
MASTER’S THESIS

Workforce Distribution in Dynamic

Multi-Agent Systems
by

David Millán Ruiz

A Dissertation Presented to the Department of Artificial Intelligence

of the

National Distance University of Spain

In Partial Fulfilment of the Requirements for the Degree of

Master of Advanced Artificial Intelligence

Advisor: Severino Fernández Galán

Madrid, Spain

July 2010

Dedicated to my parents and my beloved Fanny Michel

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

1

Index

I. Declaration of Authorship ... 5

II. Abstract .. 6

III. Acknowledgements ... 7

IV. List of Figures .. 8

V. List of Tables ... 10

VI. Abbreviations... 11

1 Chapter 1. Introduction .. 13

1.1 Overview .. 13

1.2 Motivation and Main Objectives .. 16

1.3 Contributions .. 17

1.4 Market Relevance ... 20

1.5 Dissertation Organisation ... 22

2 Chapter 2. Problem of Workload Distribution in Dynamic Multi-Agent
Systems ... 24

2.1 Generic Definition of the Problem ... 24

2.2 Formal Definition of the Problem .. 27

2.3 Constraint Optimisation Problem ... 29

3 Chapter 3. Literature Review ... 31

3.1 Background .. 31

3.1.1 Local Search.. 31

3.1.2 Genetic Algorithms ... 33

3.1.3 Memetic Algorithms ... 34

3.2 Classic Approaches to DMAS ... 35

3.2.1 Random Workload Balancing ... 35

3.2.2 Random Neighbour Search ... 35

3.2.3 Greedy Workload Balancing... 36

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

2

3.2.4 Skill-Based Routing .. 36

3.2.5 Dynamic Programming ... 36

3.2.6 Branch and Bound... 37

3.2.7 Variable Neighbourhood Search ... 37

3.2.8 Variable Neighbourhood Descent ... 37

3.2.9 Simulated Annealing ... 37

3.2.10 Tabu Search .. 38

3.2.11 Scatter Search.. 38

3.2.12 Iterated Local Search .. 38

3.2.13 Multi-Start Search ... 38

3.2.14 Greedy Randomised Adaptive Search .. 39

3.2.15 Ant Colony Optimisation .. 39

3.2.16 Particle Swarm Optimisation .. 40

3.3 Discussion .. 41

4 Chapter 4. A Novel Approach to the Problem of Workload Distribution in
DMAS ... 45

4.1 Underlying Idea .. 45

4.2 Methodology .. 53

4.3 Forecast module ... 54

4.3.1 State-of-the-art on Forecasting ... 54

4.3.2 Background ... 66

4.3.3 An Innovative Adaptive Learning Rate Algorithm for Resilient
Back-Propagation Neural Networks ... 68

4.4 Search module .. 71

4.4.1 Methodology ... 71

4.4.2 Genetic Algorithm .. 72

4.4.3 Memetic Algorithms ... 80

4.4.4 On Parallelising Memetic Algorithms .. 81

5 Chapter 5. Application: Call Centre .. 83

5.1 Description ... 83

5.2 Brief State-of-the-art on Call Centre Algorithms ... 88

5.3 Magnitude of our Call Centre... 90

5.4 Forecast Module Adaptations... 94

5.4.1 Number of Layers ... 94

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

3

5.4.2 Input Layer .. 94

5.4.3 Hidden Layer .. 99

5.4.4 Output Layer ... 99

5.4.5 Parameter Initialisation ... 100

5.4.6 Stopping Criterion ... 101

5.5 Search Module Adaptations ... 102

5.5.1 Initialisation, Encoding and Population .. 102

5.5.2 Fitness Function .. 102

5.5.3 Evolutionary Operators ... 104

5.5.4 Memetic Algorithm ... 106

5.5.5 Parallel Memetic Algorithm ... 107

6 Chapter 6. Evaluation of the Application .. 108

6.1 Dataset Employed .. 108

6.2 Hardware Description .. 111

6.3 Metrics .. 112

6.3.1 Forecast Metrics .. 112

6.3.2 Search Metrics .. 112

6.3.3 Call Centre Metrics ... 113

6.4 Comparison of Forecast Techniques .. 114

6.5 Comparison of Metaheuristics ... 118

6.6 Comparison of Workload Distribution Algorithms ... 122

7 Chapter 7. Conclusions and Future work .. 125

7.1 Summary and Conclusions ... 125

7.2 Areas of Future Research ... 128

8 Bibliography .. 129

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

4

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

5

1 DECLARATION OF AUTHORSHIP

The author, David Millán Ruiz, hereby declares and confirms that this

dissertation is entirely the result of the work carried out in the Department of

Artificial Intelligence of the School of Informatics at the National Distance

University of Spain (UNED). This dissertation contains original contribution by the

author unless otherwise indicated.

David Millán Ruiz

July 2010

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

6

2 ABSTRACT

This work describes a novel approach to workforce distribution in dynamic

multi-agent systems based on backboard architectures. These environments entail

quick adaptations to a changing environment that only fast greedy heuristics can

handle. These greedy heuristics consist of a continuous re-planning, considering the

current state of the system. As these decisions are greedily taken, the workforce

distribution may be poor for middle and/or long term planning due to incessant wrong

movements. The use of parallel memetic algorithms, which are more complex than

classical, ad-hoc heuristics, can guide us towards more accurate solutions. In order to

apply parallel memetic algorithms to such a dynamic environment, we propose a

reformulation of the traditional problem, which combines predictions of future

situations with a precise search mechanism, by enlarging or diminishing the time-

frame considered. The size of the time-frame depends upon the dynamism of the

system (smaller when there is high dynamism and larger when there is low

dynamism). This work demonstrates how nearly optimal solutions each v seconds

(size of the time-frame) outperforms continuous bad distributions when the right size

of the time-frame is determined, and predictions and optimisations are properly

carried out. Specifically, we propose a neural network for predicting future system

variables and a parallel memetic algorithm to perform the assignment of incoming

tasks to the right agents, which outperforms other conventional approaches.

Additionally, we propose a modification of the resilient back-propagation algorithm

and evolutionary operators based on meta-heuristics. To conclude, we test out our

method on a real-world production environment from Telefónica which is a large

multinational telephone operator.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

7

3 ACKNOWLEDGEMENTS

This dissertation has been carried out in the Department of Artificial Intelligence

of the School of Informatics at the National Distance University of Spain (UNED),

under the supervision of Prof. Dr. Severino F. Galán.

Firstly, I would like to thank Prof. Dr. Severino F. Galán for giving me the

opportunity to perform this research under his supervision. He supported me and

guided me from the beginning of this work, giving me many valuable and useful

comments to progress in my research.

Secondly, I would also like to thank the Department of Customer Care of

Telefónica Research & Development, headed by Javier Bonastre, for their support to

this work and for the infrastructure provided (mainly for the Sun Fire E4900 server).

Namely, Jorge Pacheco, José Luis Vélez and Jesús Celis deserve a special mention

for their effort in helping me out to adapt my models and algorithms to the systems of

Telefónica.

Thirdly, I would like to thank Prof. Dr. Mark Jerrum from the University of

Edinburgh because he was the “seed” of all this work. He gave me the first guidelines

for some of my models when I did my dissertation at the University of Edinburgh

during the academic year 2005-2006.

Last but not least, I also want to thank the reading committee, for the time spent

in carefully reviewing this work.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

8

4 L IST OF FIGURES

Figure 1: Adaptive time-frame... 15

Figure 2: Customer satisfaction and resources optimisation can be monetised.
.. 21
Figure 3: Multi-agent system configuration based on the potential skills of all
agents. .. 28
Figure 4: Relationship among constraints.. 30

Figure 5: Overall process � forecast module + search module. 47
Figure 6: Time-frame sizes depending on the dynamism level. 48

Figure 7: Analysing the time-series within a shifting sub-time-frame. 50

Figure 8: Potential dynamism level transitions. ... 50

Figure 9: System states depending on the time-frame considered. 52

Figure 10: Poisson distribution when varying λ. ... 56

Figure 11: Erlang distribution for k = 2, 3 and λ = 3, 1................................... 57

Figure 12: Basic artificial neuron .. 62

Figure 13: Sigmoid function .. 63

Figure 14: Example of a simple ANN with 8 input neurons, 8 hidden neurons
and 5 output neurons, forming 3 fully connected layers. 64

Figure 15: Overtraining risk – Volume of data. ... 64

Figure 16: Example of encoding. ... 73

Figure 17: One-point crossover. .. 76

Figure 18: Multi-point crossover. .. 77

Figure 19: Cut and splice. .. 77
Figure 20: Probability crossover. ... 78

Figure 21: Inbound scheme. ... 85

Figure 22: Incoming calls during a year at monthly level. 90

Figure 23: Incoming calls during the most intricate month (September) at daily
level. ... 91
Figure 24: Incoming calls during the most complex day of September
(September 9) at hourly level. .. 91

Figure 25: Incoming calls during the most complex hour of “September 9” at
minutely level... 92
Figure 26: Incoming calls and abandonments during a common day. 93

Figure 27: Number of agents for the 5 most representative CGs. 93

Figure 28: Mean absolute error returned by the ANN when considering
previous 5-minute intervals.. 97

Figure 29: Mean absolute error returned by the ANN when adding different
variables. .. 98

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

9

Figure 30: Mean absolute error, depending on the number of hidden units. ... 99

Figure 31: Example of encoding for an MSCC. .. 102

Figure 32: Fitness obtained for 8 different configurations of evolutionary
operators. .. 105
Figure 33: Star topology with 4 subordinate islands and a master island. 107

Figure 34: Call arrival rate per day, grouped by CGs. 109

Figure 35: Dataset partitions: training, generalisation and validation. 110

Figure 36: General Comparison (MAE is in the Y-axis and techniques are in
the X-axis). ... 115
Figure 37: NN Comparison (SSE x epochs). ... 117

Figure 38: Service level given by different techniques for a whole campaign
day. X-axis represents intervals of 300 seconds and Y-axis represents the real
service level (not a fitness value). .. 123

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

10

5 L IST OF TABLES

Table 1: Comparison of the time-frame considered for the workforce
distribution problem. .. 15
Table 2: Comparison of strategies’ efficacy for a real-world DMAS in relation
to the time-frame considered. MA is highlighted because it is our choice for
DMAS. ... 44
Table 3: Poisson distribution when varying λ between 0.1 and 1.5. 56
Table 4: Ranked attributes. .. 95
Table 5: Selected attributes. ... 96
Table 6: Summary of the most relevant individual variables. 98

Table 7: MAE obtained for 5 different CGs with/without sets for 50
executions. ... 100
Table 8: MAE & SD Comparison. ... 116

Table 9: Results obtained by the MHs in 50 executions starting from random
initial solutions for two problem instances: medium and hard (larger number
of incoming calls and high variability). Values refer to the fitness obtained by
all the MHs. .. 121
Table 10: Results obtained by our single and parallel MAs in 50 executions
starting from random initial solutions for the two problem instances studied.
Values refer to the fitness. ... 121
Table 11: Comparison of our approach with other relevant (call centre)
algorithms for 120 5-minute intervals.. 124

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

11

6 ABBREVIATIONS

ACD Automatic call distributor
ANN Artificial neural network
AI Artificial intelligence
ARIMA Autoregressive integrated moving average
ARPU Average revenue per user
ARR Absolute right rate
BB Branch and bound
BPN Back-propagation
CC Call centre
CG Call group
COP Constraint optimisation problem
DMAS Dynamic multi-agent system
DP Dynamic programming
DTTS Dumped trend time series
EA Evolutionary algorithm
EC Evolutionary computation
ES Exponential smoothing
GA Genetic algorithm
GRASP Greedy randomised adaptive search
GS Global search
GWB Greedy workload balancing
HGRASP Hybrid greedy randomised adaptive search
IA Intelligent agent
ILS Iterated local search
LR Lineal regression
LS Local search
MA Memetic algorithm
MAE Mean absolute error
MAPE Mean absolute percentage error
MAS Multi-agent system
MOGA Multi-objective genetic algorithm
MSS Multi-start search
MSCC Multi-skill call centre
MSE Mean square error
NSGA Non-dominated sorting genetic algorithm
PCA Principal component analysis
PD Poisson distribution
PRR Percentage of right rate
RM Regression model

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

12

Rprop Resilient back-propagation
RR Right rate
RWB Random workload balancing
SA Simulated annealing
SBR Skill-based routing
SES Simple time series
SSE Sum squared error
STS Stationary time series
TaS Tabu search
TS Time series
uRprop Upgraded resilient back-propagation
VND Variable neighbourhood descent
VNS Variable neighbourhood search
WCOP Weighted constraint optimisation problem

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

13

1 CHAPTER 1. INTRODUCTION

1.1 OVERVIEW

Over the last years, a gradually-growing interest in parallel and distributed

computing has arisen in computer science. This concern has guided research activities

to areas such as parallel and distributed programming, distributed information

systems, and parallel and distributed hardware architectures. Truthfully, there exists a

vast bibliography (e.g. see [1-3]) about this issue, although there are still paths to

explore.

Furthermore, we perceive a tendency to tackle increasingly complex problems

and application domains which frequently involve the processing of continuous,

dynamic data flows. These arduous environments are usually hard to be efficiently

maintained by conventional and sequential techniques. Nevertheless, parallel and

distributed methods not only mitigate this drawback but also present several valuable

characteristics such as robustness, traceability, problem simplification, adaptivity,

scalability and speed-up.

Conversely, dynamics, synchronisation and behaviour appear as intricacies of

parallel and distributed information systems because the representation of linear

problems into sub-problems is not always feasible or straightforward.

Anyhow, parallel and distributed systems should somehow self-improve to attain

high performance. In fact, nowadays, a wide range of studies on adaptive techniques

in parallel and distributed information systems can be found [4, 5].

A classical, well-suited problem for studying dynamic systems is the workload

distribution in multi-agent systems. Agents can work for a common goal, coordinate

the plans or draw up a plan for others’ tasks. Although there are lots of multi-agents

systems, we will focus on those encapsulated in blackboard architectures [6, 7]. In

other words, we will work on systems with a common repository of knowledge.

The basic variant of a workforce distribution problem requires the assignment of

task to agents who have the required skills to handle them over time, satisfying a

given set of additional constraints and respecting the dependencies among individual

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

14

tasks and differences in the execution skills of the agents. This problem has multiple

variants but, depending on the dynamism of the system, we can principally

distinguish two main scenarios:

1) On the one hand, we can find short-term planning environments in which

a continuous planning is needed due to the high dynamism of the system.

These solutions attempt to distribute the workload among agents by

applying “basic” ad-hoc heuristics, looking at the current situation

(without predictions or predictions for a short time-frame). This feature

can be effortlessly seen in workload allocation within a dynamic multi-

skill call centre [8].

2) On the other hand, we can find long-term planning systems in which the

list of tasks is predefined and known by all agents like in the classic

scheduling problem [9]; or environments in which a single task type is

assigned to each agent for a long period of time, similarly to the job

assignment problem [10]. In other cases, agents are assigned to patterns

of tasks, instead of specific tasks (such as in pattern-based scheduling

[9]). Analogously, stable multi-skill call centres [8] can be also included

in this group. These solutions consider stable behaviour over time,

anchored in historical data and apply more complex algorithms to match

agents and task types. However, when having a dynamic system, these

approaches cannot be efficiently applied, since an adaptive method is

required.

Our proposal is encapsulated in the first scenario: dynamic systems. We put

forward an alternative approach to traditional solutions which relies on an adaptive

middle-term time-frame, instead of a short-term one (when the dynamism is very low,

it is analogous to having a long time-frame). In other words, we reformulate the

traditional problem by dynamically enlarging or diminishing the time-frame

considered to better adapt the algorithm to the current state of the system. Figure 1

explains where our approach is positioned. Besides, we provide the required

mechanisms to implement this more efficient, adaptive solution. Although this

solution can be extended to countless domains and multi-agent systems, we will go

over the call centre application (see Chapter 5) in order to examine its idiosyncrasy

and complexity.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

15

Figure 1: Adaptive time-frame.

Table 1 summarises some fundamental characteristics of the previously

described scenarios in relation to the time-frame considered.

Table 1: Comparison of the time-frame considered for the workforce distribution problem.

Time-frame Complexity Response time Adaptability Performance CPU Utilisation

Short-term planning low low medium medium low

Middle-term planning high medium high high high

Long-term planning medium high low low high

To conclude this outline, we would like to stress that this study has been applied

to (and supported by) Telefónica (http://www.telefonica.com). Telefónica is one of

the world's largest telecommunications companies by market capital. Its activities are

mainly centred on the fixed and mobile telephony businesses, while its broadband

business is the key growth driver, underpinning both. It operates in 25 countries and

its customer base exceeds 264 million people worldwide. Telefónica's growth strategy

is focused on the markets in which it has a strong foothold: Spain, Europe and Latin

America. The Group stands in third position in the sector Telco worldwide in terms of

market capitalisation, the 1st as an European integrated operator and also the third in

the Eurostoxx 50 ranking, composed of the major companies in Europe (December

31st 2009).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

16

1.2 MOTIVATION AND MAIN OBJECTIVES

The problem of workload distribution in multi-agent systems is an appealing and

challenging subject of research not only from the point of view of machine learning

but also from a business angle. The eminent complexity of this problem makes it even

more interesting and a firm member of the class of NP-hard problems [13]. Besides,

timing constraints complicate, even more, finding an accurate, feasible solution.

Another reason to analyse this problem is that it is often omnipresent in our daily life

and is highly relevant to many industrial application domains like trading and

workflow organisation.

From a parallel computing angle, this problem is also tempting since it

inherently allows for parallelism because the tasks to handle can be distributed over

several nodes and also because the nodes can execute different tasks in parallel.

From an artificial intelligence point of view, this problem is also very motivating

because it involves many fields which range from forecasting techniques derived

from machine learning theory to optimisation algorithms that use diversity

maintenance techniques from evolutionary computation (EC) and other local search

schemes like simulated annealing or tabu search.

The main purpose of this work is to provide a solution, which is fully described

in Chapter 4, for dynamic multi-agent systems based on blackboard architectures.

Thus, an efficient forecasting method must be provided in order to predict the real

situation in next time-frame (future system state) and, therefore, an optimisation

algorithm must be performed to determine the right assignment task-agent.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

17

1.3 CONTRIBUTIONS

The contributions of this work can be devised from diverse perspectives

although the main contribution is the presentation of a novel approach to the

workforce distribution problem which coalesces forecasting with optimisation by

considering an adaptive middle time-frame. We also apply this approach to a real-

world production environment (multi-skill call centre) from one of the largest telecom

operators around the world (Telefónica).

Typically, traditional process management systems rigidly distribute tasks to

queues from which agents take and process work, regularly opting for the precise

tasks they actually desire to cope with. In contrast, our approach enhances workforce

distribution by additionally injecting real-time knowledge of the task, individual skill

sets, and availability and utilisation of the workforce, allowing for dynamic and

active distribution of tasks over time.

Additionally, our method provides further clearness on customer service level

agreements and endows with insights into optimisation, offering outstanding

customer service.

In addition, our approach enables us to work at a lower level of granularity (fine-

grain) than short-term algorithms do (coarse-grain), because our search algorithm has

more time to find a solution than conventional techniques, thanks to the predictions of

future states. We can then work at agent’s profile level instead of predefined sets of

agents as other methods impose. Other conventional techniques consider steady

environments which are far from the soundness of a dynamic mechanism.

Furthermore, other technical contributions of this dissertation can be summarised

as follows:

1) This work proposes a parallelisable approach based on island models to a

real-world NP-hard problem, using different fields from Artificial

Intelligence.

2) New genetic algorithm operators are proposed in order to maintain a

balance between diversity and intensity when searching in such an

environment. These operators are often inspired in other meta-heuristics

schemes.

3) We also propose a partial fitness function in order to speed-up the

evaluations of candidate solutions.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

18

4) Three exhaustive comparisons among different classical forecasting

techniques, various classical heuristics for dynamic multi-agent systems

and other meta-heuristics applicable to dynamic multi-agent systems are

provided from multiple points of view.

Finally, the contributions to the scientific literature have produced the following

peer-reviewed publications ((1) and (2) are less directly related to this dissertation):

1) Martínez-López, R.; Millán-Ruiz, D.; Martín-Domínguez, A. and Toro-

Escudero, M.A.: An Architecture for Next-Generation of Telecare

Systems Using Ontologies, Rules Engines and Data Mining. Proceedings

of the International Conferences on Computational Intelligence for

Modelling, Control and Automation; Intelligent Agents, Web

Technologies and Internet Commerce; and Innovation in Software

Engineering (CIMCA 2008), p. 31-36, Vienna, Austria, December 10-12,

2008.

2) Melendez, J.; López, B. and Millán-Ruiz, D.: Probabilistic models to

assist maintenance of multiple instruments. Proceedings of the 14th IEEE

International Conference on Emerging Technologies and Factory

Automation (ETFA 2009), p. 1499-1503, Palma de Mallorca, Spain,

September 22-26th, 2009.

3) Pacheco, J.; Millán-Ruiz, D. y Vélez, J.L.: Neural Networks for

Forecasting in a Multi-skill Call Centre. Proceedings of the 11th

International Conference on Engineering Applications of Neural

Networks (EANN 2009), p. 291-300, London, UK, August 27-29, 2009.

4) Millán-Ruiz, D. and Hidalgo, I.: A Memetic Algorithm for Workforce

Distribution in Dynamic Multi-Skil Call Centres. Proceedings of the 10th

European Conference on Evolutionary Computation in Combinatorial

Optimisation (EVOCOP 2010), p. 178-189, Istanbul, Turkey, April 7-9,

2010.

5) Millán-Ruiz, D.; Pacheco, J.; Hidalgo, I. y Vélez, J.L.: Forecasting in a

Multi-skill Call Centre. Proceedings of the 10th International Conference

on Artificial Intelligence and Soft Computing (ICAISC 2010), Zakopane,

Poland, June 13-17, 2010.

6) Millán-Ruiz, D. and Hidalgo, I.: Algoritmo memético paralelo para la

distribución de esfuerzo en centros de llamadas dinámicos multiagente y

multitarea. (Accepted) To appear in the 7th Spanish Conference on Meta-

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

19

heuristics, Evolutionary Algorithms and Bioinspired Algorithms (MAEB

2010), Valencia, Spain, September, 2010.

7) Millán-Ruiz, D. and Hidalgo, I.: Comparison of Metaheuristics for

Workforce Distribution in Multi-Skill Call Centres. Submitted to the

International Joint Conference on Computational Intelligence (ICEC

2010).

8) Millán-Ruiz, D. and Hidalgo, I.: A Self-Tuning Hybrid Memetic

Algorithm for Dynamic Multi-Agent Systems based on Blackboard

Architectures. Submitted to the Workshop on Self-tuning, self-

configuring and self-generating search heuristics (Self* 2010). Extended

versions of selected contributions from this workshop will be considered

for publication in a Special Issue of the Evolutionary Computation

Journal, MIT Press.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

20

1.4 MARKET RELEVANCE

The market relevance of the present work can be devised from three distinct

angles: customer satisfaction (happy customers remain loyal to their telecom

operator), optimisation of resources (monetary savings as a result of a better

workforce distribution) and employee satisfaction (brand pride, self-esteemed

fortification and fair workload allocation).

Various studies [14, 15] prove that users’ key period to migrate to another

telecom operator (also denoted as churn) after having a negative experience with call

centre’s (CC) contact service is, for the majority of individuals, about 10 days from

the notification date. During these days, and even afterwards, these people negatively

influence their social circles or communities, causing a cascade effect which implies

huge losses of money to telecom operators every year.

If an organisation is planning to link up with any existing outbound churn

prediction models, based on likelihood to churn, then there appears the need of

having a process for risk prioritisation (potential churners are prioritised) built, if the

company has capacity constraints in its outbound CC (when there are not enough

resources to directly contact potential churners, an automatic risk prioritisation in

needed in the inbound CC).

However, we should highlight we cannot evade churn effect as far as it decidedly

depends upon multiple individual reasons. There, CCs can play an important role in

churn prevention as a consequence of customer satisfaction enhancement which

irrefutably leads us to customer loyalty.

By upgrading customer service with our approach, Telefónica has estimated

savings of up to €2,000,000 per year only in Spain, as it enhances brand loyalty

(customers are happier with their telecom operator) and other encouraging behaviours

such as word of mouth advocacy.

Nevertheless, customer satisfaction is not the unique edge from where we can

profit. Another important aspect refers to the optimisation of resources we are

actually doing because we increase the speaking level of each agent. If we consider

the mean upgrading percentage obtained by our approach in 2009 (7%), we can

affirm that, only in Spain, it is possible to obtain savings up to €3,000,000 per year

(Figure 2 shows the two main bases of success for a telecom operator).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

21

Figure 2: Customer satisfaction and resources optimisation can be monetised.

Besides, we can enhance another important factor; the employee satisfaction.

