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SUMMARY / ABSTRACT 
 

The traditional method of multipliers or Lagrange’s operators to the 
resolution of the problems in conditional ends of several variables, or the 
jacobians determinants, they are only needed in the presence of points of chair 
(or "tack") either when the implied form of the constraint prevents clear or 
variables that you want to replace in the objective function to optimize. It can 
also happen that expressed methods do not provide definitive solutions and 
have to resort, precisely, to the aforementioned technique of reduction or 
elimination of variables to effectively solve the problem, as we will have 
opportunity to see. For greater clarity in the process, develop several  
representative exercises and a practical case of the advantages offered by the 
technology in question.  
 
Key words: ends, determinant equation, objective function, Lagrange’s 
operator, independent variable, functional determinant, critical point. 
 
 
RESUMEN 
 

El método tradicional de los multiplicadores u operadores de Lagrange 
para la resolución de los problemas de extremos condicionados de varias 
variables, o el de los determinantes jacobianos, son sólo necesarios en 
presencia de puntos de silla (o de “ensilladura”) o bien cuando la forma 
implícita de la restricción impide despejar la o las variables que interese 
substituir en la función objetivo a optimizar. Puede suceder, también, que los 
expresados métodos no ofrezcan soluciones definitivas y haya que recurrir, 
justamente, a la técnica referida de reducción o eliminación de variables para 
solventar eficazmente el problema planteado, como tendremos ocasión de 
comprobar. Para una mayor claridad del proceso, se desarrollan varios 
ejercicios representativos y un caso práctico de las ventajas que ofrece la 
técnica en cuestión. 
 
Palabras clave: extremos, ecuación condicionante, función objetivo, operador 
de Lagrange, determinante funcional, variable independiente, punto crítico. 
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INTRODUCTION 
 
 A problem that occurs frequently in Mathematical Analysis is to 
determine the relative or local extremes (maximum and/or minimum) of a real 
function whose real variables are not independent but are linked by one or more 
conditioning equations. We say, then, that it is a problem of "tied or conditioned 
extremes". 
 

They usually appear in some problems of Physics, Economics or 
Engineering, as will be seen in the Hydraulics case study that appears at the 
end of this article. Thus, the traditional method of Lagrange multipliers or 
operators, or that of Jacobian determinants, are only necessary in the presence 
of saddle points (or “saddling”) or when the implicit form of the restriction 
prevents clearing the variables that you want to replace in the objective function 
to be optimized. It may also happen that the aforementioned methods do not 
offer definitive solutions and it is necessary to resort, precisely, to the 
aforementioned technique to effectively solve the problem posed, as we will 
have occasion to verify. 

 
In effect, suppose that the conditioning equation allows us to clear one of 

the variables as a function of the others, for example, in the form: z = )y,x(Φ , 
and substituting it in the objective function to be optimized we obtain: 

 
u = f [x,y, )y,x(Φ ] = F(x,y),  

 
and the problem will be to look for the extreme values of F(x, y) whose variables 
are already independent, for which the established classical criteria can be 
applied. 
  
 Well, since it is a question that, generally, is not expressly contemplated 
in the mathematical analysis treaties in use, we have considered it convenient 
to develop it with the support of some general examples and a practical case of 
application of fluid mechanics that we judge sufficiently representative in this 
regard. 

 

 
METHODOLOGY AND THEORETICAL BASIS 
 
Lagrange Operators Method 

 
Let the function z = f(x,y) be subject to the condition g(x,y) = 0. To obtain 

the maximum or minimum conditioned, the Lagrange function is formed: 
 

φ(x,y) = f(x,y) + λ·g(x,y). Thus: 
 

- Necessary or first degree condition: 
 

The ends sought are from the system of equations: 
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- Sufficient or second degree condition: 
 
Now forming the second differential: 
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 Thus, the function has a maximum if d2φ < 0 and a minimum if d2φ > 0 
(García and Rodríguez, 1985). If d2φ = 0 is a doubtful case and further 
investigation is required.  
 
 This second degree or order condition can be discriminated, frequently, 
through the formation of the so-called “relevant Hessian border”, which offers 
the following values: 
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where always 0''

2 =Φλ . This process generalizes n variables, like this: 

 
MINIMUM → always H < 0. 

 
MAXIMUM → 3 variables → H < 0 → u = f(x, y, z) 

           4 variables → H > 0 → u = f(x, y, z, t) 
           5 variables → H < 0 → u = f(x, y, z, t, s) 

………………….(and so on and so on). With H = 0 it is a doubtful case 
and we must continue investigating. 
 

 In most practical problems it is not necessary to make this distinction, 
since at first sight the nature of the extreme or critical point in question is 
known. 
 
Jacobian determinants method 
 
 Let, in the case of 2 variables, be the objective function: z = f(x,y) and the 
condition equation: g(x,y) = 0. The system: 
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     z = f(x,y) 
       [I] 

g(x,y) = 0   
 

In general, it will represent a curve in the Euclidean three-dimensional 
affine space and the values that z takes will be those of the function f along the 
curve g. Therefore, reasoning as it is done to obtain the ordinary extremes, the 
necessary condition for the existence of a conditioned extreme at a point will be 
the nullification, at that point, of z’g. Then, to obtain the possible extreme points, 
we will form the system: 
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x 'g'g +  it is always positive (note that both derivatives, if the 

system [I] represents a curve, are not identically null, simultaneously) the 
system is equivalent to: 
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where J(x,y) is the Jacobian functional determinant. 
 
