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We consider a recently obtained coarse-grained discrete equation for the diffusion of Brownian
particles. The detailed level of description is governed by a Brownian dynamics of non-interacting
particles. The coarse-level is described by discrete concentration variables defined in terms of the
Delaunay cell. These coarse variables obey a stochastic differential equation that can be understood
as a discrete version of a diffusion equation. The diffusion equation contains two basic building
blocks which are the entropy function and the friction matrix. The entropy function is shown to
be non-additive due to the overlapping of cells in the Delaunay construction. The friction matrix
is state dependent in principle, but for near-equilibrium situations it is shown that it may safely
evaluated at the equilibrium value of the density field.

I. INTRODUCTION

Coarse-graining is the process by which two levels of
description of a given physical system can be related.
Usually, it is assumed that the dynamics at a detailed
level is known and one is interested in the dynamics at
a less detailed, coarser level of description. Perhaps one
of the oldest example of such multi-level descriptions is
found in simple fluids. At a detailed atomistic level they
are reasonably described with force fields between its con-
stituent atoms, with a dynamic given by Newton’s laws,
while at macroscopic scales they are well described by hy-
drodynamic fields obeying the Navier-Stokes equations.
How to pass from micro to macro descriptions is the is-
sue of coarse-graining or, in other equivalent words, the
central problem of non-equilibrium statistical mechan-
ics. For the case of simple fluids, coarse graining has
been achieved either by using the one particle distribu-
tion in p-space leading to kinetic theory [1] or by using
the hydrodynamic conserved variables [2-4]. In the sec-
ond case, a crucial assumption is the local equilibrium
hypothesis, that states that the system can be regarded
as composed of many sub-systems of infinitesimal (com-
pared with macroscopic scales) portions whose properties
can be described with equilibrium thermodynamics.

A second, even simpler example of a system to which
coarse-graining can be applied is the diffusion of colloidal
particles, which at a detailed level are described with the
positions of each colloidal particle. The N-particle prob-
ability of finding a given configuration of the colloidal
particles in space obeys the Smoluchowski equation [5].
Again, two coarse-graining approaches can be followed
here, which differ in the selection of the coarse-grained
variables [6, 7].

On one hand, one may choose the probability density
n(r,t) of finding a particle at r. The obtention of a dy-
namic equation for n(r,t) has been a subject of intense
research in the generalization of Density Functional The-
ory (DFT) to the dynamic realm in recent years [8]. For
the case of colloidal systems, this Dynamic Density Func-
tional Theory (DDFT), produces a non-linear generaliza-
tion of the well-known diffusion equation for n(r,t), that

takes into account the equilibrium microstructure of the
system. In that sense, DDFT is a coarse-grained theory
of diffusion. We have shown how DDFT can be obtained
with the projection operator technique [9]. DDFT gives
information at scales on the size of the colloidal particles,
and this is, in fact, one of the reasons of the large interest
on this technique in recent years [10-15]

On the other hand, we may choose as coarse-grained
variable the number of particles per unit volume c;.
While in principle, the average concentration c(r,t) =
(cr)t is expected to be proportional to the probabil-
ity density n(r,t), both quantities have a very different
meaning and definition. In fact, the concentration field ¢,
must be defined by recurring to an infinitesimal volume
and counting the number of colloidal particles within.
Therefore, it makes sense to speak about fluctuations of
the number of particles in that volume around the aver-
age value. However, it makes no sense to talk about “the
fluctuations around the one-particle probability density
n(r,t)”. As a consequence, the dynamic equation for ¢,
is a stochastic partial differential equation [16, 17], while
the dynamic equation for n(r,t) is an ordinary differ-
ential equation [18]. While one can use a “continuum
notation”, it should be borne in mind that the concen-
tration field has rooted in its definition the notion of an
infinitesimal volume. This means that it cannot vary in
length scales smaller than this infinitesimal volume.

In order to acknowledge from the outset the intrin-
sic presence of an infinitesimal volume, we have followed
in Ref. [19] a coarse-graining from the detailed Smolu-
chowski level to a discrete concentration level of descrip-
tion. At the coarse-grained level the system is character-
ized by a set of discrete concentration variables that are
defined through the Delaunay cell associated to a set of
nodes seeded through the space. The resulting dynam-
ics for the concentration variables is a stochastic discrete
version of the diffusion equation. In Ref. [20] we have
discussed that a definition of the discrete concentration
in terms of the Voronoi cells of the nodes is problematic
while the Delaunay cells provide a well-sounded formu-
lation of the coarse-grained dynamics.

In the present paper, we study in detail how to ob-



tain the two basic objects of the coarse-grained equation,
which are the friction matrix and the entropy function. A
crucial assumption in hydrodynamic descriptions is the
local equilibrium assumption in which the entropy func-
tion dependent on the hydrodynamic fields is expressed
as the integral of the equilibrium entropy density. This
means that the entropy is an additive function. While
for the case of the discrete variables defined in terms of
the non-overlapping Voronoi cell such additive approxi-
mation can be justified under certain conditions (see, for
example,[21, 22]), the fact that the Delaunay construc-
tion has overlapping cells may shed some doubts to the
validity of this local equilibrium approximation. On the
other hand, the friction matrix was computed in I un-
der an equilibrium approximation that rendered the fric-
tion matrix state independent. We explore in this paper
whether it is necessary to include the dependence on the
state of the friction matrix.