Maintaining morale high among agents can be of extraordinary benefit to any telecom

operator, as happy agents will be more prone to reply to more incoming calls and stay

loyal to the company. This occurs because agents are much fairly treated as a

consequence of a better allocation of workload. Agents cannot feel they are being

fairly treated whether other agents have to work less time, earning the same money

and having similar (or even identical) skills.

As a final point, we can extend this work to many other dynamic multi-agent

systems in which the list of tasks is not predefined such as plane maintenance [16],

online trading [17], disaster response [18], congestion in stations [19] or overloading

in networking nodes [20].

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

22

1.5 DISSERTATION ORGANISATION

The rest of this document is organised as indicated in the present section.

Chapter 2 introduces the problem of workload distribution in dynamic multi-

agent systems from a generic point of view in Section 2.1 and from formal

perspective in Section 2.2. In Section 2.3, we address the difficulty of handling hard

and soft constraints.

Chapter 3 presents an overview of those aspects of research that are relevant to

the problem faced. The required background for situating the work presented in this

document and making a proper understanding of it is given in Section 3.1. Section 3.2

presents a survey of existing work from different points of view, considering

commonalities with other problem domains. Section 3.3 kindly discusses the state-of-

the-art and introduces some bases to outperform related work.

Chapter 4 proposes a new approach to the problem addressed in this work.

Section 4.1 sets out the bases of this novel approach. Section 4.2 describes the

methodology that we have followed. Section 4.3 focuses on the forecast component

which supports the first module of our approach. Section 4.4 describes the second

component of our approach; in other words, the search module. In Section 4.4, we

also propose multiple mechanisms to maintaining a fair balance between diversity

and intensity in simple and parallel genetic algorithms when optimising.

In Chapter 5, we adapt our approach to a real-world DMAS: the multi-skill call

centre. Section 5.1 describes the specific characteristics of our problem domain.

Section 5.2 presents a brief survey of call centre algorithms. Section 5.3 highlights

the magnitude, in terms of volume, of our application domain. In Section 5.4, we

present some special adaptations for the forecast module. In contrast, Section 5.5

points out some particular adaptations for the search module.

Section 6.1 describes the dataset employed. Section 6.2 points out the hardware

descriptions of the SunFire sever in which the evaluations have been performed.

Section 6.3 analyses the selected metrics for testing and comparing our approach.

Section 6.4 examines the forecast module for five different CGs as there are too many

to accomplish an exhaustive study for all of them. Section 6.5 evaluates the search

module by studying several time intervals from days with different complexity; this

section also compares our search module with other acknowledged techniques. In

Section 6.6, we will analyse our complete approach (forecast module + search

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

23

module) for one-day campaign. We will also compare how our complete approach

outperforms other conventional call centre’s algorithms.

Chapter 7 concludes our work with a summary of major contributions in Section

7.1 and points out prospects for future work in Section7.2.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

24

2 CHAPTER 2. PROBLEM OF WORKLOAD

DISTRIBUTION IN DYNAMIC MULTI -

AGENT SYSTEMS

The present chapter describes the problem of workload distribution in dynamic

multi-agent systems from different perspectives. The main aim of this chapter is to

introduce this problem to the reader as the pillars of the present work rely on the

concepts given throughout the following sections.

Section 2.1 presents the problem of workload distribution in dynamic multi-

agent systems from a generic point of view. Section 2.2 formalises the problem

definition in order to provide the present work with a higher level of scientific rigor.

In Section 2.3, we tackle the difficulty of handling hard and soft constraints as it is

the typical situation in real-world environments.

2.1 GENERIC DEFINITION OF THE PROBLEM

The term intelligent agent (IA) [21] describes an autonomous entity which is

able to observe and interact with its environment in order to accomplish a given set of

tasks [22]. IAs may also learn from their environment or use previous knowledge of

the domain to achieve their goals. Their complexity can range from very simple

systems to very complex ones. Unlike objects, which are defined in terms of methods

and attributes, an agent is defined in terms of its behaviour.

Different authors [21-23] have proposed diverse definitions of agents which

commonly include concepts such as persistence (code is not executed on demand and

decides for itself when it should perform a given activity), veracity (an agent cannot

communicate false information), kindness (agents do not have conflicting goals),

rationality (agents will act in order to achieve their goals), learning (agents improve

performance over time), autonomy (agents have capabilities of task selection,

prioritisation and goal-oriented behaviour), sociability (agents are able to engage

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

25

other components through some sort of communication and coordination, so that they

may collaborate on a task) and reactivity (agents perceive the context in which they

operate and react to it appropriately).

When several agents interact, these may compile a multi-agent system (MAS)

[24]. Characteristically, such agents have a partial point of view of the problem and

thus need to cooperate with other agents. Furthermore, there may be no global control

and thus such systems are sometimes denoted as swarm systems. In these cases, data

are decentralised and execution is asynchronous.

The real world is actually a multi-agent environment because we often need to

cooperate with others in order to achieve our own goals. In fact, many goals can be

only achieved with the cooperation of others. Social ability in agents is the ability to

interact with other agents (and possibly humans) via some kind of agent-

communication language.

Commonly, the basic variant of the workload distribution problem in a dynamic

multi-agent system (DMAS) requires the assignment of task to agents which have the

required skills to handle them over time, satisfying a predefined set of additional

constraints and respecting the dependencies among individual tasks and differences in

the execution skills of the agents.

In a common DMAS, there are n tasks or work items grouped in k types of tasks

and m agents that may have up to l skills (l ≤ k) to perform these works. In this

manner, each agent can process different types of tasks and, given a type of task, it

can be carried out by several agents that have that skill. The set of skills an agent has

is frequently denoted as profile. These profiles can be truly heterogeneous as there are

massive potential skills.

Although agents may have multiple skills, each agent can only process one

operation at the same time. Furthermore, given an operation, it requires an unknown

amount of time to be accomplished. Besides, each agent must orderly process each

operation during an uninterrupted period of time; in other words, the task cannot be

divided or postponed once it has already started.

Constraints may be given by many factors that we cannot cover in this section as

this issue is problem dependent. However, we will describe how we propose to treat

them in Section 2.3 and present a real example in Chapter 5.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

26

The solution to the problem of workload distribution in dynamic multi-agent

systems consists in dynamically assigning every task (according to its type) to the

right agent so that this solution satisfies all hard constraints and respects, if possible,

all soft constraints.

Eventually, we need a metric of quality to measure the rightness of each

solution. Of course, the definition of the quality function is problem dependent too. In

Chapter 5, we will show an example of quality function for the dynamic multi-skill

call centre use case.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

27

2.2 FORMAL DEFINITION OF THE PROBLEM

Formalising the definition given in Section 2.1, we can find the following

parameters in a dynamic multi-agent system based on blackboard architecture:

1) a finite set of n tasks or work items },...,,{ 21 nwwwW = .

2) a finite set of k task types }...,,,{ 21 ktttT = , where nk ≤ when every task

type has, at least, one task assigned.

3) a finite set of m agents }...,,,{ 21 maaaA = .

4) a finite set of k agent-skills }...,,,{ 21 ksssS= in which each agent-skill,

is , represents the capability to handle the corresponding type of task, it ,

with the equivalent sub-index in T: kk tststs ~,...,~,~ 2211 .

5) a finite set of d agent-skill profiles }...,,,{ 21 dPPPP = in which each

agent-skill profile Pi can be any subset of }...,,,{ 21 ksssS= .

6) a finite set of n operations (execution or processing of each task, iw)

}...,,,{ 21 noooO = in which each operation, io , has associated a

processing time which depends on its type of task: },...,,{ 21 kτττ .

The goal is to obtain the right assignment (solution) for every agent ai to the

most suitable profile Pj from the potential skill profiles of each agent ai for each v

seconds, where v is the size of the time-frame considered.

Figure 3 illustrates a feasible solution for a given time-frame, supposing that

agent a1 has the skills to process t1 and t2 (s1 and s2), agent a2 has the skills to process

t1 and tk (s1 and sk), agent a3 has the skill to process t2 (s2) and agent am has the skills

to process t1 and tk (s1 and sk).

In addition, the assignment
tji Pa , must satisfy all hard constraints and handle

the soft ones. To determine whether (or not) a given solution is appropriate, we need

to define a quality metric to evaluate the rightness of each feasible solution. This

function is intuitively problem dependent as aforementioned.

Moreover, the solution must fulfil the following descriptions:

1) on O define R, a binary relation which represents the precedence among

operations. If Roo ∈),(21
 then o1 has to be performed before o2.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

28

2) every agent, ia , has associated a finite non-null subset of P, containing

his or her skills to handle different types of tasks (individual skill-

profile).

3) the same profile
iP can be assigned to several agents. In other words,

several agents may have some skills in common (or even all of them).

4) every agent, ia , may have several profiles assigned but only one can be

performed at a given instant t,
tji Pa , . Therefore, an agent cannot process

two (or more) operations at the same instant.

5) every solution must respect diverse (hard and soft) constraints given by

business rules defined.

Figure 3 illustrates the situation described above in this section. We present an

example in which each agent has certain potential skills (at least one) to attend some

tasks types. The fact that a given agent has multiple skills does not mean he must

attend all these types at the same time within a given interval (do not confuse

potential skills with currently assigned skills).

Figure 3: Multi-agent system configuration based on the potential skills of all agents.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

29

2.3 CONSTRAINT OPTIMISATION PROBLEM

The problem described in Section 2.2 can be viewed as a constraint optimisation

problem (COP) [25]. A COP is characterised by a set of v variables, {��, ��, … , ��}
and a set of c constraints {	�, 	�, … , 	
} for a nonempty domain �� of feasible values.

A system state is defined by an assignment of values to some (or all) variables.

An assignment that does not violate any constraints is denoted as consistent or legal

assignment. A complete assignment is one in which every variable is mentioned, and

a solution to a COP is a complete assignment that satisfies all the constraints. In our

case, the constraints are associated to the tasks, the agents, timing, actions or

desired/undesired situations.

Classic COPs treat constraints as hard, referring to the fact that each feasible

solution must satisfy all constraints. In other words, a solution is feasible only if it

satisfies every single constraint. In contrast, flexible COPs relax this assumption by

partially relaxing constraints and allowing the solution not to comply with all them

(soft constraints).

We consider the weighted constraint optimisation problem (WCOP) in the

present work, in which each violation of a soft constraint is weighted according to a

predefined relevance (relevance is usually given by the business units of a company).

Consequently, satisfying soft constraints with more weight is preferred whereas hard

constraints cannot be violated in any case. The violation of soft constraints is

penalised according to the degree of non-accomplishment of these constraints and

their relevance.

Weights can be assigned by defining level of constraints. For each level, we can

define a range for the weights (constraint relevance) and the gap between two levels

follows a logarithmic function in order to soften the difference among levels.

Different levels cannot have the same relevance (no overlapping constraints levels)

and determining the difference among levels is frequently a business driven action

according to the market relevance. The values for a given level should be

proportionally assigned.

Figure 4 illustrates the relationship among constraints and constraint levels for 4

levels and 7 constraints. In our example, Level 4 (the most relevant constraint level)

has two constraints where Constraint 1 (C1) has a higher weight than Constraint 2

(C2). Level 4’s weights range from Ln(4)=1.386 to Ln(4+1)=1.609, (1.386, 1.609].

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

30

Therefore, C1 may have a weight of 1.550 ∈ (1.386,1.609] while C2 may have

weight of 1.450 ∈ (1.386,1.609] (these weights are fictitious, we just want to remark

that C1 has a higher weight than C2 in Figure 4.

Level 3’s weights range from Ln(3)=1.098 to Ln(3+1)=1.386, (1.098, 1.386]

and Level 2’s weights range from Ln(2)=0.693 to Ln(2+1)=1.098, (0.693, 1.098].

Level 3 and Level 2 have a unique constraint which must belong to its respective

constraint level’s range. Of course, Level 3 has more relevance than Level 2 which

has more importance than Level 1 at the same time.

Level 1’s weights range from 0.1 (we will consider 0.1 as a minimum) to

Ln(1+1)= 0.693, (0.1, 0.693]. In Level 1, all constraints have the same relevance as

take the same “space” in the level (let’s say 0.5).

Note that if we need to set up higher differences among levels, we just need to

assign a higher range of weights for each level but this is problem dependent (we

have just shown an example).

Finally, we need to normalise all penalisations by dividing by the total sum of

weights assigned to the soft constraints.

Figure 4: Relationship among constraints.

The aim is to find a solution to the problem whose cost, evaluated as the sum of
the cost functions (penalisations of soft constraints), is minimised.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

31

3 CHAPTER 3. LITERATURE REVIEW

This chapter provides the reader with an overview of all relevant aspects of

scientific research for the problem described in Chapter 2. The core background for

situating the present work is given in Section 3.1. Section 3.2 presents a survey of

related work from diverse perspectives, considering commonalities with other

problem domains. In future chapters, we will examine how to adapt some of these

techniques to our use case (call centre). Section 3.3 kindly discusses the state-of-the-

art and introduces some bases to outperform existing work.

3.1 BACKGROUND

Throughout the present work, very heterogeneous fields from artificial

intelligence (AI) have been applied. Prior to analysing existing work and proposing a

novel approach to the problem of workload distribution in DMAS, it is necessary to

endow the user with some required background in order to better understand diverse

concepts and proposed solutions.

3.1.1 Local Search

In computer science, local search (LS) [26] is a meta-heuristic (MH) for solving

computationally hard optimisation problems. LS can be pertained to problems that

can be formulated as finding a solution by maximising or minimising a criterion

within a set of candidate solutions.

Frequently, the neighbourhood is composed by more than one solution where the

choice of which one to move to is taken by only considering information concerning

the solutions within the neighbourhood of the current one. When we select a

neighbour solution taking the one which maximises the criterion, then the MH is

named hill climbing.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

32

LS based algorithms “navigate” the search space, jumping from a solution to

another one until a solution deemed optimal is reached or a given computing time has

been elapsed. Another common choice is to terminate when the best solution found

by the algorithm has not been improved in a given number of steps. LS algorithms are

typically incomplete algorithms, as the search may stop even if the best solution

found by the algorithm is not optimal. This can happen even if termination is due to

the impossibility of improving the solution, as the optimal solution can lie far from

the neighbourhood of the solutions crossed by the algorithms.

LS algorithms have been extensively applied to numerous hard computational

problems, including problems from computer science, mathematics, operations

research, engineering and bioinformatics [27].

To conclude, we provide the pseudo-code adapted to the problem of the

workload distribution in dynamic multi-agent systems, which illustrates the LS

algorithm in its basic form:

void Local_Search (Chromosome & candidate_solution)

{

 Chromosome best_solution = candidate_solution;

 Chromosome neighbour = candidate_solution;

 For (i=0; i<candidate_solution.size(); i++)

 {

 Agent a = neighbour.getAgent(i);
 For (j=0; j<a.get_number_profiles(); j++)

 {

 neighbour.change_profile(i,j);//profile j for agent i

 If (neighbour.fitness() > best_solution.fitness())

 best_solution = neighbour;

 }

 neighbour = best_solution;

 }

 candidate_solution = best_solution;

}

Algorithm 1: Basic LS pseudo-code.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

33

3.1.2 Genetic Algorithms

A genetic algorithm (GA) [28, 29] is a class of adaptive stochastic optimisation

techniques which attempts to find exact or approximate solutions for optimisation and

search problems. GAs were proposed by John Holland in 1975 [28]. GAs are also a

particular class of evolutionary algorithms (EA) that use techniques derived from

evolutionary ideas of natural selection and genetics such as inheritance, mutation,

selection, and crossover or recombination.

GAs are implemented in a computer simulation in which a population of abstract

representations (called chromosomes or the genotype of the genome) of candidate

solutions (called individuals or phenotypes) to an optimisation problem evolves

toward more accurate solutions.

The evolution typically begins with an initial population of randomly generated

individuals and occurs over time by means of generations. In each generation, the

fitness of every individual in the population is evaluated, multiple individuals are

selected from the current population (based on either their fitness or composition),

and modified (recombined and randomly mutated) to compose a new population. The

new population is then used in the next iteration of the algorithm. Commonly, the

algorithm ends up when a given number of generations has been produced, or after a

period of time, or after x generations without evolution, or a satisfactory fitness level

has been accomplished for the population. If the algorithm has ended up due to a

maximum number of generations, a satisfactory solution may or not have been

reached. Further description is given in Section 4.4, since GAs are the bases of the

solution proposed in this work.

Procedure Basic_Genetic_Algorithm

{

 Generate an initial population of individuals

 Evaluate each individual from the population

 While (stopping condition)

 {

 Pick the best individuals for reproduction;

 Breed new individuals by means of the crossover;

 Apply a small perturbation over these new individuals;

 Evaluate their individual fitness;

 Replace the worst individuals;

 }

Algorithm 2: Basic GA pseudo-code.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

34

3.1.3 Memetic Algorithms

A memetic algorithm (MA) [30] represents one of the current growing areas of

research in EC. MAs are a population-based technique for heuristic search in

optimisation problems. These are much faster than traditional GAs for many problem

domains. Fundamentally, these combine GA’s operators with LS heuristics (an LS

algorithm typically refines the solution obtained by the GA’s operators).

Conversely, the continuous application of LS as a refinement mechanism does

not guarantee a better performance. The frequency and the intensity characterise the

level of progression (exploration) in opposition to the refinement achieved

(exploitation) in the MA search. Thus, a more intense exploitation implies having

more chances of convergence to the local optima. Evidently, it highly depends on the

stage where the algorithm is, so it is broadly agreed that exploration should be more

important at the beginning of the process and exploitation should be performed at the

end [31-33]. However, we will see in this work that success can be achieved by

dynamically adapting exploration and exploitation, depending on the circumstances

found in our search.

For these reasons, some researchers have successfully denoted MAs as Hybrid

GAs while others consider them as class of MHs. Frequently, MAs are also referred

to in the literature as Baldwinian EAs, Lamarckian EAs, cultural algorithms, or

genetic LS.

Procedure Basic_Memetic_Algorithm

{

 Generate an initial population of individuals

 Evaluate each individual from the population

 While (stopping condition)

 {

 Pick the best individuals for reproduction;

 Breed new individuals by means of the crossover;

 Apply a small perturbation over these new individuals;

 Evaluate their individual fitness;

 Replace the worst individuals;

 Each g generations, refine the k best individuals;

 }

Algorithm 3: Basic MA pseudo-code.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

35

3.2 CLASSIC APPROACHES TO DMAS

Chapter 1 presented the two types of algorithms for DMAS we can find in the

state-of-the-art. There exists a kind of ad-hoc algorithms conceived for short-term

planning environments in which a permanent planning is required because of the high

variability of the system. Instead, there are other techniques devised for more stable

(long-term planning) environments. Nevertheless, when facing a dynamic system,

these approaches cannot be efficiently applied, since an adaptive method is needed.

In this section, we describe different techniques which could be applied to the

problem of workload distribution in dynamic multi-agent systems (stable

environments are out of the scope of this dissertation). Note that the purpose of this

section is to briefly describe these techniques rather than to deeply detail them as the

reader can carefully peruse the references provided in the following subsections, if

desired.

3.2.1 Random Workload Balancing

Random workload balancing (RWB) [34] purely assigns a random profile to

each agent (among the available ones for that agent). In RWB, the neighbourhood

covers the whole search space. After multiple iterations, the best solution found is

chosen. Supposing there are s possible solutions, the probability of finding the global

optimum is 1/s for each execution. This technique can be appropriate whether there is

little communication overhead and numerous agents are available. As the number of

agents decreases, the workload of the busiest agents increases in relation to the

average agent workload, resulting in poor parallel efficiency. Since each task is

assigned to an agent by selecting a random destination, RWB only needs to execute a

single pass through the tasks list.

3.2.2 Random Neighbour Search

Differently to LS, random neighbour search (RNS) [35] consists in jumping

from a candidate solution to a random neighbour (note that basic LS sequentially

explores the neighbourhood). If the hop implies an improvement of the candidate

solution, the best solution is updated and then considered as new candidate solution.

This process is carried out until a given computing time has been elapsed or a fixed

number of random neighbours has been generated.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

36

3.2.3 Greedy Workload Balancing

Greedy workload balancing (GWB) [36] reallocates agents without considering

the current assignment task type-agent (note that other techniques start out from a

neighbour solution but GWB does not). An agent heap is built with the intention that

the agent with the least assigned workload is on the top of that heap. In the beginning,

no tasks are assigned to any agents, hence every agent in the heap has no workload,

and the agent on the top of the heap is randomly chosen. A task heap is also built and

organised so that the most time-consuming task is on the top of the heap. For each

agent, the most time-consuming unassigned task is allocated to the less loaded agent

with the capability to handle that type of task. Afterwards, the agent's workload is

updated and both heaps are readjusted. This process is carried out until every task has

been assigned to an agent with the required skills.

3.2.4 Skill-Based Routing

Skill-based routing (SBR) [37] is a task-assignment policy to dispense new

work items to the most appropriate agent (the appropriateness is problem dependent),

rather than to purely select the next available one. Habitually, the routing strategy is

led by a simple heuristic (e.g. efficient driven SBR) as SBR claims for quick

movements rather than convoluted, time-consuming formulas. SBR usually relies on

the Erlang-C formula [38] which has been broadly applied to the CC domain.

Nevertheless, some researches [39, 40] claim that the conventional Erlang-C formula

is no longer applicable to settling on staff schedules as they are frequently inexact.

3.2.5 Dynamic Programming

Dynamic programming (DP) [41] is a technique which basically breaks

problems down into smaller overlapping sub-problems. The philosophy of DP relies

on solving problems where we need to find the best decisions serially. DP takes less

time than other methods when it is applicable, because the results of certain

calculations are stored and can be re-used by succeeding operations.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

37

3.2.6 Branch and Bound

Branch and bound (BB) [42] is a broad-spectrum algorithm devised for discrete

and combinatorial optimisation problems. It systematically itemises all candidate

solutions, from the uppermost one to the lowest one, discarding unproductive

candidates. Every node (candidate solution) at a level l in the search tree corresponds

to a partial sequence of p operations.

3.2.7 Variable Neighbourhood Search

Variable neighbourhood search (VNS) [43] is an MH whose fundamental idea is

to cause a systematic, stochastic change of neighbourhood within an LS. VNS

escapes from local optima by changing of neighbourhood. To achieve it, VNS

increases the size of the neighbourhood until a local optimum, better than the current

one, is reached.

3.2.8 Variable Neighbourhood Descent

Variable neighbourhood descent (VND) [44] is an MH where the search is not

restricted to only one neighbourhood as in the LS but, instead, it deterministically

changes at the same time as the algorithm advances (predefined sizes for the

neighbourhoods).

3.2.9 Simulated Annealing

Simulated annealing (SA) [45] is an MH of variable search environment, which

generalises Monte Carlo’s method. SA proposes that the current state of a

thermodynamic system is equivalent to the candidate solution in optimisation, the

energy equation for a thermodynamic system is analogous to a target function and the

ground state corresponds to the global minimum. This technique has the ability to

hinder getting trapped in local optima since the algorithm allows for changes that

decrease the values returned by the target function with a given probability. This

probability depends on the current temperature value which varies according to the

cooling scheme. The main complexity is to determine the right value for the initial

temperature and the cooling scheme.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

38

3.2.10 Tabu Search

The meaning of the word tabu (also known as taboo) refers to a prohibition

imposed by social customs as a protective measure [46]. In particular, tabu search

(TaS) is based on the principle that search techniques should incorporate adaptive

memories and guiding exploration mechanisms. The adaptive memory [47-49] allows

for the implementation of procedures that are capable of economically and effectively

navigating the search space. These memories introduce complexities that often

confound alternative approaches as they allow for restriction of the search

environment and the introduction of intensification mechanisms in zones of the

search space that have been already visited, or diversification in possible zones of the

search space which are rarely visited [49].

3.2.11 Scatter Search

Scatter search (SS) [50] works over a set of solutions (reference points) by

merging them in order to produce new feasible ones. The combination of solutions is

commonly accomplished in a linear way. These combinations can be devised as a

feasible generalisation of the existing solutions.

3.2.12 Iterated Local Search

The basic idea of iterated local search (ILS) [51] is to concentrate the search on a

smaller subspace defined by the solutions which are locally optimal to the current

one. ILS consists in the iterative application of an LS method. To avoid getting

trapped in local optimums, a perturbation is applied before executing each LS.

3.2.13 Multi-Start Search

There are two phases in multi-start search (MSS) [52]: initially, a feasible

solution is generated and, afterwards, is normally improved by means of an LS

procedure. MSS is relatively simple because it merely executes several LS’s from

different initial solutions. The stopping condition for each LS is then taken as a

restarting criterion. The most imperative disadvantage of improving each solution by

means of an LS procedure is the possibility of getting ensnared in a non-optimal local

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

39

optimum. MSS heuristics are earmarked to obtain limited solutions as far as the LS

procedure cannot avoid escaping of non-promising environments. A key issue for the

performance of MSS is whether (or not) the information about the topology of the

neighbourhood (corresponding to the distance among neighbour solutions) is used.

