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ABSTRACT

This work describes a novel approach to workforesribution in dynamic
multi-agent systems based on backboard architectdiieese environments entail
quick adaptations to a changing environment thdy dest greedy heuristics can
handle.These greedy heuristics consist of a continuoydam®ning, considering the
current state of the system. As these decisionsgeredily taken, the workforce
distribution may be poor for middle and/or longtgplanning due to incessant wrong
movements. The use of parallel memetic algorithmigch are more complex than
classical, ad-hoc heuristics, can guide us towarole accurate solutions. In order to
apply parallel memetic algorithms to such a dynastiwironment, we propose a
reformulation of the traditional problem, which doimes predictions of future
situations with a precise search mechanism, byrginiza or diminishing the time-
frame considered. The size of the time-frame depambn the dynamism of the
system (smaller when there is high dynamism andetawhen there is low
dynamism). This work demonstrates how nearly odtistdutions eachv seconds
(size of the time-frame) outperforms continuous destkibutions when the right size
of the time-frame is determined, and predictionsl @ptimisations are properly
carried out. Specifically, we propose a neural wekwfor predicting future system
variables and a parallel memetic algorithm to penféhe assignment of incoming
tasks to the right agents, which outperforms otkenventional approaches.
Additionally, we propose a modification of the t&sit back-propagation algorithm
and evolutionary operators based on meta-heuristiesconclude, we test out our
method on a real-world production environment frdelefénica which is a large

multinational telephone operator.
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CHAPTER 1. INTRODUCTION

1.1 OVERVIEW

Over the last years, a gradually-growing interestparallel and distributed
computing has arisen in computer science. This&wonicas guided research activities
to areas such as parallel and distributed progragymdistributed information
systems, and parallel and distributed hardwareteathres. Truthfully, there exists a
vast bibliography (e.g. see [1-3]) about this issaiéhough there are still paths to

explore.

Furthermore, we perceive a tendency to tackle asngly complex problems
and application domains which frequently involves throcessing of continuous,
dynamic data flows. These arduous environmentuswelly hard to be efficiently
maintained by conventional and sequential techigidevertheless, parallel and
distributed methods not only mitigate this drawbhaok also present several valuable
characteristics such as robustness, traceabiliyhble@m simplification, adaptivity,

scalability and speed-up.

Conversely, dynamics, synchronisation and behavégoear as intricacies of
parallel and distributed information systems beeatis®e representation of linear

problems into sub-problems is not always feasiblgt@ightforward.

Anyhow, parallel and distributed systems shouldetoow self-improve to attain
high performance. In fact, nowadays, a wide rarfggtuaies on adaptive techniques

in parallel and distributed information systems barfound [4, 5].

A classical, well-suited problem for studying dyriareystems is the workload
distribution in multi-agent systems. Agents can kvimr a common goal, coordinate
the plans or draw up a plan for others’ tasks. @ltyh there are lots of multi-agents
systems, we will focus on those encapsulated inkblaard architectures [6, 7]. In

other words, we will work on systems with a commepository of knowledge.

The basic variant of a workforce distribution pebl requires the assignment of
task to agents who have the required skills to leatitem over time, satisfying a

given set of additional constraints and respedfirtgdependencies among individual

13
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tasks and differences in the execution skills ef digents. This problem has multiple

variants but, depending on the dynamism of the esystwe can principally

distinguish two main scenarios:

1) On the one hand, we can find short-term planningrenments in which

2)

a continuous planning is needed due to the higlamhjgm of the system.
These solutions attempt to distribute the workl@adong agents by
applying “basic” ad-hoc heuristics, looking at tleirrent situation
(without predictions or predictions for a short ¢ifframe). This feature
can be effortlessly seen in workload allocationhimita dynamic multi-
skill call centre[8].

On the other hand, we can find long-term planniygiesms in which the
list of tasks is predefined and known by all agdikts in the classic
scheduling problenfi9]; or environments in which a single task tyge i
assigned to each agent for a long period of tinmajlagly to the job
assignment problerfl0]. In other cases, agents are assigned torpstte
of tasks, instead of specific tasks (such apattern-based scheduling
[9]). Analogously, stable multi-skill call centré8] can be also included
in this group. These solutions consider stable \ieha over time,
anchored in historical data and apply more complgrrithms to match
agents and task types. However, when having a dgnsystem, these
approaches cannot be efficiently applied, sinceadaptive method is

required.

Our proposal is encapsulated in the first scenafymamic systems. We put

forward an alternative approach to traditional 8ohs which relies on an adaptive

middle-term time-frame, instead of a short-term @meen the dynamism is very low,

it is analogous to having a long time-frame). lihest words, we reformulate the

traditional problem by dynamically enlarging or dnmmshing the time-frame

considered to better adapt the algorithm to theecurstate of the system. Figure 1

explains where our approach is positioned. Besides, provide the required

mechanisms to implement this more efficient, adaptsolution. Although this

solution can be extended to countless domains ant-agent systems, we will go

over the call centre application (see Chapter H)rder to examine its idiosyncrasy

and complexity.

14
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Fixed Fixed

@ <:| Adaptive::> @

Figure 1: Adaptive time-frame.

Table 1 summarises some fundamental characterigticgshe previously

described scenarios in relation to the time-fraomesmered.

Table 1: Comparison of the time-frame considered for thekfavce distribution problem.

Time-frame Complexity  Response time  Adaptability rfoR@ance CPU Utilisation
Short-term planning low low medium medium low
Middle-term planning high medium high high high
Long-term planning  medium high low low high

To conclude this outline, we would like to strelsattthis study has been applied

to (and supported by) Telefonichttp://www.telefonica.com Telefdnica is one of

the world's largest telecommunications companiemasket capital. Its activities are
mainly centred on the fixed and mobile telephongibesses, while its broadband
business is the key growth driver, underpinninghbéitoperates i”25 countries and
its customer base exceez® million people worldwide. Telefénica's growth ségy

is focused on the markets in which it has a stfomoghold: Spain, Europe and Latin
America. The Group stands in third position in $leetor Telco worldwide in terms of
market capitalisation, the'las an European integrated operator and also itakih
the Eurostoxx60 ranking, composed of the major companies in Eu@ezember
31°'2009).

15
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1.2 MOTIVATION AND MAIN OBJECTIVES

The problem of workload distribution in multi-agesyistems is an appealing and
challenging subject of research not only from tbepof view of machine learning
but also from a business angle. The eminent cortplekthis problem makes it even
more interesting and a firm member of the clashlBfhard problems [13]. Besides,
timing constraints complicate, even more, finding a&ccurate, feasible solution.
Another reason to analyse this problem is that dfien omnipresent in our daily life
and is highly relevant to many industrial applioatidomains like trading and

workflow organisation.

From a parallel computing angle, this problem isoatempting since it
inherently allows for parallelism because the taskhandle can be distributed over

several nodes and also because the nodes canegdterent tasks in parallel.

From an artificial intelligence point of view, thisoblem is also very motivating
because it involves many fields which range fromedasting techniques derived
from machine learning theory to optimisation alguris that use diversity
maintenance techniques from evolutionary computafieC) and other local search

schemes like simulated annealing or tabu search.

The main purpose of this work is to provide a sotutwhich is fully described
in Chapter 4, for dynamic multi-agent systems basedlackboard architectures.
Thus, an efficient forecasting method must be plediin order to predict the real
situation in next time-frame (future system stat@p, therefore, an optimisation

algorithm must be performed to determine the raggsignmentask-agent

16
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1.3 CONTRIBUTIONS

The contributions of this work can be devised fraliverse perspectives
although the main contribution is the presentatadna novel approach to the
workforce distribution problem which coalesces éasting with optimisation by
considering an adaptive middle time-frame. We alpply this approach to a real-
world production environment (multi-skill call cee} from one of the largest telecom

operators around the world (Telefénica).

Typically, traditional process management systeigilly distribute tasks to
gueues from which agents take and process workilaiyg opting for the precise
tasks they actually desire to cope with. In contragr approach enhances workforce
distribution by additionally injecting real-time &wledge of the task, individual skill
sets, and availability and utilisation of the wankfe, allowing for dynamic and

active distribution of tasks over time.

Additionally, our method provides further clearness customer service level
agreements and endows with insights into optindsatioffering outstanding

customer service.

In addition, our approach enables us to work ateel level of granularity (fine-
grain) than short-term algorithms do (coarse-grdiegause our search algorithm has
more time to find a solution than conventional téghes, thanks to the predictions of
future states. We can then work at agent’s prédilel instead of predefined sets of
agents as other methods impose. Other conventi@acainiques consider steady

environments which are far from the soundnessdyfr@mic mechanism.

Furthermore, other technical contributions of tissertation can be summarised

as follows:

1) This work proposes a parallelisable approach basadland models to a
real-world NP-hard problem, using different fieldeom Artificial
Intelligence.

2) New genetic algorithm operators are proposed irerotd maintain a
balance between diversity and intensity when séagcln such an
environment. These operators are often inspireathier meta-heuristics
schemes.

3) We also propose a partial fithess function in ortterspeed-up the

evaluations of candidate solutions.

17
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4)

Three exhaustive comparisons among different daksiorecasting
techniques, various classical heuristics for dywamilti-agent systems
and other meta-heuristics applicable to dynamictiragent systems are

provided from multiple points of view.

Finally, the contributions to the scientific littwee have produced the following

peer-reviewed publications ((1) and (2) are lessatly related to this dissertation):
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1.4 MARKET RELEVANCE

The market relevance of the present work can bésedvrom three distinct
angles: customer satisfactionhappy customers remain loyal to their telecom
operator), optimisation of resourcegmonetary savings as a result of a better
workforce distribution) andemployee satisfactionbrand pride, self-esteemed

fortification and fair workload allocation).

Various studies [14, 15] prove that users’ key qerto migrate to another
telecom operator (also denotedcasirn) after having a negative experience with call
centre’s (CC) contact service is, for the majodfyindividuals, abouflO days from
the notification date. During these days, and eafesrwards, these people negatively
influence their social circles or communities, dagsa cascade effect which implies

huge losses of money to telecom operators every yea

If an organisation is planning to link up with amexisting outbound churn
prediction models, based on likelihood to churrentithere appears the need of
having a process for risk prioritisation (potentilurners are prioritised) built, if the
company has capacity constraints in its outbound(®Ken there are not enough
resources to directly contact potential churners,aatomatic risk prioritisation in
needed in the inbound CC).

However, we should highlight we cannot evade clefifect as far as it decidedly
depends upon multiple individual reasons. Theres C&h play an important role in
churn prevention as a consequence of customerfasditm enhancement which

irrefutably leads us to customer loyalty.

By upgrading customer service with our approachHefbaica has estimated
savings of up tc€2,000,000per year only in Spain, as it enhances brand tpyal
(customers are happier with their telecom operatod) other encouraging behaviours

such as word of mouth advocacy.

Nevertheless, customer satisfaction is not theusigdge from where we can
profit. Another important aspect refers to the wmghation of resources we are
actually doing because we increase the speakirg tdveach agent. If we consider
the mean upgrading percentage obtained by our apprin 2009 1%), we can
affirm that, only in Spain, it is possible to olstadavings up t€3,000,000per year

(Figure 2 shows the two main bases of successtileeom operator).
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XX

Figure 2: Customer satisfaction and resources optimisatonbe monetised.

Besides, we can enhance another important fadter,employee satisfaction.
Maintaining morale high among agents can be oBexttinary benefit to any telecom
operator, as happy agents will be more prone tly tepmore incoming calls and stay
loyal to the company. This occurs because agemsrarch fairly treated as a
consequence of a better allocation of workload. Mgieannot feel they are being
fairly treated whether other agents have to wosk ligme, earning the same money

and having similar (or even identical) skills.

As a final point, we can extend this work to marien dynamic multi-agent
systems in which the list of tasks is not predefisech as plane maintenance [16],
online trading [17], disaster response [18], cotigadn stations [19] or overloading

in networking nodes [20].
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1.5 DISSERTATION ORGANISATION
The rest of this document is organised as indicat¢igde present section.

Chapter 2 introduces the problem of workload distion in dynamic multi-
agent systems from a generic point of view in ®ect2.1 and from formal
perspective in Section 2.2. In Section 2.3, we asklthe difficulty of handling hard

and soft constraints.

Chapter 3 presents an overview of those aspeatssefirch that are relevant to
the problem faced. The required background forasitg the work presented in this
document and making a proper understanding ofgivisn in Section 3.1. Section 3.2
presents a survey of existing work from differerings of view, considering
commonalities with other problem domains. Sectidhkindly discusses the state-of-

the-art and introduces some bases to outperfoateckivork.

Chapter 4 proposes a new approach to the problairesskd in this work.
Section 4.1 sets out the bases of this novel appro8ection 4.2 describes the
methodology that we have followed. Section 4.3 $asuon the forecast component
which supports the first module of our approacictia 4.4 describes the second
component of our approach; in other words, theckearodule. In Section 4.4, we
also propose multiple mechanisms to maintainingia balance between diversity

and intensity in simple and parallel genetic algponis when optimising.

In Chapter 5, we adapt our approach to a real-woNtAS: the multi-skill call
centre. Section 5.1 describes the specific charatts of our problem domain.
Section 5.2 presents a brief survey of call ceatgerithms. Section 5.3 highlights
the magnitude, in terms of volume, of our applmatdomain. In Section 5.4, we
present some special adaptations for the forecastul®m. In contrast, Section 5.5

points out some particular adaptations for thectearodule.

Section 6.1 describes the dataset employed. Se@tbpoints out the hardware
descriptions of the SunFire sever in which the watabns have been performed.
Section 6.3 analyses the selected metrics fomgesthd comparing our approach.
Section 6.4 examines the forecast module for fifferént CGs as there are too many
to accomplish an exhaustive study for all of th&waction 6.5 evaluates the search
module by studying several time intervals from dayth different complexity; this
section also compares our search module with aibknowledged techniques. In

Section 6.6, we will analyse our complete approéfcinecast module + search
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module) for one-day campaign. We will also complaog our complete approach

outperforms other conventional call centre’s altanis.

Chapter 7 concludes our work with a summary of megmtributions in Section

7.1and points out prospects for future work in Setti@.

23



Workforce Distribution in Dynamic Multi-Agent Systems David Millan Ruiz

CHAPTER 2. PROBLEM OF WORKLOAD
DISTRIBUTION IN DYNAMIC MULTI -

AGENT SYSTEMS

The present chapter describes the problem of wadkitistribution in dynamic
multi-agent systems from different perspectivese Timin aim of this chapter is to
introduce this problem to the reader as the pillzrshe present work rely on the

concepts given throughout the following sections.

Section 2.1 presents the problem of workload distron in dynamic multi-
agent systems from a generic point of view. Secfidh formalises the problem
definition in order to provide the present worklwé higher level of scientific rigor.
In Section 2.3, we tackle the difficulty of handjimard and soft constraints as it is

the typical situation in real-world environments.

2.1 GENERIC DEFINITION OF THE PROBLEM

The termintelligent agent(IA) [21] describes an autonomous entity which is
able to observe and interact with its environmardgrder to accomplish a given set of
tasks [22]. IAs may also learn from their enviromtner use previous knowledge of
the domain to achieve their goals. Their complexian range from very simple
systems to very complex ones. Unlike objects, whighdefined in terms of methods

and attributes, an agent is defined in terms diétsaviour.

Different authors [21-23] have proposed diverseinitedns of agents which
commonly include concepts suchpessistencécode is not executed on demand and
decides for itself when it should perform a givei\aty), veracity (an agent cannot
communicate false informationkindness(agents do not have conflicting goals),
rationality (agents will act in order to achieve their goalsirning (agents improve
performance over time)autonomy (agents have capabilities of task selection,

prioritisation and goal-oriented behaviouspciability (agents are able to engage
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other components through some sort of communicat@hcoordination, so that they
may collaborate on a task) arghctivity (agents perceive the context in which they

operate and react to it appropriately).

When several agents interact, these may compilailé-agent system (MAS)
[24]. Characteristically, such agents have a daptiint of view of the problem and
thus need to cooperate with other agents. Furtherntieere may be no global control
and thus such systems are sometimes denoted am systems. In these cases, data

are decentralised and execution is asynchronous.

The real world is actually a multi-agent environmbacause we often need to
cooperate with others in order to achieve our owalgy In fact, many goals can be
only achieved with the cooperation of others. Saaliglity in agents is the ability to
interact with other agents (and possibly humansy some kind of agent-

communication language.

Commonly, the basic variant of the workload disttibn problem in a dynamic
multi-agent system (DMAS) requires the assignmémask to agents which have the
required skills to handle them over time, satigdy@ predefined set of additional
constraints and respecting the dependencies amdigdual tasks and differences in

the execution skills of the agents.

In a common DMAS, there aretasks or work items grouped kritypes of tasks
and m agents that may have up kckills ( < K) to perform these works. In this
manner, each agent can process different typeask$ tand, given a type of task, it
can be carried out by several agents that haveskiilatThe set of skills an agent has
is frequently denoted gmofile. These profiles can be truly heterogeneous ae trer
massive potential skills.

Although agents may have multiple skills, each agsm only process one
operation at the same time. Furthermore, givenparation, it requires an unknown
amount of time to be accomplished. Besides, eaehtagust orderly process each
operation during an uninterrupted period of timepther words, the task cannot be

divided or postponed once it has already started.

Constraints may be given by many factors that waetcover in this section as
this issue is problem dependent. However, we vefiatibe how we propose to treat

them in Section 2.3 and present a real exampldapter 5.
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The solution to the problem of workload distribution dynamic multi-agent
systems consists in dynamically assigning everl (ascording to its type) to the
right agent so that this solution satisfies allcheonstraints and respects, if possible,

all soft constraints.

Eventually, we need a metric of quality to meastite rightness of each
solution. Of course, the definition of the qualityction is problem dependent too. In
Chapter 5, we will show an example of quality fumetfor the dynamic multi-skill

call centre use case.
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2.2 FORMAL DEFINITION OF THE PROBLEM

Formalising the definition given in Section 2.1, wan find the following

parameters in a dynamic multi-agent system basdiamkboard architecture:

1)
2)

3)

4)

5)

6)

a finite set oh tasks or work itemsV ={ w,, w, ,...,w,} .
a finite set ok task typesT ={t,.,t,,...,t.} , wherek <n when every task

type has, at least, one task assigned.

a finite set omagentsA={ a, a,,...,a,} -
a finite set ok agent-skillsS={ S, S,,...,S} in which each agent-skill,
S , represents the capability to handle the corredipgrtype of task, ,

with the equivalent sub-index S, ~t;,S, ~1,,....5 ~1{,.

a finite set ofd agent-skill profilesP={R,P,,...,P,} in which each
agent-skill profileP; can be any subset 8={ S, S, ,..-,S} .

a finite set ofn operations (execution or processing of each t&gk,
O0={o0,0,,..,0,} in which each operation0, has associated a

processing time which depends on its type of tg&k:7,,...,T, } .

The goal is to obtain the right assignment (sohjtifor every ageng; to the

most suitable profild®; from the potential skill profiles of each agentfor eachv

seconds, whereis the size of the time-frame considered.

Figure 3 illustrates a feasible solution for a givme-frame, supposing that

agenta; has the skills to processandt; (s, ands;), agenta, has the skills to process

t; andty (s; ands)), agentas has the skill to proceds(s;) and ageng,, has the skills

to process; andty (s, andsy).

In addition, the assignmeléa_,p» must satisfy all hard constraints and handle
t

the soft ones. To determine whether (or not) arga@ution is appropriate, we need

to define a quality metric to evaluate the rightne$ each feasible solution. This

function is intuitively problem dependent as afoestioned.

Moreover, the solution must fulfil the following steriptions:

1)

on O defineR, a binary relation which represents the precedanceng

operations. If (o,, 0,) O R theno, has to be performed befang
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2) every agenta , has associated a finite non-null subsePptontaining

his or her skills to handle different types of wmsfndividual skill-
profile).

3) the same profilep can be assigned to several agents. In other words,
several agents may have some skills in commonv@n all of them).

4) every agentg, may have several profiles assigned but only arebe

performed at a given instaﬂt(a,pj> . Therefore, an agent cannot process
t

two (or more) operations at the same instant.
5) every solution must respect diverse (hard and softstraints given by

business rules defined.

Figure 3 illustrates the situation described abiovthis section. We present an
example in which each agent has certain poterkili$ ¢at least one) to attend some
tasks types. The fact that a given agent has nwilskills does not mean he must
attend all these types at the same time within\@rgiinterval (do not confuse

potential skills with currently assigned skills).

Figure 3: Multi-agent system configuration based on the piaéskills of all agents.
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2.3 CONSTRAINT OPTIMISATION PROBLEM

The problem described in Section 2.2 can be vieaged constraint optimisation
problem (COP) [25]. A COP is characterised by ac$et variables{X;, X,, ..., X,,}

and a set of constraint{Cy, C,, ..., C.} for a nonempty domai; of feasible values.