 To deduce the sufficient conditions, it will suffice to study the sign of 
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that, at the points where J(x,y) is canceled, it becomes: 
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 Therefore, if at one point of those found: 
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NOTE: The exposed method is generalizable to n variables x1, x2, ..., xn; if we 
try to obtain the extremes of z = f(x1, x2, ..., xn) with the (n-1) constraints: 

 
g1(x1, x2, …, xn) = 0 ; g2(x1, x2, …, xn) = 0 ; …; gn-1(x1, x2, …, xn) = 0 ; 

 
the system formed by the following n equations is solved: 
 

0
)x,...,x,x(

)g,...,g,g,f(
J

n21

1n21 =
∂

∂
= − ; g1 = 0 ; g2 = 0 ; …; gn-1 = 0 ; 

 
and to determine if it is a maximum or a minimum, the sign of is calculated in 
each one of the points found: 
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resulting in a local maximum if J1 < 0 and a local minimum if J1 > 0 (García and 
Rodríguez, 1985). 
 
Variable substitution, elimination or reduction method 
 
 The problem of the conditioned extremes, generalized to n variables, is 
to find the extremes of the function z = f(x1, x2, ..., xn) that satisfy the 
conditioning equation: g(x1, x2, ..., xn) = 0. If it is possible to solve this last 
equation for one of the variables, such as: x1 = h(x2,…, xn), the solution of x1 
can be substituted in z resulting in: f[h(x2,…, xn), x2 , ..., xn], which is a function 
of (n-1) variables. Let's call this function F(x2, ..., xn); Obtaining the extremes of 
z, subject to the condition g previously expressed, is equivalent to obtaining the 
unconditioned extremes of F(x2, ..., xn) with respect to the variables x2, ..., xn. 
The problem of conditioned extremes is thus reduced to that of an 
unconditioned one and with the same variables or one less variable, which we 
can solve in the usual way. That is, it allows us to go from a restricted 
optimization program with equality restrictions to a free classical optimization 
without any restrictions and with the same or less number of variables, which 
greatly simplifies the resolution process. 
 
 On the contrary, this procedure can be attributed to involving a loss of 
symmetry because it gives preference to one of the variables of the condition 
(which, normally, will be the easiest to clear based on the others). In any case, 
to be able to carry out the aforementioned substitution in a general problem of 
this type, it must be possible to explain m decision variables based on the 
remaining (n - m), which is the number of degrees of freedom of the problem 
posed. And this is not always possible, although it is possible in the vast 
majority of practical problems, which is why it is presented here through some 
explanatory examples that we will see below. 
 
 It is always assumed that the number of variables n and the number of 
constraints m are finite, and also n > m. If it happens that n < m, it may turn out 
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that the set of feasible solutions is the vacuum or infinity, with which there is no 
solution, or the optimization problem is trivial. 
 
 On the other hand, the equality constraints in an optimization problem 
“reduce” its dimension. In general, for each restriction that is added, a degree of 
freedom is lost when obtaining the values that make the objective function 
reach its optimal value (Guzmán et alt., 1999). 
 
Interpretation of the Lagrange multipliers 

 
In previous sections it has been seen that the points obtained when 

solving a program with equality constraints have associated so-called Lagrange 
multipliers (one for each constraint or conditioning equation). We will refer, next, 
to the meaning of these multipliers, of special importance in their different 
applications (Balbás and Gil, 2004). 
 

To do this, let's formulate a program with equality restrictions, like the 
following: 

   Optimize: f(x1,…,xn) 
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       [II] 

 
where f: A → R and g = (g1,…, gm): A→ Rm (n > m) are two functions of class C2 
in the open A ⊂ Rn. 
 

If we assume that b1, ..., bm, can vary, it is clear that the feasible set M 
will depend on b = (b1, ..., bm), and we will write symbolically: 
 

( ){ }bx g/Ax)b(M =∈= . 
 

Intuitively, it is clear that the optimal points of the program [II] will depend 
on the value of b = (b1, ..., bm). Thus if given ( )m1 b,...,bb =  the program [II] has 

an optimum at the point: ( ) ( ) ( )( )m1n λ,...,λλ,a,...,aa λ,a == , and we can establish 
a function F: B → R (B is an environment of b), such that F (b) = f (a) ∀b ∈ B , is 
already the optimum of the program for b ∈ B. 

 
Well, given a program like [II], if for ( )m1 b,...,bb =  the function f it has a 

relative extreme on the set M(b) at the point ( ) λ,a where the Jacobian 
functional determinant of the function g has range m and the Ordered Hessian 
determinant is not null, then it is true that: 
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Thus, this multiplier associated with the i-th restriction, measures the rate 
of variation of the value of the objective function f at the optimal point with 
respect to its corresponding bi. The opposite of the k-th Lagrange multiplier 
measures the marginal change in the optimal value of the objective function 
with respect to the variation of the independent term of the k-th restriction bk. 
That is to say: 

( ) *
k

k

*

λ
b
zf −=

∂
∂

. 

 
But the Lagrange multipliers λi (∀ i = 1, 2, ..., m) can make some sense. 

We have shown that Lagrange multipliers are equivalent to partial derivatives; 
and these derivatives are synonymous with the term "marginal". Therefore, λi 
multipliers can be interpreted as marginal changes (Sánchez, 2014). 
 
 
SOME ILLUSTRATIVE EXAMPLES 
 
Example 1 
 

Find, by the Lagrange multipliers method, the conditioned extremes of 
the function: z = x·y, if x + y = 1. 

 
a) The Lagrange or Lagrangian function is: 

 
φ(x,y) = x·y + λ(x + y – 1), from where: 

 
- Necessary or first degree condition: 
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- Sufficient or second degree condition: 
 
To determine if it is maximum or minimum, we will do: 
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then, substituting: d2φ = 0·dx2 + 2·1·dx·dy + 0·dy2, 
 
and as: x + y = 1, dx + dy = 0, that is, dy = -dx. 
 
 Substituting again, you will have to: 
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d2φ = 2·dx·dy = 2·dx (-dx) = -2·dx2 < 0. 
 
 Since d2φ is negative, at point P(½,½,¼) there is therefore a relative or 
local maximum. 
 
 b) Another rather more immediate way of solving it, by the variable 
reduction method advocated here, would lead to the following single-variable 
function: 
 

Like: y = 1 – x ; z = x (1 – x) = x – x2; and so: 
 
- Necessary or first degree condition: 

 
z’x = 1 – 2x = 0; 2x = 1; x = ½ ;  y = 1 – ½ = ½ . 