II. DISCRETE DIFFUSION

The macroscopic description of the dilute colloidal sus-
pension is constructed by seeding the space with M nodes
located at r, and associating to each node the number
of particles per unit volume in the region surrounding it.
If we denote the microscopic state by z = {r;}, i.e. the
collection of positions r; of the Brownian particles, then
the concentration n,(z) of node r, is defined as

nu(z) = Z%(U) (1)

where we have introduced the discrete delta function
through

() = = 2)

The form for ®,(r) is a finite element defined on the De-
launay triangulation, and the explicitly form is given in I.
It satisfies the partition of unity property ZLM Q,(r) =1,
ensuring that no matter the microscopic state z, the sum
of the discrete concentration variables gives the correct
number of particles in the system, i.e. >3 Vyn,(z) = N.
The volume V,, of node p is defined by

V. = / drd,,(r) (3)

We have shown in I that the dynamics of the probabil-
ity P(n,t) that the system adopts a particular configu-
ration n = nq,---,nys of concentrations in each node at
time ¢ is governed by the following Fokker-Planck equa-
tion (FPE)

0 0 0
—Pn,t) = —— Mul/(n)%

5 an, S(n)| P(n,t)

0 0
+ kBa—WM“”(n)a_mP(n’ t) (4)

where repeated indices are summed over, and kg is the
Boltzmann’s constant. In order to have an explicit form
for the discrete diffusion equation we need to compute
in closed form the entropy function S(n) and the fric-
tion matrix M, (n). As we will see, both quantities are
expressed in terms of conditional averages which are dif-
ficult to compute explicitly, and we will need to perform
some approximations. The purpose of this paper is to as-
sess these approximations. We consider in the following
sections each function separately.

III. THE ENTROPY

In this section, we will evaluate the entropy function
of the discrete concentration level of description. The
entropy function S(n) is obtained from the equilibrium
distribution function

P%(n) = § (ivm# - N) exp{%} (5)

which is the stationary solution of the FPE (4). Eq. (5) is
the usual expression in Einstein’s fluctuation theory [23],
suitably modified to include dynamical invariants [24].
While we refer to the logarithm of the probability as the
entropy, such a quantity may be better described as a
free energy depending on the context. The probability
(5) is microcanonical in the concentration as it originates
from a dynamics that conserves the number of colloidal
particles.

The equilibrium distribution function can be computed
from the microscopic expression

P®(n) = /dzpeq(z)Hé(nM(z) —ny) (6)

where p®4(z) is the equilibrium distribution of the Brow-
nian particles. Eq. (6) is the way to relate a probability
distribution p®i(z) over z with the probability distribu-
tion of a function of z, in this case, the concentration
variable n,(z). In a periodic box of volume V7 in the
absence of external fields, one has an uniform distribu-
tion p®(z) = V; V. The explicit exact calculation of
Pei(n) is difficult. However, under the assumption that
the number of particles per node is sufficiently large, the
probability P(n) becomes a Gaussian or in other words,
the entropy is S(n) ~ S*UsS(n), where

SGauss(n) = _I%gi—il Z(nu — n*)A—l(nV —n")
nv



is a quadratic function of the concentration (see Ap-
pendix VIII). Here a is the volume V,, of the Delaunay
cell of the node p (which is just a length in this one-
dimensional case, equal for all nodes). The matrix of
correlations is directly related to A, this is

—n) = A (8)

The matrix A,, and its inverse are given in the Appendix
VIII.

Note that this Gaussian form for the probability P(n)
does not factorize into products of independent proba-
bilities of each node. This is due to the fact that the
Delaunay cells of two neighboring nodes overlap causing
non-vanishing correlations of the concentration of neigh-
boring nodes, even for statistically independent Brown-
ian particles. As a consequence, P(n) does not factor-
ize and, therefore, the entropy function is not an addi-
tive function in general. Nevertheless, and for the sake
of comparison, we will consider the validity of the local
equilibrium approximation

PUmn) ~ []P(ny) 9)

o

where P(n,) is the exact probability of finding n, par-
ticles per unit volume in the node p. This factorization
approximation implies that the entropy is of the form
S(n) ~ S'(n) where

) = D Vus(ng) (10)

and the total entropy is the sum of the entropies of each
cell. The fact that “entropy is additive” as in Eq. (10)
is one aspect of the local equilibrium assumption. The
form of s(n,) is determined by the form of the single
node probability P(n,). We compute explicitly in the
Appendix VIII this probability of a single node in a one-
dimensional setting. The result is given in Eq. (48).

