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SUMMARY / ABSTRACT 
 

The authors face the following exercise or initial value problem (IVP) 
resolution relating to an ordinary differential equation of the first order. The 
solution of this equation not homogeneous or complete, which apparently 
seems to be simple, it will be complicated according to the method followed to 
do so. Computerized developments in series of Taylor and Mc Laurin are 
efficient to address resolution of the problem.  
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RESUMEN 
 

Los autores afrontan la resolución del siguiente ejercicio o problema de 
valor inicial (PVI) referente a una ecuación diferencial ordinaria de primer 
orden. La solución de esta ecuación no homogénea o completa, que 
aparentemente parece sencilla, se complica según el método que se sigue para 
ello. Los desarrollos en serie computerizados de Taylor y Mc Laurin resultan 
eficientes para abordar la resolución del problema planteado.  
 
Palabras clave: ecuación diferencial, coeficientes, variación de constantes, 
desarrollo en serie, asíntota, rama parabólica, punto de inflexión. 
 
 
RESUM 
 
 Els autors emprenen la resolució del següent exercici o problema de 
valor inicial (PVI) referent a una equació diferencial ordinària de primer ordre. 
La solució d’aquesta equació no homogènia o completa, que sembla 
aparentment simple, es complica segons el mètode emprat. Els 
desenvolupaments en sèrie computeritzats de Taylor i Mc Laurin són eficients 
per tal d’abordar la resolució del problema plantejat. 
 
Paraules clau: equació diferencial, coeficients, variació de constants, 
desenvolupament en sèrie, asímptota, branca parabòlica, punt d’inflexió. 
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INTRODUCTION 
 

On the occasion of the elaboration of a monograph published by the 
Associated Center of the UNED in Tortosa (Franquet, 2013), its author faced 
the resolution of the following exercise or initial value problem (IVP) referring to 
the ordinary first-order differential equation: 

  

2x1

1
y'y


 , wih the initial condition: y(0) = 0. 

 
 The solution of this non-homogeneous or complete equation, which 
apparently seems simple, is complicated according to the method followed for 
this, as we will have occasion to check below. 
 
METHODOLOGY 
 
 In effect, the coefficients of the expressed equation are continuous for 
all x that belongs to the body of the real numbers, that is, that the solution 
interval is:   - < x < . 
 
 The above differential equation has the form: y’ + p(x)·y = g(x), with  
p(x) = 1; in such a way that, to solve it, we find the integrating factor: 
  

  xe)x(),xexp(dxexp)x( . 

 
 Now, we multiply the previous ordinary differential equation by said factor 
(x) = ex, and we will have that: 
 

exy’ + exy = ex/(1+x2)    (exy)’ = ex/(1+x2)   
 

     
x

0

x2xx-2xx cedx·)x1/(eey    cdx·)x1/(eye , which is 

the general integral of the problem posed, although it would be more correct to 
present a more developed result of it.  
 
 Of course, we would have reached the same conclusion by direct 
application of the corresponding formula (Alcaide, 1981), since it is, as we have 
pointed out, a first order linear ordinary differential equation, or by the method of 
constant variation. In effect, the equation is of the type: 
 

0
x1

1
y

dx

dy
 :es esto  , 0Xy·X

dx

dy
21 


 , where X = 1 y 

21 x1

1
X


 . 

  

 You have to: ; dx·
x1

e
dx·e·X  ; xdx·X

2

x
dx·X

1  
  from where: 

x
2

x
x

2

x
x e·cdx·

x1

e
edx·

x1

e
c·ey  













  .  

 



 3

Substituting now the initial condition given in the previous equation, we 
obtain: 

y(0) =   0c    cedt·)t1/(ee0
0

0

02t0   . 

 
 Finally, substituting in the equation, we obtain the particular integral 
sought: 
 

2

0
y e /(1 ) ·

xx xe x dx     , whose graphic representation is as follows: 

 

 
 
 
 The obtained function passes through the coordinate origin, since when x 

= 0, it happens that: 
0

20
1 · 1 0 0

1

xe
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x
    

 . 

 
 It is evident that there is a horizontal asymptote that is the OX axis itself, 
since: 

0ylím
 x




. 

 
 On the other hand, when x  - we will have to: 
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which presumes the existence of parabolic branches, circumstance that will 
have to be confirmed. To do this, we calculate the expression: 
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e /(1 ) ·
xx x

x x

e x dxy
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x x



   

    
, limit that does not exist, so we can 

ensure the absence of parabolic branches. 
 

To find the point at which the function reaches its maximum, we calculate 
the first derivative (necessary or first degree condition): 

2 20
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1 1

x
xx e
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x x

  
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We equal zero and the solution to the equation is x = 1.065096497. 
 
We find the second derivative to check if it is a relative or local maximum 

(sufficient or second degree condition): 
 

 
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. 

