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SUMMARY/ABSTRACT 
 

 The present work deals with the study of a pressure water pipe or conduit 
provided with an intermediate outlet with free exit at its end is applied, also 
applying the theory of classical optimization and some new formulation proposed 
by the author. The problem is generalized by increasing the number of 
equidistant outlets or outlets of the conduit of equal flow, with the corresponding 
determination of the resulting head loss by using the Christiansen formulation, 
which obviates the iterative calculation process that is highly cumbersome if this 
number of exits is important, as it happens in sprinkler or localized high 
frequency irrigation. Finally, it is considered the case study of a pipeline that 
distributes the flow uniformly over its entire length. 
 
Keywords: forced conduction, piezometric level, headloss, optimization, reducing 

coefficient, derivation, pipeline, flow, diameter. 
 
 

CONDUCTO DE AGUA CON TOMA INTERMEDIA. APLICACIÓN DE 
LA TEORÍA DE LA OPTIMIZACIÓN Y GENERALIZACIÓN DEL 

PROBLEMA 
 

RESUMEN 
 
 

 En el presente trabajo se aborda el estudio de una tubería o conducto de 
agua a presión provisto de una toma intermedia con salida libre por su extremo, 
aplicándose también la teoría de la optimización clásica y alguna nueva 
formulación propuesta por el autor. El problema se generaliza al aumentar el 
número de tomas o salidas equidistantes del conducto de igual caudal, con la 
determinación correspondiente de la pérdida de carga resultante mediante el 
empleo de la formulación de Christiansen, que obvia el proceso de cálculo 
iterativo que resulta altamente farragoso si dicho número de salidas es 
importante, como sucede en los riegos por aspersión o localizados de alta 
frecuencia. Se considera, por último, el estudio del caso de una tubería que 
distribuye el caudal de manera uniforme en toda su longitud. 
 
Palabras clave: conducción forzada, nivel piezométrico, pérdida de carga, 

optimización, coeficiente reductor, derivación, tubería, caudal, diámetro.  
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CONDUITE D'EAU AVEC PRISE INTERMÉDIAIRE. 
APPLICATION DE LA THÉORIE DE L'OPTIMISATION ET 

GÉNÉRALISATION DU PROBLÈME 
 
 

RÉSUMÉ 
 
 

 Dans le présent travail, est abordée l’étude d’une canalisation ou d’un 
conduit d’eau sous pression dotée d’une prise intermédiaire avec sortie libre à 
son extrémité, appliquant également la théorie de l’optimisation classique et une 
nouvelle formulation proposée par l’auteur. Le problème se généralise en 
augmentant le nombre de prises ou de sorties équidistantes du conduit de flux 
égal, avec la détermination correspondante de la perte de charge résultante grâce 
à l'utilisation de la formulation de Christiansen, qui évite le processus de calcul 
itératif qui est très fastidieux si le nombre de sorties est important, comme dans 
l’arrosage par aspersion ou irrigation localisée à haute fréquence. Enfin, l'étude 
du cas d'un pipeline distribuant le flux de manière uniforme sur toute sa longueur 
est considéré. 
 
Mots clés: conduite forcée, niveau piézométrique, perte de charge, optimisation, 

coefficient de réduction, dérivation, conduite, débit, diamètre. 
 
 
 
CONDUCTE D'AIGUA AMB PRESA INTERMÈDIA. APLICACIÓ 

DE LA TEORIA DE L'OPTIMITZACIÓ I GENERALITZACIÓ DEL 
PROBLEMA 

 
 

RESUM 
 
 

 En el present treball s'aborda l'estudi d'una canonada o conducte d'aigua a 
pressió que disposa d’una presa d’aigua intermèdia amb sortida lliure pel seu 
extrem, aplicant també la teoria de l'optimització clàssica i alguna nova 
formulació proposada pel propi autor. El problema es generalitza en augmentar el 
nombre de preses o sortides equidistants del conducte d'igual cabal, amb la 
determinació corresponent de la pèrdua de càrrega resultant mitjançant l'ús de la 
formulació de Christiansen, que obvia el procés de càlcul iteratiu que resulta 
altament carregós si el nombre de sortides és important, com succeeix en els regs 
per aspersió o localitzats d'alta freqüència. Es considera, finalment, l'estudi del 
cas d'una canonada que distribueix el cabal de manera uniforme en tota la seva 
longitud. 
 
Paraules clau: conducció forçada, nivell piezomètric, pèrdua de càrrega, 

optimització, coeficient reductor, derivació, canonada, cabal, diàmetre. 
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1. Pipeline with an intermediate outlet 
 
Let pipeline AC of length L and constant diameter D, in which there is an 

outlet at B (Fig. 1), fitted with its stopcock, divides said length into two sections 
of lengths L1 and L2. So: 

 

 
 

Fig. 1. Outline of the problem. 
 
 If both sections are of different internal diameters, D1 and D2, it would be 
a mixed pipeline (in series) that could be replaced, for calculation purposes, by a 
certain "equivalent pipe" of constant diameter De. In this sense, a pipe is said to 
be equivalent when the head loss, for a given flow rate, is the same as in the pipe 
system it replaces (Torres, 1970). In our case it would happen that: 
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This can be generalized to any number n of sections of different internal 

diameters of which the forced conduction in the study consists, thus, 
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It should be noted, however, that the average of the formulations proposed 

in our studies (Franquet, 2005) turns out to have the generic configuration:  
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J = γ·Q2·D-5.3, with which the exponent 5.00 and degree of the root appearing in 
expression (1) could be modified by the value 5.30 or applied for each different 
case according to the specifically adopted roughness category. Indeed: 
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=γ= , with γ’ ≈ 0.0013, 

 
that constitutes the average generic expression, of the J (V, D) type, of the loss of 
continuous unit load that appears in our research. 
 
 In fact, note that according to the different formulations proposed by many 
authors, the mentioned exponent of the diameter in the function J (Q, D), which 
is given by (2β1 + β2), being β1 and β2, respectively, the values of the exponents 
of the speed and the internal diameter in the formulation used for the calculation 
of the continuous unit losses of load, would adopt values oscillating around 5.00, 
as can be seen in Table 1 referring to some of them. Thus, table 2 shows the 
exponent of the diameter that should be applied, according to our own 
formulation, for the calculation of these continuous unit load losses according to 
the different categories of roughness k proposed in our studies. 
 

Table 1. Exponent of the diameter in J (Q, D) according to different authors. 
 

Author Exponent of D 

Manning-Strickler-Gaukler 
(1890, 1923) 

5.33 

Sonier, Franquet (2005)  5.30 
Mougnie 5.25 

Darcy-Weisbach (1843),  
Dupuit (1848), Colombo, Catani 

5.00 

Scobey (1930) 4.90 
Hazen-Williams (1920) 4.87 

Veronese-Datei 4.80 
Scimemi (1951) 4.79 

Cruciani-Margaritora 4.75 
Source: self made. 

 
The formulations proposed by this author for the dimensioning of forced 

conductions (Franquet, 2005) have the advantage that, as in free conductions, the 

exponent of the J is, in all cases: 5.0
2

1 ==ν  (however, said exponent , in relation 

to speed or flow, can range from 0.5 in turbulent regime, which is the most 
normal, to 1.0 in laminar regime, as seen in the exercises in the previous section); 
also in the explicit formula of J the exponent of velocity V is 2.0, while the 
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exponent of the internal diameter β in the explicit formula of velocity increases 
progressively with the degree of roughness k, from 0.6215 to 0.67725. 
 

