
TRABAJO DE FIN DE MÁSTER

2017

A Novel Approach to the Placement Problem for
FPGAs based on Genetic Algorithms.

Máster Universitario en Inteligencia Artificial Avanzada

Department of Artificial Intelligence

Universidad Nacional de Educación a Distancia

by

Dr. Francisco Javier Veredas Ramı́rez

Advisor: Dr. Enrique J. Carmona Suárez

Abstract

This Master’s thesis investigates the critical path optimization in the FPGA’s placement.

An initial investigation of the FPGA’s placement problem shows that the minimization

of the traditional cost function used in the simulated annealing’s placement not always

produce a minimal critical path. Therefore, it is proposed to use the routing algorithm as

a cost function to improve the final critical path. The experimental results confirm that

this new cost function has better quality results than the traditional cost function, at the

expenses of longer execution time. A genetic algorithm using the routing algorithm as a cost

function is found to reduce the execution time meanwhile is maintained a minimal critical

path. The use of genetic algorithms with the new cost function will be useful in those cases

where a minimum critical path is needed. Furthermore, this work investigates the use of

genetic algorithm using the traditional cost function. In this case, no better critical path in

comparison with a simulated annealing’s placement is observed.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope . 1

1.3 Problem Statement . 4

1.3.1 Traditional Cost function . 4

1.3.2 Problems with the Traditional Cost Function. 8

1.4 Hypothesis and Research Goals . 8

1.5 Master’s Thesis Outline . 9

2 State of the Art 10

2.1 FPGA Architecture . 10

2.2 Placement Algorithms . 12

2.3 Taxonomy . 13

3 New Solutions to the Placement Problem 17

3.1 Placement with Genetic Algorithms . 17

3.1.1 Codification . 17

3.1.2 Fitness Function. 20

3.1.3 Genetic Algorithm . 20

3.1.4 Local Unimodal Sampling Method 26

3.2 Routing Algorithm as a New Cost Function 26

4 Experimental Results and Discussion 29

4.1 Configuration Parameters . 29

4.1.1 FPGA’s Architecture Parameters . 29

4.1.2 Genetic Algorithm Parameters . 31

4.1.3 LUS Method Parameters . 32

i

4.2 Experimental Results and Discussion . 33

5 Conclusions and Future Work 41

ii

Chapter 1

Introduction

This chapter presents the motivation, and problem statement of this work. The next section

is a brief recount of the motivation. In the second section, the scope of this work is described.

In the third section the problem’s statement is described. It follows a section with the

research goals. Finally, in the last chapter, the rest of this work is outlined.

1.1 Motivation

Field Programmable Gate Arrays (FPGAs) are configurable devices that can be used to im-

plement any digital hardware design [1]. FPGAs also offer features such as built-in hardwired

processors, substantial amounts of SRAM memory blocks, clock management systems, and

support for many of the latest, very fast device-to-device board-level signaling technologies.

FPGAs are used in a wide variety of applications, ranging from data processing, storage,

instrumentation, network communications, and digital signal processing.

To map a hardware design into an FPGA, it is needed a series of automated software

tools (CAD tools). These tools should take into account the minimum clock frequency of

the hardware design. Note that the minimum clock frequency is related with the optimal

critical path of the hardware design. In the state of the art’s CAD tools, not always the

minimum clock frequency is achieved. Therefore, better CAD’s algorithms are needed. This

Master’s thesis deals with these algorithms.

1.2 Scope

This section briefly describes the design flow of FPGAs and points to the focus of this work.

1

CHAPTER 1. INTRODUCTION 2

A typical design flow for FPGAs consists of a concatenated set of CAD tools. The

standard design flow for FPGAs consist of three major steps [2]: design entry and synthesis,

design implementation, and design verification.

The start of the design flow is a digital circuit in a form of a schematic entry or a high-level

description of the hardware, expressed in high-level hardware description languages (HDL)

such as VHDL [3] or Verilog [4]. The description is read by a synthesis program, which maps

the HDL into a network of Boolean equations, flip-flops (FFs), and pre-defined modules.

During the synthesis process, the Boolean equations are optimized with respect to estimated

implementation area, and delay. The optimizations performed at this stage are limited

to those that can benefit circuit implementations on any medium, not just FPGAs. The

Boolean equations are then first mapped into a circuit’s netlist of Look-Up-Tables (LUTs)

and FFs. During this technology mapping process, the circuit is again optimized with respect

to the estimated implementation area, and delay. The optimizations are targeted towards

specific implementation technologies. Area is typically optimized by minimizing the number

of LUTs or logic blocks that are required to implement the circuit. Delay is often optimized

by minimizing the number of LUTs or logic blocks that are on the estimated critical paths

of the circuit.

The design implementation steps consist of packing, placement, routing, and bit-stream

generation. The packing process groups logic blocks into Basic Logic Elements (BLEs) 1 .

The specific location of each netlist Logic Block (LB)2 on the target FPGA is determined

during the placement process. A placement program assigns each LB to a unique location to

optimize delay, and minimize wiring demand. Figure 1.1 shows an FPGA architecture with a

placed circuit. As the placement does not deal with the routing, the routing resources are not

shown in the figure. During the routing process, a routing program is used to connect the LBs

by determining the configuration of the programmable routing resources. The main task of

all routing programs is to successfully establish all connections in a circuit using the limited

amount of physical resources available on a target FPGA. The other task of the routing

programs is to minimize delay by allocating fast physical connections for critical paths. The

synthesis, and the technology mapping are together commonly called the front end of the

FPGA CAD flow. The packing process, placement, and routing steps are commonly called

the back end of the FPGA CAD flow. Finally, from the design, and placement and routing

information, a bitstream is created for subsequent programming of the FPGA device.

1See BLE’s definition in Section 2.1.
2LB refers to the entities of the mapped netlist. Configurable Logic Block (CLB) is the physical block in

a FPGA.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: FPGA Architecture showing a four LBs and four I/O Blocks placed circuit.

Design verification is the process of testing the function, and performance of a design. The

verification can be realized with functional simulation, static timing analysis, and in-circuit

verification. Functional simulation determines whether the logic of the designed circuit is

correct. Functional simulation can take place in early stages of the design (e.g. in the HDL

phase). The static timing analysis verifies that the design meets the timings specifications.

In-circuit verification tests the circuit under typical operating conditions.