3.2.14 Greedy Randomised Adaptive Search

The greedy randomised adaptive search (GRASP) [53] is one among those MSS

methods whose first phase (constructive phase) randomly generates a greedy solution.

The second phase (refinement) iteratively improves every solution by applying an LS

procedure. Greedy randomised solutions are generated by injecting new elements to

the problem's solution set from a list of elements ranked by a greedy function

according to the quality of the solution (problem dependent). This method provides

an appropriate and simple framework to develop algorithms for hard optimisation

problems. The goal of this methodology is to combine the diversification strategy

given by the construction phase with the intensification given in the improvement

phase.

3.2.15 Ant Colony Optimisation

Ant colony optimisation (ACO) [54] is a stochastic method which can be applied

to problems that can be simplified to finding the right paths within a graph (usually,

the shortest ones).

Pheromone is a chemical substance secreted by a living organism that transmits a

message inducing other members of the same species to react in a certain way. In our

case, virtual ants deposit pheromones once they have built their solutions. The release

of such a chemical signal, although systematic, is not constant. It is, instead,

dependent upon the heuristic desirability of transition. This pheromone release is

carried out once the solution is complete and is only updated when the loop ends. In

order to refine the ants´ generated solutions an LS procedure can be added to this

algorithm. An ant a chooses to go forward to the following node with a determined

probability that can be calculated as follows:

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

40







=

∈
∑ ⋅

⋅

∈
)((,

][][

][][

_,0

rNsif

caseother
a

rs

k
k
rNu rsrs

rsrs

P
βα

βα

ητ
ητ

 (1)

Τr,s is the amount of pheromone on edge r-s, α is a parameter to control the

influence of τr,s, ηr,s stands for the desirability of edge r-s (classically, 1/dr,s, where d is

the distance) and β refers to a parameter which controls the influence of ηr,s.

3.2.16 Particle Swarm Optimisation

Particle swarm optimization (PSO) [55] is a technique which does not require

any knowledge of the gradient of the problem to optimise. PSO emulates the

behaviour of a group of birds which are flocking. PSO keeps a population of

candidate solutions (particles) and then shifts them around in the search space in

accordance with a more or less straightforward formula.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

41

3.3 DISCUSSION

Section 3.2 has presented different techniques which could be somehow applied

to a DMAS based on blackboard architecture.

We can distinguish methods based on LS from those rooted in global search

(GS). GS takes into account the whole search space whereas LS approaches can be

applied to problems which can be devised as finding a solution maximising (or

minimising) a criterion among a number of candidate solutions. An LS algorithm

starts out from a candidate solution and, thus, iteratively moves to a neighbour

solution, generating the neighbourhood until a solution deemed optimal is reached or

a predefined amount of time has been elapsed. The main problem with LS methods is

that these usually get stuck in local optimums which are often far from the global

optimum. This setback can be mainly mitigated in five distinct ways:

1) The first possible solution, exemplified by VND, is to modify the

environment (also known as neighbourhood). In VND, the search is not only

restricted to one environment as LS imposes; instead, the size of the

environment deterministically changes as the algorithm progresses. The

change of environment is a technique that is dependent upon the stage at

which the algorithm is currently working.

2) The second possible solution is to permit deterioration movements,

such as in SA or TaS. In the SA method, each point of the search space is

equivalent to a state of some physical systems, and the function E(s) to be

minimised is similar to the internal energy of the system in that state. The aim

is to bring the system, from a random initial state, to a state with the smallest

amount of energy. TaS increases the performance of an LS method by

employing memory structures. Once a potential solution has been reached, it

is marked as tabu so that, the algorithm does not visit that possibility

recurrently.

3) The third possible solution is to restart from another initial solution as

MSS, GRASP, ILS or VNS do. In the case of the MSS, initial solutions are

randomly generated and, afterwards, the algorithm applies an LS over them

as a fine-tuning mechanism. This is equivalent to executing several LS in

parallel. Therefore, the accuracy of the results will depend upon the number

of executions that are launched. However, this is an inefficient method

because a conscious stopping condition has to be provided. Conversely, ILS

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

42

applies a mutation operator before each execution to attain an intermediate

solution which is refined by an LS. VNS (very similar to VND) is an ILS

method which changes of environment when the solution obtained is worse

than the current one. Finally, GRASP relies on the use of a randomised

greedy in its basic version.

4) Another way to find a good solution involves using methods based on

populations, such as GAs and MAs. If the diversity of the population is low,

then the GA converges to the closest neighbour. In contrast, if the selective

pressure is high, which makes the diversity low, individuals will be alike or

even identical. GAs are a powerful GS technique that slowly converges to the

global optimum for a set of relevant real-world problems. MAs emerge as an

improvement of this mechanism in which an LS is applied over a subset of

individuals each n-generations.

5) Finally, there are other strategies to obtain a feasible solution such as

constructive methods (e.g. ACO).

The MHs presented above provide diverse methods to escape from local optima.

The empirical impact of these MHs has been immense. Diverse tendencies on MH

schemes have been explored by many researchers. The most relevant issue, provided

by the incorporation of such techniques, is to know whether the benefit of the

performance enhancement compensates for the effort of its implementation.

Frequently, trendy appealing heuristics are skilfully figured out. Also, great effort

and inventiveness has been deployed in the adjustment of numerous parameters, but

as yet the reasons that make them work still remain unknown. When facing a

dynamic real-world production environment, some techniques (we will present an

empirical study in Chapter 5) cannot perform well-enough.

Intuitively, although RWB and RNS require low computing times, will not be

appropriate for a real production environment as they do not guarantee an accurate

solution and are not robust enough. A randomly generated solution can be acceptable

as an initial solution, but not as a proper search mechanism. With luck on our side, we

might find a good solution, but we would rapidly notice that these methods do not

always perform properly. In fact, the probability of obtaining the global optimum is

1/nsl where nsl stands for the number of possible solutions in the search space.

Imagine a die with nsl faces (a very large number) with the added problem that we

can only throw that die nt times in each time frame (where nsl >> nt).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

43

GWB and SBR “route” work items to available agents by applying basic

heuristics, considering the current state of the system. Obviously, these techniques

can be perfectly employed in DMAS but these fast, unplanned decisions may guide

the algorithm to congestion states (evident need of a better planning which takes into

account future states).

In basic LS, a neighbour is generated every iteration. Theoretically, due to its

local character, it is difficult to reach a high-quality solution because, when a local

minimum is found, the algorithm will often stagnate as deterioration movements are

not allowed.

In VND and VNS, the search is not simply restricted to a single search

environment, but instead, the environment changes as the algorithm advances

(deterministically in VND and stochastically in VNS). Therefore, the improvement of

basic LS is remarkable as we will verify in Chapter 5.

TaS and SA introduce a very sophisticated mechanism of deterioration

movements. However, these techniques only better perform when the time frame is

not too reduced: SA takes time even when we apply Cauchy’s scheme which is the

fastest one and TaS requires of many iterations to take advantage of using the

memory structures.

MSS increases the probability of finding an accurate solution compared to basic

LS as many LS’s are run in parallel. In contrast, GRASP improves this philosophy by

means of a probabilistic greedy procedure. This greedy process reassures us that, on

one hand, that initial solution will be more or less promising and, on the other hand,

that other local minima may be found, since the algorithm can start from different

initial solutions.

Constructive techniques (e.g. ACO), although they are a very promising growing

area, are not fast enough to be applied to real-world DMAS as [56] demonstrates.

Finally, GAs offer a different mechanism to finding precise solutions based on a

population schema. Generally, GAs converge very slowly to the global optimum (or

optima) but, when these are combined with LS procedures (MAs), GAs are an

astonishingly powerful search technique. Our approach relies on MAs as we will see

in Chapter 4.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

44

Note that we have presented all techniques from a theoretical point of view, but

we will also compare most of these techniques in Chapter 6 (at least, one

representative from each policy) to determine the appropriateness of each strategy for

a real-world DMAS. To conclude, Table 2 shows the efficacy of each strategy to find

a nearly optimal solution for a real-world DMAS in relation to the time-frame

considered.

Table 2: Comparison of strategies’ efficacy for a real-world DMAS in relation to the time-
frame considered. MA is highlighted because it is our choice for DMAS.

Algorithm
Efficacy

short-term

Efficacy

middle-term

Efficacy

long-term

RWB low low Low

RNS low low Low

Basic LS low medium Low

GWB medium low Low

SBR medium low Low

DP low low high

BB low low high

VNS low medium medium

VND low medium medium

SA low medium high

TaS low medium high

SS low medium high

ILS low medium medium

MSS low medium medium

GRASP low medium medium

ACO low low medium

PSO low low medium

GA low medium medium

MA low high high

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

45

4 CHAPTER 4. A NOVEL APPROACH TO

THE PROBLEM OF WORKLOAD

DISTRIBUTION IN DMAS

This chapter proposes a new approach to the problem described in Chapter 2.

Section 4.1 sets out the bases of this novel approach. Section 4.2 describes the

methodology that we have followed. Section 4.3 focuses on the forecast component

which supports the first module of our approach. Section 4.4 addresses the second

component of our approach; in other words, the search module. In Section 4.4, we

also propose multiple mechanisms to maintaining a fair balance between diversity

and intensity in simple and parallel genetic algorithms when optimising.

4.1 UNDERLYING IDEA

We have illustrated in Section 1.1 how short-term planning techniques distribute

arriving tasks to the existing available agents having the required skills to process

them by employing greedy heuristics while long-term planning techniques contend

with a stable incoming task flow and a longer stability over time which is not the

archetypal situation in nowadays DMAS’s. In this way, short-term planning strategies

distribute the workload without considering future system states (just the current

system configuration), provoking inapt allocations task-agent for near future. In

contrast, long-term planning strategies find optimal solutions for a given system state.

However, if the system is not very stable, we might have serious problems in the

future, because an optimal configuration for the current system state may not be the

best option in the future as these algorithms take time to reach a solution. In other

words, we might be using an optimal system configuration for a completely different

system state.

This section puts forward the bases of our approach to DMAS. The underlying

hypothesis of this work, which will be demonstrated and confirmed in Chapter 6, is

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

46

that DMAS’s require precise (nearly optimal) allocations of task types to the right

available agents for each (adaptive) middle-term time-frame over time rather than

continuous naive/greedy assignments for each system state or static long-term

configurations for remote future system states (see Figure 1).

We can now remain generic and develop a more stylish approach by

reformulating the standard variant of the problem of workload distribution in DMAS

as the concept of adaptive time-frame has been already introduced. We basically need

to enlarge (or reduce) the observed time-frame and then forecast the real system state

in a future point in order to apply more sophisticated search algorithms which can

outperform both short-term and long-term planning strategies. There, a need of an

exact prediction of a middle-term system state comes out. Subsequently, a search

algorithm must find a feasible solution for the predicted system state by reaching a

fair balance between diversity (exploration) and intensity (exploitation) in order to

meet with success.

Before explaining each “box” of our approach, we will present the overall

process in order to clarify the steps we take. We firstly need to analyse the dynamism

of the system within a given period of time with the purpose of determining the right

time-frame size. This time-frame cannot be fixed and its size must change over time

if there are changes in the behaviour of the system (variability in the arriving task

flow). Once we have determined the size of the time-frame, we need to forecast the

state of all variables at the end of the time-frame (if we are at time t, we will forecast

all system variables at time t+v). Given our predictions, we need to optimise the

allocation of existing tasks to the available agents having the required skills (see

Figure 5).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

47

Figure 5: Overall process � forecast module + search module.

The Algorithm X also describes the steps of our approach to better explain the

underlying idea.

Procedure “Approach to the problem of workload distribution in DMAS”

{

 Analyse the dynamism of the system;

 Set up a size for the time-frame;

 Forecast all variables for next state; //num. of tasks (by type), agents available, etc.

 Optimise the assignment among predicted tasks (by type) and predicted agents;

 Go to next state;

}

Algorithm X: Overall procedure.

The two most complicated factors to develop our approach are: the

determination of the size of the time-frame (we continuously analyse the system

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

48

dynamism to determine the right size for the time-frame) and the state-transition

function (when system dynamism changes).

To address the first difficulty (size of the time-frame), we can set up predefined

time-frame sizes (see Figure 6), depending on the dynamism level of the system (e.g.

3 levels: low, medium and high). Obviously, this choice must be done according to a

previous, exhaustive statistical analysis. In our experiments, we have considered 5

levels depending on system variability: very low (v=3000 seconds), low (v=1500

seconds), medium (v=300 seconds), high (v=120 seconds) and very high (v=60

seconds). The point of selecting predefined time-frame sizes is given by the

requirement of robustness that real-world DMAS’s habitually impose. If we enable

the system to automatically assign any size for the time-frame, we may crash down

the system (we may have 2-second time-frames or 20-hour time-frames which might

seize up the system).

Figure 6: Time-frame sizes depending on the dynamism level.

To deal with the second complexity (when to change of dynamism level), we

must determine the right state-transition function. This is a problem-dependent task

and we cannot claim any universal rule of thumb. Instead, we propose some

guidelines to accomplish with this arduous task. During the statistical analysis, we

encourage the reader to analyse smaller intervals than the time-frame (let’s say 30

seconds). Then, we should break down this interval into subintervals (e.g. 5

subintervals of 6 seconds) and plot a time series. If a given point highly differs from

the previous one, we should not activate the state-transition function as peaks may

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

49

crash down the system. But, when the trend of the time series drawn by these

consecutive points shows important oscillations, we should switch to another

dynamism level (e.g. if the tendency shows an important dynamism decrement, we

should then enlarge the time-frame by switching to a less dynamic level). In

summary, we take into account the trend of these consecutive points as well as the

dispersion among them. Figure 7 shows a 300-second time-frame. For this time-

frame, we analyse a smaller (shifting) time-frame of 30 seconds with 5 equidistant

consecutive points (each 6 seconds). If we plot these points, we would have a time

series (number of arriving tasks at each time point). We may discover numerous

possible situations but, in this figure, we have only illustrated 6 different cases (bear

in mind that a rigorous statistical study must be performed to achieve it). Figure 7.A

shows a very changing time series (high dispersion without well-defined trend);

therefore, the dynamism level would be very high. Figure 7.B exemplifies a quite

dynamic time series but with fewer changes than Figure 6.A, so the dynamism level

would be high. Figure 7.C and Figure 7.D point up medium dynamism level because

there is a clear trend (increasing in Figure 7.C and decreasing 7.D). Figure 7.E

illustrates a time series without changes, therefore the dynamism level should be

very-low. Finally, Figure 7.F presents a time-series with few changes, thus, the

dynamism level would be low.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

50

Figure 7: Analysing the time-series within a shifting sub-time-frame.

Naturally, the smaller window must be shifted according to the time (never

employ fixed windows). Finally, we do not impose “sequentiallity” when changing of

dynamism level as Figure 8 exemplifies. Arrows symbolise that we can reach every

state from any other state. Circles represent the dynamism levels. Note that we have

not plotted self-pointing arrows as no transition is needed.

Figure 8: Potential dynamism level transitions.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

51

Now, we have the mechanism to determine the size of the time-frame as well as

method to track the dynamism level. From this information, we need to forecast all

system variables for time t+v. Obviously, even when the forecast is pretty accurate,

we are introducing some noise to the model as we are searching a nearly optimal

solution for a predicted system state which may slightly differ from the real future

state. In order to mitigate the impact of that noise, it is crucial to design a powerful

forecast module which can provide us with the best possible approximation of next

future system state. From these accurate predictions, we will apply a search algorithm

based on a parallel memetic algorithm to discern fine allocations task type-agent from

inappropriate ones.

Until now, we have presented copious numbers of variables from an ordinary

DMAS in Section 2.2. Although we have to consider all these variables in order to

attain a feasible solution, uncertainty chiefly comes from the number of pending tasks

grouped by task types and the number of existing available agents having each skill.

As tasks continuously appear and require of a certain processing time to be executed,

and given that the size of the time-frame v is variable (a smaller number when there is

great dynamism or a larger number when there are few oscillations); we can assume

that the number of pending tasks and available agents at time t+v depends upon the

number of pending tasks and available agents at time t as some tasks may not be

accomplished during these v seconds. Actually, we will notice that a system state at

time t+v only depends on the system state at time t as it follows a Markov process

[57].

Now, let’s formalise the definitions exposed along this section. Denote the initial

state at time 0 as �� where we know all system variables (��, ��, ��, ��, �). We just

mean that at the beginning (time 0), we know the number of pending tasks, their

types, the number of available agents, the potential skills and the prospective profiles

(we highly encourage the reader to briefly review Section 2.2 to refresh the meaning

of each variable). Also, denote the current state at time t as �! (�!, �! , �! , �!, !) and

designate next future state at time t+v as �!#� (�!#� , �!#�, �!#� , �!#� , !#�).

Finally, denote the state-transition function as $: �!/'()*+,�-,_/0�0/ → �!#�.

This just means that every state �!#�, depends on the previous state �! and the

transition occurs each v seconds (size of the time-frame which depends on the

dynamism level). The variables of a given state are directly visible to the observer.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

52

Note that short-term planning strategies consider intermediate systems states (�! < ��*!03,0(�+!0 < �!#�), whereas long-term planning strategies take into account

posterior system states (�! < �!#� < �45-!03�53). Therefore, short-term planning

strategies rely on smaller transition-state steps $ than our approach, while long-term

planning strategies hinge on longer transition-state steps $ than our approach.

Graphically, this characteristic can be seen in Figure 9. Notice that �� stands for ��*!03,0(�+!0 and �4 represents �45-!03�53. Also, note that we have not plotted ��. In a

real-world production environment, we can set up an initial system configuration for �� that considers historical records. From this first configuration for the initial state ��, we should employ the mechanism we propose (prediction window determination

based on system dynamism + current system state prediction + optimisation).

Figure 9: System states depending on the time-frame considered.

The key purpose of the rest of the present chapter is to provide a solution for the

problem of workload distribution in DMAS, given the reformulation of the problem

that we have proposed in this section. Our approach combines predictions (for

middle-term system states of DMAS’s by means of an upgraded resilient back-

propagation neural network) with a powerful search mechanism (founded on a

parallel memetic algorithm).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

53

4.2 METHODOLOGY

This section describes the methodology employed by our approach. The first

step consists in determining the size of the time-frame based on system variability

(very low, low, medium, high and very high) as explained in Section 4.1. Once the

right size of the time-frame has been detected, we must forecast all variables of next

system state at time t+v, �!#�. These predictions are made by means of a forecast

module which relies on an upgraded resilient back-propagation neural network.

Given the predictions from the forecast module, the search module, implemented

as a parallel steady-state MA, optimises the assignment among task types and agents.

We propose an island topology and migration operators for individuals exchanging.

We will consider a master island and several slave islands. Each island corresponds to

a single MA. Each MA maintains a set (population) of abstract representations

(chromosomes) of candidate solutions (phenotypes) to the problem described in

Chapter 2. The population is partially randomly initialised (see Section 4.2.4 to obtain

further information). Then, its individuals are evaluated by applying a fitness function

over them. From this population, some individuals are selected and, then, recombined

(crossover). Subsequently, the offspring may suffer mutations in some genes.

Afterwards, some of these individuals replace others from the population according to

the replacement scheme. Every generation includes all previous actions. Finally, an

LS mechanism is applied over a percentage of the population each g generations. All

these steps are carried out until a predefined time has been elapsed.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

54

4.3 FORECAST MODULE

This section describes how to model a forecast module with an upgraded

resilient back-propagation neural network to predict all unknown variables at time

t+v, where t is the current instant and v is the size of the time window. Section 4.3.1

surveys the state-of-the-art on DMAS forecasting. Section 4.3.2 provides the required

background to understand our learning algorithm for neural networks. In Section

4.3.3, we formulate the mathematical bases to define learning algorithm for neural

networks. Section 4.3.4 explains how to fine-tune neural networks to DMAS

forecasting, given our innovative learning algorithm.

4.3.1 State-of-the-art on Forecasting

Most people perceive the world as a place where there are a large number of

alternatives. In this context, forecasting refers to the estimation of output values in

unknown situations to help decision making and planning. But, what does forecasting

stand for in a DMAS domain? Forecasting refers to the estimation of values at certain

specific future times. In this manner, there are many things that would be desirable to

predict in a common DMAS such as arriving tasks, task failures, available agents

having a certain skill, working levels (this is the time the agent is truly processing

tasks), service rates (given by a quality metric which depends on the domain) and

average delay times.

Why is it interesting or necessary in a DMAS domain? Particularly, a precise

prediction enables us to be prepared for the future to correctly balance workload

among agents, presenting higher service levels and, eventually, optimising our

resources. We can compile arriving tasks, task failures and queuing tasks in a unique

value, the number of tasks (grouped by task types) to handle.

Unfortunately, there is no way to state what future will bring along with

complete sureness. Risk (wrong predictions generally entail losses of money or even

major hazards) and uncertainty (ambiguity or indecision to accomplish our

predefined goals) are omnipresent in forecasting to the degree that it is customarily

considered good practice to specify the level of uncertainty linked to forecasts.

A significant but ignored facet of forecasting is the close liaison it holds with

planning. Forecasting can be expressed as predicting what future will resemble,

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

55

whereas planning enlightens what future should look like. There is no universal,

suitable forecasting method to use, as it depends on our objectives and preconditions.

There are a wide variety of forecast techniques for DMAS’s, although we will

focus on the most relevant ones along the present section. In this section, we want to

introduce and thus discuss these relevant forecast techniques, presenting their positive

and negative characteristics.

This section is organised as follows: Subsection 4.3.1.1 addresses the classical

Poisson distribution. Subsection 4.3.1.2 briefly exposes regression techniques.

Subsection 4.3.1.3 presents some time series methods. Subsection 4.3.1.4 covers this

problem from neural networks’ point of view.

4.3.1.1 Poisson Distribution

Traditionally, incoming call forecasting in CCs has been approximated

according to a Poisson distribution (PD). Nevertheless, PD can be perfectly applied to

other DMAS’s which accomplish several assumptions that we are going to expose in

the present section. PD expresses the probability of a number of events occurring

within a time-interval, when these are independent of the previous event and occur

with a known rate. Under these conditions, it is a reasonable approximation of the

exact binomial distribution of events. Additionally, PD provides a useful mechanism

to assessing the percentage of time when a given range of results are expected. In the

calculation of the distribution function, the values for the mean and standard

deviation are carried over from the binomial distribution.

Assuming pure-chance arrivals and pure-chance terminations leads to the

following probability distribution:

µµ −








= e

n
nP

n

!
)((2)

where n denotes the number of arriving tasks in an interval of duration d, µ stands for

the mean of arriving tasks at time t and e refers to the base of the natural logarithm

(e ≅ 2.7183). Thus, “conventional” approaches assume that the number of arriving

tasks at a given time, t, follows a PD. For this reason, pure-chance traffic is also

named as Poisson traffic.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

56

Table 3 shows the values returned by a PD when varying λ between 0.1 and 1.5.

Table 3: Poisson distribution when varying λ between 0.1 and 1.5.

n\λ 0.1 0.5 1 1.5

0 0.905 0.607 0.368 0.223

1 0.090 0.303 0.368 0.335

2 0.005 0.076 0.184 0.251

3 0.000 0.013 0.061 0.126

4 0.000 0.002 0.015 0.047

5 0.000 0.000 0.003 0.014

6 0.000 0.000 0.001 0.004

7 0.000 0.000 0.000 0.001

8 0.000 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000

In the same way, Figure 10 plots the points of Table 3 to better understand PD’s

nature.

Figure 10: Poisson distribution when varying λ.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

57

PD has inspired other authors to extend its idiosyncrasy to other distributions.

Reviewing the literature, we can bump into numerous algorithms founded on (or

merely supported somehow by) a PD. As an example, we should highlight Erlang-

based algorithms.

The Erlang distribution, first pioneered by A. K. Erlang [38], is a continuous

probability distribution with extensive applicability. This distribution, which has a

positive value for all real numbers greater than zero, is given by two factors: the

shape k (a non-negative integer) and the rate λ (a non-negative real number). The

distribution is sometimes defined using the inverse of λ, the scale µ. This distribution

appeared as a mechanism to inspect the number of arriving tasks which might

simultaneously arrive to the agents of a DMAS. This work, which was originally

conceived for the CC domain, has been afterwards extended to other queuing

environments by other authors [58, 59].

Figure 11 plots Erlang distribution for k = 2, 3 and λ = 3, 1.

Figure 11: Erlang distribution for k = 2, 3 and λ = 3, 1.

In an Erlang distribution, events are modelled in accordance with a Poisson

process and independently occur with some average rate. The waiting times between

k occurrences of the event are Erlang distributed.