A system state is defined by an assignment of galoesome (or all) variables.
An assignment that does not violate any constraéntienoted asonsistenbr legal
assignmentA complete assignmeig one in which every variable is mentioned, and
a solution to a COP is a complete assignment #iggfies all the constraints. In our
case, the constraints are associated to the t#s&sagents, timing, actions or

desired/undesired situations.

Classic COPs treat constraints as hard, referonthé fact that each feasible
solution must satisfy all constraints. In other @sra solution is feasible only if it
satisfies every single constraint. In contrastifile COPs relax this assumption by
partially relaxing constraints and allowing thewimn not to comply with all them

(soft constraints).

We consider the weighted constraint optimisatioobfgm (WCOP) in the
present work, in which each violation of a soft saint is weighted according to a
predefined relevance (relevance is usually givethkybusiness units of a company).
Consequently, satisfying soft constraints with maedght is preferred whereas hard
constraints cannot be violated in any case. Théatm of soft constraints is
penalised according to the degree of non-accompésh of these constraints and

their relevance.

Weights can be assigned by defining level of camnsts. For each level, we can
define a range for the weights (constraint releeqrand the gap between two levels
follows a logarithmic function in order to softehet difference among levels.
Different levels cannot have the same relevanceog@lapping constraints levels)
and determining the difference among levels isUesdly a business driven action
according to the market relevance. The values fogiaen level should be

proportionally assigned.

Figure 4 illustrates the relationship among colistsaand constraint levels fdr
levels and7 constraints. In our exampleevel 4(the most relevant constraint level)
has two constraints whef@onstraint 1(C,) has a higher weight thaBonstraint 2
(Cy). Level 4s weights range fronbn(4)=1.386to Ln(4+1)=1.609 (1.386, 1.609]
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Therefore,C; may have a weight ot.550 € (1.386,1.609] while C, may have
weight 0f1.450 € (1.386,1.609] (these weights are fictitious, we just want to aekn
thatC, has a higher weight th&@yin Figure 4.

Level 3s weights range fronibn(3)=1.098to Ln(3+1)=1.386 (1.098, 1.386]
and Level 2s weights range fronb.n(2)=0.693to Ln(2+1)=1.098 (0.693, 1.098]
Level 3andLevel 2have a unique constraint which must belong tadtpective
constraint level's range. Of courdegvel 3has more relevance thamvel 2which

has more importance thaevel 1at the same time.

Level 1Is weights range fron0.1 (we will consider0.1 as a minimum)to
Ln(1+1)= 0.693 (0.1, 0.693] In Level 1 all constraints have the same relevance as

take the same “space” in the level (let's 6.

Note that if we need to set up higher differena@®rzg levels, we just need to
assign a higher range of weights for each leveltbist is problem dependent (we

have just shown an example).

Finally, we need to normalise all penalisationsdbyding by the total sum of

weights assigned to the soft constraints.

@ @ Leveld = logMN{4+1)=1.609

@ Level 32 logN{3+1)= 1386

@ Level 2 2 logM(2+1) = 1.098

@ @ Level 1> logN(1+1) = 0.693

Figure 4: Relationship among constraints.

Logarithmic function

(NCNC

The aim is to find a solution to the problem whaosst, evaluated as the sum of
the cost functions (penalisations of soft constsjns minimised.
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CHAPTER 3. LITERATURE REVIEW

This chapter provides the reader with an overvidvalb relevant aspects of
scientific research for the problem described iraj@ér 2. The core background for
situating the present work is given in Section H#&ction 3.2 presents a survey of
related work from diverse perspectives, consideramnmonalities with other
problem domains. In future chapters, we will exanirow to adapt some of these
techniques to our use case (call centre). Sect®kiBdly discusses the state-of-the-

art and introduces some bases to outperform egistork.

3.1 BACKGROUND

Throughout the present work, very heterogeneouddsfifrom artificial
intelligence (Al) have been applied. Prior to asalg existing work and proposing a
novel approach to the problem of workload distiitmutin DMAS, it is necessary to
endow the user with some required background ieroa better understand diverse

concepts and proposed solutions.

3.1.1 Local Search

In computer science, local search (LS) [26] is danteuristic (MH) for solving
computationally hard optimisation problems. LS d@npertained to problems that
can be formulated as finding a solution by maxingsor minimising a criterion

within a set of candidate solutions.

Frequently, the neighbourhood is composed by nt@e bne solution where the
choice of which one to move to is taken by onlysidering information concerning
the solutions within the neighbourhood of the cotrene. When we select a
neighbour solution taking the one which maximises triterion, then the MH is

namedhill climbing.

31



Workforce Distribution in Dynamic Multi-Agent Systems David Millan Ruiz

LS based algorithms “navigate” the search spacdapijug from a solution to
another one until a solution deemed optimal islred®r a given computing time has
been elapsed. Another common choice is to termiwaten the best solution found
by the algorithm has not been improved in a givemlper of steps. LS algorithms are
typically incomplete algorithms, as the search rstgp even if the best solution
found by the algorithm is not optimal. This can peap even if termination is due to
the impossibility of improving the solution, as tbptimal solution can lie far from

the neighbourhood of the solutions crossed by ldparighms.

LS algorithms have been extensively applied to mooe hard computational
problems, including problems from computer scieno&gthematics, operations

research, engineering and bioinformatics [27].

To conclude, we provide the pseudo-code adaptedhéo problem of the
workload distribution in dynamic multi-agent systenwhich illustrates the LS

algorithm in its basic form:

voi d Local _Search (Chronmobsone & candi date_sol uti on)

{
Chronpsone best _sol uti on = candi date_sol uti on;
Chr onpsome nei ghbour = candi dat e_sol uti on;

For (i=0; i<candidate_solution.size(); i++)

{
Agent a = nei ghbour. get Agent (i) ;
For (j=0; j<a.get_nunber_profiles(); j++)
{
nei ghbour. change_profile(i,j);//profile j for agent i
I f (neighbour.fitness() > best_solution.fitness())
best _sol uti on = nei ghbour;
}
nei ghbour = best _sol ution;
}

candi dat e_sol uti on = best_sol uti on;

Algorithm 1: Basic LS pseudo-code.
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3.1.2 Genetic Algorithms

A genetic algorithm (GA) [28, 29] is a class of ptige stochastic optimisation
techniques which attempts to find exact or apprexesolutions for optimisation and
search problems. GAs were proposed by John Hollaid®75 [28]. GAs are also a
particular class of evolutionary algorithms (EARthuse techniques derived from
evolutionary ideas of natural selection and gemesigch as inheritance, mutation,

selection, and crossover or recombination.

GAs are implemented in a computer simulation inchfa population of abstract
representations (called chromosomes or the genaijgbe genome) of candidate
solutions (called individuals or phenotypes) to @ptimisation problem evolves

toward more accurate solutions.

The evolution typically begins with an initial pdption of randomly generated
individuals and occurs over time by means of gdiers. In each generation, the
fitness of every individual in the population isayated, multiple individuals are
selected from the current population (based oreeitheir fithess or composition),
and modified (recombined and randomly mutatedptomose a new population. The
new population is then used in the next iteratibrthe algorithm. Commonly, the
algorithm ends up when a given number of genersiti@s been produced, or after a
period of time, or aftex generations without evolution, or a satisfactatyelss level
has been accomplished for the population. If tlgorithm has ended up due to a
maximum number of generations, a satisfactory gwmiumay or not have been
reached. Further description is given in Sectigh dince GAs are the bases of the

solution proposed in this work.

Procedure Basic_GCenetic_Al gorithm
{
Generate an initial population of individuals
Eval uate each individual fromthe popul ation
Wil e (stopping condition)
{
Pick the best individuals for reproduction;
Breed new individual s by means of the crossover;
Apply a small perturbation over these new individuals;
Eval uate their individual fitness;

Repl ace the worst individuals;

Algorithm 2: Basic GA pseudo-code.
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3.1.3 Memetic Algorithms

A memetic algorithm (MA) [30] represents one of tharent growing areas of
research in EC. MAs are a population-based teclenifqu heuristic search in
optimisation problems. These are much faster trethtional GAs for many problem
domains. Fundamentally, these combine GA’s opesatdth LS heuristics (an LS

algorithm typically refines the solution obtainegdthe GA’s operators).

Conversely, the continuous application of LS agfamement mechanism does
not guarantee a better performance. The frequemdyttse intensity characterise the
level of progression (exploration) in opposition tbe refinement achieved
(exploitation) in the MA searchlhus, a more intense exploitation implies having
more chances of convergence to the local optimaleBtly, it highly depends on the
stage where the algorithm is, so it is broadly edréhat exploration should be more
important at the beginning of the process and égpion should be performed at the
end [31-33]. However, we will see in this work thatccess can be achieved by
dynamically adapting exploration and exploitatidepending on the circumstances

found in our search.

For these reasons, some researchers have sudgedsfudted MAs as Hybrid
GAs while others consider them as class of MHsgkeatly, MAs are also referred
to in the literature as Baldwinian EAs, LamarckiBAs, cultural algorithms, or

genetic LS.

Procedure Basi c_Menetic_Al gorithm

{
CGenerate an initial population of individuals
Eval uate each individual fromthe popul ation
Wi | e (stopping condition)

{

Pick the best individuals for reproduction;
Breed new individual s by means of the crossover;
Apply a small perturbation over these new individuals;
Eval uate their individual fitness;
Repl ace the worst individuals;
Each g generations, refine the k best individuals;

}

Algorithm 3: Basic MA pseudo-code.
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3.2 CLAsSIC APPROACHES TODMAS

Chapter 1 presented the two types of algorithm®Df#AS we can find in the
state-of-the-art. There exists a kind of ad-howidtlyms conceived for short-term
planning environments in which a permanent planisngquired because of the high
variability of the system. Instead, there are oteehniques devised for more stable
(long-term planning) environments. Neverthelessenvifiacing a dynamic system,
these approaches cannot be efficiently appliedesam adaptive method is needed.

In this section, we describe different techniquédsctv could be applied to the
problem of workload distribution in dynamic mulgient systems (stable
environments are out of the scope of this dissertatNote that the purpose of this
section is to briefly describe these techniqudserathan to deeply detail them as the
reader can carefully peruse the references provitede following subsections, if

desired.

3.2.1 Random Workload Balancing

Random workload balancing (RWB) [3gurely assigns a random profile to
each agent (among the available ones for that pgenRWB, the neighbourhood
covers the whole search space. After multiple tikeng, the best solution found is
chosen. Supposing there arpossible solutions, the probability of finding thebal
optimum isl/sfor each execution. This technique can be appatgwhether there is
little communication overhead and numerous agamtseailable. As the number of
agents decreases, the workload of the busiest ageateases in relation to the
average agent workload, resulting in poor paradgiciency. Since each task is
assigned to an agent by selecting a random destin®&WB only needs to execute a

single pass through the tasks list.

3.2.2 Random Neighbour Search

Differently to LS, random neighbour search (RNS}][8onsists in jumping
from a candidate solution to a random neighboute(ribat basic LS sequentially
explores the neighbourhood). If the hop impliesimprovement of the candidate
solution, the best solution is updated and thersidened as new candidate solution.
This process is carried out until a given computinie has been elapsed or a fixed

number of random neighbours has been generated.
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3.2.3 Greedy Workload Balancing

Greedy workload balancing (GWB) [36] reallocatesratg without considering
the current assignmemask type-agenfnote that other techniques start out from a
neighbour solution but GWB does not). An agent hedpilt with the intention that
the agent with the least assighed workload is ertdp of that heap. In the beginning,
no tasks are assigned to any agents, hence eveny iagthe heap has no workload,
and the agent on the top of the heap is randondgarh A task heap is also built and
organised so that the most time-consuming taskithe top of the heap. For each
agent, the most time-consuming unassigned tadloisated to the less loaded agent
with the capability to handle that type of tasktekfvards, the agent's workload is
updated and both heaps are readjusted. This prisceagied out until every task has

been assigned to an agent with the required skills.

3.2.4 Skill-Based Routing

Skill-based routing (SBR) [37] is a task-assignmgolicy to dispense new
work items to the most appropriate agent (the gppteness is problem dependent),
rather than to purely select the next available étabitually, the routing strategy is
led by a simple heuristic (e.g. efficient driven B§Bas SBR claims for quick
movements rather than convoluted, time-consumimngditas. SBR usually relies on
the Erlang-C formula [38] which has been broadlyl@ol to the CC domain.
Nevertheless, some researches [39, 40] claim tieatdnventional Erlang-C formula

is no longer applicable to settling on staff scheglas they are frequently inexact.

3.2.5 Dynamic Programming

Dynamic programming (DP) [41] is a technique whiblasically breaks
problems down into smaller overlapping sub-problefige philosophy of DP relies
on solving problems where we need to find the Hesisions serially. DP takes less
time than other methods when it is applicable, bseathe results of certain

calculations are stored and can be re-used by sditggoperations.
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3.2.6 Branch and Bound

Branch and bound (BB) [42] is a broad-spectrum ratlgm devised for discrete
and combinatorial optimisation problems. It systeoadly itemises all candidate
solutions, from the uppermost one to the lowest, atiscarding unproductive
candidates. Every node (candidate solution) avel len the search tree corresponds

to a partial sequence pfoperations.

3.2.7 Variable Neighbourhood Search

Variable neighbourhood search (VNS) [43] is an Mhbse fundamental idea is
to cause a systematic, stochastic change of naighbod within an LS. VNS
escapes from local optima by changing of neighboodh To achieve it, VNS
increases the size of the neighbourhood until alloptimum, better than the current

one, is reached.

3.2.8 Variable Neighbourhood Descent
Variable neighbourhood descent (VND) [44] is an MiHere the search is not

restricted to only one neighbourhood as in the LU§ Imstead, it deterministically
changes at the same time as the algorithm advafmesefined sizes for the

neighbourhoods).

3.2.9 Simulated Annealing

Simulated annealing (SA) [45] is an MH of variaBarch environment, which
generalises Monte Carlo's method. SA proposes that current state of a
thermodynamic system is equivalent to the candidatation in optimisation, the
energy equation for a thermodynamic system is goal® to a target function and the
ground state corresponds to the global minimums Téchnique has the ability to
hinder getting trapped in local optima since thgodathm allows for changes that
decrease the values returned by the target funetithh a given probability. This
probability depends on the current temperatureevathich varies according to the
cooling scheme. The main complexity is to deternmhme right value for the initial

temperature and the cooling scheme.
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3.2.10 Tabu Search

The meaning of the worthbu (also known adabog refers to a prohibition
imposed by social customs as a protective meadifife |n particular, tabu search
(TaS) is based on the principle that search tecisicshould incorporate adaptive
memories and guiding exploration mechanisms. Tlagtace memory [47-49] allows
for the implementation of procedures that are clpabeconomically and effectively
navigating the search space. These memories imteodwmplexities that often
confound alternative approaches as they allow festriction of the search
environment and the introduction of intensificatiomlechanisms in zones of the
search space that have been already visited, ersification in possible zones of the

search space which are rarely visited [49].

3.2.11 Scatter Search

Scatter search (SS) [50] works over a set of swisti(reference points) by
merging them in order to produce new feasible omks.combination of solutions is
commonly accomplished in a linear way. These coatimns can be devised as a

feasible generalisation of the existing solutions.

3.2.12 lterated Local Search

The basic idea of iterated local search (ILS) [8Xp concentrate the search on a
smaller subspace defined by the solutions whichl@gally optimal to the current
one. ILS consists in the iterative application of BS method. To avoid getting

trapped in local optimums, a perturbation is agphefore executing each LS.

3.2.13 Multi-Start Search

There are two phases in multi-start search (MSS): [fitially, a feasible
solution is generated and, afterwards, is normatiproved by means of an LS
procedure. MSS is relatively simple because it igeegecutes several LS’s from
different initial solutions. The stopping conditidar each LS is then taken as a
restarting criterion. The most imperative disadagetof improving each solution by

means of an LS procedure is the possibility ofiggtensnared in a non-optimal local
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optimum. MSS heuristics are earmarked to obtairtdiensolutions as far as the LS
procedure cannot avoid escaping of non-promisingr@emments. A key issue for the
performance of MSS is whether (or not) the infolioratabout the topology of the

neighbourhood (corresponding to the distance ameighbour solutions) is used.

3.2.14 Greedy Randomised Adaptive Search

The greedy randomised adaptive search (GRASP)ig5@je among those MSS
methods whose first phase (constructive phasepralydgenerates a greedy solution.
The second phase (refinement) iteratively imprase=y solution by applying an LS
procedure. Greedy randomised solutions are gemebgténjecting new elements to
the problem's solution set from a list of elemerdaked by a greedy function
according to the quality of the solution (probleepdndent). This method provides
an appropriate and simple framework to developrialyns for hard optimisation
problems. The goal of this methodology is to combihe diversification strategy
given by the construction phase with the intenatfan given in the improvement

phase.

3.2.15 Ant Colony Optimisation

Ant colony optimisation (ACO) [54] is a stochastiethod which can be applied
to problems that can be simplified to finding tinght paths within a graph (usually,

the shortest ones).

Pheromone is a chemical substance secreted byng tivganism that transmits a
message inducing other members of the same sgedadieact in a certain way. In our
case, virtual ants deposit pheromones once they iailt their solutions. The release
of such a chemical signal, although systematichas constant. It is, instead,
dependent upon the heuristic desirability of trémsi This pheromone release is
carried out once the solution is complete and Ig apdated when the loop ends. In
order to refine the ants” generated solutions arpid@edure can be added to this
algorithm. An anta chooses to go forward to the following node witdedermined

probability that can be calculated as follows:
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T.s is the amount of pheromone on edgg «a is a parameter to control the
influence ofz, , 5, sStands for the desirability of edgs (classically,1/d s, whered is
the distance) andl refers to a parameter which controls the influeviog .

3.2.16 Particle Swarm Optimisation

Particle swarm optimization (PSO) [55] is a teclueiqvhich does not require
any knowledge of the gradient of the problem toimjse. PSO emulates the
behaviour of a group of birds which are flockingS@® keeps a population of
candidate solutions (particles) and then shiftsntreround in the search space in

accordance with a more or less straightforward tdam
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3.3 DISCUSSION

Section 3.2 has presented different techniqgueshmielld be somehow applied

to a DMAS based on blackboard architecture.

We can distinguish methods based on LS from thosted in global search
(GS). GS takes into account the whole search spheeeas LS approaches can be
applied to problems which can be devised as findingolution maximising (or
minimising) a criterion among a number of candidstdutions. An LS algorithm
starts out from a candidate solution and, thugatiteely moves to a neighbour
solution, generating the neighbourhood until a timudeemed optimal is reached or
a predefined amount of time has been elapsed. Hir pnoblem with LS methods is
that these usually get stuck in local optimums Whice often far from the global

optimum. This setback can be mainly mitigated we filistinct ways:

1) The first possible solution, exemplified by VND, tis modify the
environment (also known as neighbourhood). In VIi®, search is not only
restricted to one environment as LS imposes; idstehe size of the
environment deterministically changes as the algari progresses. The
change of environment is a technique that is degr@ndpon the stage at

which the algorithm is currently working.

2) The second possible solution is to permit detetimmamovements,
such as in SA or TaS. In the SA method, each mfinhe search space is
equivalent to a state of some physical systems,tla@dunctionE(s) to be
minimised is similar to the internal energy of #ystem in that state. The aim
is to bring the system, from a random initial stabea state with the smallest
amount of energy. TaS increases the performancanof.S method by
employing memory structures. Once a potential gpiutas been reached, it
is marked astabu so that, the algorithm does not visit that possibi

recurrently.

3) The third possible solution is to restart from dueotinitial solution as
MSS, GRASP, ILS or VNS do. In the case of the MiBBial solutions are
randomly generated and, afterwards, the algoritpplies an LS over them
as a fine-tuning mechanism. This is equivalent xecating several LS in
parallel. Therefore, the accuracy of the resuli$ ddpend upon the number
of executions that are launched. However, this nsirsefficient method

because a conscious stopping condition has todaded. Conversely, ILS
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applies a mutation operator before each executioatthin an intermediate
solution which is refined by an LS. VNS (very siamilto VND) is an ILS

method which changes of environment when the swiubbtained is worse
than the current one. Finally, GRASP relies on tise of a randomised

greedy in its basic version.

4) Another way to find a good solution involves usingthods based on
populations, such as GAs and MAs. If the diversitghe population is low,
then the GA converges to the closest neighboucohtrast, if the selective
pressure is high, which makes the diversity lowljviduals will be alike or
even identical. GAs are a powerful GS techniqué stmavly converges to the
global optimum for a set of relevant real-world lpens. MAs emerge as an
improvement of this mechanism in which an LS isligopover a subset of

individuals each n-generations.