As it is clear from Eq. (4), we will need the derivative
of the entropy function with respect to the concentra-
tion variable. It is convenient to introduce the chemical
potential of the node v as

T 08
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(n) (11)

For the different entropy models we have the following
models for the chemical potential

6
Gauss _ -1 *
p () = kpT— > AL (n, —n")

e (n) = oS e =1 (12)

IV. THE FRICTION MATRIX

In this paper we are considering the process of coarse-
graining a colloidal system which is, in fact, described
at a detailed level with the Smoluchowski equation. Of
course, the Smoluchowski equation itself describes the
system at a coarse-grained level, because the only in-
formation kept is the position of the colloidal particles
and the rest of atomic degrees of freedom in the system
is eliminated and its effects modeled with thermal noise.
When passing from a stochastic level to a stochastic level
as in this case, it is well-known that the friction matrix
has two contributions [25], [26]. The first contribution is
purely static and reflects the direct transfer of the noise
of the detailed level to the coarse-level [27]. The second
contribution, which is given in terms of a Green-Kubo ex-
pression, accounts for the additional friction that emerges
from the elimination of degrees of freedom. If the de-
tailed level is given by Hamilton’s equations, only the
Green-Kubo contribution exists. On the other hand, in
the non-interacting stochastic problem that we consider
in the present paper, only the static part of the friction
contributes as shown in Ref I. In this case, the friction
matrix has the explicit form shown in Ref I

D ont on” "
M,,(n) = E<zl:8—r18—rz> (13)

By using the definition of the concentration variable in
Eq. (1) we obtain

N
D n
My (n) =+ D (V8 (ri)- V6, (ri)) (14)
The explicit form of the gradient of the discrete delta
function is (see Ref. I for the notation)

Vi, (r) = VLZbe‘L@e“(r) (15)

Heu

where 0, (r) is the characteristic function of the sub-
element e, (see Fig. 1 for the 1D situation). The gradient
is a discontinuous vector field that takes the constant
vector value be, within each element e, and zero outside
the Delaunay cell. This vector b, is directed towards the
node p. Eq. (14) becomes then

N

D 1 n
s VoV Z be, b, <Z 0., (r:)0e, (ri)>

i

Myy(n) =

(16)

Because the sub-elements e,, e, are non-overlapping,
the only surviving terms in the sum over particles in Eq.
(16) are those with e, = e,. This results in

D Ve
M, (n) = E Z beu'be,/mne(n) (17)

ecuy
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FIG. 1: The finite element ®,(r) in a 1D regular lattice.

Every node p has two sub-elements e (left I and right r) which
are shared by the neighbors.

Here, e is any of the common elements of the neighbor
nodes pu, v, b, is the vector of the element e, directed
towards the node p, b, is the vector of the element e,
directed towards the node v, and the concentration n. of
the sub-element e is defined as

WWE%<Z&W» (18)

where V. is the volume of the sub-element. In princi-
ple, the number density of the element e may depend
on the value n of the density in all the nodes, this is,
ne = ne(n). However, we expect that n. will only de-
pend on the values of the nodal points of the element e.
We will approximate n.(n) by the arithmetic mean of the
concentration of the d+1 nodal values of the sub-element
e, this is,

nem) == 3" n, (19)

vee

This local equilibrium assumption in the friction matrix
can be checked explicitly by sampling the conditional
ensemble with a fictitious dynamics as described in ap-
pendix IX. For a one dimensional case, the local equilib-
rium assumption (19) is simply

Ne = P Myt (20)

2

where u, u 4+ 1 are the nodes corresponding to the sub-
element e, in this case a line segment.

In Fig. 2 we plot the comparison of the conditional
average computed with the sampling method given in
Eq. (56) of appendix IX of the concentration of the sub-
element n. defined in Eq. (18), when the the input den-
sity profile n has a sinusoidal shape n,, = 10+3sin(r,/a).
The agreement is very good and shows indeed that the
concentration n. of the sub-element e is the arithmetic
mean of the nodal concentrations, thus confirming Eq.
(20). This is better appreciated in Fig. (3) where we

plot n. as a function of %
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FIG. 2: The conditional average m. defined in Eq. (18).
Crosses x are the input value n, which in this case is n, =
10 4 3sin(ru/a). Pluses + are the result of performing the
conditional average average in Eq. (18) with the sampling
method given in Eq. (56).
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FIG. 3: The conditional average n. as a function of %
The straight line indicates that these quantities are identical.

While the above results give convincing evidence of the
proposal in Eq. (19), they have been obtained for the case
of a generically “non-zero smooth discrete field”. Care
should be taken when a node 1 is empty, implying n, =
0. It is clear that when a node p does not contain any
Brownian particle, all the sub-elements of this node are
also empty and n, = 0,Ve € pu. This is in contrast with
the prediction in Eq. (19) that would still give some non-
zero value to the sub-element, because the other nodes
of the sub-element are not empty.

Eq. (17) is the explicit form of the friction matrix,
in terms of geometric quantities and the state variables
n. In Ref. [19] we gave the expression of the friction
matrix under the further approximation that M, (n) ~
(M,,,,)°%. In this case we have simply

D

ETL*A#U (21)

where the discrete Laplace operator



/ drVo,(r)-Vo,(r)

Ve
= be -be 22
> be, b, (22)
ecuy
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is discussed in I.

Now, we have several models for the entropy S(n) and
its derivatives in Eq. (12) and an explicit expression for
the friction matrix M(n) given in Eq. (17) with (19) or
(21). We are ready to use these explicit forms into numer-
ical simulations. As numerical simulations of stochastic
processes are best performed at the level of the stochastic
differential equations (SDE) rather than at the level of
Fokker-Planck Equations we consider in the next section
the SDE which are equivalent to the FPE (4).