However, the prediction of arriving tasks in a DMAS does not often adjust to a

PD with deterministic rate. In all studies (e.g. [60]), the arrival process agrees with a

Poisson process only if the arrival rate of the Poisson process is itself a stochastic

process.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

58

Characteristically, the variance of arriving tasks within a given interval is much

larger than the mean. However, PD’s hypothesis states it should be equal to the mean

for PDs. The mean arrival rate also strongly depends on the day-time and often on the

week-day, but Poisson processes comply with the memoryless property of the

exponential distribution [60], which is unable to detect this kind of features. Besides,

in some DMAS such as MSCCs, there is positive stochastic dependence between

arrival rates in successive periods within a day and arrival volumes during successive

days. Taking into account all these premises, we can realise how pertinent is to find a

more effective method to forecast which does not just rely on the hypothesis of a

simple PD.

Considering these premises, we can become conscious of the need of finding a

more effective method to forecast.

4.3.1.2 Regression Model

A regression model (RM) [61] is a statistical method in which an unknown

variable is predicted according to its relation with the rest of well-known variables

(also named as predictors), using a formula called regression equation. This equation

deals with some constant parameters which must be optimised to reduce the mean

square error (MSE) between the predicted output and its real value. In particular, we

study lineal regression (LR) which is one of the commonest variants (actually, we

will additionally examine neural networks which can be faultlessly included in

multiple regression). LR fits all parameters by applying diverse policies. The

commonest policies are the following ones: least squares approach, minimisation of

the “lack of fit” and minimisation of least squares loss function as ridge regression

assumes. Least squares and linear model are intimately related although these are not

identical.

LR approximates the unknown variable with a straight line by using well-known

variables as follows:

iippi XY εββ ++= ∑0
(3)

where parameter i is the pattern-position in the dataset, p indicates the n-th well-

known variable, βP represents the associated parameters to the n-th well-known

variable, β0 is a constant parameter, Y refers to a dependent variable and ε denotes the

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

59

associated error. βP and β0 are calculated in order to reduce Σεi, using predefined

patterns.

The main advantage of this method is the clearness to understand and track the

model. Nevertheless, it is hard to choose the variables to generate the model,

considering seasonality and trend, which is crucial to better understand the behaviour

of a DMAS.

4.3.1.3 Time Series

A time series (TS) is a sequence of observed variables, taken in regular time-

slices. This sequence is used for understanding and forecasting the behaviour of a

given variable over time based on previous states [62]. A TS approximates future

values by applying a (more or less complex) regression to the n-previous variables to

estimate forthcoming values. TS can be divided into two major groups: exponential

smoothing (ES) and autoregressive integrated moving average (ARIMA). At the same

time, ES methods, which assign decreasing weights to each previous observation, are

divided into: simple time series (SES), dumped trend time series (DTTS) and

stationary time series (STS).

SES, or Single Exponential Smoothing [63], is a method for forecasting whether

the mean is stationary or slowly changes over time. The name is frankly ambiguous,

given that this is a moving average method in which weights decline as the interval

between the current time increases. The smoothed value lags the current value as far

as this method depends on previous values. When the smoothing value is small, the

oscillations are seriously damped and the smoothed value tends in the direction of the

mean. Nevertheless, when the smoothing value is large, the oscillations noticeably

fluctuate and, as a result, the smoothed value tends to the current value. SES can be

obtained as follows:

,)1(;3,10,)1(111 tttttt SyFtSyS ααααα −+=≥≤<−+= +−− (4)

where S stands for the smoothed observation, t refers to an index which denotes a

time-period, α is a constant which must be estimated with the purpose of minimising

the MSE and y is the observation.

Instead, DTTS or Holt’s linear model (also known as double exponential

smoothing) [64] extends exponential smoothing by incorporating a term for linear

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

60

trends. This technique is also called “double exponential smoothing”. Suppose that at

time t, yt is observed, the level Lt is estimated and the slope bt is known in the series.

Afterwards, a k-step ahead forecast is Ft+k = Lt +btk. DTTS allows us to adjust the

slope with each new observation. DTTS can be formalised as:

ttmttttt

tttt

mbSFbSSb

bSyS

+=≤≤−+−=

≤≤+−+=

+−−

−−−

;10,)1()(

10),)(1(

11

111

γαγ

ααα

(5)

STS, or Holt-Winters’ Trend and Seasonality Model [65], is a suitable technique

to deploy when data show trend and seasonality. This technique introduces a third

equation to cope with seasonality. STS can be formulated as follows:

mLtttmtLt
t

t
t

tttt

tt
Lt

t
t

ImbSFI
S

y
I

bSSb

bS
I

y
S

+−+−

−−

−−
−

+=−+=

≤≤−+−=

≤≤+−+=

)(;)1(

10,)1()(

;10),)(1(

11

11

ββ

γγγ

ααα

 (6)

where y is the observation, S stands for the smoothed observation, b is the trend

factor, I indicates the seasonal index, F denotes the forecast at m periods ahead, t

refers to an index which denotes a time period and α, β and γ are constants which

must be estimated with the purpose of minimising the MSE.

The main advantage of Exponential Smoothing TS is that it requires short

computing times [66]. Nevertheless, the model cannot accurately predict for a long

timeslice [65]. To mitigate this handicap, we generate a daily model to forecast the

following day. Another setback of this technique is its low performance when there is

a trend as the single coefficient alpha is not enough to fit the prediction.

Differently, ARIMA [65] is determined by three parameters (p, d, q), where p is

the autoregressive term, d is the number of previous values and q is the average

moving parameter. ARIMA (p, d, q) can be calculated for a TS sequence Yt (t=1,2,…,

n), as follows:

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

61

operatorbackshift theis B and sequence noise whitea is Z

)...1()(

)...1()(,

;)()1)((

t

2
21

2
21

and

BBBBand

BBBBwhere

ZBYBB

q
q

p
p

tt
d

βββθ

αααφ
θφ

−−−−=

−−−−=

=−

(7)

ARIMA (p,q,d)·(P,D,Q) represents a multiplication of two ARIMAs to inject

seasonality to the model. This method requires that new seasonal and non-seasonal

parameters will be estimated; analogously to simple ARIMA. The involved

parameters are the following ones: p is the autoregressive order which indicates the

number of parameters of φ, d is the number of times that data series must be

distinguished to induce a stationary series, q is the moving average order which

designates the number of parameters of θ, P is the seasonal autoregressive order that

specifies the amount of parameters of φ, D is the seasonal moving average order

which points out the quantity of parameters of θ, and Q is the number of times that a

data series needs to be differenced to induce a seasonal stationary series.

The principal advantage of ARIMA TS is that it usually suites better than

Exponential Smoothing TS, although this model requires long computing times [68]

and poorly forecast for large time-horizons [69]. To mitigate this handicap, we

generate daily models to forecast the forthcoming day as explained in Chapter 6.

Considering these premises, we can realise how promising to forecast data with

no trend or seasonal patterns exponential smoothing is. Instead, Holt’s method should

be applied whether there is a linear trend. For shifting data, exponential smoothing is

remarkably well-adjustable, although its speediness depends upon α.

4.3.1.4 Artificial Neural Networks

An artificial neural network (ANN) is a mathematical model founded on the

operation of biological neural networks [70]. In this manner, an artificial neuron is a

computational model inspired in biological neurons and also the simplest processing

element of an ANN. Natural neurons receive signals through synapses placed on the

dendrites. When the arriving signals surpass a certain threshold, the neuron is

activated and emits another signal through the axon. This signal can be sent to

another synapse and then activate other neurons.

Workforce Distribution in Dyn

62

In order to emulate biological neurons, the artificial ones (see

organised into two units: the first one is a

coefficients and input signals,

function, widely known as

accumulates weights wi and maps results to an output as given below:

:(;)

The weights, wi, are

process.

There are numerous functions to approximate

include the Gaussian function, the hyperbolic function and the sigmoid function. We

will employ the sigmoid function as this is the most appropriate

environment. The sigmoid function and its derivative are

<=(<;

Figure 13 plots the sigmoid function to facilitate reader’s understanding

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

In order to emulate biological neurons, the artificial ones (see Figure

organised into two units: the first one is a nonlinear weighted sum

coefficients and input signals, F(x), whilst the second one follows a nonlinear

function, widely known as neuron activation function, K. The function

and maps results to an output as given below:

() > ? @ AB C� @ DEFGH�
*

�I� J

Figure 12: Basic artificial neuron

, are randomly initialised and then updated during the training

There are numerous functions to approximate K, but the most widespread ones

include the Gaussian function, the hyperbolic function and the sigmoid function. We

will employ the sigmoid function as this is the most appropriate one for our dynamic

. The sigmoid function and its derivative are defined as indicated below

=(;) > 1

1 K LMN

�;"

<;
> =�;" @ �1 O =�;""

plots the sigmoid function to facilitate reader’s understanding

David Millán Ruiz

Figure 12) are

nonlinear weighted sum of weight

, whilst the second one follows a nonlinear

. The function F(X)

(8)

updated during the training

, but the most widespread ones

include the Gaussian function, the hyperbolic function and the sigmoid function. We

one for our dynamic

as indicated below:

(9)

plots the sigmoid function to facilitate reader’s understanding.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

63

Figure 13: Sigmoid function

As a remark, the sigmoid function can never return “0” or “1“ due to its

asymptotic nature so that values over 0.9 should be treated as 1 and those under 0.1

should be considered as 0.

Neurons can be grouped into three types of layers: input, hidden and output. The

input layer is composed by neurons that represent the data input variables and “feed”

next layers of neurons. Next layers, which are sometimes optional, are denominated

hidden layers and there may be several of them. The last layer is called output layer,

in which each neuron represents an output variable. Each layer is fully connected to

the succeeding layer as Figure 14 illustrates.

For linearly separable problems, a sole neuron can categorise the output, but

when having more than one class or multimodal spaces at least one hidden layer is

needed.

Most statisticians are used to applying regression methods in which data are

best–fitted to a specified relationship which is usually linear. However, these methods

have several handicaps. For instance, relationships must be chosen in advance and

these must be distinguished as linear or non–linear when defining the equation. ANNs

enable us to mitigate all these problems.

In regression, the objective is to forecast the value of a continuous variable

which is the incoming flow rate in our case. The output required is a single numeric

variable which has been normalised between 0 and 1. ANNs can actually perform a

number of regression tasks at once, although commonly each network performs only

one.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

64

Figure 14: Example of a simple ANN with 8 input neurons, 8 hidden neurons and 5 output
neurons, forming 3 fully connected layers.

On the one hand, the main advantage of ANNs is their flexibility to make

patterns, being suitable for large and complex datasets as well as long-time-horizon

forecasting [68, 71]. On the other hand, we can also find some disadvantages: long

computing times, risk of overfitting, need of a feature selection process and difficulty

to approach all parameters for each task type [69]. The overfitting, also called

overtraining, is the consequence of reducing the error in a specific dataset. When an

ANN is trained during a large number of epochs (an epoch is the presentation of the

entire training set to the neural network), the function determined by the weights of

the ANN may take the particular characteristics of the examples. If this happens, the

results will be optimal for the training dataset but no guarantee is given for any other.

This risk is minor when the data set is big enough (see Figure 15 [66]).

Figure 15: Overtraining risk – Volume of data.

There exists a number of learning algorithms for training ANNs; most of them

can be viewed as a clear-cut application of optimisation theory and statistical

estimation. They include learning algorithms such as back-propagation by gradient

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

65

descent [72], back-propagation with momentum [73], resilient propagation [74],

quick-propagation [75], Broyden–Fletcher–Goldfarb–Shanno [76], radial basis

function [77], Cascade Correlation [78], Hopfield [79], etc.

In this work, we propose an enhanced, self-adaptive gradient-descent based

algorithm (an upgraded resilient back-propagation) which is explained in detail in

Section 4.3.4.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

66

4.3.2 Background

We have mentioned several learning algorithms for ANNs but we will firstly

focus on the back-propagation algorithm (BPA) [72] in order to situate our proposal

(if the reader desires further information about other learning algorithms, we

recommend reviewing the references given in Section 4.3.1.4).

BPAs can be categorised as multilayer perceptrons [72] which have non-linear

activation functions [80] such as the logistic function [81], the softmax function [82],

the Gaussian function [83], among others [84, 85]. BPN denotes that any error made

by the network when returning an output during the training process is sent

backwards with the purpose of correcting it as far as the network learns what is right

or what is not. Errors are propagated backwards from output nodes to internal nodes.

Therefore, BPA is used to calculate the gradient error of the network with respect to

its adjustable weights. This gradient is often used in a simple stochastic gradient-

descent algorithm to find weights that minimise that error. BPA simply takes the

derivative of the cost function with respect to the network parameters and then

changes those parameters in a gradient-related direction. Hence, the most important

problem with gradient-descent methods is the premature convergence to local optima

which might be far from the global optimum. This problem can be solved by using

global optimisation techniques. However, these techniques normally require high

computing times.

Nonetheless, other improved gradient-based learning algorithms with more

global information such as resilient back-propagation (Rprop) [74] can be more

appropriate because the training set is large enough to be effectively applied.

In this context, Rprop is a robust ingrained modification of classical gradient-

descent method. This scheme tends to fine-tune an individual step-size to optimise

each parameter. The mechanism to perform this action entails doing adaptations of

these step-sizes by applying a more or less complex heuristic, instead of considering

proportional step-sizes to the partial derivatives. Note that classical gradient-descent

algorithms calculate the steepest descent direction by means of an Euclidean metric.

Classic Rprop just takes into account the sign of the partial derivative
PQR(!)PSTU (partial

derivative of the error measure with respect the weight between two neurons i and j)

in order to resolve the direction of the weight update. When there is a change of sign

of the partial derivative, we can state that a local minimum has been surpassed as

there is a change of direction in the search space surface. Besides, we have to update

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

67

the weights and automatically adapt the step-size, considering the sign the partial

derivative. Although we will see how to achieve this weight updating with classic

Rprop and our modification in next section, we recommend reading the full

description of Rprop algorithm in [86]. This work proposes an upgraded, adaptive

modification of the standard resilient back-propagation with weights backtracking

(uRprop) learning algorithm.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

68

4.3.3 An Innovative Adaptive Learning Rate

Algorithm for Resilient Back-Propagation

Neural Networks

This section proposes a modification in weights adjustment for Rprop with

weights backtracking in order to make the learning phase more adaptive to

environmental circumstances. The main purpose is to properly determine the right

weights of our ANN. A great challenge is to find out how big step-sizes (learning rate

speed) should be. Note that selecting the right learning rate is always a laborious task.

Rprop basically processes example by example and obtains an output for each

one as most ANNs do [73-80]. Each output is compared to the well-known output and

this signal is then propagated, calculating the differentials among errors according to

the weights (gradients). To update the weights between each pair of neurons i and j

(wij) after each pattern (epoch, [87]), we inspect the previous weights as follows [87]:

C�V(H + 1) > C�V(H) + ∆C�V(H) (10)

where)(twij∆ can be formalised like so [74] (classical Rprop):

∆C�V(H) > X∆�V(H), DY ZPQR(!)PSTU [< 0
−∆�V(H), DY ZPQR(!)PSTU [> 0] (11)

where ∆�V(H) is the step-size and ^_ is the error measure (it can be defined as a

normalised mean absolute error for the generalisation data set between two

consecutive epochs). The weights updating ∆C�V(H) is carried out until the stopping

condition is met. We will employ a stopping criterion based on a fixed number of

epochs or a given amount of elapsed time.

Classical Rprop [74] (without weights backtracking) just takes into account the

change of sign of the partial derivative (change of direction in the search space

surface). This precisely means that a local minimum has been surpassed because the

step-size taken has been too long. An important improvement of classical Rprop was

to include weight updates, enabling backtracking movements [88]. Weight updating ∆C�V(H) entails adjusting ∆�V(H) by applying the following formula:

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

69

∆�V(H) > àb
acming1.5 ∙ ∆�V(H − 1), ∆,+Ni , DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V > 0n

max j∆�V(H − 1)2 , ∆,�*n , DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V < 0n∆�V(H − 1), qHℎLs tuvL
] (12)

(12) is not of our own (see [89]), we just propose different step-sizes at this

point. The key idea is to multiply by 1.5 or divide the step-size by 2, depending on

the surface of the search space. When
Pwx(!)PSTU ∙ Pwx(!M�)PSTU > 0, the signs of the derivates

do not change (“+” by “+” or “–“ by “–“ is always positive). This means that we

have not reached the local minimum yet. Therefore, we increase the step-sizes until

we have surpassed a local minimum ZPQR(!)PSTU ∙ PQR(!M�)PSTU < 0[. When
PQR(!)PSTU ∙ PQR(!M�)PSTU <

0, there is a change of sign in
PQR(!)PSTU . This implies that we have already jumped over

the local minimum. When the local minimum is surpassed, we change the sign of the

gradient.

Authors [90, 91] typically limit the step-size with ∆,�*> 0 and ∆,+N> 50.

Instead, we propose ∆,�*> 0.001 and ∆,+N> 30 as limits (∆,�*> 0.001 for the

number precision needed and ∆,+N> 30 as this already implies a long hop).

Up till now, we have defined how to adjust the step-size ∆�V(H) at time t,

depending on the sign of the partial derivative. But, we still have to update ∆C�V(H).

[92] proposes an important improvement to classic Rprop which lies in weight

updates with backtracking (reverting a wrong movement or step). Our modification is

based on weight backtracking movements but we consider local information of the

search space surface by means of the previous error measure (Λε(H − 1)). When there

is a change of sign in the partial derivative ZPQR(!)PSTU ∙ PQR(!M�)PSTU < 0[, we calculate ∆�V(H)

as defined in (12). Then, we check out whether the current error measure kΛε(H) is a

15% (this percentage can be parameterised) bigger than the previous error measure kΛε(H − 1). When this occurs, we undo the previous movement (∆�V(H − 1)) as we

have not only surpassed the local minimum but also gotten a much higher error

measure. However, when the deviation is lower than 15% (we are further from the

local optimum but not extremely faraway), we go back to halfway as far as fully

reverting a movement leads us to wasting too many iterations. But, if we stay halfway

between the previous point of the search space and the current one y∆TU(!M�)� z, the

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

70

probability of getting closer to the local minimum increases and the total number of

iterations needed to reach the local optimum decreases. Hence, we propose to apply

the following expressions for each wij (in order to distinguish what is novelty from

what is not, we highlight the code of our own):

DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V > 0n àb
ac∆�V(H) > ming1.5 ∙ ∆�V(H − 1), ∆,+Ni

∆STU(!)Ib̀c
∆TU(!),�{ ZPQR(!)PSTU [| �
M∆TU(!),�{ ZPQR(!)PSTU [} �]

STU(!#�)ISTU(!)#∆STU(!) ~a
�a
�

DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V < 0n �]
∆�V(H) > max j∆�V(H − 1)2 , ∆,�*n

DY ygkΛε(H) > kΛε(H − 1)i && gkΛε(H) < 1.15 ∙ kΛε(H − 1)iz

C�V(H + 1) > C�V(H) − ∆C�V(H)2

L�vL DYgkΛε(H) > 1.15 ∙ kΛε(H − 1)i

C�V(H + 1) > C�V(H) − ∆C�V(H)
L�vL ∆C�V(H) > ∆C�V(H − 1) kΛε(H)kC�V > 0

] �

DY jkΛε(H)kC�V ∙ kΛε(H − 1)kC�V > 0n
àab
aac∆C�V(H) > X∆�V(H), DY ZkΛε(H)kC�V [< 0

−∆�V(H), DY ZkΛε(H)kC�V [> 0]
C�V(H + 1) > C�V(H) + ∆C�V(H) ~aa

�
aa�

(13)

Note that our learning algorithm may get trapped in local minima but, compared

to Rprop, it is faster and usually obtains better results for a reduced amount of

training time.

We have defined a generic modification of Rprop with weights backtracking

algorithm for ANNs but we still have to formalise the rest of problem-dependent

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

71

parameters of the ANN (topology activation function, inputs, outputs, hidden units,

etc.). Chapter 5 describes how to fine-tune our ANN specifies how to achieve this in a

real world environment which is the large call centre of Telefónica.

4.4 SEARCH MODULE

This section describes the key features of the search module which is the second

block of the architecture proposed in Figure 7 (second arrow). This block is

implemented as a parallel MA. This section contains both own innovations and

classical, applicable evolutionary operators (we will not inspect existing evolutionary

operators which are not suitable or prevalent for our problem specification). Note that

this section is conceived for describing all evolutionary operators and parameters

from a generic point of view rather than presenting concrete use case adaptations as

Chapter 5 will cautiously put forward how to adjust all parameters to the call centre

use case.

4.4.1 Methodology

Once the forecast module (an upgraded resilient back-propagation neural

network as described in Section 4.3) has provided us with all the predictions, the

search module (a parallel steady-state MA, see Section 4.4.2.5.5) optimises the

assignment among task types and agents. The parallel steady-state MA is devised as

an island topology (see Section 4.4.4) with migration operators for individuals

exchanging, where a master island manages the rest of subordinate islands (note that

we do not use the term slave as these islands operate with complete solutions and do

not merely process partial information). So, each island corresponds to a full steady-

state MA.

Each MA keeps a population of abstract representations (chromosomes) of

candidate solutions (phenotypes) to the problem described in Chapter 2. The

population is partially randomly initialised (for further information, see Section

4.4.2.3). Afterwards, its individuals are evaluated by applying a fitness function over

them (we will see an example in Chapter 5). From this population, some individuals

are selected and, after that, recombined (crossover). Subsequently, the offspring may

suffer perturbations (mutations) in some genes. Then, some of these individuals

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

72

replace others from the population according to the replacement policy. Every

generation includes all previous actions. After that, an LS mechanism is applied over

a percentage of the population each g generations. Finally, each mi generations, the

master island halts the slave islands in order to pick up certain individuals from them

and spread other ones. All these steps are carried out until a predefined time has been

elapsed.

4.4.2 Genetic Algorithm

4.4.2.1 Encoding

The first stage when designing an MA is to define a problem representation

(chromosome or genotype) to encode candidate solutions (phenotype) to the problem

in a form that every computer can interpret. The “physical” expression of the

genotype is called the phenotype. This means that a mapping between genotype and

phenotype must be delineated. There are multiple forms to encode candidate solutions

which range from binary strings, arrays of integers or arrays of decimal numbers to

strings of letters.

Specifically, our solution consists in an integer representation. We just need an

array of integers whose indexes represent the available agents, AAt ⊆ , at a given

instant, t, and the array contents refer to the profile, Pj, assigned to each agent ai

(<P1,...,Pi,..., Pl>). Then, tasks are “routed” to the agents, according to the profiles

assigned. Of course, we can also encode the solution as an array of integers whose

indexes symbolise the task types and its respective contents represent the number of

agents assigned to each task type. This option is recommended whether there are too

many agents and hardware capacity is very limited (with respect the total number of

available agents). In contrast, we are missing the capability of working at agent’s

profile level. As we have not this capacity constraint, we will employ the first

codification proposed.

Figure 16 shows a fictitious example of encoding (go over Chapter 2 to refresh

terminology, if needed) for 10 work items (w0-w9) grouped in 3 different tasks types

(t0-t2) depending on the nature of the tasks, 5 agents (a0-a4) and 4 skill profiles (P0-

P3), where P0={s0, s1}, P1={s1}, P2={s2} and P3={s1, s2}. Now, suppose that

a0~{P0,P1}, a1~{P0, P2}, a2~{P1,P3}, a3~{P2,P3} and a4~{P0,P1}. We have seen the

potential profiles for every agent but only one profile can be assigned to each agent at

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

73

a given instant t; therefore, a feasible solution would be Figure 16 (a0 and a4 have

been assigned to the profile P0, a1 and a3 have been assigned to the profile P2, while

a2 has been assigned to the profile P1).

Index (agents) � 0 1 2 3 4

Content (profiles) � 0 2 1 2 0

Figure 16: Example of encoding.

4.4.2.2 Population

The population of our MA is a compilation of chromosomes encoded as

hinted in Section 4.4.2.1. The population is the minimum unit of evolution since

individuals are static elements by themselves. This evolution can be observed in the

changes produced in the genetic configuration over the time in each successive

generation. The changes between two generations are usually small but these

differences mount up with each generation, causing significant changes in the

“original” population.

The size of the population often depends upon the nature of the problem and

typically contains tens or hundreds of possible solutions. Although there is no rule of

thumb to determine the optimal population size, it is recommended to have a

population neither too small nor too big, since individuals frequently evolve faster in

such an environment.

Now, the concept of diversity must be mentioned. The diversity represents

the variety of phenotypes and/or genotypes that a population has. The diversity is

essential in a population because the more diverse a population is, the more chances

to adapt itself to environmental changes it has.

EAs may have multiple populations that evolve according to rules of the

genetic operators. In these cases, a migration operator and a replacement policy are

needed.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

74

4.4.2.3 Initialisation

Typically, the initial population is fed with randomly generated individuals

who should potentially cover different possible configurations. In some cases, we can

use other algorithms to initialise the population (e.g. a more or less complicated LS

mechanism) but, in most cases, this is not possible since computing times increase too

much and real applications require short computing times. In our case, we propose to

start from a random initial population, including the best solution found in the

previous time-frame because the configuration of agents’ profiles should not change

too much over two successive time-frames.