Table 2. Applicable D exponent value according to the roughness categories adopted. 
 

Roughness (k) β1 β2 Adjusted D exponent 
1.0 2 1.2430 5.24 
1.5 2 1.2560 5.26 
2.0 2 1.2691 5.27 
2.5 2 1.2821 5.28 
3.0 2 1.2952 5.30 
3.5 2 1.3032 5.30 
4.0 2 1.3112 5.31 
4.5 2 1.3210 5.32 
5.0 2 1.3308 5.33 
5.5 2 1.3426 5.34 
6.0 2 1.3545 5.35 

Source: self made. 
 

The aforementioned exponent of value 5.30 corresponds exactly to the 
different measures of the central value or averages usually used, both classic and 
more typical of robust statistical methods (arithmetic, geometric or harmonic 
means, trimedia, median, Gastwirth median, mode) in the frequency distribution 
in Table 2 above. 

 
Suppose, now, that there is a free discharge of the liquid into the 

atmosphere at the C-end and that the length of the line is large enough to be able 
to neglect accidental or singular head losses (hs = 0). If the key of B did not exist 
or was completely closed, the piezometric line would be A1C, and under the 
conditions of the problem an expense Q would come out of C, which according 
to the simplified formula of Darcy (1865), would be: 
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and with: 
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β+α= , being the parameters α and β dependent 

on the constituent material of the pipe. In the specific case to be treated, v. gr., 
from a plastic pipe (Franquet, 2005), the value of the continuous total loss of load 
at the C end of the pipeline will be given by the expression: 
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 If the tap located in B is opened, and a certain flow q is derived from it, 
the piezometric level line becomes A1B1C and a residual flow Q' will come out 
of the end C, so that the flow in the first section AB of length L1 will be: q + Q' = 
= Q, and in the second section BC of length L2 it will be Q', being able to 
establish the following equations (Torres, 1970), 
 

(q + Q’)2 ⋅ L1 = m’ ·  H1                          (2) 
 

 Q’2 ⋅ L2 = m’ (H – H1)                            (3) 
 
 Now adding equations (2) and (3), we obtain: 
 

(q + Q’)2 ⋅ L1 + Q’2 ⋅ L2 = m’ ·  H , 
 
and taking into account the expression (1’) it turns out: 
 

(q + Q’)2 ⋅ L1 + Q’2 ⋅ L2 = Q2 ⋅ L , 
 
whence it follows that: 
 

L Q’2 + 2 q ⋅ L1⋅ Q’ + q2 ⋅ L1 – L ⋅ Q2 = 0 . 
 

Dividing by  L = L1 + L2, will be: 
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,q
L

LL
Q

L

Lq
                                

L

Lq
Q

L

Lq

L

Lq

2

Q4
L

Lq4

L

Lq4

L

qL2

'Q

2
2

2121

1
2

2
2

2
1

2
1

21
2

2

2
1

2
1

×⋅−+⋅−=

=⋅−+⋅+⋅−=
+−+−

=
 

and also:  

2
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2. Application of functional optimization theory 

 
At this point, and in view of the radicand that appears in expression (4), 

one might ask: when is the quotient between the geometric mean of the 
distances L1 and L2 and their sum (total length) maximized and what is their 
value? Thus, it would be a matter of maximizing the quotient: 
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We are, therefore, faced with a classic optimization problem, consisting in 

the maximization with conditions of a real function of real variable, since it is a 
matter of maximizing a function of two positive or null variables, for which 
reason we will consider simplifying the maximization of the radicand from the 

previous expression (5): [ ]
2

21 
L

LL
ZMAX = , subject to the following conditioning 

equation: L1 + L2 = L, using the well-known method of Lagrange multipliers or 
operators. 

 
The problem posed lies in obtaining the value of the variables L1 and L2 

where the differentiable objective function Z reaches a maximum, knowing that 
these variables are related to each other through the expressed boundary 
condition or geometric equality restriction, referring to the length of the pipeline. 

 
To do this, we form the Lagrange or auxiliary equation: 
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• Sufficient or 2nd grade condition: 
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 In short, the maximum value of the Z function will be 
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 The length being constant: L1 + L2 = L, the maximum value of 2
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So, equation (4) will look like this: 
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Likewise, in equation (4), if the flow q derived from the intake B is very 

small compared to Q, it can be stated, in approximate terms, that: 
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Lq
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whereby for equal head loss, the flow rate Q 'at the end of the line is Q minus a 
fraction of q that depends on the relative position of the intermediate tap B. Then, 
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when said tap is located in the middle section to which we have previously 

referred, that is 
221

L
LL == , the total flow will take an approximate value:   

.
2

q
'QQ +≈  

 
This same expression will be true exactly when the tap moves to the end 

of pipe C, so L2 = 0, L1 = L and Q′ = 0, whereby: 
 

Q′ = Q – q = 0 ⇒ Q = q. 
 
From this expression it can be deduced that the residual flow rate Q' sale 

that comes out from the end C of the pipe will be less the higher L1, that is, the 
closer the intermediate connection is located to the end C of the line. 

 
To get the flows q and Q′ to be approximately equal, we will: 
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whence the situation of the intermediate connection, in this case, will be defined 
by the distance L1, from it, to the origin of the pipe: 
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and since Q > q, will be: Q > q > Q/2 . 
 
 In addition, in the case of intermediate intake at B and constant or 
equivalent internal diameter D = De, at nodes B and C, respectively, the outflows 
q and Q′ are had. To find the total head loss H we will proceed in such a way that 
the sum of the head losses in sections L1 and L2 gives us this total head loss H. 
That is, in the proposed example of the plastic pipe, we would have: 
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In the case of trying to determine the H applying the formulation of 

Christiansen (1942), which will be seen in more detail in the next section of our 
work, there would be values of m = 2 (exponent of speed or flow in the formula 
empirical used for the determination of the continuous pressure losses) and n0 = 2 
equidistant outputs of flows q and Q ', such that q = Q' is fulfilled, in the 
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respective nodes B and C, exhausting the flow in this last point or end of driving. 
So: 
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and the total head loss H would be given by: 
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the resulting pressure drop in this conduit being 100 - 62.5 = 37.5% lower than 
that which would occur if all the flow Q were to pass through the same tube 
without bypasses, and the water leaving freely at the C end. 
 
 As it has been said, in all the described process it has been assumed that 
the pipe is of great length, therefore accidental losses have not been taken into 
account. In any case, if interested, the continuous losses can be increased 
approximately by 10% for installations with few special parts or singular points, 
by 15% for normal installations (if a different rating is not assumed) and by 20% 
for installations with a high number of these pieces. Greater precision in the 
calculation would require the detailed determination of the accidental pressure 
losses that occur in each special part, having sufficient data and making use of 
existing formulas or tables in this regard, which frequently express the 
equivalence in aggregate linear meters of pipe. 
 