5) Finally, there are other strategies to obtain aifda solution such as

constructive methods (e.g. ACO).

The MHs presented above provide diverse methodsdape from local optima.
The empirical impact of these MHs has been immebDgeerse tendencies on MH
schemes have been explored by many researchersnddierelevant issue, provided
by the incorporation of such techniques, is to kmatwether the benefit of the

performance enhancement compensates for the effibsstimplementation.

Frequently, trendy appealing heuristics are shilffigured out. Also, great effort
and inventiveness has been deployed in the adjustofigiumerous parameters, but
as yet the reasons that make them work still remaiknown. When facing a
dynamic real-world production environment, somehtgégues (we will present an

empirical study in Chapter 5) cannot perform weibegh.

Intuitively, although RWB and RNS require low cortipg times, will not be
appropriate for a real production environment ay tlo not guarantee an accurate
solution and are not robust enough. A randomly ged solution can be acceptable
as an initial solution, but not as a proper seanebhanism. With luck on our side, we
might find a good solution, but we would rapidlytice that these methods do not
always perform properly. In fact, the probabilitfy abtaining the global optimum is
1/nsl where nsl stands for the number of possible solutions in ¢bkarch space.
Imagine a die witins| faces (a very large number) with the added prolitesth we

can only throw that diat times in each time frame (whamsl >> nt).
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GWB and SBR “route” work items to available agefg applying basic
heuristics, considering the current state of th&tesy. Obviously, these techniques
can be perfectly employed in DMAS but these fasplanned decisions may guide
the algorithm to congestion states (evident needl lwétter planning which takes into

account future states).

In basic LS, a neighbour is generated every itnatlheoretically, due to its
local character, it is difficult to reach a highatdjty solution because, when a local
minimum is found, the algorithm will often stagnae deterioration movements are

not allowed.

In VND and VNS, the search is not simply restricted a single search
environment, but instead, the environment changestha algorithm advances
(deterministically in VND and stochastically in VINS herefore, the improvement of

basic LS is remarkable as we will verify in Chagier

TaS and SA introduce a very sophisticated mechanegmdeterioration
movements. However, these techniques only bettdorpe when the time frame is
not too reduced: SA takes time even when we applyc@y’'s scheme which is the
fastest one and TaS requires of many iterationsake advantage of using the

memory structures.

MSS increases the probability of finding an aceusdlution compared to basic
LS as many LS’s are run in parallel. In contra®R ASP improves this philosophy by
means of a probabilistic greedy procedure. Thigdyerocess reassures us that, on
one hand, that initial solution will be more ordggomising and, on the other hand,
that other local minima may be found, since theorllgm can start from different

initial solutions.

Constructive techniques (e.g. ACO), although theyaavery promising growing

area, are not fast enough to be applied to redldvRVAS as [56] demonstrates.

Finally, GAs offer a different mechanism to findipgecise solutions based on a
population schema. Generally, GAs converge verwlgldo the global optimum (or
optima) but, when these are combined with LS procesi (MAs), GAs are an
astonishingly powerful search technique. Our apgraalies on MAs as we will see

in Chapter 4.
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Note that we have presented all techniques frohearétical point of view, but
we will also compare most of these techniques ip@dr 6 (at least, one
representative from each policy) to determine thar@priateness of each strategy for
a real-world DMAS. To conclude, Table 2 shows tfiie@&cy of each strategy to find
a nearly optimal solution for a real-world DMAS nelation to the time-frame
considered.

Table 2: Comparison of strategies’ efficacy for a real-wWloBBMAS in relation to the time-
frame considered. MA is highlighted because itLis choice for DMAS.

Efficacy Efficacy Efficacy

Algorithm
short-term middle-term long-term
RWB low low Low
RNS low low Low
Basic LS low medium Low
GWB medium low Low
SBR medium low Low
DP low low high
BB low low high
VNS low medium medium
VND low medium medium
SA low medium high
TasS low medium high
sS low medium high
ILS low medium medium
MSS low medium medium
GRASP low medium medium
ACO low low medium
PSO low low medium
GA low medium medium
MA low high high
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CHAPTER 4. ANOVEL APPROACH TO
THE PROBLEM OF WORKLOAD

DISTRIBUTION IN DMAS

This chapter proposes a new approach to the protksaribed in Chapter 2.
Section 4.1 sets out the bases of this novel appro8ection 4.2 describes the
methodology that we have followed. Section 4.3 $asuon the forecast component
which supports the first module of our approacicti®a 4.4 addresses the second
component of our approach; in other words, thecbearodule. In Section 4.4, we
also propose multiple mechanisms to maintainingie lfalance between diversity

and intensity in simple and parallel genetic aldponis when optimising.

4.1 UNDERLYING |IDEA

We have illustrated in Section 1.1 how short-tetemping techniques distribute
arriving tasks to the existing available agentsidguthe required skills to process
them by employing greedy heuristics while long-tgslanning techniques contend
with a stable incoming task flow and a longer dilgbover time which is not the
archetypal situation in nowadays DMAS'’s. In thispshort-term planning strategies
distribute the workload without considering futusgstem states (just the current
system configuration), provoking inapt allocatiotask-agentfor near future. In
contrast, long-term planning strategies find optismutions for a given system state.
However, if the system is not very stable, we mibhte serious problems in the
future, because an optimal configuration for theremt system state may not be the
best option in the future as these algorithms take to reach a solution. In other
words, we might be using an optimal system conéigan for a completely different

system state.

This section puts forward the bases of our appra@addMAS. The underlying

hypothesis of this work, which will be demonstrated! confirmed in Chapter 6, is
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that DMAS's require precise (nearly optimal) allboas of task types to the right
available agents for eacldaptivd middle-term time-frame over time rather than
continuous naive/greedy assignments for each systEe or static long-term

configurations for remote future system states Fgere 1).

We can now remain generic and develop a more Btydpproach by
reformulating the standard variant of the probldmvorkload distribution in DMAS
as the concept of adaptive time-frame has beeadrimtroduced. We basically need
to enlarge (or reduce) the observed time-frametaend forecast the real system state
in a future point in order to apply more sophigtchsearch algorithms which can
outperform both short-term and long-term plannitrgtegies. There, a need of an
exact prediction of a middle-term system state coimat. Subsequently, a search
algorithm must find a feasible solution for the gioted system state by reaching a
fair balance between diversity (exploration) antemsity (exploitation) in order to

meet with success.

Before explaining each “box” of our approach, wdlwiresent the overall
process in order to clarify the steps we take. ifgtlyf need to analyse the dynamism
of the system within a given period of time witke thurpose of determining the right
time-frame size. This time-frame cannot be fixed #da size must change over time
if there are changes in the behaviour of the sygtamability in the arriving task
flow). Once we have determined the size of the firame, we need to forecast the
state of all variables at the end of the time-frgiheve are at time, we will forecast
all system variables at timev). Given our predictions, we need to optimise the
allocation of existing tasks to the available agemaving the required skills (see

Figure 5).

46



Workforce Distribution in Dynamic Multi-Agent Systems David Millan Ruiz
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Figure 5: Overall process> forecast module + search module.

The Algorithm X also describes the steps of ourreagh to better explain the

underlying idea.

Procedure “Approach to the problem of workloadribstion in DMAS”

{

Analyse the dynamism of the system;
Set up a size for the time-frame;
Forecast all variables for next state; //nufasks (by type), agents available, etc.
Optimise the assignment among predicted tdsksype) and predicted agents;
Go to next state;,

Algorithm X: Overall procedure.

The two most complicated factors to develop our reapgh are: the

determination of the size of the time-frame (we towously analyse the system
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dynamism to determine the right size for the tima¥fe) and the state-transition

function (when system dynamism changes).

To address the first difficulty (size of the tintadine), we can set up predefined
time-frame sizes (see Figure 6), depending on yhardism level of the system (e.g.
3 levels:low, mediumandhigh). Obviously, this choice must be done according to
previous, exhaustive statistical analysis. In oxpegiments, we have considergd
levels depending on system variabilityery low (v=3000 seconds)Jow (v=1500
seconds),medium (v=300 seconds)high (v=120 seconds) ansgery high (v=60
seconds). The point of selecting predefined tinaeafs sizes is given by the
requirement of robustness that real-world DMAS’&itwlly impose. If we enable
the system to automatically assign any size fortithe-frame, we may crash down
the system (we may hazesecond time-frames @0-hour time-frames which might

seize up the system).

Very high ——+ 60 seconds
High & 120 seconds

Medium % 300 seconds >Time-frame

size

Lo 1500 seconds

Very low 3000 seconds /

— g
"

Dynamism levels

Figure 6: Time-frame sizes depending on the dynamism level.

To deal with the second complexity (when to chaofielynamism level), we
must determine the right state-transition functidhis is a problem-dependent task
and we cannot claim any universal rule of thumbstdad, we propose some
guidelines to accomplish with this arduous taskrimythe statistical analysis, we
encourage the reader to analyse smaller interhals the time-frame (let's sa830
seconds). Then, we should break down this inteia&d subintervals (e.g5
subintervals ob seconds) and plot a time series. If a given ploiglly differs from

the previous one, we should not activate the statesition function as peaks may
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crash down the system. But, when the trend of tme tseries drawn by these
consecutive points shows important oscillations, sleuld switch to another
dynamism level (e.g. if the tendency shows an ingmrdynamism decrement, we
should then enlarge the time-frame by switchingatdess dynamic level). In
summary, we take into account the trend of thesseaxutive points as well as the
dispersion among them. Figure 7 show80f}second time-frame. For this time-
frame, we analyse a smaller (shifting) time-franie30 seconds witlb equidistant

consecutive points (eadhseconds). If we plot these points, we would havena

series (number of arriving tasks at each time poMte may discover numerous
possible situations but, in this figure, we havéyadlustrated6 different cases (bear
in mind that a rigorous statistical study must lkefqrmed to achieve it). Figure 7.A
shows a very changing time series (high disperswthout well-defined trend);

therefore, the dynamism level would teery high Figure 7.B exemplifies a quite
dynamic time series but with fewer changes thamr€ig.A, so the dynamism level
would behigh. Figure 7.C and Figure 7.D point apediumdynamism level because
there is a clear trend (increasing in Figure 7.d dacreasing 7.D). Figure 7.E
illustrates a time series without changes, theestthe dynamism level should be
very-low Finally, Figure 7.F presents a time-series wighv fchanges, thus, the

dynamism level would bew.
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300 seconds
S

— ——
30 seconds
[Sub-time-fram Time-frame
i
t Time f+v

Analyse the sub-time-frame by selecting 5
equidistant consecutive points

-~

C) Dynamism level: Medium

E) Dynamism level: Very-low
&) Dynamism level: Very-high

AN NS i,

B) Dynamism level: High F) Dynamism level: Low

D) Dynamism level: Medium

Figure 7: Analysing the time-series within a shifting sulmé-frame.

Naturally, the smaller window must be shifted adauy to the time (never
employ fixed windows). Finally, we do not imposedsientiallity” when changing of
dynamism level as Figure 8 exemplifies. Arrows sglige that we can reach every
state from any other state. Circles represent yinamism levels. Note that we have

not plotted self-pointing arrows as no transitisméeded.

Figure 8: Potential dynamism level transitions.

50



Workforce Distribution in Dynamic Multi-Agent Systems David Millan Ruiz

Now, we have the mechanism to determine the sizkeofime-frame as well as
method to track the dynamism level. From this infation, we need to forecast all
system variables for time-v. Obviously, even when the forecast is pretty aateyr
we are introducing some noise to the model as wesaarching a nearly optimal
solution for a predicted system state which maghsly differ from the real future
state. In order to mitigate the impact of that apis is crucial to design a powerful
forecast module which can provide us with the Ipestsible approximation of next
future system state. From these accurate predg;tiwa will apply a search algorithm
based on a parallel memetic algorithm to discere &llocationsask type-agerfrom

inappropriate ones.

Until now, we have presented copious numbers ofaks from an ordinary
DMAS in Section 2.2. Although we have to considirtlzese variables in order to
attain a feasible solution, uncertainty chiefly @snfrom the number of pending tasks
grouped by task types and the number of existiraglae agents having each skill.
As tasks continuously appear and require of a icept@cessing time to be executed,
and given that the size of the time-framie variable (a smaller number when there is
great dynamism or a larger number when there aveogeillations); we can assume
that the number of pending tasks and available taggntimet+v depends upon the
number of pending tasks and available agents & ttiaes some tasks may not be
accomplished during theseseconds. Actually, we will notice that a systemiestat
time t+v only depends on the system state at tiras it follows a Markov process
[57].

Now, let's formalise the definitions exposed aldhig section. Denote the initial
state at timé asé, where we know all system variablégy( T, Ay, Sy, Py). We just
mean that at the beginning (tind, we know the number of pending tasks, their
types, the number of available agents, the poteskilis and the prospective profiles
(we highly encourage the reader to briefly revieset®n 2.2 to refresh the meaning
of each variable). Also, denote the current statavet asé, (W, Ty, A, S¢, P;) and

designate next future state at time® asé;,, Wiiv) Tevvr At svr St Peav)-

Finally, denote the state-transition function &s;/vaynamism tevet = $t+v-
This just means that every stadg,,,, depends on the previous stgieand the
transition occurs each seconds (size of the time-frame which dependshen t

dynamism level). The variables of a given statedinextly visible to the observer.
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Note that short-term planning strategies considégrinediate systems states
(¢ < &intermediate < &t4v), Whereas long-term planning strategies take actmunt
posterior system state€; < &¢iy, < &posterior). Therefore, short-term planning
strategies rely on smaller transition-state séplsan our approach, while long-term
planning strategies hinge on longer transitioneststepsé than our approach.
Graphically, this characteristic can be seen inukEg9. Notice thaf; stands for
$intermediate ANAE, represents, g .rior- Also, note that we have not plottéd In a
real-world production environment, we can set upngral system configuration for
o that considers historical records. From this fasibfiguration for the initial state
&0, We should employ the mechanism we propose (predigvindow determination

based on system dynamism + current system stadecfiom + optimisation).
/—5_\

Short-term planning Middle-term planning Long-term planning
slratedgy slraleqgy slraiagy

Time

Figure 9: System states depending on the time-frame corsider

The key purpose of the rest of the present chagpterprovide a solution for the
problem of workload distribution in DMAS, given tmeformulation of the problem
that we have proposed in this section. Our approamhbines predictions (for
middle-term system states of DMAS’s by means ofupgraded resilient back-
propagation neural network) with a powerful searnbchanism (founded on a

parallel memetic algorithm).
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4.2 METHODOLOGY

This section describes the methodology employedioyapproach. The first
step consists in determining the size of the timeE based on system variability
(very low, low, medium, higand very high as explained in Section 4.1. Once the
right size of the time-frame has been detectedimust forecast all variables of next
system state at time-v, &,.,,. These predictions are made by means of a forecast

module which relies on an upgraded resilient bacpagation neural network.

Given the predictions from the forecast module,sb&ch module, implemented
as a parallel steady-state MA, optimises the asségih among task types and agents.
We propose an island topology and migration opesdiar individuals exchanging.
We will consider a master island and several siste&ds. Each island corresponds to
a single MA. Each MA maintains a set (populatiorf) atpstract representations
(chromosomes) of candidate solutions (phenotypes)hé problem described in
Chapter 2. The population is partially randomlyiadised (see Section 4.2.4 to obtain
further information). Then, its individuals are &ated by applying a fitness function
over them. From this population, some individuais selected and, then, recombined
(crossover). Subsequently, the offspring may suffamtations in some genes.
Afterwards, some of these individuals replace atliierm the population according to
the replacement scheme. Every generation inclulliggewvious actions. Finally, an
LS mechanism is applied over a percentage of tipalption eacly generations. All

these steps are carried out until a predefined hiasebeen elapsed.
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4.3 FORECAST MODULE

This section describes how to model a forecast heoakith an upgraded
resilient back-propagation neural network to predit unknown variables at time
t+v, wheret is the current instant andis the size of the time window. Section 4.3.1
surveys the state-of-the-art on DMAS forecastiregrti®n 4.3.2 provides the required
background to understand our learning algorithm rfeural networks. In Section
4.3.3, we formulate the mathematical bases to edearning algorithm for neural
networks. Section 4.3.4 explains how to fine-tuneural networks to DMAS

forecasting, given our innovative learning algamth

4.3.1 State-of-the-art on Forecasting

Most people perceive the world as a place whereethee a large number of
alternatives. In this context, forecasting referdte estimation of output values in
unknown situations to help decision making and mitagn But, what does forecasting
stand for in a DMAS domain? Forecasting referdqeodstimation of values at certain
specific future times. In this manner, there ar@yrthings that would be desirable to
predict in a common DMAS such as arriving tasksk thailures, available agents
having a certain skill, working levels (this is ttime the agent is truly processing
tasks), service rates (given by a quality metrigcwhdepends on the domain) and

average delay times.

Why is it interesting or necessary in a DMAS dorafrarticularly, a precise
prediction enables us to be prepared for the futareorrectly balance workload
among agents, presenting higher service levels amdntually, optimising our
resources. We can compile arriving tasks, taskifedl and queuing tasks in a unique
value, the number of tasks (grouped by task tyfmesandle.

Unfortunately, there is no way to state what futwil bring along with
complete surenesRisk (wrong predictions generally entail losses of nyoaeeven
major hazards) anduncertainty (ambiguity or indecision to accomplish our
predefined goals) are omnipresent in forecastinth¢odegree that it is customarily

considered good practice to specify the level afeutainty linked to forecasts.

A significant but ignored facet of forecasting e tclose liaison it holds with

planning. Forecasting can be expressed as preagligtimt future will resemble,
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whereas planning enlightens what future should lbkd& There is no universal,

suitable forecasting method to use, as it dependsipobjectives and preconditions.

There are a wide variety of forecast techniquesDRIAS'’s, although we will
focus on the most relevant ones along the presetiba. In this section, we want to
introduce and thus discuss these relevant foréeelshiques, presenting their positive

and negative characteristics.

This section isorganised as follows: Subsection 4.3.1.1 addretbseslassical
Poisson distribution. Subsection 4.3.1.2 brieflyp@ses regression techniques.
Subsection 4.3.1.3 presents some time series nmetBotsection 4.3.1.4 covers this

problem from neural networks’ point of view.

4.3.1.1Poisson Distribution

Traditionally, incoming call forecasting in CCs hdsen approximated
according to a Poisson distribution (PD). Neveghs] PD can be perfectly applied to
other DMAS’s which accomplish several assumptidrad tve are going to expose in
the present section. PD expresses the probability number of events occurring
within a time-interval, when these are independ#nhe previous event and occur
with a known rate. Under these conditions, it ilzrasonable approximation of the
exact binomial distribution of events. AdditionallyD provides a useful mechanism
to assessing the percentage of time when a givegeraf results are expected. In the
calculation of the distribution function, the vatudor the mean and standard

deviation are carried over from the binomial dsition.

Assuming pure-chance arrivals and pure-chance metrons leads to the

following probability distribution:

P(n) = [‘:]—,Je‘” @

wheren denotes the number of arriving tasks in an infes¥aurationd, x stands for
the mean of arriving tasks at timende refers to the base of the natural logarithm
(e = 2.7183). Thus, “conventional” approaches assume that timber of arriving
tasks at a given timd, follows a PD. For this reason, pure-chance tafi also

named as Poisson traffic.
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Table 3 shows the values returned by a PD whenngiybetweerD.1and1.5.

Table 3: Poisson distribution when varyiigoetweer0.1and1.5.

n\v. 0.1 0.5 1 15

0 0.905 0.607 0.368 0.223
1 0.090 0.303 0.368 0.335
2 0.005 0.076 0.184 0.251
3 0.000 0.013 0.061 0.126
4 0.000 0.002 0.015 0.047
5 0.000 0.000 0.003 0.014
6 0.000 0.000 0.001 0.004
7 0.000 0.000 0.000 0.001
8 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000

In the same way, Figure 10 plots the points of &&bto better understand PD’s

nature.
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Figure 10: Poisson distribution when varyirig
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PD has inspired other authors to extend its idiosasy to other distributions.
Reviewing the literature, we can bump into numeralgorithms founded on (or
merely supported somehow by) a PD. As an exampgeshould highlight Erlang-

based algorithms.