4.4.2.4 Fitness Function

The fitness function is an evaluating mechanism which is defined over the

chromosome to measure the quality of a given solution. This function often guides

the search and decides which individuals must be selected for the next generation (in

fact, surviving individuals also depends on the replacement policy). The fitness

function is intrinsically linked to the problem. Frequently, the hardest action when

defining an EA is to identify the right fitness function since results strongly depend

on it. Occasionally, it is hard (sometimes impossible) to characterise the fitness

expression; in these cases, interactive genetic algorithms are used. In other cases, long

evaluating times imply that an approximate function is needed. The fitness function is

problem dependent and Chapter 5 will carefully describe a fitness function for a

multi-skill call centre. Besides, we will explain how to incorporate constraints to a

dynamic environment as already stated in Chapter 2. We will also propose a

mechanism to calculate a partial fitness function instead of recalculating everything in

each evaluation (as this is problem dependent, we cannot include this mechanism in

this section).

4.4.2.5 Evolutionary Operators (Classic and New Operators)

In this subsection, we explain potentially appropriate evolutionary operators

which may be applied to the problem described in Chapter 2, given the encoding we

are proposing in Subsection 4.4.2.1. This section does not attempt to cover all feasible

evolutionary operators, just the ones we consider relevant for DMAS. Some of these

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

75

evolutionary operators are innovative but others are not (this is specified for each

one).

4.4.2.5.1 Selection Operator

Since the population needs to be bred each successive generation, several

individuals are chosen to be recombined. In the state-of-the-art, one can find the

following ones:

Random Selection: consists in randomly selecting a configurable percentage of

individuals for potentially recombining them.

Tournament selection [93]: implies executing t tournaments among some

individuals randomly chosen from the population. The individual who has the best

fitness is selected for recombination. When t is larger, individuals with worse fitness

have fewer chances to be selected (t indirectly determines the selective pressure).

Roulette-wheel selection [28]: associates a probability of selection with each

individual chromosome. The probability of selecting a chromosome is proportional to

its fitness or rank (survival of the fittest).

Truncation selection [94]: removes a predetermined percentage of the candidates

with worst fitness.

Ordered selection [95]: randomly picks a chromosome from the top N percent of

the population.

Best: merely selects the best chromosome in terms of fitness. When there are

more than two chromosomes with the same best fitness, one of them is randomly

chosen.

4.4.2.5.2 Mating Operator

The purpose of this operator is to mate individuals (which individual should

reproduce with another one). We can hit upon the following techniques:

Random mating [96]: randomly mates individuals for posterior crossover.

Fitness-based mating [97]: selects pairs of individuals with the highest

difference in terms of fitness (best fitness individual will be mated with the worst

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

76

fitness one). The idea is to potentially provide the EA with a fast diversity

mechanism.

Similarity mating [98]: selects pairs of individuals having more differences in

terms of genes in their chromosomes. This mechanism provides real diversity to the

EA but it is time-consuming.

4.4.2.5.3 Crossover

This operator combines individuals to produce several children (offspring). The

key idea behind the recombination of individuals is to potentially obtain other better

fitted individuals.

One-point crossover [99]: chooses a random point on both parents' chromosomes

(the same point for both parents). All the genes until this point from one of the

parents (randomly chosen) are copied to one of the children (randomly chosen). The

genes beyond this point from the first father are arbitrarily copied in the other child

and the ones from the second father are arbitrarily copied in the other child as Figure

17 illustrates.

Figure 17: One-point crossover.

Multi-point crossover [100]: selects N random points on both parents'

chromosomes (the same points for both parents). Each piece of chromosome from the

parents is alternatively copied in each child as Figure 18 shows.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

77

Figure 18: Multi-point crossover.

Cut and splice [28]: consists in selecting 2 different random points (one in each

parent). One piece of father-1’s chromosome is then copied in a randomly chosen

child. The same action is accomplished for father-2 in the opposite child. The rest of

genes are randomly copied (see Figure 19).

Figure 19: Cut and splice.

Probability crossover: considers that children will inherit the common points in

their parents (potentially, the best genes) and randomly receive the rest of genes from

them. This probability can be the 0.5 (uniform crossover [101]) or proportional to the

fitness.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

78

We also propose to assign this probability in a more complex way such as

simulated annealing does [45]. At the beginning of the process, when the temperature

is higher, we can explore more by applying a probability of 0.5 and, when the

temperature starts cooling off, we can give more probability to the best fitted

individual as follows:

Pr0 (best fitted) = 0.5 (initial probability for best fitted parent).

Pri (best fitted) = 0.5 + ʋ/Ti (probability for the best fitted parent at

generation i).

(14)

where Ti is temperature at iteration i (the probability of giving a higher weight to the

best fitted individual increases when the temperature decreases) and ʋ is a factor to

return values between 0 and 0.5.

Simulated annealing has different schemes to decrease the temperature but they

all decrease nonlinearly. Another option is to increase the probability according to the

number of generation generated as follows:

Pri (best fitted) = 0.5 + ʋ/Gi (15)

where Gi stands for the generation number i and ʋ is a factor to return values between

0 and 0.5.

All in all, the idea is to choose a probability for recombination and we have several

mechanisms to achieve this task as Figure 20 confirms:

Figure 20: Probability crossover.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

79

4.4.2.5.4 Mutation Operator

This operator causes tiny changes in the chromosome of individuals to explicitly

maintain diversity. It applies a perturbation over each gene of the chromosome with a

given probability. This perturbation corresponds to changes of profiles in some agents

(e.g. agent a2 who had assigned the profile P1 has now associated the profile P3 due to

a mutation).

4.4.2.5.5 Replacement Policy

Finally, we decide which individuals are incorporated (or maybe reinserted) into

the population for the next generation.

Generational [102]: After recombination, the offspring generated by the selected

parents fully replaces them. The selection strength is low when this scheme is applied

(slow convergence). However, it potentially converges to the global optimum when

enough generations are generated.

Steady-state [102]: After crossover, the offspring generated by the selected

parents may replace them if these are best fitted. There are numerous policies for

individuals’ replacement:

- Elitism [103]: best fitted individuals fully replace the worst ones (quick

convergence).

- Random replacement: randomly chooses the individuals from the parents

and children set. With a probability, worst fitted individuals may replace the

best ones.

- Boltzmann criterion [45]: The best fitted individual is chosen and another

one (which may not be the second best fitted individual) is inserted with a

given probability as simulated annealing does.

- Similarity criterion: we propose to select the best fitted individual and its

most different one in terms of genes.

- Taboo criterion: we also propose another scheme which lies in storing a list

of non-promising individuals (based on their age for instance) in order to

avoid inserting duplicated or inappropriate individuals. This option imposes

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

80

additional memory requirements and more evaluations. Instead, we save up

so much time in incorporating useless individuals during a given amount of

time or iterations.

4.4.2.5.6 Stopping Condition

Elapsed time: considers a fixed amount of time to run the algorithm.

Number of generations: executes a predefined number of generations.

Number of generations without an improvement in fitness: executes the

algorithm until there is no improvement (or just under a given threshold of upgrading)

during the latest g generations. Another choice is to keep the best solution found and

restart the algorithm, employing another algorithm configuration (parameterisation)

in order to find a better optimum in other place of the search space when the stopping

criterion is one of the previous ones (if we still have time or remaining generations,

we better utilise this time or generations in searching other possibilities).

4.4.3 Memetic Algorithms

As we described in Section 3.1.3, MAs are a population-based technique for

heuristic search in optimisation problems. MAs are quicker than traditional GAs for

many problem domains because these apply an LS procedure. The present section

describes the MA we propose.

4.4.3.1 Local Search

LS is an MH for solving optimisation problems. An LS algorithm starts out from

a candidate solution and, thus, iteratively moves to a neighbour solution, generating

the neighbourhood. To carry out this action, a neighbourhood relation must be

defined on the search space. In our case, we state that two candidate solutions are

neighbours if only one gene differs in both chromosomes. Note that we propose a

“simple” LS due to the lack of time of a dynamic environment but a more complex

LS mechanism may be used when computing times are more flexible.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

81

The following pseudo-code illustrates the LS algorithm:

void Local_Search (Chromosome & candidate_solution)

 Chromosome best_solution = candidate_solution;

 Chromosome neighbour = candidate_solution;

 For (i=0; i<candidate_solution.size(); i++)

 Agent a = neighbour.getAgent(i);
 For (j=0; j<a.get_number_profiles(); j++)

neighbour.change_profile(i,j); //profile j for agent i

 If (neighbour.fitness() > best_solution.fitness()) best_solution = neighbour;

 neighbour = best_solution;

 candidate_solution = neighbour;

Another relevant task is to decide the right frequency which should be

considered to apply the LS over the population and how many individuals must be

affected. Chapter 5 will suggest an LS frequency and a percentage of affected

individuals for the multi-skill call centre use case.

4.4.4 On Parallelising Memetic Algorithms

There are many approaches to MAs parallelisation. Due to the constraints in the

number of pages for this document, we are not going to go over all of them and will

just describe the configuration we propose for this type of dynamic environments.

We propose an island model where there are a master island and s subordinate

islands. Every subordinate island is connected with the master one but not with the

others. The master island asynchronously stops the rest of subordinate islands and

asks for a percentage of their best fitted individuals. Then, the master island takes

these best fitted individuals and decides whether (or not) to incorporate these

individuals into its population. Then, the master island sends back its best N

individuals and the most different one to the best fitted one in terms of genes

differences. Subordinate islands apply elitism to accept or not the incorporation of

these individuals (whether the individuals coming from the master island are not

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

82

better fitted than the existing ones). The process is carried out until the stopping

condition is met.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

83

5 CHAPTER 5. APPLICATION : CALL

CENTRE

In Chapter 5, we adapt our approach to a real-world DMAS: the multi-skill call

centre. Section 5.1 describes the specific characteristics of our problem domain.

Section 5.2 presents a brief survey of call centre algorithms. Section 5.3 highlights

the magnitude, in terms of volume, of our application domain. In Section 5.4, we

present some special adaptations for the forecast module. In contrast, Section 5.5

points out some particular adaptations for the search module.

5.1 DESCRIPTION

A call centre (CC) [11] is a centralised office used for receiving and transmitting

large volumes of telephone requests which may range from customer service to the

selling of products and services. Even though CCs have been broadly studied, there

are still some lacks on optimisation which may imply huge losses of money every

year because of a wrong allocation of resources to the right tasks, and client

dissatisfaction due to never-ending delays as pointed out in Section 1.4 (Market

Relevance).

In a CC, the flow of calls is often divided into outbound and inbound traffic.

Outgoing calls are handled by agents, primarily, with commercial pretensions. This

type of calls is planned as agents know in advance which customers must be

contacted every day. Conversely, incoming calls are those that go from the client to

the CC to contract a service, ask for information or report a problem. These

unplanned calls are initially modelled and thus classified into manifold call groups

(CGs) in relation to the nature of each call (complaints, V.I.P. clients, client loyalty,

etc.). As soon as these CGs have been modelled, each call is assigned to a unique CG

(there is no overlap among CGs). Each incoming call needs time to be answered,

requiring different processing times as indicated below:

1) The first one is the time needed to assign a type to the call (modelling).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

84

2) The second one is the time that the call is queuing (waiting).

3) The last one is the time that the agent needs to handle the call

(processing).

A key component for any CC is the automatic call distributor (ACD) which is a

system that models incoming calls and automatically distributes them throughout

different queues from which certain agents can pull work. The routing scheme is a

rule-based set of operations that guides the ACD to handle a given incoming call

inside the system. Typically, once the call has been assigned to a queue, a second

algorithm is required to select the best available agent to reply to a given incoming

call.

Habitually, the distribution of the incoming flow is based on the current state of

the queues. A CC is a changing environment where conventional algorithms have no

time to reach an optimal solution. It would be desirable to predict the future state in

order to give more time to the algorithms to consider the "whole picture" of the

situation to efficiently reallocate every agent. The majority of traditional techniques is

supported by a strong assumption which relies on the way that incoming traffic

arrives. Most techniques suppose that incoming flows within CCs follow a Poisson

distribution. In this context, the main concern should be to forecast, for an upcoming

state, the inbound traffic, abandonment rate and available agents having the required

skills, in order to properly divvy up the workload among agents as our resources can

be, at this point, optimised by a search algorithm. Bear in mind that a fair allocation

of workforce improves client satisfaction and, furthermore, reduces costs.

A specific type of CC is the multi-skill call centre (MSCC). In an MSCC, there

are n customer calls grouped in k types of calls and m agents that may have up to l

skills (l ≤ k). This implies that each agent can attend different types of calls and,

given a type of call, it can be answered by several agents that have that skill.

Obviously, the scenario can be simpler in some special CCs in which agents

have a single skill. These CCs can be modelled with q single queues working in

parallel. In other cases, every agent has all possible skills; hence all customers are

queued in a single queue that can be handled by any agent. The system is noticeably

easier to analyse in these two extreme cases. With all agents having all skills, the

system is also more efficient (shorter waiting times, fewer abandonment rates) when

the service time distribution for a given call type does not depend on the agent’s skill

set. However, this assumption turns out to be wrong in practice: agents are usually

faster when they handle a smaller set of call types (even if their training gives them

more skills). Agents with more skills are also more expensive as their salaries depend

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

85

on their skill sets. Thus, for large volumes of call types, it makes sense to dedicate a

number of single-skill agents (specialists) to handle most of the load. A small number

of agents, proportional to the calls of each type, with two or more skills can cover

potential fluctuations in the arriving load. To address these fluctuations, the skills are

grouped in skill profiles (subsets of skills) so that we can assign an agent to specific

types of tasks during a given period of time, despite this agent has skills to process

other types of work.

As it can be expected, the mean arrival rate is not the same for each CG as well

as the calls of these CGs have different processing times. Now, bear in mind that

inbound flow in CCs is usually not a stationary Poisson process [104, 111] and, the

service times do not increase exponentially as explained in Section 4.3.1.1. Since

calls randomly arrive according to a stochastic process, it would be desirable to have

a well-balanced allocation of the agents, who can be available or not, in order to

handle the calls as soon as possible.

Figure 21 illustrates the relationship among client calls, queues and agents. This

figure describes an example for 9 client calls grouped in 4 CGs and 5 agents having

different real skills.

Figure 21: Inbound scheme.

More formally speaking, the following parameters can be found in an MSCC:

1) a finite set of n customer calls },...,,{ 21 ncccC = .

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

86

2) a finite set of k CGs (call groups/types) }...,,,{ 21 kcgcgcgCG = , where

nk ≤ when every CG has, at least, one call queuing.

3) a finite set of m agents }...,,,{ 21 maaaA = . Usually, m >>k.

4) a finite set of k agent-skills }...,,,{ 21 ksssS= in which each agent-skill,

is , represents the ability to handle the associated CG, icg , with the

corresponding sub-index in CG: kk cgscgscgs ~,...,~,~ 2211 .

5) a finite set of d agent-skill profiles }...,,,{ 21 dPPPP = in which each

agent-skill profile Pi can be any subset of }...,,,{ 21 ksssS= .

6) a finite set of n operations (execution or processing of each customer call,

ic) }...,,,{ 21 noooO = in which each operation, io , has associated a

processing time which depends on its CG: },...,,{ 21 kτττ .

The solution to the problem of the workforce distribution in MSCCs is defined

as the right assignment for every agent ai to the most suitable skill profile Pj from

his/her real skill profiles for each v seconds, where v is the size of the time-frame

considered.

In addition, the assignment
tji Pa , must satisfy all hard constraints and handle

the soft ones given by the business units. To determine whether (or not) a given

solution is suitable, we need to define a quality metric to evaluate the rightness of

each feasible solution. There are very significant metrics to measure the quality of a

CC such as the abandonment and service rates. These metrics somehow hinge on the

(customer) service level [12] which is defined as the percentage of customer calls that

have to queue shorter than a specified amount of time. Our work has been conducted

by applying this metric.

Moreover, the solution must fulfil the following descriptions:

1) on O define R, a binary relation which represents the precedence among

operations. If Roo ∈),(21
 then o1 has to be performed before o2.

2) each agent, ia , has associated a finite non-null subset of P, containing his

skills to handle different customer CGs (individual real skill-profile).

3) the same profile iP can be assigned to several agents. In other words,

several agents may have some skills in common (or even all of them).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

87

4) every agent, ia , may have several profiles assigned but only one can be

performed at a given instant t,
tji Pa , . In other words, an agent cannot

process two (or more) incoming calls at the same instant.

5) every solution must respect diverse (hard and soft) constraints given by

business rules defined by business units or agents’ regulations.

Likewise, an initial step to produce a planning is to predict future system loads,

comprising predicted arrivals, existing queuing calls, abandonments and mean service

times. Intuitively, the mean arrival rate for each CG is not the same and their calls

may involve different processing times. Note that incoming flow in CCs is usually

not a stationary Poisson process and, the service times do not increase exponentially.

Since calls randomly arrive according to a stochastic process, a well-balanced

distribution of agents is needed with the aim of handling calls as soon as possible.

The complexity of this problem is huge because we are not only dealing with an

NP-hard problem like in the job assignment problem, but also considering high

dynamism, massive incoming customer calls and large number of agents having

multiple skills. Besides, since customer calls are not planned, this makes the call

assignment a truly laborious task.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

88

5.2 BRIEF STATE -OF-THE-ART ON CALL CENTRE

ALGORITHMS

Reviewing the state-of-the-art, one can realise that many algorithms for

workload distribution in single-skill CCs are available (e.g. [105]) because, in the

past, agents were commonly allocated to single customer call groups. Nevertheless,

not much work has been conducted to workload distribution in MSCCs which is the

emblematic scenario in nowadays CCs. In the rest of this section, we discuss the main

contributions to workforce distribution in MSCCs.

Workload distribution in MSCCs has been broadly faced by an SBR algorithm

[106]. SBR is a call-assignment strategy used in CCs to assign incoming customer

calls to the most suitable agent, instead of simply choosing next existing agent. The

need for SBR has arisen, as CCs have become larger and deals with a wider variety of

call types. The major handicap of this approach is that online (ad-hoc) routing

heuristics cannot be very complex in view of the fact that a very short response time

is required. These fast, unplanned decisions may imply suboptimal task types

assignments to existing agents.

Conversely, Thompson [107] proposes an integer programming model which

differentiates minimum acceptable service levels per time-frame from a constraint on

the mean service level over the planning horizon. Although this approach considers

prospective situations, it is less dynamic to changes than SBR.

Other approaches consider dependent planning intervals (e.g. [108]). Most

methods perform well enough within separate intervals but their performance

decreases when moving to the next one, giving much trouble in prospective time-

frames.

Other authors take into consideration overflow routing in multi-skill blocking

systems with randomisation parameters by applying a branch-and-bound algorithm

(e.g. [109]) or cutting planes (e.g. [110]). These techniques are only appropriate for

stable environments because they need long response times and their performance

highly decreases in large instances.

Finally, we can find one of the most representative algorithms of the state-of-the-

art (Koole et al., 2008 [11]). Koole presents a heuristic, which considers the costs of

agents and a service-level condition, to optimise the distribution of agents among

different CGs. This algorithm is faster than most of the aforementioned approaches

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

89

but deals with specific types of MSCCs in which customer calls arrive according to a

Poisson process with deterministic rate. However, note that inbound flow in MSCCs

is usually not a stationary Poisson process [104, 111] and, the service times do not

increase exponentially. Since calls arrive randomly according to a stochastic process,

agents must be well-distributed to handle the calls as soon as possible. Besides, the

previous techniques often consider a high granularity and need to work at agent

groups’ level instead of an agent’s profile level. This setback does not enable us to

offer more accurate configurations for DMAS.

To conclude, we have seen, in this section, how some approaches employ

“basic” heuristics to dynamically distribute incoming customer calls to agents while

others cope with stable inbound flows and longer stability over time. In this context, a

large-time-frame planning cannot be carried out because of the continuous

changeability of all variables involved. Moreover, “basic” heuristics based on the

current situation (online routing strategies) may work under certain cases, e.g. stable

workload, but daily use of these techniques will guide us to appalling solutions.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

90

5.3 MAGNITUDE OF OUR CALL CENTRE

This section presents some numbers to realise of the magnitude of our CC:

1) Maximum number of CGs = 1.035

2) Maximum number of simultaneous incoming calls = 2.500

3) Maximum number of incoming calls per hour = 60.000

4) Maximum number of incoming calls per day = 700.000

5) Minimum number of simultaneous agents = 0

6) Maximum number of simultaneous agents = 2.100

7) Minimum number of agents concurrently assigned to a single group = 0

8) Maximum number of agents concurrently assigned to a sole group = 526

9) Mean number of agents concurrently assigned to a single group = 3

10) Minimum number of potential profiles per agent = 1

11) Maximum number of potential profiles per agent = 108

12) Mean number of potential profiles per agent = 16

Obviously, the number of incoming calls is not the same all the time as it

depends upon many factors. When agglomerating many data and considering a

coarse-grain, forecasting becomes much easier as the variability at high level (e.g.

monthly and daily level) is reduced and easy to forecast. However, our predictions

rely on a fine-grain process as forecasts refer to each successive state. We can

perceive that fact in the following figures (Figures from Figure 22 to Figure 25).

Figure 22: Incoming calls during a year at monthly level.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

91

Figure 23: Incoming calls during the most intricate month (September) at daily level.

Figure 24: Incoming calls during the most complex day of September (September 9) at hourly
level.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

92

Figure 25: Incoming calls during the most complex hour of “September 9” at minutely level.

A pattern can be relatively easily found at macroscopic level (month of the year

and day of the month). However, predictions are harder when considering the hour of

the day and much harder at minutely level (our concern in this work). Thus, these

figures corroborate how complex is to predict the incoming flow in our environment.

However, abandonments and available agents are easier to forecast because:

1) the abandonment rate is highly correlated to the volume of incoming

calls as Figure 26 illustrates,

2) and the number of available agents can be inferred from timetables

and mean processing times as well as current load and other well-known

factors. Figure 27 shows the volume of existing agents as a total value and

separating the most representative CGs.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

93

Figure 26: Incoming calls and abandonments during a common day.

Figure 27: Number of agents for the 5 most representative CGs.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

94

5.4 FORECAST MODULE ADAPTATIONS

This section elucidates the required tuning to adapt the forecast module

described in Section 4.3 to the CC’s environment. Note that our forecast module

relies on an ANN based on uRprop. Our uRprop learning algorithm does not actually

need any specific adaptation to our environment (the neuron activation function and

the weighted sum of coefficients are also the same ones that we described in Section

4.3) but the architecture of the ANN demands some additional tuning. Our focal

control over this architecture relies on the number of hidden layers as well as the

number of neurons in these layers because the number of input/output neurons is

determined by the number of inputs and outputs we have.

As the number of available agents mainly depends on the agent timetable and the

number of abandonments is proportional to the number of incoming calls, we will

mainly focus on the prediction of incoming calls. The following sections justify the

pertinent configuration of our ANN for the MSCC’s domain.

5.4.1 Number of Layers

As claimed in section 4.3, the number of layers of an ANN must be, at least, two

(1 input, h hidden where h≥0 and 1 output). Sometimes, the hidden layer is not

needed (e.g. simple linearly divisible problems). In our case, we propose three layers:

1 input layer, 1 hidden layer and 1 output layer. Note that we necessitate a hidden

layer at least because our problem is nonlinear. Nevertheless, we do not in fact need

more than a hidden layer because we can approximate well enough every function by

utilising a single hidden layer with an arbitrarily large number of hidden units

(universal approximation property [112]). Of course, the more hidden layers we have,

the more accurate our prediction might be (more coefficients in the global formula of

the ANN). But, this increases the computing time to train the network (more loops to

update the weights) and bear in mind we have limited time to accomplish this task.

Besides, adding more than a hidden layer aggravates the problem of getting trapped

in local minima [87].

5.4.2 Input Layer

The number of neurons of the input layer is determined by the number of

variables we have. But, what variables or features do we have in our environment? At

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

95

a typical MSCC, we can stumble on a wide variety of variables which may range

from information of previous calls (number of calls, tendencies, mean processing

times, etc.) to contextual information (campaigns, peak hours, night shift timetable,

etc.). We can directly take this raw information but, sometimes, we have too many

variables or features to take them into account. As we have much information and

many dimensions (variables), it makes sense to reduce the number of input variables.

Moreover, sometimes, some variables may even inject identical information into the

ANN because of the dependency among variables. To mitigate this drawback, feature

selection appears as a promising solution. Feature selection is the technique, broadly

applied to machine learning, of selecting a subset of relevant features or variables in

order to build robust learning models.

