Root, than which have three Roots. Alfo the fifth Propofition of the fifth Section of our Harriot's Ars Analytica; as likewife the 18 th Problem of Vieta's Numerofa Poteftatum Refolutio, are not fufficiently found, fince from the Limitations they have there given, that fhould belong to the whole Parallelogram P I V W, which we have now proved to belong only to the Space N V P ; that is, that it fhould afford a Center for a Circle, which cuts the Parabola in three other Points befides the Vertex.

Now the Quantity q, or the laft Term, when b and p are given in fuch Conditions that p is lefs than $\frac{1}{3} b b$, is accurately limited by the foregoing Equation $\nu d d d=\frac{1}{27} b^{3}+\frac{1}{2} q \infty \frac{1}{6} b p$, when the Circle touches the Parabola. Therefore $\frac{1}{2} q$ ought to be lefs than $\frac{1}{6} b p-\frac{1}{27} b^{3}+\sqrt{ } d d d$. But if p is greater than $\frac{1}{4} b b$, it is neceffary that $\frac{1}{2} q$ fhould be greater than $\frac{1}{6} b p-\frac{1}{27} b^{3}-\sqrt{ } d^{3}$, left the Center fhould fall within the little Space N V W. And with thefe Conditions the Equation is always explicable by three Roots, but otherwife by one only. But whether three or one, they are always affirmative, becaufe of the Pofition of the Center R to the Right Hand of the Line DP.

(76)

And this is the moft difficult Cafe, fo that he that well underftands what goes before will eafily underftand the reft. Now let be given the Equation z^{3} $b z^{2}+p z+q=0$. Here that three Roots may be had, it is neceffary that the Center of the Circle may be fomewhere within the Space PN Δ, included by the Right Lines P N, P Δ, and by the Curve of the Paraboloid $\mathrm{N} \Delta$. Wherefore fince $\mathrm{EF}=\frac{\mathrm{I}}{8} b b, p$ muft be lefs than $\frac{1}{4} b b$. Now for the Determination of the Quantity q, making $d=\frac{1}{9} b b-\frac{1}{3} p$ as before, then $\mathcal{V} d d d+\frac{1}{27} b b b-\frac{1}{6} b p$ muft always be greater than $\frac{1}{2} q$, that the Center of the Circle may be found in the aforefaid Space P N Δ : Which when it happens, fuch an Equation has two affirmative Roots and one negative. But if p is greater than $\frac{1}{3} b b$, or $\frac{1}{2} q$ greater than $\vee d^{3}+\frac{1}{27} b^{3}-$ $\frac{\pi}{6} b p$, the Equation is explicable but by one Root, and that will be negative.

Now let be propofed the Equation $z^{3}-b z^{2}-p z-q=0$. That this Equation may have three Roots, the Center of the Circle muft be found fomewhere in the indefinite Space, between the Right Line D P D and the Curve of the Paraboloid P X. Hence the Quantity p will be fubject to no Limitations, but $\frac{1}{2} q$ muft always be lefs than $\sqrt{ } d^{3}-\frac{1}{27} b_{3}-\frac{1}{6} b p$ making $d=\frac{1}{9} b b+\frac{1}{3} p$. By this means there will be two negative Roots, and one affirmative; but otherwife if $\frac{1}{2} q$ is greater than $\vee d^{3}$ $\frac{1}{27} b^{3}-\frac{1}{6} b p$, one only affirmative Root will be exhibited.

In the fourth Place let the Equation be $z^{3}-b z^{2}-p z+q=0$, which has two afirmative Roots and one negative, if the Center of the Circle is found in the indefinite Space between the Right Lines P $\Delta, P D$, and the Curve of the Paraboloid ΔL; that is, fuppofing $d=\frac{1}{9} b b+\frac{1}{3} p$, if $\frac{1}{2}$ q is. lefs than $\sqrt{ } d^{3}+\frac{1}{27} b^{3}+\frac{1}{6} b p$; but if $\frac{1}{2} q$ is greater than this Quantity, there is only one negative Root.

Now the four remaining Equations, in which there is $-\sigma$, as to the Limitation of the Number of Roots, do not differ from the foregoing, if the Sign of the laft Term be changed, keeping the Sign of the third Term; but the Roots that in thofe were affirmative will here be negative, and vice ver $f a$. Thus in the Equation $z^{3}-b z^{2}+p z-q=0$, either one or three are negative under the fame Conditions, but none affirmative. So in $z^{3}+6$

(77)

$z^{3}+b z^{2}+p z-q=0$, two are negative and one aftirmative if p is lefs than $\frac{1}{3} b b$, and $\frac{1}{2} q$ lefs than $\mathcal{V} d^{3}+\frac{1}{27} b^{3}-\frac{1}{6} b p$, as in $z^{3}-b z^{2}$ $+p z+q=0$, two will be affirmative and one negative. But when p or q depart from the prefcribed Limits, here is only one affirmative Root which there was negative. In like manner in $z^{3}+b z^{2}-p z+q=0$, either there are two affirmative and one negative Root, or one negative only. Laftly for the fame Reafon in the Equation $z^{3}+b z^{2}-p z-q=0$, there are two negative and one affirmative Root, or one affirmative only; as in the Equation $z^{3}-b z^{2}-p z+q=0$, there are two affirmative and one negative, or only one Negative, according as $\frac{1}{2} q$ is greater or Icfs than $\nu d^{3}+\frac{1}{27} b^{3}+\frac{1}{6} b p$.

If the third Term is wanting, or $p=0$, the Center R always falls in the Line IPE Δ; wherefore if it is $z^{3}-b z^{*}-q=0$, or $z^{3}+b z^{2} *+$ $q=0$, there can be only one Root, if 'tis - b the Root is affirmative, if $+b$ negative. But if the Equation is $z^{3}-b z^{2}+q=0$, or $z^{3}+b z^{2}$ * $-q=0$, there may be two affirmative and one negative in the former, or one affirmative and two negative in the latter, the Center falling in the Line $\mathrm{P} \Delta$, between P and Δ, that is, if $\frac{\mathrm{r}}{4} q$ is lefs than $\frac{1}{27} b^{3}:$ But if it be greater, then can be only one Negative in the former, or one Affirmative in the latter.

Hitherto we have fully explained the Number of Roots in Cubic Equations; now we muft add fomething concerning the Quantity of thofe Roots. Here it is firft to be obferved, that every Equation having three Roots may be refolved expeditioully enough by means of the Table of Sines, that is, by the Trifection of an Angle. For by making $\sqrt{\frac{4}{9}} b b-\frac{4}{3} p$, or $\sqrt{4} d$ if it is $+p$ in the Equation, or $\sqrt{\frac{4}{9} b b+\frac{4}{3}} p$; if it is $-p$, the Radius of the Circle; and making that the Angle to be trifected, whofe Sine is $\frac{1}{27} b^{3}+\frac{1}{6} b p+\frac{1}{2} q$ in the Table of Sines; when this Angle is found the Sine of a third Part of it, alfo the Sine of the third Part of its Complement to a Semicircle, and their Sum, will be known by the Table of Sines. Bur thefe Sines are to be drawn into the Radius $\sqrt{\frac{4}{9} b b+\frac{4}{3}} p$, and we fhall have the Quancities $(y \&, y \&, y \&$, in the Figure) the Sum or Difference of which, and of $\frac{1}{3} b$, as the Cafe requires, will exhibit the true Roots of the Equation. All thefe Things are derived from what has been found by

(78)

Cartefius. Now that I may comprehend all the Cafes in as fhort a Compafs as poffible. I fay that in the firft Form of Equations, if the Center R falls in the Space V G P, the two Sections Y, Y, fall between A and B, and therefore each of the leffer Roots is lefs than $\frac{I}{3} b$, but the third and greater always exceeds $\frac{1}{3} b$, but is exceeded by b. Now if it falls in the Space GNV, two are greater than $\frac{1}{3} b$, but lefs than $\frac{2}{3} b$, and the third is b fubftracting the two others, and therefore lefs than $\frac{1}{3} b$. But admitting a Limitation of the Quantity p, the Roots are included within narrower Bounds. For the greateft Root is lefs than $\sqrt{\frac{4}{9} b b-\frac{4}{3} p+\frac{1}{3} b \text {, and greater }}$ than $\sqrt{\frac{1}{4} b b-p}+\frac{1}{2} b$. But when $\frac{1}{4} b b$ is lefs than p, that Limit becomes $\sqrt{\frac{1}{9} b b-\frac{1}{3} p}+\frac{1}{3} b$. The middle Root is always lefs than
 greateft Root never exceeds this Limit, but vanifhes with the Quantity q.
In the fecond Form by the Rules prefcribed there are two affirmative and one negative Root, and the Center falling in the Space GPE, one of the Affirmatives is greater and the other lefs than $\frac{1}{3} b$. But the greater does not exceed b, and the Negative cannot be greater than $\downarrow^{\prime} \frac{1}{3} b b-\frac{1}{3} b$, and it is the Difference of b and of the Sum of the Affirmatives. But when the Center is placed in the Space ENG , either of the Affirmatives is greater than $\frac{1}{3} b$, but lefs than $\sqrt{\frac{1}{3} b b}+\frac{1}{3} b$. But the Negative is always lefs than $\frac{1}{3} b$. But from p being given, the Limits become nearer, $\sqrt{\frac{1}{4} b b-p}+\frac{1}{2} b$ of the greateft affirmative Root, than which it is always lefs, and greater than $\sqrt{\frac{1}{9} b b-\frac{1}{3} p}+\frac{1}{3} b$. Yet the other affirmative Root, which diminifhes with the Quantity q, is lefs than this Limir. But the negative Root is always lefs than $\sqrt{\frac{4}{9} b b-\frac{4}{3} p}-\frac{1}{3} b$, and vanifhes when the Quantity q is ablent.

In the third Form are two negative and one affirmative Root; in this, as alfo in the fourth, the Roots are not limited by the Quantity b. Now the Affirmative is always lefs than $\sqrt{\frac{4}{9} b b+\frac{4}{3} p}+\frac{1}{3} b$, but greater than $\sqrt{p+\frac{1}{4} b b}+\frac{1}{2} b$. But the greateft of the Negatives is always greater than $\sqrt{\frac{1}{9} b b+\frac{1}{3} p}-\frac{1}{3} p$, and less than $\sqrt{p+\frac{1}{4} b b}-\frac{1}{2} b$. But the leffer of the Negatives always is diminifhed when the Quantity q is diminifhed.

In the fourth Form the Center falls within the Space $L \triangle P D$; if two Roots are affirmative and one negative, the greateft of the Affirma-
 $\sqrt{\frac{1}{9} b b+\frac{1}{3} p}+\frac{1}{3} b$. But the leffer Root is diminifhed from this Limit, as the Quantity q is diminifhed. The Negative is lefs than $\sqrt{\frac{4}{9} b b+\frac{4}{3} p}-\frac{1}{3} p$, but greater than $\sqrt{p+\frac{1}{4} b b}-\frac{1}{2} b$.

But here it muft be noted, that the negative Roots are every where marked with the affirmative Sign, becaufe thefe are the affirmative Roots of thofe four Equations, in which there is $+b$, and q is marked with a contrary Sign, as I obferved before. The Demonftration of all thefe follows from herce, that whenever the Center of the Circle R falls upon the Curve-Lines V P X or V $\Delta \mathrm{L}$, its Circumference touches the Parabola in a Point whofe Diftance from the Axis is $\sqrt{\frac{2}{3}}$ V H. But when the Center falls upon the Line D P D, one of the Roots becomes $=0$, and therefore the Cubic is reduced to a Quadratic, or to $z^{2}-b z+p=0$, whore Roots mark out the Limits where the Quantity q vanifhes. And the lefs q is, fo much the nearer the Roots approach to thefe Limits. It is alfo a Quadratic when the Center falls in the Axis; that is, when $\frac{1}{2} q=\frac{1}{6} b p$ $-\frac{1}{27} b^{3}$, in the firf Form, or $\frac{1}{2} q=\frac{1}{27} b^{3}+\frac{1}{6} b p$ in the fecond. In the third it is impofible, but in the fourth when $\frac{1}{2} q=\frac{1}{27} b^{3}+\frac{1}{6}$ $b p$. In which Cafe the leffer of the affirmative Roots is $\frac{1}{3} b$, the greater $\sqrt{\frac{1}{3} b^{2}+p}+\frac{1}{3} b$. And the negative Root is $\sqrt{\frac{1}{3} b b+p}-\frac{1}{3} b$.

In the firit Formula the Roots are $\frac{1}{3} b$ and $\frac{1}{3} b \pm \sqrt{\frac{1}{3} b b-p}$; in the
 $-\frac{1}{3} b$ is negative.

And this feems to be fufficient as to Cubics. But becaufe of the excellent Ufe of that Method, which finds the Roots of thefe Equations by means of the Table of Sines; I have thought proper to add an Example or two, to fhew the Compendioufnefs of this Praxis. Let there be propofed this Equation $z^{3}-39 z^{2}+479 z-1881=0$, of which the Roots z are required. We fhall have $\sqrt{\frac{1}{9} b b-\frac{1}{3} p}=\sqrt{ } 9 \frac{1}{3}=\sqrt{ } d$, whofe double $\sqrt{ } 37$ $\frac{1}{3}$ is the Radius of the Circle; and $\frac{\frac{x^{\frac{1}{3}} b^{3}+\frac{1}{3}}{\sqrt{2}} q-\frac{1}{8} 6 p}{\sqrt{ } d^{3}}=\frac{2.197+940 \frac{1}{2}-3113 \frac{1}{2}}{9 \frac{1}{3} \sqrt{9 \frac{1}{3}}}=$ $\frac{24}{9 \frac{1}{3} \sqrt{9 \frac{1}{3}}}$ is the Tabular Sine of the Angle, that is, making the Divifion by Help of the Logarithms, Log. 9. 9251560 , to which anfwers the Angle $57^{\circ} 19^{\prime} 11^{\prime \prime}$. A third Part of this is $19^{\circ} 6^{\prime} 24^{\prime \prime}$, and of the Complement $40^{\circ} 53^{\prime} 36^{\prime \prime}$. The Sines give Log. 9. 514933 , and 9.816011 , which drawn into the Radius $\sqrt{ } 37 \frac{\mathrm{I}}{3}$, produce $\mathrm{Y} \&$ and $\mathrm{Y} \&$, Log. 0 . 301030 , $=2$, and Log. 0.601059 , $=4$. But the third $Y \&$ is equal to their Sum, or 6 . Therefore the Roots are $13-4=9,13-2=11$, and $13+6=19$; of all of which the forefaid Equation is compofed. Where it may be obferved, that the two leffer Roots do not exceed $\frac{1}{6} b$, or 13 , becaufe in the Conftruction the Center R falls to the Right Hand of the Axis; that is, $\frac{1}{6} b p$ is lefs than $\frac{1}{27} b^{3}+\frac{1}{2} q$.

For another Example fuppofe $x^{3}-15 x^{2}-229 x-525=0$, and let the Roots be fought. We have $\sqrt{\frac{1}{9} b b+\frac{1}{3}} p=\sqrt{ }$ 101 $\frac{1}{3}=\sqrt{ } d$, and the Radius of the Circle is $\sqrt{ } 405 \frac{1}{3}$. Then $\frac{{ }^{\frac{1}{2} \frac{1}{7}} b^{3}+\frac{1}{6} b p+q}{\sqrt{d^{3}}}=$ $\frac{125+572 \frac{1}{2}+262 \frac{1}{2}}{101 \frac{1}{3} \sqrt{101}}=\frac{960}{101 \frac{1}{3} \sqrt{101 \frac{1}{3}}}=$ Tabular Sine of an Arch, whofe L.OS. 9. $973^{6} 426^{\prime}$, and the Arch itfelf will be $70^{\circ} 14^{\prime} 22^{\prime \prime}$, whote thind Part is $23^{\circ} 24^{\prime} 47^{\prime \prime} \frac{1}{2}$, and of its Complement $3^{6^{\circ}} 35^{\prime} 12^{\prime \prime} \frac{1}{2}$; whote Logarithmic Sines are 9. 599183 , and 9.775275 ; to which the Log. of $\sqrt{ } 405^{\frac{7}{3}}$ being added, they become Log. $0.903089 .=8$, and Log. 1. 079.81, $=$ 12, and their Sum $=20$. Hence it is concluded, that $20 \pm \frac{1}{3} b$, or 25 ,

(8r)

is equal to the affirmative Root, and $8-\frac{1}{3} b$, or 3 , and $12-\frac{x}{3} b$, or 7, are equal to the negative Roots. Now if the Equation had been $x^{3}+$ $15 x^{2}-229 x+525=0$, the Roots 3 and 7 , would have been affirmative, and 25 negative. But other Cubic Equations, which are explicable by one Root only, are to be refolved by Cardan's Rules after the fecond Term is taken away; nor can I perceive how it may be done by lefs Calculation. But if this Root were defired, expreffed by the Quantities b, p, q; I fay in the firft Form it would be $\frac{1}{3} b$, adding or fubtracting the Sum or Difference of the Cubic Roots of $\sqrt{\frac{1}{4} q q-\frac{1}{108} p^{2} b^{2}+\frac{1}{27} b^{3} q-\frac{1}{6} b p q+\frac{1}{27} p^{3}}$ $\pm \frac{1}{27} b^{3}+\frac{1}{2} q-\frac{1}{6} b p$; that is, it will be $+\mathrm{if} \frac{1}{27} b^{3}+\frac{1}{2} q$ isgreater than $\frac{1}{6} b p$, otherwife -. Alfo it will be the Sum as often as $\frac{1}{3} b b$ is greater than p, but if $\frac{i}{3} b b$ is lefs, then the Difference. And in the other Forms the Root is always made up of the fame Elements, with Variations of the Signs + and -, as any one will eafily perceive who has a Mind to try.

By Help of the Logarithmic Table of Verfed Sines thefe Roots may be found readily enough; that is, if the Numeral Coefficients are Surds or Fractions, and the Roots are effable in Numbers, as it generally happens. Now this is the Rule. In the firtt and fecond Formula, if $\frac{1}{3} b b$ is lefs than p, make $\frac{1}{3} p-\frac{1}{9} b b=d$, and taking for Radius the Difference between $\frac{1}{6} b p$ and $\frac{1}{27} b^{3}+\frac{1}{2} q$, that is HR in the firt, and between $\frac{1}{6}$ $b p+\frac{1}{2} q$, and $\frac{1}{27} b^{5}$ in the fecond; let the Angle be found whofe Tangent is $d \sqrt{ } d$. Then as the Cofine of this Angle to its Verfed Sine, fo is the Difference taken for Radius to a fourth; whofe Cubic Root by Trifection will be had for a Logarithm. Then dividing $\frac{1}{3} p-\frac{1}{9} b b$ by this Cubic Root, from the Quotient fubtract the Divifor, and the Remainder will be the Quantity $\mathrm{Y} \&$. The Sum of $\frac{1}{3} b$ and this Remainder, if the Center fall on the Right Side the Axis, otherwife the Difference of the fame, will be the Root fought. Now if $\frac{1}{3} b b$ is greater than p, taking $H R$ for Radius, let $d \mathcal{V} d$ or the Diftance of the Paraboloid frons the Axis, be the Sine Vob. I.
of a certain Arch. Let the verfed Sine of this be multiplied by the Radius, or $\frac{1}{6} b p-\frac{1}{27} b^{3} \pm \frac{1}{2} q$, and the Logarithm of the Product being tri. rected, its Cubic Root will be had, by which let $\frac{1}{9} b b-\frac{1}{3} p$ be divided. 1 fay that the Sum of the Quotient and Divifor in the fame Manner added to or taken from $\frac{1}{3} b$, will exhibit the Root required. And in like manner in the third and fourth Forms, unlefs that $\frac{1}{27} b^{3}+\frac{1}{6} b p+\frac{1}{2} q$ is to be affumed for the Radius, and $\frac{1}{9} b b+\frac{1}{3} p$ into $\sqrt{\frac{1}{9} b b+\frac{1}{3}} b$, or $d \sqrt{ } d$ for the Sine. But thefe Precepts will be better undentood by Examples.

Let the Cubic Equation be $z^{3}-17 z^{2}+54 z-350=0$, and let the Root z be required. Here $\frac{1}{3} b b$ is greater than p, but q is greater than the Cube of $\frac{1}{3} b$; therefore the Equation is explicable by only one affirmative Root. Now $\frac{289}{9}-\frac{54}{3}$ is d, and $\frac{127}{9} \sqrt{\frac{127}{9}}$ is to be taken for the Sine to Radius $\frac{4913}{27}+175-153$, that is $\frac{5507}{27}$. The Arch belonging to it is $15^{\circ}: 3^{\prime}: 49^{\prime \prime}$. The Logarithm of the verfed Sine of this is 8.5362376 , which added to the Logarithm of the Radius 2. 3095913 , gives 0.8457889 , whofe third Part 0.2819276 is the Logarithm of the Cubic Root 1.91394. This dividing $\frac{127}{9}$ or d, the Quotient is 7.37281°. Then the Sum of the Quotient and Divifor adding $\frac{1}{3} b$ is the Root fought, or $14,9534, \mathcal{E}^{\circ} c$.

Having now done with Cubic Equations, we are to undertake Biquadratics. Thefe always have either none, or two, or four true Roots, the Determination of which depends partly on the Coefficients, and partly on the Sign and Magnitude of the given abfolute Number. In the Conftruction of the Equation $z^{4}-b z^{3}+p z^{2}-q z+r=0$, make $B D=\frac{1}{4} b, A B$ $=\frac{1}{16} b b, \mathrm{BK}=\frac{1}{2}$, or half the latus rectum, $\mathrm{K} \mathrm{C}=2 \mathrm{AB}=\frac{1}{8} b b$, $K E=\frac{1}{8} b b-\frac{1}{2} p, A E-\frac{1}{2}=\frac{3}{16} b b-\frac{1}{2} p, \mathrm{FE}=\frac{1}{16} b^{3}-$ $\frac{1}{4} b p$, and $\mathrm{EG}=\frac{1}{16} b^{3}=\frac{1}{4} b p+\frac{1}{2} q$. Which being conftructed a

Circie with Center G and Radius $\sqrt{\mathrm{GD} q-r}$ will interfect the Parabola, eicher in none, two, or four Points, which exhibit all the Values of z, or all the Roots, by Perpendiculars upon the Line H D. Now that there may be four, it is plain the Center of the Circle muft be placed fomewhere within the Space, from any Point of which three Perpendiculars can be let fall upon the Curve of the Parabola; and at the fame Time the Radius mut be lefs than the greateft of thofe Perpendiculars, and greater than the mididlemolt. Now if the Center be placed without this Space, fo that only one Perpendicular can be let fall upon the Parabola, than which the Radius is greater; or if it be lefs than the middlemoft of the three Perpendiculars, but greater than the leaft of them, there can be only two Roots. But there will be none as often as the Radius $\sqrt{\mathrm{GDq}-r}$ is lefs than the leaft of the three, or than that one when there is but one. Now what Sort of Space this is, by what Limits it is circumfcribed, and upon what Conditions the Radius of the Circle is lefs or greater than the faid Perpendiculars, we mutt now inquire. And firt it muft be fhewn, how a Perpendicular may be let fall upon the Pa rabola.

Let A B C be a Parabola, A E its Axis, A V its half latus recium, and G the Point from whence the Perpendicular is to be drawn. Make GE perpendicular to the Axis, and let V E be bifected in F. And erecting the Perpendicular FH on the fame Side of the Axis, make $\mathrm{FH}={ }_{\mp} \mathrm{GE}$. I fay, that a Circle defcribed with Center H, and with Radius HA, will interfect the Parabola in three Points, or in one Z, to which the Right Lines G Z being drawn, will infift perpendicularly upon the Curve of the Parabola.

Now that there may be three fuch Interfections, it is required that the Center of the Circle H fhould be fo placed, that it may be within the Space included by the Paraboloids. That is, that FH may be lefs than $\sqrt{ } \frac{8}{27}$ $\mathrm{VF} c$, or $\mathrm{FH} q$ lefs than the Cube of $\frac{2}{3} \mathrm{VF}$, and therefore $\mathrm{GE}=4 \mathrm{FH}$ will be lefs than $\sqrt{ } \frac{8}{27} V_{c}$ or $4 \sqrt{ } \frac{1}{27} \mathrm{VE}_{c}$, that is, the square of GE lefs than $\frac{16}{27}$ VEc. Therefore thefe Limits coincide with the two Paraboloids of the fame Kind with thofe which we made ufe of in Cubics, but whofe latus rectum is as little again; that is, $\frac{27}{16}$ of the latus reitum of the Parabola, or $\frac{27}{8}$ of A V. Therefore it is the very Curve by the Evolution of which the Parabola is generated, as Mr. Huygens has demonftrated, and which the Line DF always touches, which is perpendicular to the Parabola in the
raboloid, is the Center of the Circle, which being cefcribed with Radius D P coincides with the Parabola in the Point D, or is of the fame Degree of Curvity; which is manifeft of itfelf.

Therefore fuch Paraboloids V X P, V N Δ, being defcribed on each Side the Axis, it is plain unlefs the Center of the Circle is fixed within theie Limits, it cannot cut the Parabola in more than two Points. Whence we may determine under what Conditions the Coefficients of the internuediate Terms are reftrained in Biquadratic Equations, in order to have four Roots. And firt it appears that p cannot be greater than $\frac{3}{8} b$ b, in thofe Forms in Which it is $\frac{1}{1} p$, nor q greater than $\frac{1}{16} b_{3}$. But in general $\frac{1}{16} b^{3} \mp \frac{1}{4} p b$ $\mp \frac{1}{2} q$, that is, the Diftance of the Center from the Axis $E \mathrm{G}$, muft be lefs than $\mathrm{EH}=4 \vee \frac{1}{27} \mathrm{VE} c$; that is, becaufe of $\mathrm{V} \mathrm{E}=\frac{3}{16} \cdot 66 \mp \frac{1}{2} p$, Jefs than $\frac{1}{4} b 6 \mp \frac{2}{3} p \sqrt{\frac{1}{16} b 6 \mp \frac{1}{6} p \text {; the Signs }+ \text { and - being left }}$ doubtful, that they may be varied according to the Exigence of any Equation; as we have hewn before in Cubics.

But the Limitation of the laft Term r cannot fo eafily be found. And this becaufe to let fall a Perpendicular upon the Curve of a Parabola is a folid Problem, and which cannot be refolved without the Solution of a Cu bic Equation. Therefore firft let the fecond Term of the Equation be wanting, or if it be prefent let it be taken away, that the Equation may have this Form $z^{+}:{ }^{*}: p z^{2}: q z: r:=0$. Now if it be $-x$, the Equation may always be explained by two or four Roots: But that there flould be four, the Center of the Circle mult be had below the forefaid Paraboloids, or that there may be $-p$, and $q q$ lefs than $\frac{8}{27} p^{3}$, or than the Cube of $\frac{2}{3}$ p. Then let there be found the Roots of this Equation, $y^{3}:$ *: $\frac{1}{2} p y . \frac{1}{4}$ $q=0$, the fame Signs being annexed to p and q as in the Biquadratic Equation. Now thele Roots may eafily be found by help of the Table of Sines, Thofe three Values of y being found, (which are the Ordinates to the Axis of the Parabola, from the Points where the Perpendiculars fall upon the Curve, that is Z Y , the Quantity p $y^{2}-3 y^{4}$ compofed of the leffer Root y will exprefs the greateft Value of r, if it is $-r$; than which if r is lefs, the Equation will have four Roots, otherwife but two. But if it is $+r$, it nult be lefs than $3 y^{4}-p y^{2}$, compofed of the middlemof y; for if it be greater, there can be but two Roots, at leaft if r be lefs than $3 y^{4}-p y^{2}$ compofed of the greatelt y. But if it be greater than this, the Equation is explicable by no true Root at all. Now thefe fame Limits may be otherwife

(8;)

marked out by the Quantity q. That is, $\frac{1}{2} q y-y^{4}$ in the firft Cafe, $y^{4}-$ $\frac{1}{2} q y$ in the fecond, and $y^{\ddagger}+\frac{1}{2} q y$ in the third.
But it may happen that the two leffer Quantities y are not far afunder, fo that each of the Perpendiculars may be greater than the Right Line G A, that is, when $q q$ is greater than $\frac{4}{27} p^{3}$, but lefs than $\frac{8}{27} p^{3}$, the Center falling within the Space intercepted by the Paraboloids, Fig. 51, 52. In this Cafe if it is $+r$, there can be but two Roots, the Quantity $y^{\dagger}+\frac{1}{2} q y$ compofed of the greateft y being greater than r, otherwife none at all. But if $\frac{1}{2} q y-y^{4}$ compofed of the leaft y is greater than r having the Sign - , and r is greater than $\frac{x}{2} q y-y^{*}$ compofed of the mean y, then there woutd be four Roots; and but two only if r fhould be either greater than the former or lefs than the latter.
But in the Equation if it fhould be $+p$, or if it is $-p$ and $q q$ greatef than $\frac{8}{27} p^{3}$. the Equation $y^{3}: *: \frac{1}{2} p y: \frac{1}{4} q=0$, is explicable only by one Root y, that is, one Perpendicular alone can be let fall from the Center of the Circle. Whence we may certainly conclude, that there can be had only two Roots from the given Equation, the Sum of which, if it is $-r_{\text {, }}$ increafes with the Quantity r; but if it is $+r$, the Quantity y being found, that Quantity r muft be lefs than $y+\frac{1}{2} q r$. For if it be greater, the propofed Equation will be abfurd and impoffible.
It would be a tedious and unneceflary Thing to run through all the Equa* tions of this Sort, fince it muft be evident to any one that confiders it, what Roots are negative and what affirmative; and that the Limits of thefe Roots may be had from the Quanceities y being found. Yet for an Example, which may be imitated in others, let it be propofed to find the Limits or Conditions, under which in a Biquadratic Equation four affirmative Roots may be had. Now this will happen as often as the Center of the Circle G is placed in the Space V P K, and at the fame Time there is $+r$, or the Radius of the Circle is lefs than GD. Whence it is plain that the Equation we are treating of mult be of this Form $z^{4}-b z^{3}+p z^{2}-q z+r=0 . \quad$ But p cannot be greater than $\frac{3}{8} b b$, nor in this Cafe $\frac{1}{4} p b$ greater than $\frac{1}{16} \cdot b^{3}+$ $\frac{1}{2} q$. Alfo it is neceffary that $\frac{1}{4} b b-\frac{2}{3} p$ drawn into $\sqrt{\frac{1}{16} b b-\frac{1}{6} p}$ muft be greater than $\frac{1}{6} b^{3}+\frac{1}{2} q-\frac{1}{4} p b$; and from thefe Limitations

(86)

it will be certain, that the Center will be found within the Space VPK. Now that the Quantity r may be determined, we muft firf folve this Cubic Equation $y^{3}:{ }^{*}:-\frac{3}{16} b^{2}-\frac{1}{2} p y=\frac{1}{3^{2}} b^{3}+\frac{1}{4} q-\frac{1}{8} p b$, and the Points will be had, upon which the Perpendiculars from the Center will fall upon the Curve of the Parabola.