The Erlang distribution, first pioneered by A. Krldhg [38], is a continuous
probability distribution with extensive applicabjli This distribution, which has a
positive value for all real numbers greater tharozé given by two factors: the
shapek (a non-negative integer) and the ratéa non-negative real number). The
distribution is sometimes defined using the invarykg the scale:. This distribution
appeared as a mechanism to inspect the numberrigfngrtasks which might
simultaneously arrive to the agents of a DMAS. Twiwrk, which was originally
conceived for the CC domain, has been afterwardended to other queuing

environments by other authors [58, 59].
Figure 11 plots Erlang distribution far= 2, 3andi =3, 1

0.3 A

—Etlang(2,3)

0.25 1 Erlanoi3 11

0.2

013 A

0.1 A

0.05

Figure 11: Erlang distribution fok = 2, 3andA =3, L

In an Erlang distribution, events are modelled atardance with a Poisson
process and independently occur with some avektge The waiting times between

k occurrences of the event are Erlang distributed.

However, the prediction of arriving tasks in a DMA8es not often adjust to a
PD with deterministic rate. In all studies (e.g])6 the arrival process agrees with a
Poisson process only if the arrival rate of thesBam process is itself a stochastic

process.
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Characteristically, the variance of arriving taskthin a given interval is much
larger than the mean. However, PD’s hypothesigstashould be equal to the mean
for PDs. The mean arrival rate also strongly depanmdthe day-time and often on the
week-day, but Poisson processes comply with the angdass property of the
exponential distribution [60], which is unable tetekt this kind of features. Besides,
in some DMAS such as MSCCs, there is positive stsiot dependence between
arrival rates in successive periods within a day amival volumes during successive
days. Taking into account all these premises, werealise how pertinent is to find a
more effective method to forecast which does net jely on the hypothesis of a

simple PD.

Considering these premises, we can become consoidhe need of finding a

more effective method to forecast.

A regression model (RM) [61] is a statistical methia which an unknown
variable is predicted according to its relationhathe rest of well-known variables
(also named as predictors), using a formula caldgdession equatianThis equation
deals with some constant parameters which mustpbelised to reduce the mean
square error (MSE) between the predicted outputianeal value. In particular, we
study lineal regression (LR) which is one of thenowonest variants (actually, we
will additionally examine neural networks which chie faultlessly included in
multiple regression). LR fits all parameters by gy diverse policies. The
commonest policies are the following ones: leasiases approach, minimisation of
the “lack of fit" and minimisation of least squaress function as ridge regression
assumeslLeast squares and linear model are intimatelyedlatthough these are not

identical.

LR approximates the unknown variable with a stralgte by using well-known

variables as follows:

Yi:ﬂ0+2ﬁpxip+£i ©)

where parameter is the pattern-position in the datasetindicates then-th well-
known variable,fr represents the associated parameters tondthe well-known

variable f, is a constant parametéfrefers to a dependent variable ardenotes the
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associated errofls and S, are calculated in order to reduge, using predefined

patterns.

The main advantage of this method is the cleartessiderstand and track the
model. Nevertheless, it is hard to choose the bkesato generate the model,
considering seasonality and trend, which is crucidletter understand the behaviour
of a DMAS.

4.3.1.3 Time Series

A time series (TS) is a sequence of observed JVagalbaken in regular time-
slices. This sequence is used for understandingf@medasting the behaviour of a
given variable over time based on previous sta#@$. [A TS approximates future
values by applying a (more or less complex) regpas® then-previous variables to
estimate forthcoming values. TS can be divided tnto major groups: exponential
smoothing (ES) and autoregressive integrated mawegage (ARIMA). At the same
time, ES methods, which assign decreasing weightsith previous observation, are
divided into: simple time series (SES), dumped dréaime series (DTTS) and

stationary time series (STS).

SES, or Single Exponential Smoothing [63], is ahudtfor forecasting whether
the mean is stationary or slowly changes over tiffiee name is frankly ambiguous,
given that this is a moving average method in whigights decline as the interval
between the current time increases. The smoothee lags the current value as far
as this method depends on previous values. Whesntle®thing value is small, the
oscillations are seriously damped and the smoothkgk tends in the direction of the
mean. Nevertheless, when the smoothing value g lahe oscillations noticeably
fluctuate and, as a result, the smoothed valuestemthe current value. SES can be

obtained as follows:

S =ay,+@-®S,, 0<as<lt23 F,=ay,+@-2)s, @

where S stands for the smoothed observatibnefers to an index which denotes a
time-period,a is a constant which must be estimated with the gaef minimising
the MSE andy is the observation.

Instead, DTTSor Holt's linear model (also known adouble exponential

smoothing [64] extends exponential smoothing by incorpomgta term for linear
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trends. This technique is also called “double exmbial smoothing”Suppose that at
timet, y; is observed, the levél is estimated and the slopgis known in the series.
Afterwards, ak-step ahead forecast s« = L; +by. DTTS allows us to adjust the

slope with each new observati@iT TS can be formalised as:

S;=ay ., +t(@-a)S_,+b,), O0sac=sl

5
bt = y(St - St—l) + (l_a)bt—l’ O = y = l’ I:t+m = St + mbt ()

STS, or Holt-Winters’ Trend and Seasonality Modi][ is a suitable technique
to deploy when data show trend and seasonalitys #ghnique introduces a third

equation to cope with seasonality. STS can be flai®d as follows:

Yi

t-L

S =0’| +(1—0’)(S_1 +bt—l)! O<ac<y

b, =S ~S.)+A-pb.,, O<ys<1 ®)
It=ﬁ§+a—ﬁ>lt_u Fom =(S M) .o

wherey is the observation$ stands for the smoothed observatibnis the trend
factor, | indicates the seasonal inddx,denotes the forecast at periods ahead,
refers to an index which denotes a time period @nél and y are constants which

must be estimated with the purpose of minimisirggMSE.

The main advantage of Exponential Smoothing TShet it requires short
computing times [66]. Nevertheless, the model camoourately predict for a long
timeslice [65]. To mitigate this handicap, we gextera daily model to forecast the
following day. Another setback of this techniquétsslow performance when there is

a trend as the single coefficient alpha is not ghdo fit the prediction.

Differently, ARIMA [65] is determined by three panaters(p, d, q) wherep is
the autoregressive termd, is the number of previous values agds the average
moving parameter. ARIMA (p, d, q) can be calculd®da TS sequencé (t=1,2,...,

n), as follows:
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@(B)1-B)'Y, = 8(B)Z,;

where,p(B) = 1-a,B-a,B*-..-a B")

andd(B) = (1- 5,B - 8,B% - ...- B,BY) @)
and Z, isa white noise sequence and B is the backshift operator

ARIMA (p,q,d)(P,D,Q) represents a multiplication of two ARIMAS inject
seasonality to the model. This method requires nleat seasonal and non-seasonal
parameters will be estimated; analogously to simplRRIMA. The involved
parameters are the following ongsis the autoregressive order which indicates the
number of parameters af, d is the number of times that data series must be
distinguished to induce a stationary serigss the moving average order which
designates the number of parameter8,d is the seasonal autoregressive order that
specifies the amount of parametersgofD is the seasonal moving average order
which points out the quantity of parametergpandQ is the number of times that a

data series needs to be differenced to inducesmsabstationary series.

The principal advantage of ARIMA TS is that it uByasuites better than
Exponential Smoothing TS, although this model rexpilong computing times [68]
and poorly forecast for large time-horizons [69p Titigate this handicap, we

generate daily models to forecast the forthcomigabk explained in Chapter 6.

Considering these premises, we can realise howipnagnto forecast data with
no trend or seasonal patterns exponential smootsingstead, Holt's method should
be applied whether there is a linear trend. Fdtispidata, exponential smoothing is

remarkably well-adjustable, although its speedimegends upoa.

4.3.1.4 Artificial Neural Networks

An artificial neural network (ANN) is a mathematicaodel founded on the
operation of biological neural networks [70].this manner, an artificial neuron is a
computational model inspired in biological neur@msl also the simplest processing
element of an ANN. Natural neurons receive sigtfaisugh synapses placed on the
dendrites. When the arriving signals surpass aaicerthreshold, the neuron is
activated and emits another signal through the afdns signal can be sent to

another synapse and then activate other neurons.
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In order to emulate biological neurons, the aitifiones (see¢rigure 12) are
organised into two units: the first one isnonlinear weighted su of weight
coefficients and input signa F(x), whilst the second one follows a nonlin
function, widely known asneuron activation functignK. The function F(X)

accumulates weights; and maps results to an output as given b

F(x) = K X (Z w; X inputl-) (8

i=1
Input,
Input,

Input,

Input,

Figure 12: Basic artificial neuron

The weightsw;, arerandomly initialised and theanpdated during the trainir

process.

There are numerous functions to approxinK, but the most widespread or
include the Gaussian function, the hyperbolic fiorceind the sigmoid function. W
will employ the sigmoid function as this is the mappropriateone for our dynami
environment The sigmoid function and its derivative definedas indicated bela:

1
1+e™*

o(x) =

9)

do(x) 1
I — e x (1 —-a(x)

Figure 13plots the sigmoid function to facilitate readertedarstandin.
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Figure 13: Sigmoid function

As a remark, the sigmoid function can never rettdh or “1" due to its
asymptotic nature so that values 00ed should be treated dsand those unddy.1

should be considered @s

Neurons can be grouped into three types of layepsit, hiddenandoutput The
input layer is composed by neurons that representiata input variables and “feed”
next layers of neurons. Next layers, which are sones optional, are denominated
hidden layers and there may be several of them.|d3tdayer is called output layer,
in which each neuron represents an output vari&daeh layer is fully connected to

the succeeding layer as Figure 14 illustrates.

For linearly separable problems, a sole neuron azdagorise the output, but
when having more than one class or multimodal spatdeast one hidden layer is

needed.

Most statisticians are used to applying regressn@thods in which data are
bestfitted to a specified relationship which isall/ linear. However, these methods
have several handicaps. For instance, relationshipgst be chosen in advance and
these must be distinguished as linear or non—limés@n defining the equation. ANNs

enable us to mitigate all these problems.

In regression, the objective is to forecast theueabf a continuous variable
which is the incoming flow rate in our case. Thepot required is a single numeric
variable which has been normalised betw@emnd1. ANNs can actually perform a
number of regression tasks at once, although coryneach network performs only

one.
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Figure 14: Example of a simple ANN with 8 input neurons, 8den neurons and 5 output
neurons, forming 3 fully connected layers.

On the one hand, the main advantage of ANNSs ig thexibility to make
patterns, being suitable for large and complexs#dsaas well as long-time-horizon
forecasting [68, 71]. On the other hand, we cap éitsd some disadvantages: long
computing times, risk of overfitting, need of atf@a selection process and difficulty
to approach all parameters for each task type [68f overfitting, also called
overtraining, is the consequence of reducing ther én a specific dataset. When an
ANN is trained during a large number of epochsdpach is the presentation of the
entire training set to the neural network), thecfion determined by the weights of
the ANN may take the particular characteristicshaf examples. If this happens, the
results will be optimal for the training dataset bha guarantee is given for any other.
This risk is minor when the data set is big enofsgie Figure 15 [66]).
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Figure 15: Overtraining risk — Volume of data.

There exists a number of learning algorithms faining ANNs; most of them
can be viewed as a clear-cut application of opttioe theory and statistical

estimation. They include learning algorithms sushback-propagation by gradient
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descent [72], back-propagation with momentum [#8kilient propagation [74],
quick-propagation [75], Broyden—Fletcher—Goldfarbafsno [76], radial basis
function [77], Cascade Correlation [78], Hopfiek9], etc.

In this work, we propose an enhanced, self-adapgraalient-descent based
algorithm (an upgraded resilient back-propagatiwh)ch is explained in detail in
Section 4.3.4.
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4.3.2 Background

We have mentioned several learning algorithms ftN& but we will firstly
focus on the back-propagation algorithm (BPA) [i#2prder to situate our proposal
(if the reader desires further information aboubeot learning algorithms, we

recommend reviewing the references given in Seetidrl.4).

BPAs can be categorised as multilayer perceptré@k Which have non-linear
activation functions [80] such as the logistic ftioc [81], the softmax function [82],
the Gaussian function [83], among others [84, BBJN denotes that any error made
by the network when returning an output during th@ning process is sent
backwards with the purpose of correcting it asafathe network learns what is right
or what is not. Errors are propagated backwards foatput nodes to internal nodes.
Therefore, BPA is used to calculate the gradierdresf the network with respect to
its adjustable weights. This gradient is often use@ simple stochastic gradient-
descent algorithm to find weights that minimisettbaror. BPA simply takes the
derivative of the cost function with respect to thetwork parameters and then
changes those parameters in a gradient-relatedtidine Hence, the most important
problem with gradient-descent methods is the preraatonvergence to local optima
which might be far from the global optimum. Thisoblem can be solved by using
global optimisation techniques. However, these rtiegies normally require high

computing times.

Nonetheless, other improved gradient-based learmilggrithms with more
global information such as resilient back-propamgat{Rprop) [74] can be more

appropriate because the training set is large dntuge effectively applied.

In this context, Rprop is a robust ingrained madifion of classical gradient-
descent method. This scheme tends to fine-tunendinidual step-size to optimise
each parameter. The mechanism to perform thisraetigails doing adaptations of
these step-sizes by applying a more or less conieaxistic, instead of considering
proportional step-sizes to the partial derivatividste that classical gradient-descent

algorithms calculate the steepest descent diretiyomeans of an Euclidean metric.

Classic Rprop just takes into account the sigrhefgartial derivativg;\;—(_t,) (partial
ij
derivative of the error measure with respect thghtebetween two neuronsandj)
in order to resolve the direction of the weight atgd When there is a change of sign

of the partial derivative, we can state that a llonmimum has been surpassed as

there is a change of direction in the search spadace. Besides, we have to update
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the weights and automatically adapt the step-gimasidering the sign the partial
derivative. Although we will see how to achievesthieight updating with classic
Rprop and our modification in next section, we reowend reading the full
description of Rprop algorithm in [86]. This workoposes an upgraded, adaptive
modification of the standard resilient back-progama with weights backtracking

(uRprop) learning algorithm.
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4.3.3 An Innovative Adaptive Learning Rate
Algorithm for Resilient Back-Propagation
Neural Networks

This section proposes a modification in weightsustitpent for Rprop with
weights backtracking in order to make the learnpplgase more adaptive to
environmental circumstances. The main purpose igroperly determine the right
weights of our ANN. A great challenge is to findt tiow big step-sizes (learning rate

speed) should be. Note that selecting the righhieg rate is always a laborious task.

Rprop basically processes example by example ataingban output for each
one as most ANNSs do [73-80]. Each output is contbawehe well-known output and
this signal is then propagated, calculating théedihtials among errors according to
the weights (gradients). To update the weights betweach pair of neurohsndj

(w;) after each pattern (epoch, [87]), we inspecipiieious weights as follows [87]:

where AW"- (t) can be formalised like so [74] (classical Rprop):

Ay (D), if ("’AE“)) <0

aWL'j

. dAe(t
—Aij(t),lf (ﬁ) >0

(11

where A;j(t) is the step-size ande is the error measure (it can be defined as a
normalised mean absolute error for the generalisatiata set between two
consecutive epochs). The weights updatimg;(t) is carried out until the stopping
condition is met. We will employ a stopping critaribased on a fixed number of

epochs or a given amount of elapsed time.

Classical Rprop [74] (without weights backtrackifgst takes into account the
change of sign of the partial derivative (changedwéction in the search space
surface). This precisely means that a local mininla® been surpassed because the
step-size taken has been too long. An importantargment of classical Rprop was
to include weight updates, enabling backtrackingyeneents [88]. Weight updating
Aw;;(t) entails adjusting;;(t) by applying the following formula:
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_ ~ [0Ae(t) OAe(t—1) )
1.5-A;;(t —1),Amax), >0
® {(m‘“( A (] ( 1)) " gAav(Vli onate o) (12)
A () = ij(t — . e(t e(t—1 1
| L - <T’Amin>,lf< aw;; aw;; O)
A;j(t — 1), other case

(12) is not of our own (see [89]), we just propalBerent step-sizes at this

point. The key idea is to multiply by.5 or divide the step-size 8, depending on

the surface of the search space. VV%/}egﬁt—)  94e(tm1) 0, the signs of the derivates

WL'j aWi]'
do not change ¢” by “+” or “—* by “— is always positive). This means that we

have not reached the local minimum yet. Therefae increase the step-sizes until

6As(t) JAe(t— 1)
wij ow;j

6A£(t) dAe(t—-1)

we have surpassed a local mlnlmé
ow;j ow;j

) When
0, there is a change of signgﬁf}(.—t_). This implies that we have already jumped over
ij

the local minimum. When the local minimum is sugel we change the sign of the

gradient.

Authors [90, 91] typically limit the step-size with,,;,= 0 and A,,,,= 50.
Instead, we proposa,,;,= 0.001 andA,,,,= 30 as limits Q,,;,= 0.001 for the

number precision needed afigl,,,= 30 as this already implies a long hop).

Up till now, we have defined how to adjust the siege A;;(t) at timet,
depending on the sign of the partial derivativet, Bee still have to updatéw;;(t).
[92] proposes an important improvement to classgoR which lies in weight
updates with backtracking (reverting a wrong mowveinae step). Our modification is
based on weight backtracking movements but we densocal information of the

search space surface by means of the previousregasure/Ae(t — 1)). When there

6A£(t) 6A£(t 1)

ow < 0), we calculaté;;(t)

is a change of sign in the partial derlvat(

as defined in (12). Then, we check out whetherctireent error measu@\e(t) is a
15% (this percentage can be parameterised) bigger ttleaprevious error measure
dAe(t — 1). When this occurs, we undo the previous movemgn{y— 1)) as we
have not only surpassed the local minimum but agistten a much higher error
measure. However, when the deviation is lower tha% (we are further from the
local optimum but not extremely faraway), we go bbae halfway as far as fully

reverting a movement leads us to wasting too mgmgtions. But, if we stay halfway

between the previous point of the search spacettanaurrent one(Ll)) the
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probability of getting closer to the local minimunctreases and the total number of
iterations needed to reach the local optimum dseeaHence, we propose to apply
the following expressions for eaely (in order to distinguish what is novelty from

what is not, we highlight the code of our own):

Ai;(t) = min(1.57A;;(t — 1), Apax)
0Ae(t) 0As(t—1
i (G 25> ) " i (0 <
AWL'j(t)

ow;; ow;; 8O (6As(t))> o

wij(t+1)=wy;(t)+Aw;;(t)

if <6As(t) oAe(t—1) O){

ow;; ow;;j

Aij(t) = max < ”(tz 1):Amin>

if ((2ne() > Ae(t — 1)) && (Ae(t) < 1.15- dhe(t — 1))

wii(E+1) = wy;(t) — AWizj(t)
else if (AAe(t) > 1.15- dAe(t — 1)) (13

wii(t + 1) = wy;(t) — Awy;(t)

else Aw;j(t) = Aw;(t — 1)

dAe(t) B
aWij -

( )
<0

8O, if (6As(t))

U(t) if (aAs(t)) >0
wi;i(t+ 1) = w;(t) + Aw;(t)

Aw(t) =

~~

i <6A£(t) OAe(t—1) _ 0><

an'j aWU

Note that our learning algorithm may get trappetbaal minima but, compared
to Rprop, it is faster and usually obtains bettesuits for a reduced amount of

training time.

We have defined a generic modification of Rprophwiteights backtracking

algorithm for ANNs but we still have to formalisket rest of problem-dependent
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parameters of the ANN (topology activation functiamputs, outputs, hidden units,
etc.). Chapter 5 describes how to fine-tune our Adgicifies how to achieve this in a

real world environment which is the large call cerdf Telefonica.

4.4 SEARCH MODULE

This section describes the key features of thechkeaondule which is the second
block of the architecture proposed Figure 7 (second arrow). This block is
implemented as a parallel MA. This section contdiash own innovations and
classical, applicable evolutionary operators (wk mat inspect existing evolutionary
operators which are not suitable or prevalent torpyoblem specification). Note that
this section is conceived for describing all eviolsary operators and parameters
from a generic point of view rather than presentogcrete use case adaptations as
Chapter 5 will cautiously put forward how to adjadit parameters to the call centre

use case.

4.4.1 Methodology

Once the forecast module (an upgraded resilienk-peapagation neural
network as described in Section 4.3) has providedvith all the predictions, the
search module (a parallel steady-state MA, seeid®eet.4.2.5.5) optimises the
assignment among task types and agents. The patelely-state MA is devised as
an island topology (see Section 4.4.4) with migmatioperators for individuals
exchanging, where a master island manages thefresbordinate islands (note that
we do not use the terslaveas these islands operate with complete solutiodsdan
not merely process partial information). So, eatand corresponds to a full steady-
state MA.