Choosing the right inputs from all information we have (122 different variables)

is not trivial and is very important for obtaining a higher performance as having more

predictors implies adding new dimensions to the model (more complexity). Since

variable selection should not be defined ad-hoc, principal component analysis (PCA)

[113] has been employed (see Table 4). PCA is a statistical technique that converts a

set of potentially correlated predictors into a smaller subset of uncorrelated predictors

designated as principal components. The main advantage of PCA is the capability to

compress data by reducing the number of dimensions without significant loss of

information. To select the right inputs, we have compiled a dataset of 3 months and

obtained the results given by Table 4 (first column stands for the relevance, second

column refers to the component number and third column is the component itself).

As a remark, PCA has not been implemented by the author; instead, we have

used the Weka framework [114] in order to determine the right inputs for our ANN

(see Table 4 and Table 5).

Table 4: Ranked attributes.

Relevance # Component
 0.8514 1 0.182i_TENDENCIA_9+0.181i_TENDENCIA_18+0.179i_TENDENCIA_8+0.176i_TENDENCIA_17+0.167i_TENDENCIA_7...
 0.7635 2 0.293i_LL_TOTALES_5+0.293i_LL_TOTALES_6+0.289i_LL_TOTALES_7+0.289i_LL_TOTALES_4+0.284i_LL_TOTALES_3...
 0.6887 3 -0.213i_TENDENCIA_13-0.191i_TENDENCIA_12-0.19i_TENDENCIA_14-0.178i_TENDENCIA_4-0.176i_TENDENCIA_10...
 0.6193 4 -0.245i_TENDENCIA_21+0.221i_TENDENCIA_11+0.221i_TENDENCIA_10-0.219i_TENDENCIA_22-0.205i_FLAG_21...
 0.5563 5 -0.245i_TENDENCIA_33-0.207i_TENDENCIA_28-0.206i_FLAG_33+0.2 i_TENDENCIA_43+0.199i_TENDENCIA_20...
 0.4979 6 0.265i_TENDENCIA_38-0.26i_TENDENCIA_27+0.227i_FLAG_38-0.223i_FLAG_27-0.196i_TENDENCIA_45...
 0.4413 7 0.288i_TENDENCIA_26+0.244i_FLAG_26-0.207i_TENDENCIA_32-0.196i_TENDENCIA_33-0.195i_TENDENCIA_3...
 0.3861 8 0.257i_TENDENCIA_41+0.217i_FLAG_41-0.208i_TENDENCIA_45-0.205i_TENDENCIA_37+0.191i_TENDENCIA_7...
 0.3323 9 -0.271i_TENDENCIA_1-0.233i_FLAG_1-0.202i_TENDENCIA_2-0.197i_TENDENCIA_6-0.19i_TENDENCIA_4...
 0.2805 10 -0.34i_TENDENCIA_46-0.291i_FLAG_46+0.283i_TENDENCIA_44+0.243i_FLAG_44+0.202i_TENDENCIA_35...
 0.2471 11 -0.45i_INTERVALO_8_2-0.376i_MINUTOS_DIA+0.328i_INTERVALO_8_1-0.323i_INTERVALO_4_4-0.304i_HORA_PUNTA2...
 0.2232 12 0.416i_INTERVALO_8_0+0.416i_NOCTURNO-0.313i_INTERVALO_8_1+0.308i_INTERVALO_4_0+0.265i_INTERVALO_4_1...
 0.2098 13 0.571i_INTERVALO_4_5-0.451i_INTERVALO_4_4-0.432i_HORA_PUNTA2-0.184i_DIA_SEMANA_6+0.181i_MINUTOS_DIA...
 0.1995 14 0.432i_INTERVALO_4_3-0.414i_INTERVALO_4_2+0.244i_DIA_SEMANA_6+0.204i_DIA_SEMANA_5-0.186i_DIA_SEMANA_2...
 0.1898 15 0.821i_DIA_SEMANA_2-0.447i_DIA_SEMANA_3-0.197i_DIA_SEMANA_1+0.166i_DIA_SEMANA_6-0.15i_DIA_SEMANA_4...
 0.1802 16 -0.724i_DIA_SEMANA_4+0.524i_DIA_SEMANA_3+0.349i_DIA_SEMANA_6-0.164i_DIA_SEMANA_5+0.112i_INTERVALO_4_1...
 0.1706 17 0.725i_DIA_SEMANA_5-0.478i_DIA_SEMANA_4-0.423i_DIA_SEMANA_6+0.159i_DIA_SEMANA_0-0.151i_DIA_SEMANA_3...
 0.1611 18 0.685i_DIA_SEMANA_1-0.512i_DIA_SEMANA_3+0.313i_DIA_SEMANA_6-0.222i_DIA_SEMANA_4-0.207i_DIA_SEMANA_5...
 0.1516 19 0.828i_DIA_SEMANA_0-0.487i_DIA_SEMANA_1-0.188i_DIA_SEMANA_3+0.104i_DIA_SEMANA_6-0.101i_DIA_SEMANA_2...

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

96

 0.1428 20 -0.689i_INTERVALO_4_1+0.564i_INTERVALO_4_0+0.191i_INTERVALO_4_2-0.181i_INTERVALO_4_3-0.158i_DIA_SEMANA_4...
 0.1351 21 0.443i_INTERVALO_4_2-0.364i_INTERVALO_4_3-0.32i_INTERVALO_4_0+0.26 i_INTERVALO_4_1+0.182i_HORA_PUNTA...
 0.1289 22 0.332i_FLAG_10+0.332i_FLAG_11-0.169i_TENDENCIA_11-0.169i_TENDENCIA_10-0.16i_HORA_PUNTA...
 0.1233 23 0.41 i_FLAG_11+0.41 i_FLAG_10-0.186i_TENDENCIA_11-0.186i_TENDENCIA_10+0.175i_TENDENCIA_20...
 0.118 24 0.597i_HORA_PUNTA+0.339i_DIA_SEMANA_6-0.286i_INTERVALO_4_3+0.252i_DIA_SEMANA_5-0.196i_INTERVALO_8_1...
 0.1132 25 -0.218i_FLAG_28+0.209i_FLAG_9+0.191i_FLAG_3+0.191i_FLAG_4-0.188i_FLAG_33...
 0.1088 26 0.264i_FLAG_38+0.217i_TENDENCIA_45-0.214i_FLAG_45-0.209i_TENDENCIA_38+0.204i_FLAG_7...
 0.1045 27 0.296i_FLAG_27-0.224i_TENDENCIA_27+0.22 i_FLAG_30-0.205i_FLAG_37+0.203i_FLAG_26...
 0.1002 28 0.275i_FLAG_20+0.224i_FLAG_13-0.219i_FLAG_33+0.201i_TENDENCIA_1+0.191i_TENDENCIA_2...
 0.0961 29 0.249i_FLAG_26-0.239i_FLAG_35-0.214i_TENDENCIA_26-0.207i_FLAG_32+0.207i_FLAG_28...
 0.0922 30 -0.258i_FLAG_41+0.234i_FLAG_37+0.23 i_FLAG_39-0.224i_TENDENCIA_44+0.221i_TENDENCIA_41...
 0.0884 31 0.282i_FLAG_11+0.282i_FLAG_10-0.249i_FLAG_16+0.245i_FLAG_24+0.241i_FLAG_21...
 0.0852 32 -0.458i_HORA_PUNTA+0.349i_DIA_SEMANA_6+0.228i_DIA_SEMANA_5-0.203i_FLAG_9-0.18i_DIA_SEMANA_0...
 0.0822 33 0.274i_FLAG_36-0.266i_FLAG_45+0.239i_FLAG_4-0.234i_FLAG_15+0.228i_FLAG_35...
 0.0792 34 0.276i_HORA_PUNTA-0.271i_FLAG_30+0.243i_FLAG_42+0.219i_FLAG_38-0.218i_FLAG_29...
 0.0763 35 -0.337i_HORA_PUNTA-0.325i_FLAG_45-0.299i_FLAG_12-0.262i_FLAG_3-0.257i_FLAG_29...
 0.0733 36 -0.314i_FLAG_14-0.312i_FLAG_39-0.276i_FLAG_21-0.265i_FLAG_40-0.247i_FLAG_38...
 0.0705 37 0.328i_FLAG_41-0.301i_FLAG_7-0.278i_FLAG_45+0.258i_FLAG_42+0.245i_FLAG_1...
 0.0676 38 0.433i_FLAG_1-0.36i_FLAG_46+0.312i_FLAG_2-0.29i_FLAG_8+0.261i_FLAG_44...
 0.0648 39 0.515i_FLAG_46-0.303i_FLAG_44+0.291i_FLAG_1+0.259i_FLAG_17+0.244i_FLAG_24...
 0.0622 40 0.568i_FLAG_2-0.503i_FLAG_1-0.277i_FLAG_19+0.257i_FLAG_12+0.199i_FLAG_25...
 0.0597 41 -0.393i_FLAG_26+0.364i_FLAG_45-0.348i_FLAG_19+0.293i_FLAG_37-0.261i_FLAG_2...
 0.0572 42 0.584i_FLAG_32-0.366i_FLAG_41-0.344i_FLAG_44+0.218i_FLAG_43+0.206i_FLAG_40...
 0.0548 43 -0.583i_FLAG_37-0.404i_FLAG_43-0.324i_FLAG_19+0.281i_FLAG_38+0.259i_FLAG_39...
 0.0524 44 -0.508i_FLAG_26-0.44i_FLAG_12+0.314i_FLAG_20-0.237i_FLAG_1+0.227i_FLAG_2...
 0.05 45 0.467i_FLAG_32+0.432i_FLAG_41+0.414i_FLAG_44-0.289i_FLAG_42+0.216i_FLAG_46...

Table 5: Selected attributes.

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34

,35,36,37,38,39,40,41,42,43,44,45 � 45 attributes

Among all variables, the volume of incoming calls in previous intervals, night

shift timetable, week of the month, time, intervals of hours (broken down in 2, 4 or 8

hours) and intervals of peak hours must be highlighted and analysed for separate.

Figure 28 shows the behaviour when considering the previous time intervals. For

almost all CGs, the optimum number of previous intervals required is usually around

5-6 intervals. Considering more previous intervals does not enable us to obtain better

results and makes the learning process slower.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

97

Figure 28: Mean absolute error returned by the ANN when considering previous 5-minute
intervals.

Figure 29 illustrates a comparative study of the most relevant variables that have

been studied in terms of error caused. The night shift timetable offers an upgrading of

the results for every CG. When splitting days up into intervals of hours, predictions

are also improved. The improvement coming from adding these hourly intervals

might guide us to a wrong decision because these variables are correlated with the

current number of incoming calls (our target) but the causality comes from the night

shift timetable and peak time variables (it is more valuable to know peak hours rather

than have hourly information). Note that the correlation among variables does not

necessarily imply causality. In other words, the improvement is just obtained because

these variables are correlated but only peak time intervals and night shift are truly

useful to forecast the current number of incoming calls. Of course, PCA moderates

the impact of these deceptive correlations.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

98

Figure 29: Mean absolute error returned by the ANN when adding different variables.

Intervals of peak hours are interesting to take into account because these

divisions clearly outperform the results for almost all CGs. However, the upgrading is

intuitively a bit lower for those CGs without many oscillations as there are fewer

differences among day partitions.

The rest of variables influence the results in some CGs (like the week of the

month) but not significantly enough for most of them (they slightly contribute to the

target prediction). Since a quick response time is required and selecting more features

involves a higher dimensionality, these variables have not been expressly included in

our final implementation.

As Table 4 and Table 5 are difficult to follow, Table 6 summarises the most

relevant individual features extracted from our dataset.

Table 6: Summary of the most relevant individual variables.

Individual relevant variables

Calls in Previous 0-5 Minutes

Calls in Previous 5-10 Minutes

Night Shift Timetable

Week day

Calls in Previous 10-15 Minutes

Calls in Previous 15-20 Minutes

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

99

Calls in Previous 20-25 Minutes

Minutes of the Day

Peak Time

Second Peak Time

5.4.3 Hidden Layer

We have already revealed that our ANN has a single hidden layer. Now, we have

to determine the number of existing hidden units (hidden neurons) located in this

layer. There are some (nonsense) rules to determine the number of neurons of the

hidden layer(s) but, in our case, this number has been empirically determined.

Figure 30 shows the results obtained for a variable number of hidden units. We

can appreciate that the optimum value seems to be around 20 hidden units as the

mean absolute error gets minimised.

Figure 30: Mean absolute error, depending on the number of hidden units.

5.4.4 Output Layer

The last layer is named output layer and is used for unveiling the result of the

prediction. The number of neurons of this layer is determined by the output variables.

In our case, only one variable is predicted (number of incoming calls, available agents

or abandonments) so that only one neuron forms the output layer. The output will be

a floating number which indicates the number of incoming calls of a given CG, the

0,00

1,00

2,00

3,00

4,00

5,00

1 5 10 15 20 25 30

MAE

MAE

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

100

number of available agents for a given CG or the number of abandonments for a

certain CG (we need as many ANNs as CGs we have).

5.4.5 Parameter Initialisation

To initialise our ANN, we assign the predefined values stated in Section 4.4,

except for the initial weights which must be randomly initialised. In particular, we set

them up to small values ranged in [-0.5, 0.5]. The idea of initialising the weights in

this way is to reduce the number of epochs during the training process. Starting from

weights that are closer to the required ones will perceptibly necessitate fewer changes

than weights that greatly differ.

Additionally, we can still outperform the results by including some specific

knowledge of each CG. The large number of CGs (1035) and their miscellaneous

behaviour make necessary to appropriately determine the initial parameters of the

models (ANNs for each CG). To fulfil this requirement, the CGs have been divided

into sets according to the mean number of incoming calls per day. This criterion has

been taken as a consequence of the behaviour similarities of those CGs having similar

volume of incoming calls. Therefore, we need to define different initial

configurations for the step-sizes for these sets as well as the lower and upper bounds

of the uRprop proposed in Section 4.3.3.

Table 7 demonstrates that we can still outperform the results a little by starting

from different initial parameters depending on the CG behaviour. This table

summarises the mean absolute error (MAE) gotten for 5 different CGs after 50

executions of their specific ANN.

Table 7: MAE obtained for 5 different CGs with/without sets for 50 executions.

Call Group MAE With Sets MAE Without Sets

CG 1 2.84524 2.87196

CG 2 2.34671 2.39941

CG 3 4.32158 4.44656

CG 4 1.40664 1.41888

CG 5 0.83214 0.94906

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

101

The change proposed above does not vary our computing times but (slightly)

improves the results, especially in those CGs that have more fluctuations in the

arriving load.

5.4.6 Stopping Criterion

We consider the following measures to decide when to stop the training process:

1) Maximum epochs reached: the ANN will stop once a set number of epochs

have elapsed (1200).

2) Generalisation set mean squared error (MSE): this is the average of the sum

of the squared errors (real – predicted) for each pattern in the generalisation

set (MSE < 1 incoming call).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

102

5.5 SEARCH MODULE ADAPTATIONS

This section comments the final configuration of the search module. We will

describe the configuration of the evolutionary operators but, firstly, we will detail

other important aspects.

5.5.1 Initialisation, Encoding and Population

We will encode the solutions as described in Section 4.4. Therefore, the solution

consists in an array of integers whose indexes represent the available agents at a

given instant and the array contents refer to the profile assigned to each agent. Figure

31 shows a fictitious example (related to Figure 21) of encoding for 9 customer calls

(c1-c9) queued in 4 different CGs (cg1-cg4) depending on the nature of the calls, 5

agents (a1-a5) and 7 profiles (P1-P7), where P1={s1}, P2={s1, s2}, P3={s2}, P4={s2, s3},

P5={s1, s3}, P6={s3} and P7={s4}. Now, suppose that the agents have the following

potential skill profiles: a1~{P1,P2}, a2~{P1,P3,P7}, a3~{P4,P5}, a4~{P6} and

a5~{P2,P3,P7}. We have seen the potential profiles for every agent but only one

profile can be assigned to each agent at a given instant t; therefore, a feasible solution

would be Figure 31. Note that more than one agent can have assigned the same

profile (e.g. a1 and a5).

Index (agents) � 1 2 3 4 5

Content (profiles) � 2 7 4 6 2

Figure 31: Example of encoding for an MSCC.

The population contains 20 different individuals encoded as hinted above. In our

case, we propose to start from a randomly generated initial population, including the

best solution found in the previous time-frame because the configuration of agents’

profiles should not change too much over two successive time-frames (consecutive

states).

5.5.2 Fitness Function

Now, we present the fitness function which is defined over the proposed

encoding to measure the quality of a given solution. Our fitness function is inspired in

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

103

the estimation of the total service level provided in [12] although we also consider the

priority of each CG weighted as follows:

Total_service_level = { }[0,1][0,1][0,1]:sl µ))α,(γSL(Pr
k

0i
iiii →××ℜ××∑

=

 where k

refers to the number of CGs, µ is a normalising factor (∑
=

k

0i
iPr1/), Pri is the

priority of the CGi whose service level is defined as

()
β

τ
mγ

iii

i
ii

ere_busy)P(Agents_a1)m,(γSL
−−

×−= given that

1
1γ

0ζ
1ζγ

i

i

i

ii
i

im

1)1)...(ζ(γ

m

m-γ
1re_busy)P(Agents_a

−−

=
−− 







 +−
+= ∑ where iγ is the load of

CGi (number of incoming calls of CGi by the mean processing time:
ii τ×n), mi

is the number of agents of CGi (based on the profiles assigned in the

chromosome), iτ is the number of agents of CGi and β is the duration of the

time-frame expressed in seconds.

(16)

Additionally, we handle some hard and soft constraints derived from the

business rules given by our business units. In our case, these constraints are

associated to tasks, agents, timing, actions or desired/undesired scenarios. Thus, the

algorithm cannot violate hard constraints (e.g. we cannot change agents’ profiles

continuously due to certain laws and regulations); although we allow certain

movements which may imply the violation of some soft constraints (e.g. we should

not take agents from CGs in which the service level is below a given threshold).

Undoubtedly, this type of movements is penalised according to the degree of non-

accomplishment of these constraints and their relevance as described in Chapter 2.

Therefore, the fitness function can be formalised as follows:

]1,1[]1,0[]1,0[: aints)ons_constrpenalisati - vice_level(total_ser = f −→×f (17)

where penalisation_constraints is the value obtained after applying our business rules

(e.g. agents from CG-i should not move to CG-j).

Finally, we can speed-up the evaluations by introducing a partial fitness

function. The first time, we need to employ (17) but the rest of the time; we just need

to evaluate those groups affected by a mutation or, in the case of the LS, when

generating a new neighbour. Hence, we only process the affected CGs in (16) and

update their original values. With this information, we then recalculate (17).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

104

5.5.3 Evolutionary Operators

In this section, we explain the final configuration of the evolutionary operators

described in Section 4.4. This configuration is the following one:

Selection: Since the population needs to be bred each successive generation, we

have chosen a binary tournament selection.

Crossover: The following step is to produce a new generation from selected

individuals. We consider that children will inherit the common points in their parents

(potentially, the best genes) and randomly receive the rest of genes from them.

Mutation: This operator causes tiny changes in the genes of the chromosome to

explicitly maintain diversity (actually there are much more mechanisms). We apply a

perturbation over each gene of the chromosome with a probability of 0.03. This

perturbation corresponds to changes of profiles in some agents (e.g. agent a2 who had

assigned the profile P1 has now associated the profile P3 due to a mutation).

Replacement policy: Finally, we decide which individuals are incorporated (or

maybe reinserted) into the population. In this study, we consider elitism with a

probability of 0.93 to replace the worst individuals of the population for next

generation. And, with a probability of 0.07, a worse individual may be captured. Note

that our MA relies on a steady-state scheme.

The configuration proposed above has not been chosen ad-hoc. Instead, we have

evaluated different configurations and selected the best one.

Figure 32 shows the most relevant configurations that we have tested out during

600 seconds (10 minutes). Y-axis represents the fitness value while the X-axis stands

for the number of generations. Note that we do not apply the LS mechanism over the

individuals at this stage.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

105

Figure 32: Fitness obtained for 8 different configurations of evolutionary operators.

Configuration-1 refers to the configuration described above. We perceive that

Configuration-1 can process many generations compared to the rest of configurations

(excluding Configuration-8). Configuration-1 also obtains the best fitted solution. The

convergence is favourable for a 5-minute execution (around generation-300). Note

that most time-intervals have that duration so that the improvement during a complete

day is noticeable. After that point the improvement is minor although we can observe

another important slope around generation-500. When the dynamism is high, this

configuration is also very appealing because this configuration steeply slopes.

Besides, when the time-frame increases, the configuration is also appropriate as it still

goes on improving the fitness value.

Configuration-2 differs from Configuration-1 in the mating-selection as it

considers mating by similarity. For this reason, the number of generations is reduced.

This configuration allows for diversity but the convergence is slower than

Configuration-1. Instead, Configuration-2 almost always improves and may be good

for stable systems (longer time-frame).

Configuration-3 applies a mating based on the differences on the fitness values.

Each individual is mated with its most different individual in terms of fitness: highest

difference in fitness value. We notice that this mating operator is faster but the results

seem to be worse than Configuration-2.

0,648

0,653

0,658

0,663

0,668

0,673

0,678

1

3
5

6
9

1
0

3

1
3

7

1
7

1

2
0

5

2
3

9

2
7

3

3
0

7

3
4

1

3
7

5

4
0

9

4
4

3

4
7

7

5
1

1

5
4

5

5
7

9

6
1

3

Configuration-1

Configuration-2

Configuration-3

Configuration-4

Configuration-5

Configuration-6

Configuration-7

Configuration-8

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

106

Configuration-4 applies a random mating and a special selection in which the

best fitted individual is taken as well as its most different individual in terms of genes

(like similarity but for final selection). This configuration always increases and has a

nice slope although the two first configurations seem to better behave.

Configuration-5 imitates Configuration-4 except for the mating mechanism. In

this case, each individual is mated with its most different individual in terms of

fitness. It has a poorer performance and can carry out fewer generations.

Configuration-6 employs a mating by highest fitness difference and applies a

replacement policy in which the best fitted individual and the worst fitted individual

after reproduction fully replace the best and the worst individuals from the

populations respectively. The performance and slopes are poor.

Configuration-7 proposes a similar scheme to Configuration-6 except for the

random mating. More generations are carried out and better performance than

Configuration-6.

Configuration-8 applies a random mating and our crossover inspired in

simulated annealing. We also consider elitism for the replacement policy and

mutations by ranges. We also perceive a fine slope at the beginning. If we had more

time, we might increase the initial temperature value to explore more at the

beginning. Potentially, we could obtain better fitted individuals.

5.5.4 Memetic Algorithm

Once we have the evolutionary operators, we need to define the refinement

mechanism and select a target subpopulation to refine. Another important issue is the

refinement frequency.

Refinement algorithm: The refinement mechanism is a basic LS based on the

best neighbour scheme as described in 4.4.3.1.

Subpopulation for LS: The LS is applied over the best 25% of individuals.

LS frequency: The LS is applied over the selected individuals each 10

generations.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

107

5.5.5 Parallel Memetic Algorithm

The last step is to parallelise the MA. We will apply an island model with

several subordinate islands connected to a master island as follows:

Topology: We consider a star topology with 4 subordinate islands (as Figure 33

illustrates) which correspond to “simple” MAs. These islands are connected to a

master island (another “simple” MA which coordinates and synchronises the rest of

islands).

 Migration: Each subordinate island sends the 10% of the best fitted individuals

when the master island asynchronously demands these individuals to the rest of

islands.

Replacement policy: We will apply elitism so that the best fitted individuals from

the subordinate islands will replace the less fitted individuals from the master island’s

population whether these individuals are better fitted.

Migration frequency: Each 50 generations, the master island blocks the rest of

islands to ask them for their best fitted individuals.

Figure 33: Star topology with 4 subordinate islands and a master island.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

108

6 CHAPTER 6. EVALUATION OF THE

APPLICATION

This chapter evaluates our approach on the MSCC domain. Section 6.1 describes

the dataset employed. Section 6.2 points out the hardware descriptions of the SunFire

sever in which the evaluations have been performed. Section 6.3 analyses the selected

metrics for testing and comparing our approach. Section 6.4 examines the forecast

module for five different CGs as there are too many to accomplish an exhaustive

study for all of them. Section 6.5 evaluates the search module by studying several

time intervals from days with different complexity; this section also compares our

search module with other acknowledged techniques. In Section 6.6, we will analyse

our complete approach (forecast module + search module) for one-day campaign. We

will also compare how our complete approach outperforms other conventional call

centre’s algorithms.

6.1 DATASET EMPLOYED

An important step consists in creating a suitable dataset, hunting for a fair

balance between the amount of data and a representative period of time measured in

terms of days, carved up in hours and minutes (microscopic level � fine grain). In

our case, we will work with 45 numeric attributes (see Section 5.4) and thousands of

registers which correspond to 5-minute interval information from records stored

during several months.