Now the three Values of this y being found, r mult be lefs than $\frac{3}{25^{6}} b^{+}+$ $\frac{1}{4} b q-\frac{1}{16} b^{2} p+3 y^{4}-\frac{3}{8} b^{2} y^{2}+p y^{2}$, compofed of the middle Value of y, and greater than $\frac{3}{25^{6}} b^{4}+\frac{1}{4} b q-\frac{1}{16} b^{2} p+3 y^{4}-\frac{3}{8} b^{2} y^{2}$ $+p y^{2}$, when compofed of the lealf y. But if r exceeds thefe Limits, there can be only two Roots. Laftly if $\frac{3}{256} b^{+}+\frac{1}{4} b q-\frac{4}{16} b^{2} p+3 y^{4}-$ $\frac{3}{8} b^{2} y^{2}+p y^{2}$, when compored of the greateft y, fhall be lefs than r, the Equation is impoffible.

It may alfo happen that there are four affirmative Roots, when the Center G is placed in the little Space V T S, drawing R T S perpendicular upon the middle of the Line A D. This happens when p is greater than $\frac{5}{16} b b$, and $\frac{1}{4} b b-\frac{2}{3} p \sqrt{\frac{1}{16} b b-\frac{1}{6} p}$ is greater than $\frac{1}{8} p b-\frac{5}{128}$ $b_{3}-\frac{1}{2} q$. In which Cafe always two, and fometimes three, of the Roots are greater than $\frac{1}{4} b$.

Fig. 52.
But here it muft be obferved, that Limit produced from the leaft y is fometimes negative, or lefs than nothing; that is, whenever the greateft of the three Perpendiculars is greater than GD. This may be diminifhed to nothing, if it happens to be $+r$ from the prefcribed Limit compofed of the middlemoft y. And the Defect of the Limit from the leaft y fhews, how great - r may be in the Equation, if there are three affirmative Roots in the Equation and one Negative: Which if it exceeds, there are only two Roots, one affirmative and one negative. All thefe Things are demonftrated from hence, that the aforefaid Limits of the Quantity r are the Differences of the Squares of the Line GD and of the Perpendiculars upon the Curve of the Parabola.

But becaufe of the intricate Reftrictions which the Diverfity of Signs produces in thefe Equations, it is always beft to take away the fecond Term, and then

(87)

then by the Precepts already delivered to find the Number of the Roots and their Signs ; efpecially if thofe Quantities y are not far remote from one another. Now of thefe four affirmative Roots, two are always lefs than $\frac{1}{4} b$, and two greater; that is, if D G is lefs than A G, or $\frac{1}{4} p b$ than $\frac{3}{6_{4}} b^{3}+$ q. But three of them are lefs than $\frac{I}{4} b$, as often as the middlemoft Perpendicular, or that found from the middlemoft y, is greater than A G, or $\frac{3}{8} b b$ greater than $3 y^{3}-p y^{2}$ computed from the fame middlemoft y. But the fourth and greateft Root is greater than the greateft $y+\frac{1}{4} b$, and is equal to the Difference of b and the Sum of the other three Roots, and therefore is lefs than b. But I fhall proceed no farther. Perhaps thofe who have a greater Infight into the Nature of the Parabola may be able to draw all thefe Conclufions more compendioully; but it may well be doubted, whether all thefe Quantities, b, p, q, and r, can be rightly determined,' without the Solution of a Cubic Equation. For whatever can be done in this Matter by plane Equations, can only exhibit Approximations, and not the true Limits.
XX. Mr. de Lagney has lately given us two very compendious Rules for Tbe Extraction an Approximation to the Cubic Root; one of them rational, and the other of oll Rocts wurtb-
 and $\sqrt{\frac{1}{4} a^{2}+\frac{b}{3 a}}+\frac{1}{2} a$. And the Root of the fifth Power $a^{5}+b$ he thus expreffes, $\frac{1}{2} a+\sqrt{\sqrt{\frac{1}{4} a^{+}+\frac{b}{5 a}-\frac{1}{4} a^{2}} \text {. Now the aforefaid Rules }}$ are demonftrated from the Genefis of the Cube and of the fifth Power. For fuppofing the Side of any Cube to be $a+e$, the Cube derived from thence will be $a^{3}+3 a^{2} e+3 a e^{2}+e^{3}$. So that if a^{3} be fuppofed a Cubic Number which is the next lefs to a non-Cubic, e^{3} will be lefs than Unity, and the Remainder or b will be equal to the other Members of the Cube $3 a^{2} e+$ $3 a e^{2}+e^{3}$. And e^{3} being rejected becaufe of its Smallnefs, it will be $b=$ $3 a^{2} e+3 a e^{2}$. And fince $a^{2} e$ is much greater than $a e^{2}, \frac{b}{3 a^{2}}$ will not much exceed e; and putting $e=\frac{b}{3 a^{2}}, \frac{b}{3 a^{2}+3 a c}$ (to which the Quantity e is mearly equal) will be found equal to $\frac{b}{3 a^{2}+\frac{3 a b}{3 a^{2}}}=\frac{b}{3 a^{2}+\frac{b}{a}}=\frac{a b}{3 a^{3}+b}$ $=e$ fere. So that the Side of the Cube $a^{3}+b$ is equal to $a+e=a+$

(88)

$\frac{a b}{a^{3}+b}$, nearly, which is the Rational Form of Mr. de Lagney. Now if a^{3} be a Cubic Number next greater than the given Number, the Side of the Cube $a^{3}-b$ by a like Way of reafoning will be found $a-\frac{a b}{3 a^{3}-b}$. And this Approximation to the Cubic Root, which is very eafy and expeditious, makes but a very fmall Error in defect, fince e the Remainder of the Root found by this Means, will be but little lefs than the true Remainder. Now the irrational Form may likewife be eafily derived after the fame Manner. For becaufe $b=3 a^{2} e+3 a e^{2}$, or $\frac{b}{3 a}=a c+e e$, and therefore $\sqrt{\frac{1}{4} a^{2}-\frac{b}{3 a}}=\frac{1}{2} a+e$, and $\sqrt{\frac{1}{4} a^{2}-\frac{b}{3 a}}+\frac{1}{2} a=a+a$ which is the Root required. And after the fame Manner will be had $\frac{1}{2} a+$ $\sqrt{\frac{r}{4} a^{2}}-\frac{b}{3} a$ for the Side of the Cube $a^{3}-b$. Now this Form approaches fomething nearer to the true Root than the rational Form, erring in Excefs as the other does in Defect, and feems to be more convenient for Practice, fince the Reftitution of the Calculation is nothing elfe but the continual Addition or Subtraction of the Quantity $\frac{e^{3}}{3 a}$, as the little Supplement e becomes known. So that it may rather be wrote $\sqrt{\frac{1}{4} a^{2}+\frac{b-e^{3}}{3 a}}+\frac{1}{2} a$ in the former Cafe, and $\frac{1}{2} a+\sqrt{\frac{1}{4} a^{2}+\frac{e^{3}-b}{3 a}}$ in the latter. Now by either Form the Figures already known in extracting the Root are at leaft tripled, which I believe will be a very acceptable Compendium to Arithmeticians, and therefore I congratulate the Inventor upon it. But that the Ufefulnefs of thefe Rules may be the better perceived, I fhall add an Example or two.

Example I. Let the Side of the double Cube be fought, or make $a^{3}+b$ 2. Hence $a=1, b=1$, and $\frac{b}{3 a}=\frac{1}{3}$, and therefore $\frac{1}{2}+\sqrt{ } \frac{7}{12}$, or 1,26 will be found near the true Root. But the Cube of 1,26 is 2,000376 , and therefore $0,63+\sqrt{0,3969-\frac{0,000376}{3}, 7^{8}}$ or $0,63+$ $\sqrt{ } 0,3968005291005291=1,259921049895-$; which exhibits the Side of the double Cube as far as thirteen Figures with little Trouble, that is, by one Divifion and Extraction of the Square-root ; whereas had it been found by the common Way of Operation, every Arichmetician knows what Labour it mult have colt him. Now this Calculation may be continued at Pleafure,

(89)

by increafing the Square by the Addition of $\frac{e^{3}}{3 a}$: Which Correation in this Cafe brings only the Increafe of an Unit to the fourteenth Figure.

Example II. Let the Side of a Cube be fought, which is equal in Meafure to a Gallon, containing 231 folid Inches. The next leffer Cube is 216 , whofe Cubic Root is $6=a$, and the Remainder $15=b$. Therefore for the firt Approximation we have $3+\sqrt{9+-\frac{5}{6}}=$ to the Root. And becaufe $\sqrt{ } 9,8333 \ldots=3,135^{8} \ldots$ it is plain that $6,135^{8}=a+e$. Now make $6,135^{\circ}=a$, and we fhall have its Cube 231,000853894712 , and according to the Rule $3,0679+\sqrt{9,41201041-\frac{0,000853894712}{18,4074}}$ $=6,13579243966195897$, which is the Side of the given Cube very exaetly, being true in the eighteenth Figure, and falling fhort in the nineteenth; which Calculation I performed within an Hour's Time. Now this Form is defervedly to be preferred before the rational one, which, becaufe of its krge Divilor, cannot be managed without a great deal of Trouble; whereas the Extraction of the Square-root proceeds much more eafily, as manifold Experience has informed me.

Now the Rule for the Root of the pure Surfolid, or of the fifth Power, is of a little higher Inquiry, and yet performs the Matter much more perfectly. For it quintuples at leaft the given Figures of the Root, nor does it require much or very operofe Calculation. But the Author has no where given his Method of Inveftigation or Demonftration of it, tho' it feemed moft to be wanting: Efpecially as it is faultily inted in his Book, which may eafily milfead the Unfkilful. Now the fifth Power of the Side $a+e$ is made up of thefe Members following, $a^{5}+5 a^{+} e+10 a^{3} e^{2}+10 a^{2}=e^{3}+$ $5 a e^{+}+e^{5}=a^{5}+b$; whence $b=5 a^{4} e+10 a^{3} e^{2}+10 a^{2} e^{3}+5 a e^{+}$; (rejecting es becaufe of its Smallinefs) wherefore $\frac{b}{5 a}=a^{3} e+2 a^{2} c^{2}+2 a$ $e^{3}+e^{4}$, and adding $\frac{1}{4}$ at on each Side, and extracting the Square-root, it will be $\sqrt{\frac{1}{4} a^{4}+\frac{b}{5 a}}=\left(\sqrt{\frac{1}{4} a^{4}+a^{3} e+2 a^{2} e^{2}+2 a e^{3}+e^{7}} \Rightarrow \frac{1}{2}\right.$ $a^{2}+a e+e^{2}$. Then fubtracting $\frac{1}{4} a^{2}$ from each Side, and extracting the Square-root again, $\sqrt{\sqrt{\frac{1}{4} a^{a}+\frac{b}{5 a}}-\frac{1}{4} a^{2}}=\left(\sqrt{\frac{1}{4} a^{2}+a e+e^{2}} \Rightarrow\right.$ $\frac{1}{2} a+e$, to which if you add $\frac{1}{2} a$, 'tis $a+e=\frac{1}{2} a+\sqrt{\sqrt{\frac{1}{4} a+\frac{b}{5} a}-\frac{1}{4} a^{a}}$ $=$ Root of the Power $a^{5}+b$. Now if it had been $a^{5}-b$, (afluming a Vol. I.
greater than it ought to be) the Rule would have been thus, $\frac{1}{2} a+$ $\sqrt{\sqrt{\frac{1}{4} a^{4}-\frac{b}{5 a}}-\frac{1}{4} a a}=$ Root of $a^{5}-b$.

And this Rule approximates wonderfully, fo that there can fcarce be any Need of Reftitution. And upon farther confidering this Matter, I have fallen upon a certain general Method of Forms for any Power, which is elegant enough, and which I cannot prevail upon myfelf to conceal; fince in the higher Powers they triplicate at leaft the known Figures of the Root.

Now thefe Forms proceed after this Manner, as well the rational as the irrational.

$$
\begin{aligned}
& \sqrt[2]{a^{2}+b}=\frac{0}{2} a+\sqrt{\frac{2}{2} a a+\frac{b}{1 a^{2}}} \text {, or } a+\frac{a b}{2 a^{2}+\frac{1}{2} b}, \\
& \sqrt[3]{a^{3}+b}=\frac{1}{2} a+\sqrt{\frac{1}{4} a a+\frac{b}{3 a}}, \text { or } a+\frac{a b}{3 a^{3}+\frac{2}{2} b}, \\
& \sqrt[4]{a^{+}+b}=\frac{2}{3} a+\sqrt{\frac{1}{9} a a+\frac{b}{6 a^{2}}}, \text { or } a+\frac{a b}{4 a^{+}+\frac{3}{2} b^{9}} \\
& \sqrt[5]{a^{3}+b}=\frac{3}{4} a+\sqrt{\frac{r}{50} a a+\frac{b}{10 a^{3}}} \text { or } a+\frac{a b}{5 a^{5}+\frac{4}{2} b^{3}} \\
& \sqrt[6]{a^{3}+b}=\frac{4}{5} a+\sqrt{\frac{1}{25} a a+\frac{b}{15} a^{4}} \text { or } a+\frac{a b}{6 a^{6}+\frac{5}{2} b}, 8_{c} \text {. }
\end{aligned}
$$

And fo in other higher Powers. Now if a fhould be affumed greater than the Root fought, (which would be done with Advantage as often as the Power to be refolved is much nearer to the Power of the integer Number that is next greater, than it is to the next leffer) changing what is to be changed, the fame Expreffions of the Roots arife.

$$
\begin{aligned}
& \sqrt[2]{a^{2}-b}=\frac{0}{1} a+\sqrt{\frac{r}{2} a a-\frac{b}{1 a^{2}}} \text { or }-\frac{a b}{2 a^{2}-\frac{1}{2} b^{3}}, \\
& \sqrt[3]{a^{2}-b}=\frac{1}{2} a+\sqrt{\frac{1}{4} a a-\frac{b}{3 a}} \text {, or }-\frac{a b}{3 a^{3}-\frac{2}{2} b} \text {, } \\
& \sqrt[4]{a^{2}-b}=\frac{2}{8} a+\sqrt{\frac{1}{9} a a-\frac{b}{6 a^{2}}}, \text { or }-\frac{a b}{4 a^{+}-\frac{3}{2} b}, \\
& \sqrt[5]{a^{2}-b}=\frac{3}{4} a+\sqrt{\frac{1}{16} a a-\frac{b}{10 a^{3}}}, \text { or }-\frac{a b}{5 a^{5}-\frac{4}{2} b}, \\
& \sqrt[6]{a^{2}-b}=\frac{4}{5} a+\sqrt{\frac{1}{a^{3}} a a-\frac{b}{15 a^{4}}} \text { or }-\frac{a b}{6 a^{6}-\frac{5}{2} b}, \text { E}^{6} c \text {. }
\end{aligned}
$$

(91)

Now between thefe two Limits the true Root always confifts, being fomething nearer the irrational than the rational. But e found according to the irrational Formula always errs in Excefs, as the Quote refulting from the rational always errs in Defect ; therefore if it is $+b$, the irrational gives the Root greater than the Truth, and the rational lefs. And juft the contrary if it be -b. And this may fuffice concerning the finding of the Roots of pure Powers, which for ordinary Ufes (and accurately enough) may be done more eafily by Help of the Logarithms. But whenever the Root is to be extracted very accurately, and beyond the Reach of the Logarithms, we muft neceffarily have Recourfe to fuch Methods as thefe. Befides, as from the Difcovery and Confideration of thefe Forms, I have hit upon an univerfal Rule for affeeted Equations, which I believe will be made ufe of with good Ad. vantage by all fuch as are Itudious of Geometry and Algebra; I was willing to lay open with all poffible Perfpicuity the Foundation of this Difcovery.

About the Year 1687 I made publick a Method then newly invented by me, which contained a neat and very eafy general Conftruction of affected Equations, not beyond Quadrato-quadratics; fince which Time I have always had a very ftrong Defire of performing the fame in Numbers. A litile after that Mr. Rapbfon feemed in a good Meafure to have accomplifhed my Wifhes; till Mr. de Lagney hewed me, by his little Book on this Subject, that the Thing might be ftill performed more compendiounly. Now my Method is this.

Let the Root of any Equation z be conceived to be compofed of two Parts, $a+$ or $-e$, of which let a be affumed (by Suppofition) as near as may be to the Quantity z, (which is convenient indeed, but not abfolutely neceffary) and of the Quantity $a \pm e$ let there be formed all the Powers, to which z arifes in the given Equation, to which let their Numeral Coefficients be affixed refpectively. Then let the Power to be refolved be fubtracted from the Sum of the given Parts in the firft Column, where e is not found, which is called the Homogeneum Comparationis, and let the Difference be $\pm b$. Then let there be found the Sum of all the Coefficients of the Side e in the fecond Column, which let be s. Laftly, in the third Column, let all the Coefficients be added of the Square ee, the Sum of which we may call t. Then the Root fought z will be had in the rational Form $z=a \pm$ $\frac{s b}{s s \pm i b}$, and in the irrational Form $z=a \pm \frac{\frac{1}{2} s \pm \sqrt{\frac{1}{4} s s \pm b t}}{t}$; which it may be worth while to illuftrate by Examples. But as a convenient Help it may be proper to have at Hand a general Table, exhibiting the Genefis of all the Powers of $a \pm e$, which may be eafily continued farther if neceflary. I will carry it on to the feventh Power, becaufe few Problems go beyond that. This Table may juftly be called a general Analytical Speculum. Now the aforefaid Powers, arifing from the continual Multiplication of $z=a+e_{3}$ are as follows with their Coefficients adjoined.
$c z=c a+1 c c^{\circ} c$
$d z^{2}=d a^{2}+2 d a x e+1 d a^{\circ} e^{2}$
$f z=f a^{3}+3 f a^{2} c-1+3 f a^{1} e^{2}+1 f a a^{3}$
$g z=g a+4 g a 3 e+6 g a^{2} e^{2}+4 g a+e^{3}+1 g a^{3} e^{t}$
$b z=b a-1-5 b a+e+10 b a^{3} e^{2}+10 b a^{2} e^{2}+5 b a^{2} e^{2}+1 b a^{2} e^{5}$
$k z^{2}=k a^{6}-6 k a s e+15 k a^{+} e^{2}+20 k a 3 e s-15 k a^{2} e^{6}+6 k a^{3} e+1 k a 0 e^{5}$

Now if it thould be $a-e=z$, the Table would be compofed of the fame Parts, but only the odd Powers of e mult be negative, as $e, e^{s}, e^{s}, छ^{j}$. and the even Powers $e^{2}, e^{+}, e^{5}, E^{3} c$. mult be fill affirmative. Let the Sum of the Coefficients of the Side e be denoted by s, of the Square e^{2} by t, of the Cube e^{3} by u, of the Biquadrate $e+$ by w, of the Surfolid e^{5} by x, of the Cubo-cube e^{5} be y; and fo on. And as e is fuppoled to be but a fmall Part of the Root required, all the Powers of e become much lefs than the like Powers of a, and therefore for the firf Pofition the higher Powers may be rejected, as has been fhewn in pure Powers; and a new Equation being formed, we fhall have, as faid before, $\pm b= \pm s e \pm t e^{2}$. For the better underftanding of which take the following Examples:

Example I. Let the Equation propofed be $z^{4}-3 z^{2}+75 z=1000$. For the firft Suppofition make $a=10$, and the following Equation will arife.

$$
\begin{aligned}
& z^{2}=+a+4 a^{3} e+6 a^{2} e^{2} \pm 4 a e^{3}+e^{4} \\
&-d z^{2}=-d a^{2}+2 d a e-d e^{2} \\
&+i z= f 6 a \pm \\
& \frac{+10000 \pm 400 e+600 e^{2} \pm 40 e^{3}+e^{4}}{}+300 \pm 60 e-3 e^{2}+750 \pm 75 e \\
&+10000 \\
&+450 \pm 415 e+597 e^{2} \pm 40 e^{3}+e+=0 \\
& u
\end{aligned}
$$

The Signs \pm are left in Doubt in refpect of e and es, till it is known whether e is negative or affirmative, which may admit of fome Difficulty, fince in Equations that have many Roots, the Homogeneum Comparationis (as it is called) may be increafed by diminifhing the Quantity a, and contrary-wife may be diminifhed when it is increafed. But the Sign of e is determined by the Sign of the Quantity b. For the Refolvend being taken away from the Homogeneum formed by a, the Sign of $s e$, and therefore of the Parts prevailing in its Compofition, will always be cortrary to the Sign of the Difference b. Whence it will appear whether it flould be $-e$ or $+e$, or whether a is greater or lefs than the true affumed Root. But e is always

(93)

equal to $\xrightarrow{\frac{3}{s} s-\sqrt{\frac{1}{4 s-b t}}}$, whenever b and t have the fame Sign. But when they are connected with different Signs, then the fame e is $\frac{\sqrt{\frac{1}{4} s s+b t}-\frac{x}{4} s}{t}$. Now after it is found that it muft be - e, in the affirmative Parts of the Equation let $e, e^{3}, e^{5}, \mathrm{E}^{c} c$. be made negative, and in the negative let them be made affirmative, that is, let them all be wrote with a contrary Sign. But if it be $+e$, let their own Signs continue. Now in our Example we have 10450 inftead of the Refolvend 10000, or $b=+450$; whence it appears that a was taken above the true Root, and therefore it muft be - e. Hence the Equation becomes 10450-4015 $e+597 e^{2}-40 e^{3}+e^{+}=10000$, that is, $450-4015 e+597 e^{2}=0$. And therefore $450=4015 e-597 e^{2}$, or $b=s e-t e^{2}$, whofe Root e is $\frac{\frac{1}{2} s-\sqrt{\frac{1}{4} s s-b t}}{t}=$ or if you had rather $\frac{s}{2 t}-\sqrt{\frac{s s}{4 t t}-\frac{b}{t}}$; that is, in the prefent Cafe $e=\frac{2007 \frac{7}{2}-\sqrt{3761406 \frac{1}{t}}}{597}$ whence arifes the Root fought near the Truth $z=9,886$. Then I fubftitute this for a fecond Hypothefis, and there arifes $a+e=z=9,8862603936495 \ldots$ very accurately, hardly exceeding the Truth by 2 in the laft Figure; that is, when $\frac{\sqrt{\frac{1}{4} s s+b t}-\frac{1}{2} s}{t}=e$. And even this, if there were Occafion, might be verified much farther, by fubtracting $\frac{\frac{T}{2} u e^{3}+\frac{1}{4} e^{t}}{\sqrt{\frac{T}{4} s s+t b}}$ if it is $+e$, or adding $\frac{\frac{7}{2} u e^{3}-\frac{t}{2} e^{t}}{\sqrt{\frac{1}{4} s s-t b}}$ if it be - e, from or to the Root before found: The Compendium of which is fo much the more to be valued, that fometimes from the firlt Suppofition alone, but always from the fecond, you may continue the Calculation as far as you pleafe, by keeping to the fame Coefficients. But the foregoing Equation has alfo a negative Root, which is $z=-$ $10,26 \ldots$ which any one that pleates may purfue.

Example II. Let $z^{3}-17 z^{2}+54 z=350$, and make $a=10$. Then according to the Rule.

$$
\begin{aligned}
& z^{3}= a^{3}+3 a^{2} e+3 a e^{2}+e^{3} \\
&-d z^{2}=d a^{2}-2 d a e-d e^{2} \\
&+c z=c a+c e \quad b \quad t \\
& \text { That is, } \quad+1000+300 e+30 e^{2}+e^{3} \\
& \quad 1700+340 e-17 e^{2} \\
& \quad 540+54 e
\end{aligned}
$$

Now fince there is -510 , it is plain that a was affumed lefs than the Truth, and therefore e is affirmative. And from $510=14 e+13 e^{2}$, there arifes $\frac{\sqrt[1]{b t+\frac{1}{2} s s}-\frac{1}{2} s}{t}=e=\frac{\sqrt{6679-7}}{13}$; whence 'tis $z=15,7 \ldots$ which is too much, becaufe a was not taken near enough. Therefore, fecondly, let us fuppofe $a=15$, and by the fame Way of arguing we fhall have $e=\frac{\frac{1}{2} s-\sqrt{\frac{1}{4}-16}}{t}=\frac{109 \frac{2}{\frac{2}{2}}-\sqrt{11710 \frac{1}{4}}}{28} ;$ and therefore $z=14,954068$. Now if we would renew the Calculation a third Time, we fhould find the Root true to 25 Figures. But if we are contented with fewer, by writing $t b \pm t e^{3}$ inftead of $t b$, or by adding or fubtracting $\frac{\frac{2}{a} e}{\sqrt{\frac{1}{4} s s} \overline{\overline{+} t b}}$ to or from the Root before found, we thall foon arrive at our Purpofe. Now the propofed Equation cannot be explained by any other Root, becaufe the Power to be refolved 350 is greater than the Cube of $\frac{17}{3}$, or $\frac{1}{3} d$.

Example III. Let it be that Equation which the learned Wallis, in Chap. 62. of his Algebra, makes ufe of in the Refolution of a moft difficult Arithmetical Problem, in which he has attained the Root very accurately by the Method of Vieta. And the abovementioned Mr. Raphjon, Pag. 25, 26. brings the fame Equation as an Example of his Method. The Equation is $z^{4}-80 z^{3}+1998 z^{2}-14937 z+5000=0$. Now this Equation is of fuch a Form, as that it may have feveral affirmative Roots, and what increafes the Difficulty, the Coefficients are very great in refpect of the given Refolvend. Now that it may be managed the better, let it be divided, and placed according to the known Rules of Punctuation, $-z^{4}+8 z^{3}-20$ $z^{2}+15 z=0,5$; where z is but one tenth Part of z in the Equation propofed. Then for the firf Suppofition let us make $a=\mathrm{I}$. Wherefore $+2-5 e-2 e^{2}+4 e^{3}-e^{4}-0,5=0$. That is, $1 \frac{1}{2}=5 e+$
$2 e^{2}$, and hence $\frac{\sqrt{\frac{\pi}{4} s s}+\frac{b t}{t}-\frac{\pi}{2} s}{t}=e=\frac{\sqrt{37-5}}{4}$, and therefore $z=$ 1,27. Hence it apppears, that 12,7 is the Root of the propofed Equation pretty near the Truth. Now, in the fecond Place, let it be fuppofed, that $z=12,7$, and according to the Table of Powers,

$$
\begin{aligned}
& -26014,4641-8193,532 e-967,74 e^{2}-50,8 e^{3}-e^{+} \\
& +163870,640 .+38709,60 \cdot e+3048, \ldots e^{2}+80, \cdot e^{3} \\
& -322257,42 \ldots-50749,2 \ldots e-1998, \ldots e^{2} \\
& +189699,9 \ldots+14937, \ldots \text {.... } \\
& \frac{5000, \ldots}{+\quad 298,6559-52 y 6,132 e+82,26 e^{2}+29,2 e^{3}-e^{4}=0}
\end{aligned}
$$

Therefore - $298,6559=-5296,132 e+82,26 e^{2}$, whofe Root e according to Rule is $\frac{\frac{1}{2} s-\sqrt{\frac{1}{4} s s-b t}}{t}=\frac{2648,066-\sqrt{6987686,106022}}{82,26}$ $=0,0564408033^{1} \ldots=e$ lefs than the Truth. Now that it may be corrected, $\frac{\frac{2}{2} u e^{3}-e^{4}}{\sqrt{\frac{1}{4} s s-b t}}$ or $\frac{0,0026201 \ldots}{2643,423 \ldots}$ becomes 0,00000099117 , and therefore e corrected will be 0,05644179448 . Now if more Figures of the Root be wanted, of e corrected let there be formed $t u e^{3}-t e^{4}=$ $0,43105602423 \ldots$, then $\xrightarrow{\frac{2}{2} s-\sqrt{\frac{1}{4} s s-b t-t \cdot u e^{3}+t e^{4}}}$ or $\frac{2648,066-\sqrt{ } 6987685,67496597577 \cdots}{82,26}=0,05644179448074402$ $=e$. Whence $a+e=z$, or the Root very accurately comes our 12, 75644179448074402 , fuch as was found by Dr. Wallis in the Place above quoted. Here it may be obferved, that the renewing of the Calculus always triplicates the true Figures in the affumed a, which the firf Correction, or $\frac{\frac{x}{2} u e^{3}-\frac{1}{2} e^{4}}{\sqrt{\frac{1}{4} s s-b t}}$, makes quintuple, which Operation is eafily performed by the Logarithms. The other Correction after the firft alfo adds a double Number of Figures, fo that in the whole it makes the affumed Fi igures fevenfold. But the firf generally is abundantly fufficient for all the Ufes of Arithmetick. But what is here faid about the Number of Figures rightly affumed in the Root, I would have fo underftood, that when a is diftant from the true Root not above a tenth Part, the firf Figure may be rightly affumed; if within an hundredth Part, the two firft Figures; if within a thoufandth Part, the three firft Figures may be true. Then when managed according to our Rule, the true Figures will immediately become nine.