3. Generalization to a pipeline with various intermediate taps 
 

Let us see, regarding the different values that the coefficient or exponent 
m can take in the following expression (8) that, in general, the continuous unit 
losses of load of a pipe under pressure or forced conduction, as a function of the 
flow through it circulating , respond to a potential expression of the type: 

 
J = n ·  Qm                 (8) 

 

being here: 52 D

b64

'm

1
n

×π
×== , that in the case of Darcy's simplified expression, 

as in those proposed by the author of this paper (Franquet, 2005), it adopts the 
following value: m = 2.00, as well as those of Lèvy (1899), Gaukler (1867), 
Weisbach (1843), Kütter (1870), Mougnie, Chèzy, Sonier, Manning-Strickler 
(1923) or Catani. In those of the society SOGREAH (1962), Flamant (1891) or 
Blasius (1913) it is m = 1.75, as well as in those of Saph and Schoder (1903); in 
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that of Scimemi-Veronese (1925), it is m = 1.78571, in that of Hazen-Williams 
(1920) it is m = 1.852, in those of Biegeleisen and Bukowsky (1942) it is a value 
m = 1.90, as well as in that of Meyer- Peter (1931), while in the various 
formulations proposed by Scobey (1930) we find the values: m = 1.80, 1.90, etc., 
but always within the interval of existence [1.50, 2.00], and expressing them, all 
of them, as monomial potential formulas. On the other hand, it is common to 
consider m = 1.75 for drip irrigation and m = 1.80 for spray irrigation (Franquet, 
2003). Only in the case of other types of fluids (petroleum, benzine, kerosene, 
diesel, vegetable oils) with a viscosity higher than that of water, Carothers adopts 
a value m = 1.50 (Forchheimer, 1935-1950). 
 
 The versatility of such a broad formulation leads us to conclude that such 
information includes the different styles of work successively employed 
throughout almost two centuries and, basically, representative of an evolution of 
knowledge that tends to generalize and unify, each once again, his affirmations, 
in the pursuit of a final synthesis not yet reached. In this same sense, we have 
made a research effort, both in relation to the calculation of free pipes and in the 
calculation of forced or pressure pipes (Franquet, 2019). 
  
 It is unavoidable, nowadays, to distinguish, according to the 
experimentation of Von Kàrmàn-Nikuradse and Colebrook-White, the smooth, 
rough and intermediate pipes, these names established not according to the 
texture of the wall, but according to the hydraulic behavior, by virtue of the 
configuration of the boundary layer that is perfectly defined in each case. Thus, it 
happens that the law of resistance in smooth pipes is unique, independent of its 
constitutive material and expressible by an analytical law of which the Blasius 
formula is a first approximation that has been prolonged by other researchers 
(Franquet, 2003). 
 
 Thus, it will turn out, in short: 
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which is the approximate expression adopted by Christiansen in his study on 
hydraulic pipes with en-route service. 
 

In any case, as determined in our studies (Franquet, 2019) the 
determination of the most correct degree of the root that appears in the numerator 
of the third sum or fraction of the 2nd member of the expression (9) is immediate 

by: 
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and the degree of the root should be: 1/0.585 = 1.71, whereby the expression of 
Christiansen's formulation would be definitively corrected like this, providing 
exact values: 
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We have, therefore, the general case of a pipeline with service en route, 

with n0 derivations of constant flow, with a spacing between outlets l and the first 
derivation being at a distance l0 from the origin of conduction A, which may be a 
tertiary pipeline irrigation, a high tank or a pumping group. This is: 

 

 
 

Fig. 2. Pipeline with en-route service and equidistant branches of constant flow q. 
 

that for all l will be fulfilled such that: l1 = l2 = ... = li = ... = l. 
 

Well, the output flow of A, which runs out in C, will be: Q = n0 ·  q , and 
the total length of the pipe, taking into account that: l0 = r ·  l, is:  
 

L = l0 + (n0 –1) ·  l = (r + n0-1)·l . 
 

Theoretically, in a pipe of the characteristics expressed, the reduction 
coefficient for outlets, applicable to the continuous pressure losses experienced 
by a pipe that exhausts the flow at its end C and maintains constant the flow q, 
the internal diameter, its roughness absolute K and the equidistance between the 
outputs l, with l0 = l, would respond to the expression: 
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for which Christiansen (1942) obtained the function expressed in (9). 
 
 The problem that arises here constitutes a generalization of the classic 
problem of a simple pipe with several intermediate intakes (of non-excessive 
number) and constant diameter, whose resolution is usually presented by 
application of the well-known formula of Darcy and Bazin (1865), although it 
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can also be apply the formulation proposed by this author (Franquet, 2005), and 
the prior determination of the line of piezometric levels1. 
 
 In the case of equidistant leads and constant flow q for each of them, the 
determination of said piezometric line would be obtained by dividing the total 
load H into parts proportional to the sequence of real numbers: n0

2, (n0-1)2, ..., 1. 
 
 It should also be borne in mind that this formula (9) will only be valid for 
the specific case in which the first exit is from the beginning of the conduction 
(Fig. 2) at a distance l0 = l, that is, equal to the distances between the different 
outputs (r = l0/l = 1). And in the case of the formulation proposed by this author 
(Franquet, 2005), with m = 2.00, Christiansen's expression will adopt the 
configuration: 

 

=++
+

=
2
00 n·6

1-2

n·2

1

21

1
F ( ) ( )

2
0

0
2
0

2
0

00

n6

1n3n2

n6

1n2·1n ++=++
     (10) 

 
It is obvious, on the other hand, that when the number of bypasses or 

outlets increases indefinitely (that is, when the flow is distributed uniformly 
throughout the entire forced conduction, as in the case of irrigation by 
exudation), the previous expression is will become: 

 

m1

1
F.lím

0n +
=

∞→
              (11) 

 
which constitutes, in these circumstances, the minimum value to which the 
experimental reduction coefficient in question tends. If the residual or extremal 
flow rate Q' of the line is zero, and considering the normal case m = 2.00, let us 
see that this indicates that the loss of continuous pressure that takes place is one 
third of what would occur if the expense or Initial flow would flow through the 
entire pipeline and freely exit through the end of the pipeline (and this 
considering that the pipeline in question distributes a uniformly distributed 
expense that is obtained by adding all the expenses of the branches and dividing 
this sum by the total length of the pipe ). This would therefore be equivalent to a 
Christiansen reducing coefficient of value: F = 1/3 = 0.333 that would be 
obtained from formulation (9) when n0 tends to ∞ and also when m = 2.00. 
 
 Normally, in certain localized high-frequency irrigations (RLAF) such as 
dripping or micro-sprinkling, it will be true that m = 1.75, while when the 
regimen is laminar, this situation is frequent in exudation irrigation in which the 

                                                 
1
 The "piezometric line" corresponds to the locus of the water levels of the piezometric tubes or 

piezometers connected to the pipe and is the sum of the pressure and position heights or 
tachometric height. The difference in height between the power line and the horizontal line or 
load plane represents the total loss of load due to friction between any two points of the pipeline 
under study. 
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loss of load is, practically, continuously and not discretely, we will have that 
with: m = 1.00 it will be F = 0.500 and with m = 2.00 we have that F = 0.333, 
which corresponds exactly to the formulation proposed by that American author. 
 

Let's see that, depending on the number n0 of equal outlets or derivations 
of flow q, Christiansen's reduction coefficient F follows different paths according 
to the formulation used in hydraulic design, as can be seen in the following 
graph: 

 

 
 

Fig. 3. Path of F according to the formulation. 
 