 
Similarly: z = ½ · ½ = ¼ .  
 
- Sufficient or second degree condition: 
 
And as: 02''z 2x

<−=  → local MAXIMUM local, reaching the same 

conclusion, although in a simpler way, than operating by the previous 
procedure. 
 
Example 2 
 
 Find the relative extremes of: z = x·y2, if x + y = 6, using the Lagrange 
multiplier method. 
 
 a) The Lagrange or auxiliary function is, in this case: 
 

φ(x,y) = x·y2 + λ(x + y – 6).   
 

- Necessary or first degree condition: 
 

Partially deriving: , 0y·x2
y

     ; 0y
x

2 =λ+=
∂

φ∂=λ+=
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that, with the condition x + y = 6, they form a system of equations whose 
solutions are as follows: 
 
   For λ = 0:    ⇒ x = 6, y = 0. 
   For λ = -16:   ⇒ x = 2, y = 4. 
 

- Sufficient or second degree condition: 
 

The second differential of φ is:  d2φ = 2y·dx·dy + 2x·dy2, 
 

and as from the condition equation it follows that: dx + dy = 0, dy = -dx is also 
obtained, and we have that: d2φ = (-2y + 2x) dy2. So: 
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 For x = 6, y = 0: d2φ = 12dy2 > 0; then in (6, 0, 0) there is a local minimum. 

 
For x = 2, y = 4: d2φ = -4dy2 < 0; then in (2, 4, 32) there is a local maximum. 

 
 b) By reduction of variables the same conclusions will be reached, since 
from the conditioning equation we will have: y = 6 - x; and substituting this value 
in the objective function will result: 

 
z = x(6 – x)2 = x(36 + x2 – 12x) = x3 – 12x2  + 36 x ; 

 
- Necessary or first degree condition: 
 

z’x = 3x2 – 24x + 36 = 0 ;  x2 – 8x + 12 = 0 ; 
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 There are, therefore, 2 critical points: 
)4,2(P

)0,6(P
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1 . 

 
- Sufficient or second degree condition: 
 

24x6''z 2x
−= , → in P1 is 12 > 0 ⇒ MINIMUM in P1 (6, 0, 0) 

→ in P2 is -12 < 0 ⇒ MAXIMUM in P2 (2, 4, 32) 
 
Example 3 
 
 Obtain the extremes of the function z = x2 + y2, with the following 
condition: x + y - 2 = 0, applying various procedures. 
 
 a) Applying the Jacobian method, one begins by solving the system: 
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which, resolved, provides the values: x = 1, y = 1. 
 
 To determine if it is a maximum or a minimum, it is calculated: 
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therefore, a local minimum resulting in x = 1, y = 1, z = 1 + 1 = 2. 
 
 b) Applying, now, the method of the Lagrange multipliers, we will begin 
by forming the following Lagrange or auxiliary function: 
 

φ = x2 + y2 + λ(x + y – 2). 
 

- Necessary or first degree condition: 
 
By canceling its two partial derivatives, we will have: 
 

0y2
y

0x2
x

=λ+=
∂
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=λ+=
∂
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whence x = y, which with x + y - 2 = 0 provides x = 1 and y = 1. 
 

- Sufficient or second degree condition: 
 
To determine if this solution corresponds to a maximum or a minimum, 

d2φ is obtained, and depending on whether it is: d2φ> 0 or d2φ <0, it will be a 
minimum or a maximum, respectively. In our case it happens that: 
 

d2φ = 2·dx2 + 2·dy2 , 
 
and as of the condition: dx + dy = 0 we have: d2φ = 4 • dx2, which in all cases is 
positive, then it is a local minimum, whose value is z = 2. 
 
 c) The problem posed can also be solved directly by reducing variables, 
leaving us with a simple objective function of a single independent variable, 
since: 

z = x2 + y2 ; si: x + y – 2 = 0 ; y = 2 – x ; 
 

z = x2 + (2 – x)2 = x2 + 4 + x2 – 4x = 2x2 – 4x + 4 . 
 
- Necessary or first degree condition: 
 

z’x = 4x – 4 = 0 ⇒ x = 1 ⇒ y = 2 – 1 = 1 ; z = 1 + 1 = 2. 
 

- Sufficient or second degree condition: 
 

2x
''z = 4 > 0 ⇒ Then it is a MINIMUM, in P0(1, 1, 2). 
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Example 4 
 
 Using various procedures, determine the extremes of the following 
function: z = x2 + y2, with the condition x2 + 8x·y + 7y2 – 225 = 0. 
 

a) The Jacobian method. Let's calculate the Jacobian of the functions f 
and g, like this: 

 

)y2y·x3x2(8
y14x8y8x2

y2x2

)y,x(
)g,f(

J 22 −+=
++

=
∂
∂= . 

 
 Let's solve the system J = 0, g = 0: 
 
    2x2 + 3x·y – 2y2 = 0 
    x2 + 8x·y + 7y2 – 225 = 0  
 
 Multiplying the second equation by -2 and adding, we get: 
 

13xy + 16y2 = 450, from where: 
y13

y16450
x

2−=  [III] 

 
and substituting this value in any of the equations, we obtain: 
 

y4 + 25y2 – 900 = 0, 
 

which is a biquadrate equation, which provides: 
45

20

2
6525

y2

−
=±−= . 

 
 From the first solution it follows that, which substituted in [III] gives, for 
values of x: 5x ±= . 
 
 No real solution is obtained from the second. 
 