It remains that I mould add a Word or two concerning our rational Form, $e=\frac{s b}{s s \pm t b}$, which will rem expeditious enough, and not much inferior to the former, fince it is able to triplicate the given Figures. For an Equaton being formed of $a \mp e=z$, as before, it will foo appear whether the affumed a be greater or lefs than the Truth, fince se muff always have a Sign contrary to the Sign of the Difference of the Refolvend, and of its Homogeneum produced of a. Then fuppofing that $\pm b \mp s e \pm t e=0$, the Divifor becomes $s s-t b$ as often as b and t have the fame Sign. But it becomes $s s+b t$ if their Signs are different. But it feems more accommodated to Practice if the Theorem were written $e=\frac{b}{s \pm \frac{t b}{s}}$; for then the Thing would be performed by one Multiplication and two Divifions, which otherwife, would require three Multiplications and one Divifion. Let us alfo take an Example of this Method from the Root of the foregoing Equation $12,7 \ldots$ in which $298,6559,-5^{2} 96,132 e+82,26 e^{2}+29,2 e^{3}-e^{4}$ $=0$, and therefore $\frac{\frac{1}{b} b}{s-\frac{t b}{s}}=e$. That is, let it be s to t fo b to $\frac{t b}{s}=5296$, 132) 298,6559 into $82,26(4,63875$. Wherefore the Divifor becomes $\left.s=\frac{t b}{s}=5291,49325 \ldots\right) 298,6559(0,056441 \ldots=e$, that is, five true Figures added to the affumed Root. But this Formula cannot be corrected as the foregoing irrational one; fo that if more Figures of the Root are defired, it is better to repeat the Calculation by making a new Affumpcion; and the new Quotient, by triplicating the known Figures in the Root, will abundantly fatisfy even the molt fcrupulous Computer.

A Method of Raising an Infonite Multinomial so any given Porer; by M. de Moire. de Moivre.
N. 230 p. 619.
Jul. An. 1697. XXI. Theorem.] $\overline{a z+b z^{2}+c z^{3}+d z^{+}+e z^{3}+f z^{\circ}}$
$\left.+g z^{7}+b z^{\mathrm{s}}+i z^{9} \& x \mathrm{c}\right]^{m}=a^{m} z^{m}+\frac{m}{\mathrm{x}} a^{m-1} b z^{m+1}$

$$
\begin{aligned}
+\frac{m}{1} a^{m-1} e \quad+\frac{m}{1} & \times \frac{m-1}{1} a^{m-2} b c \\
& \times \frac{m}{1} a^{m-1} d
\end{aligned}
$$

$$
\begin{array}{r}
+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} a^{m-}+b^{4} z^{m+4} \\
f-\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{1} a^{m-3} b^{2} c \\
\\
+\frac{m}{I} \times \frac{m-1}{I} a^{m-2} b d \\
\\
+\frac{m}{I} \times \frac{m-1}{2} a^{m-2} c^{z} \\
\\
+\frac{m}{I} a^{m-1} c
\end{array}
$$

$$
+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} a^{m-s} b^{5} z^{m+1}
$$

$$
+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{1} a^{\mathrm{m}-4} b^{3} c
$$

$$
+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{1} a^{m-3} b^{2} d
$$

$$
+\frac{m}{1} \times \frac{m-1}{1} \times \frac{m 72-2}{2} a^{m-3} b c^{2}
$$

$$
\frac{1}{1} \frac{m}{1} \times \frac{m-2}{1} a^{m-z} b c
$$

$$
+\frac{m}{1} \times \frac{m-1}{1} a^{m-x} c d
$$

$$
+\frac{m}{1} a^{m-1} f
$$

(98)

$$
\begin{aligned}
&+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} \times \frac{m-5}{6} a^{m-j} b^{6} z^{m} 4^{4} \\
&+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{1} a^{m-5} b^{2} c \\
&+ \times \frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{1} a^{m-4} b^{3} d \\
&+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{1} \times \frac{m-3}{2} a^{m-4} b^{2} c^{3} \\
&+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{1} a^{m} b^{3} e \\
&+\frac{m}{1} \times \frac{m-1}{1} \times \frac{m-2}{1} a^{m-3} b c d \\
&+\frac{m-1}{1} \times \frac{m-1}{I} a^{m-2} b f \\
&+\frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} c^{3} \\
&+\frac{m-1}{1} a^{m-2} c c
\end{aligned}
$$

If fuppofe that the Infinite Number Mulinomial is $a z+b z z+c z^{3}+$ $d z^{4}+e z^{5}, \varepsilon^{c} c$. m is the Index of the Power, to which this Multinomial ought to be raifed; or, if you will, 'tis the Index of the Root which is to be extracted: I fay, That this Power or Root of the Multinomial is fuch a Series as I have expreffed.

For the underftanding of $i t$, it is only neceffary to confider all the Terms by which the fame Power of z is multiplied; in order thereto, I diftinguifh two things in each of thefe Terms; 1°. The Product of certain Powers of the Quantities, $a, b, c, d, छ^{\circ} c .2^{\circ}$. The Unciæ (as Ougbtred calls them) prefixed to thefe Products. To find all the Products belonging to the fame Power of z, to that Product, for Inftance, whofe Index is $m+r$ (where r may denote any Integer Number) I divide thefe Products into feveral Claffes; thore which immediately after fome certain Power of a (by which all thefe Products begin) have b, I call Products of the firt Clafis; for Example, $a^{n-1}+b^{3} e$ is the Product of the firft Clafis, becaufe b immediately follows $a^{\mathrm{m}}{ }^{-4}$, thofe which immediately after fome Power of a have c, I call Produets of the fecond Claffis, fo $a^{n-3} c c d$, is a Product of the fecond Claffis; thofe which immediately after fome Power of a have d, I call Products of the third Claffis; and fo of the reft.

(99)

This being done, I multiply all the Products belonging to $z^{m}+$ - (which precedes immediately $z^{\prime \prime \prime}+^{+}$) by b, and divide them all by $a ; 2^{\circ}$. I multiply by c, and divide by a, all the Products belonging to $z^{m}+r^{-2}$, except thofe of the firf Claffis; 3^{0}. I multiply by d and divide by a, all the Pioducts belonging to $z^{m}+$, except thofe of the firt and fecond Claffis: 4°. I multiply by e and divide by a, all the Terms belonging to $z^{m}+^{--4}$, except thofe of the firf, fecond, and third Clafis, and fo on, till I meet twice with the fame Term. Laftly, I add to all thefe Terms the Product of $a^{\text {m }}$ into the Letter, whofe Exponent is $r+1$.

Here I muft take notice, that by the Exponent of a Letter, I mean the Number which expreffes what Place the Letter has in the Alphabet: So 3 is the Exponent of the Letter c, becaufe the Letter c is the 3 d in the Alphabet.

It is evident by this Rule, you may eafily find all the Products belonging to the feveral Powers of z, if you have but the Product belonging to z^{m}, viz. a^{m}.

To find the Uncie which ought to be prefixed to every Product, I confider the Sum of Units contained in the Indices of the Letters which compofe it (the Index of a excepted) I write as many Terms of the Series $m \overline{x m-1}$ $\times \overline{m-2} \times m-3, \& \mathrm{c}$. as there are Units in the Sum of thefe Indices; this Series is to be the Numerator of a Fraction whofe Denominator in the Product of the feveral Series $1 \times 2 \times 3 \times 4 \times 5, \mathcal{E}^{2} c .1 \times 2 \times 3 \times 4 \times 5, \mathcal{E}^{2} c$. $1 \times 2 \times 3 \times 4 \times 5 \times 6$, $\mathcal{E}^{2} c$. the firtt of which contains as many Terms as there are Units in the Index of b, the fecond as many as there are Units in the Index of c, the third as many as there are Units in the Index of d, the fourth as many as there are Units in the Index of $e, \& z c$.

Demonfration.] To raife the Series $a z+b z z+c z^{3}+d z^{4}$, \&xc. to any Power whatloever, write fo many Series equal to it, as there are Units in the Index of the Power demanded. Now it is evident that when thefe Series are alfo multiplied, there are feveral Products in which there is the fame Power of z; thus if the Series $a z+b z z+c z^{3}+d z^{4}, 8 \dot{c}$, is raifed to its Cube, you have the Products $b^{3} z^{5}, a b c z, a a d z^{5}$, in which you find the fame Power z^{\prime}. Therefore let us confider what is the Condition that can make fome Products to contain the fame Power of z; the firft thing that will appear in relation to it, is, that in any Product whatfoever, the Index of z is the Sum of the particular Indices of z in the multiplying Terms (this follows from the Nature of the Indices): thus $b^{3} z^{5}$ is the Product of $b z^{2}, b z^{3}$, $b z^{2}$, and the Sum of the Indices in the multiplying Terms, is $2+2+2$ $=6 ; a b c z^{6}$ is the Product of $a z, b z z, c z^{3}$, and the Sum of the Indices of z in the multiplying Terms is $1+2+3=6 ; a a d z^{5}$ is the Product of $a z, a z, d z^{+}$, and the Sum of the Indices of z in the multiplying Terms is $1+1+4=6$. The next thing that appears, is, that the Indey of z in the multiplying Terms is the fame with the Exponent of the Letter to which z is joined : From which two Confiderations it follows, that, to have all the Products belonging to a certain Power of z, you muft find all

(100)

the Products where the Sum of the Exponents of the Letters which compofe them, flall always be the fame with the Index of that Power. Now this is the Method I ufe, to find eally all the Products belonging to the fame Power of z, let $m-r$ be the Index of that Power, I confider that the Sum of the Exponents of the Letters which conspote the Produets, muft exceed by I, thole which belong to z^{n+5} : Now becaule the Excels of the Exponent of the Letter b, above the Exponent of the Letter a, is r , it follows, that if each of the Products belonging to z^{m-1} is multiplied by b, and divided by a, you will have Froducts, the Sum of whofe Exponents will be in $+r$; likewife the Sum of the Exponent of the Letters which compore the Produets belonging to $z^{r} \psi^{+r}$ exceeds by 2 the Sum of the Exponents of the Letters which compore the Proxiucts belonging to $z^{m} t^{-t}$: Now becaufe the Exponent of the L.etter a is lefs by 2 than the Exponent of the Letter c, it follows, that if each Product belonging to $z^{\text {m }+5}$ is multiplied by c, and divided by a, you will have other Products, the Sum of whofe Exponents is ftill $m+r$: Now if all the Products belonging to $z^{m}+{ }^{t-z}$ were multiplied by c and divided by a, you would have fome Procuicts that would be the fame as fome of them found before ; therefore you muft except out of them thofe that I have called Yroduets of the firft Claflis. What I have faid nhews why all the Products belonging to $z^{m}+r^{-3}$, except thofe of the firft and fecond Claffis, muft be multiplied by d, and divided by a. Laftly, you fee the Reafon why to all thefe Products is added the Product of a^{-1} by the Letter whofe Exponent is $r+1$; 'T is becaufe the Sum of the Exponents is ftill $m+r$.

As for what relates to the Uncire; obferve, that when you multiply $a z+$, $b z z+c z^{3}+d z^{4}, 8 z$. by $a z+b z z+c z+d z^{4}$, \&xc. each Letter, $a, b, c, d, \& c$. of the fecond Series, is multiplici by each of the Letters a, b, c, d, \&c. of the firft Series. Thus the Letter a of the fecond Series is multiplied by the Letter b of the firft Series, and the Letter b of the fecond Series is multiplied by the Letter a of the firft ; therefore you may have the two Planes, $a b, a b$, or $2 a b$; for the fame Reafon you have $2 a c, 2 a d$, \&c. Therefore. you muft prefix to each Plane of thofe that compole the Square of the Infinite Series $a z+b z-c z^{3}, 8 x c$. the Number which expreffes how many Ways the Letters of each Plane may be changed; likewife if you multiply the Product of the two preceding Series by $a z+b z z+c z^{3}$, each Letter, a, b, c, d, of the third Series, is multiplied by each of the Planes formed by the Product of the firft and fecond Series: Thus the Letter a is multiplied by the Planes $b c$ and $c b$; the Letter b is multiplied by $a c$ and $c a$; the Letter c is multiplied by $a b$ and $b a$; therefore you have the fix Solids, $a b c, a c b, b a c, b c a, c a b, c b a$, or fix. $a b c$: Therefore you muft prefix to each Solid whereof the Cube of the Infinite Series is compofed, the Number which expreffes how many Ways the 1.etters of each Solict may be changed; and, generally, you muft prefix to any Product, whereof any Power of the Infinite Series $a z+b z z+c z$, \&ic. is compoled, the Number which exprefles how many ways the letters of each Product may be changed.

(101)

Now to find how many Ways the Letters of any Product, for inftance, $a^{n-n} b^{n} c^{P} d^{z}$, may be changed; this is the Rule which is commonly given: Write as many Terms of the Series $1 \times 2 \times 3 \times 4 \times 5, \xi^{3} c$. as there are Units in the Sum of the Indices, viz. $m-n+b+p+r$; let this Series be the Numerator of a Fraction, whofe Denominator fhall be the Product of the Series, $1 \times 2 \times 3 \times 4 \times 5,80,1 \times 2 \times 3 \times 4 \times 5$, E®c, $1 \times$ $2 \times 3 \times 4 \times 5 \times 6, \mathcal{E}^{2}$ c. $1 \times 2 \times 3 \times 4 \times 5, \mathcal{E}^{2} c$, whereof the firft is to contain as many Terms as there are Units in the firft Index $m-n$; the fecond as many as there are Units in the fecond Index b; the third as many as there are Units in the third Index p; the fourth as many as there are Units in the fourth Index r. But the Numerator and Denominator of this Fraction have a common Divifor, viz, the Series of $1 \times 2 \times 3 \times 4 \times 5, \mathcal{E}^{2}$ c. continued to fo many Terms as there are Units in the firt Index $m-n$; therefore let both this Numerator and Denominator be divided by this common Divifor, then this new Numerator will begin with $m-n+1$, whereas the other began with I, and will contain fo many Terms as there are Units in $b+p$ $-r$, that is, fo many as there are Units in the Sum of all the Indices excepting the firft: As for the new Denominator, it will be the Product of three Series only; that is, of fo many as there are Indices, excepting the firtt. But if it happens withal, that n be equal to $b+p+r$, as it always happens in our Theorem, then the Numerator beginning by $m-n+1$, and being continued to fo many Terms as there are Units in $b+p+r$ or n, the laft Term will be m neceffarily: So if you invert the Series, and make that the firft Term which was the laft, the Numerator will be $m \times m-1$ $\times \overline{m-2} \times \overline{m-3}, \varepsilon c$. continued to fo many Terms as there are Units in the Sum of the Indices of each Product, excepting the firt Index. And whatever is here faid of Powers whofe Index is an Integer, may be adapted. to Roots or Powers whofe Index is a Fraction.
XXII. Theorem.] If $a z+b z z+c z^{3}+d z^{1}+e z^{\prime}+f z^{\prime}, \mathcal{S}^{2} c$. $=g y$ Tb Extraztion $+b y y+i y^{3}+k y^{4}+l y^{5}+m y^{6}, \delta^{c} c$, then will z be $=\frac{g}{a} y+\begin{gathered}\text { of a Rot of an } \\ \text { In mintit } \mathrm{F}_{\text {furti- }} \\ \text { on; } y \text { Mr. Abro }\end{gathered}$
 $\frac{3 c \mathrm{AAB}-d \mathrm{~A}^{+}}{a} y^{+}+\frac{l-2 b \mathrm{BC}-2 b \mathrm{AD}-3 c \mathrm{ABB}-3 c \mathrm{AAC}}{a}$ $=4 d \mathrm{~A}^{3} \mathrm{~B}-e \mathrm{~A}^{3} y^{5}+m-2 b \mathrm{BD}-b \mathrm{C} \mathrm{C}-2 b \mathrm{AE}-c \mathrm{~B}^{3}$ $-6 c \mathrm{ABC}-3 c \mathrm{~A} \mathrm{~A} \mathrm{D}-6 d \mathrm{AABE}-4 d \mathrm{AC}-5 e \mathrm{~A}+\mathrm{B}-f \mathrm{~A}^{6} y^{5}$, \&rc.
For the underflanding of this Series, and in order to continue it as far as we pleafe, it is to be oblerved, I. That every Capital Letter is equal to the Coefficient of each preceding Term; thus the Letter B is equal to the Coeffi-

(BO O)

 cient $\frac{b-b \mathrm{~A} A}{a} \cdot$ 2. That the Denominator of each Coefficient is always a. 3. That the firft Member of each Numerator is always a Coefficient of the Series $g y+b y y+i y^{2}, \& c$. viz. the firlt Numerator begins with the firlt Coefficient g, the fecond Numerator with the fecond Coefficient b, and fo on. 4. That in every Member after the tirf, the Sum of the Expo. nents of the Capital Letters is always equal to the Index of the Power to which this Member belongs : This, confidering the Coefficient $\underline{k-6 \mathrm{BB}-2 b \mathrm{AC}-3 c \mathrm{AAB}-d \mathrm{~A}+}$, we thall fee that in every Member $b \mathrm{BB}, 2 b \mathrm{AC}, 3 c \mathrm{AAB}, d \mathrm{~A}^{+}$, the Sum of the Exponents of the Capital Letters is 4, (where I muft take notice, that by the Exponent of a Letter, I mean the Number which expreffes what place it has in the Alphabet; thus 4 is the Exponent of the Letter D) hence I derive this Rule for finding the Capital Letters of all the Members that belong to any Power; Combine the Capital Letters as often as you can make the Sum of their Exponents equal to the Index of the Power to which they belong. 5. That the Exponents of the fmall Letters, which are written before the Capitals, exprefs how many Capitals there are in each Member. 6. That the Numerical Figures or Unciæ that occur in thefe Members, exprefs the Number of Permutations which the Capital Letters of every Member are capable of.For the Demonftration of this, Suppofe $z=\mathrm{A} y+\mathrm{B} y y+\mathrm{C} y^{3}+\mathrm{D} y$, छc. Subftitute this Series in the room of z, and the Powers of this Series in the room of the Powers of z, there will arife a new Series: Then take the Coefficients which belong to the feveral Powers of y in this new Series, and make them equal to the correfponding Coefficients of the Series $g y+b y y$ $+i y^{\prime}, \& c$. and the Coefficients $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathcal{E}_{c}$. will be found fuch as I have determined them.

But if any one defires to be fatisfied, that the Law by which the Coefficients are formed will always hold, I'll defire them to have recourfe to the

SEEIXXI. Theorem I have given for Raifing an Infinite Series to any Power, or extracting any Root of the fame; for if they make ufe of it, for taking fucceffively the Powers of $\mathrm{A} y+\mathrm{B} y y+\mathrm{C} y^{3}$, \& c . they will fee that it mutt of neceffity be fo. I might have made the Theoremz I give here much more general than it is; for I might have fuppofed, $a z^{m}+b z^{m+1}+c z^{m} \Psi^{2}+d z^{m}+^{3}, \delta^{3} c$. $=$ $g y^{\mathrm{m}}+b y^{\mathrm{m}}+^{\mathrm{i}}+i y^{\mathrm{m}} \mathrm{t}^{2}$, $\delta^{2} c$. then all the Powers of the Series $\mathrm{A} y+\mathrm{B} y \mathrm{y}$ - $-\mathrm{C} y^{3}, E^{2} c$. defigned by the univerfal Indices, muft have been taken fucceffively; but thofe who will pleafe to try this, may eafily do it, by means of the Theorem for raifing an Infinite Series to any Power, $\mathcal{E}^{2} c$.

This Theorem may be applied to what is called the Reverfion of Series; fuch as finding the Number from its Logarithm given; the Sign from the Arch; the Ordinate of an Ellipfe from an Area given to be cut from any Point in the Axis: But to make a particular Application of it, I will fuppole we have this Problem to folve; viz. The Cbord of an Arc being given, to find

(103)

the Chord of another Are, that fiall be to the firft as n 10 1 . Let y be the Chord given, z the Chord required; now the Are belonging to the Chord y is $y+\frac{y^{3}}{6 d d}+\frac{3 y^{5}}{40 d^{4}}+\frac{5 y^{7}}{112 d^{7}}$, \&ce. And the Arc belonging to the Chord z is $z+\frac{z^{5}}{6 d d}+\frac{3 z^{5}}{40 d^{4}}+\frac{5 z^{7}}{112 d^{6}}$, \&rc. The firt of thefe Arcs is to the fecond as i to n; therefore multiplying the Extremes and Means together, we fhall have this Equation: $z+\frac{z^{3}}{6 d d}+\frac{3 z^{5}}{40 d^{*}}+\frac{5 z^{7}}{112 d^{3}}, \delta c .=n y+\frac{n y^{3}}{6 d d}+$ $\frac{3 n y}{40 d x}+\frac{5 n y}{112 d ?}, 8 c$.

Compare theié two Series with the two Series of the Theorem, and you will Gind $a=1, b=0, c=\frac{1}{6 d d}, d=0, e=\frac{3}{40 d^{*}}, f=0, \& c c . g=n$, $b=0, i=\frac{n}{6 d d} k=0, l=\frac{3 n}{40 d t}, m=0, \& c \mathrm{c}$. Hence z will be $=n y+$ $\frac{n-n^{3}}{6 d d} y^{3}, \mathcal{E}_{c}$. or $n y+\frac{1-n n}{2 \times 3 d d} y y A, \mathcal{E}_{c}$. fuppofing A to denote the whole preceding Term ; which will be the fame Series as Mr. Neroton has fril found.

By the fame Method this general Problem may be folved: The $A b$ cifs correfponding to a certain Area in any Curve being given, to find the Abjcifs wobofe correfpording Area 乃all be to the friff in a given Retio.

The Logarithmic Series might alfo be found without borrowing any other Idea, than that Logarithms are the Indices of Powers: Let the Number, whofe Logarichm we enquire, be $x+z$; fuppofe its Log. to be $a z+b z z+$ $c z^{3}, \& c \mathrm{c}$. Let there be another Number $1+y$; therefore its Logarithm will be $a y+b y y+c y^{3}$, $\& c \mathrm{c}$. Now if $\mathrm{x}+z=\overline{1+y}$, it follows that $a z+b z z+c z$, , \&cc.: $: a y+b y y+c y^{3}, \& c c .:: n: 1$; that is, $a z+b z z+$ $c z^{3}, \& c$. $=n a y+n b y y+n c y$, \&c. therefore we may find a Value of z expreffed by the Powers of y. Again, fince $1+z=1+y)^{\circ}$, therefore z $=\overline{1+y}-1$; that is, $z=n y+\frac{n}{1} x \frac{n-1}{2} y y+\frac{n}{1} x \frac{n-1}{2} x \frac{n-2}{3} y ;$, \&cc. Therefore z is doubly expreffed by the Powers of y. Compare thefe two Values together, and the Coefficients $a, b, c, \& c c$. will be determined, except the firtt, a, which may be taken at pleafure, and gives accordingly all the different Species of Logarithms.
XXIII. You need be no longer in Concern, how the infinitefimal Diffe- Dafine cifur

(104)

any Multiple of Nothing is ftill Nothing; I Mall allow with the fame Eafe, that you may fafely neglect infinitefimal Differences drawn into Infinitefimals. But though this may be done fafely, yet it ought to be done cautiounly. For in any kind of Quantities, thofe Things which differ by lefs than a given or affignable Difference, are to be confidered as equal. Upon this the whole Doctrine of Exhauftions is founded, which is neceffary both to the Antients and Moderns.

Tbe Approximation of the Ancients in the Ex. trac̃zing of Roocs, improved by Dr. Wallis. N. $215 \cdot \mathrm{p} \cdot 2$. Jan. An. 1695°.
XXIV. It is agreed by all, that if a Number propofed be not a true Square, it is in vain to hope for a juft Quadratic Root thereof, explicable by rational Numbers, Integers or Fracted. And therefore in fuch Cafes we nuft content ourfelves with Approximations (fomewhat near the Truth) without pretending to Accuracy.
And fo, for the Cubic Root of what is not a perfect Cube. And the like for fuperior Powers.

Now the Ancients (being aware of this) had their Methods of Approximation, which though fcarce applied by them beyond the Quadratic, or perhaps the Cubic Root, yet are equally practicable (by due Adjuftments) to the fuperior Powers alfo.

I fhall begin with the Square Root: For which the ancient Method is to this Purpofe.

From the propofed Non-quadrate (fuppofe \mathbf{N}) fubtract (in the ufual manner) the greateft Square in lutegers therein contained (fuppofe A q.) The Remainder (fuppofe $\mathrm{B}=2 \mathrm{AE}+\mathrm{E} q$) is to be the Numerator of a Fraction, for defigning the near Value of E (the remaining Part of the Root fought $A+E=\sqrt{ } N$) whofe Denominator or Divifor is to be 2 A (the double Root of the fubtracted Square) or $2 \mathrm{~A}+\mathrm{I}$ (that double Root increafed by 1) the true Value falling between thefe two ; fometime the one, fometime the other, being neareft to the true Value. But (for avoiding of Negative Numbers) the latter is commonly directed.

This Method Monfieur De Legny affirms to be more than 200 Years old. And it is fo; for I find it in Lucas Pacciolus (otherwife called Lucas de Burgo, or de Burgo Sancti Sepulcbri) printed at Venice in the Year 1494, (if not even, fooner than fo, for I find there have been feveral Editions of it.) And how much older than fo, I cannot tell: For he doth not deliver it as a new Invention of his own, but as a received Practice, and derived from the ALonss or Arabs, from whom they had their Algorism, or Practice of Arithmetick by the ten numeral Figures now in Ufe.

And it is continued down hitherto in Books of practical Arithmetick in all Languages, which teach the Extraction of the Square Root, and (therein) this Method of Approximation, in cafe of a Non-quadrate.

The true Ground of the Rule is this: A q being (by Conftruction) the greatelt Integer Square contained in N, 'tis evident that E muft be lefs than 1; (otherwife not A q, but the Square of $A+1$, or fome greater than fo, would be the greateft integer Square contained in N.) Now if the Remainder $B=2 A E+E q$ be divided by $2 A$, the Refule will be too great for E,
tethe Divifor being too little; for it fhould be $2 A+E$, to make the Quo. tient E.) But if (to rectify this) we diminifh the Quotient by increafing the Divifor, adding a to it, it then becomes too little; becaufe the Divifor is now too big. For (E being lels than 1) $2 \mathrm{~A}+1$ is more than $2 \mathrm{~A}+\mathrm{E}$; and therefore too big.

As for Initance: If the Non quadrate propofed be $\mathbf{N}=5$, the greateft Integer Square therein contained is $\mathrm{A} q=4$ (the Square of $\mathrm{A}=2$:) which being fubtracted, leaves $\mathrm{N}-\mathrm{A}_{q}=5-4=1=\mathrm{B}=2 \mathrm{AE}-\mathrm{H} q$. Which divided by $2 A=4$ gives $\frac{1}{4}$; but divided by $2 A+1=4 \frac{1}{1} 1=5$, gives $\frac{1}{3}$. That too great, and this too lirtle, for E. And therefore the true Root $(\mathrm{A}+\mathrm{E}=\sqrt{ } \mathrm{N})$ is lefs than $2 \frac{1}{4}=2.25$, but greater than $2 \frac{1}{5}=2.2:$ And this was anciently thought an Approach near enough.
2. If this Approach be not now thought near enough, the fame Procefs may be again repeated; and that as oft as is thought neceffary.

Take now for $A, 2 \frac{1}{6}=2.2$, whofe Square is $4.84=\mathrm{A} q$, (now confidered as an Integer in the fecond Place of Decimal Parts.) This fubtracted from 5.00 , (or, which is the fame, 0.84 , the Excefs of this Square above the former, from 1 , which was then the Remainder) leaves a new Remaincler $\mathrm{B}+0.16$: which divided by $2 \mathrm{~A}=4.4$, gives $\frac{0.16}{4.40}=\frac{2}{55}=0.036_{3} 6+$, too much. But divided by $2 A+1=4.5$, it gives $\frac{0.16}{4.50}=\frac{8}{225}=$ $0.03555+$, too little. The true Value (between thefe two) being 2.236 proxime, whofe Square is 4.999696 .

If this be not thought near enough, fubtract the Square from 5.000000: the Remainder $\mathrm{B}=0.000304$, divided by $2 \mathrm{~A}=4.47^{2}$, or by $2 \mathrm{~A}-1=$ 4.473 , gives (either way) $0.000058-$; which added to $A=2.236$, makes 2.236068 -, fomewhat too big; but $2.236067+$ would be much more too little.

Which gives us the Square Root of 5, adjufted to the fixth Place of Decimal Parts, at three Steps. And by the fame Method, if it be thought needful, we may proceed further.