The 4 functions represented in Fig. 3, respectively, are as follows: 
 

• Blasius-Flamant, Cruciani-Margaritora (m = 1.75):  
 

2
00 n·6

75.0

n·2

1

75.2

1
F ++= = 2

00 n

144.0

n

5.0
364.0 ++ . 

 
• Hazen-Williams, Ludin (1932), (m = 1.852):  
 

.
n

154.0

n

5.0
351.0

n·6

852.0

n·2

1

852.2

1
F 2

00
2
00

++=++=  

 
• Scobey, Biegeleisen-Bukowsky, Meyer-Peter (m = 1.9):  
 

.
n

158.0

n

5.0
345.0

n·6

9.0

n·2

1

9.2

1
F

2
00

2
00

++=++=  
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• Darcy-Weisbach, Franquet, Manning-Strickler-Gaukler, Tillmann, Lèvy, 
Ganguillet-Kütter, Dupuit, Bazin, Mougnie, Sonier, Colombo, Catani  
(m = 2): 

  

.
n

167.0

n

5.0
333.0

n·6

1n·3n·2

n·6

1

n·2

1

3

1
F

2
00

2
0

0
2
0

2
00

++=++=++=  

 
It may be of some interest for its usefulness, in some specific cases, in 

addition to the above, consider other expressions such as the following: 
 

• Scimemi (m = 1.78571):  
 

2
00 n·6

78571.0

n·2

1

78571.2

1
F ++= = 2

00 n

148.0

n

5.0
359.0 ++  

 
• Veronese-Datei, Stucky, Lampe (m = 1.8):  
 

2
00 n·6

8.0

n·2

1

8.2

1
F ++= = 

2
00 n

149.0

n

5.0
357.0 ++  

 
• Wegmann-Aeryns (m = 1.856):  
 

2
00

2
00 n

154.0

n

5.0
350.0

n·6

856.0

n·2

1

856.2

1
F ++=++=  

 
• Eytelwein (1801), (m = 1.944):  
 

.
n

162.0

n

5.0
340.0

n·6

944.0

n·2

1

944.2

1
F 2

00
2
00

++=++=  

 

Thus, it is observed that when n0 → ∞, the value of the Christiansen 
coefficient takes on values F ∈ [0.333,0.364] according to the empirical formula 
used to calculate the corresponding head losses in the water pipes. For higher 
viscosity liquid conduits (vegetable oils, petroleum and derivatives ...), as in the 
aforementioned expression by Carothers (with m = 1.50), F = 0.400 will result. 
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4. Generalization to a pipeline that distributes an evenly distributed 
flow 
 
Be it now an AC pipe of length L and diameter D, which has its origin in a 

pumping group or in a water tank raised on the ground as the one in Fig. 1, with 
several close and uniformly spaced lateral intakes, for which are derived identical 
expenses. 

 
When in a conduction of these characteristics, the number of branches is 

sufficiently large (typical, i. e., in localized high-frequency irrigation systems, 
such as micro-sprinkling, exudation and dripping in its different modalities), the 
calculation, with great and acceptable approximation, assuming that an expense 
is distributed uniformly distributed along the path, which is obtained by adding 
all the flows of the derivations and dividing this sum by the total length of the 
pipe or distance: L = AC. This flow thus obtained is called "flow per unit length" 
of pipe. 

 
In these cases, the movement of the water through the pipe can be 

assimilated to a succession of infinitesimal uniform movements of variable law 
with the flow -or with the section of the line if it is not constant- due to the 
proximity of the changes and the small variation of the flow that takes place as a 
consequence of them. Although it would be necessary, for the faultless resolution 
of the problem, the exact knowledge of said law of flow variation, we could 
admit, with a good approximation, that the service on the route is uniformly 
distributed throughout the length of the pipe, reducing the flow by a certain 
quantity q per unit length of pipe. It would be the paradigmatic case of a tape of 
underground irrigation by exudation. In other words, a flow q per unit length 
of the pipe is used up or consumed. 

 
Now using the following notation: 
 

  Q = expenditure at the origin A of the pipe. 
 q = derived expense per unit length of pipe. 
 Qx = expenditure available at a generic point of the pipe located at a 
 distance from the origin x. 

 
Obviously, it will be verified that: 

 
Qx = Q – q ·  x           (12) 

 
where (q·x) is the cost distributed on the path that runs from A to x, whereby the 
initial flow: Q0 = Q. 
 
 Let us now express the continuous pressure loss due to friction in the pipe 
section from point A to x, using the formula: 
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x
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222x
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xq
ndx·)x·qQ·x·q2Q(ndx·)x·qQ(ndx·Qnz 








+−=+−=−== ∫∫∫

∀ x  such that  x ∈ [0,L] . 
 

The integration constant is null, since for x = 0, also: z = 0 ⇒ c = 0; that 
is: 






 +++=+= )x·q·
3

1
q·x)xq(Q-x·)q·x(Qn)x··q

3

1
q·Q·x-x·n(Qz 322

x
2

x
3222 , that is: 

)x··q
3

1
x·q·Qx·n(Qz 322

x
2
x ++=           (13) 

 

which is the equation of a cubic parabola or polynomial function representative 
of the line of piezometric levels. 
  
 If we call Q ’the residual or extremal flow that comes out of the end C of 
the pipe we will have, according to equation (13), we will have the following 
continuous total head loss: 
 

)L··q
3

1
q·L·Q'L·n(Q'H 3222 ++=           (14) 

 
 Now, if the end C of the pipe is a dead point, that is, if all the flow is 
derived and consumed along the pipeline without any residual flow reaching 
point C, it will obviously be that: 
 

Q’ = Qx=L = 0,   and therefore, in (12) we will have: Q = q ·  L , 
 
and substituting these values in equation (14), we will obtain: 
 

L·Q·n 0.333·L·L)··n·(q
3

1
L··n·q

3

1
H 2232 ===       (15) 

 
expression that tells us that the continuous head loss that takes place is the third 
part of that which would occur if the cost Q traveled all the pipeline and left 
freely at the C end of it, as has already been stated in the epigraph previous. This 
would therefore be equivalent to a Christiansen reducing coefficient F = 0.333, 
when n0 tends to ∞ and m = 2.00. 
 
 The previous equation (15) can also be expressed like this: 
 

L·)Q·(nL·n·Q
3

1
H 2

1
2 == , from where it results: 
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Q ·577.0
3

Q
Q1 ==      (16) 

 
which means that the continuous head loss is equivalent to the one that would 
occur if a constant flow Q1 circulated through the pipe and equal to 57.7% of the 
initial flow Q. 
 
 A simple example of the above would be the case of a watering tape2 with 
self-compensating integrated drippers spaced every 20 cm of flow rate 1l/h, 
which would imply obtaining a unit flow rate (per unit length of pipe) of 5 l/h·m, 
that is, if the branch has a total length of L = 100 m, it has (Fig. 4): 
 

m·h/l 5
m 100

h/l 500

L

Q
q === . 

 
 In this way, the linear equation (12) will be expressed as follows: 
 

Qx = 500 – 5x , Q0 = Q = 500 l/h, with the following graphic representation: 
 

 
 

Fig. 4. Graph (Qx - x) on an irrigation tape. 
 
 

5. Duct sizing 
 

Next, we will present the procedure used to determine the suitable 
diameter, so that the pipeline can distribute the cost evenly distributed in the 
manner indicated above. 