 To determine whether it is a maximum or a minimum, we obtain: 
 

),y74y·x64x26(8
y14x8y8x2

y4x3y3x4
8

)y,x(
)g,J(

)y,x(J 22
1 ++=

++
−+

=
∂
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and since both J1 ( 52,5 ) and J1 ( 52,5 −− ) are positive, at both points 
there are relative minimum values: 
 

z = ( 5 )2 + ( 20 )2 = 5 + 20 = 25. 
 

 b) This same problem, solved by the variable reduction method, is 
established as follows: 
 

[OPT] z = x2 + y2, 



 12 

 
with the condition: x2 + 8xy + 7y2 – 225 = 0; then substituting in the objective 
function, it will result: 

z = 225 – 8x·y – 6y2 ; 
 

- Necessary or first degree condition: 
 

z’x = -8y = 0 ⇒ y = 0 
  z’y = -8x – 12y = 0 ⇒ x = 0 
 
- Sufficient or second degree condition: 

 
2x

''z = 0 ;  xy''z = yx''z = -8 ;  2y
''z = -12 ;  then we will form the Hessian functional 

determinant: 

=
−−
−

=
128

80
)y,x(H -64 < 0, 

 
it offers a "saddle point", and the problem must be solved by other methods. In 
this case, then, the variable reduction method has not been effective in solving 
the problem. 
 
 c) We will now solve the problem by applying the Lagrange multipliers 
method. Forming the corresponding Lagrange function and canceling its first 
derivatives, we will have: 
  

φ = x2 + y2 + λ(x2 + 8x·y + 7y2 – 225). 
 

- Necessary or first degree condition: 
 

    φ’x = 2x + 2λx + 8λy = 0 
    φ’y = 2y + 8λx + 14λy = 0 
    φ’λ = x2 + 8xy + 7y2 – 225 
 

We could eliminate λ between the first two equations, but, in this case, it 
is preferable to obtain the possible values of λ, imposing the compatibility 
condition of the previous system, that is: 
 

0
)71(28

8)1(2
=

λ+λ
λλ+

, from which it is obtained: 9λ2 – 8λ – 1 = 0, 

 
which provides the roots: λ1 = 1 and λ2 = -1/9. For λ1 = 1, by substitution in any 
of the equations of the previous system, x = -2y is found, a value that, when 
substituted in the condition equation, leads to: 
 

4y2 – 16y2 + 7y2 = 225,  -5y2 = 225, where: y = 3i· 5 , 
 
pure imaginary solution that does not provide extremes. 
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 For λ2 = -1/9, similarly, we find y = 2x and when substituting in the 
condition equation it is: 
 

x2 + 16x2 + 28x2 = 225,   45x2 = 225, or: 
 

x = 5±      therefore    y = 52± ,     z = 25. 
 

- Sufficient or second degree condition: 
 
To specify if it is a maximum or minimum, we obtain: 

 
d2φ = 2(1 + λ)dx2 + 16λ·dx·dy + 2(1 + 7λ)dy2 . 

 
 From the condition equation, by differentiation, dy is obtained as a 
function of dx: 

(2x + 8y)dx + (8x + 14y)dy = 0. 
 
 Substituting dy for its value y for y = 2x, λ = -1/9, we obtain: 
 

22 dx
9
25

d =φ , that being positive tells us that at both critical points there are 

relative minimums. 
 
 If you intend to solve it alternately by forming the relevant Hessian 
border, you have, from the auxiliary function: 
 

φ = x2 + y2 + λ(x2 + 8xy + 7y2 – 225) ; 
 

2x
''φ = 2 + 2λ ;    φ’’xy = 8λ = φ’’yx ;   φ’’xλ = 2x + 8y ; 

 
2y

''φ = 2 + 14λ ;    φ’’yλ = 8x + 14y ;   and the Hessian determinant will result: 

 

=
++

+λ+λ
+λλ+

=λ
0y14x8y8x2

y14x81428

y8x2822

),y,x(H  8λ(8x + 14y)(2x + 8y) + 8λ(2x + 

+ 8y)(8x + 14y) – (2x + 8y)2(2 + 14λ) – (2 + 2λ)(8x + 14y)2 = 
 

= 16λ(8x + 14y)(2x + 8y) – (4x2 + 64y2 + 32xy)(2 + 14λ) – (2 + 2λ)(64x2 +  
 

+ 196 y2 + 224 xy) = ……,  with a very laborious resolution, to which the 
obtained values of λ, x and y will have to be substituted, making it more 
practical to find the numerical value of the Hessian functional determinant for 
both critical points obtained. And so, for )52,5(  you will have: 
 



 14 

018000

0536518

5369/49/8

5189/89/16

)9/1,52,5(H <−=−
−

=− , then it is a relative or 

local minimum. Similarly, for )52,5( −−  you will have: 
 

 018000

0536518

5369/49/8

5189/89/16

)9/1,52,5(H <−=
−−

−−
−−

=−−− , so it will also be 

a relative minimum. 
 
Example 5 
 
 Find, by various procedures, the maximums and minimums of the 
function: u = x·y2·z3, with the condition x + y + z = 12, where x, y, z are positive. 
 

a) Being x, y, z positive, the ends of the function u will coincide with those 
of the function ln u, where by ln we denote the natural or Neperian logarithm. 
Therefore, the Lagrange or auxiliary function will be: 
 

Φ (x, y, z) = ln x + 2 ln y + 3 ln z + λ (x + y + z – 12). 
 
 - Necessary or first degree conditions: 
 
 Its zero-matched partial derivatives provide the following system: 
 

012zyx

0
z
3

0
y
2

0
x
1

'

'
z

'
y

'
x

=−++=Φ

=λ+=Φ

=λ+=Φ

=λ+=Φ

λ

  , or , 
3
z

2
y

x
λ

1 ===− , 

 
that with the condition x + y + z = 12, they provide us, in short, with the values: 
 

x = 2,     y = 4,    z = 6,    
2
1

λ −= . 

