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Abstract

DNA molecules can electrophoretically be driven through a nanoscale opening in a
material giving rise to measurable electronic current blockades. These signals can be used
to detect the translocating molecules. Additional read-out protocols based on electronic
current signals across the raw signals from the nanopore region are expected to also iden-
tify the DNA sequence, that is the order of the nucleobase identity along the molecules.
Nevertheless, the relevant measurements often include many errors. In order to reduce
these errors, increase the read-out fidelity, and interpret the experimental observations,
a methodological approach based on unsupervised and supervised learning to interpret
the DNA events is proposed.
In this work, experimental ionic traces frommolybdenumdisulfide nanopores thread-

ing DNA nucleotides are used to train an unsupervised Machine Learning model for
identifyingdistinctmolecular events through the 2Dnanopore basedon the ionic current
blockade height and unrelated to the traditional dwell time for each DNA event. Within
this approach, the blockade level information is implicitly included in the feature space
analysis and does not need to be treated explicitly. It is possible to show the higher effi-
ciency of the blockade height over the traditional dwell time also with regards to coping
with sparse nanopore data sets. This approach allows for a deep insight into characteris-
tic molecular features in 2D nanopores and provides a feedbackmechanism to tune these
materials and interpret the measured signals.
Afterwards, the aim of the supervised learning is to use experimental data for training

a Neural Network model in order to improve the identification of different nucleotides
threading the nanopore. Different training sets can be obtained from different solid-sate
nanopores and experimental conditions. Using different neural network architectures
such as DNN or CNN it is possible to take advantage of these different training sets and
compute a NN algorithm that is capable of optimizing and accelerating the nanopore
read-out.
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Resumen

Las moléculas de ADN pueden moverse electroforéticamente a través de orificios en
materiales a escala nanométrica, dando lugar a corrientes electrónicas medibles produci-
das por el bloqueo del orificio al pasar la molécula. Estas señales pueden ser utilizadas
para detectar translocaciones delADN. Se espera que los protocolos de lectura adicionales
basados en señales de corriente electrónica sobre las señales sin procesar identifiquen la se-
cuencia deADN,que es el ordenamientode las bases nitrogenadas a lo largode lasmolécu-
las. Sin embargo, las mediciones de relevancia a menudo incluyen muchos errores. Para
reducir estos errores, aumentar la fidelidadde lectura e interpretar las observaciones exper-
imentales se propone un enfoque metodológico basado en el aprendizaje no supervisado
y supervisado de cara a interpretar eficientemente los eventos de ADN.
En este trabajo se utilizan señales de corriente iónica experimentales, obtenidas de la

translocación de nucleótidos de ADN a traves de nanoporos 2D de disulfuro de molib-
deno, para entrenar un modelo de Machine Learning no supervisado con el objetivo
de identificar distintos eventos moleculares. Este procedimiento no relacionado con el
tiempo de permanencia tradicional para cada evento de ADN, sino con la altura de blo-
queo de la corriente iónica. Dentro de este enfoque, la información de la corriente de blo-
queo de los niveles que componen la señal completa de cada evento, entendidopor evento
la señal obtenida de cada translocación a traves del nanoporo 2D, está implícitamente in-
cluida en el análisis del espacio de características y no necesita ser tratada explícitamente.
Es posible mostrar la mayor eficiencia que tiene la altura de bloqueo como descriptor con
respecto al tiempo de permanencia tradicional, incluso también en lo que respecta a hacer
frente a los conjuntos de datos de nanoporos pequeño tamaño. Este enfoque permite una
visión profunda de los característicos descriptores moleculares en nanoporos 2D y pro-
porciona un mecanismo de retroalimentación para ajustar estos materiales e interpretar
las señales medidas.
Posteriormente, el objetivo del aprendizaje supervisado es utilizar datos experimentales

para entrenar un modelo de Redes Neuronales con el fin de mejorar la identificación de
diferentes nucleótidos que pasan a través del nanoporo. Se pueden obtener diferentes
conjuntos de entrenamiento a partir de distintos nanoporos de estado sólido y condi-
ciones experimentales. Usando diferentes arquitecturas para Redes Neuronales como
DNN o CNN, es posible aprovechar estos conjuntos de entrenamiento distintos y calcu-
lar un algoritmoNNque sea capaz de optimizar y acelerar la lecturamediante nanoporos.
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1 Introduction
This section presents the context, motivation
and objectives of the project, as well as the state
of the art. It finishes by explaining the thesis or-
ganization through an outline.

Ultra-fast and personalized genome sequencing is the state of the art in nanobiotech-
nology. New generation genome sequencing is based on "single molecule" translocation
methods. One of the most promising ways to implement a technology aiming at ultra-
fast low-cost sequencing of DNA is by using nanopores [1]. A nanopore is a hole with
a nano-diameter in a thin membrane. When it is immersed in an electrolyte and a volt-
age is applied, the dissolved ions create an electric current through the pore that drags
molecules. This is used to probe single molecules with the resistive pulse technique [2],
a method for determining the increase in resistance in the nanopore. Nanometer-sized
pores opened in materials are efficient single-molecule detectors that can electrophoreti-
cally thread biomolecules, such as DNA, RNA, and proteins to identify and distinguish
molecular events, as well as single molecule properties [3]–[5]. Solid-state nanopores [6],
[7] such as boron-nitride [8], silicon-nitride [9], MoS2 [10], [11] and graphene [12]–[15]
have played a valuable role in ultra-fast DNA sequencing [16]–[19]. Through a nanopore
setup, precise information on the length and type of molecule, as well as on the char-
acteristics of molecular events can be acquired [20]–[22]. This information is typically
mapped onto ionic current blockades measured across the pore [23]. The duration of
a current blockade denotes the translocation or dwell time for the event, i.e. the time
required for the DNA translocating through the nanopore [24]. These signals can also
be used to discriminate among different homopolymers [25] or different folding events
of the molecule through the pore [26]. Sequencing, though, requires the detection not
only of the DNA molecules as a whole, but that of their subunits, the nucleobases. For
this, certain protocols have been proposed, which involve the interpretation of the lon-
gitudinal ionic current [27], the transverse tunneling current across the nanopore and
perpendicular to the translocation direction [28] or optical measurements coming from
the pore region [29] obtained by a capacitance-based read-out signal [30].
Although very promising, the distributions of the ionic current through a nanopore

are often very broad and typically overlapped for different molecules or events. Dwell
time cannot efficiently capture the richdynamics of each translocation evengiven through

1



1 Introduction

the typical multi-level nature of the ionic current blockades. Molecular aspects are miss-
ing from the traditionally used dwell time. On top of this, thermal fluctuations, the sur-
rounding salt solution, the applied electric field, the high flexibility of biomolecules, the
nanopore-molecule interactions are some of the factors introducing additional errors in
the measurements. These factors decrease the signal-to-noise ratio (SNR) in the mea-
surements, thereby also the detection fidelity [31]. The SNR can be enhanced through
a tuning of the experimental setup [32] or by post-pro- cessing of the ionic current mea-
surements obtained through the nanopore [33]. The latter is more efficiently achieved
through the use ofMachineLearning (ML) algorithms. TrainingMLalgorithms to inter-
pret nanopore data is notably the state-of-the art in the field. One of the most promising
nanopore devices in themarket, theMinION fromOxfordNanopores [34], [35] is deliv-
ering the sequencing data processed through ML [36], [37] and can, as an example, effi-
ciently identify the position and structure of a bacterial antibiotic resistance island [38].
ML techniques can play a vital role in processing and recovering the information in the
nanoporewith robust statistics by creating automatedmodels. Segmentation techniques,
such as the cumulative sum (CUSUM) [39] or Bayesian-statistic-based [40] algorithms
dissect the ionic current into subunits or levels that can describe information related to
the specific molecule configuration, as well as the topology of DNA molecules passing
through nanopores [41]. For classification tasks, the number of descriptors/features [42]
taken for feeding the ML scheme can be optimized and their quality can be improved
with dimensionality reduction and tree-based algorithms [43], [44]. In such schemes, an
analysis of a feature space, by typically considering features such as the dwell time or the
mean current blockade, can point to the most probable DNA translocation paths [39],
[45]. Overall, the ML schemes for nanopore involve supervised learning and labeling of
the data. De novo clustering [46] is - to our knowledge - the only unsupervised learning
method, which though focuses in accelerating the data processing.
On a time scale lower than the dwell time of a whole molecule, the search of an "ap-

propriate" feature space for training aML algorithm is quite complex. Towards this goal,
different ML protocols [47]–[49] have been developed to study protein-protein [50]–
[52] or DNA-protein[53] interactions through a proper feature extraction and classifi-
cation. Similar approaches for base-calling predictions have been used to study the in-
teractions between DNA molecules and electrodes[54] embedded in nanopores.[55] In
addition, deep learning techniques such asHidden-Markov-based[56]–[59]orneural net-
works[36], [60]–[62] algorithms applied to nanopore data have shown the potential to
improve the detection accuracy and automatize the discrimination of nucleobases to-
wardsultra-fastDNAsequencing. MLtechniques in conjunctionwithnanoporesmainly
focus on either guiding the learning process for optimizing the feature space, thus the er-
ror rates or improving the algorithmic scaling of the data processing. Along the above
lines it will be presented the analysis and classification of the various possible configura-
tions for the single nucleotide translocations throughMoS2 nanopores using a clustering
algorithm and deep learning techniques.

2



1.1 Research Objectives

1.1 ResearchObjectives
This thesis focus on different aspects, in order to fill in the gap in using ML techniques
to gain insight onto themolecular features inherent in the nanopore data. The objectives
of this work can be enumerated as follows:

• Discover a new very efficient feature to identify molecular events from nanopore
reads is proposed. This novel feature will be the key in obtaining more informa-
tion on the underlying Physics of themolecular translocation that is missing in the
literature.

• Implement an Unsupervised Learning algorithm with clustering methods to act
on the nanopore informationwithout guidance, in order to classify nanopore data
and extract topology information from clusters.

• Implement a Supervised Deep Learning algorithm through neural Network tech-
niques in order to accelerate the sequencing process using the novel feature instead
of the ionic current raw signal.

1.2 Thesis Organization
In this chapter a brief overview about Machine Learning methods applied to reads from
nanopores is presented. The rest of the thesis is structured in twomain applications. The
first part about Unsupervised Learning analyze the raw signal of nucleotide transloca-
tions, selecting the best candidates for being features that give insight onto the physics
and topology of the DNA and nanopores. The second part, classification of DNA reads
using neural networks, takes advantage of the novel feature proposed in the clustering
analysis.
This thesis introduce DNA sequencing through solid-sate nano-pores and potentialMa-
chine Learning applications. Biological background in chapter 2 is treated, giving an
overview of DNA sequencing, biopores and solid-state nanopores.
Chapter 3 gives a brief explanation about Machine Learning methods applied in this
work, such as unsupervised learning clustering algorithms andneural networks from clas-
sification algorithms.
Chapter 4 goes into the methodology and implementation of the project. Here DNA
data collection and preprocessing are explained, as well as the clustering algorithm and
NN chosen and its optimization.
Chapter 5 focuses on the clustering analysis, showing the relevance of the novel method
that is proposed.
Chapter 6 describes the different classification run with different NN architectures using
the features extracted in the preprocessing.

3



1 Introduction

Chapter 7 concludes the thesis by giving the goals achieved and future lines relevant to-
wards DNA sequencing through nanopores.

1.3 PublishedWork
This thesis has emerged from peer-reviewed journal article produced at the Uni Stuttgart
as part of my responsibilities as research assistant, published in July 2019 by IOP Science,
2DMaterials [63]. The Unsupervised Learning part from this project is included in this
publication. Here we expand the results from the clustering analysis and add a second
main part related to Supervised Learning with Neural Networks.

• Angel Diaz Carral et al 2019 2DMater.6 045011.
https://doi.org/10.1088%2F2053-1583%2Fab2c38.
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2 Biological Background
This chapter introduces the field of DNA se-
quencing and the use of solid-state nanopores.

Here, a brief introduction on DNA molecule framework and DNA sequencing is pre-
sented. The last section deals with nanopores and DNA translocation through these.
Nanopores have a strong technological application in the area of DNA sensing and se-
quencing. New generation ultra fast methods are candidates for decreasing the cost of
genome sequencing.

2.1 DNAmolecules
Deoxyribonucleic acid (DNA) is a biomolecule contained in the living cells of organisms
and store the genetic information. In combination with histone proteinDNAmolecules
form the nucleosomes. These are folded through higher order structures in order to build
chromosomes. Each of the 23 human chromosomes contains a single DNA, which is
a very long biomolecule, reaching 1.5 mm [64]. The genome information is coded in
four different nucleobases in the ATCG alphabet. Each letter denotes one of the four
nucleobases Adenine, Thymine, Cytosine and Guanine, shown in Fig. 2.1 . Each base
bonds with a sugar group making the nucleosides and a phosphate group forming the
nucleotides. The phosphate group is a strong acid, that is the reason structures formed
by nucleotides are called nucleic acids. Sugar groups from the nucleotides connect, creat-
ing a single-strandedDNA (ssDNA). In 1953, JamesWatson and Francis Crick discovered
the molecular structure of nucleic acids, a rough model of which is shown in Fig 2.2 a)
[65]. They identified the base pairingmechanismbased onX-ray diffraction images taken
by Rosalind Franklin et al. [66], where Adenine and Thymine form stable base pairs
with two hydrogen bonds and Guanine and Cytosine through three hydrogen bonds.
Single-stranded DNA molecules can additionally link together in antiparallel directions
to form a double-helix DNAwhich is much more stable than RNA or most of proteins.
Information can be stored within the double helical structure of the DNA. In humans,
DNA forms chromatin combining with histone proteins. This protects the genomic in-
tegrity and stabilises the DNA structure into a small compact volume [67]. DNA is an
extremely stable and symmetric molecule because deoxyribonucleotides lack a reactive
hydroxyl group 2’ and antiparallel DNA strands form a helical structure. Double-helix

5



2 Biological Background

Figure 2.1: Five main nucleobases form nucleic acids [71]. Adenine, Guanine and Cytosine can
build up both DNA and RNA, while Thymine only appear in DNA and Uracil in
RNAmolecules.