The focus of this Master’s thesis is the optimization of the critical path. In concrete,

the optimization of the critical path in the placement’s algorithm. The critical path of a

digital circuit is here understood as the maximum delay of all the logic paths between two

sequential elements (e.g. FFs) of a circuit. The final critical path of a circuit is known at the

end of the design flow. This means, that in the case of the placement’s algorithm, a model

(in form of a cost function) is requested to guess and optimize the critical path. The next

section will describe the placement’s problem on FPGAs.

CHAPTER 1. INTRODUCTION 4

1.3 Problem Statement

From the designer point of view, the problems of placement are:

1. Time duration.

2. The placement solution can be no feasible to find a routing.

3. Bad quality of placement metrics: Area, critical path delay, and power consumption.

Time duration. Mapping complex circuits in current FPGAs with more than a million

configurable logic gates [5], requires large time (order of hours) to perform placement. This

limits significantly the designer productivity.

Solution Feasibility. As explained in the previous chapter, the next step after place-

ment is routing. The routing resources (as number of tracks per channel) in an FPGA is

limited. It can be placement solutions that makes routing impossible.

Placement Metrics. As it can be seen from the placement metrics, the placement al-

gorithm tries to optimize the circuit performance (critical path), area (minimum array size),

and power consumption of the FPGA.

As one of the most important optimization parameters is the critical path, this work will

focus on it. It has been said in the previous section that it is not possible to calculate the

final critical path in the placement’s step (it is needed the later routing step). To guess

the circuit’s delays after the placement, a cost function is used. In the next subsection, the

common used cost function (called in this work traditional cost function) is presented. The

last subsection details the problem of the traditional cost function.

1.3.1 Traditional Cost function

The cost function of the placement algorithm depends of the FPGA architecture and the

desired optimization. As one of the objectives of the FPGA placement is to allow the FPGA

routing, the wiring congestion (how many tracks are used in one channel) is an important

metric. Therefore, the final cost function should have a wire cost term [6]. In most of the

cases, it is desired to minimize the circuit delays associated with the placement. These delays

can be modeled with a timing cost term [7].

CHAPTER 1. INTRODUCTION 5

It will follow a description the cost terms most common used for the cost function. To

avoid confusion, in this work it is used the term VTR-N to designate specifically the VTR

tool with the traditional cost function.

Wiring Linear Congestion Cost

The wiring linear congestion cost term is defined as,

wire cost =
Nnets∑
i=1

q(i) ·
[
bbx(i) + bby(i)

]
(1.1)

This cost is applied as a summation to all the nets of the circuit. The smallest geometrical

span of one net is represented with a rectangular boundary box. The horizontal value of the

boundary box in one net is bbx(i), and the vertical is bby(i). An example of boundary box is

depicted in Figure 1.2. Note that the lines represent the pin connections of a net. These lines

are only conceptual because the routing is still not done. The q(i) parameter compensates

the wire estimation cost and is obtained from [8]. The q(i) parameter values are calculated as

follows: (1) M randomly placed pins are set within a boundary box, (2) an optimal Steiner

with this placed pins are drawn, (3) the horizontal (or vertical) cut points of this tree is

counted, (4) the last steps are repeated for K random tries for each M pins configuration. As

example, in the left of Figure 1.3, it is possible to see a net with four randomly pins placed

in a boundary box. A Steiner tree is constructed and a vertical cut line is moved from left to

right to count the crossing points. In the left of the figure, the vertical line cross one point

of the Steiner tree. In [8] is used a configuration of K=10000 random tries for each pins

configuration. The pins configuration goes from M = 1 ∼ 3 to M = 50 pins. For each pin

configuration and direction (horizontal or vertical) a wiring distribution map (WDM) can be

constructed. Figure 1.4 shows the representation of a horizontal WDM with 20 pins. From

the figure that the resources demand is lower in near the border of the boundary box. The

mean values of the WDM of different pin configurations are used to calculate q(i). Therefore,

q(i) represents the expected number of wires crossing a cut line through the bounding box

in units of tracks. A table was constructed in [8] with values of 1 for 1 ∼ 3 pins to 2.79 for

50 pins. To extend these values over 50 pins, [7] did a linear regression,

q(i) = 2.79 + 0.02616 · (Num Net P ins− 50) (1.2)

where Num Net P ins is the number of pins of one net.

CHAPTER 1. INTRODUCTION 6

Figure 1.2: Boundary box for a net [7].

Timing Cost

The timing cost term is defined as,

timing cost =
∑

∀i,j∈circuit

Delay(i, j) · Criticality(i, j)CE (1.3)

This cost is applied as a summation to all source node i to the other possible (connected)

sink node j of the circuit. The delay of a source node i to a sink pin j is expressed with

Delay(i, j). The term Criticality(i, j) is defined as,

Criticality(i, j) = 1− Slack(i, j)

Dmax

(1.4)

The slack, Slack(i, j) is the delay that can be added to a path without being critical.

Dmax is the critical path delay. The critical exponent, CE, is a constant to weight the

paths that are more or less time critical. To find CE, Marquardt et al. [7] ran a set of

experiments with a set of configurations a circuits. It is found a best case around CE = 8

when the cost is balanced (congestion and timing cost). Greater values of CE = 8 does not

decrease the critical path, and the algorithm focus to minimize the wiring cost. Another

experiment, when the only contribution of the total cost is the timing cost, shows the best

CHAPTER 1. INTRODUCTION 7

Figure 1.3: Example of crossing points [8].

Figure 1.4: Horizontal wiring distribution map of 20 pins [8].

value is CE = 2 or CE = 3. As a result of these experiments, the default value in the

academic VTR-N [9] tool is CE = 8.

The traditional cost function to optimize the critical path has the form:

Costwire,time = λ · timing cost

previous timing cost
+ (1− λ) · wire cost

previous wire cost
(1.5)

where λ is a trade-off parameter. To find λ, Marquardt et al. [7] run a set of circuits

with CE = 8. It is found that in average λ = 0.5 has the best compromise between wire

congestion and critical path cost. A close value λ = 0.6 was found in another independent

experiments [10].

CHAPTER 1. INTRODUCTION 8

1.3.2 Problems with the Traditional Cost Function.

The extensive use of the traditional cost function by researchers in the last twenty years

validates the usability of itself. An open question is if this cost function is accurate enough.