 
- Sufficient or second degree conditions: 
 
If we now calculated the second differential of u at that point, we would 

find that in (2, 4, 6) there is a maximum. However, we are going to start from the 
relevant hessian functional determinant, with what: 
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1

1

1

0

  

1

0

0
z
3

  

1

0

0
y
2

  

1

0

0
x
1

 

"
zλ

"
yλ

"
xλ

"
λ

"
λz

"
zy

"
zx

2
"
z

"
λy

"
yz

"
yx

2
"
y

"
λx

"
xz

"
xy

2
"
x 2222

=Φ
=Φ
=Φ
=Φ

=Φ
=Φ
=Φ

−=Φ

=Φ
=Φ
=Φ

−=Φ

=Φ
=Φ
=Φ

−=Φ

 

 

( ) ( ) ==

−

−

−

=λ row 4th the of elements the by developing 

0111

1
z
3

00

10
y
2

0

100
x
1

 ,z ,y ,x H

2

2

2

 

 

100

1
x

2
0

10
x
1

  

1
z
3

0

100

10
x
1

  

1
z
3

0

10
x

2
100

  
2

2

2

2

2

2
−

−

−
−

−

+

−

−−= = 

 

( )variables 3    0  
y x

2
z x

3
z y

6
222222

<−−−= , 

 
then it could be maximum or minimum. 
 
 The same problem, solved directly (longer), offers: 
 

- Necessary or first degree condition: 
 

( )12zyx λzyx 32 −+++⋅⋅=Φ ; 
 













=−++=Φ
=λ+=Φ

=λ+=Φ
=λ+=Φ

λ 012zyx

0z y x 3

0z y x 2

0z y

'

22'
z

3'
y

32'
x

 from where: 

y2 z3 = 2 x y z3 = 3 x y2 z2; now divided by (y z2) is:  y z = 2 x z = 3 x y; 




=
=

x3z

x2y
 

So: x + 2 x + 3 x = 12 

6z

4y

2x

=
=
=

, then at the critical point P(2, 4, 6) there is a 

relative or local extreme. 
 

- Sufficient or second degree condition: 
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1

1

1

0

  

1

z y x 6

z y 3

z y x 6

  

1

z y x 6

z y 2

z x 2

  

1

z y 3

z y 2

0

 

"
zλ

"
yλ

"
xλ

"
λ

"
λz

2"
zy

22"
zx

22
z

"
λy

2"
yz

3"
yx

3"
y

"
λx

22"
xz

3"
xy

"
x 2222

=Φ
=Φ
=Φ
=Φ

=Φ
=Φ
=Φ
=Φ

=Φ
=Φ
=Φ
=Φ

=Φ
=Φ
=Φ
=Φ

, with which: 

( ) ==  

0111

1z y x 6z y x 6z x 3

1z y x 6z x 2z y 2

1z y 3z y 20

 λ ,z ,y ,x H
2222

233

223

(developing by the elements of 

the 4th row) = 
 

=−+−=  

1z y x 6z y 3

1z x 2z y 2

1z y 20

  

1z y x 6z y 3

1z y x 6z y 2

1z y 30

  

1z y x 6z y x 6

1z y x 6z x 2

1z y 3z y 2

 
222

33

3

222

23

22

22

23

223

 

 
= ……………….. (reaching the same conclusions as through the previous 
simplified process). 
 

With 

6z

4y

2x

=
=
=

, substituting these values in the previous Hessian, we have to: 

( ) 0 984 985 2 

0111

1115217281728

117288641728

1172817280

  ,z ,y ,x H <−==λ , 

 
then it can be maximum or minimum (3 variables), and we still cannot find the 
definitive solution. 
 
 b) Solving it through a simple example (by trial and error), we would have 
the following: 
 

5400216251z ·y·  xu 

12

6z

5y

1x

32 =××==













=
=
=
=

∑

, and alternatively: 
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6912216162z· y· xu 

12

6z

4y

2x

32 =××==













=
=
=
=

∑

, and so it will be for all possible 

combinations of three positive quantities that meet the restriction imposed in the 
statement, then it seems obvious that at the critical point P0(2, 4, 6) there is a 
RELATIVE MAXIMUM. 
 
 c) Next, we will try the variable reduction method, and we will have to: 
 
x = 12 - y - z, with what substituting in the objective function, we will have: 
 
Φ = (12 – y - z) ⋅ y2 ⋅ z3 = 12 y2 z3 - y3 z3 - y2 ⋅ z4 = Φ (y, z), which is already a 
case of unconditional extremes and only 2 variables. 
 

- Necessary or first degree condition: 
 









=−−⋅=Φ
=−−⋅=Φ

0z y 4z y 3zy 36

0z y 2z y 3yz 24
322322'

z

4323'
y  from where: 

 
  24 – 3y – 2z = 0 
- 36 + 3y + 4z = 0 

- 12 + 2z = 0  ⇒  z = 6;  4
3

1224
3

z 224
y =−=−= ;   x = 12 – 4 – 6 = 2. 

 
 - Sufficient or second degree condition: 
 
 We will form the Hessian determinant: 
 

( )   z ,y H
"
z

"
yz

"
yz

"
y

2

2

ΦΦ
ΦΦ

= , with the following real values: 

 









−=−−=−−=Φ
−=−−=−−=Φ

−=−−=−−=Φ

2304691223046912z y 12z y 6z y 72

17286912518410368z y 8z y 9z y 72

2592259251845184z 2z y 6z 24

2232"
z

3222"
yz

433"
y

2

2

 

 

( )

,0  2592 with

 ,0 984 985 2984 985 2968 971 5 
23041728

17282592
 6 ,4 H

"
y2 <−=Φ

>=−=
−−
−−

=
  

 
then it is a relative or local MAXIMUM at the critical point P0(2, 4, 6), with a 
value: u = x ⋅ y2 ⋅ z3 = 2 × 16 × 216 = 6912. 
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Note the greater ease of resolution obtained using this last 
procedure (reduction or elimination of variables) in the present example 
compared to the Lagrange multipliers method, as well as the fact that it 
has allowed us to easily discriminate the nature of the critical point found 
as a consequence of the application of the necessary or first degree 
condition. Hence the interest in their employment in most cases that 
occur in practice. 

 
Example 6 

 
Find, by various procedures, the maximum of the product: x·y·z, when x 

+ y + z = a; where x, y, z are positive. 
 
a) We will form, in principle, the following auxiliary or Lagrangian 

function: 
Φ = x·y·z + λ(x + y + z – a) . 