DNA is stabilized with hydrogen bonds, formed by bindings between purine and pyrim-
idine bases, and hydrophobic interactions between bases inside the helix. Both pairs of
bases are complementary, thus every nucleotide in one strand is opposed to thematching
partner on the other strand (Fig 2.2 b)). Nevertheless, this structural stability and regu-
larity makes DNA molecules ineffective for catalysis processes [68]. This means DNA
cannot catalyze cellular processes as catalytic RNA enzymes or ribozymes can. Many
nanopore experiments use ssDNA, in order to detect the transport and access to genetic
information instead of the double-stranded DNA (dsDNA) due to the higher stability
and difficulty to decode genetics with the latter.
Each amino acid of a protein is specified by three RNA bases or codon. The genetic

code is the set of base combinations which encode the 20 common amino acids of cells
[64]. It is redundant, because 3 bases could specify 4x4x4 amino acids. As a result, three-
nucleotide codons aremore than enough to decode all them. All amino acids butmethio-
nine and tryptophan are encoded through more than a codon. Nonetheless, the genetic
code is not ambiguous, because only one amino acid can be encoded by one codon. Most
part of the genetic code contains instructions formaking all the different proteins that the
cell needs to function and to make more copies of itself. In cells, the information flows
from the DNA to messenger RNA (mRNA) and finally synthesises proteins. A mRNA
is similar to DNA in which the base Thymine is exchanged with Uracil (Fig 2.1) and the
sugar is changed from a deoxyribose to a ribose [69]. Although, the functions and inter-
actions of these molecules are not completely understood, the hypothesis of the mRNA
is accepted. This assumption was used by F. Crick in order to build the central dogma of
molecular biology [70],which simply states thatDNAmolecules encodeRNAandRNA
molecules encode proteins. According to this central dogma, the genotype of an organ-
ism is determined by the base sequence of its DNA, while its phenotype is a product of
the proteins it procedures [68].
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2.2 DNA sequencing

Figure 2.2: Double helical structure of DNA. Fig. 2.2 a) shows the first scale model fromWatson
and Crick [65]. Fig. 2.2 b) depicts the secondary structure of DNA showing in detail
the structure of the four bases, Adenine, Cytosine, Guanine and Thymine, and the
location of the major and minor groove [72].

2.2 DNA sequencing

DNAsequencingdetermines the order of nucleotides in amolecule ofDNA. Sequence of
nucleotides of a genome underlies the protein complement of the cell and hencemuch of
the phenotypic variation that we see between individuals. The development of methods
for determining the sequence of nucleotides in DNA molecules have a great impact on
human health and the evolution of life [73].
One of the first sequencing method previous to the famous Sanger sequencing was

made by Allan Maxam and Walter Gilbert in 1976-1977, developing a DNA sequencing
procedure that determined the nucleotide sequence of terminally labeledDNAmolecule
by chemical modifications [74]. According to A. Munshi [75], "The method requires ra-
dioactive labelling at one end and purification of the DNA fragment to be sequenced.
Chemical treatment generates breaks at a small proportions of one or two of the four
nucleotide based in each of four reactions (G,A+G, C, C+T). Thus a series of labelled
fragments is generated from the radio labelled end to the first ‘cut’ site in each molecule.
The fragments in the four reactions are arranged side by side in gel electrophoresis for size
separation. In order to visualize the fragments, the gel is exposed toX-ray film for autora-
diography, yielding a series of dark bands each corresponding to a radio-labelled DNA
fragment, from this, the sequence may be inferred". In 1977, Frederick Sanger published
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a chain termination method based on introducing specially modified nucleotides, which
allows DNA strands up to approximately 200 number of bases in order to give a reason-
able basecalling accuracy [76]. The Sangermethodwasmore efficient andused fewer toxic
chemicals and lower amount of radioactivity than the method of Maxam and Gilbert.
Sanger sequencing has been the technological reference of sequencing techniques. Al-
though, during the last decade several next-generation method have turned into viable
alternatives.
Ahandicap for first generation sequencingmethodswas thenumberof bases of aDNA

molecule that they process, which ismuch smaller than the length of the genome formost
of organisms. This limitation render sequencing genome completely a difficult problem.
In order to resolve thewhole genome sequencing problem, shotgun sequencingmethods
can be used. These techniques are based on the famous polymerase chain reaction (PCR)
of K. Mullis, which amplifies the DNA samples size by clonation until obtaining multi-
ple copies of the target genome. After applying PCR, these copies are randomly broken
into small fragments or reads that are processed by the sequencing device. Fig. 2.3 de-
picts an example of the PRC applied to assembly sequencing. The key of the shotgun
sequencing methods is the larger number of bases from DNA molecules that can be se-
quenced. The potential of Sanger sequencingmethods has been improving over decades.
Nonetheless, the cost of sequencing whole genomes remains too high. For this purpose,
second generation sequencingmethods were developed, in order to decrease the cost and
sequencing time by reading lots of reactions in parallel of PCR segments or even a hole
dsDNA. One of the most used second generation techniques is pyrosequencing. This
method amplifies DNA, which first is isolated and ligated to adapters, in a water and oil
emulsion, where takes places the PCR in order to clone theDNAmolecules. Afterwards,
luciferase is used to generate light after nucleobases are incorporated in a growing DNA
chain [77]. Pyrosequencing decreases the cost per base and generates larger databases than
Sanger sequencing.
The large size of DNA reads sequenced by PCR based methods needs computers in

order to process the whole genome information. As DNA reads are obtained from lots
of shorter and different sequences, it is necessary to assemble computationally every frag-
ment to write a complete sequence. Gaps in the assembled sequence cane be filled by
primer walking [75]. This technique is known as de novo assembly sequencing. For
large genomes, it is possible to assemble millions of reads in a reasonable time by the use
of computers [73]. Assembly sequencing methods have appeared as a new field due to
the increasing interest on extracting genome information. On that respect, the Human
Genome Project was set in 1988 in order to map and sequence the whole human genome
[79]. The aim was to increase the accuracy of the DNA reads and at the same time reduc-
ing the cost. Different researching groups worked cooperatively focused on extracting
the whole base pair sequence of the human. This information can provide potent means
of organisms and contribute to help to biological analysis and the prevention of diseases
[73].
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2.2 DNA sequencing

Figure 2.3: PRC technique applied to assembly sequencing processes [78].

Relevant insight into gene functions and genetic variation has been found over the
last years with the sequencing of entire genomes. Cost efficient, high-throughput whole
genome sequencing, which is going to provide the community with massive amounts of
sequences, are the goals of new sequencing technologies that are rapidly evolving [80].De-
crease the cost of the genome sequencing is nowadays the objective of the “1.000 dollars
genome” project [1]. This amount corresponds to the target cost for determining an in-
dividual’s genome, being included in diagnostic tests. The scale of this ultimate goal is six
orders of magnitude faster and three times cheaper than current state of the art technolo-
gies [1]. An ideal technology for this purpose would be a “single molecule” sequencing
method, where the signal amplification is not necessary in order to identify DNA frag-
ments, avoiding the addition of noisy signals that induces errors.
Sequencing field demands technological improvements on quality and faster reads. In

this respect, third generation systems have the potential to greatly benefit de novo assem-
bly methods. Third generation-sequencing methods have the potential to sequence nu-
cleobases without chemical transformations. The technique called single molecule real-
tie sequencing (SMRT-seq) uses a processing polymerase to insert nucleotides opposite a
template DNA strand [67]. This method can efficiently determine DNA nucleobases by
its raw signal, which comes up from themovement of the molecules through nanopores.
Chemical labelling can be used along with SMRT-seq, since bulkier bases have a more
unique signature which can aid detection [81]. SMRT-seq provides multi-decoding tech-
niques in one sequencing experiment, increasing the sequencing time. Current technol-
ogy is still growing up and is only feasible for the sequencing of small genomes [67]. The
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boundaries ofDNAsize in sequencing is a limit for new technologies, because their power
of resolving largeDNAmolecules is not enough in order to obtain information about in-
dividual bases. The high demand for low-cost, sequencing has driven the development
of cheaper, portable, plug-and-play devices for high- throughput methods that paral-
lelize the sequencing process, reading simultaneously million of DNA strands. High-
throughput-based technologies are intended to lower the cost of DNA sequencing [75].
While new generation sequencer evolves, nanopore-based technologies have appeared as
strong candidates for solving the low-cost sequencing problem [1]. Nanopore are based
on the electronic detection ofDNAsequence andhave the potential of low sample prepa-
ration work, high speed, and low cost [3]. Future technologies along with computational
powerwill enable tomake progress in large genome sequencing and fields like psychology,
ecology and climatology will benefit from this knowledge.

2.3 Nanopores andDNA tranlocations
A nanopore is a hole in a material with a diameter between 1 nm and 100 nm [82] used
in new generation molecule translocation techniques. Fig 2.4 shows the schematic pro-
cess of a translocation. There are two kinds of nanopores, the biological, like the pro-
tein nanopore used in the MinIon device [83] and the solid state nanopores. Solid state
nanopores (silicon or based-substrate nanopores) can be made by drilling a hole into a
membrane [84]. They exhibit relatively lower single molecule detection sensitivity com-

Figure 2.4: Ionic current blockades through nanopores. Traces of the ionic current amplitude
through an alpha haemolysin nanopore clearly differentiate between an openpore and
one blocked by a strand of DNA [3].
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pared to biopores due to their intrinsic thickness and lack of control over surface charge
distribution. The aim of the development of solid-sate nanopores is to avoid noise and
overlapping when reading ionic current traces. For this purpose, the sensing regionmust
offer spatial resolution enough for an efficient molecule sequencing. Ultra-thin mem-
branes such as graphene or single-layer molybdenum disulphide can be use to build 2D
nanopores for DNA sequencing [83]. Recently, MoS2 nanopores have shown the ability
of differentiatingDNAnucleotides with single-base resolution by slowing down translo-
cation speed using an ionic liquid gradient across the nanopore [10]. Translocation time
of a ssDNA through a MoS2 nanopore could be prolonged by reducing the proportion
of molybdenum atoms to sulfur [85].
Nanopore sequencing is a very promising techniques that does not need the previ-

ous biotechnological methods of second-generation sequencers such as PCR or chemical
transformations. In nanopore sequencing, DNA dispersed in an ionic solution is elec-
trophoretically driven (due to its negative charge) through a nanoscale pore and being
read. The nanopore is a highly confined region of space, in which the polynucleotides
can be analyzed by various means. DNA molecules can be electrophoretically threaded
through nanometer sized pores in a process named “DNA translocation” [1].Once a con-
trolled processing is enforced in the nanopore region, the native sequence of bases can be
detected by the signal carried along. The time interval during which the current level re-
mains decreased is proportional to the length of the molecule that blocks the nanopore,
which give insights about translocation dynamics. Solid state nanopores are made of 2D
materials.
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3 Machine Learning
This chapter summarizes the machine learning
methods used in this thesis, such as unsuper-
vised learning clustering algorithm and neural
networks.

Machine Learning (ML) involves algorithms used by computers for optimizing a perfor-
mance criterion (e.g. character recognition) using example data or a past experience. It
has emerged as a sub-field of Computer Science due to themassive collection of databases
since the 80s related to engineering fields, speech and image analysis, pattern recognition
or communications [86]. Learning algorithms are good candidates to substitute conven-
tional way of extracting data from simulations, increasing the efficiency of the algorithm
of interest. The goal of Machine Learning is to automatize computers for solving prob-
lems without the use of a program explicitly. This should be done through learning rules
that save computational time and improve the accuracy of processes that humans cannot
reach. Technologies such as image and voice recognition, personalized marketing or data
analytics work along withMachine learning algorithms in order to learn and understand
its insights [87].
In general, conventional learning algorithms involve main steps that build a pipeline.

They start with the acquisition of data from the field of interest. Preprocessing and trans-
formation of these data is important in order to be used as an input for theMLalgorithm.
Most relevant descriptors/features from the dataset are used to create a feature space, the
place where the collected data lives. All these collected samples form the training set. The
aim of the training step is to create a space where the dataset live and the computer must
learn by splitting zones with the same features. If the learning process is supervised [88],
then each sample belong to a class, that can be categorical or numerical. The set of classes
from each sample represents the labels, that are the already known solutions. The next
part is the optimization, where the computer must find coincidences between samples
and, if labels are known, optimize the geometrical object that divides those zones. The
goal of a ML algorithm is to optimize the splitting function of the feature space or find
a new one in order to create a rule decision that can automatize the task. Fig 3.1 shows
the scheme of a ML methodology including the domain knowledge that can dictate the
choice of a specific hypothesis class for use in the training process [87].
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Figure 3.1: Machine learning methodology design flow [87].

3.1 Introduction toMachine Learning
algorithms

Machine learning algorithms canbe classified into fourmajor classes dependingonwhether
the task needs previous knowledge or the aim is to discover new patterns [89]:

• Supervised learning: These algorithms are used when labels of the data are known.
The system receives as input a dataset with different feature values and the aim
is to learn from this data in order to give an output. The correct values used for
assigning a class to a new sample are the labels given by the user [90]. The algorithm
infers a functionwhich automaticallymaps the training set in order to classify new
upcoming samples. In Supervised Learning, the task of classification is to find a
rule which, based on human expertise and external observations, predicts the right
label for any new input with its feature values. This type of learning is very useful
in computational biology, where classification algorithms can predict mechanisms
that are not sufficient well defined.