For the Cubic Root the Rule is this:
From the Non-Cubic propofed, (fuppofe N) fubtract the greateft Cube in Integers therein contained, (fuppofe Ac:) the Remainder (fuppofe B = $3 \mathrm{AqE}+3 \mathrm{AE} q+\mathrm{E}($,$) is to be the Numerator of a Fraction for defigning$ the Value of E , (the remaining Part of the Root fought $\mathrm{A}+\mathrm{E}=\sqrt{ } \subset \mathrm{N}$.) To this Numerator, if (for the Denominator or Divifor) we fubjoin $3 \mathrm{~A} q$, the Refult will certainly be too great for E, becaufe the Divifor is too little: (For it fhould be $3 \mathrm{~A} q+3 \mathrm{AE}+\mathrm{E} q$, to give the true Value of E .) If for the Divifor we take $3 A q+3 A+1$, it will certainly be too little, becaufe the Divifor is too great. (For E by Contruction is lefs than I.) It muft therefore (between thefe Limits) be more than this latter. And therefore this latter Refult being added to A, will give a Root whofe Cube may be fubtracted from the Non-Cubic propofed, in order to another Step.

Vol. I.
But

(106)

But if, for the Divifor, we take $3 A q+3 A$, (or even lefs than fo) the Refult mav be too great; or (in cafe B be fmall) it may be too little, and oft is fo. Which comes to pars from hence; becaufe E (by Conftruction) is lefs than 1; and therefore 3 A E lefs than 3 A; and perhaps fo much as that the Addition of $\mathrm{E} q$ will not rediefs it. And when it fo happens $3 \mathrm{~A} q+3 \mathrm{~A}$ is a better Divifor than $3 A q+3 A+1$, (or even fomewhat lefs than either.) But becaufe it doth not always fo happen (though for the moft part it doth) the Rule doth rather direct the other; as which doth certainly give a Root lefs than the true Value, whofe Cube may always be fubtracied from the NonCubic propofed: the Defign being to have fuch a Cube as (being fubtracted) may leave another B, to be ordered in like manner for a new Approach.

But, for the moft part, 3 A q may be fafely taken for the Divifor. For tho' the Refult will then be fomewhat too big, yet the Excefs may be fo fimall as to be neglected ; or, at leaft, we may thence eafily judge what Number (fomewhat lefs than it) may be fafely taken. And if we chance to take it fomewhat too big, the Inconvenience will be but this, that B for the next Step will be a Negative. Of which Cafe we fhall fpeak anon.

Thus for Intance: If the Non-Cube propofed be $9=\mathrm{N}$: The greateft Integer Cube therein contained is $8=\mathrm{A} c$, (whofe Cubic Root is $\mathrm{A}=2$.) Which Cube fubtracted, leaves $9-8=1=\mathrm{B}=3 \mathrm{~A} q \mathrm{E}+3 \mathrm{AE} q+\mathrm{E} c$. This divided by ${ }_{3} \mathrm{~A} q=12$, gives $\mathrm{T}_{\mathrm{T}} \frac{1}{2}=0.08333$ t, too big for E . But the fame divided by $3 \mathrm{~A} q+3 \mathrm{~A}+1=12+6+1=19$, gives $\frac{1}{\mathrm{~T}}=0.05263$十, too little. Or if but by 3 A $q+3 A=12+6=18$, it gives $\frac{1}{\mathrm{~T}}=\frac{\mathrm{r}}{6}$ $=0.05555+$, yet too little. For the Cube of $A+0.06,=2.06$, is but 8.742 -, which is fhort of 9 ; and fo much fhort of it, that we may fafely take 2. $\mathrm{C7}$ as not too big: Or perhaps 2.08, which upon Trial will be found not too big; for the Cube of 2.08 , is but 8.998912.

If this firft Step be not near enough, this Cube fubtracted from 9.000000 , leaves a new $\mathrm{B}=0.001088$, which divided by $3 \mathrm{~A} q=12.9796$, gives 0.000084 - ; which will be fomewhat too big, but not much. (For E is now fo fmall, as that 3 A E may be fafely neglected, and $\mathrm{E} q$ much more.) So that if to 2.08 , we add 0.000084 -, the Refult $2.08 c 084$ will be too big; but 2.080083 will be more too little, (as will appear if we take the Cube of each.) So that either of them, at the fecond Step, gives the true Root within an Unit in the fixth Place of decimal Parts. But when I fay, taking the Cube of each, (which I do that the Thing may be more clearly apprehended) it is not neceffary that we trouble ourfelves with the whole Cube. For $\mathrm{A} c$ being already fubtracted, for finding $\mathrm{B}=3 \mathrm{~A} q \mathrm{E}+3 \mathrm{AEq}$ $+\mathrm{E} c$, we have no more to try, but whether $3 \mathrm{AqE}+3 \mathrm{AEq}+\mathrm{E} c$, be greater or lefs than B, according as we take 0.000084 , or 0.000083 , for E.

Which may conveniently be done in this manner: Take $3 \mathrm{~A}+\mathrm{E}$, and multiply this by E , (or E by it) fo have we $3 \mathrm{AE}+\mathrm{E} q$. To this add $3 \mathrm{~A} q$, and multiply the whole by E , (fo have we $3 \mathrm{Aq} \mathrm{E}+3 \mathrm{AEq}+\mathrm{E}$ c) to fee whether this be greater or lefs than B.
That is, in the prefent Cafe, if we take $E=0.00008$, and add to this $3 \mathrm{~A}=6.24$, then is $6.240084=3 \mathrm{~A}+\mathrm{E}$. This multiplied by $\mathrm{E}=$ 0.000084,
0.000084 , is $3 \mathrm{AE}+\mathrm{E}_{q}=0.0005_{24}+$. To which if we add $3 \mathrm{Aq}=$ ${ }_{12} .9792$, it is $3 \mathrm{~A} q+3 \mathrm{AE}+\mathrm{E} q=12.979724$. Which muitiplied again by $\mathrm{E}=0.000084$, is $0.0010902+=3 \mathrm{~A} q \mathrm{E}+3 \mathrm{AEq}+\mathrm{E} c$, which is more than $\mathrm{B}=0.001088$.
But if we take $E=0.00008$ 3, and proceed as before, we fhall have ${ }_{3} \mathrm{~A} q \mathrm{E}+3 \mathrm{AE} q+\mathrm{E} c=0.001077$ +, which is lers than $\mathrm{B}=0.001088$. And therefore (if we fubtratt that from this) the Remainder, 0.0000 Is, will be another B for the next Step, if we pleafe to proceed farther.
Hitherto I have purfued the Method moft affected by the Ancients, in feeking a Square or Cube (and the like of other Powers) always lefs than the juft Value, that it might be fubtracted from the Number propofed, leaving B a poftive Remainder ; thereby avoiding Negative Numbers.
But fince the Arithmetic of Negatives is now fo well undertood, it may in this (and other Operations of like nature) be advifeable to take the neareft, whether it be greater or lefs than the juft Value.
According to this Notion, for the Square Root of 5, I would fay it is ($2+$) fomewhat more than 2 ; and enquire how much more. But for the Square Root of 8 , I would fay, it is (3-) fomewhat lefs than 3 ; and enquire how much lefs: taking (in both Cafes) that which is neareft to the jurt Value.
Thus in the Cubic Root before us; I would take for E (in the laft Enquiry) 0.000084 - (where for the next Step we have $\mathrm{B}=-0.000002$) rather than $0.000083+$ (where for the next Step we flould have B $=$ +0.000011 .) In the latter Cafe, we are to divide $B=+0.00001 \mathrm{I}$, by ${ }_{3} \mathrm{~A}_{q}=12.98023^{6}$-, to find (by the Quotient) how much is to be added to 0.000083 . In the other Cafe, we are to divide $\mathrm{B}=+0.000002$, by ${ }_{3} \mathrm{~A} q=12.98028$, to find (by the Quotient) what is to be abated of 0.000084 ; fo have we $\frac{0.000011}{12.98023^{6}}=0.00000085$ t to be added to 6.240083 : Or $\frac{0.000002}{12.98024^{8}}=0.00000015$ t to be abated of 6.24008_{4}; (Or it may fuffice in either to divide by 12.98 , or even by 13 -, without being incumbered with a long Divifor) either of which gives us, for the Roor fought, 2.08008385 proxime; true (at the third Step) to the eighth Place of decimal Parts. And if this be not near enough, the Cube of this, compared with the Number propofed, will give us another B for the next Step: And fo onwards as far as we pleafe.
Now what is faid of the Cube, is eafily applicable to the higher Powers.
I hall omit that of the Biquadrate; becaufe here perhaps it may be thought moft advifeable to extract the Square Root of the Number propofed, and then the Square Root of that Root. But if we would do it at once, we are from \mathbf{N} (the Number propofed, being not a Biquadrate) to fubtract A q q (the greateft Biquadrate contained in it) to find the Remainder $\mathrm{B}=4 \mathrm{AcE}$ $+6 \mathrm{~A} q \mathrm{E} q+4 \mathrm{AE} c+\mathrm{E} q q$. Which Remainder, if we divide by 4 Ac . the Quotient will certainly be too big for E , (though perhaps not much :) If by $4 \mathrm{~A} c+6 \mathrm{~A} q+4 \mathrm{~A}+1$, it will certainly be too little (for Reaforis be-

(108)

fore mentioned.) And we are to ufe our Difcretion in taking fome intermediate Number. And if we chance not to hit on the neareft, the Inconvenience will be but this, that our Leap will not be fo great as otherwife it might be. Which will be rectified by another B at the next Step.

For the Surfolid (of five Dimenfions) we are, from \mathbf{N} (the Number propofed, being not a perfect Surfolid) to fubtrait A $q c$ (the greateft Surfolid therein contained) to find the Remainder $\mathrm{B}=5 \mathrm{~A} q q \mathrm{E}+10 \mathrm{AcE} q+10$ $\mathrm{A} q \mathrm{E} c+5 \mathrm{AE} q q+\mathrm{E} q c$. Which (as before) if we divide by $5 \mathrm{~A} q q$, the Refult will be fomewhat too big, (becaufe the Divifor is too little:) If by $5 \mathrm{~A} q q+10 \mathrm{Ac}+10 \mathrm{~A} q+5 \mathrm{~A}+1$, the Refult will certainly be lefs than the true E. The juft Value of E being fomewhat between thefe two, where we are to ufe our Difcretion what intermediate Number to take. Which according as it proves too great or too little, is to be rectified at the next Step.

But for the moft part it will be fife enough (and leaft trouble) to divide by 5 A q, which gives a Quotient fomewhat too big; which we may either rectify at Difcretioti, by taking a Number fomewhat iefs, or proceed to another B, (affirmative or negative, as the Cafe fhall require) and fo onward to what Exactnefs we pleafe. Which is, for Subftance, in a manner co-incident with Mr. Raphon's Method, even for affected Equations.

Thus, in the prefent Cafe: If the Number propofed be $\mathrm{N}=33$, then is $\mathrm{Aq} c=3^{2}$, and $\mathrm{B}=32-3^{2}=\mathrm{I}=\Gamma \mathrm{A} q q \mathrm{E}+10 \mathrm{~A} c \mathrm{E} q+10 \mathrm{Aq} \mathrm{E} c$ $+5 \mathrm{AEqq}+\mathrm{Eqc}$. Which if we divide by $5 \mathrm{~A} q q=5 \times 16=80$, the $\mathrm{Refult} \frac{+}{50}=00125$, is fomewhat too big for E, but not much. And if we examine it, by taking the Surfolid of 2.0125 , or of 25 , we fhall find a Negative B (for the next Step), but not very confiderable. Or if we think it confiderable, we may proceed farther to another Step, or more than fo.

The like Method may be applied (and with more Advantage) in the higher Powers; according as the Compofition of each Power requires.

And the fame Method may be of Uie (with good Advantage) in long Numbers (if duly applied) even before we come to the Place of Units; for the fame will equally hold there alfo. Which the Reader may cafily apprehend, without a long Difcourfe upon it.

Sibe Preporticn. \&f irfinite Quansirics; by Mr. E. Halley. A. 195. P. 556 .
XXV. The very Idea of Magnitudes infinitely great, or fuch as exceed any affignable Quantity, does include a Negation of Limits: yet if we nearly examine this Notion, we fhall find that fuch Magnitudes are not equal amongtt themfelves, but that there are really befides infinite Length, and infinite Area, three feveral Sorts of infinite Solidity: all of which are Quantitates jaigeneris; and that thofe of each Species are in given Proportions. Infinite Length, or a Line infinitely long, is to be confidered cither as beginning at a Point, and fo infinitely extended one Way, or elfe borh Ways trom the fame Point ; in which Cate the one, which is a beginning Infinity, is the one half of the whole, which is the Sum of the beginning and ceafing. Infinity; or, as I may fay, of Infinity a parte ante and a parte poff, which is analogous to Eternityt in Time or Duration, in which there is always as much

(109)

much to follow as is paft, from any Point or Moment of Time: Nor doth the Addition or Subduction of finite Length, or Space of Time, alter the Cafe either in Infinity or Eternity, fince both the one or the other cannot be any Part of the Whole.

As to Infinite Surface or Area, any Right Line infinitely extended both Ways on an infinite Plane, does divide that infinite Plane into equal Parts, the one to the right, and the other to the left of the faid Line; but if from any Point in fuch a Plane, two right Lines be infinitely extended, fo as to make an Angle, the infinite Area, intercepted between thofe infinite right Lines, is to the whole infinite Piane, as the Arch of a Circle on the Point of Concourfe of thofe Lines as a Center, intercepted between tire faid Lines, is to the Circumference of the Circle; or as the Degrees of the Angle to the 360 Degrees of a Circle. For Example: Two right Lines meeting at a right Angle do include, on an infinite Plane, a quarter Part of the whole infinite Area of fuch a Plane.

But if fo be two parallel infinite Lines be fuppofed drawn on fuch an infinite Plane, the Area intercepted between them will be likewife infinite; but at the Yame time will be infinitely lefs than that Space, which is intercepted between two infinite Lines that are incined, tho' with never fo fmail an Angle; for that in the one Cafe, the given finite Diftance of the parallel Lines diminifhes the Infinity in one Degree of Dimenfion; whereas in a Sector, there is Infinity in both Dimenfions: and confequently the Quanticies are the one infinitely greater than the other, and there is no Proportion between them.

From the fame Confideration arife the three feveral Species of infinite Space or Solidity ; for a Parallelopipid, or a Cylinder infinitely long, is greater than any finite Magnitude, how great foever; and all fuch Solids fuppofed to be formed on given Bafes, are as thofe Bafes in proportion to one another. But if two of thefe three Dimenfions are wanting, as in the Space intercepted between two parallel Planes infinitely extended, and at a finite Diftance; or with ininite Length and Breadth, with a finite Thicknefs, all fuch Sulids fhall be as the given finite Diftances one to another; but thefe Quantities, tho' infinitely greater than the other, are yet infinitely lefs than any of thofe wherein all the three Dimenfions are infinite. Such are the Spaces intercepted between two inclined Planes infinitely extended; the Space intercepted by the Surface of a Cone, or the Sides of a Pyramid, likewife infinitely continued, $\Xi^{2} c$. of all which notwithftanding, the Proportions one to another, and to the ri $\pi \tilde{\alpha}^{2}$ or valt Abyis of infinite Space (wherein is the Locus of all Things that are or can be; or to the Solid of infinite Length, Breadth, and Thicknefs taken all manner of ways) are eafily affignable. For the 'Space between two Planes is to the whole, as the Angle of thofe Planes to the 360 Degrees of the Circle. As for Cones and Pyramids, they are as the Jpherical Surface intercepted by them is to the Surface of the Sphere, and cherefore Cones are as the verfed Sines of half their Angles to the Diameter of the Circle: Thefe three Sorts of infinite Quantity are analogous to a Line, Sur-

(110)

face, and Solid, and after the fame manner cannot be compared, or have no Proportion the one to the other.

Infriticy-iffrite XXVI. Infinitely-infinite Fractions, or all the Powers of the Fractions Frazions; by
D. R. Wood. whofe Numerator is I , are all of them together equal to (I) an Unit. ${ }_{P b}$. Col, no 3^{-} \$. 45.

$$
\begin{aligned}
& \text { P. } \\
& \text { A. R. } \frac{\text { q. }}{\text { c. }} \text { qq. }+ \\
& i=\frac{1}{1}=\frac{1}{2}:+\frac{1}{4}+\frac{1}{8}+\frac{1}{16} \& c . \\
& \frac{1}{2}=\frac{1}{3}:+\frac{1}{9}+\frac{1}{27}+\frac{1}{81} 8 c \text {. } \\
& \frac{1}{3}=\frac{1}{4}:+\frac{1}{16}+\frac{1}{64}+\frac{1}{256} \& c \text {. } \\
& \frac{1}{4}=\frac{1}{5}:+\frac{1}{25}+\frac{1}{125}+\frac{1}{625} \& \mathrm{cc} \text {. } \\
& \frac{1}{5}=\frac{1}{6}:+\frac{1}{36}+\frac{1}{216}+\frac{1}{1296} \& c \text {. } \\
& \text { \& c. \& \& c. }
\end{aligned}
$$

A. Is a File or Row of abfolute Numbers, or rather of all the Fractions; whofe Numerator is 1; which Row is fuppofed to be continued in infinitum (downwards.)
R. Is

III)

R. Is another File or Row of all the Roots (whofe Numerator is I) of all the Powers of fuch Fractions, fuppofed likewife to be continued in infinituin (downwards).
P. Are all the refpective Powers of fuch Fractions, (viz. Squares, Cubes, छc.) or fo many Ranks of Geometrical Proportionals, fuppofed to be continued in infinitum, both to the Right-hand, and alfo downwards.

Lemma.] Eacb of the faid Ranks of Powers, togetber with their refpective Roots, is equal to cach of the feveral Numbers under A refpecizively.

Demonfration.] If from the Line $a b$ you take (for inftance) $\frac{\div}{4}$ part towards a, fuppofe $a c$; and alfo from the other End of the fame Line $a b$, you take two fuch Parts (or $\frac{2}{4}$ Parts) towards b, fuppofe $b d$, (viz. a Number of Parts lefs by two than the whole Line $a b$ was firt fuppofed to be divided into) there will remain the Line $c d=a c=\frac{z}{4}$ of $a b$. Then again, if from $c d$ you take $\frac{1}{4}$ Part thereof towards a, fuppofe $c e$, and from the other End $\frac{1}{4}$ Part of the fame $c d$, fuppofe $d f$, there will remain only ef $=c e=\frac{1}{4}$ of $c d$. And if you ftill go on without ceafing, to take on the Side towards $a, \frac{1}{4}$ Part of what was taken laft before, and twice as much on the other Side towards b, there fhall be found between the two Lines laft taken always remaining $\frac{1}{4}$ Part of the Line from which they were taken. From which $\frac{1}{4}$ Part there may ftill after the fame manner be fuppofed to be taken two other fuch Lines. But if this be fuppofed to be done infinite Times actually, then there will nothing more remain (between), and fo the continued Divifion on either Side will come exactly to the Point g, fuppofing a g to be $\frac{5}{3}$ of $a b$, and $b g=2 a g:$ For, becaufe that which was taken away towards b, was always twice as much as that which was taken away towards a, the total Sum of all the Lines taken away towards b, (which all together do make up the Line $b g$) muft be twice as much as the Line $a g$, (which is the total Sum of all the Lines taken away towards a) viz. $b \mathrm{~g}=2 a \mathrm{~g}$; and confequently $b g+a g$ (or the whole Line $a b$) is equal to $3 a g$; and therefore $a g=\frac{2}{8}$ of $a b$. 2 E. D.

The like ConfruEtion and Demonfration (mutatis mutandis) may be made ufe of in taking away any other Part of any Quantity, and the like Part again of the firft mentioned Part, and fo in infinitum. The total Sums of all the Parts fo taken, or fuppofed to be taken, fhall be equal to any certain Quantity, or Part, or Fraction, whofe Denominator fhall be lefs by an Unit than the Denominator of the firft mentioned Part; as $\frac{1}{6}=\frac{1}{7}+\frac{1}{49}+\frac{1}{343} \& c \cdot \frac{1}{9}=\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}$ \&cc. And fo, that which the incomparable Arcbimedes (in his Squaring the Parabola) has only demonftrated in one particular Cafe, viz. $\frac{1}{3}=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}$ $+\frac{1}{256}+\frac{1}{1024} \& c$. and that too, not without an huge Apparatus of Pre1 minary Propofitions, amounting to a whole Book, is here univerfally de-

(112)

monftrated in all Cafes (which are infinite) and by a very fimple and eäfy Method (in Des Carles's Way) and on one fingle Page.

Now if each of the faid Ranks' of Powers, together with their refpective Roots, be equal to the feveral Numbers of Fractions under A; (as is demonftrated by the Lemma) then is A the Sum of them all, or equal to them all; that is to fay, $\mathrm{R}+\mathrm{P}=\mathrm{A}=\mathrm{R}+\mathrm{I}$; for R is the fame with A wanting $\frac{I}{1}$, or 1 , (as appears upon View) or but ($\frac{1}{00}$) one infinite Part bigger. Wherefore $\mathrm{P}=\mathrm{I}, \stackrel{9}{\mathcal{S}}, E . D$. viz. Infinitely-infinite Fractions are equal to Unity, that is, to the leaft Root that is an Integer.

Corollaries. Hence it is plain,

1. That a Progrefs ad infinitum muft be allowed.
2. And not only to one Infinite, but to feveral; or rather to infinite Infinites, or infinitely Infinites.
3. And that this may be done, that is, this Calculation may be performed, by a very finite or bounded Capacity.
4. And that this whole Progrefs, or fuch infinite Progreffes, may be caft up, or collected into one Sum.
5. And into a Sum that is not only not infinite, but fo fmall that it is lefs than any Number.

It appears farther,
That of Infinites fome are equal, and others unequal.
And that one Infinite may be equal to two, three, or feveral, either Finites or Infinites.

For 1. The infinite Powers of the firt Rank are $=\frac{1}{2}=\frac{1}{1 \times 2}$, and alfo equal to all the infinitely-infinite Powers of all the other Ranks.

(113)

2. The infinite Powers of the two firf Ranks are $=\frac{2}{3}$

Thofe of the three firtt are $=\frac{3}{4}$
Thofe of the four firt are $=\frac{4}{5}$
Thofe of the five firt are $=\frac{5}{6}$
\&c. in infinitum.
3. All the Powers of all the infinite Ranks, except the firf are $=\frac{1}{2}$

All, except the two firt, are $=\frac{1}{3}$
All, except the three firft, are $=\frac{1}{4}$
All, except the four firft, are $=\frac{1}{5}$

\&c. in infinitum.

The latter Corollaries may all appear by fimple Addition and Subduction; and fo may many more.
XXVII. I. That the Numeral Figures now in ufe, with the manner of Thbe Antiquity of Computation by them (and the Names of Algorifm, appropriated to that Way ${ }_{\text {gures }}^{\text {the by }}$ Dr. Jo. of Computation) came to us from the Arabs (but fomewhat altered, as to the Wallis. N. $\mathbf{x} 54$. Shape of the Figures, in fucceeding Ages) and to them from the Indians, is ge- p. ${ }^{\text {Dec. An. }} 168_{3}$. nerally agreed. But it is not fo generally agreed, of what Antiquity the Ufe of them, in our European Parts, hath been.

Fo. Gerard Voffus (De Scientiis Matbematicis) thinks they came not in Ufe here till about the Year of our Lord 1300; or at the fartheft, later than the Year 1250. And P. Mabillon (De Re Diplometica) tells us, that he hath not found them any where ufed fooner than the 14 th Century. But I think their Ufe in thefe Parts was as old at leaft as the Times of Hermannus ContraEtus, who lived about the Year of our Lord 1050 (that is, about the middle of the 1 th Century, if not fo frequently in ordinary Affairs; yet at leaft in Mathematical Things, and efpecially in Aftronomical Tables.

But I do not remember that I have any where feen any Monument of them more antient than the Mantle-tree of the Parlour Chimney at the DwellingHoufe of Mr. Will. Ricbards, the Rector of Helmdon in Nortbamptonfbire.

The Sides of the Chimney, by which the Mantle-tree is fupported, are of Stone; but the Mantle-tree itfelf is of Wood. It is all over as black as Ink, having by Age and Smoak contracted that Colour. It may yet continue many hundreds of Years; for I did not differn in it any Thing either of Worm, or Rottennefs, or any Tendency to it. The Length of it is five Foot mine Inches; its Breadth or Depth at the Ends, (A B) is if $\frac{1}{2}$ Inches, but at Vol. I.

(114)

the Middle, as C D, fomewhat lefs. It is alfo carved from End to End, and the lower Part of it is abated, as in the Mouldings of other Chimneys. On the Front of the upper Part there is (beginning at the Middle) on three Squares parted from each other by a deep Furrow or Channel, the Date (I fuppofe, when it was firft made) dectribed partly in Numeral Figures, $A^{\circ} D_{o}{ }^{i} M^{2}{ }_{133}$; on a fourth a Flower, and on a fifth the two Letters W. R. with an Effurcheon, reprefenting (I fuppofe) the Name of him to whom it did then belong. Both the Letters and the Figures are of an Antique Form, agreeing well enough with that Age. They are not engraved or cut in, but prominent on their feveral Squares (by way of Bas-relief) the Wood being abated round about them. The o over the A is a round o , but that over the M is a fquare o .

Hence it appears, that the Ufe of fuch Figures here in England, even on ordinary Occafions, is at leaft as ancient as the Year Ir 33. And I judge it to have been yet fomewhat ancienter, becaufe the Shape of the Figures, though not come juft to the Shape which we now ufe, was even then confiderably varied from the Shape of the Arabick Figures; which argues they had then been for fome Time in ufe; fuch Change of Shape in Figures and Letters coming on gradually with Time.

It need not move any Scruple at all, that Part of the Numbers is expreffed by the Numeral Letter M (or the Word Millefimo, of which M° is but a Contraction) while the ref is expreffed in Numeral Figures: For the like doth oft occur in old Manufrripts; and fometimes even at this Day. And it doth rather favour the Simplicity of that Age, (not very nice in fuch Things, efpecially amongt Mechanics) than any Defign of Impolture.

By Mr. Tho. tuffkin.
N. 255 . . . 287 .
N. $266 \cdot \mathrm{P}$ p. 677 .

Aug. An. 1699°
2. Over-againft the Market-place in Colchefter ftands the Houfe of Mr. Furley, a Linnen-draper; fome of the backermoft Part of which is an ancient Roman Building, but the Front is of leffer ftanding, and timbered. Upon the bottom Cell (which is almoft in the Form of a triangular Prifm) of one of the Windows of the Front, between two carved Lions, ftands an Efcutcheon, containing only thefe Figures sogo. The Periphery of the Cyphers, and Nine, are rather fracted than flected, prominent, large, and very fair; but to make them the more perfpicuous, they are gilded by the Proprietor. The Window looks directly North, the Date being thereby preferved from the fcorching Heat of the Sun; and by its Inclination (falling from the Vertex or Perpendicular by an Angle of about 60 Degrees) from Rain, Snow, \mathcal{E}°. If it be objected, that the fecond and fourth Figures may reprefent that among the Arabians, which is with us as five; I anfwer, that the O is not ufed with all the Arabs for 5, but with fome for a Cypher, and fo it was ufed by the Moors in Spain, who firlt brought thefe Figures into our Parts; nor is the fquare o an Arabick Letter, but an Engli/b Letter of that Age. And the Form of thefe Figures foon degenerated from that of the Arabs, into fuch as we now ufe, if nof at the firft Reception from the Arabs [or Moors], certainly long before 1595, as this Conftrubtion would make it.

Tbe Corfifution of $L_{\text {natarit }}$ ms ; by Mr. Edm. Halley. N. $2 x 6$. P. 58 .

Ааг: А0, 16051

XXVHI. The old Definition of Logaritbms, that they are the equally-differing Aflociates of Proportional Numbers, is too fcanty to define them fully:

(115)

For they may much more properly be faid to be Numieri Rationum Exponentes; wherein Ratio is confidered as a Quantitas fui generis, beginning from the Ratio of Equality, or 1 to $1=0$; being Affirmative when the Ratio is increafing, as of Unity to a greater Number, but Negative when decreafing; and thefe Rationes we fuppofe to be meafured by the Number of the Ratiuncule contained in each. Now thefe Ratiunculx are to be fo underfood as in a continued Scale of Proportionals, infinite in Number between the two Tcrms of the Ratio ; which infinite Number of mean Proportionals is to that infinite Number of the like and equal Ratiuncule between any other two Terms, as the Logarithm of the one Ratio is to the Logarithm of the other. Thus if there be fuppofed between 1 and 10 an infinite Scale of mean Proportionals, whofe Number is $100000, \mathcal{E}^{\circ}$ c. in infintum; between r and 2 there flall be 3010:, $\mathcal{E}_{3} c$, of fuch Proportionals, and between 1 and 3 there will be 47712 , ₹c. of them; which Numbers therefore are the Logarithms of the Rationes of 1 to 10,1 to 2 , and 1 to 3 ; and not fo properly to be called the Logarithms of 10,2 and 3 .

This being laid down, it is obvious that if between Unity and any Number propoled, there be taken any Infinity of mean Proportionals, the infinitely little Augment or Decrement of the firft of thofe Means from Unity, will be a Ratiuncula, that is, the Momentum or Fluxion of the Ratio of Unity to the faid Number: And feeing that in thefe continual Proportionals all the Ratiunculæ are equal, their Sum, or the whole Ratio will be as the faid Momentum is directly ; that is, the Logarithm of each Ratio will be as the Fluxion thereof. Wherefore if the Root of any infinite Power be extracted out of any Number, the Differentiola of the faid Root from Unity, fhall be as the Logarithm of that Number. So that Logarithms thus produced, may be of as many Forms as you pleafe to affume infinite Indices of the Power whofe Root you feek: as if the Index be fuppofed 100000 , \&cc. infinitely, the Roots Shall be the Logarithms invented by the-Lord Napier; but if the faid Index were 2302585 , Erc. Mr. Briggs's Logarithms would immediately be produced. And if you pleafe to ftop at any Number of Figures, and not to continue them on, it will fuffice to affume an Index of a Figure or two more than your intended Logarithm is to have, as Mr. Briggs did, who to have his Logarithms true to 14 Places, by continual Extraction of the Square Reot, at laft came to have the Root of the 140737488355328 th Power; but how operofe that Extraction was, will be eafily judged by whofo fhall undertake to examine his Calculus.