Each MA keeps a population of abstract represemsti(chromosomes) of
candidate solutions (phenotypes) to the problemcrdesd in Chapter 2. The
population is partially randomly initialised (fourther information, see Section
4.4.2.3). Afterwards, its individuals are evaluabgdapplying a fitness function over
them (we will see an example in Chapter 5). Fromm plopulation, some individuals
are selected and, after that, recombined (crossd8absequently, the offspring may

suffer perturbations (mutations) in some genes.nTlme of these individuals
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replace others from the population according to téplacement policy. Every
generation includes all previous actions. Aftetttha LS mechanism is applied over
a percentage of the population eacbenerations. Finally, eaahi generations, the
master island halts the slave islands in ordeidk gp certain individuals from them
and spread other ones. All these steps are camiedntil a predefined time has been

elapsed.

4.4.2 Genetic Algorithm

The first stage when designing an MA is to definprablem representation
(chromosome or genotype) to encode candidate spfutphenotype) to the problem
in a form that every computer can interpret. Thdwy§ical” expression of the
genotype is called the phenotype. This means tmaa@ping between genotype and
phenotype must be delineated. There are multipladdo encode candidate solutions
which range from binary strings, arrays of integersarrays of decimal numbers to

strings of letters.

Specifically, our solution consists in an integepresentation. We just need an

array of integers whose indexes represent the ablailagents,A [0 A, at a given

instant,t, and the array contents refer to the profitg, assigned to each ageamt
(<P4y,...,R,..., B>). Then, tasks are “routed” to the agents, acogrdo the profiles
assigned. Of course, we can also encode the solatcan array of integers whose
indexes symbolise the task types and its respecowéents represent the number of
agents assigned to each task type. This opticecisnnmended whether there are too
many agents and hardware capacity is very limitath(respect the total number of
available agents). In contrast, we are missingcthgability of working at agent’s
profile level. As we have not this capacity consirawe will employ the first

codification proposed.

Figure 16 shows a fictitious example of encoding ¢ger Chapter 2 to refresh
terminology, if needed) fot0 work items (Wo-Wy) grouped in3 different tasks types
(to-t) depending on the nature of the taskggents §,-a4) and4 skill profiles Po-
Ps), where Po={so, s}, Pi={s1}, P={s;} and Ps={s;, $}. Now, suppose that
a~{Po,Pi}, ai~{Po, P2}, ax~{P1,Ps}, as~{P,P3} and a;,~{P,,P.}. We have seen the

potential profiles for every agent but only onefippeacan be assigned to each agent at
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a given instant; therefore, a feasible solution would be Figure(dganda, have
been assigned to the profiRg, a; andas have been assigned to the profig while

a, has been assigned to the proRig.

Index (agents) > 012 3 4

Content (profilesy» |0[{2[1(2|0

Figure 16: Example of encoding.

The population of our MA is a compilation of chroseones encoded as
hinted in Section 4.4.2.1. The population is thenimum unit of evolution since
individuals are static elements by themselves. €hwution can be observed in the
changes produced in the genetic configuration dler time in each successive
generation. The changes between two generationsusually small but these
differences mount up with each generation, caugigpificant changes in the

“original” population.

The size of the population often depends upon #tere of the problem and
typically contains tens or hundreds of possibleitsahs. Although there is no rule of
thumb to determine the optimal population sizejsitrecommended to have a
population neither too small nor too big, sinceiidlals frequently evolve faster in

such an environment.

Now, the concept of diversity must be mentionede Tiversity represents
the variety of phenotypes and/or genotypes thabulation has. The diversity is
essential in a population because the more diveesepulation is, the more chances

to adapt itself to environmental changes it has.

EAs may have multiple populations that evolve adicwy to rules of the
genetic operators. In these cases, a migratioratipeand a replacement policy are

needed.
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4.4.2.3 Initialisation

Typically, the initial population is fed with randdy generated individuals
who should potentially cover different possible fogurations. In some cases, we can
use other algorithms to initialise the populatieng( a more or less complicated LS
mechanism) but, in most cases, this is not possibt® computing times increase too
much and real applications require short compuiimgs. In our case, we propose to
start from a random initial population, includinget best solution found in the
previous time-frame because the configuration @nésg profiles should not change

too much over two successive time-frames.

4.4.2.4 Fitness Function

The fitness function is an evaluating mechanismcivhis defined over the
chromosome to measure the quality of a given soiufihis function often guides
the search and decides which individuals must leeteel for the next generation (in
fact, surviving individuals also depends on thelaepment policy). The fithess
function is intrinsically linked to the problem. dguently, the hardest action when
defining an EA is to identify the right fithess fition since results strongly depend
on it. Occasionally, it is hard (sometimes impolsilio characterise the fithess
expression; in these cases, interactive genetiridigns are used. In other cases, long
evaluating times imply that an approximate funci®needed. The fithess function is
problem dependent and Chapter 5 will carefully dbsca fitness function for a
multi-skill call centre. Besides, we will explairol to incorporate constraints to a
dynamic environment as already stated in ChapteW®2. will also propose a
mechanism to calculate a partial fitness functimtgad of recalculating everything in
each evaluation (as this is problem dependent,amaat include this mechanism in

this section).

In this subsection, we explain potentially appraf@i evolutionary operators
which may be applied to the problem described iap@ér 2, given the encoding we
are proposing in Subsection 4.4.2.1. This secta@sahot attempt to cover all feasible

evolutionary operators, just the ones we considevant for DMAS. Some of these
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evolutionary operators are innovative but otheses ot (this is specified for each

one).

4.4.2.5.1 Selection Operator
Since the population needs to be bred each suveeggneration, several
individuals are chosen to be recombined. In théesikthe-art, one can find the

following ones:

Random Selectiorconsists in randomly selecting a configurablecprtage of

individuals for potentially recombining them.

Tournament selectiorf93]: implies executingt tournaments among some
individuals randomly chosen from the populationeTihdividual who has the best
fitness is selected for recombination. Whes larger, individuals with worse fithess

have fewer chances to be selectaddirectly determines the selective pressure).

Roulette-wheel selectiof28]: associates a probability of selection withcle
individual chromosome. The probability of selectanghromosome is proportional to

its fitness or rank (survival of the fittest).

Truncation selectiof94]: removes a predetermined percentage of thdidates

with worst fitness.

Ordered selectiof95]: randomly picks a chromosome from the dpercent of

the population.

Best merely selects the best chromosome in termstoéds. When there are
more than two chromosomes with the same best §tr@se of them is randomly

chosen.

4.4.2.5.2 Mating Operator
The purpose of this operator is to mate individu@ich individual should

reproduce with another one). We can hit upon tHeviing techniques:
Random matin¢P6]: randomlymates individuals for posterior crossover.

Fitness-based matind97]: selects pairs of individuals with the highest

difference in terms of fitness (best fitness indial will be mated with the worst

75



Workforce Distribution in Dynamic Multi-Agent Systems David Millan Ruiz

fithess one). The idea is to potentially providee tBA with a fast diversity

mechanism.

Similarity mating[98]: selects pairs of individuals having more éiinces in
terms of genes in their chromosomes. This mechapiawides real diversity to the

EA but it is time-consuming.

4.4.2.5.3 Crossover
This operator combines individuals to produce savemildren (offspring). The
key idea behind the recombination of individualsagpotentially obtain other better

fitted individuals.

One-point crossovg@9]: chooses a random point on both parents'mbsomes
(the same point for both parents). All the genesl whis point from one of the
parents (randomly chosen) are copied to one othiidren (randomly chosen). The
genes beyond this point from the first father atw@tiarily copied in the other child
and the ones from the second father are arbitraoipied in the other child as Figure

17 illustrates.

B i s i e i

oo I s e i |
wwir [T

Figure 17: One-point crossover.

Multi-point crossover [100]: selects N random pointson both parents'
chromosomes (the same points for both parentsh gi@ace of chromosome from the

parents is alternatively copied in each child agfé 18 shows.
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Father1 I | | I [ ’ |

o |
s E

Figure 18 Multi-point crossover.

Cut and splicg28]: consists in selecting different random points (one in each
parent). One piece of fath&is chromosome is then copied in a randomly chosen
child. The same action is accomplished for fathér-the opposite child. The rest of

genes are randomly copied (see Figure 19).

o

—t
|
B

Father2

- | 1 H

Figure 19 Cut and splice.

Probability crossoverconsiders that children will inherit the commonrgsiin
their parents (potentially, the best genes) andamnty receive the rest of genes from
them. This probability can be ti®e5 (uniform crossover [101]) or proportional to the
fitness.
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We also propose to assign this probability in a enoomplex way such as
simulated annealing does [45]. At the beginninghefprocess, when the temperature
is higher, we can explore more by applying a prdthgbof 0.5 and, when the
temperature starts cooling off, we can give morebability to the best fitted

individual as follows:
Pr, (best fitted) =0.5 (initial probability for best fitted parent).

Pri (best fitted) = 0.5 +u/T; (probability for the best fitted parent gtl4)
generation).

whereT,; is temperature at iteratian(the probability of giving a higher weight to the
best fitted individual increases when the tempeeatiecreases) andis a factor to

return values betwedhand0.5.

Simulated annealing has different schemes to deertee temperature but they
all decrease nonlinearly. Another option is to @age the probability according to the
number of generation generated as follows:

Pri (best fitted) = 0.5 +/G; (15)

whereG; stands for the generation number i arid a factor to return values between
0 and0.5.

All in all, the idea is to choose a probability fimcombination and we have several

mechanisms to achieve this task as Figure 20 cosfir

-l | 1

Child 1

l

Figure 20: Probability crossover.
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4.4.2.5.4 Mutation Operator

This operator causes tiny changes in the chromosdnmelividuals to explicitly
maintain diversitylt applies a perturbation over each gene of therabsome with a
given probability. This perturbation correspondshanges of profiles in some agents
(e.g. agent, who had assigned tipeofile P, has now associated theofile P; due to

a mutation).

4.4.2.5.5 Replacement Policy
Finally, we decide which individuals are incorpecior maybe reinserted) into

the population for the next generation.

Generational[102]: After recombination, the offspring genechtsy the selected
parents fully replaces them. The selection strergibw when this scheme is applied
(slow convergence). However, it potentially conesrdgo the global optimum when

enough generations are generated.

Steady-statg102]: After crossover, the offspring generated theg selected
parents may replace them if these are best filtbdre are numerous policies for

individuals’ replacement:

Elitism [103]: best fitted individuals fully replace theovst ones (quick

convergence).

- Random replacementandomly chooses the individuals from the parents
and children set. With a probability, worst fittealividuals may replace the

best ones.

- Boltzmann criterion45]: The best fitted individual is chosen and theo
one (which may not be the second best fitted inldil) is inserted with a

given probability as simulated annealing does.

- Similarity criterion we propose to select the best fitted individuadi dts

most different one in terms of genes.

- Taboo criterion we also propose another scheme which lies inngtar list
of non-promising individuals (based on their age ifsstance) in order to

avoid inserting duplicated or inappropriate indivéds. This option imposes
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additional memory requirements and more evaluatimstead, we save up
so much time in incorporating useless individualsrdy a given amount of

time or iterations.

4.4.2.5.6 Stopping Condition

Elapsed timeconsiders a fixed amount of time to run the atbar.
Number of generationgxecutes a predefined number of generations.

Number of generations without an improvement imefis executes the
algorithm until there is no improvement (or justiena given threshold of upgrading)
during the latesy generations. Another choice is to keep the bdatisn found and
restart the algorithm, employing another algoritbomfiguration (parameterisation)
in order to find a better optimum in other placahd search space when the stopping
criterion is one of the previous ones (if we dtidive time or remaining generations,

we better utilise this time or generations in skig other possibilities).

4.4.3 Memetic Algorithms

As we described in Section 3.1.3, MAs are a populabtased technique for
heuristic search in optimisation problems. MAs qu&cker than traditional GAs for
many problem domains because these apply an LSquoe. The present section

describes the MA we propose.

4.4.3.1 Local Search

LS is an MH for solving optimisation problems. A® lalgorithm starts out from
a candidate solution and, thus, iteratively mowea heighbour solution, generating
the neighbourhood. To carry out this action, a medgirhood relation must be
defined on the search space. In our case, we thlatdéwo candidate solutions are
neighbours if only one gene differs in both chroomss. Note that we propose a
“simple” LS due to the lack of time of a dynamicvennment but a more complex

LS mechanism may be used when computing times are fiexible.
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The following pseudo-code illustrates the LS altjon:

void Local_Search (Chromosome & candidate_solution)
Chromosome best_solution = candidate_solution;
Chromosome neighbour = candidate_solution;
For (i=0; i<candidate_solution.size(); i++)

Agent a = neighbour.getAgent(i);
For (j=0; j<a.get_number_profiles(); j++)
neighbour.change_profile(i,j); //profijeor agent
If (neighbour.fitness() > bestiusion.fitness()) best_solution = neighbour

neighbour = best_solution;

candidate_solution = neighbour;

Another relevant task is to decide the right fregye which should be
considered to apply the LS over the population laodd many individuals must be
affected. Chapter 5 will suggest an LS frequencyg anpercentage of affected

individuals for the multi-skill call centre use eas

4.4.4 On Parallelising Memetic Algorithms

There are many approaches to MAs parallelisatiare @ the constraints in the
number of pages for this document, we are not gmngp over all of them and will

just describe the configuration we propose for tyje of dynamic environments.

We propose atsland modelwhere there are a master island arslibordinate
islands. Every subordinate island is connected tighmaster one but not with the
others. The master island asynchronously stopges$ieof subordinate islands and
asks for a percentage of their best fitted indigidu Then, the master island takes
these best fitted individuals and decides whetlwgr not) to incorporate these
individuals into its population. Then, the mastetand sends back its bebt
individuals and the most different one to the betséd one in terms of genes
differences. Subordinate islands apply elitism ¢oept or not the incorporation of

these individuals (whether the individuals comimgni the master island are not
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better fitted than the existing ones). The prodesearried out until the stopping

condition is met.

Subordinate Subordinate
Island Island

Master
Island

Subordinate .
Island Subordinate

Island
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CHAPTER 5. APPLICATION : CALL

CENTRE

In Chapter 5, we adapt our approach to a real-woNtAS: the multi-skill call
centre. Section 5.1 describes the specific charatts of our problem domain.
Section 5.2 presents a brief survey of call ceatgerithms. Section 5.3 highlights
the magnitude, in terms of volume, of our applmatdomain. In Section 5.4, we
present some special adaptations for the forecastul®m. In contrast, Section 5.5

points out some particular adaptations for thectearodule.

5.1 DESCRIPTION

A call centre (CC) [11] is a centralised office dder receiving and transmitting
large volumes of telephone requests which may rdroge customer service to the
selling of products and services. Even though C&8& tbeen broadly studied, there
are still some lacks on optimisation which may iynplge losses of money every
year because of a wrong allocation of resourceshéo right tasks, and client
dissatisfaction due to never-ending delays as @odimut in Section 1.4 (Market

Relevance).

In a CC, the flow of calls is often divided intotbaund and inbound traffic.
Outgoing callsare handled by agents, primarily, with commerpiatensions. This
type of calls is planned as agents know in advambé&h customers must be
contacted every day. Converselycoming callsare those that go from the client to
the CC to contract a service, ask for informatianreport a problem. These
unplanned calls are initially modelled and thusssifeed into manifold call groups
(CGs) in relation to the nature of each call (canmik, V.1.P. clients, client loyalty,
etc.). As soon as these CGs have been modelldd calids assigned to a unique CG
(there is no overlap among CGs). Each incoming madds time to be answered,

requiring different processing times as indicatetbt:

1) The first one is the time needed to assign a typke call (modelling).
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2) The second one is the time that the call is quefvirating).
3) The last one is the time that the agent needs twdlbathe call

(processing).

A key component for any CC is the automatic catrithutor (ACD) which is a
system that models incoming calls and automaticditributes them throughout
different queues from which certain agents can woltk. The routing scheme is a
rule-based set of operations that guides the ACDhatadle a given incoming call
inside the system. Typically, once the call hasnbassigned to a queue, a second
algorithm is required to select the best availagent to reply to a given incoming
call.

Habitually, the distribution of the incoming flow based on the current state of
the queues. A CC is a changing environment whenmgergional algorithms have no
time to reach an optimal solution. It would be dasie to predict the future state in
order to give more time to the algorithms to coesithe "whole picture" of the
situation to efficiently reallocate every agenteThajority of traditional techniques is
supported by a strong assumption which relies enway that incoming traffic
arrives. Most techniques suppose that incoming dlevithin CCs follow a Poisson
distribution. In this context, the main concernw@ddde to forecast, for an upcoming
state, the inbound traffic, abandonment rate amdlable agents having the required
skills, in order to properly divvy up the workloathong agents as our resources can
be, at this point, optimised by a search algoritBesar in mind that a fair allocation
of workforce improves client satisfaction and, figttmore, reduces costs.

A specific type of CC is the multi-skill call cert{MSCC). In an MSCC, there
aren customer calls grouped ktypes of calls andh agents that may have uplto
skills (I < K). This implies that each agent can attend diffetgpes of calls and,
given a type of call, it can be answered by se\agahts that have that skill.

Obviously, the scenario can be simpler in some iap&Cs in which agents
have a single skill. These CCs can be modelled gidingle queues working in
parallel. In other cases, every agent has all plesskills; hence all customers are
gueued in a single queue that can be handled bygeyt. The system is noticeably
easier to analyse in these two extreme cases. &llithgents having all skills, the
system is also more efficient (shorter waiting mewer abandonment rates) when
the service time distribution for a given call tyg@es not depend on the agent’s skill
set. However, this assumption turns out to be wriongractice: agents are usually
faster when they handle a smaller set of call tyjeeen if their training gives them

more skills). Agents with more skills are also merpensive as their salaries depend
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on their skill sets. Thus, for large volumes ofl tgbes, it makes sense to dedicate a
number of single-skill agents (specialists) to Hamdost of the load. A small number
of agents, proportional to the calls of each typith two or more skills can cover
potential fluctuations in the arriving load. To aglk these fluctuations, the skills are
grouped in skill profiles (subsets of skills) satthve can assign an agent to specific
types of tasks during a given period of time, desphiis agent has skills to process
other types of work.

As it can be expected, the mean arrival rate ighmsame for each CG as well
as the calls of these CGs have different processings. Now, bear in mind that
inbound flow in CCs is usually not a stationary$3on process [104, 111] and, the
service times do not increase exponentially asaax@tl in Section 4.3.1.1. Since
calls randomly arrive according to a stochasticess, it would be desirable to have
a well-balanced allocation of the agents, who camatailable or not, in order to
handle the calls as soon as possible.

Figure 21 illustrates the relationship among clieadts, queues and agents. This
figure describes an example f@rclient calls grouped id CGs andb agents having

different real skills.

Pi={s1}
Po={s,, 52}
Pa={s2}
Pa={s1, 53}
Ps={s1, 53}
Ps={s3}
Pr={s4}.

a~{P1,P2}
ax~{P1,P;Pr}
a3~ P4, Ps}
as—{Ps}
as—{P2,P3,P7}

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Figure 21: Inbound scheme.

More formally speaking, the following parametera ba& found in an MSCC:

1) afinite set oh customer callC ={ ¢, c,,...,C.}-
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2) a finite set otk CGs (call groups/typesEG ={ cg, cg,,..., g}, where
k<n when every CG has, at least, one call queuing.

3) afinite set oimagentsA={ a, a,,...,a,} . Usually,m >>k.

4) afinite set ok agent-skillsS={ S, S,,...,S} in which each agent-skill,
S, represents the ability to handle the associat€d €y,, with the
corresponding sub-index in C&; ~C(,, S, ~ CG,,....5 ~C(,.

5) a finite set ofd agent-skill profilesP={R,P,,...,P,} in which each

agent-skill profileP; can be any subset 8={'S,, S, ,...,S.} .
6) a finite set oin operations (execution or processing of each custaal,

¢) 0={o0,0,,...,0.} in which each operationd,, has associated a

processing time which depends on its §G;, 7,,....7, } .

The solution to the problem of the workforce dtmition in MSCCs is defined
as the right assignment for every aganto the most suitable skill profil; from
his/her real skill profiles for each seconds, wherg is the size of the time-frame

considered.

In addition, the assignmen@g,p» must satisfy all hard constraints and handle
t

the soft ones given by the business units. To ohéter whether (or not) a given

solution is suitable, we need to define a qualigtnin to evaluate the rightness of
each feasible solution. There are very significaptrics to measure the quality of a
CC such as the abandonment and service rates. eses somehow hinge on the
(customer) service level [12] which is defined las percentage of customer calls that
have to queue shorter than a specified amountr&. tOur work has been conducted

by applying this metric.

Moreover, the solution must fulfil the following steriptions:
1) on O defineR, a binary relation which represents the precedanteng

operations. If (o, 0,) IR theno, has to be performed befaog
2) each agenta , has associated a finite non-null subset of Ptagoimg his

skills to handle different customer CGs (individugl skill-profile).