 
                                                 
2
 This irrigation system, which can also be provided with drippers in turbulent regime, should 

not be confused with the exudation tape, which constitutes another hydraulic system, without 
dripping and frequently used in underground irrigation, which applies water continuously 
through a porous tube that exudes water evenly throughout its path. 
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Equation (14) is equivalent to the formulation: 
 

; L·JL·Q·nL)·L·q
3

1
L·q·Q'n(Q'H 1

2
1

222 ==++=  

 
introducing a “dummy flow” Q1 that when circulating through the pipe in a 
constant way produces a continuous pressure drop H. Thus: 
 

2222
1 L··q

3

1
q·L·Q'Q'Q ++=           (17) 

 
but if we consider that: 
 

2
1

2222

2
1

2222

QL··q
3

1
L·q·Q'

3

2
Q'L)·q·

3

1
Q'(

QL··q
4

1
L·q'·QQ'q·L)

2

1
(Q'

>++=+

<++=+
 

 
it turns out that the value of Q1 is bounded between the limits: 
 

L·q·
3

1
Q'Qq·L

2

1
Q' 1 +<<+ , or what is the same: 

 
Q’+ 0.5 ·  q ·  L < Q1 < Q’+ 0.577 ·  q ·  L , 
 

then it can be taken with enough approximation, as Q1 value, to calculate the 
internal diameter of the pipe: 
 

    Q1 = Q’+ 0.55 q ·  L          (18) 
 
, which is the formula that is usually used for the design of agricultural, industrial 
and domestic water supply networks (Torres, 1970). 
 
 Knowing the values of Q1 and J1 = H/L, the value of D and S is easily 
found. Specifically, in the previously proposed example of a plastic pipe, we will 
have, according to the formulation of the author of this article for pipes in service 
(Franquet, 2005), which: 

 

1
6215.2

1 JD82.28Q ××=  , from where: 6215.2

1

1

J82.28

Q
D

×
=  . 

 In the same way: 

3108.1

1

1
2

J82.28

Q

44

D
S

×
×π=×π=       (19) 
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the previous formulas being expressed in the IS's own units3, that is:  
 

Q (m3/s), V (m/s), D (m), L (m), H (m), S (m2) and J (m/m). 
 

If no flow reaches point C (whereby: Q’ = 0), the following will be taken, 
as we have shown as the value of Q1 (16): 

 

;  L·q·
3

1
Q 1 =  or what is the same:  

 
    Q1 = 0.577 ·  q ·  L ≈ 58% de Q        (20) 
 

 
6. Resolution of two practical cases 

 
6.1. Pipeline with continuous loss of flow 

 
The following exercise, taken from Hernández and Crespo (1996), pp. 147 

and next, is illustrative enough to contrast some of the concepts expressed here. 
 
Statement: 

 
The feed flow of a water pipe, diameter D = 10 cm and length L = 5 

km, is Q0 = 10 l/s. Due to the numerous water intakes that exist along the 
pipe, it can be estimated that its flow decreases uniformly by q = 6 l/h per 
meter of pipe length. Calculate the pressure loss along the pipeline as well as 
study the hydraulic regime and the convenience of choosing the most 
suitable material constituting it. Suppose a constant friction factor of value: 
f = 0.020. 
 

Solution: 

 
In an elementary section of pipe of length dl there will be a height loss, 

regardless of local losses, according to the general or universal Darcy-Weisbach 
equation, of: 

dl
D

1
·

g2

V
fdH

2

×
=φ .                        

 

                                                 
3
 The International System of Units, abbreviated IS, also called the International System of 

Measurements, is the heir to the old decimal metric system. One of the main characteristics of 
the International Measurement System is that its units are based on fundamental physical 
phenomena. The only exception to this is the definition of the unit of magnitude Mass, the 
kilogram, which is defined as the mass of an international prototype of the kilogram that is 
stored at the International Bureau of Weights and Measures, in Sèvres, France. SI units are the 
international reference for the indications of all measuring instruments, and to which they are 
referred through an uninterrupted chain of calibrations or comparisons. 
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According to the data of the previous statement, the variation of the flow 
along the pipeline (with en-route service) is given by: 

 

Q = Q0 – q·l,  being:  
1136 msm10667.1

3600

006.0
q −−−×==  . 

 

 The speed of the water will be: ( )l·qQ
D· 

4

D· 

Q·4
V 022

−
π

=
π

= . 

 
Substituting this expression in the initial equation and integrating, it 

results: 

( )∫ −
π

=φ

L

0

2
052

dll·qQ
Dg

f8
H . 

 
Solving the integral and substituting values, we finally obtain: 

 

( ) ( )
( ) ( ) ( ) ( )[ +

π
=








−+

π
=φ 500001.0

1.0 807.9

02.0 8

2

L
q·Q2

3

L
qLQ

Dg

f8
H 2

52

2

0

3
22

052  

( ) ( ) ( ) ( )( ) ] .a.c.m 93.325000 10667.1 01.0
3

5000
10667.1 26

3
26 =×−×+ −−  

  
In short, the problem data is as follows: 

 
q = 6 l/h·m = 0.006 m3/h·m; D = 10 cm = 0.10 m;  L = 5000 m. 

 
 Flow at the start of the pipe: 
 

Q0 = 10 l/s ≡ 36000 l/h = 0.01 m3/s. 
 

Flow expense along the pipeline: 
 

Q = 5000 m × 6 l/h·m = 30000 l/h ≡ 30 m3/h, and a residual or extrem flow: 
 

Q’ = 36000 l/h – 30000 l/h = 6000 l/h = 6 m3/h = 0.0017 m3/s. 
 

Thus, according to expression (14), there will be a total head loss of: 
 








 ××+××+×=×=φ
3222 Lq

3

1
Lq'QL'QnLJH , being: 

25294.165
1.0g

02.08

D·g

f·8
n

552 2 =
×π×

×=
×π

= ; and so: 
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4444 34444 21
 m.w.c., which turns out to be practically 

identical to that obtained by the previous formulation. Considering, therefore, a 
total head loss of 33 m.w.c., there will be a unit head loss of: 
 

0066.0
5000

33

L

H
J === φ  m/ml. 

 
 Since the flow decreases uniformly along the pipeline (road service), there 
would be an average flow of: 
 

00585.0
2

0017.001.0

2

'QQ
Q 0

m =+=+=  m3/s , 

 
which implies an average speed along it of: 
 

745.0
1.0

00585.04

D

Q4

S

Q
V 22

mm
m =

×π
×=

×π
×==  m/s. 

 
 We now test, based on our proposals, looking for the corresponding 
pressure loss according to the various categories of roughness of the pipes of 
possible installation. For this, it will be necessary to consider that the proposed 
pipe is new and subjected to normal wear, which will have a relative coefficient 
of friction α2 of value (Franquet, 2019): 
 









≈=

+
+=

+
+=α 3247.1

616.0

816.0

1.030.0

1.050.0

D30.0

D50.0
2 , 

 
 (which can be verified in table 1.3 of Annex nº: 3 of the Appendix of the related 
manual, with a value: α2 = 1.324555), and if it is tested with a degree of 
roughness of  k = 1.5, it is taken for the expression of the continuous unit 
pressure drop proposed here (see Chap. 4, table 4.10 of the above manual) a 
value of: 

0066.00064.0
1.0324555.1

745.0000845.0

D

V000845.0
J

256.1

2

256.1
2

2
m ≅=

×
×=

×α
×=  m/m, 

 
reason why it would be a pipe of intermediate roughness between the plastic ones 
(k = 1) and the fiber or asbestos cement ones (k = 2). In any case, the strict 
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commercial internal diameter of 100 mm only exists for tubes of the latter 
material (FIB). 
 