An experiment using the VTR-N placement and routing tool [11] was performed. The circuits

planet, s1238 and mm30a from the MCNC benchmark [12] have been tested with different

number of iterations and using λ = 0.5 and λ = 1. To compare between the different runs,

it is used the same normalization. The values of this normalization are chosen with the

resulting wire cost and timing cost of the first run. In Figure 1.5 the results of the cost

function and the critical path after routing are compared. It can be seen in the figure that,

given two cost values, if the former is smaller than the second, the same inequality is not

always guaranteed in the respective critical path values. As example, in the circuit s1238, a

cost = 0.26 has in our experiment a critical path of 4.44 ns, and in another test a cost = 0.33

has a critical path of 4.36 ns. This indicates that a placement algorithm that optimizes the

traditional cost function, no necessarily will optimize the critical path.

1.4 Hypothesis and Research Goals

This work focus in optimizing the critical path of FPGAs using the routing algorithm in the

placement step. With this end in mind, the following hypothesis are done:

1. A cost function based on the routing algorithm is more accurate than the cost function

that is traditionally used to optimize the critical path

2. In order to optimize the critical path, the use of evolutionary algorithms can be com-

petitive compared to classical methods.

Taking into consideration these hypothesis, the research goals of this Master’s thesis are:

1. Analysis and study of a new cost function based on the routing algorithm to optimize

the critical path.

2. Analysis and study of genetic algorithms in the FPGA’s placement to optimize the

critical path.

CHAPTER 1. INTRODUCTION 9

(a) λ=0.5 planet (b) λ=1 planet

(c) λ=0.5 s1238 (d) λ=1 s1238

(e) λ=0.5 mm30a (f) λ=1 mm30a

Figure 1.5: Comparison of the traditional cost function and the critical path after routing
using the VTR-N’s tool.

1.5 Master’s Thesis Outline

The rest of this Master’s thesis is organized as follows. In the next Chapter 2, the state of

the art of the FPGA’s placement is presented. The alternatives of the FPGA placement are

presented in Chapter 3. Chapter 4 presents and discusses the experimental results. Finally,

the last Chapter provides concluding remarks.

Chapter 2

State of the Art

The objective of this chapter is the review of the placement’s approaches found in literature.

To understand the terminology used in this and further chapters, the next section presents

the main concepts of the FPGA’s architecture, and the second section briefly describes the

algorithms used in FPGA’s placement. A comprehensive literature’s review is discussed in

the last section.

2.1 FPGA Architecture

An FPGA has three key parts:

1. Input and output (I/O) Blocks.

2. Hard macros: SRAM block, multiplier, and digital clock manager (DCM).

3. Logic blocks with the configurable interconnect (tile).

Typically, the I/O blocks are arranged as a ring around the outer side of the FPGA’s die.

There are two different types of I/O blocks: global I/O blocks, and programmable I/O blocks.

The global I/O blocks include dedicated units for configuration, JTAG test1, clock, and

power/ground connection. A programmable I/O block provides individually programmable

input, output, or bi-directional (any combination of the input, and output configuration)

access to one of the I/O pins on the exterior of the FPGA package.

Hard macros are used to improve the area, and delay efficiency of the FPGA. Common

blocks include SRAMs, multipliers, transceivers, processors, and DCMs. A generic FPGA

1In some FPGA devices, the JTAG port is also used for configuration.

10

CHAPTER 2. STATE OF THE ART 11

consists of numerous CLBs. Each of them having the capability to implement a wide range of

digital logic functions. A Boolean logic function can be obtained thanks to a LUT-based or

multiplexer-based hardware implementation. A CLB has a sub-level of hierarchy called Basic

Logic Element (BLE). A BLE has a minimum of one LUT and one FF. Note that a CLB

contains one or more BLEs. The configurable interconnect is used to connect the input, and

output of the CLBs. This interconnect is designed to support any netlist mapping without

major routing congestion. Typically, the array is two-dimensional, although there are some

solutions which are based on a one-dimensional architecture (i.e. a row-based architecture

[13]). The later however do not take advantage of having short connections to next neighbors

in the vertical, and horizontal direction.

In a so-called island style FPGA, the configurable logic blocks are arranged in a two-

dimensional array with horizontal routing channels between rows of blocks, and vertical

routing channels between columns. Each routing channel comprises a bundle of routing

tracks for signal transport (tracks per channel). At each crossing point of routing channels,

there is a configurable switch-matrix, which allows change of direction or communication

with its neighboring logic block. There are several types of switch-matrix depending of the

possible configurations (e.g. Wilton [14], subset [15] , hyperuniversal [16]). A so-called tile

comprises a CLB, a switch matrix, and routing channels. By pure abutment of tiles, the

array size can be varied (i.e. no additional routing resources need to be provided after the

tiles are placed.) Figure 2.1 shows an array of four tiles with its routing resources.

The configuration of the FPGA comprises the configuration of the CLBs, IO blocks, and

routing resources, and it is done by means of programmable switches. There are different

ways of implementing a programmable switch. Programmable switches that are currently in

use in commercial FPGAs are SRAM cells, and Flash memory cells. The FPGA market is

coped with SRAM cells because this is a cost-effective technology process.

There are two major players in the FPGA market: Xilinx Inc. [17], and Intel Corporation

(former Altera Inc.) [18]. Both use architectures which are array-based, and have logic

clusters at the lower hierarchy level. They have two families, one for high performance, and

high complexity, and another one for low cost, and higher volume. Both companies follow

the trend of embedding more, and more optimized macros into the array (e.g. digital signal

processors (DSPs), transceivers, ...).

CHAPTER 2. STATE OF THE ART 12

Figure 2.1: FPGA array of four tiles.

2.2 Placement Algorithms

With the invention of FPGAs by Xilinx Inc in 1985 [1], there is the necessity of using

automated tools for placement. In all the placement algorithms found in literature, a cost

function is involved. The cost function helps in the optimization of a quality parameter (e.g.

critical path). Several algorithms can be found to solve the placement problem of FPGAs:

1. Simulated annealing (SA)

2. Genetic algorithm (GA)

3. Analytic method (AM)

4. Other (OT)

Simulated annealing algorithm. The first algorithms used for FPGA were adaptations of

standard-cell VLSI’s placement algorithms. Specifically, it is used the SA [19]. SA emulates

a physical process. In this process, a material is first heat allowing the molecules moving

freely, and then the material is cooling down until all molecules takes a fixed position. If

the process is slow cooled, the total energy of the material is minimal. Algorithm 1 shows

a traditional SA algorithm in FPGAs [20]. Using analogy for an FPGA placement, first

CHAPTER 2. STATE OF THE ART 13

the algorithm starts with a random placement of the logic blocks (molecules in the physi-

cal model). After the random placement, the algorithm iterates in a loop moving the logic

blocks. In each movement of a logic block a cost function (energy in the physical model) is

evaluated. It is desired a better cost value than the previous iteration. The acceptance prob-

ability of the new placement, depends of a parameter (temperature in the physical model)

that varies during all iterations.