Now, tho' the Notion of an infinite Power may feem very ftrange, and to thofe that know the difficulty of the Extraction of the Roots of high Powers, perhaps impracticable; yet by the help of that admirable Invention of Mr. Nerwton, whereby he determines the Unciæ or Numbers prefix'd to the Members compofing Powers, (on which chiefly depends the Doifrine of Series) the Infinity of the Irdex contributes to render the Expreffion much more ealy: For if the infinite Power to be refolved be put (after Mr. Neruton's Method) $\overline{p+p q}$

$$
Q_{2}^{2}
$$

$\overline{p+p q^{\prime \prime}}{ }^{\frac{3}{m}}$, or $\overline{1+q} q^{\frac{1}{m}}$, inftead of $1+\frac{1}{m} q+\frac{1-m}{2 m m} q q+$ $\frac{1-3 m+2 m m}{6 m^{1}} q^{3}+\frac{1-6 m+11 m m-6 m^{3}}{24 m^{+}} q^{\prime}, \& \mathrm{c}$.
(which is the Root when m is finite), becomes $1+\frac{1}{m} q-\frac{1}{2 m} q q+$ $\frac{1}{3 m} q^{3}+\frac{1}{4 x^{2}} q^{4}+\frac{1}{5 m} q^{5}$, \&c. $m m$ being infinitè infinite; and confe. quently whatever is divided thereby vanifhing. Hence it follows that $\frac{1}{1 n}$ multiplied into $q-\frac{1}{2}=q+\frac{1}{2} q^{\frac{1}{2}}-\frac{1}{4} q^{+}+\frac{1}{5} q^{5}$, \&cc. is the Augment of the firft of our mean Proportionals between Unity and $1+q$, and is therefore the Logarithm of the Ratio of 1 to $1+q$; and whereas the Infinite Index m may be taken at pleafure, the feveral Scales of Logarithms to fuch Indices will be as $\frac{1}{m}$, or reciprocally as the Indices. And if the Index be taken $10000, \mathcal{E}^{\circ} c$. as in the cafe of Napier's Logarithms, they will be fimply $q-\frac{1}{2} q q+\frac{1}{3} q^{3}-\frac{2}{4} q^{+}+\frac{1}{3} q^{5}-\frac{1}{6} q^{5}, \& c$.

Again; If the Logarithm of a decreafing Ratio be fought, the infinite Root of $\mathrm{I}-q$, or $\overline{1-q}{ }^{\frac{1}{w}}$ is $\mathrm{I}-\frac{1}{m} q-\frac{1}{2 m} q^{2}-\frac{1}{3 m} q^{3}-\frac{1}{4^{m}} q^{4}-\frac{1}{5 m} q^{3}$ $-\frac{1}{6 m} q^{\prime}, \& c$. whence the Decrement of the firft of our Infinite Number of Proportionals will be $\frac{1}{m}$ into $q+\frac{1}{2} q q+\frac{1}{3} q^{3}+\frac{1}{4} q^{+}+\frac{1}{5} q^{5}+\div q^{6}, \& c$. which therefore will be as the Logarithm of the Ratio of Unity to $1-q$: But if m be put $10000, \varepsilon_{c} c$. then the faid Logarithm will be $q+\frac{1}{2} q q+\frac{1}{q} q^{3}$ $+\frac{1}{4} q^{4}+\frac{1}{3} q^{5}+\frac{1}{6} q^{5}, \delta^{2} c$.

Hence the Terms of any Ratio being a and b, q becomes $\frac{b-a}{a}$ or the Difference divided by the leffer Term, when 'tis an increafing Ratio, or $\frac{b-a}{b}$ when 'tis decreafing, or as b to a; whence the Logarithm of the fame Ratio may be doubly expreffed; for, putting x for the Difference of the Terms a and b_{3} it will be either

(117)

$\frac{1}{m}$ into $\frac{x}{b}+\frac{x^{2}}{2 b b}+\frac{x^{3}}{3 b^{3}}+\frac{x^{4}}{4 b^{4}}+\frac{x}{5 b^{5}}+\frac{x^{5}}{6 b^{6}}$ \&cc.
or $\frac{1}{m 2}$ into $\frac{x}{a}-\frac{x^{2}}{2 a a} \frac{1}{1} \frac{x^{3}}{3 b^{3}}-\frac{x^{2}}{4 a^{2}}+\frac{x^{5}}{5 a^{5}}-\frac{x^{5}}{6 a^{3}} 8 \mathrm{c}$.
But if the Ratio of a to b be fuppofed to be divided into two Parts, viz. into the Ratio of a to the Aritbmetical Mean between the Terms, and the Ratio of the faid Aritbmetical Mean to the other Term b; then will the Sum of the Logarithms of thofe two Rationes be the Logarithm of the Ratio of a to b; and, fubftituting $\frac{1}{2} z$ inftead of $\frac{1}{2} a-1-\frac{1}{2} b$, the faid Aritbmetical Mean, the Logarithms of thole Rationes will be, by the foregoing Rule,

$$
\begin{aligned}
& \frac{1}{m} \text { into } \frac{x}{z}+\frac{x x}{2 z z}+\frac{x^{3}}{3 z^{3}}+\frac{x^{4}}{4 z^{4}}+\frac{x^{5}}{5 z^{5}}+\frac{x^{5}}{6 z^{6}} 8 x . \\
& \text { and } \frac{1}{m} \text { into } \frac{x}{z}-\frac{x x}{2 z z}+\frac{z^{3}}{3 z^{3}}-\frac{x^{4}}{4 z^{4}}+\frac{x^{5}}{5 z^{5}}-\frac{x^{5}}{6 z^{6}} 8 c .
\end{aligned}
$$

the Sum whereof $\frac{1}{m}$ into $\frac{2 x}{z} *+\frac{2 x^{3}}{3 z^{3}} *+\frac{2 x^{5}}{5 z^{5}} *+\frac{2 x^{7}}{7 z^{7}} \& c$. will be the Logarithm of the Ratio of a to b, whofe Difference is x, and Sum z. And this Series converges twice as fwift as the former, and therefore is more proper for the Practice of making Logarithms; which it performs with that Expedition, that where x the Difference is but the hundredth Part of the Sum, the firt Step, $\frac{2 x}{z}$, fuffices to feven Places of the Logarithm, and the fecond Step to twelve; but if Briggs's firft twenty Chiliads of Logarithms be fuppoled made, as he very carefully computed them, to fourteen Places, the firf Step alone is capable to give the Logarithm of any intermediate Number, true to all the Places of thofe Tables:

After the fame Manner may the Difference of the faid two Logarithms be very aptly applied to find the Logarithm of prime Numbers, having the Logarithms of the two next Numbers above and betow them: For the Difference of the Ratio of a to $\frac{1}{2} z$, and of $\frac{1}{z} z$ to b, is the Ratio of $a b$ to $\frac{1}{4} z z_{3}$ and the Half of that Ratio is that of $\sqrt{ } a b$ to $\frac{1}{2} z$, or of the Geometrical Mean to the Arithmetical. And confequently the Logarithm thereof will be the Half-difference of the Logarithms of thole Rationes, viz.

$$
\frac{1}{m} \text { into } \frac{x x}{2 z z}+\frac{x^{4}}{4 z^{5}}+\frac{x^{5}}{6 z^{5}}+\frac{x}{8 z}, \& c
$$

Which is a Theorem of good Difpatch to find the Logarithm of $\frac{1}{2} z$. But the fame is yet much more advantageouny performed by a Rule deriwed from the foregoing, and beyond which, in my Opinion, nothing better can be hoped. For the Ratio of $a b$ to $\frac{1}{4} z \approx$, or $\frac{1}{4} a a+\frac{1}{2} a b \frac{1}{2}+\frac{1}{a} b b$, has the Difference of its Terms, $\frac{1}{4} a a-\frac{1}{2} a b+\frac{5}{7} b b$, or the Square of $\frac{1}{2} a-\frac{1}{3} b=$ $\frac{3}{4} x x$, which, in the prefent Cafe of finding the Logarithms of Prime Numbers,

118)

is always Unity; and calling the Sum of the Terms $\frac{7}{4} z z+a b=y y$, the Logarithm of the Ratio of $\sqrt{ } a b$ to $\frac{x}{2} a+\frac{1}{2} b$, or $\frac{1}{2} z$ will be found,

$$
\frac{1}{1 n} \text { into } \frac{1}{y y}+\frac{1}{3 y^{6}}+\frac{1}{5 y^{10}}+\frac{1}{7 y^{1}+}+\frac{1}{9 y^{18}}, \quad \& c c .
$$

which converges very much fatter than any Tbeorem hitherto publifhed for this Purpofe.

Here note, that $\frac{1}{m}$ is all along applied to adapt there Rules to all Sorts of Logarithnis. If m be $10000, \mathcal{E}^{c} c$. it may be neglected, and you will have $N a-$ pier's Logarithms, as was hinted before ; but if you defire Briggs's Logarithms, which are now generally received, you muft divide your Series by $2,3025^{-}$09299404568401799145468436420761010148862877976033328 , or multiply it by the Reciprocal thereof, viz. $0,4342944819032518276511289 \mathrm{I}-$ S916605082294397005803666566114454.

But to fave fo operofe a Multiplication (which is more than all the reft of the Work) it is expedient to divide this Multiplicator by the Powers of z or y continually, according to the Direction of the Theorem, efpecially where x is fmall and Integer, referving the proper Quotes to be added together, when you have produced your Logarithm to as many Figures as you defire; of which Method I will give a Specimen, in the Logarithms of the firlt prime Numbers under 20 to fixty Places, computed by Mr. Abrabam Sharp, as they were communicated to me by our common Friend, Mr. Euclid Speidal.

Num.
Logarithms,
2. 0,$30102999566398119 ; 21373889472449302676818988 \times 462108541310+27$
3. $0,4771212547196624372950279032551153 C 9200128864190695864829866$
7. 0,845098040014256830712216258592636193483572396323965406503835
11. 1, 041392685158225040750199971243024241706702190466453094596539
13. I, 113943352306837769206541895026246254561189005053673288598083
17. 1,230448921378273028540169894328337030007567378425046397380368
19. 1, $278753600952828961536333+75756929317951192337394497598906819$

The next Prime Number is 23, which I will take for an Example of the foregoing Doctrine; and by the firf Rules, the Logarithm of the Ratio of 22 to 23 will be found to be either

$$
\begin{aligned}
& \frac{1}{22}-\frac{1}{968}+\frac{1}{31944}-\frac{1}{937024}+\frac{1}{25768160}, \& c c . \\
& \text { or } \frac{1}{23}+\frac{1}{1058}+\frac{1}{36531}+\frac{1}{1119364}+\frac{1}{32181715}, \& c .
\end{aligned}
$$

(119)

As likewife that of the Ratio of 23 to 24 by a like Process.

$$
\begin{aligned}
& \frac{1}{23}-\frac{1}{105^{8}}+\frac{1}{36501}-\frac{1}{1119364}+\frac{1}{32181715}, \text { \&cc. or } \\
& \frac{1}{24}+\frac{1}{115^{2}}+\frac{1}{41471}+\frac{1}{1327104}+\frac{1}{39813120} \text { \&c. }
\end{aligned}
$$

And this is the Refult of the Doctrine of Mercator, as improved by the learned Dr. Wallis. But by the fecond Theorem, viz. $\frac{2 x}{z}+\frac{2 x^{3}}{3 z^{3}}+\frac{2 x^{5}}{5 z^{5}}$, Ec. the fame Logarithms are obtained by fewer Steps; to wit,

$$
\begin{aligned}
& \frac{2}{45}+\frac{2}{273375}+\frac{2}{922640625}+\frac{2}{2615686171875}, \text { \&c. And } \\
& \frac{2}{47}+\frac{2}{311469}+\frac{2}{1146725035}+\frac{2}{3546361843241}, \text { \&c. }
\end{aligned}
$$

which was invented and demonffrated in the Hyperbolical Spaces analogous to the Logarithms, by the excellent Mr. James Gregory, in his Exercitationes Geometrica, and fince further profecuted by the aforefaid Mr. Speidall, in a late Treatife in Englifh by him publifhed on this Subject. But the Demonffration, as 1 conceive, was never till now perfected without the Confideraton of the Hyperbola, which in a Matter purely Arithmetical, as this is, cannot fo properly be applied. But what follows, I think, I may more juftly claim as my own, viz. That the Logarithm of the Ratio of the Geometrical Means to the Arithmetical, between 22 and 24 , or of $\sqrt{ } 528$ to 23 , will be found to be either,

$$
\begin{aligned}
& \frac{1}{105^{8}}+\frac{1}{1119364}+\frac{1}{888215334}+\frac{1}{626487882248}, \text { \&c. or } \\
& \frac{1}{1057}+\frac{1}{3542796579}+\frac{1}{65967655^{848} 5^{285}}, \text { \&c. }
\end{aligned}
$$

All the fe Series being to be multiplied into $0,4342944819, \varepsilon^{*} c$. if you defign to make the Logarithm of Briggs. But with great Advantage in repet of the Work, the fail 0,4342944819 , Etc. is divided by 1057, and the Quotient thereof again divided by three times the Square of 1057 , and that Quotient again by $\frac{5}{3}$ of that Square, and that Quotient by $\frac{7}{5}$ thereof, and fo forth, till you have as many Figures of your Logarithm as you defire. As for Example, the Logarithm of the Geometrical Mean between 22 and 24 is found by the Logarithms of 2,3 , and 11 , to be

```
                    (120)
                    3,36131696126690612945009172669805
    1057) 43429 &cc. (..-41087462810146814347315886368
3 in 1117249)41087 &c. (.......-12258521544181829460074
s}\mathrm{ in 1117249) 12258 &c. (.-...........-6583235184376175
fin 1117249) 65832 &c. (..................---4208829765
4%%in11177249)42088 &c.
```

Which is the Logarithm of 23 to thirty-two Places, and obtained by five Divifions with very fmall Divifors; all which is much lefs Work than fimply multiplying the Series into the faid Multiplicator 0,43429 , \& c .

From the Logarithm given to find what Ratio it expreffes, is a Problem that has not been fo much confidered as the former, but which is folved with the like Eafe, and demonftrated by a like Procefs, from the fame general Theorem of Mr. Newton; for as the Logarithm of the Ratio of I to $1+q$ was proved to be $\overline{1+q^{\frac{1}{m}}}-1$, and that of the Ratio of 1 to $1-q$ to be 1 -$\overline{1-q}^{\frac{1}{m}}$: fo the Logarithm, which we will from henceforth call L, being given, $1+L$ will be equal to $1+q^{\frac{1}{\omega}}$ in the one Cafe, and $r-L$ will be equal to $\overline{I-q} q^{\frac{1}{m}}$ in the other : Confequently $I+L^{\infty}$ will be equal to $1+q$, and $\mathrm{I}-\mathrm{D}^{\text {² }}$ to $\mathrm{I}-q$; that is, according to Mr. Nerwton's faid Rule, $1+m \mathrm{~L}+\frac{1}{2} m^{2} \mathrm{~L}^{2}+\frac{1}{6} m^{3} \mathrm{~L}^{3}+\frac{1}{24} m^{4} \mathrm{~L}^{4}+\frac{1}{120} m^{5} \mathrm{~L}^{5}$, \&c. will be $=$ to $1+q$; and $1-m \mathrm{~L}+\frac{1}{2} m^{2} \mathrm{~L}^{2}-\frac{1}{6} m^{3} \mathrm{~L}^{3}+\frac{1}{24} m+\mathrm{L}^{4}-\frac{1}{120} m{ }^{5}$ $L^{5}, E^{c} c$. will be equal to $\mathrm{I}-q ; m$ being any infinite Index whatfoever: which is a full and general Propofition from the Logarithm given to find the Number, be the Species of Logarithms what it will. But if Napier's Logarithm be given, the Multiplication by m is faved, (which Multiplication is indeed no other than the reducing the other Species to his) and the Series will be more fimple, viz. $1+L+\frac{1}{2} L^{2}+\frac{1}{6} L^{3}+\frac{1}{24} L^{4}+$ $\frac{1}{120} L^{5}, \varepsilon c_{c}$ or $1-L+\frac{1}{2} L^{2}-\frac{1}{6} L^{3}+\frac{1}{24} L^{4}-\frac{1}{120} L^{5}, \varepsilon_{c} c$. This Scries, efpecially in great Numbers, converges fo fowly, that it were to be wifhed it could be contracted.

If one Term of the Ratio, whereof L is the Logarithm, be given, the othet Term will be had eafily by the fame Rule : For if L were Napier's Logarithm

(121)

zithm of the Ratio of a the leffer to b the greater Term, b would be the Product of a into $1+\mathrm{L}+\frac{1}{2} \mathrm{~L}^{2}+\frac{1}{6} \mathrm{~L}^{3}, 8 \mathrm{c} .=a+a \mathrm{~L}+\frac{1}{2} a \mathrm{~L}^{3}$ $+\frac{1}{6} a L^{3}, \& c c$. But if b were given, a would be $=b-b L+\frac{1}{2} b L^{2}$ $-\frac{1}{6} b L^{3}, \& c \mathrm{c}$. Whence, by the help of the Cbiliads, the Number appertaining to any Logarithm will be exactly had to the utmoft Extent of the Tables. If you feek the neareft next Logarithm, whether greater or leffer, and call its Number a if leffer, or b if greater ; then the given L, and the Difference thereof from the faid neareft Logarithm you call l; it will follow that the Number anfwering to the Logarithm L will be either a into $\mathrm{x}+l$ $+\frac{1}{2} l^{2}+\frac{1}{6} l^{3}+\frac{1}{24} l^{4}+\frac{1}{120} l^{3}$, \&cc. or elfe b into $1-l+\frac{1}{2} l^{2}-$ $\frac{1}{6} l^{2}+\frac{1}{24} l+\frac{1}{120} l^{j}$, $\& \mathrm{c}$. wherein as l is lefs, the Series will converge the fwifter. And if the firt 20000 Logarithms be given to 14 Places, there is rarely occafion for the three firt Steps of this Series to find the Number to as many Places. But for Ulacq's great Canon of 100000 Logarithms, which is made but to ten Places, there is fcarce ever need for more than the firft Step $a+a l$, or $a+m a b$ in one Care, or elfe $b-b l$, or $b-3 i z l$ in the other, to have the Number true to as many Figures as thofe Logarithms confift of.

There is another Series which is not indeed fo fimple and uniform, yet the firlt Step thereof is moft commodious for Practice, and exact enough for Tables not exceeding 14 Places: It is thus; $a+\frac{a l}{1-\frac{1}{2}} l$ or $b-\frac{b l}{1+\frac{1}{2} l}$ will be the Number anfwering to the Logarithm given, differing from the Truth but by one half of the third Step from the former Series. But that which renders it yet more eligible is, that with equal Facility it ferves for Briggs's or any other fort of Logarithms, with the only Variation of writing $\frac{1}{m}$ inftead of I, that is $a+\frac{a l}{\frac{1}{m}-\frac{1}{2} l}$, and $b-\frac{b l}{-\frac{1}{m}+\frac{1}{2} l}$ or $\frac{\frac{1}{m} a+\frac{1}{2} l_{b}}{\frac{1}{m}-\frac{2}{2} l}$ and $\frac{\frac{1}{m} b-\frac{1}{2} l b}{\frac{1}{m}+\frac{1}{2} l}$ which are eafily refolved into Analogies, viz.

As 42429 . \&zc. $-\frac{1}{2} l:$ to $43429+\frac{1}{2} l:: f$ is $a:$
As 43429 \&cc. $+\frac{1}{2} l:$ to $43429-\frac{1}{2} l:: 10$ is $\left.b:\right\}$ to the Number fought,

If more of this Series be decired, it will be found as follows, $a+\frac{a l}{2-\frac{1}{2} l}-\frac{\frac{1}{12} a l}{1-l}+\frac{\frac{1}{5} a l}{1-2 l}, \xi^{2} c$ as may eafily be demonitrated by working out the Divifions in each Step, and collecting the Quotes, whofe Sum will be found to agree with our former Series; which is no other than an eafy Corollary to Mr. Newon's general T'beorem for forming Roots and Powers.

> XXIX. Papers of lefs General Ufe omitted.

Tangents to Curves. N. 8: p. 4010 . Mar. An. 1672 , Recification of Curves. N. 98. p. 6146. 6549.
1.

ABreviat of Dr. Wallis's two Methods of drawing Tangents; Extracted by him from his Cont. Scat. and other Parts of his Mathematical Works.
2. Mr. Huygens in his Hor. Ofcill. having given M. Hurcet the Honour of inventing a Curve equal to a Straight Line in the Year $\mathbf{3} 59$; Dr. Wellis here afferts this Invention to Mr. William Neile (Son of Sir Paul Neile), who difcovered and demonftrated the Equality of a Paraboloid to a Straight Line two Years before. The fame was foon after otherwife demonftrated by my Lord Brounker, and Sir Cbrifopber Wren, in Fune and Fuly 1657; and the Demonfrations inferted by Dr. Wallis, in his Tract de Cycloide 1659, with a fair Relation of the whole Matter. Befides, Sir Cbriftopber Wren found a Th. p. 6150 . ftraight Line equal to that of a Cycloid in the Year 1658: Yet he freely confeffes Mr. Neile's Invention of a Curve capable of Reilification the Year before.
3. The Abhot Galloys, having, in the Year 1693, aferted that Mr. Fames Gregory and Dr. Barrow ftole their General Propolitions concerning the Tranfformation of Curves from Mr. Robervall; Dr. Devid Grexory here fully refutes that Affertion. For Mr. Gregory publifhed his Book at Padur 1668, and Dr. Barrowe his Lectiones Geomeirice 1674, which Mr. Robervall doubtlefs had a Sight of before he died (which was not till Ociober 1675), yet he never complained of any fuch Injury done him.
4. Befides that Segment of the Semicycloidal Figure, firft obferved by Sir

Cycloidal Spaces perfacily 2 uadrable.N.217.p.111.
OCt. An. 1695.

Transformation of Curves.N. 214 p. 233.

Nov. An. 1694.
 Cbriftopber Wren, and after him by Mr. Huygens, and a Trilinear Part of it, which are capable of being Geometrically Squared; Dr. Wallis here produces from his Tiacts de Cycloide, and de Motu, fome other Portions thereof equally capable of Quadrature.
5. Dr. Wallis finds among the Mathematical Works of Bovillus, publifhed at feveral times hetween the Years 1501 and 1510 , that the Curve (which is now called the Cycloid,) was then confidered. But he alfo finds that Bovillus was not the firft who confidered it: Fo: Cardinal Cufanus, as appears by an ancient Manufcript of his Works (tranfcribed by F. Scoblant in the Year 1451) had confidered it fome time before. The Figure indeed (thro' the Unskiftulnefs of the Tranfcriber) both in the MIS. and the Bafil Edition, A. 1565 , is very ill drawn; but being corrected according to the true Meaning of that Cardinal's own Words, it evidently reprefents the modern Cycloid. From hence 'tis manifeft, that this Curve was not firft taken into Confideration either

(123)

either by Morfenmus or Gailileo, but fome Ages before, tho' never well inderftood till this prefent Age.
6. Some Papers fent by Mr. Fo. Collins to Dr. Wallis, giving his Thoughts Defais in Aggeabout fome Defects in Algebra; which he did not live to finith.
${ }^{7}$ May An 1684°
XXX. Accounts of Books, with Editions, Emendations, \&cc. omitted.

1. Uclidis Elementa Geometrica, novo ordine ac metbodo demonfirata. N. is.p.26r. Lond. 1666.
2. Archimedis Opera ; Apollonii Perg : Conic. Libriiv; Theodofii Spbarica, N. 114.P.3r4. Methodo nova illuftrata, E' fuccinEte demonftrata: ab Ifa. Barrow, R. S.S'. Lond. 1675. in 4 to.

 1676.
3. Theon Smyrneus, publifhed at Paris by 1 fmael Bulialdus in Greek and N. 80. P. 3095* Latio.
4. Diophanti Alexandrini Aritbmeticorum Libri fex, छo de Numeris Multan- N. 72. p. 228, gulis Liber unus; cum Commentariis C. G. Bacheti, E Obfervationibus D. P. de Fermat, Senatoris Tholofani: cui acceffit Doilrine Analytice Inventum Novum. Tolofe 1670. in Folio.
5. The Works of Monfieur de Fermat.
N. I. p. 15 .
6. Francifci du Laurens Specimina Matbematice, duobus Libris comprebenfa. N. so. soo. Horum prior Syntbeticus agit de Genuinis Matbefeos Principiis in genere; in fpecie autem de veris Gcometria Elementis bucufque nondum traditis.' Pofferior Analyticus de Metbodo Compofitionis atque Refolutionis fufe differit, \&o multa N. 34. p. 6540 nova complectitur, que fubtilifimam Analyfeos Artem mirum in modum promo- $\begin{gathered}\text { N. } \\ \text { N. } 39 . p \cdot p \cdot 774 \text {. } 39 .\end{gathered}$
 Cenfure vindicated, by Dr. Wallis.
7. R. P. Andreæ Taquet, è S'. F. Opera Mathematica. Antwerp. 166g. in N. 43 .p.86g. Folio.
8. A Mathematical Compendium, collected out of the Notes and Papers N. ro4.p. 8 . of Sir Fonas Moore, by Nicholas Stevenfon. Lond. 1674. in 12 mo.
9. R. P. Claudii Franc. Milliet de Chales, è S. I. Cuifus feu Mundus Ma. N. ro. p. 22g. thonaticus, univerfam Mathefin tribus Tomis compleetens. Lugd. 1674. in Folio.

1r. The Mathematical Works of Dr. Fo. Wallis, Savilian Profeflor of N. 276, p. 73. Geometry in the Univerfity of Oxford, \& F.R.S. in three Volumes in Folio. Oxon.
12. An Introduction to Algebra, tranflated out of Hligh Dutch into Eng- N. 35. p. 085. lifb by Tho. Branker, M. A. much altered and augmented by Dr. F. Pell. Aifo a Table of fuch odd Numbers as are lefs than One Hundred Thoufand, thewing thofe that are Incomposit, and refolving the reft into their FaElors, or Coefficients. Lond. in 4 to.
13. Labyrinibus Algebra. Auth. Joh. Jac. Fergufon. 1667. in 410. N. $49 \cdot p \cdot 996$

(124)

N. $90 \cdot$ p. 5 F 52 L
N. 95.p. 6073°
N. 108. p. 192°
N. 143 ip. 2 I .

N. $173.2 .1095^{\circ}$

14. The Elements of that Mathematical Science called Algebra; by Fo. Kerfey. Lond. 1673. in Folio.
15. A Treatife of Algebra, both Hiftorical and Practical; by 7o. Wallis, D. D. In the rogth Chapter there are fome Numbers mittaken, which are here rectified by the Author.
16. De Principiis E Ratiocinatione Geometsarum; contra Fafun Profefforum Geometria. Autbore Tho. Hobbes. This book is here animadverted on, and anfwered, by Dr.Wellis.
17. Thomæ Hobbes Guadraura Circuli, Cubatio Spharce, Duplicatio Cubi. confutata. Auth. Jo. Wallis. S. T. D. Oxon. 166g. in Quarto.
18. Thomæ Hobbes Quadratura Circuli, Cubatio Spberia, Duplicatio Cuói (Secundo edita) denuo refutata. Auth. Jo. Wallis. S. T. D. Oxon. 1669.
N. 72.p. $2185^{\circ} \quad$ 19. Rofetwin Geometricum, cum Cenfura ưrevi Doctrinx Wallifianæ de Motu. Autb. Tho. Hobbes Malmefourienfi. Lond. 1671. in Quarto. This Book is here anfwered by Dr. Wallis.
N. 73. p. 2202. h
19. Four Papers of Mr. Hobbs's, publifhed in the Months of Auguft and September 1671 . which are here anfwered by
20. Lux Mathematica, Collifionibus Johannis Wallifii, S. T. D. Es Thome Hobbefii Malmfburienfis, exculfa, multis \mathcal{E}° fulgentiflimis aucta radiis. Auth. R. R. Adjuncta Cenfura Doilrine Wallifianæ de Libra, una cum Rofeto Hobbe-
N. $87 \cdot p \cdot 5067$.
N. 97. p. 6 ³ $_{3}$. fii. Lond. 1672 . in 2 uarto. This Book is here anfwered by Dr. Wallis.
21. Principia \& Problemata aliquot Geonnetrica, amte desperata, nunc breviter explicata Ef demonfrata. Auth. T. H. Malmsburienfi. Lond. 1673. in Quarto.
N. $285 \cdot p \cdot 245^{\circ}$
22. Le Grand छ Fameux Probleme de la Quadrature du Cercle refolu Geometriquement par le Cercle E la Ligne droit, par M. Mallement de Meffange. à Paris. 1686. in Twelves. This Book is here refuted by M. D. Cluverius. R.S.S.
N. $3^{2} \cdot p .625^{\circ}$
N. $79 \cdot p \cdot 3064$.
N. $33 \cdot p .640$.

