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2 ABSTRACT  

This work describes a novel approach to workforce distribution in dynamic 

multi-agent systems based on backboard architectures. These environments entail 

quick adaptations to a changing environment that only fast greedy heuristics can 

handle. These greedy heuristics consist of a continuous re-planning, considering the 

current state of the system. As these decisions are greedily taken, the workforce 

distribution may be poor for middle and/or long term planning due to incessant wrong 

movements. The use of parallel memetic algorithms, which are more complex than 

classical, ad-hoc heuristics, can guide us towards more accurate solutions. In order to 

apply parallel memetic algorithms to such a dynamic environment, we propose a 

reformulation of the traditional problem, which combines predictions of future 

situations with a precise search mechanism, by enlarging or diminishing the time-

frame considered. The size of the time-frame depends upon the dynamism of the 

system (smaller when there is high dynamism and larger when there is low 

dynamism). This work demonstrates how nearly optimal solutions each v seconds 

(size of the time-frame) outperforms continuous bad distributions when the right size 

of the time-frame is determined, and predictions and optimisations are properly 

carried out. Specifically, we propose a neural network for predicting future system 

variables and a parallel memetic algorithm to perform the assignment of incoming 

tasks to the right agents, which outperforms other conventional approaches. 

Additionally, we propose a modification of the resilient back-propagation algorithm 

and evolutionary operators based on meta-heuristics. To conclude, we test out our 

method on a real-world production environment from Telefónica which is a large 

multinational telephone operator. 
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1 CHAPTER 1. INTRODUCTION  

1.1 OVERVIEW  

Over the last years, a gradually-growing interest in parallel and distributed 

computing has arisen in computer science. This concern has guided research activities 

to areas such as parallel and distributed programming, distributed information 

systems, and parallel and distributed hardware architectures. Truthfully, there exists a 

vast bibliography (e.g. see [1-3]) about this issue, although there are still paths to 

explore. 

Furthermore, we perceive a tendency to tackle increasingly complex problems 

and application domains which frequently involve the processing of continuous, 

dynamic data flows. These arduous environments are usually hard to be efficiently 

maintained by conventional and sequential techniques. Nevertheless, parallel and 

distributed methods not only mitigate this drawback but also present several valuable 

characteristics such as robustness, traceability, problem simplification, adaptivity, 

scalability and speed-up. 

Conversely, dynamics, synchronisation and behaviour appear as intricacies of 

parallel and distributed information systems because the representation of linear 

problems into sub-problems is not always feasible or straightforward. 

Anyhow, parallel and distributed systems should somehow self-improve to attain 

high performance. In fact, nowadays, a wide range of studies on adaptive techniques 

in parallel and distributed information systems can be found [4, 5]. 

A classical, well-suited problem for studying dynamic systems is the workload 

distribution in multi-agent systems. Agents can work for a common goal, coordinate 

the plans or draw up a plan for others’ tasks. Although there are lots of multi-agents 

systems, we will focus on those encapsulated in blackboard architectures [6, 7]. In 

other words, we will work on systems with a common repository of knowledge. 

The basic variant of a workforce distribution problem requires the assignment of 

task to agents who have the required skills to handle them over time, satisfying a 

given set of additional constraints and respecting the dependencies among individual 
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tasks and differences in the execution skills of the agents. This problem has multiple 

variants but, depending on the dynamism of the system, we can principally 

distinguish two main scenarios: 

1) On the one hand, we can find short-term planning environments in which 

a continuous planning is needed due to the high dynamism of the system. 

These solutions attempt to distribute the workload among agents by 

applying “basic” ad-hoc heuristics, looking at the current situation 

(without predictions or predictions for a short time-frame). This feature 

can be effortlessly seen in workload allocation within a dynamic multi-

skill call centre [8]. 

2) On the other hand, we can find long-term planning systems in which the 

list of tasks is predefined and known by all agents like in the classic 

scheduling problem [9]; or environments in which a single task type is 

assigned to each agent for a long period of time, similarly to the job 

assignment problem [10]. In other cases, agents are assigned to patterns 

of tasks, instead of specific tasks (such as in pattern-based scheduling 

[9]). Analogously, stable multi-skill call centres [8] can be also included 

in this group. These solutions consider stable behaviour over time, 

anchored in historical data and apply more complex algorithms to match 

agents and task types. However, when having a dynamic system, these 

approaches cannot be efficiently applied, since an adaptive method is 

required. 

Our proposal is encapsulated in the first scenario: dynamic systems. We put 

forward an alternative approach to traditional solutions which relies on an adaptive 

middle-term time-frame, instead of a short-term one (when the dynamism is very low, 

it is analogous to having a long time-frame). In other words, we reformulate the 

traditional problem by dynamically enlarging or diminishing the time-frame 

considered to better adapt the algorithm to the current state of the system. Figure 1 

explains where our approach is positioned. Besides, we provide the required 

mechanisms to implement this more efficient, adaptive solution. Although this 

solution can be extended to countless domains and multi-agent systems, we will go 

over the call centre application (see Chapter 5) in order to examine its idiosyncrasy 

and complexity. 
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Figure 1: Adaptive time-frame.  

 

Table 1 summarises some fundamental characteristics of the previously 

described scenarios in relation to the time-frame considered. 

Table 1: Comparison of the time-frame considered for the workforce distribution problem. 

Time-frame Complexity Response time Adaptability Performance CPU Utilisation 

Short-term planning low low medium medium low 

Middle-term planning high medium high high high 

Long-term planning medium high low low high 

 

To conclude this outline, we would like to stress that this study has been applied 

to (and supported by) Telefónica (http://www.telefonica.com). Telefónica is one of 

the world's largest telecommunications companies by market capital. Its activities are 

mainly centred on the fixed and mobile telephony businesses, while its broadband 

business is the key growth driver, underpinning both. It operates in 25 countries and 

its customer base exceeds 264 million people worldwide. Telefónica's growth strategy 

is focused on the markets in which it has a strong foothold: Spain, Europe and Latin 

America. The Group stands in third position in the sector Telco worldwide in terms of 

market capitalisation, the 1st as an European integrated operator and also the third in 

the Eurostoxx 50 ranking, composed of the major companies in Europe (December 

31st 2009). 
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1.2 MOTIVATION AND MAIN OBJECTIVES  

The problem of workload distribution in multi-agent systems is an appealing and 

challenging subject of research not only from the point of view of machine learning 

but also from a business angle. The eminent complexity of this problem makes it even 

more interesting and a firm member of the class of NP-hard problems [13]. Besides, 

timing constraints complicate, even more, finding an accurate, feasible solution. 

Another reason to analyse this problem is that it is often omnipresent in our daily life 

and is highly relevant to many industrial application domains like trading and 

workflow organisation. 

From a parallel computing angle, this problem is also tempting since it 

inherently allows for parallelism because the tasks to handle can be distributed over 

several nodes and also because the nodes can execute different tasks in parallel. 

From an artificial intelligence point of view, this problem is also very motivating 

because it involves many fields which range from forecasting techniques derived 

from machine learning theory to optimisation algorithms that use diversity 

maintenance techniques from evolutionary computation (EC) and other local search 

schemes like simulated annealing or tabu search. 

The main purpose of this work is to provide a solution, which is fully described 

in Chapter 4, for dynamic multi-agent systems based on blackboard architectures. 

Thus, an efficient forecasting method must be provided in order to predict the real 

situation in next time-frame (future system state) and, therefore, an optimisation 

algorithm must be performed to determine the right assignment task-agent. 
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1.3 CONTRIBUTIONS  

The contributions of this work can be devised from diverse perspectives 

although the main contribution is the presentation of a novel approach to the 

workforce distribution problem which coalesces forecasting with optimisation by 

considering an adaptive middle time-frame. We also apply this approach to a real-

world production environment (multi-skill call centre) from one of the largest telecom 

operators around the world (Telefónica). 

Typically, traditional process management systems rigidly distribute tasks to 

queues from which agents take and process work, regularly opting for the precise 

tasks they actually desire to cope with. In contrast, our approach enhances workforce 

distribution by additionally injecting real-time knowledge of the task, individual skill 

sets, and availability and utilisation of the workforce, allowing for dynamic and 

active distribution of tasks over time. 

Additionally, our method provides further clearness on customer service level 

agreements and endows with insights into optimisation, offering outstanding 

customer service. 

In addition, our approach enables us to work at a lower level of granularity (fine-

grain) than short-term algorithms do (coarse-grain), because our search algorithm has 

more time to find a solution than conventional techniques, thanks to the predictions of 

future states. We can then work at agent’s profile level instead of predefined sets of 

agents as other methods impose. Other conventional techniques consider steady 

environments which are far from the soundness of a dynamic mechanism. 

Furthermore, other technical contributions of this dissertation can be summarised 

as follows: 

1) This work proposes a parallelisable approach based on island models to a 

real-world NP-hard problem, using different fields from Artificial 

Intelligence. 

2) New genetic algorithm operators are proposed in order to maintain a 

balance between diversity and intensity when searching in such an 

environment. These operators are often inspired in other meta-heuristics 

schemes. 

3) We also propose a partial fitness function in order to speed-up the 

evaluations of candidate solutions. 
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4) Three exhaustive comparisons among different classical forecasting 

techniques, various classical heuristics for dynamic multi-agent systems 

and other meta-heuristics applicable to dynamic multi-agent systems are 

provided from multiple points of view. 

Finally, the contributions to the scientific literature have produced the following 

peer-reviewed publications ((1) and (2) are less directly related to this dissertation): 

1) Martínez-López, R.; Millán-Ruiz, D.; Martín-Domínguez, A. and Toro-

Escudero, M.A.: An Architecture for Next-Generation of Telecare 

Systems Using Ontologies, Rules Engines and Data Mining. Proceedings 

of the International Conferences on Computational Intelligence for 

Modelling, Control and Automation; Intelligent Agents, Web 

Technologies and Internet Commerce; and Innovation in Software 

Engineering (CIMCA 2008), p. 31-36, Vienna, Austria, December 10-12, 

2008. 

2) Melendez, J.;  López, B. and Millán-Ruiz, D.: Probabilistic models to 

assist maintenance of multiple instruments. Proceedings of the 14th IEEE 

International Conference on Emerging Technologies and Factory 

Automation (ETFA 2009), p. 1499-1503, Palma de Mallorca, Spain, 

September 22-26th, 2009. 

3) Pacheco, J.; Millán-Ruiz, D. y Vélez, J.L.: Neural Networks for 

Forecasting in a Multi-skill Call Centre. Proceedings of the 11th 

International Conference on Engineering Applications of Neural 

Networks (EANN 2009), p. 291-300, London, UK, August 27-29, 2009. 

4) Millán-Ruiz, D. and Hidalgo, I.: A Memetic Algorithm for Workforce 

Distribution in Dynamic Multi-Skil Call Centres. Proceedings of the 10th 

European Conference on Evolutionary Computation in Combinatorial 

Optimisation (EVOCOP  2010), p. 178-189, Istanbul, Turkey, April 7-9, 

2010. 

5) Millán-Ruiz, D.; Pacheco, J.; Hidalgo, I. y Vélez, J.L.: Forecasting in a 

Multi-skill Call Centre. Proceedings of the 10th International Conference 

on Artificial Intelligence and Soft Computing (ICAISC 2010), Zakopane, 

Poland, June 13-17, 2010. 

6) Millán-Ruiz, D. and Hidalgo, I.: Algoritmo memético paralelo para la 

distribución de esfuerzo en centros de llamadas dinámicos multiagente y 

multitarea. (Accepted) To appear in the 7th Spanish Conference on Meta-
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heuristics, Evolutionary Algorithms and Bioinspired Algorithms (MAEB 

2010), Valencia, Spain, September, 2010. 

7) Millán-Ruiz, D. and Hidalgo, I.: Comparison of Metaheuristics for 

Workforce Distribution in Multi-Skill Call Centres. Submitted to the 

International Joint Conference on Computational Intelligence (ICEC 

2010). 

8) Millán-Ruiz, D. and Hidalgo, I.: A Self-Tuning Hybrid Memetic 

Algorithm for Dynamic Multi-Agent Systems based on Blackboard 

Architectures. Submitted to the Workshop on Self-tuning, self-

configuring and self-generating search heuristics (Self* 2010). Extended 

versions of selected contributions from this workshop will be considered 

for publication in a Special Issue of the Evolutionary Computation 

Journal, MIT Press. 
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1.4 MARKET RELEVANCE  

The market relevance of the present work can be devised from three distinct 

angles: customer satisfaction (happy customers remain loyal to their telecom 

operator), optimisation of resources (monetary savings as a result of a better 

workforce distribution) and employee satisfaction (brand pride, self-esteemed 

fortification and fair workload allocation). 

Various studies [14, 15] prove that users’ key period to migrate to another 

telecom operator (also denoted as churn) after having a negative experience with call 

centre’s (CC) contact service is, for the majority of individuals, about 10 days from 

the notification date. During these days, and even afterwards, these people negatively 

influence their social circles or communities, causing a cascade effect which implies 

huge losses of money to telecom operators every year.  

If an organisation is planning to link up with any existing outbound churn 

prediction models, based on likelihood to churn, then there appears the need of 

having a process for risk prioritisation (potential churners are prioritised) built, if the 

company has capacity constraints in its outbound CC (when there are not enough 

resources to directly contact potential churners, an automatic risk prioritisation in 

needed in the inbound CC). 

However, we should highlight we cannot evade churn effect as far as it decidedly 

depends upon multiple individual reasons. There, CCs can play an important role in 

churn prevention as a consequence of customer satisfaction enhancement which 

irrefutably leads us to customer loyalty. 

By upgrading customer service with our approach, Telefónica has estimated 

savings of up to €2,000,000 per year only in Spain, as it enhances brand loyalty 

(customers are happier with their telecom operator) and other encouraging behaviours 

such as word of mouth advocacy. 

Nevertheless, customer satisfaction is not the unique edge from where we can 

profit. Another important aspect refers to the optimisation of resources we are 

actually doing because we increase the speaking level of each agent. If we consider 

the mean upgrading percentage obtained by our approach in 2009 (7%), we can 

affirm that, only in Spain, it is possible to obtain savings up to €3,000,000 per year 

(Figure 2 shows the two main bases of success for a telecom operator). 
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Figure 2: Customer satisfaction and resources optimisation can be monetised. 

 

Besides, we can enhance another important factor; the employee satisfaction. 

Maintaining morale high among agents can be of extraordinary benefit to any telecom 

operator, as happy agents will be more prone to reply to more incoming calls and stay 

loyal to the company. This occurs because agents are much fairly treated as a 

consequence of a better allocation of workload. Agents cannot feel they are being 

fairly treated whether other agents have to work less time, earning the same money 

and having similar (or even identical) skills. 

As a final point, we can extend this work to many other dynamic multi-agent 

systems in which the list of tasks is not predefined such as plane maintenance [16], 

online trading [17], disaster response [18], congestion in stations [19] or overloading 

in networking nodes [20]. 
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1.5 DISSERTATION ORGANISATION  

The rest of this document is organised as indicated in the present section. 

Chapter 2 introduces the problem of workload distribution in dynamic multi-

agent systems from a generic point of view in Section 2.1 and from formal 

perspective in Section 2.2. In Section 2.3, we address the difficulty of handling hard 

and soft constraints. 

Chapter 3 presents an overview of those aspects of research that are relevant to 

the problem faced. The required background for situating the work presented in this 

document and making a proper understanding of it is given in Section 3.1. Section 3.2 

presents a survey of existing work from different points of view, considering 

commonalities with other problem domains. Section 3.3 kindly discusses the state-of-

the-art and introduces some bases to outperform related work. 

Chapter 4 proposes a new approach to the problem addressed in this work. 

Section 4.1 sets out the bases of this novel approach. Section 4.2 describes the 

methodology that we have followed. Section 4.3 focuses on the forecast component 

which supports the first module of our approach. Section 4.4 describes the second 

component of our approach; in other words, the search module. In Section 4.4, we 

also propose multiple mechanisms to maintaining a fair balance between diversity 

and intensity in simple and parallel genetic algorithms when optimising. 

In Chapter 5, we adapt our approach to a real-world DMAS: the multi-skill call 

centre. Section 5.1 describes the specific characteristics of our problem domain. 

Section 5.2 presents a brief survey of call centre algorithms. Section 5.3 highlights 

the magnitude, in terms of volume, of our application domain. In Section 5.4, we 

present some special adaptations for the forecast module. In contrast, Section 5.5 

points out some particular adaptations for the search module. 

Section 6.1 describes the dataset employed. Section 6.2 points out the hardware 

descriptions of the SunFire sever in which the evaluations have been performed. 

Section 6.3 analyses the selected metrics for testing and comparing our approach. 

Section 6.4 examines the forecast module for five different CGs as there are too many 

to accomplish an exhaustive study for all of them. Section 6.5 evaluates the search 

module by studying several time intervals from days with different complexity; this 

section also compares our search module with other acknowledged techniques. In 

Section 6.6, we will analyse our complete approach (forecast module + search 
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module) for one-day campaign. We will also compare how our complete approach 

outperforms other conventional call centre’s algorithms.    

Chapter 7 concludes our work with a summary of major contributions in Section 

7.1 and points out prospects for future work in Section7.2. 
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2 CHAPTER 2. PROBLEM  OF WORKLOAD 

DISTRIBUTION IN DYNAMIC MULTI -

AGENT SYSTEMS 

The present chapter describes the problem of workload distribution in dynamic 

multi-agent systems from different perspectives. The main aim of this chapter is to 

introduce this problem to the reader as the pillars of the present work rely on the 

concepts given throughout the following sections.  

Section 2.1 presents the problem of workload distribution in dynamic multi-

agent systems from a generic point of view. Section 2.2 formalises the problem 

definition in order to provide the present work with a higher level of scientific rigor. 

In Section 2.3, we tackle the difficulty of handling hard and soft constraints as it is 

the typical situation in real-world environments. 

 

2.1 GENERIC DEFINITION OF THE PROBLEM  

The term intelligent agent (IA) [21] describes an autonomous entity which is 

able to observe and interact with its environment in order to accomplish a given set of 

tasks [22]. IAs may also learn from their environment or use previous knowledge of 

the domain to achieve their goals. Their complexity can range from very simple 

systems to very complex ones. Unlike objects, which are defined in terms of methods 

and attributes, an agent is defined in terms of its behaviour. 

Different authors [21-23] have proposed diverse definitions of agents which 

commonly include concepts such as persistence (code is not executed on demand and 

decides for itself when it should perform a given activity), veracity (an agent cannot 

communicate false information), kindness (agents do not have conflicting goals), 

rationality (agents will act in order to achieve their goals), learning (agents improve 

performance over time), autonomy (agents have capabilities of task selection, 

prioritisation and goal-oriented behaviour), sociability (agents are able to engage 
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other components through some sort of communication and coordination, so that they 

may collaborate on a task) and reactivity (agents perceive the context in which they 

operate and react to it appropriately). 

When several agents interact, these may compile a multi-agent system (MAS) 

[24]. Characteristically, such agents have a partial point of view of the problem and 

thus need to cooperate with other agents. Furthermore, there may be no global control 

and thus such systems are sometimes denoted as swarm systems. In these cases, data 

are decentralised and execution is asynchronous. 

The real world is actually a multi-agent environment because we often need to 

cooperate with others in order to achieve our own goals. In fact, many goals can be 

only achieved with the cooperation of others. Social ability in agents is the ability to 

interact with other agents (and possibly humans) via some kind of agent-

communication language. 

Commonly, the basic variant of the workload distribution problem in a dynamic 

multi-agent system (DMAS) requires the assignment of task to agents which have the 

required skills to handle them over time, satisfying a predefined set of additional 

constraints and respecting the dependencies among individual tasks and differences in 

the execution skills of the agents.  

In a common DMAS, there are n tasks or work items grouped in k types of tasks 

and m agents that may have up to l skills (l ≤ k) to perform these works. In this 

manner, each agent can process different types of tasks and, given a type of task, it 

can be carried out by several agents that have that skill. The set of skills an agent has 

is frequently denoted as profile. These profiles can be truly heterogeneous as there are 

massive potential skills. 

Although agents may have multiple skills, each agent can only process one 

operation at the same time. Furthermore, given an operation, it requires an unknown 

amount of time to be accomplished. Besides, each agent must orderly process each 

operation during an uninterrupted period of time; in other words, the task cannot be 

divided or postponed once it has already started. 

Constraints may be given by many factors that we cannot cover in this section as 

this issue is problem dependent. However, we will describe how we propose to treat 

them in Section 2.3 and present a real example in Chapter 5. 
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The solution to the problem of workload distribution in dynamic multi-agent 

systems consists in dynamically assigning every task (according to its type) to the 

right agent so that this solution satisfies all hard constraints and respects, if possible, 

all soft constraints. 

Eventually, we need a metric of quality to measure the rightness of each 

solution. Of course, the definition of the quality function is problem dependent too. In 

Chapter 5, we will show an example of quality function for the dynamic multi-skill 

call centre use case. 
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2.2 FORMAL DEFINITION OF THE PROBLEM  

Formalising the definition given in Section 2.1, we can find the following 

parameters in a dynamic multi-agent system based on blackboard architecture: 

1) a finite set of n tasks or work items },...,,{ 21 nwwwW = . 

2) a finite set of k task types }...,,,{ 21 ktttT = , where nk ≤  when every task 

type has, at least, one task assigned. 

3) a finite set of m agents }...,,,{ 21 maaaA = . 