Besides, the number of selected days must be a multiple of 7 because the

predictor week-day has imperative influence on the training and validation processes

as Section 5.6 demonstrates. Moreover, the number of days must be large enough to

represent every possible pattern (cases). Therefore, the number of days to take into

account should be, at least, 91 days in order to cover all possible patterns with the

aforesaid considerations. It is very important to divide data like this as this

composition allows for trend and seasonality detection.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

109

Our problem presents 1035 CGs; hence, the dataset is too large to do an

exhaustive study for all of them (obviously, the forecast module has been trained,

considering every CG). Consequently, 5 representative CGs with different behaviour

in terms of oscillations, arrival rates, processing times and nature, have been carefully

picked in order to perform a generic enough approach (see Figure 34). These

oscillations intuitively imply a higher complexity. We have assigned an index to each

CG that designates their complexity level which ranges from the most convoluted CG

to the simplest one (labelled from 1 to 5). For business reasons, we are not allowed to

reveal real CGs names but this is something we should not be concerned about in this

work.

Figure 34: Call arrival rate per day, grouped by CGs.

Afterwards, a different model has been exclusively developed for each CG

because of differences among CGs. Then, the whole dataset has been split into

subsets, contemplating every CG.

Once we have a single dataset for each CG, this is shuffled and then randomly

divided into three subsets, following the cross-validation structure [115] (see Figure

35): Training (55%), generalisation (20%) and validation (25%).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

110

Figure 35: Dataset partitions: training, generalisation and validation.

The training dataset, which is the largest partition, is used for training our ANN.

Instead, the generalisation partition is used at the end of each epoch to observe

whether our ANN correctly handles unseen data. Once the training process has

finished, the validation partition is showed to our ANN to determine its real precision.

Although we will analyse 5 CGs for the forecast module in Section 6.4, we must

validate the search module by considering all the CGs. To evaluate the search

module, we have chosen several time intervals from days with different complexity

(see Section 6.5). Therefore, we can discover the benefits of our approach, depending

on the dynamism of the system. Besides, we will analyse our complete approach

(forecast module + search module) for one-day campaign in Section 6.6.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

111

6.2 HARDWARE DESCRIPTION

This section describes the key hardware features of our SunFire 4900 server in

which all experiments have been launched. These features are the following ones:

1) 64-bit Chip Multithreading UltraSPARC® IV technology, with over 2x

the throughput of previous generations.

2) Scales up to 8 x 1.35-GHz UltraSPARC IV CPUs with 16 MB L2 cache

per processor.

3) Up to 16 simultaneous compute threads with up to 64 GB memory.

4) Solaris-TM 8, Solaris 9, and Solaris 10 Operating System.

5) Robust capabilities in the Solaris 10 OS such as predictive self-healing to

increase reliability, Solaris containers for increased utilisation, and

dTrace to optimise application performance.

6) Industry leading price/performance and benchmarks.

7) 9.6 GB/second SunTM Fireplane interconnect.

8) N+1 hot-swap power supplies/hot-pluggable disks.

9) Sun systems controller for remote system administration.

10) Automatic system recovery to maximise uptime.

11) Integrated fibre channel disk subsystem, multi-pathing-ready, supporting

up to 12 FC-AL disks.

12) 9 PCI slots help ensure a highly scalable, well-balanced system.

13) 17-RU tower/desk-side, rack mountable.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

112

6.3 METRICS
Metrics are usually specific for a given subject area and are often valid only

within a certain domain so that these cannot be directly interpreted outside it. We

have selected several metrics to evaluate our forecast and search modules as well as

the complete process.

6.3.1 Forecast Metrics

In order to make the forecast process more understandable, we define the error,

e, as the difference between the real output value, f, and the predicted output, y.

To evaluate the forecast module, we will apply the following metrics:

1) Mean absolute error (MAE): average of the absolute errors: ��� >�* ∑ |Y� − ��|*�I� .

2) Standard deviation (SD): the standard deviation of a statistical population

is the square root of its variance.

6.3.2 Search Metrics

In order to compare all the search algorithms in terms of quality of the solution,

a metric to represent that quality is required. We presume that solution quality

comparisons must be made over the same problem instances. Comparisons over

different problem instances are normally weaker as those instances may have

dissimilar structures so that the conclusions might be completely erroneous.

To evaluate the search module, we will examine the following metrics:

1) Worst solution: Less fitted value, considering e executions (50).

2) Best solution: Best fitted value, considering e executions (50).

3) Mean solution: Mean value from e executions (50).

4) Standard deviation: Standard deviation from e executions (50).

5) Performance: Ratio of the current fitness value with respect to the best

fitted value. It can be calculated as follows: LsYqs�uEtL >
�330*! {�!*0-- �+/�0 (!0
�*���0T)�0-! {�!!0(�+/�0 @ 100.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

113

6.3.3 Call Centre Metrics

Most MSCCs employ more than 30 different metrics to verify how operations

are going. However, sometimes, just observing a subset of variables may accomplish

our goals. Metrics refer to customer satisfaction, quality, productivity, agent

utilisation or costs per contact (for outbound MSCC).

To evaluate the complete approach, we will consider the most important metric,

from our point of view, for any MSCC: the mean service level which is defined as the

percentage of customer calls that have to queue shorter than a specified amount of

time (in our MSCC, 20 seconds). This metric covers aspects such as quality,

productivity, client satisfaction among others.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

114

6.4 COMPARISON OF FORECAST TECHNIQUES

Now, we come to an important point that cannot be overlooked. We need to

compare our forecast module with other techniques in order to verify whether (or not)

our approach is convenient for a real-world DMAS.

In Section 4.3.1, we have reviewed the previous work on forecast techniques.

Now, we proceed by comparing our approach based on ANNs (uRprop) with the

most relevant forecast methods from the state-of-the-art. As we cannot implement all

the techniques presented in Section 4.3.1 for this work, we have chosen R’s forecast

package [116] to evaluate them. Note that we have selected R forecast package

because it is very well-implemented and is an open-source so that we can analyse the

inner of the implementation. Other data mining tools such as SPSS or SAS have also

truly potent algorithms, but we should not apply them for this comparison as we

would not have any insight about the algorithm behind them.

To compare the techniques described in Section 4.3.1, we have selected five

representative CGs as described in Section 6.1. Our dataset is composed by thousands

of records extracted from our production environment during 91 different days. We

have trained the models with this dataset and validated them with the following two

weeks. This means that the validation has been carried out by means of continuous

(online) predictions for a 2-week time period. Although this validation should be

convincing, we have executed the models 49 more times offline (a total of 50

executions). The models have been run under two of the cores of our SunFire 4900

server (Solaris 10).

Now, let’s go to the thick of the comparison. Figure 36 and Table 8 illustrate the

MAE comparison between time series, ARIMA, linear regression, logistic regression

and our ANN. This confirms that, although each CG has a different behaviour and

needs a different model to obtain the best approximation, our ANN regularly behaves

better than the other techniques in our domain (we do not claim a universally better

approach). While ARIMA and time series emphasise the “recent past”, our ANN is

more flexible because it not only considers previous tendencies and time points but

also covers historical patterns from other days and other contextual information (e.g.

if there is a commercial campaign, the dynamism will be higher). The capability of

considering historical data is really valuable as we can discover interesting features

like the peak hours’ effect and more complex relationships.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

115

Figure 36: General Comparison (MAE is in the Y-axis and techniques are in the X-axis).

Looking at Table 8, we also perceive that our ANN has less variability in the

predictions as the standard deviation is usually lower, except for the call group-1

(time series) and the call group-4 (logistic regression) where our standard deviation is

slightly higher.

Another remarkable result is that time series and ARIMA outperform regression

models in most CGs, probably, due to the capability of considering trend and

seasonality rather than simply considering relationships between the dependent

variable (output) and any one of the independent variables when these vary.

On the one hand, the main problem with our approach is that we need longer

training times than ARIMA, time series or regression models. Besides, our

implementation is much more complex than these techniques. When not having a

multimodal space, we recommend simpler techniques: linear regression for linear

dependencies and times series for stable patterns or those that merely depend upon

the recent past.

On the other hand, although there are no huge differences between our approach

and the rest of the abovementioned techniques in terms of MAE for a given instant,

we strongly recommend our approach as far as slight differences in terms of MAE for

a given point may induce huge mean errors throughout a day (cascade effect).

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

uRprop

ANN

ARIMA Time

Series

Linear Reg. Logistic

reg.

Call Group 1

Call Group 2

Call Group 3

Call Group 4

Call Group 5

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

116

Table 8: MAE & SD Comparison.

Call Group
uRprop ARIMA Time Series

Linear
Regression

Logistic reg.

MAE SD MAE SD MAE SD MAE SD MAE SD

Call Group 1 3.621 6.381 3.892 6.430 3.791 6.360 4.503 6.833 4.120 6.501

Call Group 2 2.519 4.472 2.872 4.851 2.841 4.821 3.210 5.756 2.870 4.507

Call Group 3 2.112 3.592 2.378 4.087 2.349 4.104 2.340 3.843 2.210 3.551

Call Group 4 1.387 2.752 1.494 2.785 1.486 2.771 2.120 3.154 1.620 2.718

Call Group 5 0.718 1.405 0.823 1.408 0.819 1.406 0.960 1.667 0.840 1.313

Up till now, we have demonstrated that our approach outperforms several

forecast techniques but, can we beat other ANN’s learning algorithms? Our approach

often gets trapped in local minima so that we cannot claim that our approach can

behave better than other learning algorithms for ANNs as there are other nice exact

approximations. However, our environment is very dynamic and we have a very

limited time to train the models (we need a model for each CG). So, can we

outperform other learning algorithms given our timing constraint? Fortunately, the

answer is “yes”. At least, we can offer more accurate results for those CGs which are

very dynamic and have more incoming calls. This makes sense because the search

space is more complex and the exact approximations have no time to compute the

complete process. Nonetheless, other learning algorithms might behave better for

those CGs with fewer calls (e.g. CG4 or CG5). Obviously, this type of CGs is not

really relevant as only few calls arrive.

Figure 37 demonstrates that our learning algorithm outperforms

Backpropagation, Quickpropagation, classical Rprop, Rprop with weights

backtracking, ANNs with pruning and also ANNs with exhaustive pruning for the

most convoluted CGs (CG1 and CG2). For the easiest ones (CG4 and CG5), learning

with exhaustive pruning and Rprop with weights backtracking outperform our

uRprop. If we let other learning algorithms run during more than 1200 epochs, the

differences would be higher. However, we have a very limited time to train the

models and our approach behaves better than the other techniques for the most

complicated CGs.

Workforce Distribution in Dynamic Multi

Figure

The main disadvantage with gradient

to local optima. Occasionally, local optima can be likewise nearly global optima

although these normally hurt performance. This difficulty can be overcome by using

global optimisation methods although th

and become less appropriate for dynamic systems.

and Rprop with weights backtracking

are no timing constraints or the search space is simple enough to find the optimum in

few epochs.

To conclude, we can state that

as long delays may drastically damage performance, even when reached solutions

deem optimal.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

CG1 CG2

e Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

Figure 37: NN Comparison (SSE x epochs).

The main disadvantage with gradient-descent methods is premature convergence

to local optima. Occasionally, local optima can be likewise nearly global optima

although these normally hurt performance. This difficulty can be overcome by using

global optimisation methods although these techniques are highly time

appropriate for dynamic systems. Learning with exhaustive pruning

ith weights backtracking obtain better results than uRprop when there

are no timing constraints or the search space is simple enough to find the optimum in

we can state that demanding dynamic systems need fast (re)trains

may drastically damage performance, even when reached solutions

CG3 CG4 CG5

Rprop

Quickpropagation

uRprop

Rprop with backtracking

Backpropagation

ANN with pruning

ANN with exhaustive

pruning

David Millán Ruiz

117

descent methods is premature convergence

to local optima. Occasionally, local optima can be likewise nearly global optima

although these normally hurt performance. This difficulty can be overcome by using

hly time-consuming

ustive pruning

obtain better results than uRprop when there

are no timing constraints or the search space is simple enough to find the optimum in

fast (re)trains

may drastically damage performance, even when reached solutions

Quickpropagation

Rprop with backtracking

Backpropagation

ANN with pruning

ANN with exhaustive

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

118

6.5 COMPARISON OF METAHEURISTICS

In the previous section, we have compared our forecast module with other

acknowledged predictive techniques. We have seen that our approach is not

universally the best one as other learning algorithms outperform our uRprop when

these have more time to train the models (the ANN for each CG) or when the

dynamism is low. Fortunately, our learning algorithm behaves better for those CGs

with higher dynamism when the time to train the models is reduced. But, we still have

to determine the right assignment among agents and tasks, given the predictions

provided by the forecast module. This task is carried out by our search module which

will be compared with other famous MHs.

Now, similarly to the previous section, we describe the (two) problem instances

(medium and high difficulty, respectively) that we have created from our dataset to

test out our search module. For a fair comparison, every MH will be run over the

same problem instances 50 times. These two problem instances are composed by real

data taken from our MSCC’s production environment during two different days at the

same hour (from 12:40 to 12:45, 300 seconds): a one-day campaign and a normal

day. The size of the time-frame to execute all the MHs has been 300 seconds (5

minutes) because it is the commonest time-frame size. We have selected the interval

[12:40-12:45] as it is precisely the most critical hour of the day (highest load of the

day: n/m). Note that around 800 incoming calls (n) simultaneously arrive during a

normal day in such a time interval, whereas up to 2450 simultaneous incoming calls

may arrive during this interval throughout a commercial campaign. The number of

agents (m), for each time interval, oscillates between 700 and 2100, having 16

different skills for each agent on average (minimum=1 and maximum=108), grouped

in profiles of 7 skills on average. The total number of CGs considered for this study is

167. Therefore, when the workload (n/m) is really high, finding the right assignment

among agents and incoming calls becomes fundamental. In this way, we have run

every MH under two double-core processors of a Sun Fire E4900 server (one

processor for the interfaces and data pre-processing, and the other one for each MH).

Once the magnitude of our problem instances has been presented, each MH is

compared alongside the others. Table 9 summarises the results obtained by each MH

in 50 executions, starting from 50 different randomly generated initial solutions.

In our comparative study, we present dissimilar MHs which cover diverse search

strategies. Theoretically, due to the local character of the basic LS, it is complicated

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

119

to reach a high-quality solution because the algorithm usually gets trapped in a

neighbourhood when a local minimum is found. This occurs because the engine is

always looking for better solutions which probably do not actually exist in the

neighbourhood. For this reason, sometimes, it is more appropriate to allow

deterioration movements in order to switch to other regions of the search space. This

is precisely the shrewd policy of SA whose temperature allows for many oscillations

(the probability of accepting a worse solution decreases according to the time) at the

beginning of the process and only few ones at the end (fewer chances to select a

worse solution as the algorithm is supposed to be refining the solution at this point).

Specifically, we have chosen Cauchy’s criterion because the convergence is faster

than Boltzmann’s and we only have 300 seconds to run the complete process. In

Cauchy’s scheme, the temperature is defined as it) + (1/ T = T 0it , where it is the

iteration number and the initial temperature is f(S*)*))(log-/(= T0 Φµ where f(S*) is

the cost of the initial solution, Φ stands for the probability of accepting a “µ” worse

solution than the current one (Φ= µ =0.3). Besides, this scheme avoids decreasing the

distance between two solutions when the process converges (jumps in the

neighbourhood). Therefore, the temperature must be high enough at the beginning to

better explore the search space (its neighbourhood) and low enough at the end to

intensify the search as well (exploitation of promising areas). The stopping condition

must agree with the number of neighbours generated. The maximum of neighbour

solutions generated each time is L(T)=30 and the probability of accepting a worse

solution is exp(-δ/Tit) given that δ=f(Neighbour_Solution)-f(Current_Solution) and Tit

is the temperature at iteration it.

We perceive from Table 9 that SA behaves worse than the other MHs except for

the easiest instance of the problem. This may occur because we are not plenty of time

in our environment and the power of SA relies on a progressive cooling. If we cool

off the temperature too fast, we are missing the effectiveness of accepting worse

solutions in some cases. Instead, if we cool off the temperature too slowly, we may be

accepting worse solutions systematically without converging. We have applied a

trade-off between exploration and exploitation but the computing time (300 seconds)

seems to be limited to apply SA to our environment (perhaps, things might change

when having more time).

Another option to increase the diversity in the solutions is to enlarge the

environment, as VNS does. This philosophy consists in making a systematic change

upon the environment when the LS is used, increasing the environment when the

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

120

process gets stagnated. In the VNS, the search is not restricted to only one

environment as in the basic LS; instead, the neighbourhood changes as the algorithm

progresses. In our experiments, we have considered three different environments

emax=3: (nnn =→×=→×=→ 332211 nhe;5.0nhe;3.0nhe). These steps are

repeated during 300 seconds (our stopping condition). Albeit we only consider three

distinct neighbourhoods, the improvement of the VNS compared to basic LS is

noteworthy. Consequently, the remarkable factor becomes the change in the number

of neighbourhoods and their sizes as well as considering how the algorithm reacts in

response. Table 9 also shows how VNS only slightly outperforms SA for the hardest

instance of the problem.

Another strategy is to start from different initial solutions as ILS accomplishes.

ILS generates a random initial solution and afterwards applies a basic LS.

Subsequently, this solution is systematically mutated and thus refined. For ILS, the

complete process is repeated during 300 seconds wherein the LS is the one proposed

in Section 3.1.1 and the perturbation affects to the 3% of agents. We can observe that

ILS obtains solutions which vaguely improve those given by SA and VNS for the

hardest problem instance, although it performs worse for the simplest problem

instance as Table 9 corroborates.

Another way to find an accurate solution involves using methods based on

populations, such as MAs. If the diversity of the solution is low, then the MA

converges to the closest neighbour. Nevertheless, when the selective pressure is high,

individuals may be alike or even identical. To speed-up convergence, MAs apply an

LS procedure upon a set of chromosomes (candidate solutions) that are refined every

certain number of generations. Incorporating a hybridisation mechanism to the GA is

valuable as the algorithm is improved in all respects (exploration and exploitation).

The configuration of the GA’s operators is the one provided in Section 5.5.3 whereas

the LS mechanism is given in Section 3.1.1. Table 9 points out how our MA not only

outperforms all the presented MHs for both problem instances but also remains more

unwavering (less differences among best, worst and mean fitness values).

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

121

Table 9: Results obtained by the MHs in 50 executions starting from random initial solutions

for two problem instances: medium and hard (larger number of incoming calls and high

variability). Values refer to the fitness obtained by all the MHs.

Algorithm
Best solution Worst solution Average Standard dev. Effectiveness

Medium Hard Medium Hard Medium Medium Hard Medium Hard Medium

MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 100 100

ILS 0.768 0.728 0.755 0.722 0.763 0.725 0.002 0.003 95.85 96.15

VNS 0.790 0.727 0.766 0.723 0.775 0.724 0.005 0.001 97.36 96.02

SA 0.782 0.721 0.773 0.709 0.779 0.716 0.001 0.003 97.86 94.96

It is important to remark that differences among techniques are not huge after

reaching a fitness of 0.8 since the complexity exponentially increases in our

environment. Therefore, minor improvements on the fitness value after that point are

hard to obtain but very valuable to accomplish a fair workforce distribution.

Hitherto, we have demonstrated that our (single) MA has been able to

outperform other MHs in our real-world production environment. However, we

described our search module as a parallel MA based on an island model (star

topology) with 4 subordinate islands connected to a master island. So, can this

architecture obtain better results than the single MA? Certainly, yes it can.

Nevertheless, the improvement, which is remarkable, cannot be impressive as the

complexity increases asymptotically. Table 10 compares the results obtained by the

parallel MA with those obtained by the single MA. The parallel MA improves the

results of the single MA in a 4% for the hardest problem instance and 6.8% for the

easiest one. Although there is no a linear increment of fitness, the results are

definitely better. These also converge faster but we fixed the computing time (300 s.).

Table 10: Results obtained by our single and parallel MAs in 50 executions starting from

random initial solutions for the two problem instances studied. Values refer to the fitness.

Algorithm
Best solution Worst solution Average Standard dev. Effectiveness

Medium Hard Medium Hard Medium Medium Hard Medium Hard Medium

PMA 0.834 0.818 0.823 0.783 0.829 0.809 0.003 0.002 100 100

MA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 96.01 93.20

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

122

6.6 COMPARISON OF WORKLOAD DISTRIBUTION

ALGORITHMS

We have analysed the two main modules of our approach (forecast module +

search module) and seen that these outperform other famous techniques for separate.

Now, we will combine these modules and introduce the dynamic time-frame

described in Chapter 4. Specifically, we will compare our approach throughout a

demanding working day (there was a commercial campaign during the day which has

been measured). In this way, we have run the algorithm over a whole day with

approximately 315.000 calls (up to 28.800 calls/hour and 2.450 simultaneous calls)

under 12 double-core processors of a Sun Fire E4900 server (one for the interfaces,

another one data pre-processing, another one for the database, two processors for

controlling, two processors for the forecast module, and the last five ones for the

search module) with 96GB RAM. The mean number of agents in each time-frame is

2.100, having 16 different skills for each agent on average (minimum=1 and

maximum=108). The total number of CGs is 820. The mean processing times differ a

lot, depending on the CG (from seconds to minutes). All data were taken from our

MSCC.

Now, we compare our approach with classical SBR [106], ED-SBR (an

improvement of classic SBR [106]) and Koole’s algorithm [11]. Figure 38 illustrates

the real service level given by these techniques during a demanding working day. The

graphs compile the real service levels for each CG, considering the relevance

(weight) of each one. Since incoming traffic mainly arrives from 9 a.m. till 8 p.m.;

therefore, we need more accurate results for this time-interval and, particularly, for

the peaks which occur around 13 p.m. (see point 32 in Figure 38), 15 p.m. (see point

66 in Figure 38) and 19 p.m. (see point 100 in Figure 38) because, in these points, the

load is much higher. Our approach clearly improves the results reached by other

algorithms in these critical points (peaks). For the rest of points, we see that our

algorithm usually better behaves than the rest of techniques. Classic SBR and ED-

SBR sometimes offer a similar configuration of agents than our approach for some

time points and, consequently, the same service levels; but, on average, the service

levels are clearly worse than ours. Only in few points, the service level provided by

ED-SBR and SBR is slightly higher than ours (e.g. around 11:45, point 17). This

happens because in these points, our predictions had a greater error and SBR and ED-

SBR consider the current state of the system. However, we can see that differences

are tiny in these critical points and we present more stable results over the time. This

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

123

corroborates that an adaptive middle-term time-frame is recommended as algorithms

can reach nearly optimal solutions while short-term algorithms often collapse in local

optima. But, short-term algorithms present a high adaptability to changes that long-

term time-frame techniques cannot cope with. These long-term based techniques

generally extract patterns from the historical and are only appropriate for stable

environments. For this reason, our algorithm and SBR outperform Koole’s approach

which is designed for more stable MSCCs. Koole’s algorithm finds very accurate

solutions when the dynamism is more reduced such as classical staffing.

Nevertheless, this is not the case of our environment and this kind of techniques

cannot be efficiently applied to our MSCC.

Figure 38: Service level given by different techniques for a whole campaign day. X-axis
represents intervals of 300 seconds and Y-axis represents the real service level (not a fitness
value).

Table 11 compares the results obtained by all techniques presented in Figure 38.

Table 11 presents the mean service level for 120 intervals, its standard deviation and

the effectiveness, considering that our method represents the highest performance.

Note that we are actually comparing the behaviour of our approach with other

conventional techniques during a complete day rather than focusing on specific time-

frames as we have presented till now. It is crucial obtaining accurate results for

isolated time-frames but we cannot obviate that we are executing our approach

continuously so that the transitions among system states (for each time-frame) must

be taken into account.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

124

Table 11: Comparison of our approach with other relevant (call centre) algorithms for 120 5-

minute intervals.

Algorithm Real service level Standard deviation Effectiveness

Our Approach 0.941 0.020 100

ED-SBR 0.901 0.043 95.757

SBR 0.860 0.056 91.405

KOOLE 0.733 0.029 77.896

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

125

7 CHAPTER 7. CONCLUSIONS AND

FUTURE WORK

The present chapter summarises the ideas exposed in this dissertation and
highlights the major contributions of our work in Section 7.1. We also give some
guidelines for future work in Section 7.2.

7.1 SUMMARY AND CONCLUSIONS

We have presented a novel approach to the problem of workforce distribution in

dynamic multi-agent systems based on blackboard architectures (common repository

of knowledge). We have seen that these systems are extremely complex and entail

quick adaptations to a changing environment that only high-speed greedy heuristics

can handle. These greedy heuristics consist in a permanent re-planning, considering

the current system state. Intuitively, these quickly taken decisions are not appropriate

for middle and/or long term planning due to the incessant erroneous movements.

However, we have demonstrated that the use of parallel memetic algorithms,

which are more versatile than classical heuristics, can guide us towards more accurate

solutions. With the intention of applying parallel memetic algorithms to such a

dynamic environment, we have put forward a reformulation of the traditional problem

of workforce distribution in dynamic multi-agent systems based on backboard

architectures, which coalesces predictions of future system states with a precise

search mechanism, by dynamically enlarging or diminishing the time-frame

considered. We have claimed that the size of the time-frame depends upon the

dynamism of the system (smaller when there is high dynamism and larger when there

is low dynamism).