V. THE STOCHASTIC DIFFERENTIAL
EQUATION

The connection between FPE and SDE is well-known
[28]. For the present case of the FPE given in Eq. (4)
the corresponding SDE is

dn,(t) = M, (1), S(n)dt + kpdyM,, (n)dt + dii, (t)
(23)

where dn,(t) = Bui(n)dW;(t) is a linear combination of
independent increments of the Wiener process, fulfilling
the Fluctuation-Dissipation theorem

Bui(n)Bui (1’1) = QkBMM,/(I’l) (24)

or in a more informal way

dit,,df,

- M, 25
2k pdt " (25)

The definition of the noise term dn,(t) is not unique be-
cause there are many different matrices B,,;(n) that fulfill
Eq. (24). A particular convenient possibility is the fol-
lowing noise term

i, = —Zbe“ dJ., (26)

€u

Here, djeu is a vector whose components are propor-
tional to independent Wiener processes. Note that for
each sub-element of the Delaunay triangulation (tetrahe-
dralization in 3D) we have a random vector dJ e, The

random mass flux has the explicit form, suggested in Ref.
[29]

dJ¢, = \/2Dn V., dV> (27)

The independent increments of the Wiener process satisfy
the mnemotechnical Ito rule

AVEAVe = 6., 6% dt (28)
Therefore, we have the following variances of the stochas-
tic mass flux defined in Eq. (27)

dI2 dI] = 0c,e,6%"2Dn,, Ve, dt (29)

It is straightforward to show, by using (29), that the
proposed noise in Eq. (26) fulfills the Fluctuation-
Dissipation theorem (25).

In order to write the stochastic differential equations
(23), we need to compute the term kpV M (z)

kBZa M, = DZVV 3 b, be, Ve Ot

on,
(30)

ecuy

For the arithmetic mean approximation in Eq. (19) we
have
one 1

ny,  d+1 (31)

The final SDE for the discrete concentration variable
is

dny(t) = —=DY_ (Z b, - beuv ) kBTdt

v ecuv
Ve one
D XU: (;U be. e 355 ) o
+dn 32
m

This SDE is to be interpreted in Ito sense. One nice
property of these Egs. (32) is that the total number
of colloidal particles is conserved, this is, >, V.n,(t) =
N. This is a direct consequence of the definition of the
concentration field in terms of the Delaunay cell and the
fact that the finite element functions satisfy the partition
of unity property. Perhaps the simplest way to see that
Eqgs. (32) conserve the total number of particles is from
the friction matrix expression in Eq. (13) and the fact
that the density in Eq. (1) satisfies 30, Vun,.(2) = N,
independent of the configuration z.

Note that the noise term dn, in Egs. (26),(27) scales as
the inverse of the square of volume of the cells, while the
term (31) scales as the inverse of the volume. This means
that by increasing the size of the cells and keeping the
average concentration fixed, the effect of the noise terms
diminish. Thermal fluctuations are indeed dependent on



the resolution used. This is, of course, consistent with the
fact that the probability distribution P(n) becomes more
and more peaked as the cell size increases. In the limit
of large cells, we may neglect thermal fluctuations in Eq.
(32) and we obtain a deterministic evolution equation for
the concentration given by

h# = l)}i:(:}::t%“'beygine

v ecuvr H

o
) T (33)

As shown in Appendix X this equation can be under-
stood as a discrete version of the diffusion equation.

VI. NUMERICAL RESULTS

In this section, we present the results of numerical sim-
ulations of the fluctuating discrete diffusion equation (32)
for the model systems in Eqgs. (12) with the friction ma-
trix (17) with (20) and (21). A predictor-corrector Euler
method [30] is used for the integration of the SDE. We
will compare three different models: the real dynamic us-
ing a Brownian dynamic (referred as BD), the Gaussian
model in which g, = ufja“ss (GA) and the local equilib-
rium model 1, = ,uif (LE).

We consider the simplest case where the system is 1D,
and the nodes are located in a regular lattice separated
by a distance a, with periodic boundary conditions (i.e.
node M + 1 coincides with node 1 and node 0 coincides
with node M). We need first to particularize Eq. (32) to
this situation. The result, presented in Appendix XI is

D 1n,+n, 1

A = —1ms g (e fum)dt
- kBDT % . +2n”+1 (ke — 1)t
+g (. + nu—l)l/Q dvy,
7% (e + 1us1) " dVuga (34)

Here dV), is an independent increment of the Wiener pro-
cess associated to the left element of node p.

The above equations do exactly satisfy the conserva-
tion of the number of particles N = }_ n, but do not
necessarily ensure that the concentration of the nodes is
always positive. Indeed, due to fluctuations Eqs. (34)
may lead, from time to time, to negative values of n,.
However, an empty cell cannot go emptier. The failure
of the discrete diffusion equation to describe this physics
must be attributed to the approximation of both the
entropy function as a Gaussian and the friction matrix
as dependent on the arithmetic mean. Note that if a
cell is empty, then the noise terms corresponding to the
sub-elements of that cell should vanish, preventing any
stochasticity to empty already empty cells. Nevertheless
we expect that this occurs very infrequently when the

number of particles per node should is large. Note that
the local equilibrium assumption on which the friction
matrix expression relies, requires certain “smoothness”
of the profiles. Such a smoothness can be achieved only
if we have many particles per node.