4) a finite set of k agent-skills }...,,,{ 21 ksssS=  in which each agent-skill, 

is , represents the capability to handle the corresponding type of task, it , 

with the equivalent sub-index in T: kk tststs ~,...,~,~ 2211 . 

5) a finite set of d agent-skill profiles }...,,,{ 21 dPPPP =  in which each 

agent-skill profile Pi can be any subset of }...,,,{ 21 ksssS= . 

6) a finite set of n operations (execution or processing of each task, iw ) 

}...,,,{ 21 noooO =  in which each operation, io , has associated a 

processing time which depends on its type of task: },...,,{ 21 kτττ . 

The goal is to obtain the right assignment (solution) for every agent ai to the 

most suitable profile Pj from the potential skill profiles of each agent ai for each v 

seconds, where v is the size of the time-frame considered.  

Figure 3 illustrates a feasible solution for a given time-frame, supposing that 

agent a1 has the skills to process t1 and t2 (s1 and s2), agent a2 has the skills to process 

t1 and tk (s1 and sk), agent a3 has the skill to process t2 (s2) and agent am has the skills 

to process t1 and tk (s1 and sk). 

In addition, the assignment 
tji Pa , must satisfy all hard constraints and handle 

the soft ones. To determine whether (or not) a given solution is appropriate, we need 

to define a quality metric to evaluate the rightness of each feasible solution. This 

function is intuitively problem dependent as aforementioned. 

Moreover, the solution must fulfil the following descriptions: 

1) on O define R, a binary relation which represents the precedence among 

operations. If  Roo ∈),( 21
 then o1 has to be performed before o2. 
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2) every agent, ia , has associated a finite non-null subset of P, containing 

his or her skills to handle different types of tasks (individual skill-

profile). 

3) the same profile 
iP can be assigned to several agents. In other words, 

several agents may have some skills in common (or even all of them). 

4) every agent, ia , may have several profiles assigned but only one can be 

performed at a given instant t, 
tji Pa , . Therefore, an agent cannot process 

two (or more) operations at the same instant. 

5) every solution must respect diverse (hard and soft) constraints given by 

business rules defined. 

Figure 3 illustrates the situation described above in this section. We present an 

example in which each agent has certain potential skills (at least one) to attend some 

tasks types. The fact that a given agent has multiple skills does not mean he must 

attend all these types at the same time within a given interval (do not confuse 

potential skills with currently assigned skills). 

 

Figure 3: Multi-agent system configuration based on the potential skills of all agents. 
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2.3 CONSTRAINT OPTIMISATION PROBLEM  

The problem described in Section 2.2 can be viewed as a constraint optimisation 

problem (COP) [25]. A COP is characterised by a set of v variables, {��, ��, … , ��} 
and a set of c constraints {	�, 	�, … , 	
} for a nonempty domain �� of feasible values. 

A system state is defined by an assignment of values to some (or all) variables.  

An assignment that does not violate any constraints is denoted as consistent or legal 

assignment. A complete assignment is one in which every variable is mentioned, and 

a solution to a COP is a complete assignment that satisfies all the constraints.  In our 

case, the constraints are associated to the tasks, the agents, timing, actions or 

desired/undesired situations. 

Classic COPs treat constraints as hard, referring to the fact that each feasible 

solution must satisfy all constraints. In other words, a solution is feasible only if it 

satisfies every single constraint. In contrast, flexible COPs relax this assumption by 

partially relaxing constraints and allowing the solution not to comply with all them 

(soft constraints). 

We consider the weighted constraint optimisation problem (WCOP) in the 

present work, in which each violation of a soft constraint is weighted according to a 

predefined relevance (relevance is usually given by the business units of a company). 

Consequently, satisfying soft constraints with more weight is preferred whereas hard 

constraints cannot be violated in any case. The violation of soft constraints is 

penalised according to the degree of non-accomplishment of these constraints and 

their relevance. 

Weights can be assigned by defining level of constraints. For each level, we can 

define a range for the weights (constraint relevance) and the gap between two levels 

follows a logarithmic function in order to soften the difference among levels. 

Different levels cannot have the same relevance (no overlapping constraints levels) 

and determining the difference among levels is frequently a business driven action 

according to the market relevance. The values for a given level should be 

proportionally assigned. 

Figure 4 illustrates the relationship among constraints and constraint levels for 4 

levels and 7 constraints. In our example, Level 4 (the most relevant constraint level) 

has two constraints where Constraint 1 (C1) has a higher weight than Constraint 2 

(C2). Level 4’s weights range from Ln(4)=1.386 to Ln(4+1)=1.609, (1.386, 1.609]. 
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Therefore, C1 may have a weight of 1.550 ∈ (1.386,1.609] while C2 may have 

weight of 1.450 ∈ (1.386,1.609] (these weights are fictitious, we just want to remark 

that C1 has a higher weight than C2 in Figure 4.  

Level 3’s weights range from Ln(3)=1.098 to Ln(3+1)=1.386, (1.098, 1.386] 

and Level 2’s weights range from Ln(2)=0.693 to Ln(2+1)=1.098, (0.693, 1.098]. 

Level 3 and Level 2 have a unique constraint which must belong to its respective 

constraint level’s range. Of course, Level 3 has more relevance than Level 2 which 

has more importance than Level 1 at the same time. 

Level 1’s weights range from 0.1 (we will consider 0.1 as a minimum) to 

Ln(1+1)= 0.693, (0.1, 0.693]. In Level 1, all constraints have the same relevance as 

take the same “space” in the level (let’s say 0.5). 

Note that if we need to set up higher differences among levels, we just need to 

assign a higher range of weights for each level but this is problem dependent (we 

have just shown an example). 

Finally, we need to normalise all penalisations by dividing by the total sum of 

weights assigned to the soft constraints. 

 

 

Figure 4: Relationship among constraints. 

 

The aim is to find a solution to the problem whose cost, evaluated as the sum of 
the cost functions (penalisations of soft constraints), is minimised. 
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3 CHAPTER 3. LITERATURE REVIEW  

This chapter provides the reader with an overview of all relevant aspects of 

scientific research for the problem described in Chapter 2. The core background for 

situating the present work is given in Section 3.1. Section 3.2 presents a survey of 

related work from diverse perspectives, considering commonalities with other 

problem domains. In future chapters, we will examine how to adapt some of these 

techniques to our use case (call centre). Section 3.3 kindly discusses the state-of-the-

art and introduces some bases to outperform existing work. 

 

3.1 BACKGROUND  

Throughout the present work, very heterogeneous fields from artificial 

intelligence (AI) have been applied. Prior to analysing existing work and proposing a 

novel approach to the problem of workload distribution in DMAS, it is necessary to 

endow the user with some required background in order to better understand diverse 

concepts and proposed solutions. 

 

3.1.1 Local Search 

In computer science, local search (LS) [26] is a meta-heuristic (MH) for solving 

computationally hard optimisation problems. LS can be pertained to problems that 

can be formulated as finding a solution by maximising or minimising a criterion 

within a set of candidate solutions. 

Frequently, the neighbourhood is composed by more than one solution where the 

choice of which one to move to is taken by only considering information concerning 

the solutions within the neighbourhood of the current one. When we select a 

neighbour solution taking the one which maximises the criterion, then the MH is 

named hill climbing. 



Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz 

 

32 
 

LS based algorithms “navigate” the search space, jumping from a solution to 

another one until a solution deemed optimal is reached or a given computing time has 

been elapsed. Another common choice is to terminate when the best solution found 

by the algorithm has not been improved in a given number of steps. LS algorithms are 

typically incomplete algorithms, as the search may stop even if the best solution 

found by the algorithm is not optimal. This can happen even if termination is due to 

the impossibility of improving the solution, as the optimal solution can lie far from 

the neighbourhood of the solutions crossed by the algorithms. 

LS algorithms have been extensively applied to numerous hard computational 

problems, including problems from computer science, mathematics, operations 

research, engineering and bioinformatics [27]. 

To conclude, we provide the pseudo-code adapted to the problem of the 

workload distribution in dynamic multi-agent systems, which illustrates the LS 

algorithm in its basic form: 

void Local_Search (Chromosome & candidate_solution) 

{ 

 Chromosome best_solution = candidate_solution; 

 Chromosome neighbour = candidate_solution; 

 For (i=0; i<candidate_solution.size(); i++) 

 { 

     Agent a = neighbour.getAgent(i); 
     For (j=0; j<a.get_number_profiles(); j++) 

     { 

    neighbour.change_profile(i,j);//profile j for agent i 

          If (neighbour.fitness() > best_solution.fitness())  

  best_solution = neighbour; 

     } 

     neighbour = best_solution;  

 } 

 candidate_solution = best_solution; 

} 

Algorithm 1:  Basic LS pseudo-code. 
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3.1.2 Genetic Algorithms 

A genetic algorithm (GA) [28, 29] is a class of adaptive stochastic optimisation 

techniques which attempts to find exact or approximate solutions for optimisation and 

search problems. GAs were proposed by John Holland in 1975 [28]. GAs are also a 

particular class of evolutionary algorithms (EA) that use techniques derived from 

evolutionary ideas of natural selection and genetics such as inheritance, mutation, 

selection, and crossover or recombination. 

GAs are implemented in a computer simulation in which a population of abstract 

representations (called chromosomes or the genotype of the genome) of candidate 

solutions (called individuals or phenotypes) to an optimisation problem evolves 

toward more accurate solutions.  

The evolution typically begins with an initial population of randomly generated 

individuals and occurs over time by means of generations. In each generation, the 

fitness of every individual in the population is evaluated, multiple individuals are 

selected from the current population (based on either their fitness or composition), 

and modified (recombined and randomly mutated) to compose a new population. The 

new population is then used in the next iteration of the algorithm. Commonly, the 

algorithm ends up when a given number of generations has been produced, or after a 

period of time, or after x generations without evolution, or a satisfactory fitness level 

has been accomplished for the population. If the algorithm has ended up due to a 

maximum number of generations, a satisfactory solution may or not have been 

reached. Further description is given in Section 4.4, since GAs are the bases of the 

solution proposed in this work. 

Procedure Basic_Genetic_Algorithm 

{ 

    Generate an initial population of individuals  

    Evaluate each individual from the population  

    While (stopping condition) 

    {  

       Pick the best individuals for reproduction; 

       Breed new individuals by means of the crossover; 

       Apply a small perturbation over these new individuals;  

       Evaluate their individual fitness;  

       Replace the worst individuals; 

   } 

Algorithm 2:  Basic GA pseudo-code. 
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3.1.3 Memetic Algorithms 

A memetic algorithm (MA) [30] represents one of the current growing areas of 

research in EC. MAs are a population-based technique for heuristic search in 

optimisation problems. These are much faster than traditional GAs for many problem 

domains. Fundamentally, these combine GA’s operators with LS heuristics (an LS 

algorithm typically refines the solution obtained by the GA’s operators).  

Conversely, the continuous application of LS as a refinement mechanism does 

not guarantee a better performance. The frequency and the intensity characterise the 

level of progression (exploration) in opposition to the refinement achieved 

(exploitation) in the MA search. Thus, a more intense exploitation implies having 

more chances of convergence to the local optima. Evidently, it highly depends on the 

stage where the algorithm is, so it is broadly agreed that exploration should be more 

important at the beginning of the process and exploitation should be performed at the 

end [31-33]. However, we will see in this work that success can be achieved by 

dynamically adapting exploration and exploitation, depending on the circumstances 

found in our search. 

For these reasons, some researchers have successfully denoted MAs as Hybrid 

GAs while others consider them as class of MHs. Frequently, MAs are also referred 

to in the literature as Baldwinian EAs, Lamarckian EAs, cultural algorithms, or 

genetic LS. 

Procedure Basic_Memetic_Algorithm 

{ 

    Generate an initial population of individuals  

    Evaluate each individual from the population  

    While (stopping condition) 

    {  

       Pick the best individuals for reproduction; 

       Breed new individuals by means of the crossover; 

       Apply a small perturbation over these new individuals;  

       Evaluate their individual fitness;  

       Replace the worst individuals; 

       Each g generations, refine the k best individuals; 

   } 

Algorithm 3: Basic MA pseudo-code. 
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3.2 CLASSIC APPROACHES TO DMAS 

Chapter 1 presented the two types of algorithms for DMAS we can find in the 

state-of-the-art. There exists a kind of ad-hoc algorithms conceived for short-term 

planning environments in which a permanent planning is required because of the high 

variability of the system. Instead, there are other techniques devised for more stable 

(long-term planning) environments. Nevertheless, when facing a dynamic system, 

these approaches cannot be efficiently applied, since an adaptive method is needed. 

In this section, we describe different techniques which could be applied to the 

problem of workload distribution in dynamic multi-agent systems (stable 

environments are out of the scope of this dissertation). Note that the purpose of this 

section is to briefly describe these techniques rather than to deeply detail them as the 

reader can carefully peruse the references provided in the following subsections, if 

desired. 

 

3.2.1 Random Workload Balancing 

Random workload balancing (RWB) [34] purely assigns a random profile to 

each agent (among the available ones for that agent). In RWB, the neighbourhood 

covers the whole search space. After multiple iterations, the best solution found is 

chosen. Supposing there are s possible solutions, the probability of finding the global 

optimum is 1/s for each execution. This technique can be appropriate whether there is 

little communication overhead and numerous agents are available. As the number of 

agents decreases, the workload of the busiest agents increases in relation to the 

average agent workload, resulting in poor parallel efficiency. Since each task is 

assigned to an agent by selecting a random destination, RWB only needs to execute a 

single pass through the tasks list.  

 

3.2.2 Random Neighbour Search 

Differently to LS, random neighbour search (RNS) [35] consists in jumping 

from a candidate solution to a random neighbour (note that basic LS sequentially 

explores the neighbourhood). If the hop implies an improvement of the candidate 

solution, the best solution is updated and then considered as new candidate solution. 

This process is carried out until a given computing time has been elapsed or a fixed 

number of random neighbours has been generated.  



Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz 

 

36 
 

 

3.2.3 Greedy Workload Balancing 

Greedy workload balancing (GWB) [36] reallocates agents without considering 

the current assignment task type-agent (note that other techniques start out from a 

neighbour solution but GWB does not). An agent heap is built with the intention that 

the agent with the least assigned workload is on the top of that heap. In the beginning, 

no tasks are assigned to any agents, hence every agent in the heap has no workload, 

and the agent on the top of the heap is randomly chosen. A task heap is also built and 

organised so that the most time-consuming task is on the top of the heap. For each 

agent, the most time-consuming unassigned task is allocated to the less loaded agent 

with the capability to handle that type of task. Afterwards, the agent's workload is 

updated and both heaps are readjusted. This process is carried out until every task has 

been assigned to an agent with the required skills. 

 

3.2.4 Skill-Based Routing 

Skill-based routing (SBR) [37] is a task-assignment policy to dispense new 

work items to the most appropriate agent (the appropriateness is problem dependent), 

rather than to purely select the next available one. Habitually, the routing strategy is 

led by a simple heuristic (e.g. efficient driven SBR) as SBR claims for quick 

movements rather than convoluted, time-consuming formulas. SBR usually relies on 

the Erlang-C formula [38] which has been broadly applied to the CC domain. 

Nevertheless, some researches [39, 40] claim that the conventional Erlang-C formula 

is no longer applicable to settling on staff schedules as they are frequently inexact. 

 

3.2.5 Dynamic Programming 

Dynamic programming (DP) [41] is a technique which basically breaks 

problems down into smaller overlapping sub-problems. The philosophy of DP relies 

on solving problems where we need to find the best decisions serially. DP takes less 

time than other methods when it is applicable, because the results of certain 

calculations are stored and can be re-used by succeeding operations. 

 



Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz 
 

37 
 

3.2.6 Branch and Bound 

Branch and bound (BB) [42] is a broad-spectrum algorithm devised for discrete 

and combinatorial optimisation problems. It systematically itemises all candidate 

solutions, from the uppermost one to the lowest one, discarding unproductive 

candidates. Every node (candidate solution) at a level l in the search tree corresponds 

to a partial sequence of p operations. 

 

3.2.7  Variable Neighbourhood Search 

Variable neighbourhood search (VNS) [43] is an MH whose fundamental idea is 

to cause a systematic, stochastic change of neighbourhood within an LS. VNS 

escapes from local optima by changing of neighbourhood. To achieve it, VNS 

increases the size of the neighbourhood until a local optimum, better than the current 

one, is reached. 

 

3.2.8 Variable Neighbourhood Descent 

Variable neighbourhood descent (VND) [44] is an MH where the search is not 

restricted to only one neighbourhood as in the LS but, instead, it deterministically 

changes at the same time as the algorithm advances (predefined sizes for the 

neighbourhoods).  

 

3.2.9 Simulated Annealing 

Simulated annealing (SA) [45] is an MH of variable search environment, which 

generalises Monte Carlo’s method. SA proposes that the current state of a 

thermodynamic system is equivalent to the candidate solution in optimisation, the 

energy equation for a thermodynamic system is analogous to a target function and the 

ground state corresponds to the global minimum. This technique has the ability to 

hinder getting trapped in local optima since the algorithm allows for changes that 

decrease the values returned by the target function with a given probability. This 

probability depends on the current temperature value which varies according to the 

cooling scheme. The main complexity is to determine the right value for the initial 

temperature and the cooling scheme. 
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3.2.10  Tabu Search 

The meaning of the word tabu (also known as taboo) refers to a prohibition 

imposed by social customs as a protective measure [46]. In particular, tabu search 

(TaS) is based on the principle that search techniques should incorporate adaptive 

memories and guiding exploration mechanisms. The adaptive memory [47-49] allows 

for the implementation of procedures that are capable of economically and effectively 

navigating the search space. These memories introduce complexities that often 

confound alternative approaches as they allow for restriction of the search 

environment and the introduction of intensification mechanisms in zones of the 

search space that have been already visited, or diversification in possible zones of the 

search space which are rarely visited [49].  

 

3.2.11  Scatter Search 

Scatter search (SS) [50] works over a set of solutions (reference points) by 

merging them in order to produce new feasible ones. The combination of solutions is 

commonly accomplished in a linear way. These combinations can be devised as a 

feasible generalisation of the existing solutions.  

 

3.2.12  Iterated Local Search 

The basic idea of iterated local search (ILS) [51] is to concentrate the search on a 

smaller subspace defined by the solutions which are locally optimal to the current 

one. ILS consists in the iterative application of an LS method. To avoid getting 

trapped in local optimums, a perturbation is applied before executing each LS.  

 

3.2.13  Multi-Start Search 

There are two phases in multi-start search (MSS) [52]: initially, a feasible 

solution is generated and, afterwards, is normally improved by means of an LS 

procedure. MSS is relatively simple because it merely executes several LS’s from 

different initial solutions. The stopping condition for each LS is then taken as a 

restarting criterion. The most imperative disadvantage of improving each solution by 

means of an LS procedure is the possibility of getting ensnared in a non-optimal local 
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optimum. MSS heuristics are earmarked to obtain limited solutions as far as the LS 

procedure cannot avoid escaping of non-promising environments. A key issue for the 

performance of MSS is whether (or not) the information about the topology of the 

neighbourhood (corresponding to the distance among neighbour solutions) is used. 

 

3.2.14  Greedy Randomised Adaptive Search 

The greedy randomised adaptive search (GRASP) [53] is one among those MSS 

methods whose first phase (constructive phase) randomly generates a greedy solution. 

The second phase (refinement) iteratively improves every solution by applying an LS 

procedure. Greedy randomised solutions are generated by injecting new elements to 

the problem's solution set from a list of elements ranked by a greedy function 

according to the quality of the solution (problem dependent). This method provides 

an appropriate and simple framework to develop algorithms for hard optimisation 

problems. The goal of this methodology is to combine the diversification strategy 

given by the construction phase with the intensification given in the improvement 

phase. 

 

3.2.15  Ant Colony Optimisation 

Ant colony optimisation (ACO) [54] is a stochastic method which can be applied 

to problems that can be simplified to finding the right paths within a graph (usually, 

the shortest ones).  

Pheromone is a chemical substance secreted by a living organism that transmits a 

message inducing other members of the same species to react in a certain way. In our 

case, virtual ants deposit pheromones once they have built their solutions. The release 

of such a chemical signal, although systematic, is not constant. It is, instead, 

dependent upon the heuristic desirability of transition. This pheromone release is 

carried out once the solution is complete and is only updated when the loop ends. In 

order to refine the ants´ generated solutions an LS procedure can be added to this 

algorithm. An ant a chooses to go forward to the following node with a determined 

probability that can be calculated as follows: 
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Τr,s is the amount of pheromone on edge r-s, α is a parameter to control the 

influence of τr,s, ηr,s stands for the desirability of edge r-s (classically, 1/dr,s, where d is 

the distance) and β refers to a parameter which controls the influence of ηr,s. 

 

3.2.16  Particle Swarm Optimisation 

Particle swarm optimization (PSO) [55] is a technique which does not require 

any knowledge of the gradient of the problem to optimise. PSO emulates the 

behaviour of a group of birds which are flocking. PSO keeps a population of 

candidate solutions (particles) and then shifts them around in the search space in 

accordance with a more or less straightforward formula.  
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3.3 DISCUSSION 

Section 3.2 has presented different techniques which could be somehow applied 

to a DMAS based on blackboard architecture. 