3) the same profileP can be assigned to several agents. In other words,

several agents may have some skills in commonv@n all of them).
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4) every agenta, may have several profiles assigned but only arele

performed at a given instant<tf,‘,pj> . In other words, an agent cannot
t

process two (or more) incoming calls at the sarag@mt.
5) every solution must respect diverse (hard and softstraints given by

business rules defined by business units or agesyslations.

Likewise, an initial step to produce a planningagredict future system loads,
comprising predicted arrivals, existing queuingsabandonments and mean service
times. Intuitively, the mean arrival rate for eaCs is not the same and their calls
may involve different processing times. Note thratoming flow in CCs is usually
not a stationary Poisson process and, the selivies tdo not increase exponentially.
Since calls randomly arrive according to a stodébaptocess, a well-balanced

distribution of agents is needed with the aim afdiag calls as soon as possible.

The complexity of this problem is huge because wenat only dealing with an
NP-hard problem like in the job assignment probldmt also considering high
dynamism, massive incoming customer calls and lamgmber of agents having
multiple skills. Besides, since customer calls ao¢ planned, this makes the call

assignment a truly laborious task.
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5.2 BRIEF STATE-OF-THE-ART ON CALL CENTRE
ALGORITHMS

Reviewing the state-of-the-art, one can realiset ttmany algorithms for
workload distribution in single-skill CCs are awdile (e.g. [105]) because, in the
past, agents were commonly allocated to singleoousst call groups. Nevertheless,
not much work has been conducted to workload digtion in MSCCs which is the
emblematic scenario in nowadays CCs. In the restiofsection, we discuss the main

contributions to workforce distribution in MSCCs.

Workload distribution in MSCCs has been broadlyethby an SBR algorithm
[106]. SBR is a call-assignment strategy used irs @Cassign incoming customer
calls to the most suitable agent, instead of singplgosing next existing agent. The
need for SBR has arisen, as CCs have become kmgateals with a wider variety of
call types. The major handicap of this approachhit online (ad-hoc) routing
heuristics cannot be very complex in view of thet that a very short response time
is required. These fast, unplanned decisions maylyinsuboptimal task types

assignments to existing agents.

Conversely, Thompson [107] proposes an integerrproging model which
differentiates minimum acceptable service levelstipee-frame from a constraint on
the mean service level over the planning horizothouigh this approach considers

prospective situations, it is less dynamic to clesripan SBR.

Other approaches consider dependent planning aiterfe.g. [108]). Most
methods perform well enough within separate intervaut their performance
decreases when moving to the next one, giving nitmible in prospective time-

frames.

Other authors take into consideration overflow irautin multi-skill blocking
systems with randomisation parameters by applyifgaach-and-bound algorithm
(e.g. [109]) or cutting planes (e.g. [110]). Theésehniques are only appropriate for
stable environments because they need long respiones and their performance

highly decreases in large instances.

Finally, we can find one of the most representadilgrithms of the state-of-the-
art (Koole et al., 2008 [11]). Koole presents arfstiec, which considers the costs of
agents and a service-level condition, to optimise distribution of agents among

different CGs. This algorithm is faster than mokthe aforementioned approaches
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but deals with specific types of MSCCs in whichtonger calls arrive according to a
Poisson process with deterministic rate. Howevete that inbound flow in MSCCs
is usually not a stationary Poisson process [1Q4] &nd, the service times do not
increase exponentially. Since calls arrive randoadgording to a stochastic process,
agents must be well-distributed to handle the adlsoon as possible. Besides, the
previous techniques often consider a high grartylamnd need to work at agent
groups’ level instead of an agent’s profile levEhis setback does not enable us to

offer more accurate configurations for DMAS.

To conclude, we have seen, in this section, howesamproaches employ
“basic” heuristics to dynamically distribute incargi customer calls to agents while
others cope with stable inbound flows and longabity over time. In this context, a
large-time-frame planning cannot be carried out abee of the continuous
changeability of all variables involved. Moreovébasic” heuristics based on the
current situation (online routing strategies) mayrkvunder certain cases, e.g. stable

workload, but daily use of these techniques wildgws to appalling solutions.
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5.3 MAGNITUDE OF OUR CALL CENTRE

This section presents some numbers to realiseeahtignitude of our CC:

1) Maximum number of CGs %£.035

2) Maximum number of simultaneous incoming call2.500

3) Maximum number of incoming calls per hou66.000

4) Maximum number of incoming calls per day80.000

5) Minimum number of simultaneous agent8 =

6) Maximum number of simultaneous agent®.£00

7) Minimum number of agents concurrently assignedgimgle group 9
8) Maximum number of agents concurrently assignedsole group 526
9) Mean number of agents concurrently assigned toglesgroup =3

10) Minimum number of potential profiles per agent =

11) Maximum number of potential profiles per ageritG8

12) Mean number of potential profiles per agerit6=

Obviously, the number of incoming calls is not theme all the time as it
depends upon many factors. When agglomerating nttg and considering a
coarse-grain, forecasting becomes much easiereasatiability at high level (e.g.
monthly and daily level) is reduced and easy t@dast. However, our predictions
rely on a fine-grain process as forecasts refeedoh successive state. We can
perceive that fact in the following figures (Figsifeom Figure 22 to Figure 25).

Each month of the year
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Figure 22: Incoming calls during a year at monthly level.
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Each day of the month
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Figure 23: Incoming calls during the most intricate month (8ember) at daily level.

Figure 24: Incoming calls during the most complex day of 8eyier (September 9) at hourly

level.
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Each minute of the hour
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Figure 25: Incoming calls during the most complex hour of “&epber 9” at minutely level.

A pattern can be relatively easily found at macopsc level (month of the year
and day of the month). However, predictions ar@éawhen considering the hour of
the day and much harder at minutely level (our eomagn this work). Thus, these
figures corroborate how complex is to predict th@ming flow in our environment.

However, abandonments and available agents arer éagorecast because:

1) the abandonment rate is highly correlated to tHerme of incoming
calls as Figure 26 illustrates,

2) and the number of available agents can be infergd timetables
and mean processing times as well as current loddother well-known
factors. Figure 27 shows the volume of existingnég@s a total value and
separating the most representative CGs.
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Figure 26: Incoming calls and abandonments during a commgn da
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Figure 27: Number of agents for tHemost representative CGs.
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5.4 FORECAST MODULE ADAPTATIONS

This section elucidates the required tuning to adde forecast module
described in Section 4.3 to the CC’s environmerdteNthat our forecast module
relies on an ANN based on uRprop. Our uRprop legralgorithm does not actually
need any specific adaptation to our environmer# (tburon activation function and
the weighted sum of coefficients are also the san&s that we described in Section
4.3) but the architecture of the ANN demands sowmitianal tuning. Our focal
control over this architecture relies on the numbkehidden layers as well as the
number of neurons in these layers because the nuafbeput/output neurons is

determined by the number of inputs and outputs awe h

As the number of available agents mainly dependb@mgent timetable and the
number of abandonments is proportional to the nunalbéncoming calls, we will
mainly focus on the prediction of incoming callheTfollowing sections justify the

pertinent configuration of our ANN for the MSCC’erdain.

5.4.1 Number of Layers

As claimed in section 4.3, the number of layeramfANN must be, at least, two
(1 input, h hidden whereh>0 and 1 output). Sometimes, the hidden layer is not
needed (e.g. simple linearly divisible problems)our case, we propose three layers:
1 input layer,1 hidden layer and output layer. Note that we necessitate a hidden
layer at least because our problem is nonlineaveNlkeeless, we do not in fact need
more than a hidden layer because we can approxim@t@nough every function by
utilising a single hidden layer with an arbitrarilgrge number of hidden units
(universal approximation property [112]). Of coyrdee more hidden layers we have,
the more accurate our prediction might be (mordfiobents in the global formula of
the ANN). But, this increases the computing timer&in the network (more loops to
update the weights) and bear in mind we have lonitlee to accomplish this task.
Besides, adding more than a hidden layer aggravageproblem of getting trapped

in local minima [87].

5.4.2 Input Layer

The number of neurons of the input layer is deteetli by the number of

variables we have. But, what variables or featdes/e have in our environment? At
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a typical MSCC, we can stumble on a wide varietyafiables which may range
from information of previous calls (number of caltendencies, mean processing
times, etc.) to contextual information (campaigmsak hours, night shift timetable,
etc.). We can directly take this raw informationt,baometimes, we have too many
variables or features to take them into accountw@&shave much information and
many dimensions (variables), it makes sense toceethe number of input variables.
Moreover, sometimes, some variables may even igecttical information into the
ANN because of the dependency among variables.ifigate this drawback, feature
selection appears as a promising solutiegature selections the technique, broadly
applied to machine learning, of selecting a subSe¢levant features or variables in

order to build robust learning models.

Choosing the right inputs from all information wavie (122 different variables)
is not trivial and is very important for obtainiaghigher performance as having more
predictors implies adding new dimensions to the ehddhore complexity). Since
variable selection should not be defined ad-hoocpgral component analysis (PCA)
[113] has been employed (see Table 4). PCA iststatal technique that converts a
set of potentially correlated predictors into a Benssubset of uncorrelated predictors
designated as principal components. The main adgantf PCA is the capability to
compress data by reducing the number of dimensmtisout significant loss of
information. To select the right inputs, we havenpded a dataset & months and
obtained the results given by Table 4 (first colustands for the relevance, second

column refers to the component number and thirdroalis the component itself).

As a remark, PCA has not been implemented by thlgoguinstead, we have
used the Weka framework [114] in order to deterntireeright inputs for our ANN
(see Table 4 and Table 5).

Table 4: Ranked attributes.

Relevance # Component

0.8514 1 0.182i TENDENCIA_9+0.181i TENDENCI8+0.179i TENDENCIA_8+0.176i TENDENCIA_17+0.167i NBENCIA_7...
0.7635 2 0.293i LL_TOTALES_5+0.293i LL_TOTABE6+0.289i LL_TOTALES_7+0.289i LL_TOTALES_4+0.284L TOTALES_3...
0.6887 3 -0.213i TENDENCIA_13-0.191i TENDEMCIL2-0.19i TENDENCIA_14-0.178i TENDENCIA_4-0.176ENDENCIA_10...
0.6193 4 -0.245_ TENDENCIA_21+0.221i_ TENDEMCIL1+0.221i_ TENDENCIA_10-0.219i_TENDENCIA_22-0.205LAG_21...
0.5563 5 -0.245_ TENDENCIA_33-0.207i TENDEMCP8-0.206i FLAG_33+0.2 i TENDENCIA_43+0.199i_TEENCIA_20...
0.4979 6 0.265i TENDENCIA_38-0.26i TENDENCIYV+0.227i_FLAG_38-0.223i FLAG_27-0.196i TENDENCI/5.4

0.4413 7 0.288(_TENDENCIA_26+0.244i FLAG_2&07i_TENDENCIA_32-0.196/_TENDENCIA_33-0.195i_TENDEIA_3...

0.3861 8 0.257i TENDENCIA_41+0.217i FLAG_4208i_TENDENCIA_45-0.205(_TENDENCIA_37+0.191i TENDEIA_7...
0.3323 9 -0.271i TENDENCIA_1-0.233i_FLAG_1202i_ TENDENCIA_2-0.197i_ TENDENCIA_6-0.19i TENDENCIA...

0.2805 10 -0.34i TENDENCIA_46-0.291i FLAG_46283i_TENDENCIA_44+0.243i_FLAG_44+0.202i TENDENCIA53
0.2471 11 -0.45 INTERVALO_8_2-0.376i_ MINUTOSIA>0.328i INTERVALO_8_1-0.323i INTERVALO_4_4-0.304HORA_PUNTA2...
0.2232 12 0.4161_INTERVALO_8_0+0.416i NOCTURNCB13i_INTERVALO_8_1+0.308i_INTERVALO_4_0+0.265] TERVALO_4_1...
0.2098 13 0.571i_INTERVALO_4_5-0.451i INTERVAL® 4-0.432i HORA_PUNTA2-0.184i_DIA_SEMANA_6+0.18MINUTOS_DIA...
0.1995 14 0.432i_INTERVALO_4_3-0.414i INTERVAL® 2+0.244i DIA_SEMANA_6+0.204i_DIA_SEMANA_5-0.186IA_SEMANA_2...
0.1898 15 0.821i_DIA_SEMANA_2-0.447i_DIA_SEMANA&-0.197i DIA_SEMANA_1+0.166i DIA_SEMANA_6-0.15i_BI SEMANA 4...
0.1802 16 -0.724i DIA_SEMANA_4+0.524i_DIA_SEMAN3+0.349i_DIA_SEMANA_6-0.164i_DIA_SEMANA_5+0.112NTERVALO_4 1...
0.1706 17 0.725i_DIA_SEMANA_5-0.478i_DIA_SEMANA-0.423i_DIA_SEMANA_6+0.159i DIA_SEMANA_0-0.151i1B_SEMANA_3...
0.1611 18 0.685i_DIA_SEMANA_1-0.512_DIA_SEMANA+0.313i DIA_SEMANA_6-0.222i_DIA_SEMANA_4-0.207i1B_SEMANA_5...
0.1516 19 0.828i_DIA_SEMANA_0-0.487i_DIA_SEMANA-0.188i DIA_SEMANA 3+0.104i DIA_SEMANA_6-0.101iIB_SEMANA 2...
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0.1428
0.1351
0.1289
0.1233
0.118
0.1132
0.1088
0.1045
0.1002
0.0961
0.0922
0.0884
0.0852
0.0822
0.0792
0.0763
0.0733
0.0705
0.0676
0.0648
0.0622
0.0597
0.0572
0.0548
0.0524
0.05

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

~0.689_INTERVALO_4_1+0.5641_INTERVBL4_0+0.191i INTERVALO_4_2-0.181i INTERVALO_4_3-68i_DIA_SEMANA _4...
0.443i_INTERVALO_4_2-0.364i INTERVAL® 3-0.32i INTERVALO_4_0+0.26 i_INTERVALO_4_1+0.182IORA_PUNTA...
0.332i_FLAG_10+0.332i_FLAG_11-0.16ENDENCIA_11-0.169i_TENDENCIA_10-0.16_HORA_PUNTA..

0.411 FLAG_11+0.41 i_FLAG_10-0.188ENDENCIA_11-0.186i_TENDENCIA_10+0.175]_ TENDENCIA0...

0.5971 HORA_PUNTA+0.339i_DIA_SEMAN®0.2861_INTERVALO_4_3+0.252i DIA_SEMANA_5-0.196NTERVALO_8 1...
-0.218i_FLAG_28+0.209i FLAG_9+0.1%1iAG_3+0.191i FLAG_4-0.188i_FLAG_33...

0.264i FLAG_38+0.217i_TENDENCIA_424i FLAG_45-0.209i TENDENCIA_38+0.204i_FLAG_7...
0.296i_FLAG_27-0.224i TENDENCIA_272Di_FLAG_30-0.205i_FLAG_37+0.203i_FLAG_26...
0.275_FLAG_20+0.224i_FLAG_13-0.2FiAG_33+0.201i TENDENCIA_1+0.191i_TENDENCIA_2...

0.249i FLAG_26-0.239i_FLAG_35-0.2IFENDENCIA_26-0.207i_FLAG_32+0.207i_FLAG_28...

-0.258_FLAG_41+0.234i FLAG_37+0i2BLAG_39-0.224i TENDENCIA_44+0.221i TENDENCIA_41..
0.282i_FLAG_11+0.282i_FLAG_10-0.249iAG_16+0.245_FLAG_24+0.241i FLAG_21...
-0.458]_HORA_PUNTA+0.349i_DIA_SEMAN®+0.228i DIA_SEMANA_5-0.203i_FLAG_9-0.18i_DIA_SENMA O...

0.274i FLAG_36-0.2661_FLAG_45+0.2F0IAG_4-0.234i FLAG_15+0.228i_FLAG_35...

0.276i_ HORA_PUNTA-0.271i_FLAG_30+B2 FLAG_42+0.2191 FLAG_38-0.218i_FLAG_29...
-0.337I_HORA_PUNTA-0.3251 FLAG_4299i_FLAG_12-0.262i FLAG_3-0.257i FLAG_29...
-0.314i_FLAG_14-0.312i_FLAG_39-0 RFEAG_21-0.265i_FLAG_40-0.247i FLAG_38...

0.328i_ FLAG_41-0.301i_FLAG_7-0.2FBIAG_45+0.258]_FLAG_42+0.245_FLAG_1...
0.433(_FLAG_1-0.36i_FLAG_46+0.312iA6_2-0.29i_FLAG_8+0.261i_FLAG_44...
0.5151_FLAG_46-0.303i_FLAG_44+0.2FLAG_1+0.2591_FLAG_17+0.244i_FLAG_24...
0.568i_FLAG_2-0.503i_FLAG_1-0.27iAG_19+0.257i FLAG_12+0.199i_FLAG_25...
-0.393_FLAG_26+0.364i_FLAG_45-0.B88AG_19+0.293i_FLAG_37-0.261i_FLAG_2...

0.584i FLAG_32-0.366i_FLAG_41-0.34iAG_44+0.218i FLAG_43+0.206i_FLAG_40...
-0.583_FLAG_37-0.404i_FLAG_43-0.BFLAG_19+0.281i FLAG_38+0.259]_FLAG_39...

-0.508i_FLAG_26-0.44i FLAG_12+0.3FiAG_20-0.237i_FLAG_1+0.227i FLAG_2...

0.467i FLAG_32+0.432_FLAG_41+QIAELAG_44-0.289i_FLAG_42+0.216i FLAG_46...

Table 5: Selected attributes.

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1212P2,23,24,25,26,27,28,29,30,31,32,33
,35,36,37,38,39,40,41,42,43,44 4545 attributes

shift timetable, week of the month, time, intervafishours (broken down ig, 4 or 8

hours) and intervals of peak hours must be higtdigland analysed for separate.

Among all variables, the volume of incoming caltlsprevious intervals, night

Figure 28 shows the behaviour when consideringtheious time intervals. For

almost all CGs, the optimum number of previousnvdks required is usually around

5-6 intervals. Considering more previous intervalssdoet enable us to obtain better

results and makes the learning process slower.
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Figure 28 Mean absolute error returned by the ANN when cagig previouss-minute
intervals.

Figure 29 illustrates a comparative study of thestmelevant variables that have
been studied in terms of error caused. The nighttshetable offers an upgrading of
the results for every CG. When splitting days uj imtervals of hours, predictions
are also improved. The improvement coming from mgldihese hourly intervals
might guide us to a wrong decision because thesables are correlated with the
current number of incoming calls (our target) he tausality comes from the night
shift timetable and peak time variables (it is mastiable to know peak hours rather
than have hourly information). Note that the catieh among variables does not
necessarily imply causality. In other words, th@iavement is just obtained because
these variables are correlated but only peak timervals and night shift are truly
useful to forecast the current number of incomiatisc Of course, PCA moderates

the impact of these deceptive correlations.
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Figure 29: Mean absolute error returned by the ANN when agidifferent variables.

Intervals of peak hours are interesting to take iatcount because these
divisions clearly outperform the results for almaktCGs. However, the upgrading is
intuitively a bit lower for those CGs without mawgcillations as there are fewer
differences among day partitions.

The rest of variables influence the results in sdd&s (like the week of the
month) but not significantly enough for most of théhey slightly contribute to the
target prediction). Since a quick response timredglired and selecting more features
involves a higher dimensionality, these variablagennot been expressly included in

our final implementation.

As Table 4 and Table 5 are difficult to follow, Tal6 summarises the most

relevant individual features extracted from ouradat.

Table 6: Summary of the most relevant individual variables.

Individual relevant variables

# Calls in Previous 6-Minutes
# Calls in Previous 30 Minutes
Night Shift Timetable
Week day
# Calls in Previous 1@5 Minutes

# Calls in Previous 120 Minutes
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# Calls in Previous 2@5 Minutes
Minutes of the Day
Peak Time

Second Peak Time

5.4.3 Hidden Layer

We have already revealed that our ANN has a sinigiden layer. Now, we have
to determine the number of existing hidden unitsiden neurons) located in this
layer. There are some (nonsense) rules to deterthen@umber of neurons of the
hidden layer(s) but, in our case, this number leesnkempirically determined.

Figure 30 shows the results obtained for a variablaber of hidden units. We
can appreciate that the optimum value seems tordund 20 hidden units as the

mean absolute error gets minimised.

MAE

5,00

4,00 ~

3,00 \\\ P 4
2,00 M == MAE

1,00

0,00 T T T T T T 1
1 5 10 15 20 25 30

Figure 30: Mean absolute error, depending on the numberdafen units.