The probability that a single node has a particular
value of the concentration at equilibrium is plotted in
Fig. (4). Three models, Brownian Dynamic (BD), sim-
ulation Gaussian (GA) and Local Equilibrium (LE) are
shown. The relative error between BD and GA is less
than 1%. Notice that the overlapping between GA and
LE is a direct consequence of the construction of LE. In-
deed, we postulated the explicit expression for LE from
the probability of the Gaussian model.

0.006

BD ——
GA ------
LE -
0.004 |
S
o
0.002 |
0 I
9500 9750 10000 10250 10500

n

FIG. 4: Probability of finding a particular value of the con-
centration, n, in a single node using three models. From top
to bottom, BD shows a Brownian Dynamic simulation; GA
uses the Gaussian approximation and LE the local equilib-
rium assumption. All three simulations were performed with
n™ = 10000 particles per node.

While the probability of a single node is essentially
the correct one for the two models (GA and LE coincid-
ing with BD), the situation is very different for the joint
probability of neighbour nodes. In Fig. (5) we compare
the joint probability P(n,,n,+1) for BD and GA. The re-
sults show that very good agreement is obtained between
the BD simulation and the Gaussian approximation for
the entropy function. In particular, it is apparent that
the joint probability has a structure along the diagonal,
which is a reflection of the non-vanishing correlation be-
tween neighbouring cells.

On the other hand, the LE equilibrium approximation
produces a perfectly isotropic distribution, as shown in
Fig. (6). The isotropy is a reflection of the product struc-
ture of the joint probability in terms of the probability of
a single node. Of course, the LE approximation neglects
correlations between the concentration of neighbouring
cells, leading to large errors when compared with the
true BD simulations.

Next we have considered the dynamic behaviour of the
different models by computing the autocorrelation func-
tion (n,mn,(t))°? of the concentration of each node. This
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FIG. 5: Probability of finding a node with concentration nq
and a neighbor node with concentration n2. On top, the prob-
ability of a Brownian Dynamic simulation, shown as a bidi-
mensional map. On the bottom, the relative error between
BD and GA. In the region where the probability P(ni,ns2) is
greater than 0.01 %) the relative error is lower than 1 %.

correlation function has been computed analytically in
Ref. I, thanks to the simplicity of the Brownian dy-
namics of independent particles. In Fig. (7) we plot the
analytical result together with the simulation results of
the Gaussian (GA) and Local Equilibrium (LE) models.
While the GA model reproduces correctly the theoretical
result, the LE model fails to capture the proper autocor-
relation function.

The results presented in this section have been con-
ducted with the state-dependent friction matrix given in
Eq. (17) with (19) for the 1D case (this is, Eqgs. (34)

We have also conducted similar simulations with the
state independent friction matrix in Eq. (21). For the
near-equilibrium situations analysed in the present pa-
per, we do not find any significant difference between the
two models.

VII. CONCLUSION

In the present article we have studied the numeri-
cal behaviour of a discrete model for diffusion based on
the Delaunay construction that has been proposed in
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900 950 1000 1050 1100
Ny
1100 0.05
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FIG. 6: Probability of finding a node with concentration nq
and a neighbor node with concentration na. On top, the
joint probability of neighbour cells in a Local Equilibrium
simulation, shown as a bidimensional map. On the bottom,
the relative error between BD and LE. The LE model does
not allow us to reproduce correctly the joint probability of
consecutive nodes because it assumes that neighbor nodes are
statistically independent.

Ref. [19]. The simplicity of the model describing non-
interacting Brownian particles allows one to focus on
the specific aspects of the Delaunay construction with-
out having to bother about other issues that will neces-
sarily arise when considering more complex systems like
interacting colloidal particles and simple fluids. Discrete
models based on the Delaunay construction for hydro-
dynamics are the natural outcome of a coarse-graining
process that allows to describe in a thermodynamically
consistent way the introduction of thermal fluctuations in
finite-element-like discretizations of Navier-Stokes equa-
tions [20]. This discrete hydrodynamic Delaunay model
shows a great promise for the consistent coupling of atom-
ically described fluids and hydrodynamic descriptions,
where the coupling between regions of different detail
is done with due account of thermal fluctuations. It is
therefore, of utmost importance to understand the be-
haviour of the models based on the Delaunay construc-
tion in simple cases before entering the more challenging
and interesting situations. The discrete diffusion equa-
tion for non-interacting Brownian particles that we have
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FIG. 7: Autocorrelation function for the different models. BD
is the the autocorrelation obtained analytically for the Brow-
nian Dynamics. Slashed curve GA is the simulation result for
the Gaussian model. Dotted line LE is the simulation result
for the Local Equilibrium model.

considered here is one of these simplest cases.