 
- Necessary or first degree condition: 

 

;ax 3  ;zyx

0azyx
 
 

0y·x
z 

 

0z·x
y 

 

0z·y
x 

 

'

'
z

'
y

'
x

===

















=−++=
λ∂
Φ∂=Φ

=λ+=
∂

Φ∂=Φ

=λ+=
∂

Φ∂=Φ

=λ+=
∂

Φ∂=Φ

λ

 from where: 

 

3
a

x = ;   
3
a

y = ;   
3
a

z = ; 
27
a

z ·y· xP
3

.máx == ; with: 
9
a

λ

2

−= . 

 
- Sufficient or second degree condition: 
 

 

1

1

1

0

  

1

x

y

0

  

1

x

z

0

  

1

y

z

0

 

"
zλ

"
yλ

"
xλ

"
λ

"
λz

"
zy

"
zx

"
z

"
λy

"
yz

"
yx

"
y

"
λx

"
xz

"
xy

"
x 2222

=Φ
=Φ
=Φ
=Φ

=Φ
=Φ
=Φ
=Φ

=Φ
=Φ
=Φ
=Φ

=Φ
=Φ
=Φ
=Φ

; the relevant Hessian border, will be: 

 

=−+−==λ  

1xy

10z

1z0

  

10y

1xz

1y0

  

10x

1x0

1yz

   

0111

10xy

1x0z

1yz0

 ),z,y,x(H  

 
= - (x z + x y - x2) + (y2 – x y – z y) – (z y + z x – z2) = (operating properly) = - 2 

x2 – 2 x2 – 2 x2 + x2 + x2 + x2 = - 6 x2 + 3 x2 = - 3 x2 = 0 
3
a2

<−  (3 variables), 
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then it could be maximum or minimum, and you will have to try to solve this 
problem by some other procedure. 
 

b) Variable reduction method: 
 

By making the substitution on the objective function: z = a - x - y, the 
following 2-variable function results: 
 

Φ(x,y) = x·y(a – x – y) = a·x·y – x2·y – x·y2; 
 

- Necessary or first degree condition: 
 







=−−=Φ
=−−=Φ

0x y 2xx a

0yx y 2y a
2'

y

2'
x  from which it results  





=−−
=−−

0y 2xa

0yx 2a
 

and, in short, 
3
a

zyx ===  (critical point). 

 
- Sufficient or second degree condition: 

 









−=Φ
−−=Φ=Φ

−=Φ

x 2

y 2x 2a

y 2

"
y

"
xy

"
xy

"
x

2

2

,  and so: 
( )

( ) =
−+−

+−−
=  

x 2yx 2a

yx 2ay 2
 )z,y,x( H  

 

0 
3
a

a
3
a 4

3
a 8

3
a 4

ay a 4x a 4y x 4y 4x 4a
2

2
222

2222 >=−=+−−=++−−−−= ; 

0  
3

a 2
y2"

x2 <−=−=Φ , then there is a MAXIMUM RELATIVE at the point 

( )a/3 ,a/3 ,3/a P , which effectively solves the problem posed. 
 
 Thus, as in the previous example, the variable reduction or 
substitution method has made it possible to easily discriminate the nature 
of the critical point found, a circumstance that had not been achieved by 
the application of the Lagrange multipliers method. 

 
Example 7 
 

Let's consider the following program: 
 

( )
.02xx       :to subject

2x2xx,xf   Optimize

2
3
1

2
2
121

=−−
++=

 

  
Solution: 

  
a) From the given restriction we can obtain: ,2xx 3

12 −=  and substituting 
in the objective function (variable elimination method) we have: 
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( ) 2x2xx 3
1

2
11 −+=Φ , which is already a real function of a single real variable. 

 
 Now let's find the ends of this function: 
  





−=
=

→=+=Φ
3/1x

0x
0x6x2

dx
d

2

12
11

1

 

 
 The second drift will be: 
 

,x122
dx
d

12
1

2

+=Φ
    

( )
02

dx
0d

2
1

2

>=Φ
   and   

( )
02

dx
3/1d

2
1

2

<−=−Φ
. 

 
 Therefore, at these points, the objective function Φ  has a relative 
minimum and maximum, respectively. 
 
 Substituting these points in 2xx 3

12 −=  we can conclude that (0, -2) and 
(-1/3, -55/27) are, respectively, the relative minimum and maximum of the 
original program (Balbás and Gil, 2004). 
 
 b) The problem can also be solved by formulating the corresponding 
Lagrangian function: ( )2xxλ2x2x 2

3
12

2
1 −−+++=Φ . 

 
- Necessary or first degree condition: 
 









=−−=Φ
=−=Φ

=⋅⋅+=Φ

02xx

0λ2

0xλ3x2

2
3
1

'
λ

'
x

2
11

'
x

2

1

 

 
 De la resolución de este sistema, con λ = 2, surgen los dos puntos 

críticos: (0, -2) y ( )27
55,3

1 −− .  

 From the resolution of this system, with λ = 2, the two critical points arise: 

(0, -2) and ( )27
55,3

1 −− . 

 
• The critical point (0, -2) offers a value of the objective function: 

 
Φ = 2 × (-2) + 2 = -2 (MINIMUM RELATIVE). 

 

• The critical point ( )27
55,3

1 −−  offers a value of the objective function: 

 

296.1
27
53

27
54

27
110

27
3 −>−≈−=+−=Φ  (MAXIMUM RELATIVE). 