We can distinguish methods based on LS from those rooted in global search 

(GS). GS takes into account the whole search space whereas LS approaches can be 

applied to problems which can be devised as finding a solution maximising (or 

minimising) a criterion among a number of candidate solutions. An LS algorithm 

starts out from a candidate solution and, thus, iteratively moves to a neighbour 

solution, generating the neighbourhood until a solution deemed optimal is reached or 

a predefined amount of time has been elapsed. The main problem with LS methods is 

that these usually get stuck in local optimums which are often far from the global 

optimum. This setback can be mainly mitigated in five distinct ways: 

1) The first possible solution, exemplified by VND, is to modify the 

environment (also known as neighbourhood). In VND, the search is not only 

restricted to one environment as LS imposes; instead, the size of the 

environment deterministically changes as the algorithm progresses. The 

change of environment is a technique that is dependent upon the stage at 

which the algorithm is currently working. 

2) The second possible solution is to permit deterioration movements, 

such as in SA or TaS. In the SA method, each point of the search space is 

equivalent to a state of some physical systems, and the function E(s) to be 

minimised is similar to the internal energy of the system in that state. The aim 

is to bring the system, from a random initial state, to a state with the smallest 

amount of energy. TaS increases the performance of an LS method by 

employing memory structures. Once a potential solution has been reached, it 

is marked as tabu so that, the algorithm does not visit that possibility 

recurrently. 

3) The third possible solution is to restart from another initial solution as 

MSS, GRASP, ILS or VNS do. In the case of the MSS, initial solutions are 

randomly generated and, afterwards, the algorithm applies an LS over them 

as a fine-tuning mechanism. This is equivalent to executing several LS in 

parallel. Therefore, the accuracy of the results will depend upon the number 

of executions that are launched. However, this is an inefficient method 

because a conscious stopping condition has to be provided. Conversely, ILS 
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applies a mutation operator before each execution to attain an intermediate 

solution which is refined by an LS. VNS (very similar to VND) is an ILS 

method which changes of environment when the solution obtained is worse 

than the current one. Finally, GRASP relies on the use of a randomised 

greedy in its basic version. 

4) Another way to find a good solution involves using methods based on 

populations, such as GAs and MAs. If the diversity of the population is low, 

then the GA converges to the closest neighbour. In contrast, if the selective 

pressure is high, which makes the diversity low, individuals will be alike or 

even identical. GAs are a powerful GS technique that slowly converges to the 

global optimum for a set of relevant real-world problems. MAs emerge as an 

improvement of this mechanism in which an LS is applied over a subset of 

individuals each n-generations. 

5) Finally, there are other strategies to obtain a feasible solution such as 

constructive methods (e.g. ACO). 

The MHs presented above provide diverse methods to escape from local optima. 

The empirical impact of these MHs has been immense. Diverse tendencies on MH 

schemes have been explored by many researchers. The most relevant issue, provided 

by the incorporation of such techniques, is to know whether the benefit of the 

performance enhancement compensates for the effort of its implementation.  

Frequently, trendy appealing heuristics are skilfully figured out. Also, great effort 

and inventiveness has been deployed in the adjustment of numerous parameters, but 

as yet the reasons that make them work still remain unknown. When facing a 

dynamic real-world production environment, some techniques (we will present an 

empirical study in Chapter 5) cannot perform well-enough. 

Intuitively, although RWB and RNS require low computing times, will not be 

appropriate for a real production environment as they do not guarantee an accurate 

solution and are not robust enough. A randomly generated solution can be acceptable 

as an initial solution, but not as a proper search mechanism. With luck on our side, we 

might find a good solution, but we would rapidly notice that these methods do not 

always perform properly. In fact, the probability of obtaining the global optimum is 

1/nsl where nsl stands for the number of possible solutions in the search space. 

Imagine a die with nsl faces (a very large number) with the added problem that we 

can only throw that die nt times in each time frame (where nsl >> nt). 
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GWB and SBR “route” work items to available agents by applying basic 

heuristics, considering the current state of the system. Obviously, these techniques 

can be perfectly employed in DMAS but these fast, unplanned decisions may guide 

the algorithm to congestion states (evident need of a better planning which takes into 

account future states). 

In basic LS, a neighbour is generated every iteration. Theoretically, due to its 

local character, it is difficult to reach a high-quality solution because, when a local 

minimum is found, the algorithm will often stagnate as deterioration movements are 

not allowed. 

In VND and VNS, the search is not simply restricted to a single search 

environment, but instead, the environment changes as the algorithm advances 

(deterministically in VND and stochastically in VNS). Therefore, the improvement of 

basic LS is remarkable as we will verify in Chapter 5. 

TaS and SA introduce a very sophisticated mechanism of deterioration 

movements. However, these techniques only better perform when the time frame is 

not too reduced: SA takes time even when we apply Cauchy’s scheme which is the 

fastest one and TaS requires of many iterations to take advantage of using the 

memory structures. 

MSS increases the probability of finding an accurate solution compared to basic 

LS as many LS’s are run in parallel. In contrast, GRASP improves this philosophy by 

means of a probabilistic greedy procedure. This greedy process reassures us that, on 

one hand, that initial solution will be more or less promising and, on the other hand, 

that other local minima may be found, since the algorithm can start from different 

initial solutions. 

Constructive techniques (e.g. ACO), although they are a very promising growing 

area, are not fast enough to be applied to real-world DMAS as [56] demonstrates.  

Finally, GAs offer a different mechanism to finding precise solutions based on a 

population schema. Generally, GAs converge very slowly to the global optimum (or 

optima) but, when these are combined with LS procedures (MAs), GAs are an 

astonishingly powerful search technique. Our approach relies on MAs as we will see 

in Chapter 4. 
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Note that we have presented all techniques from a theoretical point of view, but 

we will also compare most of these techniques in Chapter 6 (at least, one 

representative from each policy) to determine the appropriateness of each strategy for 

a real-world DMAS. To conclude, Table 2 shows the efficacy of each strategy to find 

a nearly optimal solution for a real-world DMAS in relation to the time-frame 

considered. 

Table 2: Comparison of strategies’ efficacy for a real-world DMAS in relation to the time-
frame considered. MA is highlighted because it is our choice for DMAS. 

Algorithm 
Efficacy 

short-term 

Efficacy 

middle-term 

Efficacy 

long-term 

RWB low low Low 

RNS low low Low 

Basic LS low medium Low 

GWB medium low Low 

SBR medium low Low 

DP low low high 

BB low low high 

VNS low medium medium 

VND low medium medium 

SA low medium high 

TaS low medium high 

SS low medium high 

ILS low medium medium 

MSS low medium medium 

GRASP low medium medium 

ACO low low medium 

PSO low low medium 

GA low medium medium 

MA low high high 
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4 CHAPTER 4. A NOVEL APPROACH TO 

THE PROBLEM OF WORKLOAD 

DISTRIBUTION IN DMAS 

This chapter proposes a new approach to the problem described in Chapter 2. 

Section 4.1 sets out the bases of this novel approach. Section 4.2 describes the 

methodology that we have followed. Section 4.3 focuses on the forecast component 

which supports the first module of our approach. Section 4.4 addresses the second 

component of our approach; in other words, the search module. In Section 4.4, we 

also propose multiple mechanisms to maintaining a fair balance between diversity 

and intensity in simple and parallel genetic algorithms when optimising. 

 

4.1 UNDERLYING IDEA 

We have illustrated in Section 1.1 how short-term planning techniques distribute 

arriving tasks to the existing available agents having the required skills to process 

them by employing greedy heuristics while long-term planning techniques contend 

with a stable incoming task flow and a longer stability over time which is not the 

archetypal situation in nowadays DMAS’s. In this way, short-term planning strategies 

distribute the workload without considering future system states (just the current 

system configuration), provoking inapt allocations task-agent for near future. In 

contrast, long-term planning strategies find optimal solutions for a given system state. 

However, if the system is not very stable, we might have serious problems in the 

future, because an optimal configuration for the current system state may not be the 

best option in the future as these algorithms take time to reach a solution. In other 

words, we might be using an optimal system configuration for a completely different 

system state. 

This section puts forward the bases of our approach to DMAS. The underlying 

hypothesis of this work, which will be demonstrated and confirmed in Chapter 6, is 
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that DMAS’s require precise (nearly optimal) allocations of task types to the right 

available agents for each (adaptive) middle-term time-frame over time rather than 

continuous naive/greedy assignments for each system state or static long-term 

configurations for remote future system states (see Figure 1).  

We can now remain generic and develop a more stylish approach by 

reformulating the standard variant of the problem of workload distribution in DMAS 

as the concept of adaptive time-frame has been already introduced. We basically need 

to enlarge (or reduce) the observed time-frame and then forecast the real system state 

in a future point in order to apply more sophisticated search algorithms which can 

outperform both short-term and long-term planning strategies. There, a need of an 

exact prediction of a middle-term system state comes out. Subsequently, a search 

algorithm must find a feasible solution for the predicted system state by reaching a 

fair balance between diversity (exploration) and intensity (exploitation) in order to 

meet with success. 

Before explaining each “box” of our approach, we will present the overall 

process in order to clarify the steps we take. We firstly need to analyse the dynamism 

of the system within a given period of time with the purpose of determining the right 

time-frame size. This time-frame cannot be fixed and its size must change over time 

if there are changes in the behaviour of the system (variability in the arriving task 

flow). Once we have determined the size of the time-frame, we need to forecast the 

state of all variables at the end of the time-frame (if we are at time t, we will forecast 

all system variables at time t+v). Given our predictions, we need to optimise the 

allocation of existing tasks to the available agents having the required skills (see 

Figure 5). 
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Figure 5: Overall process � forecast module + search module. 

 

The Algorithm X also describes the steps of our approach to better explain the 

underlying idea. 

Procedure “Approach to the problem of workload distribution in DMAS” 

{ 

    Analyse the dynamism of the system; 

    Set up a size for the time-frame; 

    Forecast all variables for next state; //num. of tasks (by type), agents available, etc. 

    Optimise the assignment among predicted tasks (by type) and predicted agents; 

    Go to next state; 

} 

Algorithm X: Overall procedure. 

 

The two most complicated factors to develop our approach are: the 

determination of the size of the time-frame (we continuously analyse the system 
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dynamism to determine the right size for the time-frame) and the state-transition 

function (when system dynamism changes).  

To address the first difficulty (size of the time-frame), we can set up predefined 

time-frame sizes (see Figure 6), depending on the dynamism level of the system (e.g. 

3 levels: low, medium and high). Obviously, this choice must be done according to a 

previous, exhaustive statistical analysis. In our experiments, we have considered 5 

levels depending on system variability: very low (v=3000 seconds), low (v=1500 

seconds), medium (v=300 seconds), high (v=120 seconds) and very high (v=60 

seconds). The point of selecting predefined time-frame sizes is given by the 

requirement of robustness that real-world DMAS’s habitually impose. If we enable 

the system to automatically assign any size for the time-frame, we may crash down 

the system (we may have 2-second time-frames or 20-hour time-frames which might 

seize up the system).  

 

Figure 6: Time-frame sizes depending on the dynamism level. 

 

To deal with the second complexity (when to change of dynamism level), we 

must determine the right state-transition function. This is a problem-dependent task 

and we cannot claim any universal rule of thumb. Instead, we propose some 

guidelines to accomplish with this arduous task. During the statistical analysis, we 

encourage the reader to analyse smaller intervals than the time-frame (let’s say 30 

seconds). Then, we should break down this interval into subintervals (e.g. 5 

subintervals of 6 seconds) and plot a time series. If a given point highly differs from 

the previous one, we should not activate the state-transition function as peaks may 
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crash down the system. But, when the trend of the time series drawn by these 

consecutive points shows important oscillations, we should switch to another 

dynamism level (e.g. if the tendency shows an important dynamism decrement, we 

should then enlarge the time-frame by switching to a less dynamic level). In 

summary, we take into account the trend of these consecutive points as well as the 

dispersion among them. Figure 7 shows a 300-second time-frame. For this time-

frame, we analyse a smaller (shifting) time-frame of 30 seconds with 5 equidistant 

consecutive points (each 6 seconds). If we plot these points, we would have a time 

series (number of arriving tasks at each time point). We may discover numerous 

possible situations but, in this figure, we have only illustrated 6 different cases (bear 

in mind that a rigorous statistical study must be performed to achieve it). Figure 7.A 

shows a very changing time series (high dispersion without well-defined trend); 

therefore, the dynamism level would be very high. Figure 7.B exemplifies a quite 

dynamic time series but with fewer changes than Figure 6.A, so the dynamism level 

would be high. Figure 7.C and Figure 7.D point up medium dynamism level because 

there is a clear trend (increasing in Figure 7.C and decreasing 7.D). Figure 7.E 

illustrates a time series without changes, therefore the dynamism level should be 

very-low. Finally, Figure 7.F presents a time-series with few changes, thus, the 

dynamism level would be low. 
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Figure 7: Analysing the time-series within a shifting sub-time-frame. 

 

Naturally, the smaller window must be shifted according to the time (never 

employ fixed windows). Finally, we do not impose “sequentiallity” when changing of 

dynamism level as Figure 8 exemplifies. Arrows symbolise that we can reach every 

state from any other state. Circles represent the dynamism levels. Note that we have 

not plotted self-pointing arrows as no transition is needed. 

 

Figure 8: Potential dynamism level transitions. 
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Now, we have the mechanism to determine the size of the time-frame as well as 

method to track the dynamism level. From this information, we need to forecast all 

system variables for time t+v. Obviously, even when the forecast is pretty accurate, 

we are introducing some noise to the model as we are searching a nearly optimal 

solution for a predicted system state which may slightly differ from the real future 

state. In order to mitigate the impact of that noise, it is crucial to design a powerful 

forecast module which can provide us with the best possible approximation of next 

future system state. From these accurate predictions, we will apply a search algorithm 

based on a parallel memetic algorithm to discern fine allocations task type-agent from 

inappropriate ones.  

Until now, we have presented copious numbers of variables from an ordinary 

DMAS in Section 2.2. Although we have to consider all these variables in order to 

attain a feasible solution, uncertainty chiefly comes from the number of pending tasks 

grouped by task types and the number of existing available agents having each skill. 

As tasks continuously appear and require of a certain processing time to be executed, 

and given that the size of the time-frame v is variable (a smaller number when there is 

great dynamism or a larger number when there are few oscillations); we can assume 

that the number of pending tasks and available agents at time t+v depends upon the 

number of pending tasks and available agents at time t as some tasks may not be 

accomplished during these v seconds. Actually, we will notice that a system state at 

time t+v only depends on the system state at time t as it follows a Markov process 

[57].   

Now, let’s formalise the definitions exposed along this section. Denote the initial 

state at time 0 as �� where we know all system variables (��, ��, ��, ��,  �). We just 

mean that at the beginning (time 0), we know the number of pending tasks, their 

types, the number of available agents, the potential skills and the prospective profiles 

(we highly encourage the reader to briefly review Section 2.2 to refresh the meaning 

of each variable). Also, denote the current state at time t as �!  (�!, �! , �! , �!,  !) and 

designate next future state at time t+v as �!#�  (�!#� , �!#�, �!#� , �!#� ,  !#�).  

Finally, denote the state-transition function as $: �!/'()*+,�-,_/0�0/ → �!#�. 

This just means that every state �!#�, depends on the previous state �! and the 

transition occurs each v seconds (size of the time-frame which depends on the 

dynamism level). The variables of a given state are directly visible to the observer. 
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Note that short-term planning strategies consider intermediate systems states (�! < ��*!03,0(�+!0 < �!#�), whereas long-term planning strategies take into account 

posterior system states (�! < �!#� < �45-!03�53). Therefore, short-term planning 

strategies rely on smaller transition-state steps $ than our approach, while long-term 

planning strategies hinge on longer transition-state steps $ than our approach. 

Graphically, this characteristic can be seen in Figure 9. Notice that �� stands for ��*!03,0(�+!0 and �4 represents �45-!03�53. Also, note that we have not plotted ��. In a 

real-world production environment, we can set up an initial system configuration for �� that considers historical records. From this first configuration for the initial state ��, we should employ the mechanism we propose (prediction window determination 

based on system dynamism + current system state prediction + optimisation). 

 

Figure 9: System states depending on the time-frame considered. 

 

The key purpose of the rest of the present chapter is to provide a solution for the 

problem of workload distribution in DMAS, given the reformulation of the problem 

that we have proposed in this section. Our approach combines predictions (for 

middle-term system states of DMAS’s by means of an upgraded resilient back-

propagation neural network) with a powerful search mechanism (founded on a 

parallel memetic algorithm). 
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4.2 METHODOLOGY  

This section describes the methodology employed by our approach. The first 

step consists in determining the size of the time-frame based on system variability 

(very low, low, medium, high and very high) as explained in Section 4.1. Once the 

right size of the time-frame has been detected, we must forecast all variables of next 

system state at time t+v, �!#�. These predictions are made by means of a forecast 

module which relies on an upgraded resilient back-propagation neural network. 

Given the predictions from the forecast module, the search module, implemented 

as a parallel steady-state MA, optimises the assignment among task types and agents. 

We propose an island topology and migration operators for individuals exchanging. 

We will consider a master island and several slave islands. Each island corresponds to 

a single MA. Each MA maintains a set (population) of abstract representations 

(chromosomes) of candidate solutions (phenotypes) to the problem described in 

Chapter 2. The population is partially randomly initialised (see Section 4.2.4 to obtain 

further information). Then, its individuals are evaluated by applying a fitness function 

over them. From this population, some individuals are selected and, then, recombined 

(crossover). Subsequently, the offspring may suffer mutations in some genes. 

Afterwards, some of these individuals replace others from the population according to 

the replacement scheme. Every generation includes all previous actions. Finally, an 

LS mechanism is applied over a percentage of the population each g generations. All 

these steps are carried out until a predefined time has been elapsed. 
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4.3 FORECAST MODULE  

This section describes how to model a forecast module with an upgraded 

resilient back-propagation neural network to predict all unknown variables at time 

t+v, where t is the current instant and v is the size of the time window. Section 4.3.1 

surveys the state-of-the-art on DMAS forecasting. Section 4.3.2 provides the required 

background to understand our learning algorithm for neural networks. In Section 

4.3.3, we formulate the mathematical bases to define learning algorithm for neural 

networks. Section 4.3.4 explains how to fine-tune neural networks to DMAS 

forecasting, given our innovative learning algorithm. 

 

4.3.1 State-of-the-art on Forecasting 

Most people perceive the world as a place where there are a large number of 

alternatives. In this context, forecasting refers to the estimation of output values in 

unknown situations to help decision making and planning. But, what does forecasting 

stand for in a DMAS domain? Forecasting refers to the estimation of values at certain 

specific future times. In this manner, there are many things that would be desirable to 

predict in a common DMAS such as arriving tasks, task failures, available agents 

having a certain skill, working levels (this is the time the agent is truly processing 

tasks), service rates (given by a quality metric which depends on the domain) and 

average delay times.  

Why is it interesting or necessary in a DMAS domain? Particularly, a precise 

prediction enables us to be prepared for the future to correctly balance workload 

among agents, presenting higher service levels and, eventually, optimising our 

resources. We can compile arriving tasks, task failures and queuing tasks in a unique 

value, the number of tasks (grouped by task types) to handle. 

Unfortunately, there is no way to state what future will bring along with 

complete sureness. Risk (wrong predictions generally entail losses of money or even 

major hazards) and uncertainty (ambiguity or indecision to accomplish our 

predefined goals) are omnipresent in forecasting to the degree that it is customarily 

considered good practice to specify the level of uncertainty linked to forecasts. 

A significant but ignored facet of forecasting is the close liaison it holds with 

planning. Forecasting can be expressed as predicting what future will resemble, 
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whereas planning enlightens what future should look like. There is no universal, 

suitable forecasting method to use, as it depends on our objectives and preconditions. 

There are a wide variety of forecast techniques for DMAS’s, although we will 

focus on the most relevant ones along the present section. In this section, we want to 

introduce and thus discuss these relevant forecast techniques, presenting their positive 

and negative characteristics.  

This section is organised as follows: Subsection 4.3.1.1 addresses the classical 

Poisson distribution. Subsection 4.3.1.2 briefly exposes regression techniques. 

Subsection 4.3.1.3 presents some time series methods. Subsection 4.3.1.4 covers this 

problem from neural networks’ point of view.  

 

4.3.1.1 Poisson Distribution 

Traditionally, incoming call forecasting in CCs has been approximated 

according to a Poisson distribution (PD). Nevertheless, PD can be perfectly applied to 

other DMAS’s which accomplish several assumptions that we are going to expose in 

the present section.  PD expresses the probability of a number of events occurring 

within a time-interval, when these are independent of the previous event and occur 

with a known rate. Under these conditions, it is a reasonable approximation of the 

exact binomial distribution of events. Additionally, PD provides a useful mechanism 

to assessing the percentage of time when a given range of results are expected. In the 

calculation of the distribution function, the values for the mean and standard 

deviation are carried over from the binomial distribution. 

Assuming pure-chance arrivals and pure-chance terminations leads to the 

following probability distribution: 

µµ −








= e

n
nP

n

!
)(  (2) 

where n denotes the number of arriving tasks in an interval of duration d, µ stands for 

the mean of arriving tasks at time t and e refers to the base of the natural logarithm 

(e ≅ 2.7183). Thus, “conventional” approaches assume that the number of arriving 

tasks at a given time, t, follows a PD. For this reason, pure-chance traffic is also 

named as Poisson traffic. 
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Table 3 shows the values returned by a PD when varying λ between 0.1 and 1.5. 