Two building blocks, the entropy function and the fric-
tion matrix, appear in the discrete diffusion equation.
Both are functions of the full state of the system, which
is the set of concentrations in the M nodes of the sys-
tem. Although these building blocks are defined in terms
of conditional averages, the calculation of this multidi-
mensional functions is not an easy task in general. In
particular, a sampling of the conditional averages is sub-
ject to the curse of dimensionality. For example, in a
system with 100 nodes, a naive histogram for getting
the equilibrium distribution function (from which the en-
tropy function can be inferred) in the space 100 dimen-
sional space is absolutely unpractical. It is absolutely
necessary to make modeling assumptions on the form
of the entropy function. In the present paper we have
considered two models, a Gaussian model, which works
very well when the typical number of particles for node
is large, and a Local Equilibrium model that captures
correctly the statistical distribution of particles of a sin-
gle node, but neglects correlations between neighbouring
nodes. The numerical results show that the LE model
is not appropriate to model not only the joint statis-
tics of equilibrium fluctuations, but also the dynamics
of a single node is poorly recovered. In other words, for
the Delaunay construction, the overlapping of neighbour
cells needs to be properly accounted for in the entropy
function, which then becomes a non-additive function (it
cannot be expressed as the sum of single entropies asso-
ciated to each node). On the other hand, a quadratic
expression for the entropy reproduces very well both the
static properties and also the dynamic properties of the
underlying Brownian dynamics model. Concerning the
second building block, which is the friction matrix, we
have proposed a state-dependent friction matrix based
on a simple arithmetic mean ansatz. We have validated
this ansatz from an explicit calculation of the conditional

averages involved in the definition of the friction matrix.
Nevertheless, it turns out that taking into account the
state dependence of the friction matrix does not have a
significant impact in the simulation results as compared
with an even simpler ansatz for the friction matrix based
on a state-independent assumption.

Both, the Gaussian approximation for the entropy and
the state-independent assumption for the friction ma-
trix are expected to fail when the number of particles
per node is very small. For the entropy, deviations from
Gaussian behaviour are expected already at the level of
the single node equilibrium distribution function. On
the other hand, the friction matrix must reflect the fact
that the transport of particles out of an empty cell is for-
bidden, thus preventing any node from taking negative
values of the concentration field. For the practical situ-
ations we have in mind (coupling of regions described at
different detail but in near-equilibrium situations) such
non-trivial behaviour seems to be not necessary, but in
highly non-equilibrium situations like shock and rarefac-
tion situations, a proper modelling of the entropy func-
tion and the friction matrix is necessary.
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VIII. APPENDIX: THE PROBABILITY P(n)

In this appendix we compute the probability distri-
bution P(n) that at equilibrium the discrete concentra-
tion “field” takes the values n. We consider a 1D situ-
ation where N Brownian particles move in a segment of
length L. The configuration of the particles is denoted
by z = {¢i},i = 1,---, N, where ¢; is the position of
particle .. We seed the segment with M nodes located
at r, = pa,p = 1,---, M, where a = ﬁ is the lattice
spacing, and assume periodic boundary conditions (i.e.
we have g = rps). The concentration variable nu(z) in
the node p given in general by Eq. (1) is in the present

one dimensional case

N

nu(z) = ézq)u(%') (35)

i=1

where the tent function is given in Eq. (57). Note that
the volume of the Delaunay cell is a in the present one-
dimensional case.



The probability P(n) introduced in Eq. (6) now takes ~ where L™ is the uniform distribution.
the form

M
_ / @ [60u2) —na) 7 (36)

A. Exact first and second moments of P(n)

Before computing approximately the probability from Eq. (36) it is instructive to compute exactly the first and
second moments of the distribution (36). The first moments are

(np) = /dm---anP(nl,---,nM)nu
1
= /dnl---annu/dzL—Né(nl(z)—nl)---é(nM(z)—nM)

= / dzLLNnM(z)

_ /dzLLNé > 2(a)
= N [z =n (37)

The second moments are

(nun,) =

Il
= ? —
hN»—t —_ .
2
Mz
t’@*
Mz
ée*

N
1 Z 1 Z
dZLN a2(1)“ q’L Qz /dZLN 2 q’L)(I) (q])

= ¥ [dog e+ (1- 5 )0 (59)

For sufficiently large N we may neglect the term N~! and we see that there are correlations because for v = u and
v = £ 1 the first term does not vanish. In fact we have

2n* *2
(nuny) = 3, T
(nuny) = 6a +n*? neighbors
a
nyn,) = n* not neighbors 39
m g
In terms of central moments, we have
2 *
(Ondny) = o

3a
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(0n,on,) = — neighbors

(dnuon,) = 0 not neighbors (40)

These are exact results. We see, then, that neighbor cells are correlated, but non-neighbor cells are not. Note that
the correlated term has the same size as the variance.