 
- Sufficient or second grade condition: 
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 To corroborate the above, let's form the corresponding relevant Hessian 
border, that is: 
 

1
"
x

x1222
1

+=Φ ;  0"
x2

2
=Φ ;   0"

xx 21
=Φ ;   1"

λx2
−=Φ ;   2

1
"
λx x3

1
=Φ ;    and so: 

 

( ) ⇒−−=
−

−
+

=
ΦΦΦ
ΦΦΦ
ΦΦΦ

= 1
2
1

2
11

"
λ

"
λx

''
λx

"
λx

"
x

"
xx

"
λx

"
xx

"
x

21 x122

01x3

100

x30x122

λ,x,xH

2
21

2
2
221

121
2
1

 

 







⇒>=+−=⇒−=
⇒<−=⇒=

⇒
MAXIMUM  LOCAL 0242H3

1x con

MINIMUM  LOCAL 02H0x con

1

1
 

 
which offers the same result as that which was deduced directly from the 
application of the necessary condition. 
 
 
CASE STUDY 

 
At this point, let us see that identical formulations to those proposed by 

this author in his studies for the case of free conductions (see Chap. I, 
epigraphs 4.3. and following of the book "Five subjects of Hydrology and 
Hydraulics", Universitat Internacional de Catalunya, Tortosa, 2003, cited in the 
bibliography) can be applied, with the corresponding corrections, in the 
calculation and design of forced or pressure pipes. For this, the formulas 
corresponding to the 6 categories of roughness have been used, and they are 
expressed below in the following table, depending on the material of the tube 
and for pipes used or in service. 

 
These formulas will adopt the general configuration: V = K • Rβ • J0'5, in 

which the speed V(m/s) is given as a function of the hydraulic radius R(m), of 
the loss of unit load J(m/m) and of coefficients according to the various 
categories of roughness. Namely: 
 

Table 1. Coefficients of the formulation proposed by Franquet according to the different 
categories of roughness. 

 
Roughness 
degree (k) 

Material K β 

1 Plastics, glass, brass, 
stretched copper 

86.85 0.62150 

2 Fiber cement, aluminum 78.29 0.63455 
3 Steel, other metals 70.02 0.64760 
4 Uncoated cast iron 63.92 0.65560 
5 Uncoated concrete 56.24 0.66540 
6 Uncoated ceramic 49.51 0.67725 

Source: Franquet, 2005. 
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The previous formulation, however, is more practical to apply depending 
on the internal diameter D(m) of the pipe and the flow Q(m3/s) circulating 
through it, so, for the basic case studied (pipe in used), we would have, 
correlatively, the following expressions, in which the unit head loss J(m/m) has 
also been solved and the intermediates obtained by linear interpolation have 
been included: 

 
Table 2. Proposed expressions of speed, flow and unit pressure drop for pipes in service. 

 
Roughness 

(k) 
V 

(m/s) 
Q 

(m3/s) 
J 

(m/m) 
1.0 36.69 · D0.6215 · J0.5  28.82 · D2.6215 · J0.5  0.000743 · V2 · D-1.243 
1.5 34.59 · D0.62802 · J0.5  27.16 · D2.62802 · J0.5 0.000845 · V2 · D-1.256 
2.0 32.48 · D0.63455 · J0.5  25.51 · D2.63455 · J0.5  0.000948 · V2 · D-1.2691 

2.5 30.51 · D0.6411 · J0.5 23.96 · D2.6411 · J0.5 0.001088 · V2 · D-1.2821 
3.0 28.53 · D0.6476 · J0.5  22.41 · D2.6476 · J0.5  0.001229 · V2 · D-1.2952 

3.5 27.14 · D0.6516 · J0.5 21.32 · D2.6516 · J0.5 0.001368 · V2 · D-1.3032 
4.0 25.76 · D0.6556 · J0.5  20.23 · D2.6556 · J0.5  0.001507 · V2 · D-1.3112 

4.5 24.06 · D0.6605 · J0.5 18.89 · D2.6605 · J0.5 0.001753 · V2 · D-1.321 
5.0 22.36 · D0.6654 · J0.5  17.56 · D2.6654 · J0.5  0.002 · V2 · D-1.3308 

5.5 20.86 · D0.6713 · J0.5 16.38 · D2.6713 · J0.5 0.002334 · V2 · D-1.3426 
6.0 19.36 · D0.67725 · J0.5  15.21 · D2.67725 · J0.5  0.002668 · V2 · D-1.3545 

    Source: self made. 
 

A more complete and justified view of the minimization of unit head 
losses for each of the six (or eleven) roughness categories previously defined, 
can be carried out from the conditioning equation: V = 1.4466 × D + 0.638, also 
deduced by the undersigned, which represents the maximum admissible speed 
of water circulation by the pipeline as a function of its internal diameter 
(Franquet, 2005). 
 

If we consider, v. gr., the roughness category of a reinforced concrete 
pipe (k = 5), will have the corresponding proposed expression of the loss of unit 
load that we will try to minimize by the method of the Lagrange operators 
applying the necessary or first degree condition, so: 

 

V = K · Rβ · J0’5 = 5.06654.05.0
6654.0

JD36.22J
4
D

24.56 ××=×






× ,  

 
and also in view of Table 2: 
 

J = 0.002 × V2 × D-1.3308 
 

0DV004.0J 3308.1'
V =××= −  

 
( ) 0D3308.1V002.0J 3308.22'

D =×−××= −  
 
 Being necessarily V and D positive, the conditioned ends of the function 
J will coincide with those of the logarithmic function ln J. This is done for ease of 



 23 

calculation, since in this way the product becomes a sum or addition. Therefore, 
we form the following Lagrangian or auxiliary function: 
 

Φ (V, D) = ln 0.002 + 2 × ln V – 1.3308 × ln D + λ (V – 1.4466·D – 0.638). 
 