Ib. p. 641 .
N. $37 \cdot p \cdot 73^{\circ}$
N. $44 \cdot p .882$.
N. $216.9 .65^{\circ}$
N. $35 \cdot \mathrm{p} .685$

स. $37 \cdot p \cdot 37^{8}$
24. Nouveaux Elemens de Geometrie: Or a Mathematical Treatife, entituled New Elements of Geometry. Paris 1667. in Quarto. F. à Paris 1671 . in Twelves.
26. 1. Vera Circuli § Hyperbola Quadratura, in propria fua Proportionis Specie inventa E Demonfrata, à Jac. Gregorio Scoto. Patavii. in Quarto. This Subject is here further confidered, and the Area of an Hyperbole explained; by Mr. 7. Collins.
2. M. Huygens having publifhed Animadiverfions upon this Book, in the Journal de Sqavans, 1668. Mr. Gregory here anfwers them. To this M. Huygens replied in a following Journal of that Year; and Mr. Gregory, further to elucidate the Controveriy, here returns a fecond Anfiwer.
3. In the 48 th Page of this Book, Mr. Halley has difcovered and corrected a fmall Miftake in the Logarithm of 10 .
27. Geometrie pars Univerjalis, Quantitatum Curvarum Tranfmutationi \mathcal{O}^{3} Menfura injerviens. Sutb. Jac. Gregorio Scoto. Patavii 1668. in Quarto.
28. De Infinitis Spiralibus inverfis, Infinitifque Hyperbolis, aliijque Geometricis. Auth. F. Stephano de Angelis Veneto. Yatavii, in Quarto.
29. Micbaelis

(125)

29. Michaelis Angeli Ricci Exercitatio Geometrica. Romæ, in $4 t 0$. Reprinted N. 37.1 p. 73^{8}, at London, and annexed to Mercator's Logaritbmotecbnia.
30. Renati Franc. Slufii Mefolabum. Cui acceffit pars altera de Analyfi, ©o N. 45.p.903. Mifcellanea. Leodii Eburonum 1668, in $4 t 0$.
31. Elementa Geometria Plana. Autbore Egidio Francifco de Gottignies n. 67. p. 2054. Bruxellenfi. S. 7. Romæ. 1669. in 12 mo.
32. Synopfis Geometrica; cum tribus Opufculis, de Linea Sinuum E3 Cycloide; N. 67.p. 2054. de Maximis $\begin{gathered}\text { E Minimis, Centuria ; छ Synopfss Geometric Plance. Autb. Honor. }\end{gathered}$ Fabry. S. 7. Lugduni Galliarum 1669 . in 12 mo.
33. LeEEiones xiii. Geometrica; in quibus (prefertim) Generalia Linearum N. $75 \cdot$ p. 2260. Curvarum Symptomata declarantur, ab Ifaaco Barrow. Lond. 1669. in 4to. To thefe Lectures the Author here adds feveral Corollaries and Theorems.
34. Eraimi Bartholini Selecita Geometrica. Haunir. 1674. in 4 to. N. ro6. p. r $_{37}$
35. Elemens des Mathematiques, ou Principes Géneraux de toutes les Sciences N. iz6. p. \boldsymbol{G}_{3}. qui ont les Grandeurs pour Objeit. Par J. P. ì Paris 1675. in 410.
36. Nouvelle Metbode en Geometrie pour les Seetions des Superficies Coniques N. x19.p. $745 \cdot$ छ Cylindriques; qui ont pour Bafe des Circles, ou des Paraboles, des Ellipfes, \mathcal{E} des Hyperboliques; par Ph. de la Hire. à Paris 1673 . in 4 to.
37. De Cycloide É Seetionibus Conicis. Ph. de la Hire.

ILid. p. 746 .
38. The Geometrical Key, or Conftruction of all Equations, Linear, N. is7.p. s49. Quadratic, Cubic, and Biquadratic, by a Circle and one only Parabola; by Mr. Tho. Baker.
39. Exercitatio Geometrica de Dimenfione Figurarum. Auth. Davide Grego- N. 163 . P. 73°. rio. Edinb. 1684. in $4 t 0$.
40. Methodus Figurarum Lineis ReEZis E Curvis comprehenfarum 2uadra- N. 183. p. 185 . turas determinandi, Auth. J. Craig. Lond. 1685. in 4to. To this Tract the Ibid.p. 186. Author here makes an Addition; and takes notice of fome Remarks made on N. 235. p. 786 . it in the Ait. Lipf. by M. Leibnitz, and M. F. Bernoulli.
41. TraEtatus Matbematicus de Figurarum Curvilinearum 2uadraturis छ' No 2c9.po s13. Locis Geometricis. Auth. J. Craig. Lond. 1693. in 4 to.
42. Iractatus de Principiis Calculi Exponentialis. Auth. D. Bernoullio; N: 2+5.p.374. wherein a Miftake is here difcovered and corrected, by Mr. Craig.
43. Analy/is Geometrica, five nova E5 vera Methodus Refolvendi, tam Pro- N. 257 : p. 35 ro blemata Geonietrica, quam Aritbmeticas Queffiones. Pars prima, de Planis. Auth. D. Antonio Hugone de Omerique Sanlucarenfe.
44. Stereometrical Propofitions, variounly applicable, but particularly in- N. $39 \cdot p \cdot .785^{\circ}$ tended for Gauging; by Rob. Anderfon. Lond. 1668. in Svo.
45. Gouging promoted; being an Appendix to Stereometrical Propofitions ; N. 47. p.960. by Rob. Anderfon. Lond. 1669. in 8 vo.
46. Gauging Epitomized; by Mich. Dary. Lond. r699. upon one Folio N. 52.p. ros4. Page.
47. Tabula Numerorum 2uadratorum decies Millium, una cum ipforum Late- N. 82.p.4050. ribus ab Unitate incipientibus, \mathcal{E} Ordine Naturali ufque ad 10000 progredientibus. Lond. 1672.
48. The Defcription and Ufe of two Arithmetick Inftruments, E^{3} c. by N. 94.p. $60+3$. Sir Sam. Morelond. Lond, 1673.

49. Johannis

(126)

N. $39 \cdot$. 280.
49. Johannis Wallifi S. T. D. Exercilationes tres: 1. De Comeiaruns DiAlantiis inveffigandis. 2. De Rationum E® Fraitionum Reduciione. 3. De Periodo Fuliano. Lond 1678.
N. 38.p.753. 50. Logaritbmotecbnia Nicholai Mercatoris. Lond. 1668. in Quarto. This Lbid p. 756. Author's Method of fquaring the Hyperbola, and of finding the Sum of the Logarithms is here improved by Dr. Wallis; and further explicated by the Author himfelf.

C H A P. II.
 Trigonometry, Surveying.

A Cbrrangrapoii- I. Prob. THE Ditances of three Objects in the Same Plane being given, as
cal Problem propofd by Mr. Ricls. Townley, folved by Mr. Johri ColJin. N. Gg. P. 2093.

Mar. An. 1674.

Fig: 57:

Fig. 5^{9}.

Fig. 59

C$A S E$. If the Station be taken without the Triangle made by the Ob. jects, but in one of the Sides thereof produced, as at S : find the Angle A C B; then in the Triangle A C S, all the Angles and the Side A C are known; whence either or both the Diftances S A, or SC, may be found.

Cafe 2. If the Station be in one of the Sides of the Triangle, as at S : then having the three Sides, $A C, C B, B A$, given, find the Angle C A B ; then again in the Triangle S A B all the Angles, and the Side AB are known; whence may be found either A S, or SB, Geometrically; if you make the Argle C A D equal to the oblerved Angle C S B , and draw BS parallel to D A, you determine the Point of Station S.

Cafe 3. If the three Objects lie in a right Line as A C D (fuppofe it done), and that a Circle paffeth through the Station S, and the two Exterior Objects A, B : then is the Angle A B D equal to the obferved Angle A SC (by 21.3.E.) as infifting on the fame Arch ΛD; and the Angle $B A D$ in like manner equal to the obferved Angle C S B: By this means the Point D is determined. Join D C, and produce the fame, then a Circle paffing through the Points A, B, D, interfects $D C$ proctuced, at S, the Place of Station.

Calculation.] In the Triangle ABD, all the Angles and the Side A B, are known, whence may be found the Side A D.

Then in the Triangle $C A D$, the two Sides $C A$, and $A D$, are known, and their contained Angle C A D is known; whence may be found the Angles $C D A$, and $A C D$, the Complement whereof to a Semicircle is the Angle SC A: in which Triangle the Angles are now all known, and the Side A C : whence may be found either of the Diftances $S C$, or $S A$.

(127)

Cafe 4. If the Station be without the Triangle made by the Objects, the Sum of the Angles obferved is lefs than four Right Angles. The Conffruction is the fame as in the laft Cafe, and the Colculation likewife; faving that you muft make one Operation more; having the three Sides A C, CB, BA, thereby find the Angle C A B , which add to the Angle E A D, then you have the two Sides, viz. A C, being one of the Diftances, and A D, (found as in the former Cefe) with their contained Angle CAD, given, to find the Anglen CDA, and A CD, the Complement whereof to a Semicircle is the Angle SCA : Now in the Triangle SCA, the Angle at C being found, and at S obferved, and given by Suppofition, the other at A is likewife known, as being the Complement of the two former to a Semicircle, and the Side A C given; hence the Diflances CS , or $\Lambda \mathrm{S}$, may be found.

Cafe 5. If the Place of Station be at fome Point within the Plane of the Triangle, made by the chree Objects, the Contrucion and Calculation are the fame as in the laft, faving only that inftead of the obferved Angle A. S C, the Angle A BD is equal to the Complement chereof to a Semicircle, to wit, it is equal to the Angle A SI); both of them infifting on the fane Arch A D: And in like manner the Angle B A D is equal to the Angle DSB, which is the Complement of the obferved CSB; and in this Caje the Sum of the three Angles obferved, is equal to four Right Angles.

In thefe three latter Cafes no ufe is made of the Angle obierved between the two Otjects, as A and B, that are made the Bate-line of the Confruction; yet the fame is of ready ufe for finding the third Diftance or laft Side fought; as in the Triangle S A B, there is given the Diftance A B, its oppofite Angle equal to the Sum of the two obferved Angles, and the Angle S A B attained, as in the fourth Cafe: Hence the third Side, or laft Diftance $S B$, may be found.

And here it may be noted, that the three Angles C A S, A S B , S B C, are together equal to the Angle ACB; for the two Angles CSB and CBS are equal to ECB, as being the Complement of S C B to two Right Angles; and the like in the Triangie on the other Side. Ergo, \&ec.

Cafe 6. If the three Objects be $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and the Station at S , as before, it may happen, according to the former Conflimelions, that the Points C and 1) may fall clofe together, and fo a right Line joining them, fhall be produeed with Uncertainty; in fuch Caje the Circle may be conceived to pafs through the Place of Station at S, and any two of the Objects, as through B and C; wherein making the Angle D BC equal to the obferved Angle ASC, and BCD equal to the Complement to 180 cieg. of both the oblerved Angles in DS B; thereby the Point D is determined, through which, and the Points C, B, the Circle is to be deferibed; and joining D A, (produced when Need requireth) where it interfects the Circle, as at S, is the Place of Station fought.

This Problem may be of good ufe for the due Situation of Sands and Rocks, that are within fight of three Places upon Land, whofe Diftances are wel! known; or for Chorograpbical Ufes, \&ec. efpecially now there is a Method of obferving Angles nicely accurate by the Aid of a Telefcope.

(128)

Tbree Ciorograpbic Problems folved by a Member of tbe. Philorophical Society at Oxford. N. 177. P. 1231 Dec. An. 1685° Itance and Pofition of Rocks, Sands, E'c. from the Shore; or in Surveying the Sea-Coaft ; when only two Objects, whofe Diftance from each other is known, can be feen at one Station: But efpecially they may be ufeful to one, that would make a Map of a Country by a Series of Triangles derived from one or more meafured Bafes; which is the moft exact Way of finding the Bearing and Diftance of Places from each other, and thence their true Longitude and Latitude ; and may confequently occur to one that would in that Matter meafure a Degree on the Earth.

Fig. 63.

Fig. 66.

Fig. 64.

Fig. 650

Prob. 1.] There are two Objeets B and C, whore Diftance $B C$ is known; and there are two Stations at A and E, where the Objects B, C, being vifible, and the Stations one from another, the Angles $B A C, B A E, A E B, A E C$, are knowne by Obfervation, (which may be made with an ordinary Surveying Semicircle, or Crofs-Staff; or, if the Objects are beyond the View of the naked Eye, with a Telefcopic Quadrant;) To find the Diftances or Lines $A B, A C, A E, E C$.

Conftruction.] In each of the Triangles, B A E, C A E, two Angles at A, E, being known, the third is alfo known; then take any Line $\alpha \varepsilon$ at pleafure, on which conftitute the Triangles, $\beta \alpha \varepsilon, \alpha \varepsilon \gamma$, refpectively equiangular to the Triangles B A E, AEC ; join $\beta \gamma$: Then upon BC conftitute the Triangles BCA, BCE, equiangular to the correfpondent Triangles $\beta \gamma \alpha, \beta \gamma \varepsilon$, join A E, and the Thing is manifeftly done.

The Calculation.] Affuming $\alpha \varepsilon$, of any Number of Parts, in the Triangles $\alpha \beta \varepsilon, \alpha \gamma \varepsilon$, the Angles being given, the Sides $\alpha \beta, \alpha \gamma, \varepsilon \beta, \varepsilon \gamma$, may be found by Trigonometry: Then in the Triangle $\beta \alpha \gamma$, having the Angle $\beta \propto \gamma$, and the Legs $\alpha \beta$, $\alpha \gamma$, we may find $\beta \gamma$. Then $\beta \gamma: \mathrm{BC}:: \beta \alpha: \mathrm{BA}:: \beta_{\varepsilon}: B E$ $\therefore \gamma^{\alpha}:$ CA $:: \gamma^{\varepsilon}:$ CE.

Prob. 2.] Three Objects B, C, D, are given, or (which is the fame) the Sides and confequent Angles of the Triangle BCD are given; alfo there are two Points or Stations A, E, fuch that at A may be feen the three Points B, C, E, but not D, and at the Station E, way be feen A, C, D, but not B; that is, the An. gles $B A C, B A E, A E C, A E D$, (and conjequently $E A C, A E C$) are knorin by Obfervation: To find the Lines $A B, A C, A E, E C, E D$.

Conffruction.] Take any Line α s at pleafure, and at its Extremities make the Angles $\varepsilon \alpha \gamma, \varepsilon \alpha \beta, \alpha \varepsilon \gamma, \alpha \varepsilon \delta$, equal to the correfpondent obferved Angles EAC, EAB, AEC, AED. Produce $\beta \alpha, \delta \varepsilon$, till they meet in φ; join φ_{γ} : then upon C B deferibe (according to 33.3.E.) a Segment of a Circle, that may contain an Angle $=\gamma \phi \beta$; and upon CD defcribe a Segment of a Circle capable of an Angle $=\gamma \varphi \delta:$ Suppofe F the common Section of thefe ${ }_{2}$ Circles; join F B, F C, F D ; then from the Point C, draw for the Lines CA, CE, to that the Angle FC A may be $=\varphi \gamma \alpha$, and FCE $=\varphi \gamma \varepsilon$: fo A, E, the common Sections of C A, C E, with F B , F D, will be the Points sequired, from whence the reft is eafily deduced.

Calculation.] Affuming $\alpha \in$ of any Number, in the Triangles $\alpha \gamma, \alpha \varepsilon, \phi \in$, all the Angles being given, with the Side $\alpha \varepsilon$ affumed, the Sides $\alpha \gamma, \varepsilon \gamma, \alpha \varphi, \varepsilon \varphi$, will be known; then in the Triangle $\gamma \alpha \varphi$, the Angle $\gamma \alpha \varphi$, with the Legs $\alpha \gamma, \alpha \varphi$, being known, the Angles $\alpha \varphi \gamma, \alpha \gamma \varphi$, with the Side $\varphi \gamma$, will be known: Then as for the reft of the Work, the Triangle BCD having all its Sides and Angles known, and the Angles BF C, B F D, being equal to the found $\beta \varphi \gamma, \beta \varphi \delta$; how to find FB, FC, FD, by Calculation (and alfo Protraction) has been already fhewn above by Mr. Collins, as to all its Cafes.

But it muft here be noted, that if the Sum of the obferved Angles B A E, $A E D$, is 180 deg. then $A B$, and ED, cannot meet, becaufe they are parallel, and confequently the given Solution cannot take Place; for which Reafon I here fubjoin another.

Another Solution.] Upon B C defcribe a Segment B A C, of a Circle, fo that the Angle of the Segment may be equal to the oblerved Angle $\beta \alpha \gamma$, (which is fhewn 33.3 .E.) and upon CD defribe a Segment CED, of a Circle, capable of an Angle equal to the obferved C E D; from C draw the Diameters of thefe Circles CG, CH; then upon CG defcribe a Segment of a Circle G FC, capable of an Angle equal to the obferved Angle A B C; likewife upon CH, defcribe a Circle's Segment CFA, capable of an Angle equal to the obferved Angle C A E: fuppofe F the common Section of the two laft Circles HFC, GFC; join FH, cutting the Circle HEC in E; join alfo FG, cutting the Circle G AC in A: I fay, that A, E, are the Points required.

Demonftration.] For the Angle BAC is $=\beta \alpha y$, by Conftruction of the Segment; alfo the Angles CEH, CA G, are right, becaufe each exifts in a Semicircle : Therefore a Circle being defcribed upon CF, as a Diameter, will pals thro' E, A; therefore the Angle C A E $=$ C EE $=$ C E H $=$ (by Confruction) to the obferved Angle $\gamma^{\alpha} \varepsilon_{0}$. In like manner the Angle C E A = CFA $=$ CF G $=$ obferv'd Angle $\gamma \varepsilon \alpha$.

If the Stations A, E, fall in a right Line with the Point C; the Lines G A, HE, being parallel, cannot meet; but in this Cafe the Problem is indeterminate, and capable of infnite Solutions. For, as before, upon C G, defcribe a Segment of a Circle capable of the obferved Angle $\gamma \varepsilon \alpha$, and upon CH, defcribe a Segment capable of the obferved Angle $\gamma \omega \varepsilon$: then through C draw a Line any way, cutting the Circles in A, E, thefe Points will anfwer the Queftion.

Problem 3.] Four Points, B, C, D, F, or the four Sides of a Quedrilateral, with the Angles comprebended, are given; aljo there are two Stations A and E, fuch, that at A, only B, C, E, are vifible, and at E, only A, D, F; that is, the Angles $B A C, B A E, A E D, D E F$, are given: To find the Places of the two Points A, E; and confequently the Lengths of the Lines $A B, A C, A E, E D, E F$.

Confruction.] Upon BC (by 33.3. E.) defcribe a Segment of a Circle, that may contain an Angle equal to the obferved Angle BAC; then from C draw the Chord CM, of a Line cutcing the Circle in M, fo that the Angie B C M, may be equal to the Supplement of the obferved Angle B A E, i, e, its Refidue

Yol. I.

(130)

to 180 deg. In like manner on DF defcribe a Segment of a Circle, capable of an Angle equal to the obferved DEF; and from D draw the Chord D N, fo that the Angle FDN may be equal to the Supplement of the obferved Angle AEF; join M N, cutting the two Circles in A, E: I fay, A, E, are the two Points required.

Demonfration.] Join A B, AC, ED, EF; then is the Angle MAB= BCM (by 21.3.E.) = Supplement of the obferved Angle B A E, by ConAruction; therefore the conftructed Angle B A E, is equal to that which was obferv'd. Alfo the Angle B A C, of the Segment, is, by Conftruction of the Segment, equal to the obferved Angle B A C. In like manner the conftructed Angles AEF, DEF, are equal to the correfpondent obferved Angles AEF, and DEF ; therefore A, E, are the Points required.

Calculation.] In the Triangle BCM, the Angle BCM, ($=$ Supplement of BAE) and Angle BMC, ($=\mathrm{BAC}$) are given, with the Side BC; thence M C may be found: in like manner D N, in the Triangle DNF, may be found. But the Angle MCD ($=\mathrm{BCD}-\mathrm{BCM}$) is known, with its Legs M C, C D ; therefore its Bafe M D, and Angle M D C, may be known. Therefore the Angle MDN ($=\mathrm{CDF}-\mathrm{CDM}-\mathrm{EDN}$) is known, with its Legs M D, DN; thence M N, with the Angles D M N, DNM, will be known. Then the Angle CMA ($=\mathrm{DMC}+\mathrm{DMN}$) is known, with the Angle MAC $(=$ MAB +BAC$)$ and MC , before found; therefore M A, and AC, will be known. In like manner in the Triangle E D N, the Angles E, N, with the Side D N, being known, the Sides $E N, E D$, will be known ; therefore $A E(=M N-M A-E N)$ is known. Alfo in the Triangle A B C, the Angle A, with its Sides B C, C A, being known, the Side A B will be known, with the Angle BC A; fo in the Triangle E F D, the Angle E, with the Sides ED, D F, being known, E F will be found, with the Angle E DF. Laftly, in the Triangle ACD, the Angle ACD ($=$ BCD-BCA) with its Legs AC, CD, being known, the Side A D will be known; and in like manner E C, in the Triangle EDC.

Note, That in this Problem, as alfo in the firf and fecond, if the two Stations fall in a right Line with either of the given Objects, the Locus of A or E being a Circle, the particular Point of A or E cannot be determined from the Things given.

As to the other Cafes of this third Problem, wherein A and Emay mift Places, i. e. only D, F, E, may be vifible at A, and only A, B, C, at E; or wherein B, D, E, may be vifible at A, and only C, F, A, at E; or wherein A may be on one fide of the Quadrilateral, and E on the other; or one of the Stations within the Quadrilateral, and the other without it; I prefume that the Surveyor will eafily direct himfelf, by what has been already faid.

The Solution of this third Problem is general, and ferves alfo for both the precedent. For fuppofe C, D, the fame Point in the laft Figure, and it gives the Solution of the fecond Problem; but if B, C, be fuppofed the fame Points with D, F, by proceeding as in the laft, you may directly folve the firt Problem,
III. The Variation of the magretic Needie is fo commonly known, that A_{n} Error of I need not infift much on the Explication thereof; 'tis certain that the true cors, in sumparimg folar Meridian, and the Meridian flewn by a Needle, aggree but in very few strivest ingert of of Places of the World; and this too, but for a little Time (if a Moment) together; the Difference between the true Meridian and niagnetic Meridian mime with bbe perpetually varying and changing in all Places, and at all Times; fometimes to the Eaftward, and fometimes to the Weftward.
det
On which Account 'tis impoffible to compare two Surveys of the fame Place, ${ }_{c}, d ; b y$, M. willitan Moly-
 by which the Down Survey, or Sir William Petty's Survey of Ireland was taken) without due Allowance be made for this Variation. To which purpofe, we ought to know the Difference between the magnetic Meridian and true Meridian, at that time of the Dorwn Survey, and the faid Difference at the Time when we make a Nero Survey to compare with the Down Survey.

But here I would not be underftood, as if I propofed hereby to fhew, that a Map of the fame Place, taken by magnetic Inftruments at never fo diftant Times, fhould not at one Time give the fame Figure and Contents as at another Time. This certainly it will do moft exactly, the Variation of the Needle having nothing to do either in the Shape or Contents of the Survey. All that is affected thereby, is the Bearings of the Lines run by the Chain, and the Boundaries between Neighbours. And how this may caufe a confiderable Error (unlefs due Allowance be made for it) is what I fhall prove moft fully.

In order to which, let us fuppofe that about the Year 1657 (at which time the Down Survey was taken) the magnetic Meridian and true Meridian did agree at Dublin, or pretty nigh all over Ireland; that is to fay, that there was no Variation. And indeed by Experiment it was at that time found, as I am well affured, that at Dublin it was hardly half a Degree.

Let us fuppofe, that in the Year 1695 the Variation was 7 Degrees from the North to the Weftward: That it was really fo, I believe, I am pretty well affured, from an Experiment made by myjelf with all Diligence. But this is not material ; let us now only fuppofe it.

Let A, B, reprefent the Survey of two Town Lands, one in the Poffefion of A, and the other in Poffefion of B, taken by the Dowin Survey, Anno 1657 , when there was no Variation.

Let the Line NS, running through the Point P, be the true Meridian, and confequently the magnetic Meridian alfo at that Time, becaufe of the fuppofed no Variation; and let this Line NS , be alfo the Boundary between the two Town Lands A, and B.
In the Year 1695, when the Variation is 7 Degrees from the North to the Weftward, B having a Map of the Down Survey, and being fufpicious that his Neighbour A had encroached on him by a Ditch $P \mathrm{Q}$, employs a Surveyor to enquire into the Matter: The Surveyor finds by his Map, that the Boundary between B and his Neighbour A, run from the Point P, through a Meadow, direclly according to the magnetic Meridian S P N; bat obferving, the Ditch PQ calt up much to the Eaftward of the prefent magnetic Meridian, he concludes tiat A has encroached upon B, and that the Ditch ought to have

(132)

been caft up along the Line $\mathrm{P} q$, the Angle QP q being an Angle of 7 . deg. that is, the prefent Variation of the Needle, and the Line $P q$, the prefent magnetic Meridian ; for which Variation not making any Allowance, he pofitively determines that B has all the Land in the Triangle QP q, more than he ought to have; and that his Ditch ought to run along the Line $\mathrm{P} q$.
'Tis true indeed, if the Surveyor go the whole Surround of the Land A, and B, he will find their Figure and Contents exactly agreeable to the Map here expreffed. But then the Bearings of the Lines are all 7 deg. different from the Bearings in the Map, and they will run in and out upon the adjacent neighbouring Lands, and caufe endlefs Differences between their Poffefors; as is manifelt from the Figure: Wherein the prick'd Lines reprefent the Difagreement in the Bearings of the Lines, protracted from the Point P; and we fee A encroaching upon his Neighbours on the Weftward, as he encroaches upon B, and B's Eaftward Neighbours encroaching on him, and fo forward and clear round. Whereas by a due Allowance for the Variation of the Needle, all this Confufion and Difagreement is avoided, and every thing hits right.

Thus, for Inftance, in the Cafe before us, knowing that the magnetic Variation has cauled the prefent magnetic Meridian to fall in the Line $n q \mathrm{P}_{s}$, 7 deg. from the North to the Weftward; to reduce this to the magnetic Meridian at the Time of the Docen Survey, I mult make the Meridian of my Map to fall 7 deg. to the Eaftward of my magnetic Meridian, as we fee the Line PQ falls 7 deg. to the Eaftward of the Line $\mathrm{P} q$.

What is here faid on Suppofition that the Magnet had no Variation at the Time of the firft Survey taken, and that it had 7 deg. Variation Weftward at the Time of the fecond Survey, may eafily be accommodated to the Suppofal of any other Variations at the firft and fecond Surveys, mutatis mutandis; for knowing the Variations we know their Difference; and if we know. their Difference, this gives us the Angle QPq, by which we reduce them to each other. The beft Way therefore to make Maps invariable, conftant, and everlafting, were for the Surveyors, who ufe magnetic Inftruments, to make always Allowance for the magnetic Variation, and to protract and lay. down Plats by the true Meridian.

Perhaps it may be objected, That Surveys may be taken without magnetic Inftruments, and that therefore this Error arifing from the magnetic Variation, and Change of the Bearing of Lines, may be avoided. To which I anfwer, Firft, That granting a Survey may be taken without magnetic Inftruments, this is nothing againft what we have laid down, relating to Surveys that are taken with magnetic Inftruments, as the Down Survey actually was, and moft Surveys at prefent actually are taken therewith. Secondly, Tho' a Survey may be taken truly without magnetic Inftruments, fo as to fhew the exact Angles and Lines of the Plat, and confequently the true Contents; yet this will not give the true Bearings of the Lines, or fhew my Pofition in relation to my Neighbours, or other Parts of the Country. This muft be fupplied by the Magnet, or fomething equivalent thereto, as finding a true meridian Line on your Land by celeftial Obfervation. And I doubt not but the ancient Agyptians, before the Difcovery of the Magnet, were forced to fome fuch Expedient in their Surveys

(133)

Surveys and Applotments of Lands, between Neighbour and Neighbour, after the Inundations of the Nile; which, we are told, gave the firf Original to Geometry and Surveing: Abfolute Neceffity and Ufe having introduced thefe, as Delight and Diverfion introduced Aftronomy amongtt the Cbaldeans.

And this brings me to another Objection, which may be made againft the Inftance before laid down: It may be faid, That certainly the Surveyor which B employed was very ignorant, who would chufe to judge of the Line PQ rather by its Bearing, than by determining the Point Q by meafuring from H and G. To this I anfwer, What if both the Points H and G were vanifhed fince the Dowen Survey was taken? What if the whole Face of the Country were changed, fave only the Point P, and the Line PQ? How fhall the Surveyor then judge of the Line PQ , but by its Bearing? That this is no extravagant Suppofition, we have an Example in Egypt abovementioned, where the Nile lays all flat before it, and fo uniformly covers all with Mud, that there is no Diflinction. In fuch a Cafe your Bearing muft certainly help you out; there is no other Way.

But I anfwer, fecondly, To fay that the Surveyor might have determined the Point Q by Admeafurement from G and H, or any other adjoining noted Points, as from $\mathrm{F}, \mathrm{K}, \mathrm{I}, \mathcal{E}^{\circ} \mathrm{c}$. 'tis very true; but then 'tis againft our Suppofition. I am upon hhewing an Error that arifes from judging of the Line PQ by magnetic Bearing; and to tell me that this might be avoided by another Way, is to fay nothing. I myfelf thew how it may be avoided, by allowing for the Variation; but ftill it is an Error till it be avoided.

But, thirdly, If B's Surveyor do not allow for the Variation of the Needle, he will never exactly determine even the Points G, F,H,K, \mathcal{E}°. or any other Points in the Plat ; but inftead thereof, will fall on the Points g, b, f, k.