 

Table 3: Poisson distribution when varying λ between 0.1 and 1.5. 

n\λ 0.1 0.5 1 1.5 

0 0.905 0.607 0.368 0.223 

1 0.090 0.303 0.368 0.335 

2 0.005 0.076 0.184 0.251 

3 0.000 0.013 0.061 0.126 

4 0.000 0.002 0.015 0.047 

5 0.000 0.000 0.003 0.014 

6 0.000 0.000 0.001 0.004 

7 0.000 0.000 0.000 0.001 

8 0.000 0.000 0.000 0.000 

9 0.000 0.000 0.000 0.000 

10 0.000 0.000 0.000 0.000 

 

In the same way, Figure 10 plots the points of Table 3 to better understand PD’s 

nature. 

 

Figure 10: Poisson distribution when varying λ. 
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PD has inspired other authors to extend its idiosyncrasy to other distributions. 

Reviewing the literature, we can bump into numerous algorithms founded on (or 

merely supported somehow by) a PD. As an example, we should highlight Erlang-

based algorithms. 

The Erlang distribution, first pioneered by A. K. Erlang [38], is a continuous 

probability distribution with extensive applicability. This distribution, which has a 

positive value for all real numbers greater than zero, is given by two factors: the 

shape k (a non-negative integer) and the rate λ (a non-negative real number). The 

distribution is sometimes defined using the inverse of λ, the scale µ. This distribution 

appeared as a mechanism to inspect the number of arriving tasks which might 

simultaneously arrive to the agents of a DMAS. This work, which was originally 

conceived for the CC domain, has been afterwards extended to other queuing 

environments by other authors [58, 59]. 

Figure 11 plots Erlang distribution for k = 2, 3 and λ = 3, 1. 

 

Figure 11: Erlang distribution for k = 2, 3 and λ = 3, 1. 

 

In an Erlang distribution, events are modelled in accordance with a Poisson 

process and independently occur with some average rate. The waiting times between 

k occurrences of the event are Erlang distributed. 

However, the prediction of arriving tasks in a DMAS does not often adjust to a 

PD with deterministic rate. In all studies (e.g. [60]), the arrival process agrees with a 

Poisson process only if the arrival rate of the Poisson process is itself a stochastic 

process.  
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Characteristically, the variance of arriving tasks within a given interval is much 

larger than the mean. However, PD’s hypothesis states it should be equal to the mean 

for PDs. The mean arrival rate also strongly depends on the day-time and often on the 

week-day, but Poisson processes comply with the memoryless property of the 

exponential distribution [60], which is unable to detect this kind of features. Besides, 

in some DMAS such as MSCCs, there is positive stochastic dependence between 

arrival rates in successive periods within a day and arrival volumes during successive 

days. Taking into account all these premises, we can realise how pertinent is to find a 

more effective method to forecast which does not just rely on the hypothesis of a 

simple PD.  

Considering these premises, we can become conscious of the need of finding a 

more effective method to forecast. 

 

4.3.1.2  Regression Model 

A regression model (RM) [61] is a statistical method in which an unknown 

variable is predicted according to its relation with the rest of well-known variables 

(also named as predictors), using a formula called regression equation. This equation 

deals with some constant parameters which must be optimised to reduce the mean 

square error (MSE) between the predicted output and its real value. In particular, we 

study lineal regression (LR) which is one of the commonest variants (actually, we 

will additionally examine neural networks which can be faultlessly included in 

multiple regression). LR fits all parameters by applying diverse policies. The 

commonest policies are the following ones: least squares approach, minimisation of 

the “lack of fit” and minimisation of least squares loss function as ridge regression 

assumes. Least squares and linear model are intimately related although these are not 

identical. 

LR approximates the unknown variable with a straight line by using well-known 

variables as follows: 

iippi XY εββ ++= ∑0  
(3) 

where parameter i is the pattern-position in the dataset, p indicates the n-th well-

known variable, βP represents the associated parameters to the n-th well-known 

variable, β0 is a constant parameter, Y refers to a dependent variable and ε denotes the 
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associated error. βP and β0 are calculated in order to reduce Σεi, using predefined 

patterns. 

The main advantage of this method is the clearness to understand and track the 

model. Nevertheless, it is hard to choose the variables to generate the model, 

considering seasonality and trend, which is crucial to better understand the behaviour 

of a DMAS. 

 

4.3.1.3  Time Series 

A time series (TS) is a sequence of observed variables, taken in regular time-

slices. This sequence is used for understanding and forecasting the behaviour of a 

given variable over time based on previous states [62]. A TS approximates future 

values by applying a (more or less complex) regression to the n-previous variables to 

estimate forthcoming values. TS can be divided into two major groups: exponential 

smoothing (ES) and autoregressive integrated moving average (ARIMA). At the same 

time, ES methods, which assign decreasing weights to each previous observation, are 

divided into: simple time series (SES), dumped trend time series (DTTS) and 

stationary time series (STS). 

SES, or Single Exponential Smoothing [63], is a method for forecasting whether 

the mean is stationary or slowly changes over time.  The name is frankly ambiguous, 

given that this is a moving average method in which weights decline as the interval 

between the current time increases. The smoothed value lags the current value as far 

as this method depends on previous values. When the smoothing value is small, the 

oscillations are seriously damped and the smoothed value tends in the direction of the 

mean. Nevertheless, when the smoothing value is large, the oscillations noticeably 

fluctuate and, as a result, the smoothed value tends to the current value. SES can be 

obtained as follows: 

,)1(;3,10,)1( 111 tttttt SyFtSyS ααααα −+=≥≤<−+= +−−   (4) 

where S stands for the smoothed observation, t refers to an index which denotes a 

time-period, α is a constant which must be estimated with the purpose of minimising 

the MSE and y is the observation. 

Instead, DTTS or Holt’s linear model (also known as double exponential 

smoothing) [64] extends exponential smoothing by incorporating a term for linear 
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trends. This technique is also called “double exponential smoothing”. Suppose that at 

time t, yt is observed, the level Lt is estimated and the slope bt is known in the series. 

Afterwards, a k-step ahead forecast is Ft+k = Lt +btk. DTTS allows us to adjust the 

slope with each new observation. DTTS can be formalised as: 
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(5) 

STS, or Holt-Winters’ Trend and Seasonality Model [65], is a suitable technique 

to deploy when data show trend and seasonality. This technique introduces a third 

equation to cope with seasonality. STS can be formulated as follows: 
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where y is the observation, S stands for the smoothed observation, b is the trend 

factor, I indicates the seasonal index, F denotes the forecast at m periods ahead, t 

refers to an index which denotes a time period and α, β and γ are constants which 

must be estimated with the purpose of minimising the MSE. 

The main advantage of Exponential Smoothing TS is that it requires short 

computing times [66]. Nevertheless, the model cannot accurately predict for a long 

timeslice [65]. To mitigate this handicap, we generate a daily model to forecast the 

following day. Another setback of this technique is its low performance when there is 

a trend as the single coefficient alpha is not enough to fit the prediction. 

Differently, ARIMA [65] is determined by three parameters (p, d, q), where p is 

the autoregressive term, d is the number of previous values and q is the average 

moving parameter. ARIMA (p, d, q) can be calculated for a TS sequence Yt (t=1,2,…, 

n), as follows: 
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(7) 

ARIMA (p,q,d)·(P,D,Q) represents a multiplication of two ARIMAs to inject 

seasonality to the model. This method requires that new seasonal and non-seasonal 

parameters will be estimated; analogously to simple ARIMA. The involved 

parameters are the following ones: p is the autoregressive order which indicates the 

number of parameters of φ, d is the number of times that data series must be 

distinguished to induce a stationary series, q is the moving average order which 

designates the number of parameters of θ, P is the seasonal autoregressive order that 

specifies the amount of parameters of φ, D is the seasonal moving average order 

which points out the quantity of parameters of θ, and Q is the number of times that a 

data series needs to be differenced to induce a seasonal stationary series.  

The principal advantage of ARIMA TS is that it usually suites better than 

Exponential Smoothing TS, although this model requires long computing times [68] 

and poorly forecast for large time-horizons [69]. To mitigate this handicap, we 

generate daily models to forecast the forthcoming day as explained in Chapter 6. 

Considering these premises, we can realise how promising to forecast data with 

no trend or seasonal patterns exponential smoothing is. Instead, Holt’s method should 

be applied whether there is a linear trend. For shifting data, exponential smoothing is 

remarkably well-adjustable, although its speediness depends upon α. 

 

4.3.1.4 Artificial Neural Networks 

An artificial neural network (ANN) is a mathematical model founded on the 

operation of biological neural networks [70]. In this manner, an artificial neuron is a 

computational model inspired in biological neurons and also the simplest processing 

element of an ANN. Natural neurons receive signals through synapses placed on the 

dendrites. When the arriving signals surpass a certain threshold, the neuron is 

activated and emits another signal through the axon. This signal can be sent to 

another synapse and then activate other neurons. 
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In order to emulate biological neurons, the artificial ones (see 

organised into two units: the first one is a 

coefficients and input signals,

function, widely known as 

accumulates weights wi and maps results to an output as given below:

 

:(;)
 

 

The weights, wi, are 

process. 

There are numerous functions to approximate 

include the Gaussian function, the hyperbolic function and the sigmoid function. We 

will employ the sigmoid function as this is the most appropriate 

environment. The sigmoid function and its derivative are

<=(<;
 

Figure 13 plots the sigmoid function to facilitate reader’s understanding
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In order to emulate biological neurons, the artificial ones (see Figure 

organised into two units: the first one is a nonlinear weighted sum

coefficients and input signals, F(x), whilst the second one follows a nonlinear 

function, widely known as neuron activation function, K. The function 

and maps results to an output as given below: 
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Figure 12: Basic artificial neuron 

, are randomly initialised and then updated during the training 

There are numerous functions to approximate K, but the most widespread ones 

include the Gaussian function, the hyperbolic function and the sigmoid function. We 

will employ the sigmoid function as this is the most appropriate one for our dynamic 

. The sigmoid function and its derivative are defined as indicated below
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plots the sigmoid function to facilitate reader’s understanding
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Figure 12) are 

nonlinear weighted sum of weight 

, whilst the second one follows a nonlinear 

. The function F(X) 

(8) 

 

updated during the training 

, but the most widespread ones 

include the Gaussian function, the hyperbolic function and the sigmoid function. We 

one for our dynamic 

as indicated below: 

(9) 

plots the sigmoid function to facilitate reader’s understanding. 
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Figure 13: Sigmoid function 

 

As a remark, the sigmoid function can never return “0” or “1“ due to its 

asymptotic nature so that values over 0.9 should be treated as 1 and those under 0.1 

should be considered as 0. 

Neurons can be grouped into three types of layers: input, hidden and output. The 

input layer is composed by neurons that represent the data input variables and “feed” 

next layers of neurons. Next layers, which are sometimes optional, are denominated 

hidden layers and there may be several of them. The last layer is called output layer, 

in which each neuron represents an output variable. Each layer is fully connected to 

the succeeding layer as Figure 14 illustrates. 

For linearly separable problems, a sole neuron can categorise the output, but 

when having more than one class or multimodal spaces at least one hidden layer is 

needed. 

Most statisticians are used to applying regression methods in which data are 

best–fitted to a specified relationship which is usually linear. However, these methods 

have several handicaps. For instance, relationships must be chosen in advance and 

these must be distinguished as linear or non–linear when defining the equation. ANNs 

enable us to mitigate all these problems. 

In regression, the objective is to forecast the value of a continuous variable 

which is the incoming flow rate in our case. The output required is a single numeric 

variable which has been normalised between 0 and 1. ANNs can actually perform a 

number of regression tasks at once, although commonly each network performs only 

one. 



Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz 

 

64 
 

 

Figure 14: Example of a simple ANN with 8 input neurons, 8 hidden neurons and 5 output 
neurons, forming 3 fully connected layers. 

 

On the one hand, the main advantage of ANNs is their flexibility to make 

patterns, being suitable for large and complex datasets as well as long-time-horizon 

forecasting [68, 71]. On the other hand, we can also find some disadvantages: long 

computing times, risk of overfitting, need of a feature selection process and difficulty 

to approach all parameters for each task type [69]. The overfitting, also called 

overtraining, is the consequence of reducing the error in a specific dataset. When an 

ANN is trained during a large number of epochs (an epoch is the presentation of the 

entire training set to the neural network), the function determined by the weights of 

the ANN may take the particular characteristics of the examples. If this happens, the 

results will be optimal for the training dataset but no guarantee is given for any other. 

This risk is minor when the data set is big enough (see Figure 15 [66]). 

 

 

Figure 15: Overtraining risk – Volume of data. 

 

There exists a number of learning algorithms for training ANNs; most of them 

can be viewed as a clear-cut application of optimisation theory and statistical 

estimation. They include learning algorithms such as back-propagation by gradient 
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descent [72], back-propagation with momentum [73], resilient propagation [74], 

quick-propagation [75], Broyden–Fletcher–Goldfarb–Shanno [76], radial basis 

function [77], Cascade Correlation [78], Hopfield [79], etc. 

In this work, we propose an enhanced, self-adaptive gradient-descent based 

algorithm (an upgraded resilient back-propagation) which is explained in detail in 

Section 4.3.4. 
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4.3.2 Background 

We have mentioned several learning algorithms for ANNs but we will firstly 

focus on the back-propagation algorithm (BPA) [72] in order to situate our proposal 

(if the reader desires further information about other learning algorithms, we 

recommend reviewing the references given in Section 4.3.1.4).  

BPAs can be categorised as multilayer perceptrons [72] which have non-linear 

activation functions [80] such as the logistic function [81], the softmax function [82], 

the Gaussian function [83], among others [84, 85]. BPN denotes that any error made 

by the network when returning an output during the training process is sent 

backwards with the purpose of correcting it as far as the network learns what is right 

or what is not. Errors are propagated backwards from output nodes to internal nodes. 

Therefore, BPA is used to calculate the gradient error of the network with respect to 

its adjustable weights. This gradient is often used in a simple stochastic gradient-

descent algorithm to find weights that minimise that error. BPA simply takes the 

derivative of the cost function with respect to the network parameters and then 

changes those parameters in a gradient-related direction. Hence, the most important 

problem with gradient-descent methods is the premature convergence to local optima 

which might be far from the global optimum. This problem can be solved by using 

global optimisation techniques. However, these techniques normally require high 

computing times. 

Nonetheless, other improved gradient-based learning algorithms with more 

global information such as resilient back-propagation (Rprop) [74] can be more 

appropriate because the training set is large enough to be effectively applied.  

In this context, Rprop is a robust ingrained modification of classical gradient-

descent method. This scheme tends to fine-tune an individual step-size to optimise 

each parameter. The mechanism to perform this action entails doing adaptations of 

these step-sizes by applying a more or less complex heuristic, instead of considering 

proportional step-sizes to the partial derivatives. Note that classical gradient-descent 

algorithms calculate the steepest descent direction by means of an Euclidean metric. 

Classic Rprop just takes into account the sign of the partial derivative 
PQR(!)PSTU  (partial 

derivative of the error measure with respect the weight between two neurons i and j) 

in order to resolve the direction of the weight update. When there is a change of sign 

of the partial derivative, we can state that a local minimum has been surpassed as 

there is a change of direction in the search space surface. Besides, we have to update 
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the weights and automatically adapt the step-size, considering the sign the partial 

derivative. Although we will see how to achieve this weight updating with classic 

Rprop and our modification in next section, we recommend reading the full 

description of Rprop algorithm in [86]. This work proposes an upgraded, adaptive 

modification of the standard resilient back-propagation with weights backtracking 

(uRprop) learning algorithm. 
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4.3.3 An Innovative Adaptive Learning Rate 

Algorithm for Resilient Back-Propagation 

Neural Networks 

This section proposes a modification in weights adjustment for Rprop with 

weights backtracking in order to make the learning phase more adaptive to 

environmental circumstances. The main purpose is to properly determine the right 

weights of our ANN. A great challenge is to find out how big step-sizes (learning rate 

speed) should be. Note that selecting the right learning rate is always a laborious task. 

Rprop basically processes example by example and obtains an output for each 

one as most ANNs do [73-80]. Each output is compared to the well-known output and 

this signal is then propagated, calculating the differentials among errors according to 

the weights (gradients). To update the weights between each pair of neurons i and j 

(wij) after each pattern (epoch, [87]), we inspect the previous weights as follows [87]: 

C�V(H + 1) > C�V(H) + ∆C�V(H) (10) 

where  )(twij∆  can be formalised like so [74] (classical Rprop): 

∆C�V(H) > X∆�V(H), DY ZPQR(!)PSTU [  <  0  
−∆�V(H), DY ZPQR(!)PSTU [ >  0]  (11) 

where ∆�V(H) is the step-size and ^_ is the error measure (it can be defined as a 

normalised mean absolute error for the generalisation data set between two 

consecutive epochs). The weights updating ∆C�V(H) is carried out until the stopping 

condition is met. We will employ a stopping criterion based on a fixed number of 

epochs or a given amount of elapsed time. 

Classical Rprop [74] (without weights backtracking) just takes into account the 

change of sign of the partial derivative (change of direction in the search space 

surface). This precisely means that a local minimum has been surpassed because the 

step-size taken has been too long. An important improvement of classical Rprop was 

to include weight updates, enabling backtracking movements [88]. Weight updating ∆C�V(H) entails adjusting ∆�V(H) by applying the following formula: 
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∆�V(H) > àb
acming1.5 ∙ ∆�V(H − 1), ∆,+Ni , DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V > 0n 

max j∆�V(H − 1)2 , ∆,�*n , DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V < 0n∆�V(H − 1), qHℎLs tuvL
] (12) 

(12) is not of our own (see [89]), we just propose different step-sizes at this 

point. The key idea is to multiply by 1.5 or divide the step-size by 2, depending on 

the surface of the search space. When 
Pwx(!)PSTU ∙ Pwx(!M�)PSTU > 0, the signs of the derivates 

do not change (“+” by “+” or “–“ by “–“ is always positive). This means that we 

have not reached the local minimum yet. Therefore, we increase the step-sizes until 

we have surpassed a local minimum ZPQR(!)PSTU ∙ PQR(!M�)PSTU < 0[. When 
PQR(!)PSTU ∙ PQR(!M�)PSTU <

0, there is a change of sign in 
PQR(!)PSTU . This implies that we have already jumped over 

the local minimum. When the local minimum is surpassed, we change the sign of the 

gradient. 

Authors [90, 91] typically limit the step-size with ∆,�*> 0 and ∆,+N> 50. 

Instead, we propose ∆,�*> 0.001 and ∆,+N> 30 as limits (∆,�*> 0.001 for the 

number precision needed and ∆,+N> 30 as this already implies a long hop). 

Up till now, we have defined how to adjust the step-size ∆�V(H) at time t, 

depending on the sign of the partial derivative. But, we still have to update ∆C�V(H). 

[92] proposes an important improvement to classic Rprop which lies in weight 

updates with backtracking (reverting a wrong movement or step). Our modification is 

based on weight backtracking movements but we consider local information of the 

search space surface by means of the previous error measure (Λε(H − 1)). When there 

is a change of sign in the partial derivative ZPQR(!)PSTU ∙ PQR(!M�)PSTU < 0[, we calculate ∆�V(H) 

as defined in (12). Then, we check out whether the current error measure kΛε(H) is a 

15% (this percentage can be parameterised) bigger than the previous error measure kΛε(H − 1). When this occurs, we undo the previous movement (∆�V(H − 1)) as we 

have not only surpassed the local minimum but also gotten a much higher error 

measure. However, when the deviation is lower than 15% (we are further from the 

local optimum but not extremely faraway), we go back to halfway as far as fully 

reverting a movement leads us to wasting too many iterations. But, if we stay halfway 

between the previous point of the search space and the current one y∆TU(!M�)� z, the 
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probability of getting closer to the local minimum increases and the total number of 

iterations needed to reach the local optimum decreases. Hence, we propose to apply 

the following expressions for each wij (in order to distinguish what is novelty from 

what is not, we highlight the code of our own): 

DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V > 0n àb
ac∆�V(H) > ming1.5 ∙ ∆�V(H − 1), ∆,+Ni

∆STU(!)Ib̀c
∆TU(!),�{ ZPQR(!)PSTU [ | �  
M∆TU(!),�{ ZPQR(!)PSTU [} �]

STU(!#�)ISTU(!)#∆STU(!) ~a
�a
�

 

DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V < 0n � ] 
∆�V(H) > max j∆�V(H − 1)2 , ∆,�*n 

DY ygkΛε(H) > kΛε(H − 1)i && gkΛε(H) < 1.15 ∙ kΛε(H − 1)iz 

C�V(H + 1) > C�V(H) − ∆C�V(H)2  

L�vL DYgkΛε(H) > 1.15 ∙ kΛε(H − 1)i 

C�V(H + 1) > C�V(H) − ∆C�V(H) 
L�vL ∆C�V(H) > ∆C�V(H − 1) kΛε(H)kC�V > 0 

] � 

DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V > 0n
àab
aac∆C�V(H) > X∆�V(H), DY ZkΛε(H)kC�V [  <  0  

−∆�V(H), DY ZkΛε(H)kC�V [ >  0]
C�V(H + 1) > C�V(H) + ∆C�V(H) ~aa

�
aa� 

(13) 

 

Note that our learning algorithm may get trapped in local minima but, compared 

to Rprop, it is faster and usually obtains better results for a reduced amount of 

training time. 