5.4.4 Output Layer

The last layer is named output layer and is usedifweiling the result of the
prediction. The number of neurons of this layedaetermined by the output variables.
In our case, only one variable is predicted (nunaf@ncoming calls, available agents
or abandonments) so that only one neuron formsuiygut layer. The output will be
a floating number which indicates the number obming calls of a given CG, the
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number of available agents for a given CG or thmber of abandonments for a

certain CG (we need as many ANNs as CGs we have).

5.45 Parameter | nitialisation

To initialise our ANN, we assign the predefinedues stated in Section 4.4,
except for the initial weights which must be randpmitialised. In particular, we set
them up to small values ranged[#0.5, 0.5]. The idea of initialising the weights in
this way is to reduce the number of epochs dulliegttaining process. Starting from
weights that are closer to the required ones iltpptibly necessitate fewer changes
than weights that greatly differ.

Additionally, we can still outperform the resulty including some specific
knowledge of each CG. The large number of CB339 and their miscellaneous
behaviour make necessary to appropriately detertfieeinitial parameters of the
models (ANNs for each CG). To fulfil this requiremethe CGs have been divided
into sets according to the mean number of incoralts per day. This criterion has
been taken as a consequence of the behaviour siiedaf those CGs having similar
volume of incoming calls. Therefore, we need to irdef different initial
configurations for the step-sizes for these setsedsas the lower and upper bounds

of the uRprop proposed in Section 4.3.3.

Table 7 demonstrates that we can still outperfdrenresults a little by starting
from different initial parameters depending on tB& behaviour. This table
summarises the mean absolute error (MAE) gottenS5falifferent CGs after50

executions of their specific ANN.

Table 7: MAE obtained foib different CGs with/without sets f&0 executions.

Cal Goup MAEWIthSets MAE Without Sets

CG1 2.8452 2.8719¢
CG?2 2.3467: 2.3994:
CG3 4.3215! 4.4465¢
CG4 1.4066- 1.4188t
CG5 0.8321« 0.9490¢
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The change proposed above does not vary our comgptithes but (slightly)
improves the results, especially in those CGs Haate more fluctuations in the

arriving load.

5.4.6 Stopping Criterion
We consider the following measures to decide wbestdp the training process:

1) Maximum epochs reachethe ANN will stop once a set humber of epochs

have elapsedle00).
2) Generalisation set mean squared error (MSHjs is the average of the sum
of the squared errors (real — predicted) for eattem in the generalisation

set MSE < 1 incoming cal
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5.5 SEARCH M ODULE ADAPTATIONS

This section comments the final configuration of $earch module. We will
describe the configuration of the evolutionary epers but, firstly, we will detail

other important aspects.

5.5.1 Initialisation, Encoding and Population

We will encode the solutions as described in Sectid. Therefore, the solution
consists in an array of integers whose indexesesemt the available agents at a
given instant and the array contents refer to téle assigned to each agent. Figure
31 shows a fictitious example (related to Figurg &lencoding fo9 customer calls
(ci-cg) queued in4 different CGs €gi-cgs) depending on the nature of the calis,
agents &;-as) and7 profiles P1-P;), whereP1={s}, P.={s1, S}, Ps={s2}, Ps={s2, S},
Ps={s1, s}, Pe={s3} andP;={s,}. Now, suppose that the agents have the following
potential skill profiles: a;~{P1,P>}, a~{P1,Ps,P7}, as~{P4Ps}, a~{Ps} and
as~{P.,P;,P;}. We have seen the potential profiles for everynadeut only one
profile can be assigned to each agent at a giv&antt; therefore, a feasible solution
would be Figure 31. Note that more than one agant ltave assigned the same

profile (e.g.a; andas).

Index (agents) > 1 2 3 4 5

Content (profilesy>» | 2 | 7|4[6]|2

Figure 31: Example of encoding for an MSCC.

The population contain?0 different individuals encoded as hinted aboveoun
case, we propose to start from a randomly generatial population, including the
best solution found in the previous time-frame liseathe configuration of agents’
profiles should not change too much over two sigigestime-frames (consecutive

states).

5.5.2 Fitness Function

Now, we present the fitness function which is dedinover the proposed

encoding to measure the quality of a given solutfur fithess function is inspired in
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the estimation of thtotal service leveprovided in [12] although we also consider the

priority of each CG weighted as follows:
. k
Total_service_levek > (PrxSL (r,,0,)) xp {sl:0x[0,1]x[0,1] - [0,1} where k
i=0

refers to the number of CGsg,is a normalising factorﬁzk: pr), Pri is the
i=0

priority of the CG whose service level is defined as

)

SL, . ,m)=1-P(Agents_ee_busy) e "™ given that
(16)

-1
-m. ity — .
P(Agents_ae_busy¥ |1+ Yimm' Z (v, 1)y“_'c(_€+1) wherey; is the load of
i (=0 m,"

CG (number of incoming calls of G®y the mean processing timgxz, ), m
is the number of agents of CGbased on the profiles assigned in the
chromosome) 7;is the number of agents of Cé&nd [ is the duration of the

time-frame expressed in seconds.

Additionally, we handle some hard and soft constsiderived from the
business rules given by our business units. In case, these constraints are
associated to tasks, agents, timing, actions dredi¥sndesired scenarios. Thus, the
algorithm cannot violate hard constraints (e.g. e@@not change agents’ profiles
continuously due to certain laws and regulatiorathough we allow certain
movements which may imply the violation of somet sminstraints (e.g. we should
not take agents from CGs in which the service lésdbelow a given threshold).
Undoubtedly, this type of movements is penalisetbating to the degree of non-
accomplishment of these constraints and their agles as described in Chapter 2.

Therefore, thditness functiortan be formalised as follows:
f = (total_sewice_level- penalisatons_constaints) f :[01]x[01] - [-11] (17

wherepenalisation_constraintss the value obtained after applying our busimakess

(e.g. agents from CGshould not move to C§-

Finally, we can speed-up the evaluations by intcony a partial fithess
function The first time, we need to employ (17) but th&t & the time; we just need
to evaluate those groups affected by a mutationnothe case of the LS, when
generating a new neighbour. Hence, we only protlessaffected CGs in (16) and

update their original values. With this informatieve then recalculate (17).
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5.5.3 Evolutionary Operators

In this section, we explain the final configuratiohthe evolutionary operators

described in Section 4.4. This configuration isfiiiwing one:

Selection Since the population needs to be bred each suceegsheration, we

have chosen a binary tournament selection.

Crossover The following step is to produce a new generatiamf selected
individuals. We consider that children will inhetlite common points in their parents

(potentially, the best genes) and randomly rectiigaest of genes from them.

Mutatiort This operator causes tiny changes in the gendseofliromosome to
explicitly maintain diversity (actually there areuolm more mechanisms). We apply a
perturbation over each gene of the chromosome witbrobability of0.03 This
perturbation corresponds to changes of profilesoime agents (e.g. ageatwho had

assigned therofile P, has now associated theofile P; due to a mutation).

Replacement policyFinally, we decide which individuals are incoratad (or
maybe reinserted) into the population. In this gtude consider elitism with a
probability of 0.93 to replace the worst individuals of the populatifor next
generation. And, with a probability 607, a worse individual may be captured. Note

that our MA relies on a steady-state scheme.

The configuration proposed above has not been ohadéoc. Instead, we have

evaluated different configurations and selectedotst one.

Figure 32 shows the most relevant configuratioas We have tested out during
600 seconds 10 minutes).Y-axis represents the fitness value while Xhaxis stands
for the number of generations. Note that we doapply the LS mechanism over the

individuals at this stage.
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Figure 32: Fitness obtained fd@ different configurations of evolutionary operators.

Configuration-1 refers to the configuration desedbabove. We perceive that
Configuration-1 can process many generations cosopr the rest of configurations
(excluding Configuration-8). Configuration-1 alsbtains the best fitted solution. The
convergence is favourable forSaminute execution (around generation-300). Note
that most time-intervals have that duration so thatimprovement during a complete
day is noticeable. After that point the improvemisnminor although we can observe
another important slope around generation-500. Wthendynamism is high, this
configuration is also very appealing because thosfiguration steeply slopes.
Besides, when the time-frame increases, the camafligun is also appropriate as it still

goes on improving the fitness value.

Configuration-2 differs from Configuration-1 in thmating-selection as it
considers mating by similarity. For this reasom ttumber of generations is reduced.
This configuration allows for diversity but the a@mgence is slower than
Configuration-1. Instead, Configuration-2 almosva}s improves and may be good

for stable systems (longer time-frame).

Configuration-3 applies a mating based on the diffees on the fitness values.
Each individual is mated with its most differendividual in terms of fitness: highest
difference in fitness value. We notice that thidingaoperator is faster but the results

seem to be worse than Configuration-2.
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Configuration-4 applies a random mating and a spesglection in which the
best fitted individual is taken as well as its mdifferent individual in terms of genes
(like similarity but for final selection). This céiguration always increases and has a

nice slope although the two first configurationsrego better behave.

Configuration-5 imitates Configuration-4 except the mating mechanism. In
this case, each individual is mated with its mogtecknt individual in terms of

fitness. It has a poorer performance and can catfyewer generations.

Configuration-6 employs a mating by highest fitné#$erence and applies a
replacement policy in which the best fitted indivéd and the worst fitted individual
after reproduction fully replace the best and therstv individuals from the

populations respectively. The performance and slape poor.

Configuration-7 proposes a similar scheme to Caoméigon-6 except for the
random mating. More generations are carried out betler performance than

Configuration-6.

Configuration-8 applies a random mating and ourssoger inspired in
simulated annealing. We also consider elitism foe teplacement policy and
mutations by ranges. We also perceive a fine sigke beginning. If we had more
time, we might increase the initial temperatureuegalto explore more at the

beginning. Potentially, we could obtain betterfitindividuals.

5.5.4 Memetic Algorithm

Once we have the evolutionary operators, we needefimne the refinement
mechanism and select a target subpopulation toerefinother important issue is the

refinement frequency.

Refinement algorithmThe refinement mechanism is a basic LS basechen t

best neighbour scheme as described in 4.4.3.1.
Subpopulation for LSThe LS is applied over the b&&%of individuals.

LS frequency The LS is applied over the selected individuatche10

generations.
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5.5.5 Parallel Memetic Algorithm

The last step is to parallelise the MA. We will Bppn island model with

several subordinate islands connected to a masasdi as follows:

Topology We consider a star topology withsubordinate islands (as Figure 33
illustrates) which correspond to “simple” MAs. Thesslands are connected to a
master island (another “simple” MA which coordiratnd synchronises the rest of

islands).

Migration: Each subordinate island sends 1086 of the best fitted individuals
when the master island asynchronously demands tineidéduals to the rest of

islands.

Replacement policyWe will apply elitism so that the best fitted imduals from
the subordinate islands will replace the lessdittelividuals from the master island’s

population whether these individuals are bettezdit

Migration frequency Each50 generations, the master island blocks the rest of

islands to ask them for their best fitted individua

Subordinate Subordinate
Island Island

Master
Island

Subordinate .
Island Subordinate

Island

Figure 33: Star topology with subordinate islands and a master island.
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CHAPTER 6. EVALUATION OF THE

APPLICATION

This chapter evaluates our approach on the MSCGuhor8ection 6.1 describes
the dataset employed. Section 6.2 points out thewaae descriptions of the SunFire
sever in which the evaluations have been perfori@edtion 6.3 analyses the selected
metrics for testing and comparing our approachti®@ed®.4 examines the forecast
module for five different CGs as there are too mémyaccomplish an exhaustive
study for all of them. Section 6.5 evaluates tharad® module by studying several
time intervals from days with different complexitihis section also compares our
search module with other acknowledged technique&elction 6.6, we will analyse
our complete approach (forecast module + searchulaptbr one-day campaign. We
will also compare how our complete approach outperé other conventional call

centre’s algorithms.

6.1 DATASET EMPLOYED

An important step consists in creating a suitabd¢éaset, hunting for a fair
balance between the amount of data and a représemnariod of time measured in
terms of days, carved up in hours and minutes (sgopic level> fine grain). In
our case, we will work witd5 numeric attributes (see Section 5.4) and thousahds
registers which correspond @®minute interval information from records stored

during several months.

Besides, the number of selected days must be apleultf 7 because the
predictorweek-dayhas imperative influence on the training and \alah processes
as Section 5.6 demonstrates. Moreover, the nunfbéays must be large enough to
represent every possible pattern (cases). Therefwgenumber of days to take into
account should be, at leaStl days in order to cover all possible patterns it
aforesaid considerations. It is very important twide data like this as this

composition allows for trend and seasonality detact
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Our problem present4035 CGs; hence, the dataset is too large to do an
exhaustive study for all of them (obviously, theefmast module has been trained,
considering every CG). Consequentiyrepresentative CGs with different behaviour
in terms of oscillations, arrival rates, procesdintges and nature, have been carefully
picked in order to perform a generic enough apgroésee Figure 34). These
oscillations intuitively imply a higher complexityWe have assigned an index to each
CG that designates their complexity level whichgesmfrom the most convoluted CG
to the simplest one (labelled frabrto 5). For business reasons, we are not allowed to

reveal real CGs names but this is something weldhmi be concerned about in this
work.

Call Arrival Rate Per Day

40000

35000
= 30000
- 25000
2 20000
2 15000
£ 10000
i S fire]

a T ' . ]
CG G2 CG3 CiGd CGE
Groups

Figure 34: Call arrival rate per day, grouped by CGs.

Afterwards, a different model has been exclusiveégveloped for each CG

because of differences among CGs. Then, the whalaset has been split into
subsets, contemplating every CG.

Once we have a single dataset for each CG, thlsbuffled and then randomly
divided into three subsets, following the crossdation structure [115] (see Figure
35): Training (55%), generalisation (20%) and vation (25%).

109



Workforce Distribution in Dynamic Multi-Agent Systems David Millan Ruiz

Training

—

Generalisation

Validation

Figure 35: Dataset partitions: training, generalisation anigtaion.

The training dataset, which is the largest partitis used for training our ANN.
Instead, the generalisation partition is used at ¢hd of each epoch to observe
whether our ANN correctly handles unseen data. Gtheetraining process has

finished, the validation partition is showed to &N to determine its real precision.

Although we will analys& CGs for the forecast module in Section 6.4, wetmus
validate the search module by considering all tesCTo evaluate the search
module, we have chosen several time intervals fiays with different complexity
(see Section 6.5). Therefore, we can discover ¢mefits of our approach, depending
on the dynamism of the system. Besides, we willyseaour complete approach

(forecast module + search module) for one-day cégnga Section 6.6.
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6.2 HARDWARE DESCRIPTION

This section describes the key hardware featuresioSunFire 4900server in

which all experiments have been launched. Thedertsaare the following ones:

1)

2)

3)
4)
5)

6)
7
8)
9)

64-bit Chip Multithreading UltraSPARC® IV technologwith over 2x
the throughput of previous generations.

Scales up t® x 1.35GHz UltraSPARC IV CPUs witi6 MB L2 cache
per processor.

Up to 16 simultaneous compute threads with u4dGB memory.
Solaris-TM 8, Solaris 9, and Solaris 10 Operatiggt&m.

Robust capabilities in the Solaris 10 OS such edigtive self-healing to
increase reliability, Solaris containers for ingead utilisation, and
dTrace to optimise application performance.

Industry leading price/performance and benchmarks.

9.6 GB/second SunTM Fireplane interconnect.

N+1 hot-swap power supplies/hot-pluggable disks.

Sun systems controller for remote system admiristra

10) Automatic system recovery to maximise uptime.

11) Integrated fibre channel disk subsystem, multi-patneady, supporting

up to 12 FC-AL disks.

12) 9 PCI slots help ensure a highly scalable, welabedd system.

13) 17-RU tower/desk-side, rack mountable.
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6.3 METRICS

Metrics are usually specific for a given subjeataarnd are often valid only
within a certain domain so that these cannot bectir interpreted outside it. We
have selected several metrics to evaluate our dsteand search modules as well as

the complete process.

6.3.1 Forecast Metrics

In order to make the forecast process more undaelabde, we define the error,

g, as the difference between the real output véjand the predicted output,
To evaluate the forecast module, we will applyfdilwing metrics:

1) Mean absolute erroMAE): average of the absolute erroMAE =
1
;Z?:ﬂfi — il
2) Standard deviatio{SD). the standard deviation of a statistical population

is the square root of its variance.

6.3.2 Search Metrics

In order to compare all the search algorithms rmsgeof quality of the solution,
a metric to represent that quality is required. Wesume that solution quality
comparisons must be made over the same problerangedt. Comparisons over
different problem instances are normally weakertla@se instances may have

dissimilar structures so that the conclusions mioghtompletely erroneous.
To evaluate the search module, we will examinddhewing metrics:

1) Worst solutionLess fitted value, considerirgexecutions §0).

2) Best solutionBest fitted value, considerirgexecutions 0).

3) Mean solutionMean value frone executions{0).

4) Standard deviationStandard deviation fromexecutions§0).

5) Performance Ratio of the current fitness value with respecthe best

fitted value. It can be calculated as follows:

current fitness value (technique;)
best fitted value

Performance = x 100.
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6.3.3 Call Centre Metrics

Most MSCCs employ more thad0 different metrics to verify how operations
are going. However, sometimes, just observing aetubf variables may accomplish
our goals. Metrics refer to customer satisfactiguality, productivity, agent
utilisation or costs per contact (for outbound M§CC

To evaluate the complete approach, we will considermost important metric,
from our point of view, for any MSCC: threean service levethich is defined as the
percentage of customer calls that have to queudeshthan a specified amount of
time (in our MSCC,20 seconds). This metric covers aspects such astyuali

productivity, client satisfaction among others.
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6.4 COMPARISON OF FORECAST TECHNIQUES

Now, we come to an important point that cannot tserlooked. We need to
compare our forecast module with other technigonesder to verify whether (or not)

our approach is convenient for a real-world DMAS.

In Section 4.3.1, we have reviewed the previouskvar forecast techniques.
Now, we proceed by comparing our approach basedMNs (uRprop) with the
most relevant forecast methods from the state-@fath. As we cannot implement all
the techniques presented in Section 4.3.1 forvtioik, we have chosen R’s forecast
package [116] to evaluate them. Note that we halected R forecast package
because it is very well-implemented and is an ggmmce so that we can analyse the
inner of the implementation. Other data mining $aglich as SPSS or SAS have also
truly potent algorithms, but we should not applerthfor this comparison as we

would not have any insight about the algorithm bdhhem.

To compare the techniques described in Sectiorl, 4@ have selected five
representative CGs as described in Section 6.1d@raset is composed by thousands
of records extracted from our production environtraiuring 91 different days. We
have trained the models with this dataset and a@ddithem with the following two
weeks. This means that the validation has beefedaout by means of continuous
(online) predictions for &-week time period. Although this validation shoudd
convincing, we have executed the modé®& more times offline (a total 060
executions). The models have been run under twbeotores of our SunFire 4900

server (Solaris 10).

Now, let’s go to the thick of the comparison. Fg@6and Table 8 illustrate the
MAE comparison between time series, ARIMA, lineagnession, logistic regression
and our ANN. This confirms that, although each G435 h different behaviour and
needs a different model to obtain the best appration, our ANN regularly behaves
better than the other techniques in our domaindwaot claim a universally better
approach). While ARIMA and time series emphasise ‘tiecent past”, our ANN is
more flexible because it not only considers presitendencies and time points but
also covers historical patterns from other days @thdr contextual information (e.g.
if there is a commercial campaign, the dynamisnh gl higher). The capability of
considering historical data is really valuable asa@an discover interesting features

like the peak hours’ effect and more complex refehips.
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Figure 36: General Comparison (MAE is in the Y-axis and teghes are in the X-axis).

Looking at Table 8, we also perceive that our AN&$ hess variability in the
predictions as the standard deviation is usuahlyetp except for the call group-1
(time series) and the call group-4 (logistic regi@s) where our standard deviation is
slightly higher.

Another remarkable result is that time series aRIM¥ outperform regression
models in most CGs, probably, due to the capabiityconsidering trend and
seasonality rather than simply considering relatigps between the dependent

variable (output) and any one of the independenabtes when these vary.

On the one hand, the main problem with our appraadhat we need longer
training times than ARIMA, time series or regressionodels. Besides, our
implementation is much more complex than thesenigcles. When not having a
multimodal space, we recommend simpler technigliesar regression for linear
dependencies and times series for stable pattertitose that merely depend upon

the recent past.

On the other hand, although there are no hugeréifées between our approach
and the rest of the abovementioned techniquesrinstef MAE for a given instant,
we strongly recommend our approach as far as diifferences in terms of MAE for

a given point may induce huge mean errors throughalay (cascade effect).
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Table 8: MAE & SD Comparison.

uRprop ARIMA Time Series Linear Logistic reg.