Genetic algorithm. GAs emulates the natural evolution of species as they evolve to better

adapt to their environment. The GA starts with a set of initial placements (population). An

initial placement can be random or not. One placement solution of a population is commonly

represented as string of placed logic blocks (chromosome). After the initial placement, the

GA iterates to find a feasible solution. In each iteration (generation), a cost function (fit-

ness) is calculated to improve the quality of the placement. At the end of each iteration, it

is performed a selection and a combination (e.g. crossover, mutation) of the best placement

solutions.

Analytic method. There is a multitude of analytical methods (e.g. cluster growth,

quadratic assignment). A popular method in this category is the min-cut algorithm. In

the min-cut placement, the designed circuit is split in two sub-circuits that minimize the

number of nets connected in both circuits. The two sub-circuits are placed in separates

halves of the FPGA. This process of two is recursively applied until a criterion is satisfied.

Because the optimization the sub-circuit partitioning becomes difficult and excessive con-

strained in complex circuits, heuristic algorithms are preferred than analytical methods.

Other. Other types of algorithms are swarm optimization and ant colony optimizations.

These two types of algorithms are stochastic.

2.3 Taxonomy

A literature study with the three type of algorithms is shown in Table 2.1. The table shows

the characteristic and improvement of each paper. Each paper is briefly discussed in the

next subsections.

Simulated annealing algorithm. SA is the most used placement algorithm in FPGAs

CHAPTER 2. STATE OF THE ART 14

Input : circuit netlist, GA parameters, FPGA parameters
Output: placement netlist

1 . Init
2 load circuit and FPGA structure;
3 random placement;
4 init temperature;
5 . Main Loop
6 while not termination (exit criterion) do
7 normalization cost = previous cost;
8 for all mov lim do
9 swap randomly one block;

10 calculate new cost;

11 ∆cost = new cost−previous cost
normalization cost

;
12 if ∆cost ≤ 0 then
13 accept new placement;
14 previous cost = new cost;

15 else
16 r = random(0, 1);

17 if r ≤ e−
∆cost

temperature then
18 accept new placement;
19 previous cost = new cost;

20 end

21 end

22 end
23 update temperature;

24 end
25 . End
26 save best placement;

Algorithm 1: Simulationg Annealing Algorithm. init temperature = 20 · std dev
where the standard deviation, std dev, is calculated with the cost variation of mov-
ing blocks randomly (mov lim times). mov lim = number of blocks1.3333 + 1. The
exit criterion is satisfied when temperature<0.005 · cost

number of nets
. The update temper-

ature is done by means of a tabulated parameter α with Tnew = α ·Told. The cost of the
initial random placement is taken the first time that normalization cost is calculated.

and it has been extensively studied by the University of Toronto (Canada) [20]. In 1997,

this university made public its own tool (called VTR) [6] together with the source code [9].

Most of the investigations with FPGA’s placement found in literature use as reference this

tool. In the year 2000, the same university improved its tool adding timing analysis into the

function cost [7]. Since then, the University of Toronto has not modified the placement’s

algorithm of the VPR’s tool. Nag et al. in [21] propose an algorithm that performs simulta-

CHAPTER 2. STATE OF THE ART 15

Type Ref. Characteristic Improvement Year

SA [6] Only wire cost N.A. 1997

SA [21] Simultaneous P&R Better CP (small circuits) 1998

SA [7] Wire and timing cost Better CP 2000

SA [22] Modified Swap function Better exec.time than SA 2007

SA [23] Congestion term in Cost Small CP improvement 2015

GA [24] Crossover and mutation N.A. 1999

GA [25] No crossover Better than SA (small circuits) 2000

GA [26] Distance in cost function Better exec.time than GA 2004

GA [27] Neural Network Better exec.time than GA 2007

GA [28] Local search in mutation Improvement small circuits 2007

GA [29] No crossover Worst than SA 2010

GA [30] Crossover and mutation N.A. 2011

GA [31] Crossover operator Confined-swap operator is better 2012

GA [32] Clustering mutation Better CP than GA 2013

GA [33] Parallel execution Better exec.time than SA 2013

AM [34] Quadratic placement Worst than SA 2005

AM [35] Heterogeneous FPGAs N.A. 2012

OT [36] Swarm optimization Worst than SA 2004

OT [37] Ant colony optimization Worst than SA 2007

OT [38] Swarm optimization Worst than SA 2015

Table 2.1: Literature taxonomy for FPGA’s placement algorithms. P&R = Placement and
routing, critical path= CP, execution time = exec.time, No Applicable = N.A.

neously the placement and routing. Preliminary tests with trivial circuits (few LBs) showed

improvement in the critical path at the expenses of the execution time. In [22] the execution

time was reduced using a new way of moving LBs (swap function) during the algorithm. A

small gain is shown in [23] improving the routing congestion cost factor.

Genetic algorithm. Most of the GA’s placement investigations found in literature or it is

not complete (e.g. comparisons with SA), or have experiments with small trivial circuits.

The first paper using GA in FPGAs is [24]. This paper gives an overview of the GA used, and

shows experimental results without any comparison. The paper [25] presents a GA without

CHAPTER 2. STATE OF THE ART 16

recombination, and claims that it is better than SA for small circuits. The GA proposed in

[26] has a cost function that only used the distance between blocks. This article focus in

the time execution between a GA with and without parallelism. The authors only use small

circuits, and results are not compared with SA. In [27], the authors use a neuronal network

to control the ratio between the recombination and mutation. The neuronal network speeds

up the execution time in comparison a base GA. A placement’s local search is presented in

[28]. The experiments only use the wire cost’s factor, and small improvements are obtained

with small circuits. The paper [29] compares the use of SA and GA. It shows not advantage

against the SA of using a GA. The same author presents in [30] a crossbar operator, but

no comparisons are shown respect SA. The crossover operator inside GA is investigated in

[31]. In this paper is found that a so called confined-swap operator was better compared

to a partially mapped. In a partially mapped crossover, the combinations with conflicts are

avoided blocking the mapping of the parent’s gen with conflicts to children. Thus, it can

happens that a children has a one-to-one mapping of the parent. In a confined-swap oper-

ator, when a conflict is found, it is searched a location without conflict near the conflict’s

location. The gens are grouped in [32]. Without any comparison with SA, it shows a critical

path improvement respect a base GA. Finally, [33] modified the GA to parallelization and

improvement of the execution time.