We have defined a generic modification of Rprop with weights backtracking 

algorithm for ANNs but we still have to formalise the rest of problem-dependent 
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parameters of the ANN (topology activation function, inputs, outputs, hidden units, 

etc.). Chapter 5 describes how to fine-tune our ANN specifies how to achieve this in a 

real world environment which is the large call centre of Telefónica. 

 

4.4 SEARCH MODULE  

This section describes the key features of the search module which is the second 

block of the architecture proposed in Figure 7 (second arrow). This block is 

implemented as a parallel MA. This section contains both own innovations and 

classical, applicable evolutionary operators (we will not inspect existing evolutionary 

operators which are not suitable or prevalent for our problem specification). Note that 

this section is conceived for describing all evolutionary operators and parameters 

from a generic point of view rather than presenting concrete use case adaptations as 

Chapter 5 will cautiously put forward how to adjust all parameters to the call centre 

use case. 

 

4.4.1 Methodology 

Once the forecast module (an upgraded resilient back-propagation neural 

network as described in Section 4.3) has provided us with all the predictions, the 

search module (a parallel steady-state MA, see Section 4.4.2.5.5) optimises the 

assignment among task types and agents. The parallel steady-state MA is devised as 

an island topology (see Section 4.4.4) with migration operators for individuals 

exchanging, where a master island manages the rest of subordinate islands (note that 

we do not use the term slave as these islands operate with complete solutions and do 

not merely process partial information). So, each island corresponds to a full steady-

state MA.  

Each MA keeps a population of abstract representations (chromosomes) of 

candidate solutions (phenotypes) to the problem described in Chapter 2. The 

population is partially randomly initialised (for further information, see Section 

4.4.2.3). Afterwards, its individuals are evaluated by applying a fitness function over 

them (we will see an example in Chapter 5). From this population, some individuals 

are selected and, after that, recombined (crossover). Subsequently, the offspring may 

suffer perturbations (mutations) in some genes. Then, some of these individuals 
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replace others from the population according to the replacement policy. Every 

generation includes all previous actions. After that, an LS mechanism is applied over 

a percentage of the population each g generations. Finally, each mi generations, the 

master island halts the slave islands in order to pick up certain individuals from them 

and spread other ones. All these steps are carried out until a predefined time has been 

elapsed.  

 

4.4.2 Genetic Algorithm 

4.4.2.1 Encoding 

The first stage when designing an MA is to define a problem representation 

(chromosome or genotype) to encode candidate solutions (phenotype) to the problem 

in a form that every computer can interpret. The “physical” expression of the 

genotype is called the phenotype. This means that a mapping between genotype and 

phenotype must be delineated. There are multiple forms to encode candidate solutions 

which range from binary strings, arrays of integers or arrays of decimal numbers to 

strings of letters.  

Specifically, our solution consists in an integer representation. We just need an 

array of integers whose indexes represent the available agents, AAt ⊆ , at a given 

instant, t, and the array contents refer to the profile, Pj, assigned to each agent ai 

(<P1,...,Pi,..., Pl>). Then, tasks are “routed” to the agents, according to the profiles 

assigned. Of course, we can also encode the solution as an array of integers whose 

indexes symbolise the task types and its respective contents represent the number of 

agents assigned to each task type. This option is recommended whether there are too 

many agents and hardware capacity is very limited (with respect the total number of 

available agents). In contrast, we are missing the capability of working at agent’s 

profile level. As we have not this capacity constraint, we will employ the first 

codification proposed. 

Figure 16 shows a fictitious example of encoding (go over Chapter 2 to refresh 

terminology, if needed) for 10 work items (w0-w9) grouped in 3 different tasks types 

(t0-t2) depending on the nature of the tasks, 5 agents (a0-a4) and 4 skill profiles (P0-

P3), where P0={s0, s1}, P1={s1}, P2={s2} and P3={s1, s2}. Now, suppose that 

a0~{P0,P1}, a1~{P0, P2}, a2~{P1,P3}, a3~{P2,P3} and a4~{P0,P1}. We have seen the 

potential profiles for every agent but only one profile can be assigned to each agent at 
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a given instant t; therefore, a feasible solution would be Figure 16 (a0 and a4 have 

been assigned to the profile P0, a1 and a3 have been assigned to the profile P2, while 

a2 has been assigned to the profile P1). 

 

Index (agents)      � 0 1 2 3 4 

Content (profiles) � 0 2 1 2 0 

Figure 16: Example of encoding. 

 

4.4.2.2 Population 

The population of our MA is a compilation of chromosomes encoded as 

hinted in Section 4.4.2.1. The population is the minimum unit of evolution since 

individuals are static elements by themselves. This evolution can be observed in the 

changes produced in the genetic configuration over the time in each successive 

generation. The changes between two generations are usually small but these 

differences mount up with each generation, causing significant changes in the 

“original” population.  

The size of the population often depends upon the nature of the problem and 

typically contains tens or hundreds of possible solutions. Although there is no rule of 

thumb to determine the optimal population size, it is recommended to have a 

population neither too small nor too big, since individuals frequently evolve faster in 

such an environment.  

Now, the concept of diversity must be mentioned. The diversity represents 

the variety of phenotypes and/or genotypes that a population has. The diversity is 

essential in a population because the more diverse a population is, the more chances 

to adapt itself to environmental changes it has. 

EAs may have multiple populations that evolve according to rules of the 

genetic operators. In these cases, a migration operator and a replacement policy are 

needed. 
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4.4.2.3 Initialisation 

Typically, the initial population is fed with randomly generated individuals 

who should potentially cover different possible configurations. In some cases, we can 

use other algorithms to initialise the population (e.g. a more or less complicated LS 

mechanism) but, in most cases, this is not possible since computing times increase too 

much and real applications require short computing times. In our case, we propose to 

start from a random initial population, including the best solution found in the 

previous time-frame because the configuration of agents’ profiles should not change 

too much over two successive time-frames. 

 

4.4.2.4 Fitness Function 

The fitness function is an evaluating mechanism which is defined over the 

chromosome to measure the quality of a given solution. This function often guides 

the search and decides which individuals must be selected for the next generation (in 

fact, surviving individuals also depends on the replacement policy). The fitness 

function is intrinsically linked to the problem. Frequently, the hardest action when 

defining an EA is to identify the right fitness function since results strongly depend 

on it. Occasionally, it is hard (sometimes impossible) to characterise the fitness 

expression; in these cases, interactive genetic algorithms are used. In other cases, long 

evaluating times imply that an approximate function is needed. The fitness function is 

problem dependent and Chapter 5 will carefully describe a fitness function for a 

multi-skill call centre. Besides, we will explain how to incorporate constraints to a 

dynamic environment as already stated in Chapter 2. We will also propose a 

mechanism to calculate a partial fitness function instead of recalculating everything in 

each evaluation (as this is problem dependent, we cannot include this mechanism in 

this section). 

 

4.4.2.5 Evolutionary Operators (Classic and New Operators) 

In this subsection, we explain potentially appropriate evolutionary operators 

which may be applied to the problem described in Chapter 2, given the encoding we 

are proposing in Subsection 4.4.2.1. This section does not attempt to cover all feasible 

evolutionary operators, just the ones we consider relevant for DMAS. Some of these 
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evolutionary operators are innovative but others are not (this is specified for each 

one). 

 

4.4.2.5.1 Selection Operator 

Since the population needs to be bred each successive generation, several 

individuals are chosen to be recombined. In the state-of-the-art, one can find the 

following ones: 

Random Selection: consists in randomly selecting a configurable percentage of 

individuals for potentially recombining them. 

Tournament selection [93]: implies executing t tournaments among some 

individuals randomly chosen from the population. The individual who has the best 

fitness is selected for recombination. When t is larger, individuals with worse fitness 

have fewer chances to be selected (t indirectly determines the selective pressure). 

Roulette-wheel selection [28]: associates a probability of selection with each 

individual chromosome. The probability of selecting a chromosome is proportional to 

its fitness or rank (survival of the fittest). 

Truncation selection [94]: removes a predetermined percentage of the candidates 

with worst fitness.  

Ordered selection [95]: randomly picks a chromosome from the top N percent of 

the population. 

Best: merely selects the best chromosome in terms of fitness. When there are 

more than two chromosomes with the same best fitness, one of them is randomly 

chosen. 

 

4.4.2.5.2 Mating Operator 

The purpose of this operator is to mate individuals (which individual should 

reproduce with another one). We can hit upon the following techniques: 

Random mating [96]: randomly mates individuals for posterior crossover. 

Fitness-based mating [97]: selects pairs of individuals with the highest 

difference in terms of fitness (best fitness individual will be mated with the worst 
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fitness one). The idea is to potentially provide the EA with a fast diversity 

mechanism. 

Similarity mating [98]: selects pairs of individuals having more differences in 

terms of genes in their chromosomes. This mechanism provides real diversity to the 

EA but it is time-consuming. 

 

4.4.2.5.3 Crossover 

This operator combines individuals to produce several children (offspring). The 

key idea behind the recombination of individuals is to potentially obtain other better 

fitted individuals. 

One-point crossover [99]: chooses a random point on both parents' chromosomes 

(the same point for both parents). All the genes until this point from one of the 

parents (randomly chosen) are copied to one of the children (randomly chosen). The 

genes beyond this point from the first father are arbitrarily copied in the other child 

and the ones from the second father are arbitrarily copied in the other child as Figure 

17 illustrates. 

 

Figure 17: One-point crossover. 

Multi-point crossover [100]: selects N random points on both parents' 

chromosomes (the same points for both parents). Each piece of chromosome from the 

parents is alternatively copied in each child as Figure 18 shows. 
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Figure 18: Multi-point crossover. 

Cut and splice [28]: consists in selecting 2 different random points (one in each 

parent). One piece of father-1’s chromosome is then copied in a randomly chosen 

child. The same action is accomplished for father-2 in the opposite child. The rest of 

genes are randomly copied (see Figure 19). 

 

Figure 19: Cut and splice. 

 

Probability crossover: considers that children will inherit the common points in 

their parents (potentially, the best genes) and randomly receive the rest of genes from 

them. This probability can be the 0.5 (uniform crossover [101]) or proportional to the 

fitness.  
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We also propose to assign this probability in a more complex way such as 

simulated annealing does [45]. At the beginning of the process, when the temperature 

is higher, we can explore more by applying a probability of 0.5 and, when the 

temperature starts cooling off, we can give more probability to the best fitted 

individual as follows: 

Pr0 (best fitted) = 0.5 (initial probability for best fitted parent). 

Pri (best fitted) = 0.5 + ʋ/Ti (probability for the best fitted parent at 

generation i). 

(14) 

where Ti is temperature at iteration i (the probability of giving a higher weight to the 

best fitted individual increases when the temperature decreases) and ʋ is a factor to 

return values between 0 and 0.5. 

Simulated annealing has different schemes to decrease the temperature but they 

all decrease nonlinearly. Another option is to increase the probability according to the 

number of generation generated as follows: 

Pri (best fitted) = 0.5 + ʋ/Gi (15) 

where Gi stands for the generation number i and ʋ is a factor to return values between 

0 and 0.5. 

All in all, the idea is to choose a probability for recombination and we have several 

mechanisms to achieve this task as Figure 20 confirms: 

 

Figure 20: Probability crossover. 
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4.4.2.5.4 Mutation Operator 

This operator causes tiny changes in the chromosome of individuals to explicitly 

maintain diversity. It applies a perturbation over each gene of the chromosome with a 

given probability. This perturbation corresponds to changes of profiles in some agents 

(e.g. agent a2 who had assigned the profile P1 has now associated the profile P3 due to 

a mutation). 

 

4.4.2.5.5 Replacement Policy 

Finally, we decide which individuals are incorporated (or maybe reinserted) into 

the population for the next generation. 

Generational [102]: After recombination, the offspring generated by the selected 

parents fully replaces them. The selection strength is low when this scheme is applied 

(slow convergence). However, it potentially converges to the global optimum when 

enough generations are generated. 

Steady-state [102]: After crossover, the offspring generated by the selected 

parents may replace them if these are best fitted. There are numerous policies for 

individuals’ replacement: 

- Elitism [103]: best fitted individuals fully replace the worst ones (quick 

convergence). 

- Random replacement: randomly chooses the individuals from the parents 

and children set. With a probability, worst fitted individuals may replace the 

best ones. 

- Boltzmann criterion [45]: The best fitted individual is chosen and another 

one (which may not be the second best fitted individual) is inserted with a 

given probability as simulated annealing does. 

- Similarity criterion: we propose to select the best fitted individual and its 

most different one in terms of genes. 

- Taboo criterion: we also propose another scheme which lies in storing a list 

of non-promising individuals (based on their age for instance) in order to 

avoid inserting duplicated or inappropriate individuals. This option imposes 
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additional memory requirements and more evaluations. Instead, we save up 

so much time in incorporating useless individuals during a given amount of 

time or iterations. 

 

4.4.2.5.6 Stopping Condition 

Elapsed time: considers a fixed amount of time to run the algorithm. 

Number of generations: executes a predefined number of generations. 

Number of generations without an improvement in fitness: executes the 

algorithm until there is no improvement (or just under a given threshold of upgrading) 

during the latest g generations. Another choice is to keep the best solution found and 

restart the algorithm, employing another algorithm configuration (parameterisation) 

in order to find a better optimum in other place of the search space when the stopping 

criterion is one of the previous ones (if we still have time or remaining generations, 

we better utilise this time or generations in searching other possibilities). 

 

4.4.3 Memetic Algorithms 

As we described in Section 3.1.3, MAs are a population-based technique for 

heuristic search in optimisation problems. MAs are quicker than traditional GAs for 

many problem domains because these apply an LS procedure. The present section 

describes the MA we propose. 

4.4.3.1 Local Search 

LS is an MH for solving optimisation problems. An LS algorithm starts out from 

a candidate solution and, thus, iteratively moves to a neighbour solution, generating 

the neighbourhood. To carry out this action, a neighbourhood relation must be 

defined on the search space. In our case, we state that two candidate solutions are 

neighbours if only one gene differs in both chromosomes. Note that we propose a 

“simple” LS due to the lack of time of a dynamic environment but a more complex 

LS mechanism may be used when computing times are more flexible.  
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The following pseudo-code illustrates the LS algorithm: 

void Local_Search (Chromosome & candidate_solution) 

   Chromosome best_solution = candidate_solution; 

   Chromosome neighbour = candidate_solution; 

   For (i=0; i<candidate_solution.size(); i++) 

        Agent a = neighbour.getAgent(i); 
        For (j=0; j<a.get_number_profiles(); j++) 

neighbour.change_profile(i,j); //profile j for agent i 

                  If (neighbour.fitness() > best_solution.fitness())  best_solution = neighbour; 

        neighbour = best_solution; 

   candidate_solution = neighbour; 

 

Another relevant task is to decide the right frequency which should be 

considered to apply the LS over the population and how many individuals must be 

affected. Chapter 5 will suggest an LS frequency and a percentage of affected 

individuals for the multi-skill call centre use case. 

 

4.4.4 On Parallelising Memetic Algorithms 

There are many approaches to MAs parallelisation. Due to the constraints in the 

number of pages for this document, we are not going to go over all of them and will 

just describe the configuration we propose for this type of dynamic environments. 

We propose an island model where there are a master island and s subordinate 

islands. Every subordinate island is connected with the master one but not with the 

others. The master island asynchronously stops the rest of subordinate islands and 

asks for a percentage of their best fitted individuals. Then, the master island takes 

these best fitted individuals and decides whether (or not) to incorporate these 

individuals into its population. Then, the master island sends back its best N 

individuals and the most different one to the best fitted one in terms of genes 

differences. Subordinate islands apply elitism to accept or not the incorporation of 

these individuals (whether the individuals coming from the master island are not 
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better fitted than the existing ones). The process is carried out until the stopping 

condition is met. 
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5 CHAPTER 5. APPLICATION : CALL 

CENTRE 

In Chapter 5, we adapt our approach to a real-world DMAS: the multi-skill call 

centre. Section 5.1 describes the specific characteristics of our problem domain. 

Section 5.2 presents a brief survey of call centre algorithms. Section 5.3 highlights 

the magnitude, in terms of volume, of our application domain. In Section 5.4, we 

present some special adaptations for the forecast module. In contrast, Section 5.5 

points out some particular adaptations for the search module. 

 

5.1 DESCRIPTION  

A call centre (CC) [11] is a centralised office used for receiving and transmitting 

large volumes of telephone requests which may range from customer service to the 

selling of products and services. Even though CCs have been broadly studied, there 

are still some lacks on optimisation which may imply huge losses of money every 

year because of a wrong allocation of resources to the right tasks, and client 

dissatisfaction due to never-ending delays as pointed out in Section 1.4 (Market 

Relevance). 

In a CC, the flow of calls is often divided into outbound and inbound traffic. 

Outgoing calls are handled by agents, primarily, with commercial pretensions. This 

type of calls is planned as agents know in advance which customers must be 

contacted every day. Conversely, incoming calls are those that go from the client to 

the CC to contract a service, ask for information or report a problem. These 

unplanned calls are initially modelled and thus classified into manifold call groups 

(CGs) in relation to the nature of each call (complaints, V.I.P. clients, client loyalty, 

etc.). As soon as these CGs have been modelled, each call is assigned to a unique CG 

(there is no overlap among CGs). Each incoming call needs time to be answered, 

requiring different processing times as indicated below:  

1) The first one is the time needed to assign a type to the call (modelling). 
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2) The second one is the time that the call is queuing (waiting). 

3) The last one is the time that the agent needs to handle the call 

(processing). 

A key component for any CC is the automatic call distributor (ACD) which is a 

system that models incoming calls and automatically distributes them throughout 

different queues from which certain agents can pull work. The routing scheme is a 

rule-based set of operations that guides the ACD to handle a given incoming call 

inside the system. Typically, once the call has been assigned to a queue, a second 

algorithm is required to select the best available agent to reply to a given incoming 

call. 

Habitually, the distribution of the incoming flow is based on the current state of 

the queues. A CC is a changing environment where conventional algorithms have no 

time to reach an optimal solution. It would be desirable to predict the future state in 

order to give more time to the algorithms to consider the "whole picture" of the 

situation to efficiently reallocate every agent. The majority of traditional techniques is 

supported by a strong assumption which relies on the way that incoming traffic 

arrives. Most techniques suppose that incoming flows within CCs follow a Poisson 

distribution. In this context, the main concern should be to forecast, for an upcoming 

state, the inbound traffic, abandonment rate and available agents having the required 

skills, in order to properly divvy up the workload among agents as our resources can 

be, at this point, optimised by a search algorithm. Bear in mind that a fair allocation 

of workforce improves client satisfaction and, furthermore, reduces costs. 

A specific type of CC is the multi-skill call centre (MSCC). In an MSCC, there 

are n customer calls grouped in k types of calls and m agents that may have up to l 

skills (l ≤ k). This implies that each agent can attend different types of calls and, 

given a type of call, it can be answered by several agents that have that skill. 

Obviously, the scenario can be simpler in some special CCs in which agents 

have a single skill. These CCs can be modelled with q single queues working in 

parallel. In other cases, every agent has all possible skills; hence all customers are 

queued in a single queue that can be handled by any agent. The system is noticeably 

easier to analyse in these two extreme cases. With all agents having all skills, the 

system is also more efficient (shorter waiting times, fewer abandonment rates) when 

the service time distribution for a given call type does not depend on the agent’s skill 

set. However, this assumption turns out to be wrong in practice: agents are usually 

faster when they handle a smaller set of call types (even if their training gives them 

more skills). Agents with more skills are also more expensive as their salaries depend 



Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz 
 

85 
 

on their skill sets. Thus, for large volumes of call types, it makes sense to dedicate a 

number of single-skill agents (specialists) to handle most of the load. A small number 

of agents, proportional to the calls of each type, with two or more skills can cover 

potential fluctuations in the arriving load. To address these fluctuations, the skills are 

grouped in skill profiles (subsets of skills) so that we can assign an agent to specific 

types of tasks during a given period of time, despite this agent has skills to process 

other types of work. 

As it can be expected, the mean arrival rate is not the same for each CG as well 

as the calls of these CGs have different processing times. Now, bear in mind that 

inbound flow in CCs is usually not a stationary Poisson process [104, 111] and, the 

service times do not increase exponentially as explained in Section 4.3.1.1. Since 

calls randomly arrive according to a stochastic process, it would be desirable to have 

a well-balanced allocation of the agents, who can be available or not, in order to 

handle the calls as soon as possible. 

Figure 21 illustrates the relationship among client calls, queues and agents. This 

figure describes an example for 9 client calls grouped in 4 CGs and 5 agents having 

different real skills. 

 

 

Figure 21: Inbound scheme. 

 

More formally speaking, the following parameters can be found in an MSCC: 

1) a finite set of n customer calls },...,,{ 21 ncccC = . 



Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz 

 

86 
 

2) a finite set of k CGs (call groups/types) }...,,,{ 21 kcgcgcgCG = , where 

nk ≤  when every CG has, at least, one call queuing. 

3) a finite set of m agents }...,,,{ 21 maaaA = . Usually, m >>k. 

4) a finite set of k agent-skills }...,,,{ 21 ksssS=  in which each agent-skill, 

is , represents the ability to handle the associated CG, icg , with the 

corresponding sub-index in CG: kk cgscgscgs ~,...,~,~ 2211 . 

5) a finite set of d agent-skill profiles }...,,,{ 21 dPPPP =  in which each 

agent-skill profile Pi can be any subset of }...,,,{ 21 ksssS= . 

6) a finite set of n operations (execution or processing of each customer call, 

ic ) }...,,,{ 21 noooO =  in which each operation, io , has associated a 

processing time which depends on its CG: },...,,{ 21 kτττ . 