The present work has also illustrated how nearly optimal solutions each v

seconds (size of the time-frame) outperforms continuous bad distributions when the

right size of the time-frame is determined, and predictions and optimisations are

correctly carried out. Particularly, we have proposed a neural network with an

upgraded resilient propagation learning algorithm for predicting future system

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

126

variables and a parallel memetic algorithm based on an island scheme to perform the

assignment of incoming tasks to the right available agents.

Our approach has been tested out on a real-world production environment from

Telefónica which is a large multinational telephone operator. We have shown that our

approach not only outperforms other conventional techniques for separate but also as

a unified technique. Therefore, we have obtained more accurate predictions than other

famous forecast techniques for various problem instances. Besides, our search

module based on a parallel memetic algorithm has outperformed other meta-

heuristics under different scenarios. Additionally, the combination of the two

modules with the adaptive middle-term time-frame has involved fine results. This

corroborates that an adaptive middle-term time-frame can be a very powerful

approach when having the required tools to implement it. But, all that glitters is not

gold, and we assert our approach is not universal and might offer less accurate results

than other approaches in environments in which timing is not a critical constraint or

conditions are more stable and predictable.

Finally, the contributions to the scientific literature have produced the following

peer-reviewed publications ((1) and (2) are less directly related to this dissertation):

1) Martínez-López, R.; Millán-Ruiz, D.; Martín-Domínguez, A. and Toro-

Escudero, M.A.: An Architecture for Next-Generation of Telecare

Systems Using Ontologies, Rules Engines and Data Mining. Proceedings

of the International Conferences on Computational Intelligence for

Modelling, Control and Automation; Intelligent Agents, Web

Technologies and Internet Commerce; and Innovation in Software

Engineering (CIMCA 2008), p. 31-36, Vienna, Austria, December 10-12,

2008.

2) Melendez, J.; López, B. and Millán-Ruiz, D.: Probabilistic models to

assist maintenance of multiple instruments. Proceedings of the 14th IEEE

International Conference on Emerging Technologies and Factory

Automation (ETFA 2009), p. 1499-1503, Palma de Mallorca, Spain,

September 22-26th, 2009.

3) Pacheco, J.; Millán-Ruiz, D. y Vélez, J.L.: Neural Networks for

Forecasting in a Multi-skill Call Centre. Proceedings of the 11th

International Conference on Engineering Applications of Neural

Networks (EANN 2009), p. 291-300, London, UK, August 27-29, 2009.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

127

4) Millán-Ruiz, D. and Hidalgo, I.: A Memetic Algorithm for Workforce

Distribution in Dynamic Multi-Skil Call Centres. Proceedings of the 10th

European Conference on Evolutionary Computation in Combinatorial

Optimisation (EVOCOP 2010), p. 178-189, Istanbul, Turkey, April 7-9,

2010.

5) Millán-Ruiz, D.; Pacheco, J.; Hidalgo, I. y Vélez, J.L.: Forecasting in a

Multi-skill Call Centre. Proceedings of the 10th International Conference

on Artificial Intelligence and Soft Computing (ICAISC 2010), Zakopane,

Poland, June 13-17, 2010.

6) Millán-Ruiz, D. and Hidalgo, I.: Algoritmo memético paralelo para la

distribución de esfuerzo en centros de llamadas dinámicos multiagente y

multitarea. (Accepted) To appear in the 7th Spanish Conference on Meta-

heuristics, Evolutionary Algorithms and Bioinspired Algorithms (MAEB

2010), Valencia, Spain, September, 2010.

7) Millán-Ruiz, D. and Hidalgo, I.: Comparison of Metaheuristics for

Workforce Distribution in Multi-Skill Call Centres. Submitted to the

International Joint Conference on Computational Intelligence (ICEC

2010).

8) Millán-Ruiz, D. and Hidalgo, I.: A Self-Tuning Hybrid Memetic

Algorithm for Dynamic Multi-Agent Systems based on Blackboard

Architectures. Submitted to the Workshop on Self-tuning, self-

configuring and self-generating search heuristics (Self* 2010). Extended

versions of selected contributions from this workshop will be considered

for publication in a Special Issue of the Evolutionary Computation

Journal, MIT Press.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

128

7.2 AREAS OF FUTURE RESEARCH

To conclude, we propose some guidelines for future work. We recommend

analysing more datasets and more problem instances because we may obtain different

conclusions with regard to the configuration of our complete approach. So, if the

arriving load is easy to predict we should choose a simpler forecast technique.

A deeper study on constraint handling should be done as our proposal is

dependent on our specific domain (e.g. we may have different ranges for the levels of

constraints).

For the dynamism levels, we can also have a continuous approximation (without

levels) for those dynamic multi-agent systems where agents are not humans so that

we do not need to care about the agents’ rights (we can potentially change their

profiles at any time without regulation constraints).

Additionally, we suggest that an analogous study for the search module

comparison should be done, considering multi-objective evolutionary approximations

(such as SPEA-II and NSGA-II), given our problem reformulation.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

129

8 BIBLIOGRAPHY

[01] Baeza-Yates, R. and Ribeiro-Neto, B.: Modern Information Retrieval. Acm

Press Series, Addison Wesley, 1999.

[02] Özsu, M. T. and Valduriez, P.: Principles of Distributed Database Systems.

Second Edition, Prentice Hall, ISBN 0-13-659707-6, 1999.

[03] Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed

Programming. Addison–Wesley, ISBN 0-201-35752-6, 2000.

[04] Chen, Z.; Yang, M.; Francia, G. and Dongarra, J.: Self Adaptive Application

Level Fault Tolerance for Parallel and Distributed Computing. ipdps, pp.414, IEEE

International Parallel and Distributed Processing Symposium, 2007.

[05] Asiki, A.; Tsoumakos, D. and Koziris, N.: An Adaptive On-line System for

Efficient Processing of Hierarchical Data. Proceedings of the 18th International ACM

Symposium on High Performance Distributed Computing (HPDC'09), Garching,

Germany, 2009.

[06] Erman, L.; Hayes-Roth, F.; Lesser, V.R. and Reddy, D.R.: The Hearsay-II

Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty.

Computing Surveys, 12(2):213-253, 1980.

[07] Hayes-Roth, B.: A blackboard architecture for control. Artificial Intelligence,

pp. 251-321, 1985.

[08] Avramidis, A.N.; Chan, W.; Gendreau, M.; L’Ecuyer, P. and Pisacane, O.:

Optimizing daily agent scheduling in a multiskill CC. European Journal of Operational

Research (2009).

[09] Brucker, P.: Scheduling algorithms. 2nd edn. Springer, Heidelberg, 1998.

[10] Chauvet, F.; Proth, J.M. and Soumare, A.: The simple and multiple job

assignment problems. International Journal of Production Research 38(14), 3165–

3179, 2000.

[11] Bhulaii, S.; Koole, G. and Pot, A.: Simple Methods for Shift Scheduling in

Multiskill Call Centers. M&SOM 10(3), 411–420, 2008.

[12] Koole, G.: Call Center Mathematics: A scientific method for understanding

and improving contact centers, http://www.cs.vu.nl/~koole/ccmath/book.pdf ,

2006.

[13] Garey, M. and Johnson, D.S.: Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman. ISBN 0-7167-1045-5, 1979.

[14] Alberts, L.J.: Churn prediction in the mobile telecommunication industry: An

application of Survival Analysis in Data Mining.

http://www.personeel.unimaas.nl/westra/PhDMaBa-

teaching/GraduationStudents/LaurensAlberts2006/Presentatie.ppt ,2006.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

130

[15] Dasgupta, K.; Singh, R.; Viswanathan, B.; Chakraborty, D.; Mukherjea, S.;

Nanavati, A. and Joshi, A.: Social ties and their relevance to churn in mobile telecoms

networks. EDBT’08. March 25-30, Nantes, France, 2008.

[16] Gouarderes, G.; Minko, A. and Richard, L.: Simulation and multi-agent

environment for aircraft maintenance learning. AIMSA 2000, Varna , vol. 1904, pp.

152-166, ISBN 3-540-41044, 2000.

[17] Guttman, R.H. and Maes, P.: Agent-mediated Integrative Negotiation for

Retail Electronic Commerce. Proceedings of the Workshop on Agent Mediated

Electronic Trading (AMET’98), Minneapolis, Minnesota, pp. 70-80, 1998.

[18] Massaguer, D.; Balasubramanian, V.; Mehrotra, S. and Venkatasubramanian,

N.: MultiAgent Simulation of Disaster Response. ATDM Workshop in AAMAS, 2006.

[19] Rouhana, N. and Horlait, E.: Dynamic Congestion Avoidance Using Multi-

Agents Systems. Lecture Notes In Computer Science, Vol. 2164, Proceedings of the

Third International Workshop on Mobile Agents for Telecommunication

Applications, 2001.

[20] Timofeev, A.V.; Syrtzev, A.V. and Kolotaev, A.V.: Network analysis, adaptive

control and imitation simulation for multi-agent telecommunication systems. Physics

and Control, Proceedings International Conference, ISBN 0-7803-9235-3, 2005.

[21] Franklin, S. and Graesser, A.: Is it an Agent, or just a Program?: A Taxonomy

for Autonomous Agents. Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages, Springer-Verlag, 1996.

[22] Russell, S.J. and Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd

ed. Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2, chapter 2,

2003.

[23] Kasabov, N.: Introduction: Hybrid intelligent adaptive systems. International

Journal of Intelligent Systems, Vol.6, 453-454, 1998.

[24] Wooldridge, M.: An Introduction to MultiAgent Systems, John Wiley & Sons

Ltd, paperback, 366 pages, ISBN 0-471-49691-X, 2002.

[25] Dechter, R.: Constraint Processing. Morgan Kaufmann. ISBN 1-55860-890-7,

2003.

[26] Hoos, H.H. and Stutzle, T.: Stochastic Local Search: Foundations and

Applications. Morgan Kaufmann, 2005.

[27] Wil Michiels, E.A. and Korst, J.: Theoretical Aspects of Local Search

(Monographs in Theoretical Computer Science. An EATCS Series). Springer 1 edition,

ISBN-10: 3540358536, 2007.

[28] Holland, J.H.: Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, 1975.

[29] Goldberg, D. E.: Genetic Algorithms in Search Optimization and Machine

Learning. Addison Wesley. pp. 41, 1989.

[30] Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and

Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation

Program (report 826), 1989.

[31] Lai, T. L. and Robbins, H.: Optimism in the face of uncertainty: Asymptotically

efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4–22, 1985.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

131

[32] Auer, P.; Cesa-Bianchi, N. and Fischer, P.: Finite time analysis of the

multiarmed bandit problem. Machine Learning, 47(2-3) pp. 235–256, 2002.

[33] Audibert, J.; Munos, R. and Szepesvári, C.: Tuning bandit algorithms in

stochastic environments. ALT, 2007.

[34] Harchol-Balter, M. and Downey, A.: Exploiting process lifetime distributions

for dynamic load balancing. ACM Transactions on Computer Systems, vol. 15, pp.

253–285, 1997.

[35] Hansen, P. and Mladenovic, N.: Variable neighbourhood search: Principles

and applications. European Journal of Operations Research, 130:449–467, 2001.

[36] Caragiannis, I.; Flammini, M.; Kaklamanis, C.; Kanellopoulos, P. and

Moscardelli, L.: Tight bounds for selfish and greedy load balancing. ICALP, LNCS,

2006.

[37] Gans, N., Koole, G. and Mandelbaum, A.: Telephone Call Centers: a Tutorial

and Literature. Review. 2, 2002.

[38] Messerli, E.J.: Proof of a convexity property of the Erlang B formula. Bell

System Technical Journal 51, 951-953, 1972.

[39] Inayatullah, M.; Ullah, F.K.; Khan., A.N.: An Automated Grade Of Service

Measuring System. IEEE—ICET 2006, 2nd International Conference on Emerging

Technologies, Peshawar, Pakistan 13-14, pp.230-237, 2006.

[40] Mandelbaum, A. and Zeltyn, S.: The Palm/Erlang-A Queue, with Applications

to Call Centers. Advances in Services Innovations, 2005.

[41] Eddy, S. R.: What is dynamic programming? Nature Biotechnology, 22, 909-

910, 2004.

[42] Lawler, E. L. and Wood, D.E.: Branch-and-bound methods: A survey.

Operations Research, 14(4):699--719, 1966.

[43] Aouchiche, M.; Caporossi, G. and Hansen, P.: Variable neighborhood search

for extremal graphs: Variations on graffiti. Congressus Numerantium, 148:129–144,

2001.

[44] Den Besten, M. and Stützle, T.: Neighborhoods revisited: Investigation into

the effectiveness of variable neighborhood descent for scheduling. In MIC’2001,

pages 545–549, Porto, 2001.

[45] Kirkpatrick, S.; Gelatt, C. D. and Vecchi, M.P.: Optimization by Simulated

Annealing. Science. New Series 220 (4598): 671–680, 1983.

[46] Glover, F. and M. Laguna: Tabu Search. Kluwer, Norwell, MA, 1997.

[47] Glover, F.: Tabu Search — Part I, ORSA Journal on Computing, 190-206,

1989.

[48] Glover, F. Tabu Search — Part II, ORSA Journal on Computing, 4-32, 1990.

[49] Cvijovic, D.; Klinowski, J.: Taboo search - an approach to the multiple minima

problem. Science, 664-666, 1995.

[50] Glover F.: A Template for Scatter Search and Path Relinking. Lecture Notes in

Computer Science, 1363: 1-53, 1997.

[51] Katayama, K. and Narihisa, H.: Iterated local search approach using genetic

transformation to the traveling salesman problem. Proceedings of GECCO’99, Vol. 1.

Morgan Kaufmann, pp. 321–328, 1999.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

132

[52] Kocsis L. and György A.: Efficient Multi-start Strategies for Local Search

Algorithms. LNCS, Machine Learning and Knowledge Discovery in Databases, 705-

720, 2009.

[53] Festa, P. and Resende, M.G.C.: GRASP: An annotated bibliography. Essays

and Surveys on Metaheuristics, pp. 325–367, Kluwer Academic Publishers, 2002.

[54] Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis,

Politecnico di Milano, Italie, 1992.

[55] Kennedy, J. and Eberhart, R.: Particle Swarm Optimization. Proceedings of

IEEE International Conference on Neural Networks, pp. 1942-1948, 1994.

[56] Di Caro, G. and Dorigo, M.: Mobile agents for adaptive routing. In H. El-

Rewini, editor, Proceedings of the 31st International Conference on System Sciences

(HICSS-31), pages 74–83. IEEE Computer Society Press, Los Alamitos, CA, 1998.

[57] Meyn, S.P. and Tweedie, R.L.: Markov Chains and Stochastic Stability.

London: Springer-Verlag, 1993.

[58] Fang, Y.: Hyper-Erlang Distribution Model and its Application in Wireless

Mobile Networks. Wireless Networks, Springer Netherlands, ISSN 1022-0038,

Volume 7, Number 3, 2001.

[59] Dutta, M. and Chaubey, V.K.: Performance Analysis of All-Optical WDM

Network with Wavelength Converter Using Erlang C Traffic Model. Communications

in Computer and Information Science, Information Processing and Management,

Springer, ISBN 978-3-642-12213-2, pp. 238-244, 2010.

[60] Gallager, R.G.: Discrete stochastic processes. Kluwer, Boston, 1996.

[61] Lindley, D.V.: Regression and correlation analysis. New Palgrave: A

Dictionary of Economics, v. 4, pp. 120–23, 1987.

[62] Wei, W.W.: Time series analysis: Univariate and multivariate methods. New

York: Addison-Wesley, 1989.

[63] Zheng, Y. and Xu, R.: An Adaptive Exponential Smoothing Approach for

Software Reliability Prediction. Wireless Communications, Networking and Mobile

Computing, 2008.

[64] Bowerman, B.L. and O’Connell, R.T.: Forecasting and Time Series: An Applied

Approach. Duxbury classic series, third edition, 1993.

[65] Makridakis, S.; Wheelwright, S.C. and HYNDMAN, R.J.: Forecasting: Methods

and Applications. John Wiley and Sons, Inc., 1998.

[66] Antipov, A. and Meade, N.: Forecasting call frequency at a financial services

call centre. Journal of operation research, pp. 953-960, 2002.

[67] Van den Bergh, K.: Predicting Call Arrivals in Call Centers. Website:

http://www.few.vu.nl/stagebureau/werkstuk/werkstukken/werkstuk-bergh.pdf,

thesis, 2006.

[68] Cotez, P.; Rio, M.; Rocha, M. and Sousa, P.: Internet Traffic Forecasting using

Neural Networks. International Joint Conference on Neural Networks, 2006.

[69] Zaiyong, T. and Fishwick, P.A.: Feed-forward Neural Nets as Models for Time

Series Forecasting. ORSA Journal of Computing, 1993.

[70] Mandic, D. and Chambers, J.: Recurrent Neural Networks for Prediction:

Architectures, Learning algorithms and Stability, Wiley, 2001.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

133

[71] A. B. Shabri: Comparision of Time Series Forecasting Methods Using Neural

Networks and Box-Jenkins Model. Matematika, ISSN 01278274, 2001.

[72] Michie, D.; Spiegelhalter, D.J. and Taylor, C.C.: Machine Learning, Neural and

Statistical Classification, 1994.

[73] Phansalkar, V. and Sastry, P.S.: Analysis of the Back-Propagation Algorithm

with Momentum. IEEE Transactions on Neural Networks, pp. 505-506, 1994.

[74] Igel, C. and Hüsken, M.: Empirical Evaluation of the Improved Rprop

Learning. Neurocomputing 50, 105-123, 2003.

[75] Aquino, I.; Perez, C.; Chavez, J.K. and Oporto, S.: Daily Load Forecasting

Using Quick Propagation Neural Network with a Special Holiday Encoding. Neural

Networks, 2007. IJCNN 2007. International Joint Conference on Neural Networks,

2007.

[76] Luenberger, D. G. and Ye, Y.: Linear and nonlinear programming.

International Series in Operations Research & Management Science, New York,

Springer, pp. xiv+546, 2008.

[77] Buhmann, M. D.: Radial Basis Functions: Theory and Implementations.

Cambridge University Press, ISBN 978-0-521-63338-3, 2003.

[78] Fahlman, S. and Lebiere, C.: The Cascade-Correlation Learning Architecture.

Article created for National Science Foundation under Contract Number EET-

8716324 and Defense Advanced Research Projects Agency (DOD), ARPA Order No.

4976, 1991.

[79] Hopfield, J.J.: Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences of the

USA, vol. 79, no. 8, pp. 2554-2558, 1982.

[80] Haykin, S.: Neural Networks: A Comprehensive Foundation. Second edition,

Prentice Hall, ISBN 0132733501, 1998.

[81] Kingsland, S. E.: Modeling nature: episodes in the history of population

ecology. Chicago: University of Chicago Press, ISBN 0-226-43728-0, 1995.

[82] Cadieu C.; Kouh M.; Pasupathy A.; Conner C.E.; Riesenhuber M. and Poggio

T.: A Model of V4 Shape Selectivity and Invariance. J Neurophysiol 98: 1733-1750,

2007.

[83] Lindeberg, T.: Scale-space for discrete signals. PAMI(12), No. 3, pp. 234-254,

1990.

[84] Osborn, G.: Mnemonic for hyperbolic formulae. The Mathematical Gazette,

p. 189, volume 2, issue 34, 1902.

[85] Sagias, N. C. and Karagiannidis, G. K.: Gaussian class multivariate Weibull

distributions: theory and applications in fading channels. Institute of Electrical and

Electronics Engineers. Transactions on Information Theory 51 (10): 3608–3619,

2005.

[86] Riedmiller, M. and Braun, H.: Rprop - A Fast Adaptive Learning Algorithm.

Proceedings of the International Symposium on Computer and Information Science

VII, 1992.

[87] Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University

Press. ISBN 0-19-853849-9, 1995.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

134

[88] Silva, F.M. and Almeida, L.B.: Speeding up backpropagation. Advanced

Neural Computers, pages 151–158. North-Holland, 1990.

[89] Igel, C. and Hüsken, M.: Improving the Rprop Learning Algorithm.

Proceedings of the Second International Symposium on Neural Computation,

NC’2000, pp. 115–121, ICSC Academic Press, 2000.

[90] Jacobs, R.A.: Increased rates of convergence through learning rate

adaptation. Neural Networks, 1(4):295–307, 1988.

[91] LeCun, Y.; Bottou, L.; Orr, G.B. and Müller, K.R.: Efficient backprop. Neural

Networks: Tricks of the Trade, number 1524 in LNCS, chapter 1. Springer-Verlag,

1998.

[92] Tollenaere, T.: Supersab: Fast adaptive backpropagation with good scaling

properties. Neural Net-works, 3:561–573, 1990.

[93] Miller, B.L. and Goldberg, D.: Genetic Algorithms, Tournament Selection, and

the Effects of Noise. Report 950006, 1995.

[94] Muhlenbein, H. and Schlierkamp-Voosen, D.: Predictive Models for the

Breeder Genetic Algorithm. Evolutionary Computation, 1993.

[95] Wills, C.: Rank-Order Selection Is Capable of Maintaining All Genetic

Polymorphisms. Genetics. 89(2): 403–417, 1978.

[96] Gayon, J. and Matthew, C.: Darwinism's Struggle for Survival: Heredity and

the Hypothesis of Natural Selection. Cambridge University Press, pp. 158, 1998.

[97] Gog, A.; Chira, C.; Dumitrescu, D. and Zaharie, D.: Analysis of Some Mating

and Collaboration Strategies in Evolutionary Algorithms. 10th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC

'08, 2008.

[98] Ishibuchi, H. and Shibata, Y.: A Similarity-based Mating Scheme for

Evolutionary Multiobjective Optimization. Lecture Notes in Computer Science, 2003.

[99] Gwiazda, T.: Genetic Algorithms Reference Vol.1 Crossover for single-

objective numerical optimization problems. Lomianki, 2006.

[100] Spears, W. and De Jong, K.: An Analysis of Multi-Point Crossover. Proc.

Foundations of Genetic Algorithms Workshop, 1990.

[101] Sywerda, G.: Uniform crossover in genetic algorithms. Proceedings of the

third international conference on Genetic algorithms, George Mason University,

United States, pp. 2-9, 1989.

[102] Vavak , F. and Fogarty, T.C.: Comparison of Steady State and Generational

Genetic Algorithms for Use in Nonstationary Environments. IEEE International

Conference on Evolutionary Computation (ICEC), 1996.

[103] Chakraborty, B. and Chaudhuri, P.: On The Use of Genetic Algorithm with

Elitism in Robust and Nonparametric Multivariate Analysis. Austrian Journal of

Statistics, Volume 32, Number 1&2, pp. 13–27, 2003.

[104] Koole, G.; Pot, S. and Talim, J.: Routing heuristics for multi-skill call centers.

Proceedings of the Winter Simulation Conference, 1813–1816, 2003.

[105] Whitt W.: Staffing a call center with uncertain arrival rate and absenteeism.

PO&M, 2006.

[106] Garnett, O. and Mandelbaum, A.: An Introduction to Skills-Based Routing

and its Operational Complexities. Teaching Note, 2000.

Workforce Distribution in Dynamic Multi-Agent Systems David Millán Ruiz

135

[107] Thompson, G. M.: Labor staffing and scheduling models for controlling

service levels. Naval Res. Logist, 719–740, 1997.

[108] Ingolfsson, A.; Cabral, E. and Wu, X.: Combining integer programming and

the randomization method to schedule employees. TR, School of Business, University

of Alberta, 2007.

[109] Land, A.H. and Doig, A.G.: An automated method for solving discrete

programming problems. Econometrica 28 497–520, 1960.

[110] Gomory, R.E.: Outline of an algorithm for integer solutions to linear

programs. Bull. Amer. Math. Soc. 64 275–278, 1958.

[111] Ahrens, J.H. and Ulrich, D.: Computer Methods for Sampling from Gamma,

Beta, Poisson and Binomial Distributions. Computing 12 (3): 223-246, 1974.

[112] Micheli, A.: Neural Network for Graphs: A Contextual Constructive Approach.

IEEE Transactions on Neural Networks, 20:3, 498-511, 2009.

[113] Jolliffe, I.T.: Principal Component Analysis. Series: Springer Series in

Statistics, 2nd ed., Springer, NY, XXIX, 487 p. 28 illus, ISBN 978-0-387-95442-4, 2002.

[114] http://www.cs.waikato.ac.nz/ml/weka/

[115] Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation

and model selection. Proceedings of the Fourteenth International Joint Conference

on Artificial Intelligence 2 (12): 1137–1143, 1995.

[116] http://robjhyndman.com/software/forecast