Analytic method. SA outperforms the quadratic method proposed in [34]. A analyti-

cal methods to place heterogeneous FPGAs (i.e. FPGAs that contains other blocks than

CLBs, such as memory or multiplier blocks) was implemented in [35]. No comparisons were

done with SA.

Other. In [36] and [38] used swarm optimization. No improvements respect SA are ob-

served. Ant colony optimization is used in [37]. Here also no improvements respect SA are

observed. These algorithms has been exercises to use an algorithm in the placement problem,

more than trying to optimize a quality parameter.

Chapter 3

New Solutions to the Placement

Problem

This chapter explains the two new placement solutions proposed in this work: (1) the use

of genetic algorithms, and (2) the use of a routing algorithm as a cost function. The first

section presents the genetic algorithm used within the placement problem. The second

section describes the use of a routing algorithm as a cost function. This cost function will

be used with the SA and GA algorithms.

3.1 Placement with Genetic Algorithms

In this section the proposed GA for placement is presented. The next subsection explains the

chromosome codification, the second subsection explains the adaptation of the traditional

SA’s cost function into the GA. The last subsection describes the proposed GA.

3.1.1 Codification

The representation of the chromosomes in the placement’s GA affects the efficiency of the

algorithm and it is needed to be explained. In the implementation of this work, each element

of the chromosome is represented by two unsigned integers (one integer for the horizontal

axis, and the other for the vertical axis). A gen corresponds to a LB of the circuit. Thus,

for a circuit with C LBs, the chromosome is

(x′0, y
′
0), (x

′
1, y
′
1), ..., (x

′
C , y

′
C) (3.1)

17

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 18

The values of the gens to the FPGA location are translated by means of a module

operator. In a FPGA with the array size Nx x Ny, a i gen of the chromosome has the FPGA

coordinates,

xi = x′i MOD Nx

yi = y′i MOD Ny

(3.2)

As example, a chromosome of a circuit with four logic blocks can have this codification:

(49, 114), (0, 1), (12626, 17), (35, 414339), and an FPGA with an array of 4x4 CLBs, the first

gen has a module:

x = 49 MOD 4 = 1

y = 114 MOD 4 = 2
(3.3)

Then, the location of this block will be (1, 2). The final location coordinates will be (1, 2),

(0, 1), (2, 1), (3, 3). Figure 3.1 (a) shows the final placed circuit of this example.

It can be that the module operator gives a location that it is used by another LB. As

example, a circuit with (49, 114), (0, 1), (12626, 17), (37, 1234), the placement coordinates

will be (1, 2), (0, 1), (2, 1), (1, 2). The same coordinate (1, 2) is used by two different LBs (see

Figure 3.1 (b)), and this is not possible. To solve these collisions, first the first LB is placed

in the found coordinate (Figure 3.1 (c)) and second for the subsequent LBs an algorithm

with a spiral search method [39] is used. The spiral search algorithm starts in the lower

closer coordinate to look if the surrounding locations of the initial block location are free,

if no free location is found, the algorithm searches in the following surrounding locations,

it does this until a free place is found (Figure 3.1 (d)). The algorithm search is clockwise.

In the example, the algorithm started to look in (0, 1), but this location was already used

by another LB. So, the algorithm looked into (0, 2), and it found that it was placed, so the

LB is placed there. As the number of LBs is always lower than the number of CLBs, a free

location always exist.

In the existing literature is found a similar representation for the chromosomes [29], [25],

[24], [28]. In this literature, as in this work, the codification represents the identification of

the LBs of a circuit and its location. The difference with this work, is that in the literature’s

work the codification is done sequential, i.e. the first CLB block is placed, and after the

second CLB is placed, etc. With this technique, the conflicts are avoided.

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 19

(a) No conflict (b) Conflict

(c) Resolution conflict (d) Resolution conflict

Figure 3.1: Placement with and without conflicts.

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 20

3.1.2 Fitness Function.

The terms wire and timing cost of the fitness function, is calculated in a similar way as

the VTR-N (see Section 1.3.1). But, as the normalization has not the cost updates like the

VTR-N, the GA’s cost normalization is done with two steps: (1) the initialization is done

searching the best individual with a fix normalization from the best wire and time costs of

all the population, (2) for the next iterations, the wire and time costs of the previous best

individual (prev popul best wire cost and prev popul best timing cost respectively) is used

as a normalization factor. So, the total cost is,

Costwire,time = λ · timing cost

prev popul best timing cost
+ (1− λ) · wire cost

prev popul best wire cost
(3.4)

where λ is a trade-off parameter, and timing cost and wire cost are defined in Section 1.3.1.

Any improvement of the cost in one iteration will be bellow one. Note that a normalization

is needed for the calculation of the total cost because the order of the timing cost is quite

different as the wiring cost. The GA with this fitness function is called in this work GA-N.

3.1.3 Genetic Algorithm

The proposed algorithm is shown in Algorithm 2. The algorithm starts loading the circuit’s

netlist and placement’s parameters, and after that it initializes the population and performs

an initial random placement. The placement of blocks is not restricted and can be done

in all the locations of the FPGA array. For the random placement is used the s rand

pseudo-random function from the Microsoft’s stdlib library [40]. After the initial random

placement, the cost of each individual is calculated and the best individual is saved.

Inside of the main loop the algorithm performs the parent selection, the recombination,

the mutation, elitism, and the selection of survivals.

The recombination is performed for all the population. The parent selection is done by

means of tournament with size two, i.e. the first parent is found selecting the best of two

random individuals of all the population, and the same it is done for the second parent.

A random numbed between zero and one is generated, and if this number is below of a

probability threshold (Pc), parent crossover is applied. The crossover in the recombination

is applied has one random selected point. Two types of crossover can be found: (1) Without

conflicts, and (2) With conflicts. Crossover without conflicts happens when the LBs of the

two parents doesn’t share any placement location. An example of this can be seen in Figure

3.2. It is possible to see that the random selected point is in this case, the midpoint of

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 21

the chromosome. Two children are obtained from the two parents. Crossover with conflicts

happens when one LB or more of one parent has the same placement location as the other

parent. An example with conflicts is shown in Figure 3.3. One of the children of combining

two parents (Figure 3.3 (a)) has two LBs trying to be placed in the same location (1, 2)

(Figure 3.3 (a)). The same method as in Section 3.1.1 is used to solve this conflict, i.e.

the first LB is placed in (1, 2) (Figure 3.3 (c) left), and for the next LB a spiral search is

performed to find the free location place (1, 1) (Figure 3.3 (c) right).