The solution to the problem of the workforce distribution in MSCCs is defined 

as the right assignment for every agent ai to the most suitable skill profile Pj from 

his/her real skill profiles for each v seconds, where v is the size of the time-frame 

considered. 

In addition, the assignment 
tji Pa , must satisfy all hard constraints and handle 

the soft ones given by the business units. To determine whether (or not) a given 

solution is suitable, we need to define a quality metric to evaluate the rightness of 

each feasible solution. There are very significant metrics to measure the quality of a 

CC such as the abandonment and service rates. These metrics somehow hinge on the 

(customer) service level [12] which is defined as the percentage of customer calls that 

have to queue shorter than a specified amount of time. Our work has been conducted 

by applying this metric.  

Moreover, the solution must fulfil the following descriptions: 

1) on O define R, a binary relation which represents the precedence among 

operations. If  Roo ∈),( 21
 then o1 has to be performed before o2. 

2) each agent, ia , has associated a finite non-null subset of P, containing his 

skills to handle different customer CGs (individual real skill-profile). 

3) the same profile iP can be assigned to several agents. In other words, 

several agents may have some skills in common (or even all of them). 
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4) every agent, ia , may have several profiles assigned but only one can be 

performed at a given instant t, 
tji Pa , . In other words, an agent cannot 

process two (or more) incoming calls at the same instant. 

5) every solution must respect diverse (hard and soft) constraints given by 

business rules defined by business units or agents’ regulations. 

Likewise, an initial step to produce a planning is to predict future system loads, 

comprising predicted arrivals, existing queuing calls, abandonments and mean service 

times. Intuitively, the mean arrival rate for each CG is not the same and their calls 

may involve different processing times. Note that incoming flow in CCs is usually 

not a stationary Poisson process and, the service times do not increase exponentially. 

Since calls randomly arrive according to a stochastic process, a well-balanced 

distribution of agents is needed with the aim of handling calls as soon as possible. 

The complexity of this problem is huge because we are not only dealing with an 

NP-hard problem like in the job assignment problem, but also considering high 

dynamism, massive incoming customer calls and large number of agents having 

multiple skills. Besides, since customer calls are not planned, this makes the call 

assignment a truly laborious task. 
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5.2 BRIEF STATE -OF-THE-ART ON CALL CENTRE 

ALGORITHMS  

Reviewing the state-of-the-art, one can realise that many algorithms for 

workload distribution in single-skill CCs are available (e.g. [105]) because, in the 

past, agents were commonly allocated to single customer call groups. Nevertheless, 

not much work has been conducted to workload distribution in MSCCs which is the 

emblematic scenario in nowadays CCs. In the rest of this section, we discuss the main 

contributions to workforce distribution in MSCCs. 

Workload distribution in MSCCs has been broadly faced by an SBR algorithm 

[106]. SBR is a call-assignment strategy used in CCs to assign incoming customer 

calls to the most suitable agent, instead of simply choosing next existing agent. The 

need for SBR has arisen, as CCs have become larger and deals with a wider variety of 

call types. The major handicap of this approach is that online (ad-hoc) routing 

heuristics cannot be very complex in view of the fact that a very short response time 

is required. These fast, unplanned decisions may imply suboptimal task types 

assignments to existing agents. 

Conversely, Thompson [107] proposes an integer programming model which 

differentiates minimum acceptable service levels per time-frame from a constraint on 

the mean service level over the planning horizon. Although this approach considers 

prospective situations, it is less dynamic to changes than SBR. 

Other approaches consider dependent planning intervals (e.g. [108]). Most 

methods perform well enough within separate intervals but their performance 

decreases when moving to the next one, giving much trouble in prospective time-

frames. 

Other authors take into consideration overflow routing in multi-skill blocking 

systems with randomisation parameters by applying a branch-and-bound algorithm 

(e.g. [109]) or cutting planes (e.g. [110]). These techniques are only appropriate for 

stable environments because they need long response times and their performance 

highly decreases in large instances. 

Finally, we can find one of the most representative algorithms of the state-of-the-

art (Koole et al., 2008 [11]). Koole presents a heuristic, which considers the costs of 

agents and a service-level condition, to optimise the distribution of agents among 

different CGs. This algorithm is faster than most of the aforementioned approaches 
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but deals with specific types of MSCCs in which customer calls arrive according to a 

Poisson process with deterministic rate. However, note that inbound flow in MSCCs 

is usually not a stationary Poisson process [104, 111] and, the service times do not 

increase exponentially. Since calls arrive randomly according to a stochastic process, 

agents must be well-distributed to handle the calls as soon as possible. Besides, the 

previous techniques often consider a high granularity and need to work at agent 

groups’ level instead of an agent’s profile level. This setback does not enable us to 

offer more accurate configurations for DMAS. 

To conclude, we have seen, in this section, how some approaches employ 

“basic” heuristics to dynamically distribute incoming customer calls to agents while 

others cope with stable inbound flows and longer stability over time. In this context, a 

large-time-frame planning cannot be carried out because of the continuous 

changeability of all variables involved. Moreover, “basic” heuristics based on the 

current situation (online routing strategies) may work under certain cases, e.g. stable 

workload, but daily use of these techniques will guide us to appalling solutions. 
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5.3 MAGNITUDE OF OUR CALL CENTRE 

This section presents some numbers to realise of the magnitude of our CC: 

1) Maximum number of CGs = 1.035 

2) Maximum number of simultaneous incoming calls = 2.500 

3) Maximum number of incoming calls per hour = 60.000 

4) Maximum number of incoming calls per day = 700.000  

5) Minimum number of simultaneous agents = 0 

6) Maximum number of simultaneous agents = 2.100 

7) Minimum number of agents concurrently assigned to a single group = 0 

8) Maximum number of agents concurrently assigned to a sole group = 526 

9) Mean number of agents concurrently assigned to a single group = 3 

10) Minimum number of potential profiles per agent = 1 

11) Maximum number of potential profiles per agent = 108 

12) Mean number of potential profiles per agent = 16 

 

Obviously, the number of incoming calls is not the same all the time as it 

depends upon many factors. When agglomerating many data and considering a 

coarse-grain, forecasting becomes much easier as the variability at high level (e.g. 

monthly and daily level) is reduced and easy to forecast. However, our predictions 

rely on a fine-grain process as forecasts refer to each successive state. We can 

perceive that fact in the following figures (Figures from Figure 22 to Figure 25). 

 

Figure 22: Incoming calls during a year at monthly level. 
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Figure 23: Incoming calls during the most intricate month (September) at daily level. 

 

 

Figure 24: Incoming calls during the most complex day of September (September 9) at hourly 
level. 
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Figure 25: Incoming calls during the most complex hour of “September 9” at minutely level. 

 

A pattern can be relatively easily found at macroscopic level (month of the year 

and day of the month). However, predictions are harder when considering the hour of 

the day and much harder at minutely level (our concern in this work). Thus, these 

figures corroborate how complex is to predict the incoming flow in our environment. 

However, abandonments and available agents are easier to forecast because: 

1) the abandonment rate is highly correlated to the volume of incoming 

calls as Figure 26 illustrates, 

2) and the number of available agents can be inferred from timetables 

and mean processing times as well as current load and other well-known 

factors. Figure 27 shows the volume of existing agents as a total value and 

separating the most representative CGs. 
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Figure 26: Incoming calls and abandonments during a common day. 

 

 

Figure 27: Number of agents for the 5 most representative CGs. 
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5.4 FORECAST MODULE ADAPTATIONS  

This section elucidates the required tuning to adapt the forecast module 

described in Section 4.3 to the CC’s environment. Note that our forecast module 

relies on an ANN based on uRprop. Our uRprop learning algorithm does not actually 

need any specific adaptation to our environment (the neuron activation function and 

the weighted sum of coefficients are also the same ones that we described in Section 

4.3) but the architecture of the ANN demands some additional tuning. Our focal 

control over this architecture relies on the number of hidden layers as well as the 

number of neurons in these layers because the number of input/output neurons is 

determined by the number of inputs and outputs we have.  

As the number of available agents mainly depends on the agent timetable and the 

number of abandonments is proportional to the number of incoming calls, we will 

mainly focus on the prediction of incoming calls. The following sections justify the 

pertinent configuration of our ANN for the MSCC’s domain. 

  

5.4.1 Number of Layers 

As claimed in section 4.3, the number of layers of an ANN must be, at least, two 

(1 input, h hidden where h≥0 and 1 output). Sometimes, the hidden layer is not 

needed (e.g. simple linearly divisible problems). In our case, we propose three layers: 

1 input layer, 1 hidden layer and 1 output layer. Note that we necessitate a hidden 

layer at least because our problem is nonlinear. Nevertheless, we do not in fact need 

more than a hidden layer because we can approximate well enough every function by 

utilising a single hidden layer with an arbitrarily large number of hidden units 

(universal approximation property [112]). Of course, the more hidden layers we have, 

the more accurate our prediction might be (more coefficients in the global formula of 

the ANN). But, this increases the computing time to train the network (more loops to 

update the weights) and bear in mind we have limited time to accomplish this task. 

Besides, adding more than a hidden layer aggravates the problem of getting trapped 

in local minima [87].  

  

5.4.2 Input Layer 

The number of neurons of the input layer is determined by the number of 

variables we have. But, what variables or features do we have in our environment? At 
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a typical MSCC, we can stumble on a wide variety of variables which may range 

from information of previous calls (number of calls, tendencies, mean processing 

times, etc.) to contextual information (campaigns, peak hours, night shift timetable, 

etc.). We can directly take this raw information but, sometimes, we have too many 

variables or features to take them into account. As we have much information and 

many dimensions (variables), it makes sense to reduce the number of input variables. 

Moreover, sometimes, some variables may even inject identical information into the 

ANN because of the dependency among variables. To mitigate this drawback, feature 

selection appears as a promising solution. Feature selection is the technique, broadly 

applied to machine learning, of selecting a subset of relevant features or variables in 

order to build robust learning models.  

Choosing the right inputs from all information we have (122 different variables) 

is not trivial and is very important for obtaining a higher performance as having more 

predictors implies adding new dimensions to the model (more complexity). Since 

variable selection should not be defined ad-hoc, principal component analysis (PCA) 

[113] has been employed (see Table 4). PCA is a statistical technique that converts a 

set of potentially correlated predictors into a smaller subset of uncorrelated predictors 

designated as principal components. The main advantage of PCA is the capability to 

compress data by reducing the number of dimensions without significant loss of 

information. To select the right inputs, we have compiled a dataset of 3 months and 

obtained the results given by Table 4 (first column stands for the relevance, second 

column refers to the component number and third column is the component itself). 

As a remark, PCA has not been implemented by the author; instead, we have 

used the Weka framework [114] in order to determine the right inputs for our ANN 

(see Table 4 and Table 5). 

 

Table 4: Ranked attributes. 

Relevance # Component 
 0.8514    1   0.182i_TENDENCIA_9+0.181i_TENDENCIA_18+0.179i_TENDENCIA_8+0.176i_TENDENCIA_17+0.167i_TENDENCIA_7... 
 0.7635    2   0.293i_LL_TOTALES_5+0.293i_LL_TOTALES_6+0.289i_LL_TOTALES_7+0.289i_LL_TOTALES_4+0.284i_LL_TOTALES_3... 
 0.6887    3   -0.213i_TENDENCIA_13-0.191i_TENDENCIA_12-0.19i_TENDENCIA_14-0.178i_TENDENCIA_4-0.176i_TENDENCIA_10... 
 0.6193    4   -0.245i_TENDENCIA_21+0.221i_TENDENCIA_11+0.221i_TENDENCIA_10-0.219i_TENDENCIA_22-0.205i_FLAG_21... 
 0.5563    5   -0.245i_TENDENCIA_33-0.207i_TENDENCIA_28-0.206i_FLAG_33+0.2  i_TENDENCIA_43+0.199i_TENDENCIA_20... 
 0.4979    6   0.265i_TENDENCIA_38-0.26i_TENDENCIA_27+0.227i_FLAG_38-0.223i_FLAG_27-0.196i_TENDENCIA_45... 
 0.4413    7   0.288i_TENDENCIA_26+0.244i_FLAG_26-0.207i_TENDENCIA_32-0.196i_TENDENCIA_33-0.195i_TENDENCIA_3... 
 0.3861    8   0.257i_TENDENCIA_41+0.217i_FLAG_41-0.208i_TENDENCIA_45-0.205i_TENDENCIA_37+0.191i_TENDENCIA_7... 
 0.3323    9   -0.271i_TENDENCIA_1-0.233i_FLAG_1-0.202i_TENDENCIA_2-0.197i_TENDENCIA_6-0.19i_TENDENCIA_4... 
 0.2805   10  -0.34i_TENDENCIA_46-0.291i_FLAG_46+0.283i_TENDENCIA_44+0.243i_FLAG_44+0.202i_TENDENCIA_35... 
 0.2471   11  -0.45i_INTERVALO_8_2-0.376i_MINUTOS_DIA+0.328i_INTERVALO_8_1-0.323i_INTERVALO_4_4-0.304i_HORA_PUNTA2... 
 0.2232   12  0.416i_INTERVALO_8_0+0.416i_NOCTURNO-0.313i_INTERVALO_8_1+0.308i_INTERVALO_4_0+0.265i_INTERVALO_4_1... 
 0.2098   13  0.571i_INTERVALO_4_5-0.451i_INTERVALO_4_4-0.432i_HORA_PUNTA2-0.184i_DIA_SEMANA_6+0.181i_MINUTOS_DIA... 
 0.1995   14  0.432i_INTERVALO_4_3-0.414i_INTERVALO_4_2+0.244i_DIA_SEMANA_6+0.204i_DIA_SEMANA_5-0.186i_DIA_SEMANA_2... 
 0.1898   15  0.821i_DIA_SEMANA_2-0.447i_DIA_SEMANA_3-0.197i_DIA_SEMANA_1+0.166i_DIA_SEMANA_6-0.15i_DIA_SEMANA_4... 
 0.1802   16  -0.724i_DIA_SEMANA_4+0.524i_DIA_SEMANA_3+0.349i_DIA_SEMANA_6-0.164i_DIA_SEMANA_5+0.112i_INTERVALO_4_1... 
 0.1706   17  0.725i_DIA_SEMANA_5-0.478i_DIA_SEMANA_4-0.423i_DIA_SEMANA_6+0.159i_DIA_SEMANA_0-0.151i_DIA_SEMANA_3... 
 0.1611   18  0.685i_DIA_SEMANA_1-0.512i_DIA_SEMANA_3+0.313i_DIA_SEMANA_6-0.222i_DIA_SEMANA_4-0.207i_DIA_SEMANA_5... 
 0.1516   19  0.828i_DIA_SEMANA_0-0.487i_DIA_SEMANA_1-0.188i_DIA_SEMANA_3+0.104i_DIA_SEMANA_6-0.101i_DIA_SEMANA_2... 
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 0.1428   20  -0.689i_INTERVALO_4_1+0.564i_INTERVALO_4_0+0.191i_INTERVALO_4_2-0.181i_INTERVALO_4_3-0.158i_DIA_SEMANA_4... 
 0.1351   21  0.443i_INTERVALO_4_2-0.364i_INTERVALO_4_3-0.32i_INTERVALO_4_0+0.26 i_INTERVALO_4_1+0.182i_HORA_PUNTA... 
 0.1289   22  0.332i_FLAG_10+0.332i_FLAG_11-0.169i_TENDENCIA_11-0.169i_TENDENCIA_10-0.16i_HORA_PUNTA... 
 0.1233   23   0.41 i_FLAG_11+0.41 i_FLAG_10-0.186i_TENDENCIA_11-0.186i_TENDENCIA_10+0.175i_TENDENCIA_20... 
 0.118     24   0.597i_HORA_PUNTA+0.339i_DIA_SEMANA_6-0.286i_INTERVALO_4_3+0.252i_DIA_SEMANA_5-0.196i_INTERVALO_8_1... 
 0.1132   25   -0.218i_FLAG_28+0.209i_FLAG_9+0.191i_FLAG_3+0.191i_FLAG_4-0.188i_FLAG_33... 
 0.1088   26   0.264i_FLAG_38+0.217i_TENDENCIA_45-0.214i_FLAG_45-0.209i_TENDENCIA_38+0.204i_FLAG_7... 
 0.1045   27   0.296i_FLAG_27-0.224i_TENDENCIA_27+0.22 i_FLAG_30-0.205i_FLAG_37+0.203i_FLAG_26... 
 0.1002   28   0.275i_FLAG_20+0.224i_FLAG_13-0.219i_FLAG_33+0.201i_TENDENCIA_1+0.191i_TENDENCIA_2... 
 0.0961   29   0.249i_FLAG_26-0.239i_FLAG_35-0.214i_TENDENCIA_26-0.207i_FLAG_32+0.207i_FLAG_28... 
 0.0922   30   -0.258i_FLAG_41+0.234i_FLAG_37+0.23 i_FLAG_39-0.224i_TENDENCIA_44+0.221i_TENDENCIA_41... 
 0.0884   31   0.282i_FLAG_11+0.282i_FLAG_10-0.249i_FLAG_16+0.245i_FLAG_24+0.241i_FLAG_21... 
 0.0852   32   -0.458i_HORA_PUNTA+0.349i_DIA_SEMANA_6+0.228i_DIA_SEMANA_5-0.203i_FLAG_9-0.18i_DIA_SEMANA_0... 
 0.0822   33   0.274i_FLAG_36-0.266i_FLAG_45+0.239i_FLAG_4-0.234i_FLAG_15+0.228i_FLAG_35... 
 0.0792   34   0.276i_HORA_PUNTA-0.271i_FLAG_30+0.243i_FLAG_42+0.219i_FLAG_38-0.218i_FLAG_29... 
 0.0763   35   -0.337i_HORA_PUNTA-0.325i_FLAG_45-0.299i_FLAG_12-0.262i_FLAG_3-0.257i_FLAG_29... 
 0.0733   36   -0.314i_FLAG_14-0.312i_FLAG_39-0.276i_FLAG_21-0.265i_FLAG_40-0.247i_FLAG_38... 
 0.0705   37   0.328i_FLAG_41-0.301i_FLAG_7-0.278i_FLAG_45+0.258i_FLAG_42+0.245i_FLAG_1... 
 0.0676   38   0.433i_FLAG_1-0.36i_FLAG_46+0.312i_FLAG_2-0.29i_FLAG_8+0.261i_FLAG_44... 
 0.0648   39   0.515i_FLAG_46-0.303i_FLAG_44+0.291i_FLAG_1+0.259i_FLAG_17+0.244i_FLAG_24... 
 0.0622   40   0.568i_FLAG_2-0.503i_FLAG_1-0.277i_FLAG_19+0.257i_FLAG_12+0.199i_FLAG_25... 
 0.0597   41   -0.393i_FLAG_26+0.364i_FLAG_45-0.348i_FLAG_19+0.293i_FLAG_37-0.261i_FLAG_2... 
 0.0572   42   0.584i_FLAG_32-0.366i_FLAG_41-0.344i_FLAG_44+0.218i_FLAG_43+0.206i_FLAG_40... 
 0.0548   43   -0.583i_FLAG_37-0.404i_FLAG_43-0.324i_FLAG_19+0.281i_FLAG_38+0.259i_FLAG_39... 
 0.0524   44   -0.508i_FLAG_26-0.44i_FLAG_12+0.314i_FLAG_20-0.237i_FLAG_1+0.227i_FLAG_2... 
 0.05       45   0.467i_FLAG_32+0.432i_FLAG_41+0.414i_FLAG_44-0.289i_FLAG_42+0.216i_FLAG_46... 

 

Table 5: Selected attributes. 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34

,35,36,37,38,39,40,41,42,43,44,45 � 45 attributes 

  

Among all variables, the volume of incoming calls in previous intervals, night 

shift timetable, week of the month, time, intervals of hours (broken down in 2, 4 or 8 

hours) and intervals of peak hours must be highlighted and analysed for separate. 

Figure 28 shows the behaviour when considering the previous time intervals. For 

almost all CGs, the optimum number of previous intervals required is usually around 

5-6 intervals. Considering more previous intervals does not enable us to obtain better 

results and makes the learning process slower. 
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Figure 28: Mean absolute error returned by the ANN when considering previous 5-minute 
intervals. 

 

Figure 29 illustrates a comparative study of the most relevant variables that have 

been studied in terms of error caused. The night shift timetable offers an upgrading of 

the results for every CG. When splitting days up into intervals of hours, predictions 

are also improved. The improvement coming from adding these hourly intervals 

might guide us to a wrong decision because these variables are correlated with the 

current number of incoming calls (our target) but the causality comes from the night 

shift timetable and peak time variables (it is more valuable to know peak hours rather 

than have hourly information). Note that the correlation among variables does not 

necessarily imply causality. In other words, the improvement is just obtained because 

these variables are correlated but only peak time intervals and night shift are truly 

useful to forecast the current number of incoming calls. Of course, PCA moderates 

the impact of these deceptive correlations. 
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Figure 29: Mean absolute error returned by the ANN when adding different variables. 

 

Intervals of peak hours are interesting to take into account because these 

divisions clearly outperform the results for almost all CGs. However, the upgrading is 

intuitively a bit lower for those CGs without many oscillations as there are fewer 

differences among day partitions. 

The rest of variables influence the results in some CGs (like the week of the 

month) but not significantly enough for most of them (they slightly contribute to the 

target prediction). Since a quick response time is required and selecting more features 

involves a higher dimensionality, these variables have not been expressly included in 

our final implementation. 