From what has been laid down, we may fee the abfolute Neceffity of allowing for the Variation of the Magnet, in comparing old Surveys with new ones; for want of which, great Difputes may arife between neighbouring Proprietors of Lands: And it were to be wifhed, that our honourable and learned Judges would take this Matter into their Confideration, wheneverany Bufinefs of this Kind comes before them.
IV. I have invented a Level with a Tube, with Glaffes and a Thread, A new Livel; hanging between four Points, with a Weight in a Box fo contrived, that field. N. $\mathbf{3 4 1}$. as foon as the Inftrument is fet down, you have your Point of Horizon with p. 1 or 6 . a great deal of Exactnefs. I am making another, which playeth on one Steel ${ }^{\text {Sept, An, } 1678^{\circ}}$ Point, ftanding on a Diamond.

[^0]
C H A P. III.

 $\begin{array}{llllll}O & P & T & I & C\end{array}$Ance Tbeory abnut Ligbs and Colours; by Mr. Iface Newton, N. 80. p. 3075. Feb. An. 1672.

IN the Year 1666 (at which time I applied myfelf to the Grinding of Optic Glaffes of other Figures than Spherical) I procured me a Triangular Glafs-Prifm, to try therewith the celebrated Phrenomena of Colours. And in order thereto, having darkened my Chamber, and made a fmall Hole in my Window-fhuts, to let in a convenient Quantity of the Sun's Light, I placed my Prifm at its Entrance, that it might be thereby refracted to the oppofite Wall. It was at firt a very pleafing Divertifement, to view the vivid and intenfe Colours produced thereby; but after a while applying my\{elf to confider them more circumfpectly, I became furprifed to fee them in an obiong Form ; which, according to the received Laws of Refractions, I expected Thould have been circular. They were terminated at the Sides with ftreight Lines, but at the Ends the Decay of Light was fo gradual, that it was difficult to determine juflly what was their Figure, yet they feemed Semicircular.

Comparing the Length of this coloured Speitrum with its Breadth, I found it about five Times greater; a Difproportion fo extravagant, that it excited me to a more than ordinary Curiofity of examining from whence it might proceed, I could farce think, that the various Thicknefs of the Glafs, or the Termination with Shadow or Darknefs, could have any Influence on Light to produce fuch an Effect ; yet I thought it not amifs, firf to examine thofe Circumftances, and fo tried what would happen by tranfmitting Light through Parts of the Glafs of divers Thickneffes, or through Holes in the Window of divers Bigneffes, or by fetting the Prifm without, fo that the Light might pafs through it, and be refracted, before it was terminated by the Hole: But I found none of thofe Circumftances material. The Fafhion of the Colours was in all there Cafes the fame.

Then I fufpected, whether by any Unevennefs in the Glafs, or other contingent Irregularity, thefe Colours might be thus dilated. And to try this, I took another Prifm like the former, and fo placed it, that the Light paffing thro' them both, might be refracted contrary ways, and fo by the latter returned into that Courfe from which the former had diverted it: For by this means I thought the regular Effects of the firft Prifm would be deftroyed by the record Prifm, but the irregular Ones more augmented, by the Multiplicity of Refractions. The Event was, that the Light, which by the firf Prifm was diffufed into an oblong Form, was by the fecond reduced into an orbicular One, with as much Regularity as when it did not at all pafs through them.
N. $\mathrm{s}_{3 . f .4061 \text {. That this Experiment may be better apprehended; let E G defign the }}$

Fig. 2. Window; F , the Hole in it, thro' which the Light arrives at the Prifms; A.BC, the firft Prifin, which refracts the Light towards $\mathrm{P} T$, painting there

(135)

the Colour in an Oblong, and $\alpha \beta \gamma$, the fecond Prifn, which refracts back again the Rays to Q , where the long Image PT is contracted into a round one. I fuppofe the Plane $\alpha \gamma$ parallel to BC, and $\beta \gamma$ to A C, that the Rays may be equally refracted contrary ways in both Prifms. The Prifms alfo munt be placed very near to one another; for if their Diftance be fo great, that the Colours begin to appear in the Light, before its Incidence on the fecond Prifm, thofe Colours will not be deftroyed by the contrary Refractions of that Prifm. And if a Lens be placed in the Hole F, or immediately after the Prifms, fo that its Focus be at the Image Q , or P T , the Perimeter of the Image Q , and the ftraight Sides of the Image $\mathrm{P} T$, will become much better defined than otherwife. So that, whatever was the Caufe of that Length, N. 80. F. 3076. 'twas not any contingent Irregularity.
2 I then proceeded to examine more critically, what might be effected by the Difference of the Incidence of Rays coming from divers Parts of the Sun; and to that end, meafured the feveral Limes and Angles belonging to the Image. Its Diftance from the Hole or Prifm was 22 Feet; its utmoft Length $13 \frac{1}{4}$ Inches; its Breadth 2 $\frac{5}{8}$; the Diameter of the Hole $\frac{1}{4}$ of an Inch. The Angle which the Rays, tending towards the middle of the Image, made with thofe Lines, in which they would have proceeded without Refraction, was 44 deg. 56 min . and the Vertical Angle of the Prifm, 63 deg .12 min . Alfo the Refractions on both Sides the Prifm, that is, of the Incident and Emergent Rays, were, as near as I could make them, equal, and confequently about 54 deg. 4 min . And the Rays fell perpendicularly upon the Wall. Now fubducting the Diameter of the Hole from the Length and Breadth of the Image, there remains 13 Inches in the Length, and $2 \frac{3}{8}$ the Breadth, comprehended by thofe Rays, which paffed through the Center of the faid Hole; and confequently the Angle of the Hole, which that Breadth fubtended, was about 31 min . anfwerable to the Sun's Diameter; but the Angle which its Length fubtended, was more than five fuch Diameters, namely 2 deg. 49 min .

Having made thefe Obfervations, I firft computed from them the refractive Power of that Glafs, and found it meafured by the Ratio of the Sines, 20 to 31 ; and then by that Ratio I computed the Refractions of two Rays flowing from oppofite Parts of the Sun's Difous, fo as to differ 31 min. in their Obliquity of Incidence, and found that the emergent Rays fhould have comprehended an Angle of about 31 min . as they did before they were incident. But becaufe this Computation was founded on the Hypothefis of the Proportionality of the Sines of Incidence and Refraction, which though by my own Experience I could not imagine to be fo erroneous, as to make that Angle but 31 min . which in reality was 2 deg. 49 min . yet my Curiofity caufed me again to take my Prifm: And having placed it at my Window, as before, I obferved, that by turning it a little about its Axis to and fro, fo as to vary its Obliquity to the Light, more than an Angle of 4 or 5 Degrees, the Colours were not thereby fenfibly tranflated from their Place on the Wall; and confequently by that Variation of Incidence, the Qutentity of Refraction was not fenfibly varied. By this Experiment therefore, as well as by the formet:

Computation, it was evident, that the Difference of the Incidence of Rays, flowing from divers Parts of the Sun, could not make them after Decuffation diverge at a fenfibly greater Angle, than that at which they before converged; which being, at moft, but about 31 or $3^{2} \mathrm{~min}$. there ftill remained fome other Caule to be found out, from whence it could be 2 deg. 49 min .

Then I began to fufpect, whether the Rays, after their Trajection through the Prifin, did not move in curve Lines, and according to their more or lefs Curvity tend to divers Parts of the Wall. And it increafed my Sufpicion, when I remember'd that I had often feen a Tennis-Ball ftruck with an oblique Racket, defcribe fuch a curve Line. For, a circular as well as a progreflive Motion being communicated to it by that Stroke, its Parts on that Side, where the Motions confpire, muft prefs and beat the contiguous Air more violently than on the other, and there excite a Reluctancy and Re-action of the Air proportionably greater. And for the fame Reafon, if the Rays of Light fhould poffibly be globular Bodies, and by their oblique Paffage out of one Medium into another acquire a circulating Motion, they ought to feel the greater Refiftance from the ambient Æther on that Side where the Motions confpire, and thence be continually bowed to the other. But notwithftanding this plaufible Ground of Sufpicion, when I came to examine it, I could obferve no fuch Curvity in them. And befides (which was enough for my purpofe) I obferved, that the Difference betwixt the Length of the Image, and the Diameter of the Hole through which the Light was tranfmitted, was proportionable to their Diftance.

The gradual Removal of thefe Sufpicions at length led me to the Experimentum Crucis, which was this; I took two Boards, and placed one of them clofe bebind the Prifm at the Window, fo that the Light might pafs through a fmall Hole, made in it for the purpofe, and fall on the other Board, which I placed at about 12 Feet diftance, having firt made a fmall Hole in it alfo for fome of that incident Light to pafs through. Then 1 placed another Prifm behind this fecond Board, fo that the Light trajected through both the Boards might pals through that alfo, and be again refracted before it arrived at the Wall. This done, I took the firft Prifm in my Hand, and turned it to and Fro nowly about its Axis, fo much as to make the feveral Parts of the Image, caft on the fecond Board, fucceffively pafs through the Hole in it, that I might obferve to what Places on the Wall the fecond Prifin would refract them. And I faw by the Variation of thofe Places, that the Light, tending to that End of the Image towards which the Refraction of the firt Prifm was made, did in the fecond Prifm fuffer a Refraction confiderably greater than the Light tending to the other End. And fo the true Caufe of the Length
Bid. p. 3081 of that Image was derected to be no other, than that Light is not fimilar or homogeneal, but confitts of difform Rays, fome of which are more reframgible than others; fo that without any Difference in their Incidence on the fame Medium, fome hall be more refraEted than others; and therefore that, according to their partioular Degrees of Refrangibility, they were tranfmitted through the Pifin to divers Parts of the oppolite Wall.

(137)

I hall now proceed to acquaint you with another more notable Difformity in its Rays, wherein the Origin of Colours is unfolded: Concerning which I fhall lay down the Doctrine firft ; and then, for its Examination, give you an Inftance or two of the Experiments, as a Specimen of the reft.

The Doctrine you will find comprehended and illuftrated in the following Propofitions.

1. As the Rays of Light differ in Degrees of Refrangibility, fo they alfo differ in their Difpofition to exhibit this or that particular Colour. Colours are not Qualifications of Light, derived from Refractions, or Reflections of natural Bodies (as 'tis generally believed) but original and connate Properties, which in divers Rays are divers. Some Rays are difpofed to exhibit a Red Colour, and no other; fome a Yellow, and no other; fome a Green, and no other; and fo of the reft. Nor are there only Rays proper and particular to the more eminent Colours, but even to all their intermediate Gradations.
2. To the fame Degree of Refrangibility ever belongs the fame Colour, and to the fame Colour ever belongs the fame Degree of Refrangibility. The leaft refrangible Rays are all difpofed to exhibic a Red Colour ; and contrarily, thofe Rays which are difpofed to exhibit a Red Colour, are all the leaft refrangible: So the moft refrangible Rays are all difpofed to exhibit a deep Violet Colour ; and contrarily, thofe which are apt to exhibit fuch a Violet Colour, are all the moft refrangible: And fo to all the intermediate Colours in a continued Series belong intermediate Degrees of Refrangibility. And this Analogy betwixt Colours and Refrangibility is very precife and ftrict; the Rays always either exactly agreeing in both, or proportionally difagreeing in both.
3. The Species of Colour, and Degree of Refrangibility proper to any particular Sort of Rays, is not mutable by Refraction, nor by Reflection from natural Bodies, nor by any other Caufe that I could yet obferve. When any one Sort of Rays hath been well parted from thofe of other Kinds, it hath afterwards obftinately retained its Colour, notwithftanding my utmolt Endeavours to change it. I have refracted it with Prifms, and reflected it with Bodies, which in Day-light were of other Colours; I have intercepted it with the coloured Film of Air, interceding two compreffed Plates of Glafs, tranfmitted it through coloured Mediums, and through Mediums irradiated with other Sorts of Rays, and diverlly terminated it; and yet could never produce any new Colour out of it. It would by contracting or dilating become more brifk, or faint, and, by the Lofs of many Rays, in fome Cafes very obfcure and dark; but I could never fee it changed in Specie.
4. Yet feeming Tranfmutations of Colours may be made, where there is any Mixture of divers Sorts of Rays: For in fuch Mixtures, the component Colours appear not; but, by their mutual allaying each other, conftitute a middling Colour. And therefore, if by Refraction, or any other of the aforefaid Caufes, the difform Rays, latent in fuch a Mixture, be feparated, there fhall emerge Colours different from the Colour of the Compofition. Which Colours are not new generated, but only made apparent by being parted; for Vol. I.

(138)

if they be again intirely mixed and blended together, they will again compofe that Colour, which they did before Separation. And for the fame Reafon, Tranfmutations made by the convening of divers Colours are not real; for when the difform Rays are again fevered, they will exhibit the very fame Colours which they did befare they entered the Compofition; as you fee Blue and Yellow Powders, when finely mixed, appear to the naked Eye, Green; and yet the Colours of the component Corpufcles are not thereby really tranfmuted, but only blended. For when viewed with a good Microfcope, they ftill appear Blue and Yellow interfperfedly.
5. There are therefore two forts of Colours, the one Original and Simple, the other compounded of thefe. The original or primary Colours are, Red, Yellow, Green, Blue, and a Violet-Purple, together with Orange, Indico, and an indefinite Variety of intermediare Gradations.
6. The fame Colours in Specie with thefe primary Ones, may be alfo produced by Compofition. For a Mixture of Yellow and Blue makes Green; of Red and Yellow makes Orange; of Orange and Yellowifh Green makes Ycllow. And in general, if any two Colours be mixed, which in the Series of thofe generated by the Prifm are not too far diftant one from another, they by their mutual Alloy compound that Colour, which in the faid Series appeareth in the Midway between them. But thofe which are fituated at too great a Diftance, do not lo. Orange and Indico produce not the intermediate Green, nor Scarlet and Green the intermediate Yellow.
7. But the mof furprizing and wonderful Compofition was that of Whitenets. There is no one fort of Rays which alone can exhibit this. 'Tis ever compounded; and to its Compofition are requifite all the aforefaid primary Colours, mixed in a due Proportion. I have often with Admiration beheld, that all the Colours of the Prifin being made to converge, and thereby to be again mixed, as they were in the Light before it was incident upon the Prifm, reproduced Light, entirely and perfectly White, and not at all fenfibly differing from a direct Light of the Sun, unlefs when the Glaffes I ufed were not fufficiently clear; for then they woukd a litte incline it to their Colour.
8. Hence therefore it comes to pafs, that Whitenefs is the ufual Colour of Light; for Light is a confuled Aggregate of Rays indued with all forts of Colours, as they were promifcuoully darted from the various Parts of Juminous Bodies. And of fuch a confufed Aggregate, as I faid, is generated Whitenefs, if there be a due Proportion of the Ingredients; but if any one predominate, the Light muft incline to that Colour; as it happens in the biue Flame of Brimtone; the yellow Flame of a Candle; and the various Colours of the Fixed Stars.
9. Thefe Things confidered, the Manner how Colours are produced by the Prifm is evident. For, of the Rays, contituting the incident Light, fince thofe which differ in Colour proportionally differ in Refrangibility, they by their unequal Refractions muft be fevered and difperfed into an oblong Form in an orderly succuffion, from the leaft refracted Scarlet, to the moft refracted Violet. And for the fame Reafon it is, that Objects when looked upon through a Prifm, appear coloured. For the difform Rays, by their unequal

Refractions, are made to diverge towards feveral Parts of the Retina, and there exprefs the Images of things coloured, as in the former Cafe they did the Sun's Image upon a Wall. And by this Inequality of Refiactions, they become not only coloured, but alfo very confufed and indiftinct.
10. Why the Colours of the Rainbow appear in falling Drops of Rain, is alfo from hence evident. For thofe Drops which refract the Rays, difpofed to appear Purple, in greatefी Quantity to the Spectator's Eye, refract the Rays: of other forts fo much lefs, as to make them pafs beffede it; and fuch are the Drops on the Infide of the primaty Bow, and on the Outfide of the fecondary or exterior One. So thofe Drops, which refract in greateft Plenty the Rays, apt to appear Red, toward the Spectator's Eye, refract thofe of other forts fo much more, as to make them pals befideit ; and fuch are the Drops on the exterior Part of the primary, and interior Patt of the fecondary Bow.
in. The odd Phænomena of an Infufion of Ligmum Neplorilicum, LeafGold, Fragments of coloured Glafs, and fome other tranfparently coloured Bodies, appearing in one Pofition of one Colour, and of another in another, are on thete Grounds no longer Riddles. For thofe are Subfances apt to reflect one fort of Light, and tranfnit another ; as may be feen in a dark Room, by illuminating them with fimilar or uncompouncled Light. For then they appear of that Colour only, with which they are illuminated; but yet in one Pofition more vivid and luminous than in another, accordingly as they are difpofed more or lefs to reflect or tranfmit the incident Colour.
12. From hence alfo is manifeft the Reafon of an unexpected Experiment, which Mr. Hook, fomewhere in his Micrography, relates to have thade with two Wedge-like tranfparent Veffels, filled the one with a Red, the other with a Blue Liquor: namely, that though they were feverally tranfiatent enough, yet both together became opake; for if one tranfmitted only Red, and the other only Blue, no Rays could pafs through both. 101
13. I might add more Inftances of this Nature, but I fhall conclude with this general one: That the Colours of all natural Bodies have no other Origin than this, that they are variounly qualified to reflect one fort of Light in greater Plenty than another. And this I have experimented in a dark Room, by illuminating thofe Bodies with uncompounded Light of divers Colours. For by that means any Body may be made to appear of any Colour. They have there no appropriate Colour, but ever appear of the Colour of the Light caft upon them; but yet with this Difference, that they are moft brifk and vivid in the Light of their own Day-light Colour. Minium appeareth there of any Colour indifferently, with which it is illuftrated, but yet moft luminous in Red; and fo Bife appeareth indifferently of any Colour, with which it is illufrated, but yet moft luminous in Blue: and therefore Minium refectect Rays of any Colour, but moft copiouliy thofe endowed with Red, and confequendy when illuftrated with Day-light, that is, with all forts of Rays promifcuoully blended, thofe qualified with Ked fhall abound moft in the reflected Light, and by their Prevalence caufe it to appear of that Colour. And for the fame Reafon Bife, reflecting Blue moft copioully, fhall appear Blue by the Excefs of thofe Rays in its reflected Light; and the like of other Bodies. And that this is the en-

(140)

tire and adequate Caufe of their Colours, is manifet, becaufe they have no Power to change or alter the Colours of any fort of Rays incident apart, but put on all Colours indifferently, with which they are enlighten'd.

Thefe things being fo, it can be no longer difputed, whether there be Colours in the Dark, or whether they be the Qualities of the Objects we fee; no, nor perhaps, whether Light be a Body. For, fince Colours are the Qualities of Light, having its Rays for their intire and immediate Subject, how can we think thofe Rays Qualities alfo, unlefs one Quality may be the Subject of, and fuftain another? which, in effect, is to call it Subftance. We hould not know Bodies for Subftances, were it not for their fenfible Qualities; and the Principal of thofe being now found due to fomething elfe, we have as good Reafon to believe that to be a Subftance alfo.

Befides, Who ever thought any Quality to be a heterogeneous Aggregate, fuch as Light is difcovered to be? But to determine more abfolutely what Light is, after what Manner refracted, and by what Modes or Actions it produceth in our Minds the Phantafms of Colours, is not fo eafy : And I fhall not mingle Conjectures with Certainties.

Reviewing what I have written, I fee the Difcourfe itfelf will lead to divers Experiments fufficient for its Examination: And therefore I fhall not trouble you further than to defrribe one of thofe which I have already infinuated.

In a darkened Room make a Hole in the Shut of a Window, whofe Diameter may conveniently be about a third Part of an Inch, to admit a convenient Quantity of the Sun's Light: And there place a clear and colourlefs Prifm, to refract the entring Light towards the further part of the Room; which, as I faid, will thereby be diffufed into an oblong coloured Image. Then place a Lens of about 3 Foot Radius (fuppofe a broad Object-Glafs of a three Foot Telefcope) at the Dittance of about 4 or 5 Feet from thence, through which all thofe Colours may at once be tranfmitted, and made by its Refraction to convene at a further Diftance of about 10 or 12 Feet. If at that Diftance you intercept this Light with a Sheet of white Paper, you will fee the Colours. converted into Whitenefs again by being mingled. But it is requifite that the Prifm and Lens be placed fteddy, and that the Paper, on which the Colours are caft, be moved to and fro; for by fuch Motion you will not only find at what Diffance the Whitenefs is moft perfect, but alfo fee how the Colours gradually convene and vanifh into Whitenefs; and afterwards, having croffed one another in that Place where they compound Whitenefs, are again difipated and fevered, and in an inverted Order retain the fame Colours which they had before they entred the Compofition. You may alfo fee, that if any of the Colours at the Lens be intercepted, the Whitenefs will be changed into the ocher Colours. And therefore, that the Compofition of Whiteners be perfect, Care muft be taken that none of the Colours fall befide the Lens.
Fig. 77. Thus in the Defign of this Experiment, A B C expreffeth the Prifm fet endwife to fight, clofe by the Hole F, of the Window E G. Its vertical Angle A CB may conveniently be about 63 deg . MN defigneth the Lens. Its Breadth $2 \frac{1}{2}$, or 3 Inches. SF, one of the ftraight Lines, in which difform Rays may be conceived to flow fucceflively from the Sun. FP, and FR, two
of thofe Rays unequally refracted, which the Lens makes to converge towards Q, and after Decuffation to diverge again. And H I, the Paper, at divers Di_{i} ftances, on which the Colours are projected ; which in Q conftiture Whitenefs, but are Red and Yellow in R, r, and ρ, and Blue and Purple in P, p, and π.

If you proceed further to try the Impoffibility of changing any uncompounded Colour (which I have afferted in the third and thirteenth Propofitions) 'tis requifite that the Room be made very dark, left any fcattering Light, mixing with the Colour, difturb and allay it, and render it compound, contrary to the Defign of the Experiment. 'Tis alfo requifite, that there be a perfecter Separation of the Colours, than, after the Manner above defcribed, can be made by the Refraction of one fingle Prifm ; and how to make fuch further Separations, will fcarce be difficult to them that confider the difcovered Laws of Refractions. But if Trial fall be made with Colours not thoroughly feparated, there muft be allowed Changes proportionable to the Mixture. Thus, if compound Yellow Light fall upon the Blue Bife, the Bife will not appear perfectly Yellow, but rather Green; becaufe there are in the yellow Mixture many Rays endued with Green, and Green being lefs remote from the ufual Blue Colour of Bife than Yellow, is the more copioufly reRected by it.

In like manner, if any one of the prifmatic Colours, fuppofe Red, be intercepted, on Defign to try the afferted Impoffibility of reproducing that Colour out of the others which are pretermitted; 'tis neceffary, either that the Colours be very well parted before the Red be intercepied, or that together with the Red, the neighbouring Colours, into which any Red is fecretly difperfed (that is, the Yellow, and perhaps Green too) be intercepted; or elfe, that Allowance be made for the emerging of fo much Red out of the YellowGreen, as may poffibly have been diffured, and featteringly blended in thole Colours. And if thefe Things be obferved, the new Production of Red, or any intercepted Colour, will be found impofible.
II. r. To contract the Beams of the Sun withont the Hole of the Window, Sume Experiand to place the Prifn between the Focus of the Lens and the Hole.
2. To cover over both Ends of the Prifm with Paper at feveral Difancestbas bionj. from the Middle; or with moveable Rings, to fee how that will vary or di- May, $\mathrm{S}_{3} \cdot \mathrm{P} \cdot \mathrm{P} .40$. 1672. vide the Length of the Figure.
3. To move the Prifm fo, as the End may turn about, the Middle being fteddy.
4. To move the Prifm by fhoving it, till firft the one Side, then the Middle, then the other Side pafs over the Hole, obferving the fame Parallelifm.
2. I fuppofe the Defign of the Propofer of thefe Experiments is, to have oijervarizanson
 Touching the firft, I have obferved, that the folar Image falling on a Paper N. s_{3}. p. 4060 . placed at the Focus of the Lens, was by the interpofed Prifm drawn out in ${ }^{\text {May, An 1672. }}$ Length proportional to the Prifm's Refraction or Diftance from that Fogus. And the chief Obfervable here, which I remember, was, that the ftreight Edges of the oblong Image were diftineter than they would have bean without the Lens.

(142 -)

Confidering that the Rays coming from the Planet Venus, are much lefs inclined one to another, than thofe which come from the oppofite Parts of the Sun's Difk; I once cried an Experiment or two with her Light. And to make it fufficiently ftrong, I found it neceffary to collect it firft by a broad Lens; and then interpofing a Prifm between the Lens and its Focus, at fuch Diftance that all the Light might pafs through the Prifm, Ifound the Focus, which before appeared like a lucid Point, to be drawn out into a long fplendid Line by the Prifri's Refraction.

Concerning the fecond Experiment, I have occafionally obferved, that by covering both Ends of the Prifn with Paper at feveral Difances fiom the Middle, the Breadth of the folar Image with be increated or diminithed as much, as is the Aperture of the Prifm, without any Variation of the Length: Or, if the Aperture be augmented on all Sides, the Image on all Sides will be fo much and no more augmented.

Of the third Experiment I have occafion to fpeak in my Anfwer to another Perfon; where you will find the Effects of two Prifms, in all crofs Pofitions of one to another, defcribed. But if one Prifm alone be turned about, the coloused Image will only be tranflated from Place to Place, defcribing a Circle, or fome other conic Section on the Wall, on which it is projected, withour fuffering any Alteration in its Shape, unlefs fuch as may arife from the Obliquity of the Wall, or cafual Change of the Prifm's Obliquity to the Sun's Rays.

The Effect of the fourth Experiment I have already infinuated, telling you that Light paffing through Parts of the Prifm of divers Thickneffes, did ftill exhibit the fame Phænomena.

Tbe Genuire Metbod of examining tbis Tbeo ry; by Mr. Newtor. N. 85 p. 5004 . July, An. 1672.
III. I cannot think it effectual for determining Truth, to examine the feveral Ways by which Phænomena may be explained, unlefs where there can be a perfect Enumeration of all thofe Ways. You know, the proper Method for enquiring after the Properties of Things, is to deduce them from Experiments. And I told, you that the Theory which I propounded, was evinced to me, not by inferring 'tis thus, becaufe' 'tis not otberroife; that is, not by deducing it only from a Confutation of contrary Suppolitions, but by deriving it from Experiments concluding politively and directly. The Way therefore to examine it, is, by confidering, Whether the Experiments which I propound do prove thofe Parts of the Theory to which they are applied, or by profecuting other Experiments which the Theory may fuggeft for its Examination. And this I would have done in a due Method; the Laws of Refraction being thoroughly enquired into and determined, before the Nature of Colours be taken into Confideration. It may not be amifs to proceed according to the Series of thefe Queries; which I could wifh were determined by the Event of proper Experiments, declared by thofe that may have the Curiofity to examine them.

1. Whether Rays, that are alike incident on the fame Medium, have unequal Refractions? And how great are the Inequalities of their Refractions at any Incidence?
2. What

(143)

2. What is the Law according to which each Ray is more or lefs refrabred; whether it be that the fame Ray is ever refracted according to the fame Ratio of the Sines of Incidence and Refraction; and divers Ravs, according to divers Ratio's; or that the Refraction of each Ray is greater or lefs without any certain Rule? That is, whether each Ray have a certain Degree of Refrar:gibility, according to which its Refration is performed; or is refracted without that Regularity?
3. Whether Rays, which are endued with particular Degrees of Refrangibility, when they are by any Means feparated, have particular Colours conftantly. belonging to them; viz. the leatt Refrangible, Scarlet; the moft Refrangible, deep Violet; the middle, Sea-Green; and cthers, other Colours? And on the contrary?
4. Whether the Colour of any fort of Rays apart may be changed by Refraition?
5. Whether Colours by coalefcing do really cbange one another to produce a New Colour, or produce it by mixing only ?
6. Whether a due Mixture of Rays, indued with all variety of Colours, produces Light perfectly like that of the Sun, and which hath all the fame Properties, and exhibits the fame Phanomena?
7. Whether the component Colours of each Mixture be really cbanged; or be only feparated, when from that Mixture various Colours are produced again by Refraction?
8. Whether there be any otber Colours produced by RefraEtion, than fuch as ought to refult from the Colours belonging to the diverfly Refrangible Rays, by their being feparated or mixed by that Refraction?

To determine by Experiments thefe and fuch like Queries, which involve the propounded Theory, feems the moft proper and direet Way to a Conclufion. And therefore I could wifh all Objections were fufpended, taken from Hypothefes, or any other Heads than thefe two; of frewing the Infulficiency of Experiments to determine thefe Queries, or prove any other Parts of my Theory, by affigning the Flaws and Defects in my Conctufions drawn from them; or of producing other Experiments which directly contradict me, if any fuch may feem tooccur. For if the Experiments, which I urge, be defeEtive, it cannot be difficult to hew the Defects; but if valict; then by proving the Theory they muft render all Objections invalid.
IV. 1. This fo extraordinary an Hypothefis, which overturts the very AnimaloeffionsFoundations of Dioptrics, and makes ufkefs all the Practice that has hitherto uppr foin Thany. obtained, is intirely built upon that Experiment of the Glafs Rrifin, in which iy R. P. Ign. the Rays of Light entering at the Hole of a Window into a dark Rcom, and N. S4.P. . . 087. then ttriking againit the Wall, or received upon a Paper, are not gathered into a round Spot, as Mr. Newton feemed to expeet from the received Laws of Refractions, but appeaved to be extended into an oblong Figure. Whence he concluded, that this oblong Figure proceeded from this Caule, that forme of the Rays were refracted more and fome lefs.

(144)

But it feems to me, that according to the common and received Laws of Dioptrics, that Figure ought not to be round but oblong. For fince the Rays proceeding from the oppofite Parts of the folar Difk have a different Inclination in paffing through the Prifm, they ought to be differently refracted; and fince the Inclination of fome is greater than the Inclination of others by at leaft 30 Minutes, the Refraction alfo muft become greater.