• Semi Supervised Learning: The aim of these algorithms is to predict the unknown
labels from a dataset that is built up for classification purposes. A trained super-
vised algorithm is used to classify unlabeled data [91]. The most confident unla-
beled samples and their predicted labels are added to the training set.

• Unsupervised Learning: It is used when the labels are unknown, as opposed to su-
pervised learning algorithms. The training set consist of unlabelled samples, so that
there no classes for splitting the feature space [87]. The aimofUnsupervisedLearn-
ing is to observe the mechanics of the system and discover the insights, identify-
ing populations of samples with similar features. Some examples of Unsupervised
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Learning algorithms can be clustering methods, anomaly detection algorithms or
neural networks on its unsupervised version [92].

• Reinforcement Learning: It is about an agent interacting with the environment,
learning an optimal policy, by trial and error, for sequential decisionmaking prob-
lems in a wide range of fields in both natural and social sciences, and engineering
[93]. This type of learning is between supervised and unsupervised learning. Its
goal is to choose the actions that maximize the future rewards [87]. According to
Kälbling and Moore [94], "On each step of interaction the agent receives as input
some indication of the current state of the environment. The agent then chooses
an action to generate as output. The action changes the state of the environment,
and the value of this state transition is communicated to the agent through a scalar
reinforcement signal. The agent’s behavior should choose actions that tend to in-
crease the long-run sum of values of the reinforcement signal".

3.2 Clustering analysis
Clustering analysis classifies the samples from a dataset into subsets that have similarities
among their own samples anddissimilarities fromthe rest of the subsets [95]. The samples
in each subset, that can be represented by features in amulti-dimensional array, are placed
according to some defined distances measured between each sample and the centroids of
the clusters. Centroids are the centers of a cluster. Larger distancesmeans less similarity to
that subpopulation. Clustering algorithms are frequently used in data analytics, machine
learning, pattern recognition and bioinformatics. Due to their immense applications,
clustering methods can be classified into four main different categories [96]:

• Hierarchical methods: These methods create a hierarchical decomposition of the
dataset and form a tree that splits the database recursively into smaller subsets[95].
There are two types of hierarchical methods: agglomerative, which start consid-
ering each sample as one cluster and iteratively merges pairs of them and divisive,
which does the opposite [97].

• Density-based methods: Similar to the clustering methods that use the concept
of distance in order to assign a sample to a cluster, but they use the density. This
avoids spherical decisions on the feature space and finding clusters with random
shapes. These methods are also useful to discard outliers or anomalies [98].

• Grid-basedmethods: These algorithms emerge as an improvementofdensity-based
methods. The higher number of dimensions the dataset has, the less efficiency
these methods provide. Using a grid-data structure the feature space is quantified
into a finite number of cells, forming a grid structure where clustering algorithm
operates [99].
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Figure 3.2: Clustering of samples in a feature space using k-means for k=3 (left) and k=5 (right)
[101].

• Partitioning methods: Probably the most common used algorithms in clustering.
These clustering methods divide the dataset into k number of clusters. Choosing
a metric or distance function, like the sum of squared distances between all the
dataset, the algorithm assign each sample to a unique cluster k [97]. That is the
reason why clusters foundwith this type of methods are spherical. A typical exam-
ple for such a method is the k-means clustering, which will be implemented in this
work. Themethod k-Means is a NP-hard algorithm that partition the dataset into
k clusters, where the mean observation in each cluster acts as the centroid [100].
The algorithm needs the k value as an input and iteratively give a cluster represen-
tation as an output. Fig 3.2 shows to runs using different values of k for the same
dataset in its feature space.

After a clustering analysis it is important to evaluate the results. This is known as clus-
tering validation. Its importance lies on the fact that clustering algorithms provide always
a result, evenwhen the dataset distribution does not form any clusters. Thatmakes neces-
sary to measure the efficiency of the method. Cluster validation can be internal (evaluat-
ing the stability of the clustering solution) or external (comparing the resultswith another
datasets and methods). According to Tan et al. [102], there are some main steps in order
to evaluate a clustering performance:

• Determining the clustering tendency of a dataset and distinguishing whether non-
random structure actually exists in the data.

• Determining the correct number of clusters to the dataset.

• Evaluating how well the results of a cluster analysis fit the data without reference
to external information.
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• Comparing the results of a cluster analysis to externally known results, such as ex-
ternally provided class labels

• Comparing two sets of clusters to determine which of the two is better.

3.3 Neural Networks
Artificial Neural Networks (ANN) belong to the Deep Learning (DL) scheme. DL a
machine learning sub-field in which algorithms are inspired by the neurons in the hu-
man brain resembling it both structurally and functionally [87], [103]. Neural Networks
(NN) are used to provide solutions to non-linear regression and classification problems,
when the activation function is not linear. When a problem becomes more complex,
the number of features increase exponentially and the linear combination between all of
them needs to be taken into account. The computational cost is too high to deal with
these problems with linearML algorithms, but the development of more complex archi-
tectures can solve this problem. The first non-linear model was the Single Layer Percep-
tron, created by Rosenblatt [104]. This architecture consist of an unidirectional network
formed by one input layer and one output layer. Selecting as activation function the sign
function (or the sigmoid function) this algorithm is the most simple ANN created.
The feedforward neural networks, known under the nameMultilayer Perceptrons, are

a multilayered networks of perceptrons. This means, that several perceptrons are con-
nected in series. In addition to the input and output layer, Multilayer Perceptrons have
a hidden layer of neurons. The hidden and output layer consist of several perceptrons,
which are called units. Fig 3.3 depicts an example for a feedforward neural network. With
only one hidden layer with sufficient units and the right activation function, like the
sigmoid function, the network can approximate arbitrarily close every continuous func-
tions. Nevertheless,DeepNetworks are empirically better andhave a lower generalization
error as shallow networks with one hidden layer. Due to the increasing computational
power, it is possible to train a bigger network in shorter time. Thus is possible to test dif-
ferent structures and hyperparameters in a shorter time. Furthermore, the larger datasets
assist a better generalization. Notwithstanding the great variety of NN algorithms that
exist, we focus only on those that are most suitable for this project, Deep Neural Net-
works and Convolutional Neural Networks. Their convenience is explained in detail in
the next chapter.

3.3.1 Convolutional Neural Networks
Convolutional neural networks (CNNs) are inspired by cognitive neuroscience and two
researchers, Hubel and Wiesel, who work on the cat’s visual cortex, which was found to
have simple neurons that respond to smallmotifs in the visual field, and complex neurons
that respond to larger ones [106]. CNNs are the most applied deep learning algorithms
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Figure 3.3: Example of a ANN architecture [105].

in Image Classification and are the core of most Computer Vision systems today. Nat-
ural Language Processing is another field where CNNs are applied with very promising
results. In CNNs a convolution operation consist of the feature extraction from the in-
put data done by filters that perceive descriptive conditions by scrolling trough the data
and producing feature maps [87]. This extraction is done by the filters, a function ap-
plied to the data. The inputs of the CNNs are multi-dimensional arrays, such as two-
dimensional images with three colour channels, or one-dimensional genomic sequences
with one channel per nucleotide [107]. Thehighdimensionality of the images increase the
number of hyperparameters to be tuned. Convolutional layers are also known as pool-
ing layers, which allows the network to learn its own abstract features automatically. A
typical architecture of a Convolutional Neural Network (DNN) is depicted in Fig 3.4.
Hyperparameters such as the number of convolutional layers, number of filters or size of
the filters must be tuned in the validation process.

3.4 Deep learning for genomics
Machine learning is a pillar of modern computational biology [107]. A large amount of
effort has been put into sequencing the genome of living organisms. MLmethods can be
used to understand the genome, by identifying patterns in its sequence which are associ-
ated to regions with different functional roles. These patterns can provide for biologists
new relationships between genomic sequence and phenotypes [109]. Nevertheless, the
prediction of any region of the genome is still far from our understanding. Classical ML
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Figure 3.4: Example of a Convolutional Neural Network [108].

cannot operate as efficiently as Deep Learningmethods due to themanual feature extrac-
tion previous to the training process. Deep Neural Networks (DNNs) can help circum-
venting the manual extraction of features by learning them from data [107]. Moreover,
DL architectures can capture nonlinear dynamics from the translocation experiments.
Two of themost commonusefulNNconfigurations for learning fromDNA sequence

are Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
RNNs have the power of dealing with time series problems, using the raw signal from
translocations without feature preparation. On the other hand, CNNs can run directly
over pictures like electron microscopy images, used for the study of DNA methylation
[110]. CNNs allow to greatly reduce the number of hyperparameters compared to a fully
connected NN by applying convolutional operations to only small regions of the input
space and by sharing parameters between regions [107]. RNNs andCNNs can also be en-
sembled in order to create a network that combines the benefits of each type of network.
This project is not focused on the genome transcription, but on a deep scale which

is basecalling. On the field of the basecalling, very promising methods DL architectures
are emerging. From computational engineering, the first open-source basecaller based on
neural networkswasDeepNano [111]. ThisML software uses bidirectional recurrent neu-
ral networks implemented in Python, using the Theano library [112]. The most famous
real device for basecalling is theMinIONbyOxfordNanoporeTechnologies. MinION is
the first portableDNA sequencing device [83] that combines experimental translocations
through protein pores with Deep Learning algorithms. This low-cost and portable de-
vice can achieve promising results in various applications including full human genome
assembly [113] what could potentially lead to personalized genomic medicine. In Min-
ION,nanopores are used to sequenceDNA.Anelectrical potential is appliedover amem-
brane that separates a bulk, in which the nanopore is inserted in order to move the DNA
molecules from one chamber of the bulk to the other. As the DNA crosses through the
pore, the sensor detects changes in ionic current caused by different nucleotides present
in the DNA. The Oxford Nanopore Company currently have implemented on a cloud a
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platform called Metrichor, used to analyze generated sequencing data. In order to allow
offline and private analysis of MinION data Nanocall open-source software can be used
[114].
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4 Methods
This chapter describes the experimental condi-
tions, data collection and processing in DNA
translocation experiments. Also the imple-
mented methods for the clustering analysis and
classification of DNA nucleotides.

4.1 Experimental Setup
In thisworkwehaveused experimental data fromDNAtranslocation throughnanopores.
Specifically, twodatasets are obtained fromexperiments of singleDNAnucleotides translo-
cations through 2Dmolybdenum disulphide nanopores [10], [11]. The experimental sys-
tem consists of two chambers separated by a wall with a nanopore. Both chambers are
filled with an ionic solution, cis chamber contains 100mM KCL and trans chamber a
room temperature ionic liquid (RTIL). Fig 4.1 depicts the set up of the translocation
experiments. The sizes of the MoS2 pores are 2.8 nm for experiment B and 3.3 nm ex-
periment A respectively. A voltage difference of 200mV is applied for both. The ionic
concentration in the liquid is 0.1M.To control thedynamics of the translocation, a viscos-
ity gradient was applied to carry out the experiment by decrease the translocation speed.
DNAdatasets are provided by the Laboratory ofNanoscale Biology, Institute of Bioengi-
neering, School of engineering, EPFL from Lausanne, Switzerland. Thanks to this col-
laboration, a machine learning approach has been developed in order to get new insights
from physics of DNA translocation through 2D nanopores.

4.2 DNA data preprocessing
Two nanopore devices with different pore sizes have been tested under viscosity gradient
conditions. Specifically, four different raw signals are obtained for each nanopore from
the translocation of single nucleotides of theDNA, known as dAMP, dTMP, dGMP and
dCMP (full form in Glossary pg. 51) [11], [115]. In order to interpret the ionic current
signal and examine hidden physics in the traces it is necessary to identify every event con-
catenating all signals with an algorithm implemented in the Open Nanopore software,
the CUSUM algorithm [39]. This method fits the raw signals from translocations exper-
iments and provides structure files readable in numerical computing environments. In
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Figure 4.1: Viscosity gradient system formedby aMoS2membrane that separates the cis and trans
chambers of the bulk. DNAmotion away from the pore is diffusive. Within the cap-
ture radius Rc the nucleotides accelerate toward the nanopore due to eletrophoretic
and electroosmotic effects. [11].

Fig.4.2 the unfitted concatenated signals for translocataion events of different nucleotides
from experiment B with pore size 2.8 nm are plotted. Single events are marked using
the information given by the CUSUM structure file. CUSUM algorithm provides a file
which contains the concatenated raw signals, the same signal but fitted, time units, sam-
pling frequency and the event data base. This latter contains the start and end point of
each event, the number of events, number of levels from each event, the time of residence
of the molecule in the pore known as dwell time and all the ionic current values during
the translocation. Some random samples are included in the insets in Fig.4.2, showing
the ionic current range values and the dwell time for each one. It is easy to distinguish the
complexity of the event profiles compared to the theoretical predictions. Different types
of events can be identified for each nucleotide dataset.

4.3 Feature selection
In order to analyze the different translocation events it is necessary to propose some candi-
dates as potential features for the unsupervised learning model. Different combinations
of those features will be plotted in the next chapter, creating feature spaces from the ionic
current traces that will be analyzed. Physically intuitive aspects are considered to build
the features, trying to include information of the dynamics of the events. In that respect,
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Figure 4.2: The raw ionic current signals with time for the DNA single nucleotides (a) dAMP,
(b) dTMP, (c) dGMP, (d) dCMP ffrom experiment B. The insets show the concate-
nated events of single nucleotides translocating the pore. These single translocations
are marked through the red rectangular regions [63].
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for a possible clustering of translocation events, the following four features referring to
single DNA translocation events are selected [63]:

(a) the traditionally used dwell or translocation time, which maps the duration of an
event,

(b) the height of the ionic current blockade, defined as the difference between themax-
imum and minimum values of a single current blockade peak,

(c) the ionic blockademean current (mean), defined through the average current value,
and

(d) the levels, which are the number of the presumably different DNA configurations
through the nanopore.