After the new children are found, the mutation step is performed to all the population

except the best individual. One mutation is one movement of a circuit logic block from one

location of the FPGA array to another allowed (not used) location. The new location is

found randomly. The new location can be free and then the block is just moved (see an

example in Figure 3.4 (a)), or it can be that another block is already placed. In the case

that the new location has another block placed, a swap of the two blocks is performed (see

an example in Figure 3.4 (b)). The reason why a swap is performed and not a search of a

free place is because the size of the FPGA array is limited and the restriction of movements

can be high. As example, with an FPGA array of 5x5, and a circuit with 25 blocks, there

is not a free space to move a block, but still the algorithm can do swaps of blocks. Note

that with this mutation method, a LB is always placed in a valid location and therefore,

it is not needed to solve any conflict. A set of movements (dependent of the probability

of mutation (Pm and the numbers of gens)) are done in the mutation. The movements are

always accepted. In the simulated annealing algorithm, only the movements with better cost

are accepted.

Once that all the new population is processed and the total cost of each individual is

updated, the population is ranked by minimum cost and the children’s population is updated

with the new one (generational model). This genetic algorithm has elitism, i.e. the best

individual to the next generation is preserved. The termination of the main while loop is

done after a number of generations.

Finally, after the main loop is finished the best placement is stored in a placement netlist

file.

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 22

Input : circuit netlist, GA parameters, FPGA parameters
Output: placement netlist

1 . Init
2 load circuit and FPGA structure;
3 random placement;
4 calculate cost;
5 save best individual;
6 . Main Loop
7 while not termination (number generations) do
8 for all population do
9 . Parent Selection

10 select two random candidates from all population;
11 set parent1 from best of two candidates;
12 select two random candidates from all population;
13 set parent2 from best of two candidates;
14 . Crossover
15 if random probability[0,1) <Pc then
16 cross parent1 and parent2;
17 save new two children in children population;

18 else
19 copy parent1 and parent2 in children population;
20 end

21 end
22 resolve location conflicts;
23 . Mutation
24 for all new population do
25 foreach gen in chromosome do
26 if random probability[0,1) <Pm then
27 mutate gen;
28 end

29 end

30 end
31 calculate total cost;
32 . Elitism
33 if best children population >best old population then
34 save best children population as best individual;
35 else
36 replace worst in children population with best old population;
37 end
38 . Survival Selection
39 replace all population with children population;

40 end
41 . End
42 save best placement;

Algorithm 2: Genetic Algorithm implemented for reference. Pc is a crossover constant,
Pm is a mutation constant.

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 23

(a) Parents without conflicts.

(b) Children without conflicts.

Figure 3.2: Crossover without conflicts.

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 24

(a) Parents conflicts.

(b) Children. The left child has a conflict in (2, 2).

(c) Resolution of conflict in (2, 2).

Figure 3.3: Crossover with conflicts.

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 25

(a) To empty place.

(b) Swap.

Figure 3.4: Mutation.

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 26

3.1.4 Local Unimodal Sampling Method

To produce good results, tuning the GA’s parameters is needed. Two important parameters

are Pm and Pc. There are two ways of setting these parameters: (1) sampling span (2)

sampling method. In a sampling span a set of experiments are performed within a range of

parameters values (e.g. Pm=0,0.2,...1), and the parameter is selected from the best results.

The problem here is that these parameters needs a wide fine tuning (e.g. 0.001) and setting

a range results in a prohibitive number of experiments. Another way to tune the parameters

is to use a sampling method. The simplest case will be to run a set of tests each with a

random value of the parameters, and pick the ones with best results. A refined method will

be to use an algorithm were a convergence of the parameters to a global or local minimum

is found [41].

The method used in this work is Local Unimodal Sampling (LUS) method [42], and its

implementation for Pm and Pc is depicted in Algorithm 3. The input of this method are the

circuit netlist, the GA’s parameters (e.g. Pm) and the FPGA’s architectural parameters.

The method has two well differentiated parts, the initialization and the main loop. The

initialization runs the GA algorithm to find an initial sum of fitness values (f(~x)) and also

sets the radius, ~d, of the search space of the parameters Pm and Pc. The main loop starts

calculating the value of the parameters with ~y = ~x + ~a where ~x is the current parameters’

value and ~x is a random variation of the parameters within the space U(−~d,+~d). Using

these parameters, the GA is performed in a loop for a set of maximum runs (M) or until

the sum of the fitness is worse than the previous one (F). If the final sum of fitness is better

than the previous one, the parameters are updated and passed to the next iteration. If the

sum of fitness is worst, the parameters’ search space is narrowed with ~d ← q · ~d, where q is

a gradient parameter with q = 2
−α
n . A typical value of α is α = 1

3
.

3.2 Routing Algorithm as a New Cost Function

Nowadays, the increase of computation power opens the possibility of using the routing

algorithm directly as a cost function. To use the routing algorithm as a new cost function,

it is extracted the routing algorithm of the VTR tool and inserted it as a function in the

placement algorithm. Every time that this function is called, the placement and its associated

structures are loaded. The VPR uses the Pathfinder negotiated congestion routing algorithm

[43]. This algorithm routes each net by the shorted path that it can find in the FPGA, an

after that the algorithm iterates to resolve constraints (e.g. reuse of the same channel tracks).

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 27

Input : circuit netlist, GA parameters, FPGA parameters
Output: Best fitness f(~x) and best GA parameters ~x

1 . Init
2 init random parameters ~x = (Pc, Pm) ;
3 s← 0;
4 j ← 1;
5 while j ≤M do

6 ~fj ← GA(~x);

7 s← s+ ~fj;
8 j ← j + 1;

9 end
10 f(~x)← s;

11 Set ~d to cover full space;
12 n← 1;
13 . Main Loop
14 while not termination (number iterations) do

15 Set random ~a ∼ U(−~d,+~d) ;
16 ~y = ~x+ ~a;
17 if ~y >Maxrange then
18 ~y = Maxrange;
19 else if ~y <Minrange then
20 ~y = Minrange;
21 F = f(~x);
22 while j ≤M and s ≤ F do

23 ~fj ← GA(~y);

24 s← s+ ~fj;
25 j ← j + 1;

26 end
27 f(~y)← s;
28 if f(~y) <f(~x) then
29 ~x← ~y;
30 f(~x)← f(~y);

31 else

32 ~d← q · ~d;
33 end
34 n← n+ 1;

35 end

Algorithm 3: Local Unimodal Sampling (LUS) method applied to the Genetic Al-
gorithm. GA(~x) is the placement Genetic Algorithm using the parameters ~x , Pc is a
crossover constant, Pm is a mutation constant, s is the fitness sum, j is the run-counter,
M is the maximum number of runs, ~fj is the best fitness of the run, ~d is a variable that
cover the ranges of the parameters, n is a iteration counter, q is a gradient parameter
with q = 2

−α
n , typical value of α is α = 1

3
.