 
Then the function peaks (local maximum) at the coordinate point 

(1.065096497, 0.4685090366). 
 
Now let's look at the turning points. Equalizing the second derivative to 

zero, we obtain that x = 1.997591819 (Franquet, 2013). 
 
Indeed, it is a turning point since: 
 

 
To solve the integral that appears in the previous expression of the 

particular solution, the following developments of the integrating function must 

be taken into account 
2

x

x1

e


, as well as the function: etg t, in the series of Mc 

Laurin up to the ninth derivative. 
 
This is, respectively: 
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………………………………………………………… and so on. 
 
From which results the following development (up to the ninth power of 

x): 
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 In the same way we would proceed with the other mentioned 
development, this is: 
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…….....  and so on. 
 

From which results the following development (up to the ninth power of t): 
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The sought integral will be like this: 
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this last integral is solved by substitution and, later, by parts, as follows: 
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whence it follows that: 
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Otherwise, through alternative development, one would have to: 
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  Apparently, both developments (I) and (II) are different although, 
obviously, for x = 0 their result is also 0. Let's see what happens in both cases 
for x = 1 considering only the first seven summand of the development and 
adjusting up to ten thousandths for the purposes of operational simplification: 
 

Case (I)  0.7854 + 0.3084 + 0.0807 + 0.0476 + 0.0224 + 0.0121 + 0.0065 =  
= 1.2631 

 
Case (II)  1.0000 + 0.5000 – 0.1667 – 0.2083 + 0.1083 + 0.1403 – 0.0772 =  

= 1.2964 
 

 Repeating this same process for x = 2, it would be obtained that: 
 

Case (I)  1.1071 + 0.6129 + 0.2262 + 0.1878 + 0.1248 + 0.0946 + 0.0716 =  
= 2.4250 

 
Case (II)  2.0000 + 2.0000 – 1.3333 – 3.3333 + 3.4667 + 8.9778 – 9.8794 =  

= 1.8985 
 

 Repeating this same process for x = 3, it would be obtained that: 
 

Case (I)  1.2490 + 0.7801 + 0.3248 + 0.3042 + 0.2280 + 0.1951 + 0.1666 =  
= 3.2478 

 
Case (II)  3.0000 + 4.5000 – 4.5000 – 16.8750 + 26.325 + 102.2625 –  

- 168.7982 = -54.0857 
 

After adding two terms to both series developments in McLaurin and 
observing that the results of both series are moving away, with the help of the 
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Derive3 program the developments of grade 20 are calculated and the resulting 
integrals are the following: 
 

 With the direct calculation of the Taylor polynomial (case II), the integral 
turns out to be: 
 

 
 
And for example, for x = 100, take the value 2.530514910  1040. 
 

 With the calculation made by changing the variable and subsequent 
Taylor polynomial (case I), the integral turns out to be: 

 

 
 
 And for example, for x = 100, take the value 28.60279951, and the 
quotient: 
 

 
3 Derive is a computational algebra (CAS) program developed by Texas Instruments. With it you can 
carry out a wide range of advanced mathematical calculations as well as represent 2D and 3D graphics in 
various coordinate systems. It includes the handling of variables, algebraic expressions, equations, 
functions, vectors, matrices, trigonometry, etc. It also has scientific calculator capabilities. The first 
version on the market dates from 1988. In the evolution of Derive to TI-CAS, it went from being a 
computer application to being included in the TI-89 and TI-Nspire CAS calculators from Texas 
Instruments. It was also available for Windows and DOS platforms. It was discontinued on June 29, 2007 
in favor of TI-Nspire CAS. Its latest version was 6.1 for Windows. 
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0
e

60279951.28
100

 , exemplifies the asymptotic consideration of the point in 

question much better. 
 
 On the other hand, comparing the results that cases (I) and (II) offer for 
the first integer values of x ( x  {1,2,3}), it is observed, in case (I) and for the 
first 7 addends of development, which: 
 
   For x = 1  y = e-1  1.2631 = 0.46467 
   For x = 2  y = e-2  2.4250 = 0.32819  

For x = 3  y = e-3  3.2478 = 0.16170 
………………………………………….. 

 
values, all of them, which are better adjusted to the particular integral obtained 
(note that for x = 3, in case (II), a negative quantity would result), so we will 
definitely adopt the solution that offers the answer to the problem based on the 
change of variable and subsequent application of the Taylor polynomial. 
 
 Thus, the particular integral sought of the differential equation that is the 
object of study, will be: 
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with which the problem is definitely solved. 
 
 
CONCLUSIONS 
 

The solution of this ordinary differential equation of the first order, not 
homogeneous or complete, with an initial condition, which apparently seems 
simple, is complicated according to the method followed for this, as we have 
had occasion to verify, although the computerized serial developments Taylor 
and Mc Laurin's are highly efficient in addressing the resolution of the problem 
posed. 
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