As Table 4 and Table 5 are difficult to follow, Table 6 summarises the most 

relevant individual features extracted from our dataset. 

Table 6: Summary of the most relevant individual variables. 

Individual relevant variables 

# Calls in Previous 0-5 Minutes        

# Calls in Previous 5-10 Minutes             

Night Shift Timetable 

Week day 

# Calls in Previous 10-15 Minutes               

# Calls in Previous 15-20 Minutes               
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# Calls in Previous 20-25 Minutes               

Minutes of the Day 

Peak Time 

Second Peak Time 

 

 

5.4.3 Hidden Layer 

We have already revealed that our ANN has a single hidden layer. Now, we have 

to determine the number of existing hidden units (hidden neurons) located in this 

layer. There are some (nonsense) rules to determine the number of neurons of the 

hidden layer(s) but, in our case, this number has been empirically determined.  

Figure 30 shows the results obtained for a variable number of hidden units. We 

can appreciate that the optimum value seems to be around 20 hidden units as the 

mean absolute error gets minimised. 

 

 

Figure 30: Mean absolute error, depending on the number of hidden units. 

 

5.4.4 Output Layer 

The last layer is named output layer and is used for unveiling the result of the 

prediction. The number of neurons of this layer is determined by the output variables. 

In our case, only one variable is predicted (number of incoming calls, available agents 

or abandonments) so that only one neuron forms the output layer. The output will be 

a floating number which indicates the number of incoming calls of a given CG, the 
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number of available agents for a given CG or the number of abandonments for a 

certain CG (we need as many ANNs as CGs we have). 

  

5.4.5 Parameter Initialisation 

To initialise our ANN, we assign the predefined values stated in Section 4.4, 

except for the initial weights which must be randomly initialised. In particular, we set 

them up to small values ranged in [-0.5, 0.5]. The idea of initialising the weights in 

this way is to reduce the number of epochs during the training process. Starting from 

weights that are closer to the required ones will perceptibly necessitate fewer changes 

than weights that greatly differ. 

Additionally, we can still outperform the results by including some specific 

knowledge of each CG. The large number of CGs (1035) and their miscellaneous 

behaviour make necessary to appropriately determine the initial parameters of the 

models (ANNs for each CG). To fulfil this requirement, the CGs have been divided 

into sets according to the mean number of incoming calls per day. This criterion has 

been taken as a consequence of the behaviour similarities of those CGs having similar 

volume of incoming calls. Therefore, we need to define different initial 

configurations for the step-sizes for these sets as well as the lower and upper bounds 

of the uRprop proposed in Section 4.3.3.  

Table 7 demonstrates that we can still outperform the results a little by starting 

from different initial parameters depending on the CG behaviour. This table 

summarises the mean absolute error (MAE) gotten for 5 different CGs after 50 

executions of their specific ANN.  

 

Table 7: MAE obtained for 5 different CGs with/without sets for 50 executions. 

Call  Group MAE With Sets MAE Without Sets 

CG 1 2.84524 2.87196 

CG 2 2.34671 2.39941 

CG 3 4.32158 4.44656 

CG 4 1.40664 1.41888 

CG 5 0.83214 0.94906 
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The change proposed above does not vary our computing times but (slightly) 

improves the results, especially in those CGs that have more fluctuations in the 

arriving load. 

 

5.4.6 Stopping Criterion 

We consider the following measures to decide when to stop the training process: 

1) Maximum epochs reached: the ANN will stop once a set number of epochs 

have elapsed (1200). 

2) Generalisation set mean squared error (MSE): this is the average of the sum 

of the squared errors (real – predicted) for each pattern in the generalisation 

set (MSE < 1 incoming call). 
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5.5 SEARCH MODULE ADAPTATIONS  

This section comments the final configuration of the search module. We will 

describe the configuration of the evolutionary operators but, firstly, we will detail 

other important aspects. 

 

5.5.1 Initialisation, Encoding and Population 

We will encode the solutions as described in Section 4.4. Therefore, the solution 

consists in an array of integers whose indexes represent the available agents at a 

given instant and the array contents refer to the profile assigned to each agent. Figure 

31 shows a fictitious example (related to Figure 21) of encoding for 9 customer calls 

(c1-c9) queued in 4 different CGs (cg1-cg4) depending on the nature of the calls, 5 

agents (a1-a5) and 7 profiles (P1-P7), where P1={s1}, P2={s1, s2}, P3={s2}, P4={s2, s3}, 

P5={s1, s3}, P6={s3} and P7={s4}. Now, suppose that the agents have the following 

potential skill profiles: a1~{P1,P2}, a2~{P1,P3,P7}, a3~{P4,P5}, a4~{P6} and 

a5~{P2,P3,P7}. We have seen the potential profiles for every agent but only one 

profile can be assigned to each agent at a given instant t; therefore, a feasible solution 

would be Figure 31. Note that more than one agent can have assigned the same 

profile (e.g. a1 and a5). 

Index (agents)      � 1 2 3 4  5 

Content (profiles) � 2 7 4 6 2 

Figure 31: Example of encoding for an MSCC. 

 

The population contains 20 different individuals encoded as hinted above. In our 

case, we propose to start from a randomly generated initial population, including the 

best solution found in the previous time-frame because the configuration of agents’ 

profiles should not change too much over two successive time-frames (consecutive 

states). 

 

5.5.2 Fitness Function 

Now, we present the fitness function which is defined over the proposed 

encoding to measure the quality of a given solution. Our fitness function is inspired in 
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the estimation of the total service level provided in [12] although we also consider the 

priority of each CG weighted as follows: 

Total_service_level = { }[0,1][0,1][0,1]:sl   µ))α,(γSL(Pr
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CGi (number of incoming calls of CGi by the mean processing time: 
ii τ×n ), mi 

is the number of agents of CGi (based on the profiles assigned in the 

chromosome), iτ is the number of agents of CGi and β  is the duration of the 

time-frame expressed in seconds. 

(16) 

Additionally, we handle some hard and soft constraints derived from the 

business rules given by our business units. In our case, these constraints are 

associated to tasks, agents, timing, actions or desired/undesired scenarios. Thus, the 

algorithm cannot violate hard constraints (e.g. we cannot change agents’ profiles 

continuously due to certain laws and regulations); although we allow certain 

movements which may imply the violation of some soft constraints (e.g. we should 

not take agents from CGs in which the service level is below a given threshold). 

Undoubtedly, this type of movements is penalised according to the degree of non-

accomplishment of these constraints and their relevance as described in Chapter 2. 

Therefore, the fitness function can be formalised as follows: 

]1,1[]1,0[]1,0[:  aints)ons_constrpenalisati - vice_level(total_ser = f −→×f  (17) 

where penalisation_constraints is the value obtained after applying our business rules 

(e.g. agents from CG-i should not move to CG-j). 

Finally, we can speed-up the evaluations by introducing a partial fitness 

function. The first time, we need to employ (17) but the rest of the time; we just need 

to evaluate those groups affected by a mutation or, in the case of the LS, when 

generating a new neighbour. Hence, we only process the affected CGs in (16) and 

update their original values. With this information, we then recalculate (17). 
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5.5.3 Evolutionary Operators 

In this section, we explain the final configuration of the evolutionary operators 

described in Section 4.4. This configuration is the following one: 

Selection: Since the population needs to be bred each successive generation, we 

have chosen a binary tournament selection. 

Crossover: The following step is to produce a new generation from selected 

individuals. We consider that children will inherit the common points in their parents 

(potentially, the best genes) and randomly receive the rest of genes from them. 

Mutation: This operator causes tiny changes in the genes of the chromosome to 

explicitly maintain diversity (actually there are much more mechanisms). We apply a 

perturbation over each gene of the chromosome with a probability of 0.03. This 

perturbation corresponds to changes of profiles in some agents (e.g. agent a2 who had 

assigned the profile P1 has now associated the profile P3 due to a mutation). 

Replacement policy: Finally, we decide which individuals are incorporated (or 

maybe reinserted) into the population. In this study, we consider elitism with a 

probability of 0.93 to replace the worst individuals of the population for next 

generation. And, with a probability of 0.07, a worse individual may be captured. Note 

that our MA relies on a steady-state scheme. 

The configuration proposed above has not been chosen ad-hoc. Instead, we have 

evaluated different configurations and selected the best one.  

Figure 32 shows the most relevant configurations that we have tested out during 

600 seconds (10 minutes). Y-axis represents the fitness value while the X-axis stands 

for the number of generations. Note that we do not apply the LS mechanism over the 

individuals at this stage.  
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Figure 32: Fitness obtained for 8 different configurations of evolutionary operators. 

 

Configuration-1 refers to the configuration described above. We perceive that 

Configuration-1 can process many generations compared to the rest of configurations 

(excluding Configuration-8). Configuration-1 also obtains the best fitted solution. The 

convergence is favourable for a 5-minute execution (around generation-300). Note 

that most time-intervals have that duration so that the improvement during a complete 

day is noticeable. After that point the improvement is minor although we can observe 

another important slope around generation-500. When the dynamism is high, this 

configuration is also very appealing because this configuration steeply slopes. 

Besides, when the time-frame increases, the configuration is also appropriate as it still 

goes on improving the fitness value. 

Configuration-2 differs from Configuration-1 in the mating-selection as it 

considers mating by similarity. For this reason, the number of generations is reduced. 

This configuration allows for diversity but the convergence is slower than 

Configuration-1. Instead, Configuration-2 almost always improves and may be good 

for stable systems (longer time-frame). 

Configuration-3 applies a mating based on the differences on the fitness values. 

Each individual is mated with its most different individual in terms of fitness: highest 

difference in fitness value. We notice that this mating operator is faster but the results 

seem to be worse than Configuration-2. 
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Configuration-4 applies a random mating and a special selection in which the 

best fitted individual is taken as well as its most different individual in terms of genes 

(like similarity but for final selection). This configuration always increases and has a 

nice slope although the two first configurations seem to better behave. 

Configuration-5 imitates Configuration-4 except for the mating mechanism. In 

this case, each individual is mated with its most different individual in terms of 

fitness. It has a poorer performance and can carry out fewer generations. 

Configuration-6 employs a mating by highest fitness difference and applies a 

replacement policy in which the best fitted individual and the worst fitted individual 

after reproduction fully replace the best and the worst individuals from the 

populations respectively. The performance and slopes are poor. 

Configuration-7 proposes a similar scheme to Configuration-6 except for the 

random mating. More generations are carried out and better performance than 

Configuration-6. 

Configuration-8 applies a random mating and our crossover inspired in 

simulated annealing. We also consider elitism for the replacement policy and 

mutations by ranges. We also perceive a fine slope at the beginning. If we had more 

time, we might increase the initial temperature value to explore more at the 

beginning. Potentially, we could obtain better fitted individuals. 

 

5.5.4 Memetic Algorithm 

Once we have the evolutionary operators, we need to define the refinement 

mechanism and select a target subpopulation to refine. Another important issue is the 

refinement frequency.  

Refinement algorithm: The refinement mechanism is a basic LS based on the 

best neighbour scheme as described in 4.4.3.1. 

Subpopulation for LS: The LS is applied over the best 25% of individuals. 

LS frequency: The LS is applied over the selected individuals each 10 

generations. 
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5.5.5 Parallel Memetic Algorithm 

The last step is to parallelise the MA. We will apply an island model with 

several subordinate islands connected to a master island as follows: 

Topology: We consider a star topology with 4 subordinate islands (as Figure 33 

illustrates) which correspond to “simple” MAs. These islands are connected to a 

master island (another “simple” MA which coordinates and synchronises the rest of 

islands). 

 Migration: Each subordinate island sends the 10% of the best fitted individuals 

when the master island asynchronously demands these individuals to the rest of 

islands. 

Replacement policy: We will apply elitism so that the best fitted individuals from 

the subordinate islands will replace the less fitted individuals from the master island’s 

population whether these individuals are better fitted. 

Migration frequency: Each 50 generations, the master island blocks the rest of 

islands to ask them for their best fitted individuals. 

 

 

Figure 33: Star topology with 4 subordinate islands and a master island. 
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6 CHAPTER 6. EVALUATION OF THE 

APPLICATION  

This chapter evaluates our approach on the MSCC domain. Section 6.1 describes 

the dataset employed. Section 6.2 points out the hardware descriptions of the SunFire 

sever in which the evaluations have been performed. Section 6.3 analyses the selected 

metrics for testing and comparing our approach. Section 6.4 examines the forecast 

module for five different CGs as there are too many to accomplish an exhaustive 

study for all of them. Section 6.5 evaluates the search module by studying several 

time intervals from days with different complexity; this section also compares our 

search module with other acknowledged techniques. In Section 6.6, we will analyse 

our complete approach (forecast module + search module) for one-day campaign. We 

will also compare how our complete approach outperforms other conventional call 

centre’s algorithms.    

 

6.1 DATASET EMPLOYED  

An important step consists in creating a suitable dataset, hunting for a fair 

balance between the amount of data and a representative period of time measured in 

terms of days, carved up in hours and minutes (microscopic level � fine grain). In 

our case, we will work with 45 numeric attributes (see Section 5.4) and thousands of 

registers which correspond to 5-minute interval information from records stored 

during several months. 

Besides, the number of selected days must be a multiple of 7 because the 

predictor week-day has imperative influence on the training and validation processes 

as Section 5.6 demonstrates. Moreover, the number of days must be large enough to 

represent every possible pattern (cases). Therefore, the number of days to take into 

account should be, at least, 91 days in order to cover all possible patterns with the 

aforesaid considerations. It is very important to divide data like this as this 

composition allows for trend and seasonality detection. 
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Our problem presents 1035 CGs; hence, the dataset is too large to do an 

exhaustive study for all of them (obviously, the forecast module has been trained, 

considering every CG). Consequently, 5 representative CGs with different behaviour 

in terms of oscillations, arrival rates, processing times and nature, have been carefully 

picked in order to perform a generic enough approach (see Figure 34). These 

oscillations intuitively imply a higher complexity. We have assigned an index to each 

CG that designates their complexity level which ranges from the most convoluted CG 

to the simplest one (labelled from 1 to 5). For business reasons, we are not allowed to 

reveal real CGs names but this is something we should not be concerned about in this 

work. 

 

Figure 34: Call arrival rate per day, grouped by CGs. 

 

Afterwards, a different model has been exclusively developed for each CG 

because of differences among CGs. Then, the whole dataset has been split into 

subsets, contemplating every CG.  

Once we have a single dataset for each CG, this is shuffled and then randomly 

divided into three subsets, following the cross-validation structure [115] (see Figure 

35): Training (55%), generalisation (20%) and validation (25%). 
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Figure 35: Dataset partitions: training, generalisation and validation. 

 

The training dataset, which is the largest partition, is used for training our ANN. 

Instead, the generalisation partition is used at the end of each epoch to observe 

whether our ANN correctly handles unseen data. Once the training process has 

finished, the validation partition is showed to our ANN to determine its real precision. 

Although we will analyse 5 CGs for the forecast module in Section 6.4, we must 

validate the search module by considering all the CGs. To evaluate the search 

module, we have chosen several time intervals from days with different complexity 

(see Section 6.5). Therefore, we can discover the benefits of our approach, depending 

on the dynamism of the system. Besides, we will analyse our complete approach 

(forecast module + search module) for one-day campaign in Section 6.6.   
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6.2 HARDWARE DESCRIPTION  

This section describes the key hardware features of our SunFire 4900 server in 

which all experiments have been launched. These features are the following ones: 

1) 64-bit Chip Multithreading UltraSPARC® IV technology, with over 2x 

the throughput of previous generations. 

2) Scales up to 8 x 1.35-GHz UltraSPARC IV CPUs with 16 MB L2 cache 

per processor. 

3) Up to 16 simultaneous compute threads with up to 64 GB memory. 

4) Solaris-TM 8, Solaris 9, and Solaris 10 Operating System. 

5) Robust capabilities in the Solaris 10 OS such as predictive self-healing to 

increase reliability, Solaris containers for increased utilisation, and 

dTrace to optimise application performance. 

6) Industry leading price/performance and benchmarks. 

7) 9.6 GB/second SunTM Fireplane interconnect. 

8) N+1 hot-swap power supplies/hot-pluggable disks. 

9) Sun systems controller for remote system administration. 

10) Automatic system recovery to maximise uptime. 

11) Integrated fibre channel disk subsystem, multi-pathing-ready, supporting 

up to 12 FC-AL disks. 

12) 9 PCI slots help ensure a highly scalable, well-balanced system. 

13) 17-RU tower/desk-side, rack mountable. 
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6.3 METRICS 
Metrics are usually specific for a given subject area and are often valid only 

within a certain domain so that these cannot be directly interpreted outside it. We 

have selected several metrics to evaluate our forecast and search modules as well as 

the complete process. 

 

6.3.1 Forecast Metrics 

In order to make the forecast process more understandable, we define the error, 

e, as the difference between the real output value, f, and the predicted output, y. 

To evaluate the forecast module, we will apply the following metrics: 

1) Mean absolute error (MAE): average of the absolute errors: ��� >�* ∑ |Y� − ��|*�I� . 

2) Standard deviation (SD): the standard deviation of a statistical population 

is the square root of its variance. 

 

6.3.2 Search Metrics 

In order to compare all the search algorithms in terms of quality of the solution, 

a metric to represent that quality is required. We presume that solution quality 

comparisons must be made over the same problem instances. Comparisons over 

different problem instances are normally weaker as those instances may have 

dissimilar structures so that the conclusions might be completely erroneous. 

To evaluate the search module, we will examine the following metrics: 

1) Worst solution: Less fitted value, considering e executions (50). 

2) Best solution: Best fitted value, considering e executions (50). 

3) Mean solution: Mean value from e executions (50). 

4) Standard deviation: Standard deviation from e executions (50). 

5) Performance: Ratio of the current fitness value with respect to the best 

fitted value. It can be calculated as follows:   LsYqs�uEtL >  
�330*! {�!*0-- �+/�0 (!0
�*���0T)�0-! {�!!0( �+/�0 @ 100. 
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6.3.3 Call Centre Metrics  

Most MSCCs employ more than 30 different metrics to verify how operations 

are going. However, sometimes, just observing a subset of variables may accomplish 

our goals. Metrics refer to customer satisfaction, quality, productivity, agent 

utilisation or costs per contact (for outbound MSCC).   

To evaluate the complete approach, we will consider the most important metric, 

from our point of view, for any MSCC: the mean service level which is defined as the 

percentage of customer calls that have to queue shorter than a specified amount of 

time (in our MSCC, 20 seconds). This metric covers aspects such as quality, 

productivity, client satisfaction among others. 
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6.4 COMPARISON OF FORECAST TECHNIQUES 

Now, we come to an important point that cannot be overlooked. We need to 

compare our forecast module with other techniques in order to verify whether (or not) 

our approach is convenient for a real-world DMAS. 

In Section 4.3.1, we have reviewed the previous work on forecast techniques. 

Now, we proceed by comparing our approach based on ANNs (uRprop) with the 

most relevant forecast methods from the state-of-the-art. As we cannot implement all 

the techniques presented in Section 4.3.1 for this work, we have chosen R’s forecast 

package [116] to evaluate them. Note that we have selected R forecast package 

because it is very well-implemented and is an open-source so that we can analyse the 

inner of the implementation. Other data mining tools such as SPSS or SAS have also 

truly potent algorithms, but we should not apply them for this comparison as we 

would not have any insight about the algorithm behind them. 

To compare the techniques described in Section 4.3.1, we have selected five 

representative CGs as described in Section 6.1. Our dataset is composed by thousands 

of records extracted from our production environment during 91 different days. We 

have trained the models with this dataset and validated them with the following two 

weeks. This means that the validation has been carried out by means of continuous 

(online) predictions for a 2-week time period. Although this validation should be 

convincing, we have executed the models 49 more times offline (a total of 50 

executions). The models have been run under two of the cores of our SunFire 4900 

server (Solaris 10). 

Now, let’s go to the thick of the comparison. Figure 36 and Table 8 illustrate the 

MAE comparison between time series, ARIMA, linear regression, logistic regression 

and our ANN. This confirms that, although each CG has a different behaviour and 

needs a different model to obtain the best approximation, our ANN regularly behaves 

better than the other techniques in our domain (we do not claim a universally better 

approach). While ARIMA and time series emphasise the “recent past”, our ANN is 

more flexible because it not only considers previous tendencies and time points but 

also covers historical patterns from other days and other contextual information (e.g. 

if there is a commercial campaign, the dynamism will be higher). The capability of 

considering historical data is really valuable as we can discover interesting features 

like the peak hours’ effect and more complex relationships.  
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Figure 36: General Comparison (MAE is in the Y-axis and techniques are in the X-axis). 

 

Looking at Table 8, we also perceive that our ANN has less variability in the 

predictions as the standard deviation is usually lower, except for the call group-1 

(time series) and the call group-4 (logistic regression) where our standard deviation is 

slightly higher. 

Another remarkable result is that time series and ARIMA outperform regression 

models in most CGs, probably, due to the capability of considering trend and 

seasonality rather than simply considering relationships between the dependent 

variable (output) and any one of the independent variables when these vary. 

On the one hand, the main problem with our approach is that we need longer 

training times than ARIMA, time series or regression models. Besides, our 

implementation is much more complex than these techniques. When not having a 

multimodal space, we recommend simpler techniques: linear regression for linear 

dependencies and times series for stable patterns or those that merely depend upon 

the recent past. 