 Likewise, let's see that the hydraulic regime is variable with the 
descending speed that takes place along the tube, although for an assumed 
average water temperature of 20º C, with a corresponding kinematic viscosity of: 
ν = 1.0164 ×10-6 m2/s (1 m2/s = 104 stokes), which is deduced from the 
application of our nonlinear quadratic minimum adjustment (Franquet, 2003): 
 

ν = (1.7224 – 0.0461 ·  t + 0.0006 ·  t2 – 0.000003 ·  t3) × 10-6 = 
= (1.7224 – 0.922 + 0.24 – 0.024) × 10-6 = 1.0164 × 10-6 m2/s = 1.0164 cSt , 

 
and an average Reynolds number of: 
 

73298
100164.1

1.0745.0DV
Re 6

m =
×
×=

ν
×= − , 

 
which corresponds, effectively, to a smooth turbulent hydraulic regime 
(4×103<Re <105). In such case, the following values of the coefficient of friction 
would be based on the formulations generally used in the case and our own 
(Franquet, 2019): 
 

- According to Blasius: 0192.0
73298

3164.0

Re

3164.0
f

25.025.0
===  

- According to Franquet: ( ) 0192.0
495647.1Reln875.0

32556.1
f 2 =

−×
=  

- According to Kozeny: ( ) 0193.0
95.5Re log78.7

g2
f 2 =

−×
=  

- According to Colebrook – White: 8.0)f·log(Re2
f

1 −= , or better still in 

its explicit approach: 
38.2Re)(log

835.0
f =  = 0.0193,  

 
being the four previous determinations very close, by default, to the initially 
assumed of f = 0.020, given in the statement of the problem posed, so it is 
considered completely acceptable. 
 

The study of the hydraulic regime of the pipe in question would require 
the calculation of the Re number in each place of it. For this, we will prepare the 
following table and the graph corresponding to the following 6 values: 
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Q0 → 0.0100 m3/s → V0 = 
21.0

01.04

×π
×

= 1.27 m/s   →    Re = 124951 

Q1 → 0.0083 m3/s → V1 = 
21.0

0083.04

×π
×

= 1.06 m/s → Re = 104290 

Q2 → 0.0067 m3/s → V2 = 
21.0

0067.04

×π
×

= 0.85 m/s → Re = 83628 

Q3 → 0.0050 m3/s → V3 = 
21.0

005.04

×π
×

= 0.64 m/s  →  Re = 62967 

Q4 → 0.0033 m3/s → V4 = 
21.0

0033.04

×π
×

= 0.42 m/s → Re = 41322 

Q5 → 0.0017 m3/s → V5 = 
21.0

0017.04

×π
×

= 0.21 m/s → Re = 20661 

 
, being Q5 = Q’, R.T.I. (Intermediate Turbulent Regime) and R.T.L. (Smooth 
Turbulent Regime). 

 

  
 

Fig. 5. Function Re = f (L). 
 

Similarly, the three-dimensional function of the type: Re = f (t, L) could 
also be studied. 

 
Let us now see that, as a consequence of the corresponding tables of 

reduction of the bearing capacity (see Appendix of the aforementioned manual of 
Franquet, tables 2.5. And 2.6. Of Annex nº: 3) for each constituent material of 
both types of pipe, we will have to, In the case of the asbestos cement pipe, the 
temporal path of the flow considering a useful life of tu = 50 years will be: 
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Table 3. Evolution of flow loss (asbestos cement). 
 

t 
(years) 

Q0 Q’ q·l ∆ = Q0 - Qt 

0 10.00 1.67 8.33 0 
5 10.00 1.67 8.33 0 

10 10.00 1.67 8.33 0 
15 10.00 1.67 8.33 0 
20 9.42 1.57 7.85 0.58 
25 8.86 1.48 7.38 1.14 
30 8.30 1.38 6.92 1.70 

35 7.74 1.29 6.45 2.26 

40 7.17 1.20 5.97 2.83 

45 6.61 1.10 5.51 3.39 

50 6.05 1.01 5.04 3.95 
Source: self made. 

 
, to which the following graph corresponds: 
 

 
 

Fig. 6. Aging function and Cv (fiber-asbestos cement). 
 
, with a volumetric capacity (Franquet, 2019) of: 
 

Cv1 ≅ 10.00 × 15 + 35
2

05.600.10 ×+
 = 430.875,  

and an average flow in the analyzed period of: .s/l 6175.8
50

875.430
Qm ==  

 
This implies a real volumetric capacity of this pipe of: 

 
Cv1 = (8.6175/ l/s × 50 years × 365.25 days/year × 24 h/day × 3600 s/h)/109 ≡  
≡ 13.60 hm3 of water. The volumetric efficiency of this pipe (Franquet, 2019) 
will be given for the expression: 
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Ev1 = %18.86100
5010

875.430
100

tQ

C

u0

1v =×
×

=×
×

. 

 
 On the other hand, in the case of the plastic pipe, there will be: 
 

Table 4. Evolution of flow loss (plastic). 
 

t 
(years) 

Q0 Q’ q·l ∆ = Q0 - Qt 

0 10.00 1.67 8.33 0 
5 10.00 1.67 8.33 0 

10 10.00 1.67 8.33 0 
15 10.00 1.67 8.33 0 
20 10.00 1.67 8.33 0 
25 9.49 1.58 7.91 0.51 
30 8.89 1.48 7.41 1.11 

35 8.29 1.38 6.91 1.71 

40 7.69 1.28 6.41 2.31 

45 7.08 1.18 5.90 2.92 

50 6.48 1.08 5.40 3.52 
Source: self made. 

 

, to which the following graph corresponds: 
 

 
 

Fig. 7. Aging function and Cv (plastic). 
 

, with a volumetric capacity of: 
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Cv2 ≅ 10.00 × 20 + 30
2

48.600.10 ×+
 = 447.20,  

 

and an average flow in the analyzed period of: .s/l 944.8
50

2.447
Qm ==  

 
This implies a real volumetric capacity of this pipe of: 

 
Cv2 = (8.944/ l/s × 50 years × 365.25 days/year × 24 h/day × 3600 s/h)/109 ≡  

≡ 14.11 hm3 of water. 
 

The volumetric efficiency of this pipe will be given by: 
 

Ev2 = %44.89100
5010

2.447
100

tQ

C

u0

2v =×
×

=×
×

. 

 
The difference between the volumetric efficiencies of both pipes turns out 

to be 3.26% in favor of the plastic one. 
 
On the other hand, the difference between the actual volumetric capacities 

of both aging functions will be as follows: 
 

∆(q1,q2) = Cv1 – Cv2 = 13.60 – 14.11 = 0.51 hm3 = 510000 m3 of water. 
 