Call Group Regression
MAE SD MAE SD MAE SD MAE SD MAE SD

Call Group 1 3.621 6.381 3.892 6.430 3.791 6.3604.503 6.833 4.120 6.501
Call Group 2 2.519 4.472 2.872 4.851 2.841 4.8213.210 5.756 2.870 4.507
Call Group 3 2.112 3.592 2.378 4.087 2.349 4.1042.340 3.843 2.210 3.551
Call Group 4 1.387 2.752 1.494 2.785 1.486 2.7712.120 3.154 1.620 2.718

Call Group 5 0.718 1.405 0.823 1.408 0.819 1.4060.960 1.667 0.840 1.313

Up till now, we have demonstrated that our approackperforms several
forecast techniques but, can we beat other ANNimiag algorithms? Our approach
often gets trapped in local minima so that we camt@m that our approach can
behave better than other learning algorithms folN&Nas there are other nice exact
approximations. However, our environment is verynaiyic and we have a very
limited time to train the models (we need a modal éach CG). So, can we
outperform other learning algorithms given our timiconstraint? Fortunately, the
answer is “yes”. At least, we can offer more acwurasults for those CGs which are
very dynamic and have more incoming calls. This esagense because the search
space is more complex and the exact approximatiane no time to compute the
complete process. Nonetheless, other learning iigtes might behave better for
those CGs with fewer calls (e.g. CG4 or CG5). Obsiy, this type of CGs is not

really relevant as only few calls arrive.

Figure 37 demonstrates that our learning algorithoutperforms
Backpropagation, Quickpropagation, classical Rprogprop with weights
backtracking, ANNs with pruning and also ANNs wikhaustive pruning for the
most convoluted CGs (CG1 and CG2). For the easieest (CG4 and CG5), learning
with exhaustive pruning and Rprop with weights headking outperform our
uRprop. If we let other learning algorithms runidgrmore thanl200 epochs, the
differences would be higher. However, we have a \emited time to train the
models and our approach behaves better than thex tebhniques for the most

complicated CGs.
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Figure 37: NN Comparison (SSE x epochs).

The main disadvantage with gradi-descent methods is premature converg
to local optima. Occasionally, local optima can libkewise nearly global optim
although these normally hurt performance. Thisiaiffy can be overcome by usil
global optimisation methods althougtese techniques are hig time-consuming
and become lesgppropriate for dynamic syster Learning with exhastive pruning
and Rprop \th weights backtrackinobtain better results than uRprop when tt
are no timing constraints or the search spacariplsienough to find the optimum
few epochs.

To concludewe can state th demanding dynamic systems ndast (re)train
as long delaysnay drastically damage performance, even when eshesblution:

deem optimal.
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6.5 COMPARISON OF METAHEURISTICS

In the previous section, we have compared our &mteenodule with other
acknowledged predictive techniques. We have seem dur approach is not
universally the best one as other learning algawittoutperform our uRprop when
these have more time to train the models (the ANMN dach CG) or when the
dynamism is low. Fortunately, our learning algaritivehaves better for those CGs
with higher dynamism when the time to train the sleds reduced. But, we still have
to determine the right assignment among agentstasks, given the predictions
provided by the forecast module. This task is edrout by our search module which

will be compared with other famous MHSs.

Now, similarly to the previous section, we desciibe (two) problem instances
(medium and high difficulty, respectively) that Wwave created from our dataset to
test out our search module. For a fair compariswery MH will be run over the
same problem instanc&§ times. These two problem instances are composedaby
data taken from our MSCC's production environmauirgy two different days at the
same hour (froml2:40 to 12:45 300 seconds): a one-day campaign and a normal
day. The size of the time-frame to execute all Mtds has beer800 seconds §
minutes) because it is the commonest time-frame $ie have selected the interval
[12:40-12:45] as it is precisely the most critical hour of tteydhighest load of the
day: n/m). Note that aroun®00 incoming calls 1) simultaneously arrive during a
normal day in such a time interval, whereas u@460 simultaneous incoming calls
may arrive during this interval throughout a comongrcampaign. The number of
agents 1), for each time interval, oscillates betwe@f@0 and 210Q having 16
different skills for each agent on averaganimum=1andmaximum=108 grouped
in profiles of7 skills on average. The total number of CGs comsii¢or this study is
167. Therefore, when the workload/fr) is really high, finding the right assignment
among agents and incoming calls becomes fundament#his way, we have run
every MH under two double-core processors ofun Fire E4900server (one

processor for the interfaces and data pre-proagsaim the other one for each MH).

Once the magnitude of our problem instances has pezsented, each MH is
compared alongside the others. Table 9 summatisesesults obtained by each MH

in 50 executions, starting fro®0 different randomly generated initial solutions.

In our comparative study, we present dissimilar M¥sch cover diverse search

strategies. Theoretically, due to the local charaof the basic LS, it is complicated
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to reach a high-quality solution because the dlgariusually gets trapped in a
neighbourhood when a local minimum is found. Thisws because the engine is
always looking for better solutions which probatilg not actually exist in the
neighbourhood. For this reason, sometimes, it isremappropriate to allow
deterioration movements in order to switch to otiegiions of the search space. This
is precisely the shrewd policy of SA whose temperatllows for many oscillations
(the probability of accepting a worse solution @ases according to the time) at the
beginning of the process and only few ones at tite ((ewer chances to select a
worse solution as the algorithm is supposed toeliaing the solution at this point).
Specifically, we have chosen Cauchy’s criteriondose the convergence is faster
than Boltzmann’s and we only had®0 seconds to run the complete process. In

Cauchy’s scheme, the temperature is definedTas T,/ (1+it), whereit is the
iteration number and the initial temperatureTjs=(4/ -log(®)) * f(S*) wheref(S*) is

the cost of the initial solutionp stands for the probability of acceptingd Worse
solution than the current oné%£ u =0.3). Besides, this scheme avoids decreasing the
distance between two solutions when the processvetges (jumps in the
neighbourhood). Therefore, the temperature mustidde enough at the beginning to
better explore the search space (its neighbourhand)low enough at the end to
intensify the search as well (exploitation of preimg areas). The stopping condition
must agree with the number of neighbours generdted. maximum of neighbour
solutions generated each timeLi§)=30 and the probability of accepting a worse
solution isexp(+/Ty) given thato=f(Neighbour_Solution)-f(Current_SolutiomndT;

is the temperature at iteratidn

We perceive from Table 9 that SA behaves worse tiamther MHs except for
the easiest instance of the problem. This may doecause we are not plenty of time
in our environment and the power of SA relies gor@gressive cooling. If we cool
off the temperature too fast, we are missing theca¥eness of accepting worse
solutions in some cases. Instead, if we cool aftémperature too slowly, we may be
accepting worse solutions systematically withoubverging. We have applied a
trade-off between exploration and exploitation the computing time300 seconds)
seems to be limited to apply SA to our environmgarhaps, things might change

when having more time).

Another option to increase the diversity in theusiohs is to enlarge the
environment, as VNS does. This philosophy consmstaaking a systematic change

upon the environment when the LS is used, incrgagie environment when the
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process gets stagnated. In the VNS, the searchotisrastricted to only one
environment as in the basic LS; instead, the neighiood changes as the algorithm
progresses. In our experiments, we have considémnex different environments
€na-3: (e, » nh, =03xn; e, -~ nh,=05xn; e, - nh,=n). These steps are
repeated durin@00 seconds (our stopping condition). Albeit we ontysider three
distinct neighbourhoods, the improvement of the Vbt#npared to basic LS is
noteworthy. Consequently, the remarkable factoob®s the change in the number
of neighbourhoods and their sizes as well as censigl how the algorithm reacts in
response. Table 9 also shows how VNS only slightifperforms SA for the hardest

instance of the problem.

Another strategy is to start from different initedlutions as ILS accomplishes.
ILS generates a random initial solution and aftedsaapplies a basic LS.
Subsequently, this solution is systematically medaand thus refined. For ILS, the
complete process is repeated durd@§ seconds wherein the LS is the one proposed
in Section 3.1.1 and the perturbation affects &3t of agents. We can observe that
ILS obtains solutions which vaguely improve thoseeg by SA and VNS for the
hardest problem instance, although it performs edie the simplest problem

instance as Table 9 corroborates.

Another way to find an accurate solution involvesng methods based on
populations, such as MAs. If the diversity of th@usion is low, then the MA
converges to the closest neighbour. Nevertheldssnwhe selective pressure is high,
individuals may be alike or even identical. To spee convergence, MAs apply an
LS procedure upon a set of chromosomes (candidaigas) that are refined every
certain number of generations. Incorporating a iaygkmtion mechanism to the GA is
valuable as the algorithm is improved in all respdexploration and exploitation).
The configuration of the GA’s operators is the pnavided in Section 5.5.3 whereas
the LS mechanism is given in Section 3.1.1. Taheigts out how our MA not only
outperforms all the presented MHSs for both probiestances but also remains more

unwavering (less differences among best, worstnagah fithess values).
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Table 9: Results obtained by the MHs %0 executions starting from random initial solutions
for two problem instances: medium and hard (largenber of incoming calls and high

variability). Values refer to the fitness obtairtedall the MHs.

Best solution ~ Worst solution Average Standard de\Effectiveness
Algorithm
Medium Hard Medium Hard Medium Medium Hard Medium Hard Medium

MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 100 100

ILS 0.768 0.728 0.755 0.722 0.763 0.725 0.002 0.003 95.85 96.15

VNS 0.790 0.727 0.766 0.723 0.775 0.724 0.005 0.001 97.36 96.02

SA 0.782 0.721 0.773 0.709 0.779 0.716 0.001 0.003 97.86 94.96

It is important to remark that differences amonghteques are not huge after
reaching a fitness 00.8 since the complexity exponentially increases i ou
environment. Therefore, minor improvements on ttree$s value after that point are

hard to obtain but very valuable to accomplishieviarkforce distribution.

Hitherto, we have demonstrated that our (single) MAs been able to
outperform other MHs in our real-world productionveonment. However, we
described our search module as a parallel MA basedn island model (star
topology) with 4 subordinate islands connected to a master isl&oq.can this
architecture obtain better results than the singla? Certainly, yes it can.
Nevertheless, the improvement, which is remarkatdenot be impressive as the
complexity increases asymptotically. Table 10 compahe results obtained by the
parallel MA with those obtained by the single MAheT parallel MA improves the
results of the single MA in 4% for the hardest problem instance &8%for the
easiest one. Although there is no a linear incrénwnfitness, the results are

definitely better. These also converge faster mfined the computing time300s.).

Table 10: Results obtained by our single and parallel MASMexecutions starting from

random initial solutions for the two problem instes studied. Values refer to the fitness.

Best solution  Worst solution Average Standard deEffectiveness
Algorithm
Medium Hard Medium Hard Medium Medium Hard Medium Hard Medium

PMA 0.834 0.818 0.823 0.783 0.829 0.809 0.003 0.002 100 100

MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 96.01 93.20
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6.6 COMPARISON OF WORKLOAD DISTRIBUTION
ALGORITHMS

We have analysed the two main modules of our agprdBorecast module +
search module) and seen that these outperform fathmrus techniques for separate.
Now, we will combine these modules and introduce titynamic time-frame
described in Chapter 4. Specifically, we will comgaur approach throughout a
demanding working day (there was a commercial cégnpduring the day which has
been measured). In this way, we have run the akgoriover a whole day with
approximately315.000calls (up to28.800calls/hour and®.450 simultaneous calls)
under12 double-core processors ofSain Fire E490Gserver (one for the interfaces,
another one data pre-processing, another one éd#tabase, two processors for
controlling, two processors for the forecast modaled the last five ones for the
search module) witB6GB RAM The mean number of agents in each time-frame is
2.10Q having 16 different skills for each agent on averagainfimum=1 and
maximum=108 The total number of CGs &0. The mean processing times differ a
lot, depending on the CG (from seconds to minutéB)data were taken from our
MSCC.

Now, we compare our approach with classical SBR6J1ED-SBR (an
improvement of classic SBR [106]) and Koole’s aitjon [11]. Figure 38 illustrates
the real service level given by these techniquesmg@a demanding working day. The
graphs compile the real service levels for each C@hsidering the relevance
(weight) of each one. Since incoming traffic maialyives from9 a.m. till 8 p.m.;
therefore, we need more accurate results for thie-interval and, particularly, for
the peaks which occur around 13 p.m. (see [&2nh Figure 38),15 p.m. (see point
66 in Figure 38) and9 p.m. (see point00in Figure 38) because, in these points, the
load is much higher. Our approach clearly improthess results reached by other
algorithms in these critical points (peaks). Foe tiest of points, we see that our
algorithm usually better behaves than the resecdfitiques. Classic SBR and ED-
SBR sometimes offer a similar configuration of agetman our approach for some
time points and, consequently, the same serviogldebut, on average, the service
levels are clearly worse than ours. Only in fewngmi the service level provided by
ED-SBR and SBR is slightly higher than ours (emuad 11:45, pointl7). This
happens because in these points, our predictiaha lgaeater error and SBR and ED-
SBR consider the current state of the system. Hewewve can see that differences

are tiny in these critical points and we presentarsiable results over the time. This
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corroborates that an adaptive middle-term time-&asnrecommended as algorithms
can reach nearly optimal solutions while short-tatgorithms often collapse in local
optima. But, short-term algorithms present a highpdability to changes that long-
term time-frame techniques cannot cope with. THesg-term based techniques
generally extract patterns from the historical axd only appropriate for stable
environments. For this reason, our algorithm an® $Btperform Koole’s approach
which is designed for more stable MSCCs. Koolegodathm finds very accurate

solutions when the dynamism is more reduced suchclassical staffing.

Nevertheless, this is not the case of our envirorinamd this kind of techniques

cannot be efficiently applied to our MSCC.
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Figure 38: Service level given by different techniques fokhole campaign day. X-axis
represents intervals of 300 seconds and Y-axiesgnts the real service level (not a fithess
value).

Table 11 compares the results obtained by all igales presented in Figure 38.
Table 11 presents the mean service levell&fFrintervals, its standard deviation and
the effectiveness, considering that our methodesaprts the highest performance.
Note that we are actually comparing the behavidulowr approach with other
conventional techniques during a complete day rdtian focusing on specific time-
frames as we have presented till now. It is cruolafaining accurate results for
isolated time-frames but we cannot obviate that ame executing our approach
continuously so that the transitions among syst&tes (for each time-frame) must

be taken into account.
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Table 11: Comparison of our approach with other relevanil @antre) algorithms fo20 5-

minute intervals.

Algorithm Real service level Standard deviation e&if/eness
Our Approach 0.941 0.020 100
ED-SBR 0.901 0.043 95.757
SBR 0.860 0.056 91.405
KOOLE 0.733 0.029 77.896
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CHAPTER 7. CONCLUSIONS AND

FUTURE WORK

The present chapter summarises the ideas exposédisindissertation and
highlights the major contributions of our work ie@ion 7.1. We also give some
guidelines for future work in Section 7.2.

7.1 SUMMARY AND CONCLUSIONS

We have presented a novel approach to the problevoriforce distribution in
dynamic multi-agent systems based on blackboartitaotures (common repository
of knowledge). We have seen that these systemsxaremely complex and entail
quick adaptations to a changing environment thit bigh-speed greedy heuristics
can handleThese greedy heuristics consist in a permanentareymg, considering
the current system state. Intuitively, these qyitkken decisions are not appropriate

for middle and/or long term planning due to theesgant erroneous movements.

However, we have demonstrated that the use of lparakmetic algorithms,
which are more versatile than classical heuristiag, guide us towards more accurate
solutions. With the intention of applying parallelemetic algorithms to such a
dynamic environment, we have put forward a refoatiah of the traditional problem
of workforce distribution in dynamic multi-agent stgms based on backboard
architectures, which coalesces predictions of &utgystem states with a precise
search mechanism, by dynamically enlarging or dishing the time-frame
considered. We have claimed that the size of thee-frame depends upon the
dynamism of the system (smaller when there is Higiamism and larger when there

is low dynamism).

The present work has also illustrated how nearltintgd solutions eachv
seconds (size of the time-frame) outperforms cootis bad distributions when the
right size of the time-frame is determined, anddjmtions and optimisations are
correctly carried out. Particularly, we have pragmbsa neural network with an

upgraded resilient propagation learning algorithar predicting future system
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variables and a parallel memetic algorithm basedroisland scheme to perform the

assignment of incoming tasks to the right availagents.

Our approach has been tested out on a real-woolduption environment from

Telefénica which is a large multinational telephaperator. We have shown that our

approach not only outperforms other conventionethiéques for separate but also as

a unified technique. Therefore, we have obtaineteraocurate predictions than other

famous forecast techniques for various problemamtsts. Besides, our search

module based on a parallel memetic algorithm hatpesiormed other meta-

heuristics under different scenarios. Additionalihe combination of the two

modules with the adaptive middle-term time-frame lravolved fine results. This

corroborates that an adaptive middle-term time-facan be a very powerful

approach when having the required tools to impldénteut, all that glitters is not

gold, and we assert our approach is not universahaight offer less accurate results

than other approaches in environments in whichnigms not a critical constraint or

conditions are more stable and predictable.

Finally, the contributions to the scientific littwae have produced the following

peer-reviewed publications ((1) and (2) are lessatly related to this dissertation):
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1)

2)

3)

Martinez-Lopez, R.; MillAn-Ruiz, D.; Martin-Domingg, A. and Toro-
Escudero, M.A.:An Architecture for Next-Generation of Telecare
Systems Using Ontologies, Rules Engines and DatinyliProceedings
of the International Conferences on Computationgklligence for
Modelling, Control and Automation; Intelligent Agsn Web
Technologies and Internet Commerce; and InnovaiionSoftware
Engineering (CIMCA 2008), p. 31-36, Vienna, Austiieecember 10-12,
2008.

Melendez, J.; Lépez, B. and Millan-Ruiz, DProbabilistic models to
assist maintenance of multiple instrumeifsoceedings of the 14th IEEE
International Conference on Emerging Technologiex d&actory
Automation (ETFA 2009), p. 1499-1503, Palma de bfath, Spain,
September 22-26th, 2009.

Pacheco, J.; Millan-Ruiz, D. y Vélez, J.LNeural Networks for
Forecasting in a Multi-skill Call Centre Proceedings of the 11th
International Conference on Engineering Applicadiomf Neural
Networks (EANN 2009), p. 291-300, London, UK, Auggg-29, 2009.
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4)

5)

6)

7

8)

Millan-Ruiz, D. and Hidalgo, I.A Memetic Algorithm for Workforce
Distribution in Dynamic Multi-Skil Call Centre®roceedings of the 10th
European Conference on Evolutionary ComputationCombinatorial
Optimisation (EVOCOP 2010), p. 178-189, IstanQuitkey, April 7-9,
2010.

Milldn-Ruiz, D.; Pacheco, J.; Hidalgo, I. y Vélekl .: Forecasting in a
Multi-skill Call Centre Proceedings of the 10th International Conference
on Artificial Intelligence and Soft Computing (ICBC 2010), Zakopane,
Poland, June 13-17, 2010.

Millan-Ruiz, D. and Hidalgo, l.Algoritmo memético paralelo para la
distribucion de esfuerzo en centros de llamadaardinos multiagente y
multitarea (Accepted) To appear in the 7th Spanish ConferemcMeta-
heuristics, Evolutionary Algorithms and Bioinspiraéyorithms (MAEB
2010), Valencia, Spain, September, 2010.

Millan-Ruiz, D. and Hidalgo, I|.:Comparison of Metaheuristics for
Workforce Distribution in Multi-Skill Call CentresSubmitted to the
International Joint Conference on Computationaklligence (ICEC
2010).

Millan-Ruiz, D. and Hidalgo, I.:A Self-Tuning Hybrid Memetic
Algorithm for Dynamic Multi-Agent Systems based Blackboard
Architectures Submitted to the Workshop on Self-tuning, self-
configuring and self-generating search heurist®aff 2010). Extended
versions of selected contributions from this worgshvill be considered
for publication in a Special Issue of the Evoluaon Computation
Journal, MIT Press.
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7.2 AREAS OF FUTURE RESEARCH

To conclude, we propose some guidelines for futuogk. We recommend
analysing more datasets and more problem instdrezaise we may obtain different
conclusions with regard to the configuration of @amplete approach. So, if the

arriving load is easy to predict we should choosaler forecast technique.

A deeper study on constraint handling should beedas our proposal is
dependent on our specific domain (e.g. we may diferent ranges for the levels of

constraints).

For the dynamism levels, we can also have a camiiapproximation (without
levels) for those dynamic multi-agent systems whaggents are not humans so that
we do not need to care about the agents’ rights dare potentially change their

profiles at any time without regulation constrajnts

Additionally, we suggest that an analogous study ttee search module
comparison should be done, considering multi-objeatvolutionary approximations

(such as SPEA-Il and NSGA-II), given our problerforsulation.
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