Therefore the oppofite Rays, emerging from the other Superficies of the Prifin, diverge and divaricate more, than if all had proceeded without Refraction, or at leaft had been equaily refracted. But that Refraction of the Rays is performed only towards thofe Parts which may be conceived to be in Plains perpendicular to the Axis of the Prifm : For there is no Inequality of Refraction towards thofe Parts which are underftood to be in Plains parallel to the Axis; as may be eafily demonftrated. For the two Superficies of the Prifm may be judged as parallel to one another, in refpect to the Inclination of the Axis, fince each is parallel to the Axis. But the Refraction through two parallel plain Superficies is reckoned as none, becaufe as much as the Ray is deflected one Way by the firf Superficies, fo much it is turned the other Way by the other Superficies. Therefore fince the Rays of the Sun paffing from the Hole through the Prifm are not refracted at the Sides, they proceed farther as if no Superficies of the Prifm had intervened, (refpect only being had, as I faid before, to that lateral Divarication;) but fince the fame Rays are refracted towards the upper or lower Parts, fome indeed more and fome lefs, as being unequally inclined; it is neceffary that they muft divaricate more, and therefore muft be extended into a longer Figure.

Now if a Calculation be rightly made; as the lateral Rays are found by the learned Neroton in fuch a Breadth as fubtends an Arch of 31 Minutes, which Arch anfivers to the Sun's Diameter; fo I don't at all doubt, but that Height alfo of the Image being found, which fubtends an Arch of $2^{\circ} \cdot 49^{\prime}$. is that itfelf which in that Cafe anfwers to the fame Diameter of the Sun after the unequal Refractions.

And in reality, fuppofing the Prifm to be A BC whofe Angle A is 60 Degrees, the Ray to be DE, which makes an Angle of 30 Degrees with the Perpendicular EH; I find it at emerging through FG to make with the Perpendicular FI an Angle of $76^{\circ} .22^{\prime}$. But fuppofing another Ray $d \mathrm{E}$, which with the Perpendicular EH makes an Angle of $29^{\circ} \cdot 30^{\prime}$; I find this, as it emerges through $f g$, to make with the Perpendicular $f i$ an Angle of $78^{\circ} \cdot 45^{\prime}$. Whence thote two Rays DE, $d \mathrm{E}$, which are fuppofed to proceed from oppofite Parts of the Solar Difk, make an Angle with each other of 30 Minutes; but the fame at emerging in the Lines FG , $f g$, fo diverge, as to conftitute an Angle of $2^{\circ} \cdot 23^{\prime}$, with each other. Now if two other Rays were affumed, that approach more to the Perpendicular EH, (which make, for inftance, with the fame Perpendicular, one an Angle of 29°. 30°, the other an Angle of $29^{\circ} .0^{\prime}$, then the fame Rays at their emerging would diverge ftill more, and would make a greater Angle, even fometimes more than three Degrees. And mureover that Interval of the refracted Rays is farther increafed from hence, that the two Rays $\mathrm{DE}, d \mathrm{E}$, meeting

(145)

in E, immediately begin to divaricate, and hit upon two feparate Points of the other Superficies, that is, in F and f. Therefore it is not fufficient for duly performing the Calculation, from the I ength of the Image projected upon the Paper to fubtract the Magnitude of the Hole of the Window ; fince even fuppofing the Hole E to be indivifible, there would be as it were another broad Hole in the other Superficies, which is Ff.

As to what he calls Experimentum Crucis, to me it feems to fall in with the commonly received Rules of Refraction. For, as I have now fhewn, the Solar Rays, which approaching and converging make an Angle of 30 Degrees, after they have paffed through the indivifible Foramen, diverge into an Angle of two or three Degrees. Therefore it is no wonder if the fame Rays, fingly impinging upon another Prifm which is alfo opened with a fmall Hole, fhould be unequally refracted, fince their Inclination is unequal. Nor is it to the purpofe that thofe Rays are raifed or depreffed by the Rotation of the firf Prifm, the fecond Prifm remaining without Motion, (which yet cannot be done in every Cafe;) or that, the firft remaining immoveable, the fecond fhould be moved, that it may fucceffively receive the coloured Rays of the whole Image, and tranfmit them through its own Hole. For in either Way it is neceffary, that thofe extreme Rays, that is the Red and Violet, fhould fall upon the fecond Prifm at an unequal Angle, and thereby that their Refraction fhould be unequal, fo that That of the Violet Rays fhould be the greater.

Since therefore a manifeft Caufe appears, why the Figure of the Rays fhould be oblong, and that Caufe arifes from the very Nature of Refraction; there feems no Occafion to have Recourfe to any other Hypothefis, or to admit any different Frangibility of the Rays.

What afterwards he has conceived concerning Colours, that indeed commodiouny follows from the foregoing Hypothefis; yet even that is obnoxious to fome Difficulties. For as he affirms, that no Colour at all, but rather Whitenefs, will appear, when the Rays of all Colours are mixed promifcuoufly, that does not feem conformable to all the Phænomena. Surely the Varieties which are obferved in the mingling of different Bodies, which are imbued with different Colours, the very fame are perceived in the mingling of different Rays that are alfo imbued with different Colours. And he well obferves, that as from a Yellow and Blue Body a Green Colour arifes, io from a Yellow and Blue Ray a Green Colour will alfo arife. So that if all the Rays of all Colours were confounded together, it is neceffary in that Hypothefis, that the fame Colour fhould appear which really appears in a Mixture of all Paints. But now if thofe Colours, that is, Red and Yellow, together with Blue and Purple, and all cthers, if there be more, were beaten together and mingled ; not White would appear, but a dark fad Colour. Therefore a like Colour would appear in the ordinary Rays of Light, if it confifted of a Mixture of all forts of Colours.

Now at firf Afpect nothing feems more ingenious or more proper, than what he fays concerning the Experiment of the moft acute Mr. Hook, in which two different Liquors, the one Red the other Blue, and both fepa-

Vol. I.
U
rately
sately tranfparent, but when mixed together become opaque. This, the learned Nervton fays, arifes from hence, that one of the Liquors can only tranfmit the Red Rays, the other only the Blue; whence being mingled they can tranfmit none. This, I fay, at firft fight feems very oppofite; neverthelefs it fhould follow from hence, that a like Opacity would arife from the Mixture of any Liquors of different Colours, which yet is not true.

Anfwer'd by Mr. Newton. N. 84.p. 409 I . June, An, 1672 .
 Fig. 73.

2. The Reverend Father Pardies makes the Refractions on the different Sides of the Prifna as unequal as he can, whereas I make them equal, both in my Experiments, and in the Calculation founded upon thofe Experiments, Let A BC be a Section of the Prifm perpendicular to its Axis, F L, K G, two Rays croffing one another in x the middle of the Hole, and falling upon that Prifm at G and L, and let their refracted Rays be GH, L m, and again HI and $m n$. And whereas I have fuppofed that their Refractions at the Side $A C$ are nearly equal to thofe at the Side $B C$; if $A C$ and $B C$ are put equal, the Rays GH and L m will have a like Inclination to the Bafe of the Prifm AB; and therefore the Angle CL $m=A n g$. CHG, and Ang. $\mathrm{C} m \mathrm{~L}=$ Ang. C GH. Wherefore alfo the Refractions in G and m will be equal, as likewife in L and H , and fo Ang. $\mathrm{KGA}=$ Ang. $n m \mathrm{~B}$, and Ang. FLA = Ang. BHI: And therefore the refracted Rays HI and $m n$ will have the fame Inclination to one another as the incident Rays FL and K G. Therefore if the Angle F x K be 30 Minutes, or equal to the Sun's Diameter, then alfo the Angle comprehended by HI and $m n$ will be 30 Minutes, if the Rays FL and K G are fuppofed equally refrangible. But to me, who have tried it, that Angle comes out about $2^{\circ} .49^{\prime}$, which the Ray HI exhibiting the utmoft Violet Colour, contains with the Ray $m n$ of a Blue Colour ; and therefore it muft be neceffarily granted, that thofe Rays are differently refrangible, or that the Refractions are performed according to an unequal Ratio of the Sines of Incidence and Refraction.

The Reverend Father adds befides, that for rightly performing the Calcuqation, it is not fufficient to fubtract the Bignefs of the Hole from the Length of the Inage projected on the Paper; becaufe even fuppofing the Hole to be indivifible, there would ftill be as it were another wide Hole in the pofterior Superficies of the Prifm. Yet this notwithflanding it feems to me, that the Refractions of the Rays, crofing at the anterior as well as pofterior Surface of the Prifm, may be rightly computed from the Principles laid down. But if the Matter were otherwife, the Breadth of the Chafm in the latter Superficies, which is as a Hole, could hardly make an Error of two Seconds; and in practical Matters I think it not worth while to take Notice of fuch minute Differences.

The Reverend Father coes not contradict that which I called Experimenuunt Crucis, while he contends, that the unequal Refractions of the Rays, endued with different Colours, are produced by the unequal Incidences. For when the Rays pafs through two very fimall, diftant, and immoveable Holes, thofe Incidences (as I made the Experiment) were plainly equal, and yet there Refractions were very unequal. But if he has any Doubt about my Experinents, I beg that he would try himfelf, and meafure the Refractions of the Rays en-

(147)

dued with different Colours, from equal Incidences, and be will find them to be unequal. If he does not like the Way I made ufe of to try this, (than which I think none can be more fatisfactory) it is eafy to contrive others; as I myfelf have experienced not a few, and with good Succefs.

It is objected to the Theory about Colours, that Powders of different Colours being mixed, they exhibit not a White, but a dark Brown Colour. Now to me White, Black, and all intermediate Brown Colours, which carr be compofed of White and Black mixed, feem to differ not fo much in their Species of Colour as in the Quantity of Light. And in the Mixture of Paints, fince the feveral Corpufcles reflect only their own Colour, and therefore the greateft Part of the incident Light is fuppreffed and ftifled; the reflected Light muft become obfcure, and mixed as it were with Darknefs, fo that it cannot exhibit intenfe Whitenefs, but fuch as would be caufed by a Mixture of Black, that is, a dark Brown.

It is then objected, that from any Liquors of different Colours mixed in the fame Veffel, as well as being contained in different Veffels, Opacity fhould be produced, which yet (he fays) is not true. But I do not fee the Confequence. For very many Liquors act upon one another, and fecretly induce a new Configuration of Parts upon one another; whence they may become opaque, tranfparent, or endued with various Colours, fuch as could by no means arife from a Mirture of Colours. And for this I always thought, that Experiments of this kind were lefs fit, from whence Conclufions could be drawn. Yet here I will obferve, that for this Experiment Liquors are required, which are endued with ftrong and intenfe Colours, which tranfmit but few Rays except thofe of their own Colour. Such are rarely to be met with, as may be feen by illuminating Liquors in a dark Room with the different Colours of the Prifm. For few are found which appear very tranfparent in their own Colours, and opaque in others. It is allo convenient, that the Colours made ufe of fhould be oppofite to one another, fuch as I think Red and Blue to be, or Yellow and Violet, or alfo Green and that Purple which approaches to Scarlet. And perhaps fome of thefe Liquors, whofe tinging Particles will not come together, when mixed may become more opaque. But I am nothing folicitous about the Event, as well becaufe the Experiment will be more perfpicuous in Liquors when feparate, as becaufe I propofed that Experiment (as likewife that of the Rainbow, of the Tincture of Lignum Nephriticum, and the Phænomena of other natural Bodies) not fo much to prove the Doctrine as to illuftrate it.

Now as to the Reverend Father's calling my Theory an Hypotbefis, I take it not amifs, becaufe to him it may not yet appear. But I propofed it with another Intent, and it feems to contain nothing elfe but certain Properties of Light, which being now found I think it not difficult to prove; and which if I did not know to be true, I fhould rather choofe to reject as vain and empty Speculation, than to own them as my Hypothefis.
3. In that Hypothefis which our Grimaldus explains at large, in which it Some fartber obis fuppofed that Light is a certain Subftance moving with a nooft rapid Mo. jections, by R. P, Pardes. N. 85 . tion, fome Diffufion of Light might be made after paffing through the Hole,

(148)

and the Decuffation of the Rays. Alfo in that Hypothefis, in which Light is fuppofed to proceed through certain Undulations of fubtile Matter, as the very ingenious Hook explains; Colours might be accounted for by fome kind of Diffufion and Expanfion of Undulations, which may be made at the Sides of the Rays beyond the Hole, by Contact itfelf, and by the Continuation of the Matter. And indeed I have recourfe to fuch an Hypothefis, in the Differtation concerning the Motion of Undulation, which is the fixth Part of my Mechanics. Where I fuppofe, that thofe appearing Colours are produced by that Communication of Motion alone, which is propagated at the Sides by the Undulations going directly on. As if Rays entering at the Hole a go on towards b, the direct Undulations (having regard to ftrait and natural Motion) ought to be terminated at the Right Line $a b$; yet becaufe of the Continuity of Matter, there will be fome Communicatiors of Motion towards the Sides ec, where a certain tremulous and fubfultory Succuffion will be excited. Now if Colours may be fuppofed to confift in that lateral fubfultory Motion, I imagine all the Phrenomena of Colours might be explained, as I have endeavoured to do more at large in the Differtation now mentioned. From which being fuppofed it will alfo appear, why the Breadth of the Colours muft be expanded farther than the Divarication of the Rays themfelves would require.

As to the Experimentum Crucis, I do not at all doubt, but that in his Experiment he makes ufe of fuch a Situation, as that there may be an equal Inclination of the incident Rays; fince he exprefly ffirms it was fo done by him. But I was not able to guefs that from what I had read before, where are fuppofed two fmall and very diftant Holes, and one Prifm near the firft Hole which is in the Window; through which Prifn the coloured Rays proceeding, fall upon the other diftant Hole. It was alfo added, that in order that all the Rays might fall fucceffively on that fecond Hole, the firft Prifm was turned about its Axis. But by this means it muft neceffarily be, that the Inclination of the Rays falling upon the fecond Hole muft be changed. I alfo fuggefted, that the Thing would be the fame, whether the firft Prifm remaining immoveable, the fecond Hole was raifed or depreffed, that it might receive fucceffively all the Rays of the painted Solar Inage; or, that fecord Hole remaining immoveable, the firft Prifm was turned about, fo that the fame Image might change its Situation, and all the Parts night fucceffively impinge upon the fecond Hole. But without doubt the moft fagacious Nerwton made ufe of other Cautions.

As to what I had objected about the Colours, I think it very well folved. And that I called his Theory an Hypothefis, I did it withour any Defign, but made ufe of the Word that firft occurred. Therefore I defire him not to think, that I ufed that Word in any kind of Contempt.

[^1]4. The Reverend Father fays, that it is poffible to explain the Length of the Colours, without a different Refrangibility of the different Rays; fuppofe from the Hypothefis of P. Grimaldus, by the Diffufion of Light, which is fuppofed to be a certain Subftance moved with the greatef Rapidity; or by the Hypothefis of our Hook, by the Diffufion or Expanfion of Undula-

(149)

tions, which Ge pretends are excited in the ther by lucid Bodies, and to be propagated every. Way. To which I add, that by the Hypothefis of Cartefius may alfo be imagined a like Diffufion or Endeavour of the Preffure of the Globules, in like Manner as is fuppofed in the Explication of the Tail of a Comet. And the fame Diffufion or Expanfion may be feigned according to any other Hypothefis, in which Light is fuppofed to be a Force, Action, Quality, or Subftance of any kind, emitted on all Sides from luminous Bodies.
That I may anfwer this, it is to be obferved, that the Doctrine I have explained concerning Refractions and Colours, confifts only in certain Properties of Light, neglecting all Hypothefes by which thofe Properties may be explained. Wherefore I thought proper here wholly to refrain from the Confideration of Hypothefes, as being no fit Place of Argumentation; and I will abftract the Force of the Objection, that it may receive a fuller and more general Anfwer.

Therefore by Light I undertand any Being or Power of a Being, (whether it be a Subftance, or any Power, Action, or Quality of it) which proceeding directly from a lucid Body is acdapted to excite Vifion. And by Rays of Light I underttand the leaft Parts of it, or any indefinitely little Parts of it, which do not depend on one another; fuch as are all thofe Rays which luminous bodies emit according to Right Lines, cither at the fame Time or fucceffively. For thofe as well collateral as fucceffive Parts of Light are independent, fince fome without others may be intercepted, and may be feparately reflected or refracted any Way. And this being allowed, all the Force of the Objection confifts in this, that the Colours may be fretched out in Length by fome Diffufion of the Light beyond the Hole, which does not arife from the unequal Refrangibility of different Rays, or of the independent Parts of Light.

But I have fhewn above, that they are not lengthened by any other Means? and that I might confirm the whole in the ftricteft Manner, I have added that Experiment which now is well known by the Name of Experimentums Crucis; of the Conditions of which fince the Reverend Father has had tome Doubt, I have thought fit to reprefent it by a Scheme. Let BC be the former little Board to which the Prifm A is immediately prefixed, and let DE be the latter Board, at the Difance of about I2 Feet from the former, behind which the other Prifm F is fix'd. But let the Bnards be fo perforated at x and y, that a little of the Light refracted by the former Prifm may be tranfmitted through each of the Holes to the fecond Prifm, and there again be refracted. Now let the former Prifm be converted about its Axis by a reciprocal Motion, and the Colours falling upon the latter Board DE, will be raifed and depreffed by Turns, by which Means another and another Colour at Pleafure may be fucceffively made to pafs through its Hole y to the latter Prifm, while the other Colours will fall upon the Board. Then you will fee, that the Rays which are endued with different Colours will fuffer a different Refraction in that latter Prifm, becaufe they will arrive to different Places of the oppofite Wall, or of any Obftacle GH removed at the Diftance

(150)

of fome Fect farther. The Violet Rays will come fuppofe to H, the Red to G, and intermediate ones to intermediate Places. And yet becaure of the determinate Pofition of the Holes, the Incidence of the Rays of each Colour paffing through each Prifm muft needs be alike. And thus it appears by meafuring, that the Rays affected with different Colours will have different Laws of Refractions.

But I fufpeet what it was that led the Reverend Father into a State of Doubt; he feems to have placed his firf Prifm A behind the Board B C, and thus by converting it about its Axis, it is probable that the Inclination of the Rays, which come between the two Holes, may have fuffered fome Change becaufe of the intermediate Refraction. But by the Defeription before explained, that Board ought to be placed after the Prifin, that the Rays may fall directly between the Holes, as may appear from my Words; I took two Boards, and placed one of them clofe bebind the Prifm at the Window. And the Defign of the Experiment requires the fame Thing.

But farther I fhall obferve, that in this Experiment, becaufe of the Refraction of the fecond Prifm, the coloured Light is far lefs diffufed, and divaricates lefs, than when it is quite White, fo that the Image at G or H is almoft Circular; efpecially if the Prifms are made parallel, and in a contrary Situation of their Angles, as is reprefented in the Scheme. And farther, if the Diameter of the Hole y is equal to the Breadth of the Colours, there will be no Extenfion of the fame coloured Light in Length; but the Image which is formed by any Colour at G or H will be really Circular ; fuppoling the Holes to be Circular, and the Refraction of the latter Prifm not to be greater than of the former, the Rays being nearly perpendicular to the Ob ftacle. This fhews the Diffufion mentioned before to proceed from a certain Law of the Refractions of every kind of Rays, and not from the Contact or Continuity of Matter undulating or moving very fwiftly, or any the like Caufe. But why that Image fhould be Circular in one Cafe, and in others fomething ftretched out in Length, and how the Extenfion of the Light into Length may be leffened at Pleafure in any Cafe, I hall leave to be determined by Geometricians, and then to be compared with Experiment.

After the Properties of Light have been fufficiently examined by thefe and the like Experiments, by confidering the Rays as Parts of it either collateral or fucceffive, of which we have found by their Independence that they are diftinct from one another; Hypothefes are thence to be judged of, and thofe are to be rejected which cannot be reconciled with the Phænomena. But it is an eafy Matter to accommodate Hypothefes to this Doctrine. For if any one has a Mind to defend the Cartefian Hypothefis, he may fay that the Globules are unequal, or that the Prefures of the Globules are fome ftronger than others, and thence they become differently refrangible, and proper to excite a Senfation of different Colours. And fo according to Mr. Hook's Hypothefis, it may be faid, that the Undulations of the Ftcher are fome greater or denfer than others. And fo of the reft. For this feems to be the moft neceffary Law and Condition of Hypothefes, in which natural Bodies are fuppofed to confift of a Multitude of Corpufcles cohering together,

(151)

that from the different Particles of lucid Bodies, or from the different Parts of the fame Corpufcle, (according as they differ in Motion, Figure, Bulk, or any other Qualities) unequal Preffures, Motions, or moved Corpuicles, nay be propagated every Way through the Æther, from which being confuredly mixed together, Light may be fuppofed to be conftituted. And nothing can be more difificult in thefe Hypochefes than the contrary Suppofition.

From the Aperture or Difatation of the Light in the latter Face of the Prifin, which the Reverend Father fays is a Hole as it were, it is fufficient that no Tenfible Error cain arife, if there is any at all. And if a Calculation is made exactly according to the Obfervations, the Error will be none. For the Diameter of the Hole being fubtracted from the Length of the Image, a Length will remain which the Image would have, if the Hole before the Prifm were an indivifible Point, and that notwithftanding the aforefaid Dilatation of the Light in the latter Face of the Prifm; as may eafily be fhewn. Then from that given Length of the Image, and its Diftance from the indivifible Hole, as alfo from the Pofition and Form of the Prifm, and from the Inclination of the incident Rays to it, and from the Angle which the refracted Rays tending to the Middie of the Image make with the incident Rays from the Center of the Sun, all the other Things may be determined. And what determines the Refractions and Pofitions of the Rays are fufficient to make a true Calculation of thofe Refractions. But this Matter is not of fuch Confequence as to make any Difficulty.
As to the Reverend Father's calling our Doetrine an Hypothefis, I believe it proceeded from nothing elfe, but that he ufed the Word which firt occurred to him, for a Cuttom has prevailed, that whatever is explained in Philofoply is called an Hypothefis. And I had no other Defign in thewing my Dinike to that Word, than to obviate an Appellation, which may niilead thofe who defire to philofophize the right Way.
5. Mr. Newoton's laft Anfwer to my Objections has intirely fatisfied me. To the satificu The laft Scruple that I had, about the Experimentum Crucis, is fully re- Cant Pardies:
 fland before. When the Experiment was performed after his Manner, every Thing fucceeded, and I had nothing farther to deffre.
V. The Confideration on my Theories confifts in aferibing an Hypothefis Smeme Curficmat to me, which is not mine; in afferting an Hoothelis, which, as to the prin- terary; b, cipal Parts, is not againft me ; in granting the greatef Part of my Difccurle, Afsew dhy Mr, if explicated by that Hypothefis; and in denying fonie Things, the Truth offo.sosf which wouid have appeared by an Experimental Examination.
Of thefe Particulars I hall difcourfe in Order. And firf of the Hypothefis, which is afcribed to me in thefe Words: But grant this firff Suppofition, that Ligbt is a Body, and that as maiy Colours or Degrees as tbere snay be, jo many Bodies there may be; all which compounded togetber would make While, \&c. This, it feems, is taken for my Hypothefis. 'Tis true, that from my Thery I argue the Corporeity of Light; but 1 do it without any abfolute Pofitivenefs, as the Word perbaps intimates; and make it as molt but a very

(152)

plaufible Confequence of the Doctrine, and not a fundamental Suppofition, nor fo much as any Part of it; which was wholly comprehended in the precedent Propolitions. And I fomewhat wonder, how the Objector could imagine, that, when I had afferted the Theory with the greateft Rigour, I hould be fo forgetful as afterwards to affert the fundamental Suppofition itfelf with no more than a perbaps. Had 1 intended any fuch Hypothelis, I fhould fomewhere have explained it: But I knew, that the Properties, which I declared of Light, were in fome meafure capable of being explicated, not only by that, but by many other mechanical Hypothefes; and therefore I chofe to decline them all, and to fpeak of Light in general Terms, confidering it abftractly, as fomething or other propagated every Way in ftreight Lines from luminous Bodies, without determining what that Thing is; whether a confufed Mixture of difform Powers, or Beings whatfoever. And for the Fame Reafon I chofe to fpeak of Colours according to the Information of our Senfes, as if they were Qualities of Light without us. Whereas by that Hypothefis, I muft have confidered them rather as Modes of Senfation, excited in the Mind by various Motions, Figures, or Sizes of the Corpufcles of Light, making various mechanical Impreffions on the Organ of Senfe: as I expreffed it in that Place, where I fpake of the Corporeity of Light.

But fuppofing I had propounded that Hypothefis, I underftand not why the Objector hould fo much endeavour to oppofe it : For certainly it has a much greater Affinity with his own Hypothefis, than he feems to be aware of; the Vibrations of the Æther being as ufeful and neceffary in this, as in his; for affuming the Rays of Light to be fmall Bodies, emitted eviry Way from hhining Subftances, thofe, when they impinge on any refracting or reflecting Superficies, mutt as neceffarily excite Vibrations in the Æther, as Stones do in Water when thrown into it. And fuppofing there Vibrations to be of feveral Depths or Thickneffes, accordingly as they are excited by the faid corpufcular Rays of various Sizes and Velocities; of what Ufe they will be for explicating the Manner of Refection or Refraction, the Production of Heat by the Sun-Beams, the Emiffion of Light from Burning, Putrifying, or other Subftances, whofe Parts are vehemently agitated, the Phænomena of thin tranfparent Plates and Bubbles, and of all natural Bodies, the Manner of Vifion, and the Difference of Colours, as alfo their Harmony and Difcord; I fhall leave to their Confideration, who may think it worth their Endeavour, to apply this Hypothefis to the Solution of Phænomena.

In the fecond Place, I told you, That the Objector's Hypothefis, as to the fundamental Part of it, is not againft me. That fundamental Suppofition is; That the Parts of Bodies, when brikly agitated, do excite Vibrations in the EEther, wibich are propagated every Way from thofe Bodies in freight Lines, and caufe a Senfation of Light by beating and dafbing againft the Bottom of the Eye, fomething after the Manner that Vibrations in the Air cause a Senfation of Sound by beating againft the Organs of Hearing. Now, the moft free and natural Application of this Hypothefis to the Solution of Phænomena, I take to be this: That the agitated Parts of Bodies, according to their feveral Sizes, Figures, and Motions, do excite Vibrations in the IEther of various Depths or Bigneffes,

(153)

Bigneffes, which being promifcuoully propagated through that Medium to our Eyes, effect in us a Senfation of Light of a white Colour; but if by any means thofe of unequal Bignefles be feparated from one another, the largett beget a Senfation of a red Colour; the feaft or fhorteft, of a deep Violet; and the intermediate ones, of intermediate Colours; much after the manner that Bodies, according to their feveral Sizes, Shapes, and Motions, excite Vibrations in the Air of various Bigneffes, which, according to thofe Bigneffes, make feveral Tones in Sound: That the largeft Vibrations are beft able to overcome the Refiftance of a refracting Superficies, and fo break through it with leaft Refraction; whence the Vibrations of feveral Bignefles, that is, the Rays of feveral Colours, which are blended together in Light, muft be parted from one another by Refraction, and fo caufe the Phænomena of Prifms, and other refracting Subftances: And that it depends upon the Thicknefs of a thin tranfparent Plate or Bubble, whether a Vibration fhall be reflected at its further Superficies, or tranfinitted; fo that, according to the Number of Vibrations interceding the two Superficies, they may be reflected or tranfmitted for many fucceflive Thickneffes. And fince the Vibrations which make Blue and Violet, are fuppofed fhorter than thofe which make Red and Yellow, they muft be reflected at a lefs Thicknefs of the Plate: Which is fufficient to explicate all the ordinary Phrenomena of thofe Plates or Bubbles, and alfo of all natural Bodies, whofe Parts are like fo many Fragments of fuch Plates.

Thefe feem to be the moft plain, genuine, and neceffary Conditions of this Hypothefis. And they agree fo juftly with my Theory, that if the Animadverfor think fit to apply them, he need not, on that Account, apprehend a Divorce from it. But yet how he will defend it from other Difficulties, I know not; for to me the fundamental Suppofition itfelf feems impofible, namely, that the Waves or Vibrations of any Fluid, can, like the Rays of Light, be propagated in freight Lines, without a continual and very extravagant fpreading and bending every Way into the quiefcent Medium, where they are terminated by it. I miftake, if there be not both Experiment and Demonftration to the contrary. And as to the other two or three Hypothefes, which he mentions, I had rather believe them fubject to the like Difficulties, than fufpect the Animadverfor fhould felect the worft for his own.

What I have faid of this, may be eafily applied to all other mechanical Hypothefes, in which Light is fuppofed to be caufect by any Preffion or Motion whatfoever, excited in the 㢈ther by the agitated Parts of Juminous Bodies; for it feems impoffible that any of thofe Motions or Preffions can be propagated in ftreight Lines, without the like fpreading every Way into the fhadowed Medium on which they border. But yet, if any Man can think it poffible, he muft at leaft allow, that thofe Motions, or Endeavours to Motion, caufed in the Æether by the feveral Parts of any lucid Body, that differ in Size, Figure, and Agitation, muft neceffarily be unequal: Which is enough to denominate Light an Aggregate of Difform Rays, according to any of thofe Hypothefes. And if thofe original Inequalities may fuffice to difference the Rays in Colour and Refrangibility, I fee no reafon, why they, Vol. I.

[^0]: V. An Account of a Book omitted; viz. The Art of Levelling; by M. N. $74 . p$ p. 2277\% Mariotte.

[^1]: Anjwer'd by Mr. Newton. 1bid. p. 5014 . July in, 1672.