The levels contain information about the conformation of themolecule going through
the pore, describing its topology. Different articles of nanopore experiments provide sta-
tistical analysis of the events using the dwell time andmean of the ionic current blockade
[39], [44], [116]. The ionic current blockade height is the novel feature proposed to im-
prove the efficiency of the clustering and classification algorithms. Its choice was physi-
cally intuitive in order to study new scenarios from the temporal series data. This new de-
scriptor gives the possibility of creating, not only time dependent feature spaces, but also
ionic current blockade dependent feature spaces which include information inherent in a
single ionic current blockade. In the next chapters it will be shown that using the feature
"height" it is possible to study the topology of single nucleotides during a translocation,
comparing the number of clusters with the number of the most probable configurations
obtained from the typical level analysis.

4.4 K-Means clustering
Themain objective of this work is to propose an efficient feature in order to interpret the
translocation events shown in Fig.4.2. The investigation is focused on searching path-
ways to better interpret nanopore data by clustering these using unsupervised learning
techniques. In this way, one can identify patterns and similarities in the feature space
[117]. The algorithm selected for this purpose is the open-source clustering algorithm k-
means from the scikit-learn library [118]. k-means is a random-initialized iterative cluster-
ing method, which is widely used in data mining, vector quantization, data compression
andpattern recognition [119], [120]. For a given knumber of clusters, the algorithmcan it-
eratively find centroid positions according to the data position in the feature space [120].
This project is not based on algorithm development, so k-means has been run without
any modifications. Clustering methods such as k-means can be used for improving the
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error-ratio in a classification task, building a structure by clusters accelerating the train-
ing step. For DNA sequencing, the read accuracy is improved with k-means algorithm,
reducing the systematic and random noise in the experimental datasets [121].

4.4.1 K-Means optimization
One of the inputs of k-means algorithm is the number of k clusters in the feature space.
This canbeoptimized automatically by running enhanced versions such asDensity-Based
Spatial Clustering ofApplicationswithNoise (DBSCAN) algorithmbut, in order to have
a better control of the data clustering, standard k-meanswill be used and not its enhanced
versions that automatically select the best k number of clusters [120]. Instead, two differ-
ent statistical scores are implemented to better tune the clustering process. The optimiza-
tion of the number of clusters k is done using two well known clustering scores: the (a)
silhouette (S) score [122] and (b) Calinski-Harabasz (CH) score [123]. The choice is based
on their high intrinsic differences. In general, the S-score is a good statistical tool, but it
fails with sub-clusters and very close or similar clusters [124].On the other hand, the CH-
score is one of the best schemes for identifying sub-clusters. Here, the value of k based
on both the scores for all data sets is validated.

4.5 Neural Network Architectures
At another level, we useNeuralNetworks (NN) to optimize and accelerateDNA translo-
cation. In this way, supervised deep learning model will take advantage of the feature ex-
traction from the clusteringmethod. Based on this analysis, different combination of fea-
tures are used as inputs for theNeuralNetworkmodels presented in the following subsec-
tions. Here, two differentmodels are proposed: At first, a DeepNeural Network (DNN)
for regressionproblems is implemented to accelerate thepreprocessing step. Then, aCon-
volutional Neural Network (CNN) for classification is used to label new translocation
events fromnanopore reads. bothmethodswill be donewith the open-source deep learn-
ing library Keras [125]. This package works with TensorFlow [126] in the back-end to run
the code automatically with the GPU and allow the application of many different types
of NN architectures. In this thesis DNN and CNN will be used instead of Recurrent
Neural Networks (RNN) or other configurations. Each translocation event has different
dwell time value, being necessary to complete the arrayswithwhite noise at the beginning
and the end if we wanted to use RNN. Combination of features selected from clustering
analysis makes possible to interpret each feature as a channel or pixel and build 1D images
as inputs for the DNN and CNN. In the next subsections, the architectures for bothNN
models will be discussed, as well as the strategy for the optimization of the error-ratio.
The DNN diagrams correspond to the first architecture selected. Based on this, we have
further optimized the number of layers and other hyperparameters.
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4.5.1 Data-to-Image transformation
In deep learning the use of NN makes sense if a problem can be imagined as an image
classification. In this work, arrays with the values of the features are transformed on grey-
scale level images, based on the idea in [108]. Santamaria et al. assign four different grey
values in range 0-1 to the ionic current signal from different DNA nucleotides. As each
DNAmolecule contains the same number of nucleobases, it is possible to represent each
sequence with a 2D image writing in each row the grey values and repeating n times that
row, with n the number of nucleobases per molecule. In this project, instead of relating
each pixel with an ionic current value for a discrete time step, pixels will correspond to the
features selected in the preprocessing as channels. The data must be normalized between
0-255 in a grey scale. 1D images of 3-4 pixels will be used as input for theNeural Network
models.

4.5.2 Deep Neural Network for height prediction
Deep Neural Networks can be applied in order to accelerate the feature extraction. In
this case a regression algorithm is implemented, as the aim is to obtain numerical current
values instead of categories. For this purpose, the Keras Regressor algorithm from the
Keras Library is used. The configuration adopted is a DNN with 2 fully connected hid-
den layers of 5 neurons each. We use an input layer with 3 neurons which correspond to
the features ionic current mean, number of levels and dwell time. The 1-neuron output
layer is the predicted value of the ionic current blockade height. In Fig.4.3 the DNN is
shown, where the individual nodes connecting the layers on the top are the bias terms of
the cost function.

4.5.3 Convolutional Neural Network architecture
The aimof this part is the prediction of single nucleotides combining datasets fromdiffer-
ent experiments. In order to incorporate the sequencing information into the first layer
for the input of the CNN, 1D arrays of 4 pixels corresponding to the features selected, in-
cluding the height, have been extracted. The code structure implemented is based on the
2D Convolutional function to 1D from Keras[125]. Instead of using a 1D convolutional
function, it is better to adapt the input and the size layers to a 1 dimensional structure
in order to test in the future with 2D images when larger datasets are able. As this the-
sis uses small datasets, a 2D adapted convolutional function will be implemented to take
advantage of the efficiency of Keras. The standard configuration before architecture opti-
mization for the CNN is as follows: 1 input layer with 1 channel, 2 convolutional hidden
layerswith 30 filters, a fully connected or dense layerwithdifferent filter sizes and 1 output
layer with 4 nodes that correspond to the single nucleotides dAMP, dGMP, dCMP and
dTMP. For this last, is important to recode the original labels into 0-1 values, which is the
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4.5 Neural Network Architectures

Figure 4.3: A DNN architecture for the prediction of the ionic current blockade height. The
sketch shows the use of 3 features as inputs, 2 hidden layers with 5 nodes plus bias
term and 1 output.

range of values that the activation delivers as a prediction. Fig.4.4 shows a sketch of the
topology used for the CNN. Fig. 4.3, 4.4 depict the general topology of the NNs imple-
mented in thiswork. The details of hyperparameters optimizationwill be discussed in the
results chapter. Convolutional architectures in Keras need as input different parameters
from the layers that must be tuned in the cross-validation step:

• The size of the first layer. It is interesting to start the CNN runs with the most
common used feature in a problem and then add, change or delete other potential
candidates for feature. This can be done manually or by feature learning.

• Number of filters in a layer. The number of filters is the equivalent to the number
of neurons in aDNN, since each neuron performs a different convolution on each
image.

• Flatten layer. It is the connection between the convolution and dense layers.This
last is the layer used before the output layer.

• Dense layer. It is a fully-connected or linear layer type that is used in many cases
for Neural Networks.
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4 Methods

• Dropout layer. These layers are added between convolutional layers and work by
dropping out probabilistically input nodes (or filters) to a layer, which saves com-
putational time on the simulation.

Figure 4.4: A CNN architecture proposed for the classification of single nucleotides. 2 convolu-
tional layers, the input layer and 1 layer with 30 filters and 3x1 size, 1 flatten layer, 1
dense layer with 1024 filters and 1 output layer which delivers the recoded vector con-
taining only 0 or 1 values, assigned to different nucleotides.

4.6 Neural Networks protocols
The training of aNNorCNNrequires a number of hyperparameters to be tuned in order
to study the possible bias or overfitting in the model. A hyperparameter tuning will be
used here to decrease the error-ratio in the classification and regression. To this end, com-
puting and plotting the training and cross validation error at every iteration is possible to
check the loss and accuracy of the NN. In Table 4.1 a list of the tuned hyperparameters
is presented. Keras present more hyperparameters easy-to-tune like batch size or pooling
layers. The number of epochs define the number of times that the learning algorithmwill
work through the entire training dataset. Batch size is the number of samples that enter
into the input layer each step. Larger batch sizes increase the accuracy although also the
training time, as it requires more memory. using a batch size less than the size of the data
set allows for the network to use less memory on every step and train faster. The pooling
layer is a tool that downsample an image. A pooling layer is applied after one or multiple
convolution layers. The convolution layers have the task to extract useful features from
the input, which results in multiple feature maps. The pooling layer reduces the spatial
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4.6 Neural Networks protocols

Hyperparameters Range

Number of filters 2, 3, 4, 31, 128, 512, 1024
Filter size 2, 3
Number of layers 2-8
Number of Dropout layers 0-2
Number of units in the hidden layers 3-10
Number of epochs 100-2500

Table 4.1: A list of the hyperparameters to be tunned.

Figure 4.5: Statistical scores to study the accuracy in a NN [127].

size of these feature maps [105]. The way to measure the performance of our algorithm
is by using statistical scores. Keras has already implemented different Loss functions in
order to see the overfitting of the training and test. As part of the optimization algorithm,
the error-ratio must be calculated repeatedly. This requires the choice of a loss function,
that can be used to estimate the loss of the model so that the weights can be updated to
reduce the loss on the next evaluation. In order to calculate the accuracy, Fig 4.5 shows
the classical statistics in deep learning.
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5 Clustering Analysis
In this chapter, the clustering results will be dis-
cussed. Insights into different molecular events
and topologies thorugh the nanopore will be
gained.

The next section provides an explanation about the selected feature space. The efficiency
of the novel feature ionic current blockade height is explained plotting two dimensional
feature spaces.

5.1 Feature extraction
Our first aim is to find the proper feature space in order to better interpret the experimen-
tal data. Scatter plots for single nucleotide translocations are used inorder to identify their
different configurations. This will help to select the most relevant descriptors as inputs
for the classification model. The number of events for those datasets from experiment
B are 3887, 127, 119 and 672 for dAMP, dTMP, dGMP and dCMP respectively. From
experiment A 22, 240, 757 and 391 events for dAMP, dTMP, dGMP and dCMP are ob-
tained. Different combinations of the dwell time, mean, and height have been examined.
The scatter plot in Fig.5.1 corresponds to the combination of the ionic current block-
ade height, ionic current mean and dwell time for dAMP from experiment B. Note that
typically the dwell time of the translocation events is used [39], [45]. Overall, choice of
features is crucial. In clustering methods the standardization of features can be problem-
atic, as it can bias andmodify the data changing the distances between the samples leading
to different clustering combinations. In order to avoid this, no scaling techniques will be
applied. On the other hand, for supervised learning, the scaling of features is often neces-
sary in order to accelerate the learning process [128].We analyze first the feature space by
taking the combination of the mean and dwell time. The results are shown in Fig.5.1(a)
and do not point to clearly distinct clusters that could lead to possible configurations of
dAMP through the nanopore. The combination of themean currentwith the dwell time
only identifies a large cluster, while the combination of the dwell time with the height
generate two clusters, which are overlapping. This configuration is known as subclus-
ters. Fig.5.1(b) shows what happens when dwell time is not used. Two clear clusters map
two different types ofmolecular configurations through the nanopore. Fig.5.2 shows the
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5 Clustering Analysis

Figure 5.1: Feature space analysis using the data from the dAMP experiment B in Fig.4.2. Differ-
ent combinations of the dwell time, mean ionic current, and blockade with height are
taken as denoted by the legends. The black ellipses define possible clusters [63].

Figure 5.2: Feature space analysis using the data from the dGMP from experiment B in Fig.4.2.
Different combinations of the dwell time, mean ionic current, and blockade with
height are taken as denoted by the legends.
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5.2 Clustering visualization and feature efficiency

Figure 5.3: Feature space analysis using the data from the dTMP from experiment A. Different
combinations of the dwell time, mean ionic current, and blockade with height are
taken as denoted by the legends. The black ellipses define possible clusters.

same behaviour of the feature height and its different combinations for the nucleotide
dGMP. In this case, the new feature "height" separates better the clusters. Scatter dTMP
data from the experiment A has been also plotted in Fig.5.3, in order to demonstrate the
scalability of the method using the height, which identifies clusters not depending on
nanopore materials or sizes. Accordingly, the blockade height feature has the quality of
clearly being clustered providing better information than the commonly used dwell time.
This emphasizes the novel feature of the approach proposed here.