As expected, in this case the volumetric performance of the second 

possible pipe (plastic) is higher than that of the first (asbestos-cement) in a: 

%75.3100
60.13

60.1311.14 =×−
, which makes it somewhat more advisable for the 

design of the installation, although this Calculation, as also stated before, should 
be completed with the intervention of sanitary and economic cost factors, both in 
terms of initial installation and subsequent maintenance, before making a final 
decision. 

 
Finally, let us see that a "concentration measure" of the hydraulic variable 

under study (volumetric capacity Cv) is the Gini index and the corresponding 
polygonal Lorenz curve, as well as the "Lorenz index", the meaning and 
operation of which they are specified in Franquet (2019). The lower the value of 
said indices, the better and more uniform the volumetric capacity of the pipe will 
be throughout its useful life, which is why we consider its determination highly 
interesting, as it is also for comparative purposes with other types of pipe. 
interested in installing in the project or execution phase of the work. 

 
Based on this, and taking into account the choice made here between the 

choice of plastic and asbestos-cement pipes, we must prepare the following 
tables: 
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Table 5. Calculation aid (fiber-asbestos cement). 
 

 
ti Q0 Cv ΣCv 100

t

t i ×
∑

 pi(%) 100
C

C

v

v ×
∑

 qi(%) pi - qi 

 0 10.00 0 0 0 0 0 0 0 
 5 10.00 50.00 50.00 10 10 11.61 11.61 1.61 
 10 10.00 50.00 100.00 10 20 11.61 23.22 3.22 
 15 10.00 50.00 150.00 10 30 11.61 34.83 4.83 
 20 9.42 48.55 198.55 10 40 11.27 46.10 6.10 
 25 8.86 45.70 244.25 10 50 10.61 56.71 6.71 
 30 8.30 42.90 287.15 10 60 9.96 66.67 6.67 
 35 7.74 40.10 327.25 10 70 9.31 75.98 5.98 
 40 7.17 37.28 364.53 10 80 8.67 84.65 4.65 
 45 6.61 34.45 398.98 10 90 8.00 92.65 2.65 
 50 6.05 31.65 430.63 10 100 7.35 100 0 

Σ 275 - 430.63 ≅ 
430.875 

100 % 550 100 % 592.42 42.42 

Source: self made. 
 

Thus, according to the formulation given by Pulido (Alcaide, 1973), the 
value of the Gini index, in this case, will be: 
 

G1 ==
−

=
∑

∑
−

=

−

=

450

42.42

p

)qp(

1K

1i
i

1K

1i
ii

 0.0943 ≡ 9.43 %,  

 

with its corresponding graphic representation: 
 

 
 

Fig. 8. Lorenz curve (fiber-asbestos cement). 
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Table 6. Calculation aid (plastic). 
 

 
ti Q0 Cv ΣCv 100

t

t i ×
∑

 pi(%) 100
C

C

v

v ×
∑

 qi(%) pi - qi 

 0 10.00 0 0 0 0 0 0 0 
 5 10.00 50.00 50.00 10 10 11.15 11.15 1.15 
 10 10.00 50.00 100.00 10 20 11.15 22.30 2.30 
 15 10.00 50.00 150.00 10 30 11.15 33.45 3.45 
 20 10.00 50.00 200.00 10 40 11.15 44.60 4.60 
 25 9.49 48.73 248.73 10 50 10.86 55.46 5.46 
 30 8.89 45.95 294.68 10 60 10.25 65.71 5.71 
 35 8.29 42.95 337.63 10 70 9.58 75.29 5.29 
 40 7.69 39.95 377.58 10 80 8.91 84.20 4.20 
 45 7.08 36.93 414.51 10 90 8.24 92.44 2.44 
 50 6.48 33.90 448.41 10 100 7.56 100 0 

Σ 275 - 448.41 ≅ 
430.875 

100 % 550 100 % 584.60 34.60 

Source: self made. 
  

Thus, according to the formulation given by Pulido (Alcaide, 1973), the 
value of the Gini index, in this case, will be: 
 

G2 ==
−

=
∑

∑
−

=

−

=

450

60.34

p

)qp(

1K

1i
i

1K

1i
ii

 0.0769 ≡ 7.69 %, corresponding to the graph: 

 

 
 

Fig. 9. Lorenz curve (plastic). 
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 This shows the more uniform distribution of the Cv values over time of its 
useful life in the case of plastic pipe (as expected), since: G2 < G1. 
 
 Another index of application to the case (Franquet, 2019) is the so-called 
"Lorenz concentration index", which is obtained by applying the formula based 
on the accumulated percentages, which is commonly used in practical work in 
Economics, also related in the next chapter of this same work. Here, with n = 11 
and qn = 100, it will happen that: 
 

500

q
1

100

q

10

2
1

q

q

1n

2
1L

10

0i
i

10

0i
i

n

1n

0i
i ∑∑∑

==

−

= −=×−=×
−

−= . 

 
 The result that the application of the previous formula offers is the 
following, bearing in mind that it is necessary to order the values of the hydraulic 
variable under study (Cv) from smallest to largest, for the correct application of 
the formula, thus: 
 

Table 7. Calculation assistant (Lorenz index). 
 

 ASBESTOS CEMENT PLASTIC 
 Xi qi Xi qi 
 0 0 0 0 
 7.35 7.35 7.56 7.56 
 8.00 15.35 8.24 15.80 
 8.67 24.02 8.91 24.71 
 9.31 33.33 9.58 34.29 
 9.96 43.29 10.25 44.54 
 10.61 53.90 10.86 55.40 
 11.27 65.17 11.15 66.55 
 11.61 76.78 11.15 77.70 
 11.61 88.39 11.15 88.85 
 11.61 100.00 11.15 100.00 

Σ 100.00 507.58 100.00 515.40 
Source: self made. 

  
The following Lorenz indices correspond to these probability 

distributions, respectively: 
 

  LF = 
500

58.407
1− = 0.185 (asbestos cement) 

LP = 
500

40.415
1− = 0.169 (plastic) 
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whose results (LP <LF) confirm the previously made determinations on the degree 
of concentration of the variable Cv under study for each alternative pipeline4. 
 
6.2. Pipeline with discrete flow loss 

 
The following exercise, taken from Cabrera et alt. (1996), vol. II, p. 713 et 

seq., We believe it is illustrative to contrast some of the concepts expressed here. 
 
Statement: 

   
It is requested to design, from an economic point of view, the system 

of three pipes in series of the following figure for the flows indicated in it, 
which constitutes a general pipeline, knowing that the minimum service 
pressure required at the end is 23 mwc (mca), assuming a constant friction 
factor5 f = 0.015, common to all pipes. 

 

   
   

Fig. 10. Series of pipes to be dimensioned. 
 

Solution: 

   
First, we will separately calculate each of the factors that appear in the 

expression for constant K. Consider the following price table for the installed 
pipeline and determine the exponent a of the cost equation. The corresponding 
cost equation must be established for each type of pipe. Thus, the following table 
of unit prices of the installed PVC pipe with a ring pressure of 1 MPa (10 bar), 

                                                 
4
 In the present exercise it has been taken into account that the internal diameters of the tubes are not 

very sensitive to small variations in the friction factor f, in view of the Moody diagram (1947). Therefore, 
it is possible to take an intermediate value for all this service pipeline en route, which, according to the 
statement, is f = 0.020. 
 