B. Gaussian approximation

Once we know the exact first and second moments of P(n) it is straightforward to calculate the probability under
a Gaussian approximation that has precisely these moments. In general we have, for a multivariate system

Py = o {50 -n)atn-w)) (41)

where Z is a normalization constant, n* is the mean concentration and A =% is related to the second moments through

2
Ay = (nuny) = () (42)
From Eqgs. (38) and (39) it follows, then
n, = n
n*
Ay = =400 + Sys) (43)

where d,,, is the Kronecker delta. Finally, the explicit form of the probability becomes

P(n) = %exp{%%énTAlén} (44)

*

where we have introduced the vector én with components én, =n, —n*.
The entropy that arises in this Gaussian approximation has the following quadratic form

auss kg 6a *\ A— "
SG (n) = _TBE (n, —n™)A l(nl, —n") (45)
N2

Therefore, in order to have an explicit form, we need to compute the inverse of the matrix A. Fortunately, the inverse
of the Toeplitz periodic matrix (43) is known analytically, see Eq. (4.6) of Ref. [31], which needs to be corrected as
follows

A71 — 1 hn—l/-‘,—lh;,a - hu—lhn—u + hl/—;,a for M S v (46)
o 4hn + 2hn71 + 2 hn—p-‘,—lhl/ - hu—lhn—p + hu—l/ for v S H
where
EPYEDY
oAM=
A2 = —24+V3 (47)

In order to obtain the probability of the concentration in a single node we may integrate the Gaussian joint
probability in Eq. (44) over all except one variable. The result will be a Gaussian and, therefore, we may use the
information in Eq. (40) to infer directly the form of this Gaussian, which is

P(n) = %exp{?’("Tf*)Q} (48)
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Once we have this result, it is straightforward to use it under the local equilibrium assumption in Eq. (9) and, hence,
we know the explicit expression for the chemical potential in Eq. (12).
By integrating the Gaussian joint probability in Eq. (44) over all except two consecutive nodes, we obtain the joint

probability of consecutive nodes, which is

_ 1 3(n, —n*)? 3 [y —n*) — 3(Mu — n")]
P(m,,T,) = —exp { r " exp{ — (49)
A 4n An* (1 _ (i)2)
[
IX. APPENDIX: THE LOCAL EQUILIBRIUM
ASSUMPTION FOR THE FRICTION MATRIX 1
PU=) = Beagy [To0u(z) = n) (55)

We want to show that the approximation in Eq. (19)
is a good one. The calculation of the integral over the
conditional ensemble is difficult to perform analytically.
For this reason, in this appendix we compute numeri-
cally the conditional average in Eq. (18). The method
we use is based on the formulation of a fictitious diffu-
sive dynamics that samples an approximate version of
the conditional ensemble. However, the approximation
can be improved arbitrarily with a corresponding increase
in computational cost. This fictitious dynamics is con-
structed as follows. Consider a system of N Brownian
particles that evolve according to the following stochas-
tic differential equation

0
or;

dr; = ~D- 2V (z)dt + (2D)"?dW,  (50)

Here, V(z) is a dimensionless potential that depends on
the microstate z = {r;} of the system and dW; are inde-
pendent increments of the Wiener process. The Fokker-
Planck equation corresponding to (50) is

7] 7] o 0
OiP(z) = Dari (ariV(z)) P(z)+ D@ri 8riP(Z)
(51)
The equilibrium solution of the FPE (51) is
1
PH(z) = —exp{-V(2)} (52)

Now take as the potential the following function

) = Q%%Z(nm —ny)? (53)

in such a way that the stationary solution of the FPE
(51) is

P(z) = lexp{ o 22”“ —ny) } (54)

In the limit ny — 0 this goes to the distribution

o

where P°I(n) is the normalization factor. The SDE (50)
becomes with the potential (53)

dri = QE:TW

n
0 u

— 1)V, (r;)dt + (2D)/2dW,
(56)

Eqgs. (56) sample, in the steady state and for sufficiently
small ng, the distribution (55). It is clear that in order
to achieve small values of ny one needs to reduce corre-
spondingly the time step in the numerical solution of Eq.
(56).

We now consider a one-dimensional situation. In a
segment of size L we position M nodes at r, = ap where
w=0,---,M—1and a = L/M is the lattice spacing.
The tent function of node p is

Ppu(r) = 0(r —ru)0(rusr —7) (1 _ = T”)

a

0 — 1 )0, — 1) (1 + = T“) (57)

a

Every node has two sub-elements as shown in Fig. 1
The term V9, (r) now becomes (neglecting the discon-
tinuities)

Viulr) = —5(r ~ r)B(russ —7)
+ %9(7’ —ry—1)0(r, — 1) (58)

In 1D and for a regular lattice, the vectors b, in Eq.
(15) are simply the numbers 1. The SDE (56) becomes

D
dr; = W Z(n#(z) —ny)0(r; —1,)0(rupr —ri)dt



In order to see how this dynamics works, assume that the
i particle is in the element (r3,74). Then,

D D
dr; = W(”s(z) —ng)dt — W(M(Z) —ny)dt

Assume further that ny(z) = ng4 and ngz(z) > ns. This
means that there is an excess of particles near node 3.
In that case, Egs. (60) tend to move the particle to the
right, this is, reducing the density of node 3, as it should.

We present in Sec. IV the results of the conditional av-
erage of the sub-element concentration n.(n) introduced
in Eq. (18) for a one dimensional situation.