CHAPTER 3. NEW SOLUTIONS TO THE PLACEMENT PROBLEM 28

After the routing is performed, this new cost function returns the critical path to be used as

a cost value. This solution is called VTR-R.

On the other hand, as the new cost function is a complex algorithm, it will consume

more execution time than the traditional cost function. Therefore, it is investigated another

solution using the genetic algorithm of Section 3.1.3 with other function cost (in this work it

is called GA-R) in order to try of reducing the number of cost function evaluations needed

to achieve the convergence.

It is important to see how many times (evaluations) the cost function is called during the

execution of the placement algorithm. The final number of evaluations of the cost function

in the SA algorithm is [20]:

EvalSA = (num gen+ 1) · num blocks1.3333 (3.5)

where num gen is the number of generations, and num blocks is the number of blocks

of the circuit. The number of blocks includes the LB blocks and the I/O blocks. The

number of generations depends on the exit criterion. This exit criterion is satisfied when

T<0.005 · cost
number of nets

, where T is the SA temperature and number of nets is the number

of nets of the circuit. The update temperature is done by means of a tabulated parameter

α with Tnew = α · Told. The parameter α depends of the accepted new LB placements per

generation divided by the maximum number of blocks movements (refer to [6] for the values

of α).

As it can be seen from the equation 3.5, the number of cost function evaluations is not

linear in relation to the number of blocks in the circuit. In order to reduce the number of

cost function evaluations, the use of the GA will be investigated. In a GA, the number of

cost function evaluations (EvalGA) depends of the number of generations (num gen) and

population size (pop size):

EvalGA = num gen · pop size (3.6)

The GA is independent of the number of blocks of a circuit. However, a fixed number of

generations in the GA must be set in advance by the user.

Chapter 4

Experimental Results and Discussion

This chapter presents and discuss the experimental results with the four algorithms explained

in the last chapter. The experiments intend to see the relation between SA and GA, and to

investigate the use a routing algorithm as a cost function.

In this chapter, first the used experimental parameters are reported, second the experi-

mental results are shown and discussed.

4.1 Configuration Parameters

There are three types parameters needed for the experiments: FPGA’s architecture param-

eters, genetic algorithm parameters, and LUS method parameters. In the next subsections

these parameters are presented.

4.1.1 FPGA’s Architecture Parameters

The FPGA’s architecture parameters used are shown in Table 4.1 (refer to Section 2.1 for

a description of these parameters). In this work, the routing algorithm is not investigated.

So, in the experiments of this work, it is used a fixed channel width as it is usual in FPGA

placement investigations, e.g. [30]. The other parameters are the default ones of the VTR

tool and they emulate the commercial Altera Stratix IV [44]. The Wilton switch block type

is used [14].

The characteristics of the circuits used can be seen in Table 4.2. These circuits are

provided by the VTR framework in BLIF format [45] and were mapped into LBs using the

T-VPack tool [9]. The last column is the minimum array size of the FPGA needed to place

the circuit. The circuits are sorted from smaller array size to larger. In general, the array

29

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 30

Parameter Value used

Tracks per Channel 200

BLEs per CLB 10

Inputs in one BLE 6

Segment distance of a track 4

Ratio of tracks connected to an input 0.15

Ratio of tracks connected to an output 0.1

Switch block type 3 (Wilton)

Table 4.1: FPGA architecture parameters used in the experiments.

Circuit LUTs FFs In Out LB I/O Nets Array Size

styr 238 5 10 10 15 20 105 4x4

planet 266 6 8 19 17 27 127 5x5

s1238 292 18 15 14 18 29 148 5x5

vda 253 0 17 39 19 56 176 5x5

daio-rec 311 81 16 46 19 62 230 5x5

mm30a 294 90 34 30 21 64 230 5x5

ecc 291 109 12 14 22 26 178 5x5

ex4p 148 0 84 28 22 112 206 5x5

C2670 214 0 157 64 15 221 305 7x7

rot 242 0 135 107 17 242 293 8x8

x3 255 0 135 99 20 234 281 8x8

i7 103 0 199 67 11 266 266 9x9

frg2 347 0 143 139 26 282 342 9x9

Table 4.2: Circuit characteristics and array size used for the placement.

size determines the time needed to place the circuit. But there are other parameters that

affect the complexity of the circuits, such as the number of LBs, I/O or nets.

The placement can be for LB and I/O blocks, or it is possible to fix the placement for the

I/O blocks (or LB blocks) and perform the placement only for LB blocks (or I/O blocks).

In the experiments, it is fixed the placement of the I/O blocks. The I/O blocks placement

file is found performing previously a SA placement.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 31

Parameter Description GA-N GA-R

Size 70 70

Pc Crossover Probability 0.12 0.5

Pm Mutation Probability 0.03 0.04

Tournament Size 2 2

λ Time trade-off 0.5 -

Generations 1000 2001

Table 4.3: Parameters used in the Genetic Algorithm. 1 The circuit styr has 120 generations
because doesn’t need more generation to have a good quality result.

4.1.2 Genetic Algorithm Parameters

The parameters used in the GAs are shown in Table 4.3. The population size is fixed to 70.

This population’s size shows good results in the experiments. GA-R has 200 generations,

except in the styr. The circuit styr is small and a good quality placement can be achieved

with 120 generations.

To see the correct critical path time with the algorithms that use the traditional cost

function, it is performed the routing step with the placement files coming from the placement.

The initial temperature of the SA is init temperature = 20 · std dev where the standard

deviation, std dev, is calculated with the cost variation of moving blocks randomly. In the

SA with the traditional cost function, it is used λ = 0.5. To find λ, it was performed a set of

tests with λ going from 0 to 1 (see Table 4.4), and it was found that λ = 0.5 was the value

with best final critical path. Similar results can be found in literature (e.g. [7]).