5
 The same can be said in this second exercise, in which a value of f = 0.015 is considered. 
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included in Fig. 11, has been determined for the supply of drinking water, with 
its corresponding layout: 
 

 
 

Fig. 11. Graphical representations of the functions c(D). 
 
having obtained, in this case, the potential equation of costs for non-linear least 
square regression: c (€/ml) = 554.02 × D1.824 (DN 600 mm is an average between 
commercial DN 560 mm and DN 630 mm) with a non-linear correlation 
coefficient r = 0.999432, very high, so both correlations can be considered 
practically perfect. 
 
 In effect, the study of another more general case has led to the following 
determination, which coincides closely with the previous one: 
 

D (m) 0.150 0.175 0.200 0.250 0.300 0.350 0.400 
c (ptas/ml)   3392 4352 5546 7712 10670 13152 17342 
c (€/ml)   20.39 26.16 33.33 46.35 64.13 79.05 104.23 

  
so that the cost equation adjusted for non-linear (potential) regression is:  
 

c = 75829 × D1.637 ptas/ml, or: c = 455.74 × D1.637 €/ml, 
 
with the correlation coefficient r = 0.999427 (very high, like the previous one) 
from which it can also be deduced that the value: a = 1.637 > 1, so the larger 
diameters are relatively more expensive. Both cases have been represented in 
Fig. 11. 
 
 On the other hand, the loss equation has: 
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00124.0
807.9

015.08

g

f·8
B

22
=

×π
×=

π
=   ;    b = 5   ; 

while the maximum allowed loss is: 172340
p

HH 3
g =−=

γ
−=∆  m.w.c. 

 Finally we obtain the summation value: 
 

5.0
564.1

64.12

ba

a·2 =
+

⋅=
+

, and so: 

 
( )∑ =⋅+⋅+⋅=+

j

5.05.05.0ba/a2
jj 101705.0500105.0100015.01500QL . 

 
 Substituting now all this in the expression K, it turns out: 
 

594.01017
17

00124.0
)Q·L

H

B
(K

5/1

j

b/1)ba/(a2
jj =







 ×=
∆

= ∑ + , 

 
with which we can proceed to carry out the dimensioning. To the right of each 
calculated diameter is the final normalized trade diameter. 
 

30.0
564.1

2

ba

2 ≈
+

=
+

, and then as: Dj = K× )ba/(2
jQ + , we have to: 

 

mm. 250Dm 242.005.0594.0Q·KD

mm. 300Dm 302.0105.0594.0Q·KD

mm. 350Dm 336.015.0594.0Q·KD

3
3'03.0

33

2
3.03.0

22

1
3.03.0

11

=⇒=⋅==
=⇒=⋅==

=⇒=⋅==
 

 
To conclude, let's check the actual pressure drop in the conduction 

corresponding to the standard diameters: 
 

(∑ ∑ +⋅⋅=Β==∆ −−

i i

252
i

5
ii

2
iii 150.035.0150000124.0QDLQLRH  

) 18.1505.025.0500105.03.01000 2525 =⋅⋅+⋅⋅+ −−  m.w.c., 
 
which gives us a residual pressure of real service: 
 

82.2418.1540HH
p l

g

l
3 =−=∆−=

γ
 m.w.c. > 23 m.w.c., 

 
which is slightly higher than required, which effectively solves the problem 
posed. 
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 Another way to solve it in practice, regardless of the unit cost of the 
pipeline, would be the following, considering the calculation for PVC pipeline in 
service, with 15% of accidental pressure losses and a stamping of 6 bar. 
Applying the conservative formula or criterion of Weyrauch (1915) to each 
section, the following would happen: 
 

( )
( )

( )







×=×=×=→
×=×=×=→

×=×=×=→

mm 3.7250 m 233.005.004.1Q04.1D3 Section

mm 4.10355 m 337.0105.004.1Q04.1D2 Section

mm 7.11400 m 403.015.004.1Q04.1D1 Section

33

22

11

 

 
, and pipes of similar internal diameters result, although not exactly the same (as 
they are somewhat larger), than those deduced from the calculation carried out 
first. The speed of each section will be: 
 















=
×π

×=
×π
×=

=
×π
×=

×π
×=

=
×π

×=
×π
×=

m/s. 15.1
2354.0

05.04

D

Q4
V

m/s. 20.1
3342.0

105.04

D

Q4
V

m/s. 35.1
3766.0

15.04

D

Q4
V

22
3

3
3

22
2

2
2

22
1

1
1

 

 
and then, the total head loss, according to the formulation proposed here, jointly 
considering the continuous and singular losses, will be: 
 
∆H’ = 1.15 × 0.000743 (1.352 × 0.3766-1.243 × 1500 + 1.22 × 0.3342-1.243 ×1000 + 

+ 1.152 × 0.2354-1.243 × 500) = 1.15 × 0.000743 (9203 + 5624 + 3992) = 
= 16.08 m.w.c., 

 
whereby at the end of the pipe there will be a service pressure of: 
 

H = Hg - ∆H’ = 40.00 – 16.08 = 23.92 > 23.00 m.w.c., then it is acceptable. 
 

 The assumption - which appears in the statement - of a common friction 
factor in the entire pipeline of f = 0.015 is, without a doubt, a simplification of 
the problem (in fact, as we will see below, it is only true in the third section of 
the itself). Indeed, assuming an average water temperature of 20ºC, a kinematic 
viscosity of (Franquet, 2003): 
 

ν = (1.7224 – 0.0461 ·  t + 0.0006 ·  t2 – 0.000003 ·  t3) × 10-6 = 
= (1.7224 – 0.922 + 0.24 – 0.024) × 10-6 = 1.0164 × 10-6 m2/s = 1.0164 cSt . 
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- Section 1:   500207
100164.1

3766.035.1DV
Re 6

11 =
×

×=
ν
×= − , 

 
then it is an intermediate or transitional turbulent regime. Since here it turns out 
that Re < 106, we will apply the formula proposed here, with which: 
 

013.0
500207

5002070905.025.0
0028.0f 32.0

12.0

=×++= . 

 

- Section 2:   394569
100164.1

3342.020.1DV
Re

6
22 =

×
×=

ν
×= − , 

 
then it is an intermediate or transitional turbulent regime. Since here it turns out 
that Re < 106, we will apply the formula proposed here, which will have a 
coefficient of friction of: 

014.0
394569

3945690905.025.0
0028.0f

32.0

12.0

=×++= . 

 

- Tramo 3:   266342
100164.1

2354.015.1DV
Re

6
33 =

×
×=

ν
×= − , 

 
then it is an intermediate or transitional turbulent regime. Since here it turns out 
that Re < 106, we will apply the formula proposed here, which will have a 
coefficient of friction of: 

015.0
266342

2663420905.025.0
0028.0f

32.0

12.0

=×++= . 

 
7. Conclusions 

 
 The problem of studying a pressure pipe with an intermediate connection 
and a free outlet at its end appears frequently in treatises and in hydraulic 
installations. The classical function optimization theory has been applied to better 
understand the analysis carried out. The specific and generalized treatment when 
the number of exits increases indefinitely is the object of the present work, which 
also highlights the usefulness of the approximate function of Christiansen for the 
determination of the loss of continuous load in this type of conductions with en-
route service, Equidistant outlets and exhaustion of flow. The work culminates 
with the resolution of two practical cases of pipes with intermediate intakes that 
are deemed illustrative to contrast some of the concepts expressed. 
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