On the other hand, although there are no huge differences between our approach 

and the rest of the abovementioned techniques in terms of MAE for a given instant, 

we strongly recommend our approach as far as slight differences in terms of MAE for 

a given point may induce huge mean errors throughout a day (cascade effect). 
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Table 8: MAE & SD Comparison. 

Call Group 
uRprop ARIMA Time Series 

Linear 
Regression 

Logistic reg. 

MAE SD MAE SD MAE SD MAE SD MAE SD 

Call Group 1 3.621 6.381 3.892 6.430 3.791 6.360 4.503 6.833 4.120 6.501 

Call Group 2 2.519 4.472 2.872 4.851 2.841 4.821 3.210 5.756 2.870 4.507 

Call Group 3 2.112 3.592 2.378 4.087 2.349 4.104 2.340 3.843 2.210 3.551 

Call Group 4 1.387 2.752 1.494 2.785 1.486 2.771 2.120 3.154 1.620 2.718 

Call Group 5 0.718 1.405 0.823 1.408 0.819 1.406 0.960 1.667 0.840 1.313 

 

Up till now, we have demonstrated that our approach outperforms several 

forecast techniques but, can we beat other ANN’s learning algorithms? Our approach 

often gets trapped in local minima so that we cannot claim that our approach can 

behave better than other learning algorithms for ANNs as there are other nice exact 

approximations. However, our environment is very dynamic and we have a very 

limited time to train the models (we need a model for each CG). So, can we 

outperform other learning algorithms given our timing constraint? Fortunately, the 

answer is “yes”. At least, we can offer more accurate results for those CGs which are 

very dynamic and have more incoming calls. This makes sense because the search 

space is more complex and the exact approximations have no time to compute the 

complete process. Nonetheless, other learning algorithms might behave better for 

those CGs with fewer calls (e.g. CG4 or CG5). Obviously, this type of CGs is not 

really relevant as only few calls arrive.  

Figure 37 demonstrates that our learning algorithm outperforms 

Backpropagation, Quickpropagation, classical Rprop, Rprop with weights 

backtracking, ANNs with pruning and also ANNs with exhaustive pruning for the 

most convoluted CGs (CG1 and CG2). For the easiest ones (CG4 and CG5), learning 

with exhaustive pruning and Rprop with weights backtracking outperform our 

uRprop. If we let other learning algorithms run during more than 1200 epochs, the 

differences would be higher. However, we have a very limited time to train the 

models and our approach behaves better than the other techniques for the most 

complicated CGs. 
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Figure 37: NN Comparison (SSE x epochs). 

The main disadvantage with gradient-descent methods is premature convergence 

to local optima. Occasionally, local optima can be likewise nearly global optima 

although these normally hurt performance. This difficulty can be overcome by using 
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6.5 COMPARISON OF METAHEURISTICS  

In the previous section, we have compared our forecast module with other 

acknowledged predictive techniques. We have seen that our approach is not 

universally the best one as other learning algorithms outperform our uRprop when 

these have more time to train the models (the ANN for each CG) or when the 

dynamism is low. Fortunately, our learning algorithm behaves better for those CGs 

with higher dynamism when the time to train the models is reduced. But, we still have 

to determine the right assignment among agents and tasks, given the predictions 

provided by the forecast module. This task is carried out by our search module which 

will be compared with other famous MHs. 

Now, similarly to the previous section, we describe the (two) problem instances 

(medium and high difficulty, respectively) that we have created from our dataset to 

test out our search module. For a fair comparison, every MH will be run over the 

same problem instances 50 times. These two problem instances are composed by real 

data taken from our MSCC’s production environment during two different days at the 

same hour (from 12:40 to 12:45, 300 seconds): a one-day campaign and a normal 

day. The size of the time-frame to execute all the MHs has been 300 seconds (5 

minutes) because it is the commonest time-frame size. We have selected the interval 

[12:40-12:45] as it is precisely the most critical hour of the day (highest load of the 

day: n/m). Note that around 800 incoming calls (n) simultaneously arrive during a 

normal day in such a time interval, whereas up to 2450 simultaneous incoming calls 

may arrive during this interval throughout a commercial campaign. The number of 

agents (m), for each time interval, oscillates between 700 and 2100, having 16 

different skills for each agent on average (minimum=1 and maximum=108), grouped 

in profiles of 7 skills on average. The total number of CGs considered for this study is 

167. Therefore, when the workload (n/m) is really high, finding the right assignment 

among agents and incoming calls becomes fundamental. In this way, we have run 

every MH under two double-core processors of a Sun Fire E4900 server (one 

processor for the interfaces and data pre-processing, and the other one for each MH). 

Once the magnitude of our problem instances has been presented, each MH is 

compared alongside the others. Table 9 summarises the results obtained by each MH 

in 50 executions, starting from 50 different randomly generated initial solutions. 

In our comparative study, we present dissimilar MHs which cover diverse search 

strategies. Theoretically, due to the local character of the basic LS, it is complicated 
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to reach a high-quality solution because the algorithm usually gets trapped in a 

neighbourhood when a local minimum is found. This occurs because the engine is 

always looking for better solutions which probably do not actually exist in the 

neighbourhood. For this reason, sometimes, it is more appropriate to allow 

deterioration movements in order to switch to other regions of the search space. This 

is precisely the shrewd policy of SA whose temperature allows for many oscillations 

(the probability of accepting a worse solution decreases according to the time) at the 

beginning of the process and only few ones at the end (fewer chances to select a 

worse solution as the algorithm is supposed to be refining the solution at this point). 

Specifically, we have chosen Cauchy’s criterion because the convergence is faster 

than Boltzmann’s and we only have 300 seconds to run the complete process. In 

Cauchy’s scheme, the temperature is defined as it) + (1/ T = T 0it , where it is the 

iteration number and the initial temperature is f(S*)*))( log-/( = T0 Φµ  where f(S*) is 

the cost of the initial solution, Φ stands for the probability of accepting a “µ” worse 

solution than the current one (Φ= µ =0.3). Besides, this scheme avoids decreasing the 

distance between two solutions when the process converges (jumps in the 

neighbourhood). Therefore, the temperature must be high enough at the beginning to 

better explore the search space (its neighbourhood) and low enough at the end to 

intensify the search as well (exploitation of promising areas). The stopping condition 

must agree with the number of neighbours generated. The maximum of neighbour 

solutions generated each time is L(T)=30 and the probability of accepting a worse 

solution is exp(-δ/Tit) given that δ=f(Neighbour_Solution)-f(Current_Solution) and Tit 

is the temperature at iteration it. 

We perceive from Table 9 that SA behaves worse than the other MHs except for 

the easiest instance of the problem. This may occur because we are not plenty of time 

in our environment and the power of SA relies on a progressive cooling. If we cool 

off the temperature too fast, we are missing the effectiveness of accepting worse 

solutions in some cases. Instead, if we cool off the temperature too slowly, we may be 

accepting worse solutions systematically without converging. We have applied a 

trade-off between exploration and exploitation but the computing time (300 seconds) 

seems to be limited to apply SA to our environment (perhaps, things might change 

when having more time). 

Another option to increase the diversity in the solutions is to enlarge the 

environment, as VNS does. This philosophy consists in making a systematic change 

upon the environment when the LS is used, increasing the environment when the 
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process gets stagnated. In the VNS, the search is not restricted to only one 

environment as in the basic LS; instead, the neighbourhood changes as the algorithm 

progresses. In our experiments, we have considered three different environments 

emax=3: ( nnn =→×=→×=→ 332211 nhe;5.0nhe;3.0nhe ). These steps are 

repeated during 300 seconds (our stopping condition). Albeit we only consider three 

distinct neighbourhoods, the improvement of the VNS compared to basic LS is 

noteworthy. Consequently, the remarkable factor becomes the change in the number 

of neighbourhoods and their sizes as well as considering how the algorithm reacts in 

response. Table 9 also shows how VNS only slightly outperforms SA for the hardest 

instance of the problem.  

Another strategy is to start from different initial solutions as ILS accomplishes. 

ILS generates a random initial solution and afterwards applies a basic LS. 

Subsequently, this solution is systematically mutated and thus refined. For ILS, the 

complete process is repeated during 300 seconds wherein the LS is the one proposed 

in Section 3.1.1 and the perturbation affects to the 3% of agents. We can observe that 

ILS obtains solutions which vaguely improve those given by SA and VNS for the 

hardest problem instance, although it performs worse for the simplest problem 

instance as Table 9 corroborates. 

Another way to find an accurate solution involves using methods based on 

populations, such as MAs. If the diversity of the solution is low, then the MA 

converges to the closest neighbour. Nevertheless, when the selective pressure is high, 

individuals may be alike or even identical. To speed-up convergence, MAs apply an 

LS procedure upon a set of chromosomes (candidate solutions) that are refined every 

certain number of generations. Incorporating a hybridisation mechanism to the GA is 

valuable as the algorithm is improved in all respects (exploration and exploitation). 

The configuration of the GA’s operators is the one provided in Section 5.5.3 whereas 

the LS mechanism is given in Section 3.1.1. Table 9 points out how our MA not only 

outperforms all the presented MHs for both problem instances but also remains more 

unwavering (less differences among best, worst and mean fitness values).  
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Table 9: Results obtained by the MHs in 50 executions starting from random initial solutions 

for two problem instances: medium and hard (larger number of incoming calls and high 

variability). Values refer to the fitness obtained by all the MHs. 

Algorithm 
Best solution Worst solution Average Standard dev. Effectiveness 

Medium Hard Medium Hard Medium Medium Hard Medium Hard Medium 

MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 100 100 

ILS 0.768 0.728 0.755 0.722 0.763 0.725 0.002 0.003 95.85 96.15 

VNS 0.790 0.727 0.766 0.723 0.775 0.724 0.005 0.001 97.36 96.02 

SA 0.782 0.721 0.773 0.709 0.779 0.716 0.001 0.003 97.86 94.96 

 

It is important to remark that differences among techniques are not huge after 

reaching a fitness of 0.8 since the complexity exponentially increases in our 

environment. Therefore, minor improvements on the fitness value after that point are 

hard to obtain but very valuable to accomplish a fair workforce distribution. 

Hitherto, we have demonstrated that our (single) MA has been able to 

outperform other MHs in our real-world production environment. However, we 

described our search module as a parallel MA based on an island model (star 

topology) with 4 subordinate islands connected to a master island. So, can this 

architecture obtain better results than the single MA? Certainly, yes it can. 

Nevertheless, the improvement, which is remarkable, cannot be impressive as the 

complexity increases asymptotically. Table 10 compares the results obtained by the 

parallel MA with those obtained by the single MA. The parallel MA improves the 

results of the single MA in a 4% for the hardest problem instance and 6.8% for the 

easiest one. Although there is no a linear increment of fitness, the results are 

definitely better. These also converge faster but we fixed the computing time (300 s.). 

Table 10: Results obtained by our single and parallel MAs in 50 executions starting from 

random initial solutions for the two problem instances studied. Values refer to the fitness. 

Algorithm 
Best solution Worst solution Average Standard dev. Effectiveness 

Medium Hard Medium Hard Medium Medium Hard Medium Hard Medium 

PMA 0.834 0.818 0.823 0.783 0.829 0.809 0.003 0.002 100 100 

MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 96.01 93.20 
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6.6 COMPARISON OF WORKLOAD DISTRIBUTION 

ALGORITHMS  

We have analysed the two main modules of our approach (forecast module + 

search module) and seen that these outperform other famous techniques for separate. 

Now, we will combine these modules and introduce the dynamic time-frame 

described in Chapter 4. Specifically, we will compare our approach throughout a 

demanding working day (there was a commercial campaign during the day which has 

been measured). In this way, we have run the algorithm over a whole day with 

approximately 315.000 calls (up to 28.800 calls/hour and 2.450 simultaneous calls) 

under 12 double-core processors of a Sun Fire E4900 server (one for the interfaces, 

another one data pre-processing, another one for the database, two processors for 

controlling, two processors for the forecast module, and the last five ones for the 

search module) with 96GB RAM. The mean number of agents in each time-frame is 

2.100, having 16 different skills for each agent on average (minimum=1 and 

maximum=108). The total number of CGs is 820. The mean processing times differ a 

lot, depending on the CG (from seconds to minutes). All data were taken from our 

MSCC.  

Now, we compare our approach with classical SBR [106], ED-SBR (an 

improvement of classic SBR [106]) and Koole’s algorithm [11]. Figure 38 illustrates 

the real service level given by these techniques during a demanding working day. The 

graphs compile the real service levels for each CG, considering the relevance 

(weight) of each one. Since incoming traffic mainly arrives from 9 a.m. till 8 p.m.; 

therefore, we need more accurate results for this time-interval and, particularly, for 

the peaks which occur around 13 p.m. (see point 32 in Figure 38), 15 p.m. (see point 

66 in Figure 38) and 19 p.m. (see point 100 in Figure 38) because, in these points, the 

load is much higher. Our approach clearly improves the results reached by other 

algorithms in these critical points (peaks). For the rest of points, we see that our 

algorithm usually better behaves than the rest of techniques. Classic SBR and ED-

SBR sometimes offer a similar configuration of agents than our approach for some 

time points and, consequently, the same service levels; but, on average, the service 

levels are clearly worse than ours. Only in few points, the service level provided by 

ED-SBR and SBR is slightly higher than ours (e.g. around 11:45, point 17). This 

happens because in these points, our predictions had a greater error and SBR and ED-

SBR consider the current state of the system. However, we can see that differences 

are tiny in these critical points and we present more stable results over the time. This 
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corroborates that an adaptive middle-term time-frame is recommended as algorithms 

can reach nearly optimal solutions while short-term algorithms often collapse in local 

optima. But, short-term algorithms present a high adaptability to changes that long-

term time-frame techniques cannot cope with. These long-term based techniques 

generally extract patterns from the historical and are only appropriate for stable 

environments. For this reason, our algorithm and SBR outperform Koole’s approach 

which is designed for more stable MSCCs. Koole’s algorithm finds very accurate 

solutions when the dynamism is more reduced such as classical staffing. 

Nevertheless, this is not the case of our environment and this kind of techniques 

cannot be efficiently applied to our MSCC.  

 

 

Figure 38: Service level given by different techniques for a whole campaign day. X-axis 
represents intervals of 300 seconds and Y-axis represents the real service level (not a fitness 
value). 

 

Table 11 compares the results obtained by all techniques presented in Figure 38. 

Table 11 presents the mean service level for 120 intervals, its standard deviation and 

the effectiveness, considering that our method represents the highest performance. 

Note that we are actually comparing the behaviour of our approach with other 

conventional techniques during a complete day rather than focusing on specific time-

frames as we have presented till now. It is crucial obtaining accurate results for 

isolated time-frames but we cannot obviate that we are executing our approach 

continuously so that the transitions among system states (for each time-frame) must 

be taken into account.  
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Table 11: Comparison of our approach with other relevant (call centre) algorithms for 120 5-

minute intervals. 

Algorithm Real service level Standard deviation Effectiveness 

Our Approach 0.941 0.020 100 

ED-SBR 0.901 0.043 95.757 

SBR 0.860 0.056 91.405 

KOOLE 0.733 0.029 77.896 
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7 CHAPTER 7. CONCLUSIONS AND 

FUTURE WORK  

The present chapter summarises the ideas exposed in this dissertation and 
highlights the major contributions of our work in Section 7.1. We also give some 
guidelines for future work in Section 7.2. 

 

7.1 SUMMARY AND CONCLUSIONS 

We have presented a novel approach to the problem of workforce distribution in 

dynamic multi-agent systems based on blackboard architectures (common repository 

of knowledge). We have seen that these systems are extremely complex and entail 

quick adaptations to a changing environment that only high-speed greedy heuristics 

can handle. These greedy heuristics consist in a permanent re-planning, considering 

the current system state. Intuitively, these quickly taken decisions are not appropriate 

for middle and/or long term planning due to the incessant erroneous movements.  

However, we have demonstrated that the use of parallel memetic algorithms, 

which are more versatile than classical heuristics, can guide us towards more accurate 

solutions. With the intention of applying parallel memetic algorithms to such a 

dynamic environment, we have put forward a reformulation of the traditional problem 

of workforce distribution in dynamic multi-agent systems based on backboard 

architectures, which coalesces predictions of future system states with a precise 

search mechanism, by dynamically enlarging or diminishing the time-frame 

considered. We have claimed that the size of the time-frame depends upon the 

dynamism of the system (smaller when there is high dynamism and larger when there 

is low dynamism).  

The present work has also illustrated how nearly optimal solutions each v 

seconds (size of the time-frame) outperforms continuous bad distributions when the 

right size of the time-frame is determined, and predictions and optimisations are 

correctly carried out. Particularly, we have proposed a neural network with an 

upgraded resilient propagation learning algorithm for predicting future system 
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variables and a parallel memetic algorithm based on an island scheme to perform the 

assignment of incoming tasks to the right available agents. 

Our approach has been tested out on a real-world production environment from 

Telefónica which is a large multinational telephone operator. We have shown that our 

approach not only outperforms other conventional techniques for separate but also as 

a unified technique. Therefore, we have obtained more accurate predictions than other 

famous forecast techniques for various problem instances. Besides, our search 

module based on a parallel memetic algorithm has outperformed other meta-

heuristics under different scenarios. Additionally, the combination of the two 

modules with the adaptive middle-term time-frame has involved fine results. This 

corroborates that an adaptive middle-term time-frame can be a very powerful 

approach when having the required tools to implement it. But, all that glitters is not 

gold, and we assert our approach is not universal and might offer less accurate results 

than other approaches in environments in which timing is not a critical constraint or 

conditions are more stable and predictable. 

Finally, the contributions to the scientific literature have produced the following 

peer-reviewed publications ((1) and (2) are less directly related to this dissertation): 

1) Martínez-López, R.; Millán-Ruiz, D.; Martín-Domínguez, A. and Toro-

Escudero, M.A.: An Architecture for Next-Generation of Telecare 

Systems Using Ontologies, Rules Engines and Data Mining. Proceedings 

of the International Conferences on Computational Intelligence for 

Modelling, Control and Automation; Intelligent Agents, Web 

Technologies and Internet Commerce; and Innovation in Software 

Engineering (CIMCA 2008), p. 31-36, Vienna, Austria, December 10-12, 

2008. 

2) Melendez, J.;  López, B. and Millán-Ruiz, D.: Probabilistic models to 

assist maintenance of multiple instruments. Proceedings of the 14th IEEE 

International Conference on Emerging Technologies and Factory 

Automation (ETFA 2009), p. 1499-1503, Palma de Mallorca, Spain, 

September 22-26th, 2009. 

3) Pacheco, J.; Millán-Ruiz, D. y Vélez, J.L.: Neural Networks for 

Forecasting in a Multi-skill Call Centre. Proceedings of the 11th 

International Conference on Engineering Applications of Neural 

Networks (EANN 2009), p. 291-300, London, UK, August 27-29, 2009. 
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4) Millán-Ruiz, D. and Hidalgo, I.: A Memetic Algorithm for Workforce 

Distribution in Dynamic Multi-Skil Call Centres. Proceedings of the 10th 

European Conference on Evolutionary Computation in Combinatorial 

Optimisation (EVOCOP  2010), p. 178-189, Istanbul, Turkey, April 7-9, 

2010. 

5) Millán-Ruiz, D.; Pacheco, J.; Hidalgo, I. y Vélez, J.L.: Forecasting in a 

Multi-skill Call Centre. Proceedings of the 10th International Conference 

on Artificial Intelligence and Soft Computing (ICAISC 2010), Zakopane, 

Poland, June 13-17, 2010. 

6) Millán-Ruiz, D. and Hidalgo, I.: Algoritmo memético paralelo para la 

distribución de esfuerzo en centros de llamadas dinámicos multiagente y 

multitarea. (Accepted) To appear in the 7th Spanish Conference on Meta-

heuristics, Evolutionary Algorithms and Bioinspired Algorithms (MAEB 

2010), Valencia, Spain, September, 2010. 

7) Millán-Ruiz, D. and Hidalgo, I.: Comparison of Metaheuristics for 

Workforce Distribution in Multi-Skill Call Centres. Submitted to the 

International Joint Conference on Computational Intelligence (ICEC 

2010). 

8) Millán-Ruiz, D. and Hidalgo, I.: A Self-Tuning Hybrid Memetic 

Algorithm for Dynamic Multi-Agent Systems based on Blackboard 

Architectures. Submitted to the Workshop on Self-tuning, self-

configuring and self-generating search heuristics (Self* 2010). Extended 

versions of selected contributions from this workshop will be considered 

for publication in a Special Issue of the Evolutionary Computation 

Journal, MIT Press. 
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7.2 AREAS OF FUTURE RESEARCH 

To conclude, we propose some guidelines for future work. We recommend 

analysing more datasets and more problem instances because we may obtain different 

conclusions with regard to the configuration of our complete approach. So, if the 

arriving load is easy to predict we should choose a simpler forecast technique.  

A deeper study on constraint handling should be done as our proposal is 

dependent on our specific domain (e.g. we may have different ranges for the levels of 

constraints). 

For the dynamism levels, we can also have a continuous approximation (without 

levels) for those dynamic multi-agent systems where agents are not humans so that 

we do not need to care about the agents’ rights (we can potentially change their 

profiles at any time without regulation constraints). 

Additionally, we suggest that an analogous study for the search module 

comparison should be done, considering multi-objective evolutionary approximations 

(such as SPEA-II and NSGA-II), given our problem reformulation. 
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