5.2 Clustering visualization and feature
efficiency

Based on the feature extraction and analysis mentioned above, the k-means clustering al-
gorithm is applied to the translocation data fromall nucleotides of experimentB.The fea-
ture space analysis with respect to blockademean and height for all the single nucleotides
is given in Fig.5.4. Indeed, two distinct clusters can be seen in the case of adenine demon-
strating two distinct molecular configurations for dAMP. For the other nucleotides, the
picture is similar, though not always as clear as for dAMP due to the higher sparsity of
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5 Clustering Analysis

the other data. In any case, even for the few data for dGMP two distinct clusters seem to
form, while dCMP has the tendency of forming four clusters.
In order to find the optimum number of clusters for all data sets and confirm the find-

ings above, the Silhouette (S) and Calinski-Harabasz (CH) scores are calculated and clus-
ter sizes k in the range 2-10 are scanned. The results for all data sets are summarized in
Fig.5.5. The scores in this figure are obtained by taking two sets of features, the blockade
height vs. dwell time and the blockade height vs. mean. For visibility and comparison
with the S-score, the CH-score was scaled using the Max-Min Normalization technique
within the [0-1] range [129]. For a given data set, the highest values of these scores repre-
sent the most probable number of clusters. Similar S-score values for different k values
point to the existence of sub-cluster configurations. In order to further evaluate this, it
is necessary to turn to the CH-score in the same k range. Note, that the aim is not to
focus on the best possible way for optimizing classifiers, rather on finding the global den-
sity clusters of the translocation data. As evident from this figure, the choice of the dwell
time in the feature space leads to an almost stable S-score value as increasing k for all nu-
cleotides. As opposed to this, a linear increase is observed in the CH-score. The different
behavior of the two scores underlines the fact that the dwell time is not a good feature for
classification. In contrast to this, when choosing the blockade height and the mean cur-
rent as the feature space, both scores show a similar variation with the number of cluster
size. For dAMP, the S-score is similar for cluster sizes k = 2 and k = 3. For the CH-score
a cluster size of k = 2 shows the largest score. This k is related to a higher score also for
dTMP and dGMP.Accordingly, dAMP, dTMP, and dGMPassume two distinct types of
configurations through the pore as denoted by the cluster size of k = 2. A deviation can
be observed for dCMP, for which the CH-score is higher for larger cluster sizes. In order
to visualize this in Fig.5.4 cluster sizes of k = 3 and k = 4 are sketched for dCMP. These
denote the high probability of finding four different types of dCMP configurations in
the pore. Overall, when the number of clusters increases, the CH-score is higher than
the S-score due to the small distance of the samples to the cluster. Applying the k-means
algorithm in sparse data sets cannot distinguish among optimum cluster sizes when us-
ing the feature space of dwell-time and mean current. Nevertheless, including ’blockade
height’ in the feature space (especially without the dwell time) leads to a more efficient
classification even for the more sparse data sets. In this case, the variation of both scores
with k is similar supporting the higher efficiency of ’height’ over ’dwell time’.

5.3 Interpretation of the clustering results

In order to benchmark the cluster sizes in Fig.5.5, it is necessary to compare within the
information obtained through an analysis of the current blockade levels and events. In
this way, a physical meaning can be assigned to the clustering obtained through our ML
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5.3 Interpretation of the clustering results

Figure 5.4: Feature space analysis for the (a) dAMP, (b) dTMP, (c) dGMP, and (d) dCMP translo-
cation experiments from Fig.4.2 [63].

35



5 Clustering Analysis

Figure 5.5: The Silhouette (S) (solid lines) and normalized Calinski-Harabasz (CH) (dashed lines)
scores for all single-nucleotide translocation experiments. The scores are obtained
from the analysis of the feature spaces dwell time - blockade height (filled circles) and
blockade height - mean current (filled squares), as denoted in the panels [63].

36



5.4 Dealing with sparse datasets

approach. For this, the current blockade levels is considered instead of the mean current
blockade, attempting to classify the number of configurations observed.
For the level analysis, OpenNanopore software [39] has been used for extracting statis-

tics from the translocating data. In thisway, the length of the data is increasedby resolving
also the number of different current blockade levels within a single current blockade. A
scatter plot from this level analysis as a function of the dwell time and the ionic current
data for dAMP from experiment B is shown in Fig.5.6. The data is represented through
a histogram revealing two distinct peaks. These two peaks arising from the levels corre-
spond to two most probable conformations of a dAMP threading the nanopore. These
results again support the fact that using the current blockade height values of the translo-
cation levels instead of the events themselves leads to similar results and is a very efficient
approach for extracting information on the molecular conformations in the pore. The
same correlation is found in Fig.5.7, corresponding to dTMP data from experiment A.
The scatter plot of this data in Fig.5.3 shows again the correspondence between the peaks
from the level analysis and the clustering method. Can be concluded that this method
not depends on the pore size.
The representation in the levels figures clearly denotes that the most dense cluster in a

distribution maps a higher occurrence probability of a certain molecular conformation.
In the case to longer DNA molecules, such two peaks would be related to unfolding
(lower current, slower translocation) and folding (higher current, faster translocation)
conformations [26], [130]. In the case of single nucleotides, these peaks can be assigned to
either different entrance configurations of themolecules in the pore or possiblemolecular
isoforms. This remains to be shown in a separate study. Here, the aim was to provide a
feature analysis without the need of a levels analysis. It is possible to reveal a direct robust
relation between the molecular topology and the feature height.

5.4 Dealingwith sparse datasets
Another very important aspect is the handling of sparse data sets. Intuitively, the larger
the data set the better the clustering of the events. The significantly higher efficiency of
the blockade height in clustering nanopore data has been shown here (see Fig.5.1). These
results, though, were shown for the rich dAMP data sets. It is important to support this
findings by performing the same analysis for the muchmore sparse data for dGMP from
experiment B in Fig.5.8. Overall, the use of the blockade height can identify two clusters.
These are very distinct when the second feature is not the dwell time. The exclusion of
the height in the feature analysis cannot identify more than one clusters, despite the fact
the better Silhouette score resulted in an optimum size of two clusters (Fig.5.5).
As a final note, the fact that the height feature is more efficient than the traditional

dwell time for clustering events relies on the implicitly more statistics included in this fea-
ture. Specifically, to each ionic blockade the difference of the start and end stage of the
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5 Clustering Analysis

Figure 5.6: Blockade level analysis for dAMP showing all experimental data (left) and their dis-
tributions (right). Two distinct peaks representing two most probable configurations
can clearly be identified. In the inset, the red lines correspond to the separate levels
taken for one event. These levels point to the respective circles in the events plot [63].

translocation is assignedwhen taking the dwell time or themean blockade. However, the
blockade height is defined through the difference between the highest and lowest peak
within a blockade. In this way more distinct information is included for each event. As
clearly seen from the insets of Fig.4.2, there is a much more rich dynamics in the many
levels (i.e. peak heights) in a single blockade and these are very different for each event.
These multi-level characteristics typically defined by the blockade extrema are explicitly
taken into account in the height feature. In terms of the underlying Physics of the translo-
cation process, one could argue that from the three features examined here, the dwell time
and mean blockade are essentially coarse-graining the detailed features of each blockade
and through this the molecular details in the pore. On the contrary, the blockade height
is inherently including the characteristics of the detailed Physics of a single translocation
event. The extrema in the single blockade taken for the height definition are the ones char-
acteristic of the process. These carry for example, information on the two extreme config-
urational changes of the molecule through the pore (relevant to the peaks in Fig.5.6). In
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5.4 Dealing with sparse datasets

Figure 5.7: Blockade level analysis for dTMP from experiment A with pore size 3.3 nm showing
all experimental data (left) and their distributions (right). Two distinct peaks repre-
senting two most probable configurations can clearly be identified.
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Figure 5.8: Feature space analysis using the sparse data from the dGMP experiment B in Fig.4.2.
Different combinations of the dwell time, mean ionic current, and blockade with
height are taken as denoted by the legends [63].

this respect, the blockade height includes much more rich dynamics than the dwell time
and enhances the differences among different molecules.
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6 Training Neural Networks
with nanopore data

This part provides the results obtained from dif-
ferent neural networks architectures. The pre-
diction of the novel feature height is shown,
while the second part identifies between nu-
cleotides selected from different experiments.

This chapter assembles the clustering analysis with the NN results. In the first part, the
optimization of the DNN for predicting the feature height is shown. This can accelerate
the preprocessing of the deep learningmodel. The second part plots the loss and accuracy
value from different hyperparameter ranges, being possible to choose the best topology
of the CNN for nucleotide identification.

6.1 Feature prediction
Deep learning models applied to small datasets are more difficult to optimize, as they do
not behave like larger datasets while applying the common protocols for optimization in
order to avoid the overfitting. In this section a DNN for regression will be implemented,
using the largest dataset available from experiment B formed by 3886 samples, the sin-
gle nucleotide dAMP. In the Table 6.1 the details of the dataset for training the neural
network is shown. The aim of this part is to predict feature values and compare the effi-
ciency of each. Concretely, the ionic current blockade height versus the classical features
used in the statistical analysis of nanopore data. This method can be also used to accel-
erate the preprocessing, which makes sense if the dataset size can be increased with more
translocation experiments. Rather, we show here a protocol to corroborate the conclu-
sions extracted from chapter 5 about the ionic current blockade height.

Nucleotide Experiment Training Test

dAMP B 3000 887

Table 6.1: Number of samples from dAMP dataset for training and test.
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6 Training Neural Networks with nanopore data

Themodel consist of a simpleDNNand the architecture has been optimized as shown
in the first column of Table 6.2 along with the accuracy values. The activation function
selected is the well-known ReLu, while the algorithm for minimizing the cost function
is Adam [131]. The loss is measured with the mean squared error. Scikit-learn library

Classifier Accuracy

Random Forest 0.6703
NN 5 nodes 1 Hidden Layer (HL) 0.8129
DNN 5 nodes 2 HL 0.8640
DNN 5 nodes 3 HL 0.8710
DNN 10 nodes 5 HL 0.8788
DNN 10 nodes 10 HL 0.8677

Table 6.2: Accuracy values for different classifiers.

provides useful machine learning algorithms for regression of fast implementation, as
Random Forest (RF) [118]. This method is used for comparison with different NN ar-
chitectures. It is clear the more graph complexity of NNs compared to RF improves the
accuracy. WithinNN, there is no hardly difference on addingmore layers or more nodes.
Also the computational time increase is not really relevant due to the dataset size, so an
intermediate configuration has been selected for predicting feature values.
Two different combinations of features as inputs have been tested, choosing 3 nodes

for the input layer. One set of features including the blockade height in order to pre-
dict the dwell time and other with the classical feature (ionic current mean, dwell time
and number of levels) for blockade height prediction. For the training, the number of
epochs used is 200, while the batch size is 0 as it is not relevant due to the small dataset
and the computational time will be almost the same. In the second column of Table 6.2
the test validation accuracy only for blockade height prediction is shown for differentNN
architectures and RF for comparison. Here we check the problem of dealing with small
datasets. The difference of accuracy between a common machine learning method like
RF and a deep learning algorithms is clear, as DNN are created for more complex non-
linear problems. Adding more layers improve the accuracy only until 3 hidden layers.
Beyond those, the accuracy value stays at the same value. This gives us hints about possi-
ble bad quality of the descriptors, because the model does not improve while tuning its
hyperparameters. The second test, using the blockade height along with the number of
levels and the ionic current mean, predict better values as blockade height capture more
rich dynamics from the experiment. This can be seen in Table 6.3.
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6.2 Nucleotide prediction

Classifier Output Accuracy

DNN 5 nodes 3 HL Height 0.8710
DNN 5 nodes 3 HL Dwell time 0.9885

Table 6.3: Comparison between both tests for feature prediction.

This section ends with a typical plot in regression problems shown in Fig 6.1. It is
interesting to see that the separated areas corresponding to the number of clusters from
k-means analysis can be clearly seen in Fig 6.1 a). On the right, the results support the
score analysis from chapter 5. Ionic current blockade height increases also the efficiency
of the regression model.

Figure 6.1: Predicted vs. measured feature values visualizing the accuracy of theDNN. Subplot(a)
depicts the blockade height predicted values versus measures values with 0.8710 ac-
curacy. On the left, subplot (b) can perfectly predict the dwell time using our novel
feature blockade height, with a 0.9885 of accuracy.

6.2 Nucleotide prediction
In this subsection, the aim is to optimize the structure of a 1D-CNN in order to classify
nucleotides from different experiments. The input of the 1D-CNN are 1D images, arrays
of one dimension where each pixel is one channel or feature. The features are previously
standardized in order to transform small current values into grey scale values. Usually it is
necessary to fill arrays with randomnoise in order to run a neural network such asRNNs.
This introduce artificial values into the dataset, losing the purity of the experiment. This
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6 Training Neural Networks with nanopore data

method inspired by [108] allows to translate nanopore information into abstract grey level
images without using time dependence and using only the translocation data. Very small
1D images will introduce as inputs in our 1D-CNN. We want to combine in the same
training translocations from experiments with different conditions, as the pore size. Pore
sizes are 2.8 nm for experiment A and 3.3 for experiment B and the ionic raw signals are
absolutely different, there is no apparently correlation between signals from the same nu-
cleotide going through both pores. Table 6.4 shows all the data available for simulations.
In order to merge both experiment on one training set, we try to select number of sam-
ples per nucleotide and also the number of output nodes as larger as possible. It is clear
the best combination is to set 500 samples per nucleotide and use as nucleotides Adenine
and Cytosine from experiment B plus Guanine from experiment A. Below that, could be
interesting to choose also Cytosine fromA and 300 samples per nucleotide, although the
results would not be reasonably robust. In Table 6.5 the training and dataset is shown.
1500 images form the training set and 450 the labels. The number of input units for the
CNNwill be 4, corresponding to the dwell time, the ionic current mean, the number of
levels and the ionic current blockade height from each nucleotide. The number of out-
put nodes will be 3, according to the three different merged datasets from experiments.
The activation function is the same as for the DNN, again using the optimization algo-
rithm Adam [131]. In order to measure the loss value the categorical loss entropy (CCE)
has been calculated [132].

Nucleotide Samples Exp. A Samples Exp. B

dAMP 22 3887
dCMP 391 672
dGMP 757 119
dTMP 240 127

Table 6.4: Dataset sizes from experiments A and B.