X. APPENDIX: CONTINUUM THEORY

In this appendix, we show that Eq. (33), which has
been obtained under a coarse-graining procedure, can be
understood as a particular discrete representation of the
diffusion equation

on(r,t) = =V.J (61)
where the mass flux vector J is given by
() = ~T(E)Va(r) (62)

where the mobility I'(r) is a function of the concentration
field T'(r) = v(n(r)) in general. Also, the chemical po-
tential field depends on space because of its dependence
on the concentration field, i.e. u(r) = p®(n(r)), where
19 is the equilibrium chemical potential. To fix ideas,
for a dilute solution we have an ideal gas form for the
chemical potential

wu(r) = kpTln nn(:)
I(r) = ka—(;n(r) (63)

and Eq. (61) becomes the usual diffusion equation

on(r,t) = DoV?n(r,t) (64)

The discretization of Eq. (61) starts by defining the
node averaged discrete concentration field

, = /dréu(r)n(r,t) (65)

Multiply Eq. (61) with 6,,(r) and integrate over all space
to obtain an equation for 7,

oy, = f/drV%(r)T(r)Vu(r) (66)
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where an integration by parts has been performed. Next,
introduce the function

filr) = Y &, (r)u(m,) (67)

which is a piece-wise linear approximations for u(r). We
expect that if the scale of variation of the concentration
field n(r) is large compared with the typical separation
between nodes, and for reasonable functional dependen-
cies for p®(n), that the piece-wise linear function 7i(r)
will approximate well the chemical potential field u(r).
By inserting Eq. (67) into (66) we obtain

om, = —ZVV/drV(SM(r)-I‘(r)Véu(r),ueq(ﬁl,)

1
_Zv_ﬂzzbeu'beu

€y €y

X /dr@e“ (r)T'(x)0e, (r)u(m,) (68)

Again, we approximate I'(r) = v(n(r)) with the piece-
wise linear function

L(r) =~ Y o (r)y(m,) (69)

By inserting (69) into the integral in Eq. (68) we obtain

[t rwe.. ) = Yo

X/dr@eu (r)fe, (r)P,(r)
(70)

The integral vanishes unless ;1 and v are neighboring
nodes. In 2D, for example, we have two sub-elements
which are common to the nodes u, v that give a non-zero
contribution. For each of these sub-elements, ¢ may be
any of the three nodes of the sub-element. For other val-
ues of o the integral in Eq. (70) vanishes. For o equal
to any of the nodes of the element, the integral takes the
same value, equal to V. /d, where V, is the volume of the
sub-element and d is the space dimension.

Therefore, by defining I, as the arithmetic mean of the
nodal values of y(n,), we have that Eq. (68) becomes

Ve eq /=
8tﬁ# = *Z Z beu'beuv_reu q(nl/) (71)

v ecuv H

Here, e is any of the common elements of the neighbor
nodes pu, v, b, is the vector of the element e, directed
towards the node p, b, is the vector of the element e,
directed towards the node v. Eq. (71) coincides with
(33) when the mobility is given by Eq. (63), and the
chemical potential is that of a local model (as in the last
model in Eq. (12)).

In summary, we see that the microscopically derived
Eq. (33) can be understood as a discrete version of the
continuum equations (61) and (62).



XI. APPENDIX: EXPLICIT FORM OF THE
SDE IN 1D

Let us write Eq. (32) in the form
dn,(t) = A,dt+ Budt +dn, (72)

Here, A, is defined as

A, = —D b. be
Hp—1
- be 'be _1Ne
< j{: n p—1Tt ) kpT
ecpp—1
+ (Z b., - beune> T
e€pp
( 3" b, b +lne> Lot (73)
n " kT
ecpup+1

where we have used that the volume of the sub-element
is Ve = a. As it is clear after Eq. (58) the vectors b,
in 1D are simply the numbers :I:1 There is only one
sub-element that is shared by the nodes wand u—1, or
by the nodes p and p + 1. However, the node pu shares
two sub-elements [, r (for left and right) with the node u
itself. This leads to

1 1
Au = —;m,uuq + E(nl + nr),uu - ;nrﬂ;ﬁ-l

1 1

= gl = 1) + ey = per) - (74)
where
— Ny +Ny—1

2

n, = % (75)

The term B, in Eq. (72) is given from Eq. (32) by
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oy
=
I
VY
=n
tﬁ)
o
)
<
©
—|~
N~
IS
¥|-
—

v ecuv H
1 Ve
== > b b,
2 (eEuu—l V.V
1 Ve
! 5( E: b%J%”V1@>
ecpup—1

= g (76)

Finally, let us consider the thermal fluctuations in Eq.
(32). From Eqgs. (26) and (27) we have

— Z be,\/2Dne, Ve, dVe,

eu

V2D
5 a (nll/QdVl

a

dii,,

—ni/av,) (77)

We can now collect the results (74), (76), and (77) to
write down the final SDE satisfied by the discrete con-
centration field defined in the 1D lattice
D 1n,+n,1
d — e o H
S T 2 *
D 1 n,+num
k311a2 2
v Da

4+ —
a2

p— Hp—1)dt

(1 = 1)l

((”u + ”ufl)lmdvl —(ny + ”u+1)1/2dw)
(78)

In 1D, for periodic boundary conditions, there are as
many sub-elements as there are nodes. Therefore, we
will rename dV; and dV;. as dV,, and dV,,41, respectively.
Eqgs. (34), with the different models for the chemical po-
tential in Eqgs. (12) are the equations that need to be
simulated.
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