 The necessary or first degree condition requires that: 
 














=−−=Φ

=λ−−=Φ

=λ+=Φ

λ 0638.0D·4466.1V

0·4466.1
D

3308.1

0
V
2

'

'
D

'
V

 whence it follows: 
D4466.1

3308.1
V
2

⋅
−=−=λ  ; 

 

D4466.1
3308.1

638.0D4466.1
2

⋅
=

+⋅
 ; 2.8932 ⋅ D = 1.9251 ⋅ D + 0.849; 

 
0.9681 × D = 0.849   ⇒   D = 0.877 m, which limits the advisable maximum 
speed, as we have seen, to: 
 

V = 1.4466 × 0.877 + 0.638 = 1.91 m/s ; and so: 

 049.1
91.1
2

V
2 −=−=−=λ ; with a flow of: Q = 0.7854 × V × D2 =  

= 0.7854 × 1.91 × 0.8772 = 1.15 m3/s, and a unit pressure drop of:  
 

m/m. 00866.0
877.0

91.1002.0
J

3308.1

2

=×=  

 
Second grade or sufficient condition: 
 
 For this, we will form the relevant Hessian bordering functional 
determinant, with which: 

( ) =+−=

−

−

−

=
ΦΦΦ
ΦΦΦ
ΦΦΦ

=λ

λλλ

λ

λ

222

2

""
D

"
V

''
D

"
D

"
VD

"
V

"
VD

"
V

V
1853.4

D
3308.1

04466.11

4466.1
D
3308.1

0

10
V
2

,D,VH

2

2

2

 

→<−=−=+−= 058.0730.1147.1
91.1

1853.4
877.0
3308.1

22
 then it is a relative or local 

MINIMUM at the critical point P0(1.91,0.877,0.00866). 
 
Trial testing: 
 
- If we assume: D = 1.000 m ⇒ V = 1.4466 × 1 + 0.638 = 2.08 m/s. 
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So: .m/m 00869.0
1

08.2002.0
J

3308.1

2

=×=  

 
- If we assume: D = 0.500 m ⇒ V= 1.4466 × 0.5 + 0.638 = 1.36 m/s. 
 

So: .m/m  00931.0
5.0

36.1002.0
J

3308.1

2

=×=  

 
- If we assume: D = 2.000 m ⇒ V = 1.4466 × 2 + 0.638 = 3.53 m/s. 
 

So: .m/m  00991.0
2

53.3002.0
J

3308.1

2

=×=  

 
- If we assume: D = 0.100 m ⇒ V = 1.4466 × 0.1 + 0.638 = 0.78 m/s. 
 

So: .m/m  02624.0
1.0

78.0002.0
J

3308.1

2

=×=  

 
The following table shows -as a summary of the previous determination- 

the presence of the minimum of the objective function in an environment 
sufficiently representative of it. So: 

 
D (m) J (m/m) 
0.100 0.02624 
0.500 0.00931 
0.877 0.00866 
1.000 0.00869 
2.000 0.00991 

  
It follows, therefore, that complying with the law of average speed as a 

function of the internal diameter that we propose here, and specifically for the 
roughness category k = 5 (uncoated concrete), the minimum value of the unit 
load loss is J = 0.00866 m/m, which takes place for V = 1.91 m/s, D = 877 mm 
and Q = 1.15 m3/s. 

 
 These same determinations can be made for the remaining five 
categories of roughness, ultimately resulting in the following table: 
 

Table 3. Minimum value of J for the different categories of roughness. 
 

Roughness 
(k) 

J 
(m/m) 

D 
(m) 

V 
(m/s) 

Q 
(m3/s) 

1 0.00315 0.724 1.69 0.70 
2 0.00405 0.766 1.75 0.80 
3 0.00529 0.810 1.81 0.93 
4 0.00650 0.840 1.85 1.03 
5 0.00866 0.877 1.91 1.15 
6 0.01159 0.925 1.98 1.33 
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Likewise, for each of the different categories of roughness, we can see, 
in the following graphs, the greater detail of the absolute minimums of the 
function J (D). Namely: 
 

 

Fig. 1. Absolute minimum of J (D) for k = 1. 
 
 

   
Fig. 2. Absolute minimum of J (D) for k = 2. 
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Fig. 3. Absolute minimum of J (D) for k = 3. 

 

   
Fig. 4. Absolute minimum of J (D) for k = 4. 

   

   
Fig. 5. Absolute minimum of J (D) for k = 5. 
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Fig. 6. Absolute minimum of J (D) for k = 6. 

 
Verification by reduction of variables: 
 
 The new objective function to be optimized, with a single variable, will be 
given by substituting in it the conditioning equation, that is: 
 
J = 0.002 × (1.446 × D + 0.638)2 × D-1.3308; and developing: 
 
J = 0.002 (2.0927 × D2 + 0.407 + 1.8459 × D) × D-1.3308 = 
 
= 0.002 (2.0927 × D0.6692 + 0.407 × D-1.3308 + 1.8459 × D-0.3308); 
 
and the necessary or first degree condition will require that: 
 

( ) 0D6106.0D5416.0D4004.1002.0J 3308.13308.23308.0'
D =×−×−×= −−− , 

 

and operating properly: 0
D

6106.0
D

5416.0
D

4004.1
3308.13308.23308.0

=−− ; from where: 

 
1.4004 × D2 – 0.5416 – 0.6106 × D = 0; then the only positive root will be: 
 

m 877.0
8008.2

8457.16106.0
8008.2

0338.33729.06106.0
D =+=++= ,  

 
although with a shorter and simpler resolution process. 
 
 The sufficient or second degree condition corroborates the presence of a 
relative minimum, as can be verified from the 2nd derivative: 
 

( )
,D000926505.0D00162517.0D00252473.0

D8126.0D2624.1D4633.0002.0J
3308.13308.23308.3

3308.23308.33308.1''
D

−−−

−−−

×−×+×=

=×+×+×−=
 

 
which for D = 0.877 m results in J’’

D > 0. 
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CONCLUSIONS 
 

The problems of conditioned extremes of functions of several variables, 
solved by means of the pertinent substitution using the technique that we will 
call "reduction of variables" (on some occasions it has also received the name 
of "substitution" or "elimination"), are reduced to others with the same variables 
or one less variable and without any restrictive condition, which greatly 
simplifies their resolution. 

 
In this article various examples have been presented and at the end a 

practical case of Hydraulics that show, once again, the usefulness of the 
proposed procedure of "reduction of variables" in a large number of real cases 
that occur in practice engineering. 
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