Nucleotide Experiment Training Test

dAMP B 500 150
dCMP B 500 150
dGMP A 500 150

Table 6.5: Number of samples from each nucleotide dataset for training and test.
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6.2 Nucleotide prediction

6.2.1 CNNHyperparameter tuning

In order to optimize the topology of the CNN and deal with the overfitting, we have
tuned the hyperparameters named in chapter 4. In Table 6.6 the workflow is shown.
First, we have set the number of filters per layer. Themore filters the CNNuse, the larger
is the simulation. Every filter used has a size of 3. Trying with 4 filters the algorithm does
not converge every time, is not stable and needs around 2500 iterationwhen it converges.
There is no problem on increasing until the CNN becomes stable due to the number of
samples used. Using 1024 filters the algorithm converges in every run in a reasonable time
for 300 epochs. Furthermore, the concept of filter in small 1D images is more abstract
than in a usual 2D image. The problem is to set a value that allows to run on a robust
way. The next step is to optimize the number of hidden layers. In the same way as the
DNN, we do not observe differences adding more layers, so the number of hidden layers
is set on 2. The number of epochs used is the necessary until convergence for all cases. It
is important also to shuffle the input data in order to break the symmetry of the initial
weight values. We do not have tuned the batch size because the computational time is
brief with size zero. That would not be possible while working with 2D larger images.

HL Filters Dropout Reg. Param. Epochs Loss Accuracy

8 4 Yes 0 2500 2.1310 0.8733(!)
8 250 Yes 0 300 2.0427 0.8622
8 512 Yes 0 300 1.9274 0.8688
8 1024 Yes 0 300 2.0746 0.8660
7 1024 Yes 0 300 2.0919 0.8731
6 1024 Yes 0 300 2.037 0.8666
5 1024 Yes 0 300 1.9588 0.8622
4 1024 Yes 0 300 1.9588 0.8666
3 1024 Yes 0 300 2.1076 0.8600
2 1024 Yes 0 300 2.0890 0.8578
2 1024 No 0 100 2.0935 0.8577
2 1024 No 0.00001 100 1.9871 0.8689
2 1024 No 0.0001 100 1.7719 0.8711
2 1024 No 0.005 100 0.8398 0.6355(!)
2 1024 No 0.001 100 0.6247 0.8688
2 1024 No 0.01 100 0.6795 0.8555(!)
2 1024 No 0.1 100 0.59803 0.7088
2 1024 No 1 100 1.1333 0.3333

Table 6.6: Accuracy results for different architectures of 1D-CNNs.
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6 Training Neural Networks with nanopore data

CNNs usually introduce dropout layers in order to unload the network of the nodes
with the smallest weights [133], decreasing the simulation time. This case surprisingly is
the opposite, due to the small size of the 1D images. In Fig 6.2 this effect of non using a
dropout is depicted. The algorithmneeds less epochsuntil convergencewithoutdropout.
Deleting the dropout layer we only use 100 epochs instead of 300 we used with it. After
selecting the best configuration for the 1D-CNN is mandatory to decrease the Loss value
in order to avoid the overfitting. The regularization parameter has been tuned, as shown
in Table 6.6. Exclamationmarks denotes unstable simulations. The optimal value for the
regularization parameter is 0.001. There is some intrinsic overfitting on the model that
can be seen in Fig 6.3, as the 1D-CNN cannot improve its performancemore than 0.88 in
all the cases.

Figure 6.2: Accuracy values with (a) and without (b) dropout for a CNNwith a dense layer built
by 1024 filters.

In view of these results it is promising with only 1500 samples, although the model
still overfits. However, the loss convergence can be improved. This improvement would
be better achieved with more rich datasets than by increasing the number and type of
features.

6.2.2 Importance of data selection in small datasets
Outliers in deep learningwith small datasets can be a problem. Whileworkingwith larger
datasets is not relevant to select the best quality samples from your dataset. Nevertheless,
small datasets can contain a range that makes the model overfit, as this case. We found,
after testing different sample ranges within the nucleotide sets, an anomaly in the Cyto-
sine dataset. The first 100-150measurements avoid for the CNN to learn properly. Using
the last 500 samples instead of the first 500 the accuracy increase until 0.9885 while the
loss value decrease even more. Fig 6.4 depicts the performance of the CNN with differ-
ent Cytosine training samples and Table 6.7 compares the accuracy from those datasets,
proving the importance of sample selection with small datasets.
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6.2 Nucleotide prediction

Figure 6.3: Loss values without (a) and with (b) regularization for a CNNwith a dense layer built
by 1024 filters.

Classifier dCMP samples range Accuracy

1D-CNN 2HL 0-500 0.8710
1D-CNN 2HL 150-650 0.9885

Table 6.7: Comparison between tests for nucleotide prediction using different Cytosine samples.

Figure 6.4: Categorical loss entropy and accuracy values of 1D-CNN simulations for different Cy-
tosine training samples. a) and c) subplots depict CCE and accuracy from the simu-
lation with Cytosine samples in range 0-500, which induce overfitting. In b) and d)
subplots, the improvement after selecting the most relevant samples for training is de-
picted, where loss decrease while the accuracy increase.
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7 Conclusions
This chapter shows the conclusions from thema-
chine learning model and future lines.

In thiswork, a new feature usedwith anunsupervised and a deep learningmodel for iden-
tifying different molecular topology from translocation events of DNA through ultra-
thinMoS2 nanopores has been proposed. The novelty of this approach is based on using
the ionic blockadeheight insteadof the ’traditional’ dwell timeor the level information. It
is shown, that the commonly used dwell time is not the best feature for unravelingmolec-
ular events in the pore. Insteadwe couldmanifest that the novel feature of the ionic block-
ade height is highly more efficient in forming well defined clusters of events. In order to
support this, a classification for clustering experimental data for differentDNAmolecules
is performed. The approach does not use labeling of the data, thus is not biasing the lean-
ing process. It is possible to distinguish types of most probable molecular conformations
of the DNA threading the pore. Accordingly,two folding nucleotide events were clearly
identified. This novel approach uses solely the feature space made of the mean ionic cur-
rent and the ionic current blockade height, while avoiding sparse patterns obtained from
a blockade level or event analysis of the raw data using the dwell time feature. The pro-
posal for the relevance and importance of the ionic blockade height was supported by the
fact that this feature can also cope with data set sparsity. The blockade height is proven
efficient in all cases where the traditional dwell time fails to identify clusters of events.
The novel feature selection proposed here together with unsupervised learning can be

valuable in providing a focal point on the 2D nanopore experimental data and a valu-
able insight into the nanopore. The beginning here is the identification of molecular
events in the pore. Having shown the applicability of this scheme to DNA, it can further
extended for other types of biomolecules, which could involve a more rich conforma-
tional variation. These rich dynamics is an aspect implicitly carried within the ionic cur-
rent blockade height feature. In order to reveal the exact configurational aspects, more
data are needed. Overall, though, this framework can also be used with data from other
nanopores in order to gain insight into the differences among nanopores and guide the
design of the nanopore material. Overall, the relevance of the proposed scheme, in view
of sensing DNA and also detecting its sequences is very high. An efficient 2D nanopore
should be able not only to detect the molecule, but also read-out the order of its nucle-
obases with the lowest possible errors. These errors arise from different sources and are
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7 Conclusions

often difficult to control or reduce. The classification scheme based onusing the blockade
height as a feature can be further tested, improved, and applied to other types of DNA
sequences in order to reduce errors and filter out the information on the identity of the
nucleobase along a translocating DNA. Training with small datasets returned high accu-
racy values. The classification scheme has the potential to deal with different nanopore
materials and sizes, as well as varying experimental conditions (applied voltage, salt con-
centration, pH, etc.). In this respect, the highest gain of our approachwouldbe to be used
in generating a database of 2Dnanopore events inherently including all the above details.
This can in turn be valuable not only for interpreting events, but also predicting DNA
sequences in 2D nanopore experiments. This work provides an important methodolog-
ical input towards this direction. In the end, the importance of this work is two-fold: it
provides an efficient framework for interpreting experimental nanopore data, while it can
also deliver a feedback to the experiments for tuning and optimizing the signals in view
of biomolecule identifying and sequencing.
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Acronyms

CCE Categorical Cross Entropy
CH-score Calinski-Harabasz Score
CNN Convolutional Neural Network
CUSUM Cumulative sum algorithm
dAMP Deoxyadenosine monophosphate
dCMP Deoxycytidine monophosphate
dGMP Deoxyguanosine monophosphate
DL Deep Learning
DNA Deoxyribonucleic acid
DNN Deep neural Network
dTMP Deoxythymidine monophosphate
HL Hidden Layer
ML Machine Learning
RF Random Forest
RNN Recurrent Neural Network
S-score Silhouette Score
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Codes

Clustering Analysis 14 pages of clustering python code
Nucleotide Prediction 6 pages of nucleotide prediction python code
Feature Prediction 3 pages of feature prediction python code
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# -*- coding: utf-8 -*-
import numpy as np
import scipy.io
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import pylab
from collections import Counter
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_blobs
from sklearn import metrics
from sklearn.metrics import pairwise_distances
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.cm as cm

import os
os.chdir("/Users/ANGEL/Desktop/HiWi/Data Aleksandra")
#-----

mat = scipy.io.loadmat('100mv_2.mat')

crd = mat['EventDatabase']
crd = crd['ConcatenatedStartCoordinates']
coord = np.ndarray(45)
fits = mat['ConcatenatedFits']
evfit = mat['EventDatabase']
evfit = evfit['AllLevelFits']
evfitt = np.ndarray(45)

ev = mat['ConcatenatedEvents']
fits = mat['ConcatenatedFits']

for i in range(45):
    coord[i] = np.asscalar(crd[0,i])
    #evfitt[i] = np.asscalar(evfit[0,i])

# print(np.size(evfit[0,11]))
# print(coord[11])
# #plt.plot(ev[coord[11]:coord[11]+np.size(evfit[0,11])])
# plt.plot(ev[coord[11]+173+17:coord[11]+173+17+18])
# plt.show()

## TIME ##
time = np.ndarray(45)

1



for i in range(45):
    time[i] = np.size(evfit[0,i])
    
## HEIGHT ##
h = np.ndarray(45)
for i in range(45):
    #h[i] = max(ev[coord[i]:coord[i]+np.size(evfit[0,i])])
    h[i] = max(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))]) - min(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))])
## MEAN ##
mu = np.ndarray(45)
for i in range(45):
    mu[i] = np.mean((fits[int(coord[i]):int(coord[i]+(np.size(evfit[0,i])))]))
    

# ###∂∫∫∂å∫
# aa=0
# muprb = np.zeros(79654)
# for i in range (79653):
#     indx = coord[aa]+(np.size(evfit[0,aa]))/2
#     if fits[i] == fits[i+1]:
#         muprb[coord[aa]:coord[aa]+np.size(evfit[0,aa])] = mu[aa]
#                
#     aa += 1
## NLEVELS ##
lvl = mat['EventDatabase']
lvl = lvl['NumberOfLevels']
lvls = np.ndarray(45)
for i in range(45):
    lvls[i] = np.asscalar(lvl[0,i])
    
## LEVELS ##
lev = mat['EventDatabase']
lev = lev['Levels']
levs = np.ndarray(45)
levss = np.ndarray(45)
for i in range(45):
    #levs[i] = np.asscalar(lev[0,i])
    a = np.size(lev[0,i])/6
    
        #levss[i] = np.asscalar(levs[0,i])
## COULOMB##
cou = mat['EventDatabase']
cou = cou['AreaCoulomb']
acou = np.ndarray(45)
for i in range(45):
    acou[i] = np.asscalar(cou[0,i])
    

2



# plotting features 2x2 ##
# time = (time - time.mean()) / time.std()
# mu = (mu - mu.mean()) / mu.std()
# h = (h - h.mean()) / h.std()
xx = np.arange(45)
# plt.plot(time,mu,'+')
# plt.show()
#plt.scatter(np.arange(45),sorted(mu))
#plt.show()
## 3dplot ##

# ax = plt.axes(projection='3d')
# ax.scatter3D(time, mu, h, c=time, cmap='viridis')
# plt.xlabel("I Mean ", fontsize=15);
# plt.ylabel("Height", fontsize=15);
# plt.show()
# plt.savefig('100mv_2pl')

# time = (time - time.mean()) / time.std()
# mu = (mu - mu.mean()) / mu.std()
# h = (h - h.mean()) / h.std()
#data = np.ndarray(shape=(np.size(index),2))
#data[:,0] = mu[index]
#data[:,1] = time[index]

# K Means #
# time = (time - time.mean())#/ time.std()
# mu = (mu - mu.mean()) #/ mu.std()
# h = (h - h.mean()) #/ h.std()

#data[:,2] = mu
# db = DBSCAN(eps=0.5, min_samples=2).fit(data)
# core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
# core_samples_mask[db.core_sample_indices_] = True
# labels = db.labels_
# 
# # Number of clusters in labels, ignoring noise if present.
# n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
# 
# print('Estimated number of clusters: %d' % n_clusters_)

#d = km.cluster_centers_
#print(d)

3



############################

mat = scipy.io.loadmat('100mv_1.mat')

crd = mat['EventDatabase']
crd = crd['ConcatenatedStartCoordinates']
coord = np.ndarray(31)

evfit = mat['EventDatabase']
evfit = evfit['AllLevelFits']
evfitt = np.ndarray(31)

ev = mat['ConcatenatedEvents']
fits = mat['ConcatenatedFits']

for i in range(31):
    coord[i] = np.asscalar(crd[0,i])
    #evfitt[i] = np.asscalar(evfit[0,i])
# 
# # print(np.size(evfit[0,1]))
# # print(coord[0,1])
# # plt.plot(ev[coord[0,22]:coord[0,22]+np.size(evfit[0,22])])
# # plt.show()
# 
## TIME ##
time2 = np.ndarray(31)
for i in range(31):
    time2[i] = np.size(evfit[0,i])
    
## HEIGHT ##
h2 = np.ndarray(31)
for i in range(31):
    #h2[i] = max(ev[coord[i]:coord[i]+np.size(evfit[0,i])])
    h2[i] = max(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))]) - min(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))])
## MEAN ##
mu2 = np.ndarray(31)
for i in range(31):
    mu2[i] = np.mean((fits[int(coord[i]):int(coord[i]+(np.size(evfit[0,i])))]))
    ## NLEVELS ##
lvl2 = mat['EventDatabase']
lvl2 = lvl2['NumberOfLevels']
lvls2 = np.ndarray(31)
for i in range(31):
    lvls2[i] = np.asscalar(lvl2[0,i])   
# 
#     
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##plotting features 2x2 ##
# time2 = (time2 - time2.mean()) #/ time2.std()
# mu2 = (mu2 - mu2.mean()) #/ mu2.std()
# h2 = (h2 - h2.mean()) #/ h2.std()

# plt.plot(time,-mu,'+')
# plt.xlabel("Dwell time", fontsize=15);
# plt.ylabel("Mean", fontsize=15);
# plt.show()

# ## 3dplot ##
# ax = plt.axes(projection='3d')
# ax.scatter3D(mu, h, time, c=time, cmap='viridis')
# plt.xlabel("I Mean ", fontsize=15);
# plt.ylabel("Height", fontsize=15);
# #plt.show()
# plt.savefig('143303pl')
mat = scipy.io.loadmat('50mv_selected.mat')

crd = mat['EventDatabase']
crd = crd['ConcatenatedStartCoordinates']
coord = np.ndarray(13)

evfit = mat['EventDatabase']
evfit = evfit['AllLevelFits']
evfitt = np.ndarray(13)

ev = mat['ConcatenatedEvents']
fits = mat['ConcatenatedFits']

for i in range(13):
    coord[i] = np.asscalar(crd[0,i])
    #evfitt[i] = np.asscalar(evfit[0,i])
# 
# # print(np.size(evfit[0,1]))
# # print(coord[0,1])
# # plt.plot(ev[coord[0,22]:coord[0,22]+np.size(evfit[0,22])])
# # plt.show()
# 
## TIME ##
time3 = np.ndarray(13)
for i in range(13):
    time3[i] = np.size(evfit[0,i])
    
## HEIGHT ##
h3 = np.ndarray(13)
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for i in range(13):
    #h3[i] = max(ev[coord[i]:coord[i]+np.size(evfit[0,i])])
    h3[i] = max(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))]) - min(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))])
## MEAN ##
mu3 = np.ndarray(13)
for i in range(13):
    mu3[i] = np.mean((fits[int(coord[i]):int(coord[i]+(np.size(evfit[0,i])))]))
 
    ## NLEVELS ##
lvl3 = mat['EventDatabase']
lvl3 = lvl3['NumberOfLevels']
lvls3 = np.ndarray(13)
for i in range(13):
    lvls3[i] = np.asscalar(lvl3[0,i])

#######################
########################
######################
######################
######################

os.chdir("/Users/ANGEL/Desktop/HiWi/Data Aleksandra/Homopolymers")

mat = scipy.io.loadmat('A1.mat')

crd = mat['EventDatabase']
crd = crd['ConcatenatedStartCoordinates']
coord = np.ndarray(np.size(crd))
fits = mat['ConcatenatedFits']
evfit = mat['EventDatabase']
evfit = evfit['AllLevelFits']
evfitt = np.ndarray(np.size(crd))

ev = mat['ConcatenatedEvents']
fits = mat['ConcatenatedFits']

for i in range(np.size(crd)):
    coord[i] = np.asscalar(crd[0,i])
#evfitt[i] = np.asscalar(evfit[0,i])

# print(np.size(evfit[0,11]))
# print(coord[11])
# #plt.plot(ev[coord[11]:coord[11]+np.size(evfit[0,11])])
# plt.plot(ev[int(coord[11]):int(coord[11])+218])
# plt.show()
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## TIME ##
time4 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    time4[i] = np.size(evfit[0,i])
    
## HEIGHT ##
h4 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    #h[i] = max(ev[coord[i]:coord[i]+np.size(evfit[0,i])])
    h4[i] = max(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))]) - min(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))])
## MEAN ##
mu4 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    mu4[i] = np.mean((fits[int(coord[i]):int(coord[i]+(np.size(evfit[0,i])))]))
    
# mu4 = (mu4 - mu4.mean()) / mu4.std()
# time4 = (time4 - time4.mean()) / time4.std()
# h4 = (h4 - h4.mean()) / h4.std()
## NLEVELS ##
lvl4 = mat['EventDatabase']
lvl4 = lvl4['NumberOfLevels']
lvls4 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    lvls4[i] = np.asscalar(lvl4[0,i])

############

os.chdir("/Users/ANGEL/Desktop/HiWi/Data Aleksandra/Homopolymers")

mat = scipy.io.loadmat('A2.mat')

crd = mat['EventDatabase']
crd = crd['ConcatenatedStartCoordinates']
coord = np.ndarray(np.size(crd))
fits = mat['ConcatenatedFits']
evfit = mat['EventDatabase']
evfit = evfit['AllLevelFits']
evfitt = np.ndarray(np.size(crd))

ev = mat['ConcatenatedEvents']
fits = mat['ConcatenatedFits']

for i in range(np.size(crd)):
    coord[i] = np.asscalar(crd[0,i])
    #evfitt[i] = np.asscalar(evfit[0,i])
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# print(np.size(evfit[0,11]))
# print(coord[11])
# #plt.plot(ev[coord[11]:coord[11]+np.size(evfit[0,11])])
# plt.plot(ev[coord[11]+173+17:coord[11]+173+17+18])
# plt.show()

## TIME ##
time5 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    time5[i] = np.size(evfit[0,i])
    
## HEIGHT ##
h5 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    #h[i] = max(ev[coord[i]:coord[i]+np.size(evfit[0,i])])
    h5[i] = max(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))]) - min(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))])
## MEAN ##
mu5 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    mu5[i] = np.mean((fits[int(coord[i]):int(coord[i]+(np.size(evfit[0,i])))]))
    
# mu4 = (mu4 - mu4.mean()) / mu4.std()
# time4 = (time4 - time4.mean()) / time4.std()
# h4 = (h4 - h4.mean()) / h4.std()
## NLEVELS ##
lvl5 = mat['EventDatabase']
lvl5 = lvl5['NumberOfLevels']
lvls5 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    lvls5[i] = np.asscalar(lvl5[0,i])

#########

os.chdir("/Users/ANGEL/Desktop/HiWi/Data Aleksandra/Homopolymers")

mat = scipy.io.loadmat('A3.mat')

crd = mat['EventDatabase']
crd = crd['ConcatenatedStartCoordinates']
coord = np.ndarray(np.size(crd))
fits = mat['ConcatenatedFits']
evfit = mat['EventDatabase']
evfit = evfit['AllLevelFits']
evfitt = np.ndarray(np.size(crd))
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ev = mat['ConcatenatedEvents']
fits = mat['ConcatenatedFits']

for i in range(np.size(crd)):
    coord[i] = np.asscalar(crd[0,i])
    #evfitt[i] = np.asscalar(evfit[0,i])

# print(np.size(evfit[0,11]))
# print(coord[11])
# #plt.plot(ev[coord[11]:coord[11]+np.size(evfit[0,11])])
# plt.plot(ev[coord[11]+173+17:coord[11]+173+17+18])
# plt.show()

## TIME ##
time6 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    time6[i] = np.size(evfit[0,i])
    
## HEIGHT ##
h6 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    #h[i] = max(ev[coord[i]:coord[i]+np.size(evfit[0,i])])
    h6[i] = max(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))]) - min(ev[int(coord[i]):int(coord[i]+np.size(evfit[0,i]))])
## MEAN ##
mu6 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    mu6[i] = np.mean((fits[int(coord[i]):int(coord[i]+(np.size(evfit[0,i])))]))
    
# mu4 = (mu4 - mu4.mean()) / mu4.std()
# time4 = (time4 - time4.mean()) / time4.std()
# h4 = (h4 - h4.mean()) / h4.std()
## NLEVELS ##
lvl6 = mat['EventDatabase']
lvl6 = lvl6['NumberOfLevels']
lvls6 = np.ndarray(np.size(crd))
for i in range(np.size(crd)):
    lvls6[i] = np.asscalar(lvl6[0,i])

#####
# # analyze 1 level #
index=np.where(lvls==1)
index2=np.where(lvls2==1)
index3=np.where(lvls3==1)
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index4=np.where(lvls4!=1)
# time = (time - time.mean())/ time.std()
# time2 = (time2 - time2.mean())/ time2.std()
# time3 = (time3 - time3.mean())/ time3.std()
# mu = (mu - mu.mean()) / mu.std()
# mu2 = (mu2 - mu2.mean()) / mu2.std()
# mu3 = (mu3 - mu3.mean()) / mu3.std()
# h3 = (h3 - h3.mean()) #/ h3.std()
# ####

# h4 = (h4 - h4.mean()) / h4.std()
# h5 = (h5 - h5.mean()) / h5.std()
# h6 = (h6 - h6.mean()) / h6.std()
# time4 = (time4 - time4.mean())/ time4.std()
# time5 = (time5 - time5.mean())/ time5.std()
# time6 = (time6 - time6.mean())/ time6.std()
# mu4 = (mu4 - mu4.mean()) / mu4.std()
# mu5 = (mu5 - mu5.mean()) / mu5.std()
# mu6 = (mu6 - mu6.mean()) / mu6.std()

# index=np.where(lvls!=1)
# index2=np.where(lvls2!=1)
# index3=np.where(lvls3!=1)
# data = np.ndarray(shape=(48,2))
# #####
# data[0:26,0] = time[index]
# data[26:48,0] = time2[index2]
# # data[28:33,0] = time3[index3]
# data[0:26,1] = -mu[index]
# data[26:48,1] = -mu2[index2]
# #data[28:33,1] = -mu3[index3]
############
# index=np.where(lvls==1)
# index2=np.where(lvls2==1)
# index3=np.where(lvls3==1)
# data = np.ndarray(shape=(28,2))
# ##
# data[0:19,0] = time[index]
# data[19:28,0] = time2[index2]
# # data[28:33,0] = time3[index3]
# data[0:19,1] = -mu[index]
# data[19:28,1] = -mu2[index2]
# #data[28:33,1] = -mu3[index3]
###################
data = np.ndarray(shape=(3887,2))
data[0:1660,0] = -mu4
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data[1660:1688,0] = -mu5
data[1688:3887,0] = -mu6
#data[89:130,0] = time4
data[0:1660,1] = time4
data[1660:1688,1] = time5
data[1688:3887,1] = time6
#data[89:130,1] = -mu4
# data[0:1660,2] = lvls4
# data[1660:1688,2] = lvls5
# data[1688:3887,2] = lvls6
#data[89:130,2] = h4
###################
# plt.plot(data[:,0],data[:,1],'+',markersize=2)
# plt.xlabel("Dwell time ($\mu$s)", fontsize=15);
# plt.ylabel("Mean (blue) / Height (orange) (nA)", fontsize=15);
# # plt.xlabel("Mean (nA)", fontsize=15);
# # plt.ylabel("Height (nA)", fontsize=15);
# plt.show()
#     
# plt.plot(time4,-mu4,'+')
# #plt.plot(time4,-mu4,'+')
# plt.xlabel("Dwell time ($\mu$s)", fontsize=12);
# plt.ylabel("Mean (blue) / Height (orange) (nA)", fontsize=12);
# plt.show()

# data = np.ndarray(shape=(np.size(crd),3))
# data[:,0] = h4
# data[:,1] = -mu4
# data[:,2] = time4
# ## 3dplot ##
# ax = plt.axes(projection='3d')
# ax.scatter(data[:,0], data[:,1], data[:,2], c=data[:,2], cmap='viridis')
# #ax.scatter(time4, -mu4, h4, c=h4)
# # ax.set_xlabel('Number of levels',fontsize=9)
# # ax.set_ylabel('Dwell time',fontsize=9)
# # ax.set_zlabel('Height', fontsize=9)
# plt.show()

# data = np.ndarray(shape=(1100,2))
# data[:,0] = h6
# data[:,1] = -mu6[0:1100]
# 
# data[:,2] = mu
# db = DBSCAN(eps=0.2).fit(data)
# core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
# core_samples_mask[db.core_sample_indices_] = True
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# labels = db.labels_
# # Number of clusters in labels, ignoring noise if present.
# n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
# 
# print('Estimated number of clusters: %d' % n_clusters_)

silou = np.ndarray(11)
### silhoutte score ###
chscore = np.ndarray(11)
# data, y = make_blobs(n_samples=500,
#                   n_features=2,
#                   centers=4,
#                   cluster_std=1,
#                   center_box=(-10.0, 10.0),
#                   shuffle=True,
#                   random_state=1)  # For reproducibility

range_n_clusters = [2,3,4,5,6,7,8,9,10]

for n_clusters in range_n_clusters:
    # Create a subplot with 1 row and 2 columns
    fig, (ax1, ax2) = plt.subplots(1, 2)
    fig.set_size_inches(18, 8)

    # The 1st subplot is the silhouette plot
    # The silhouette coefficient can range from -1, 1 but in this example all
    # lie within [-0.1, 1]
    ax1.set_xlim([-0.1, 1])
    # The (n_clusters+1)*10 is for inserting blank space between silhouette
    # plots of individual clusters, to demarcate them clearly.
    ax1.set_ylim([0, len(data) + (n_clusters + 1) * 10])

    # Initialize the clusterer with n_clusters value and a random generator
    # seed of 10 for reproducibility.
    clusterer = KMeans(n_clusters=n_clusters, random_state=3)
    cluster_labels = clusterer.fit_predict(data)

    # The silhouette_score gives the average value for all the samples.
    # This gives a perspective into the density and separation of the formed
    # clusters
    silhouette_avg = silhouette_score(data, cluster_labels)
    silou[n_clusters] = silhouette_avg
    chscore[n_clusters] = metrics.calinski_harabaz_score(data, cluster_labels) 
    print("For n_clusters =", n_clusters,
          "The average silhouette_score is :", silhouette_avg,

12



          "CH Score", chscore[n_clusters])
    
    # Compute the silhouette scores for each sample
    sample_silhouette_values = silhouette_samples(data, cluster_labels)

    y_lower = 10
    for i in range(n_clusters):
        # Aggregate the silhouette scores for samples belonging to
        # cluster i, and sort them
        ith_cluster_silhouette_values = \
            sample_silhouette_values[cluster_labels == i]

        ith_cluster_silhouette_values.sort()

        size_cluster_i = ith_cluster_silhouette_values.shape[0]
        y_upper = y_lower + size_cluster_i

        color = cm.spectral(float(i) / n_clusters)
        ax1.fill_betweenx(np.arange(y_lower, y_upper),
                          0, ith_cluster_silhouette_values,
                          facecolor=color, edgecolor=color, alpha=0.7)

        # Label the silhouette plots with their cluster numbers at the middle
        ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

        # Compute the new y_lower for next plot
        y_lower = y_upper + 10  # 10 for the 0 samples

    ax1.set_title("The silhouette plot for the various clusters.")
    ax1.set_xlabel("The silhouette coefficient values")
    ax1.set_ylabel("Cluster label")

    # The vertical line for average silhouette score of all the values
    ax1.axvline(x=silhouette_avg, color="red", linestyle="--")

    ax1.set_yticks([])  # Clear the yaxis labels / ticks
    ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

    # 2nd Plot showing the actual clusters formed
    colors = cm.spectral(cluster_labels.astype(float) / n_clusters)
    ax2.scatter(data[:, 0], data[:, 1], marker='.',  s=50, lw=0, alpha=0.7,
                c=colors, edgecolor='k')

    # Labeling the clusters
    centers = clusterer.cluster_centers_
    # Draw white circles at cluster centers

13



    ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
                c="white", alpha=1, s=900, edgecolor='k')

    for i, c in enumerate(centers):
        ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
                    s=120, edgecolor='k')

    #ax2.set_title("The visualization of the clustered data.")
    ax2.set_xlabel(("Height (nA)"),fontsize=17)
    ax2.set_ylabel(("Mean (nA)"),fontsize=17)
    ax2.tick_params(axis='both', which='major', labelsize=15)
    # plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
    #               "with n_clusters = %d" % n_clusters),
    #               fontsize=15, fontweight='bold')
    extent = ax2.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
    #fig.savefig('ax2_figure.png', bbox_inches=extent)
    # Pad the saved area by 10% in the x-direction and 20% in the y-direction
    fig.savefig('ax2A_figure_expanded.png', bbox_inches=extent.expanded(1.3, 1.2))
    plt.show()

#chscore[2:11] = (chscore[2:11] - max(chscore))/(max(chscore)- min(chscore))+max(chscore)
#############################
normalized = (chscore[2:11]-min(chscore[2:11]))/(max(chscore[2:11])-min(chscore[2:11]))
results = np.ndarray(shape=(3887,3))
results[:,0] = data[:,0]
results[:,1] = data[:,1]
results[:,2] = cluster_labels
#scipy.io.savemat('/Users/ANGEL/Desktop/MLarticle papers/FIGURAS/Ad.mat', mdict={'ad': results})
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar  5 17:37:50 2019

@author: angel
"""

#import tensorflow
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import numpy as np
from keras.utils import np_utils
import pandas as pd
import scipy.io
import matplotlib.pyplot as plt
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score

def build_regressor():
    regressor = Sequential()
    regressor.add(Dense(units=3, input_dim=3, activation='relu'))
    regressor.add(Dense(5, activation='relu'))
    regressor.add(Dense(5, activation='relu'))
    regressor.add(Dense(5, activation='relu'))
    regressor.add(Dense(units=1))
    regressor.compile(optimizer='adam', loss='mean_squared_error',  metrics=['mae','accuracy'])
    regressor.evaluate(test_x, test_y)
    return regressor

#Import training dataset
#training_dataset = pd.read_csv('iris_training.csv', names=COLUMN_NAMES, header=0)
#train_x = training_dataset.iloc[:, 0:4].values
#train_y = training_dataset.iloc[:, 4].values
training_dataset = scipy.io.loadmat('AdBHeight2.mat')
sorted(training_dataset.keys())
train_x = training_dataset['adforH']
train_x = train_x[0:3000,1:4]
train_y = training_dataset['adforH']
train_y = train_y[0:3000,1]
## Import testing dataset
#test_dataset = pd.read_csv('iris_test.csv', names=COLUMN_NAMES, header=0)
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test_x = training_dataset['adforH']
test_x = test_x[3000:3886,1:4]
test_y = training_dataset['adforH']
test_y = test_y[3000:3886,1]

#
## Encoding training dataset
##encoding_train_y = np_utils.to_categorical(train_y)
#
## Encoding training dataset
##encoding_test_y = np_utils.to_categorical(test_y)
#
# Creating a model
#model = Sequential()
#model.add(Dense(3, input_dim=3, activation='relu'))
#model.add(Dense(3, activation='relu'))
#model.add(Dense(1, activation='softmax'))

# Compiling model
#model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mean_absolute_error','accuracy'])

# Training a model
regressor = KerasRegressor(build_fn=build_regressor, batch_size=100,epochs=200,validation_data=(test_x,test_y))
results=regressor.fit(train_x,train_y)
#model.fit(train_x, train_y, epochs=10, batch_size=10)
seed =7
y_pred= regressor.predict(test_x)

# Evaluate the model

train_error = np.abs(test_y - y_pred)
train_error2 =  np.sum(np.abs(test_y - y_pred))/len(test_y)
mean_error = 100 - np.mean(train_error)
min_error = np.min(train_error)
max_error = np.max(train_error)
std_error = np.std(train_error)
print(mean_error)
#print(min_error)
#print(max_error)
#print(std_error)

#print("\nAccuracy: %.2f%%" % (scores[1]))

fig, ax = plt.subplots()
ax.scatter(test_y, y_pred)
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ax.plot([test_y.min(), test_y.max()], [test_y.min(), test_y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

results = np.ndarray(shape=(886,2))
results[:,0] = test_y
results[:,1] = y_pred
scipy.io.savemat('DTpred.mat',mdict={'DTpredd':results})
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar  5 17:37:50 2019

@author: angel
"""

#import tensorflow
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import Convolution1D, GlobalAveragePooling1D, MaxPooling1D, Activation
import numpy as np
import scipy.io
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import numpy as np
from keras.utils import np_utils
import pandas as pd
import scipy.io
import matplotlib.pyplot as plt
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
from keras.optimizers import SGD
import random
from IPython.display import clear_output

class PlotLosses(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.i = 0
        self.x = []
        self.losses = []
        self.val_losses = []
        
        self.fig = plt.figure()
        
        self.logs = []

    def on_epoch_end(self, epoch, logs={}):
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        self.logs.append(logs)
        self.x.append(self.i)
        self.losses.append(logs.get('loss'))
        self.val_losses.append(logs.get('val_loss'))
        self.i += 1
        
        clear_output(wait=True)
        plt.plot(self.x, self.losses, label="loss")
        plt.plot(self.x, self.val_losses, label="val_loss")
        plt.title('model loss')
        plt.legend()
        plt.show();
        
plot_losses = PlotLosses()

nb_class = 3
nb_features = 4

training_dataset1 = scipy.io.loadmat('AdBfeat.mat')
sorted(training_dataset1.keys())
training_dataset2 = scipy.io.loadmat('GuAfeat.mat')
sorted(training_dataset2.keys())
training_dataset3 = scipy.io.loadmat('CyBfeat.mat')
sorted(training_dataset3.keys())

train_x1 = training_dataset1['ad']
train_x1 = train_x1[0:500,0:4]
train_x2 = training_dataset2['GuAfeat']
train_x2 = train_x2[0:500,0:4]
train_x3 = training_dataset3['cyBfeat']
train_x3 = train_x3[150:650,0:4]

data_x = np.concatenate((train_x1, train_x2, train_x3), axis=0)
train_x = data_x

test_x1 = training_dataset1['ad']
test_x1 = test_x1[2000:2150,0:4]
test_x2 = training_dataset2['GuAfeat']
test_x2 = test_x2[500:650,0:4]
test_x3 = training_dataset3['cyBfeat']
test_x3 = test_x3[0:150,0:4]
datat_x = np.concatenate((test_x1, test_x2, test_x3), axis=0)

test_x = datat_x
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test_datasetxd3 = scipy.io.loadmat('XD3feat.mat')
test_xd3 = test_datasetxd3['xd3']
test_xd3 = test_xd3[0:390,0:4]

###
## 1 = Ad, 2 = Gu, 3 = Cy #####
train_y1 = np.full((1500,1), 1)
train_y1 = train_y1[0:500]
train_y2 = np.full((650,1), 2)
train_y2 = train_y2[0:500]
train_y3 = np.full((650,1), 3)
train_y3 = train_y3[0:500]

data_y = np.concatenate((train_y1, train_y2, train_y3), axis=0)
train_y = data_y

test_y1 = train_y1[500:650]
test_y2 = train_y2[500:650]
test_y3 = train_y3[500:650]

test_y1 = np.full((150,1), 1)
test_y2 = np.full((150,1), 2)
test_y3 = np.full((150,1), 3)

datat_y = np.concatenate((test_y1, test_y2, test_y3), axis=0)
test_y = datat_y

#train_y = np_utils.to_categorical(train_y, nb_class)
#test_y = np_utils.to_categorical(test_y, nb_class)

# =============================================================================
# # reshape train data
# train_x2 = np.zeros((len(train_x), nb_features, 3))
# train_x2[:, :, 0] = train_x[:, :nb_features]
# train_x2[:, :, 1] = train_x[:, nb_features:128]
# train_x2[:, :, 2] = train_x[:, 128:]
# 
# # reshape validation data
# test_x2 = np.zeros((len(test_x), nb_features, 3))
# test_x2[:, :, 0] = test_x[:, :nb_features]
# test_x2[:, :, 1] = test_x[:, nb_features:128]
# test_x2[:, :, 2] = test_x[:, 128:]
# =============================================================================
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from keras.models import Sequential
from keras.layers import Convolution2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.utils import np_utils
import numpy as np

# import your data here instead
# X - inputs, 10000 samples of 128-dimensional vectors
# y - labels, 10000 samples of scalars from the set {0, 1, 2}

# process the data to fit in a keras CNN properly
# input data needs to be (N, C, X, Y) - shaped where
# N - number of samples
# C - number of channels per sample
# (X, Y) - sample size

train_x = train_x.reshape((1500, 1, 4, 1))
test_x11 = test_x
test_x = test_x.reshape((450, 1, 4, 1))

test_xd3 = test_xd3.reshape((390, 1, 4, 1))
# output labels should be one-hot vectors - ie,
# 0 -> [0, 0, 1]
# 1 -> [0, 1, 0]
# 2 -> [1, 0, 0]
# this operation changes the shape of y from (10000,1) to (10000, 3)

train_y = np_utils.to_categorical(train_y)
test_y11 = test_y
test_y = np_utils.to_categorical(test_y)
# define a CNN
# see http://keras.io for API reference
# import regularizer
from keras.regularizers import l2
# instantiate regularizer
reg = l2(0.001)

cnn = Sequential()
cnn.add(Convolution2D(30, 3, 1,
    border_mode="same",
    activation="relu", activity_regularizer=reg,
    input_shape=(1, 4, 1)))
cnn.add(Convolution2D(30, 3, 1, border_mode="same", activation="relu", activity_regularizer=reg))
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cnn.add(MaxPooling2D(pool_size=(1,1)))
#
#cnn.add(Convolution2D(128, 3, 1, border_mode="same", activation="relu"))
#cnn.add(Convolution2D(128, 3, 1, border_mode="same", activation="relu"))
#cnn.add(Convolution2D(128, 3, 1, border_mode="same", activation="relu"))
#cnn.add(MaxPooling2D(pool_size=(1,1)))
#   
#cnn.add(Convolution2D(256, 3, 1, border_mode="same", activation="relu"))
#cnn.add(Convolution2D(256, 3, 1, border_mode="same", activation="relu"))
#cnn.add(Convolution2D(256, 3, 1, border_mode="same", activation="relu"))
#cnn.add(MaxPooling2D(pool_size=(1,1)))
   
cnn.add(Flatten())
cnn.add(Dense(1024, activation="relu", activity_regularizer=reg))
#cnn.add(Dropout(0.5))
cnn.add(Dense(4, activation="softmax"))

# define optimizer and objective, compile cnn

cnn.compile(loss="categorical_crossentropy", optimizer="adam",metrics=['accuracy'])

# train

history = cnn.fit(train_x, train_y, epochs=100, #batch_size=50, 
                  shuffle=True, callbacks=[plot_losses], 
                  validation_data=(test_x,test_y))

y_pred = cnn.predict_classes(test_x)
y_pred2 = np_utils.to_categorical(y_pred)
#y_pred = np_utils.to_categorical(y_pred)
score, acc = cnn.evaluate(test_x, test_y, verbose=0)
print('Test loss:', score)
print('Test accuracy:', acc)

plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
#train_error = np.abs(test_y - y_pred)
#train_error2 =  np.sum(np.abs(test_y - y_pred))/len(test_y)
#mean_error = 100 - np.mean(train_error)
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results = np.ndarray(shape=(100,2))
results[:,0] = history.history['acc']
results[:,1] = history.history['val_acc']
scipy.io.savemat('DataAcc.mat',mdict={'DataAccc':results})
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