The GA uses a tournament size of two individuals, one-point crossover, and mutation

based in LB permutations. In the GA it is needed to set the number of generations, the

probability of mutations (Pm), and the probability of crossover (Pc). It was used an explo-

ration method for finding Pm and Pc (this method will be discussed in the next section). The

converge of the GA’s algorithm was taken into account to set set the number of generations.

A workstation with two Intel E7 Xeon processors with 32GB of RAM has been used for

the experiments.

Each circuit was run 30 times. To create a different heuristic in each run, it was changed

the deterministic random function of the VTR tool to a semi-random function (rand s [39]).

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 32

Critical path ± SD (ns) per λ

Circuit 0 0.2 0.5 0.8 1

styr 3.14 ± 0.07 3.11 ± 0.10 3.08 ± 0.16 3.00 ± 0.10 2.97 ± 0.07

planet 2.89 ± 0.06 2.90 ± 0.05 2.59 ± 0.02 2.85 ± 0.08 2.85 ± 0.07

s1238 4.45 ± 0.11 4.38 ± 0.07 4.45 ± 0.09 4.43 ± 0.06 4.43 ± 0.06

vda 3.21 ± 0.05 3.24 ± 0.06 3.24 ± 0.06 3.27 ± 0.08 3.27 ± 0.10

daio-rec 4.03 ± 0.05 4.00 ± 0.07 3.97 ± 0.08 3.93 ± 0.12 3.87 ± 0.11

mm30a 13.18 ± 0.07 13.17 ± 0.09 13.16 ± 0.13 13.13 ± 0.10 13.08 ± 0.08

ecc 3.01 ± 0.09 3.02 ± 0.09 3.01 ± 0.07 3.01 ± 0.07 2.99 ± 0.08

ex4p 2.79 ± 0.07 2.75 ± 0.03 2.74 ± 0.04 2.76 ± 0.03 2.77 ± 0.04

C2670 3.71 ± 0.01 3.70 ± 0.01 3.74 ± 0.08 3.73 ± 0.07 3.96 ± 0.05

rot 3.82 ± 0.05 3.78 ± 0.03 3.78 ± 0.02 3.77 ± 0.01 3.83 ± 0.09

x3 2.47 ± 0.05 2.56 ± 0 2.56 ± 0 2.56 ± 0 2.56 ± 0

i7 1.93 ± 0.00 1.93 ± 0.00 1.93 ± 0.00 1.93 ± 0.00 1.93 ± 0.00

frg2 3.47 ± 0.07 3.32 ± 0.03 3.31 ± 0.01 3.31 ± 0.01 3.31 ± 0.01

Table 4.4: VTR evolution of λ. Critical path averaged over 30 runs. SD = Standard
Deviation.

4.1.3 LUS Method Parameters

The method has two parameters that should be set: M , α and the number of iterations of

the main loop. The parameter M was set to have an enough variation and to fit a time-frame

of 48 hours for the total run of the LUS method. To adjust α, a program was written to

see how it behaves α in a search range ~d ← q · ~d where q = 2
−α
n . The intention was to

converge the LUS method in around 200 iterations. If the parameter values are kept fix (e.g.

~x = (0.5, 0.5)), with α = 1
3

is obtained the graphic for the range d of Figure 4.1 (a). With

this α is possible to plot a parameter value by iterations. The equation for a new parameter’s

value is ~y = ~x+~a where ~x are the current parameter’s values and ~a is a random value within

the radius d (note that it is random). Knowing this, a plot for one parameter is shown in

Figure 4.1 (b). It can be seen that there is no convergence in 200 iterations. Figure 4.1 (c)

and Figure 4.1 (d) show the same experiment with α = 1
5
. In this case, it is possible to see

that the parameter value converges.

In the previous experiments, the parameter value ~x of ~y = ~x+~a was always the same in

each iteration (~x = (0.5, 0.5)). In another experiment it was allowed to have a variation of

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 33

the ~x and it was used the conditional statement (set randomly per iteration) of the lines 28

to 33 of the Algorithm 3. The results for two tests are shown in Figure 4.1 (e) and (f). The

important conclusion from these two graphics is that within 200 iterations parameter value

can move in all the search range. Therefore, for the next experiments it will be used α = 1
5

and 200 iterations of the main LUS method loop.

The LUS method to find Pm and Pc used the circuit s1238, and it was set to iterate 200

times with 10 runs of the genetic algorithm (with 200 generations). Table 4.5 shows the final

Pm,rslt and Pc,rslt results together with the parameters used to perform the LUS. As there

are two different algorithms (GA-N and GA-R), two different experiments were done. The

resulting Pm is similar for both algorithms. The differences with Pc is because the crossover

is less critical for the placement algorithm.

Alg. λ Pc,init Pm,init Gen. Size LUS-Runs α LUS-Iter. Pc,rslt Pm,rslt

GA-N 0.5 0.1 0.001 500 70 8 1
5

200 0.1153 0.0336

GA-R - 0.1 0.001 200 20 5 1
5

200 0.4997 0.0434

Table 4.5: Crossover probability (Pc,rslt) and mutation probability (Pm,rslt) obtained with
LUS results with the s1238 circuit. Alg.=Algorithm, Gen.=Generations of one run.

4.2 Experimental Results and Discussion

The critical path results are shown in Table 4.6. As it can be seen in the mentioned table,

the use of the new cost function (VTR-R and GA-R) improves the average critical path

in comparison with the traditional cost function (VTR-N and GA-N). This comes at the

expenses of the required execution time (Table 4.8), that is in the order of 105 or 106 higher.

The critical paths between VTR-R and GA-R are similar. But a noticeable reduction in the

execution time can be observed with GA-R against VTR-R. From Table 4.8 is also possible

to see that at measure that the array size is augmented the time required for the placement

is also higher.

In order to compare the experimental results obtained in Table 4.6 from a statistical point

of view, it is performed a nonparametric bootstrap hypothesis test [46]. A nonparametric

test was needed because the data associated to each circuit rejected the null hypothesis of

normality (Shapiro-Wilk test [47]). The significance level was set to α = 0.05. As it can

be seen from the p-values obtained in Table 4.7, the null hypothesis (there is no difference

between the two population means) is always rejected for all the cases of VTR-R vs VTR,

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 34

(a) α = 1
3 (b) One parameter value with α = 1

3

(c) α = 1
5 (d) One parameter value with α = 1

5

(e) Test 1 (f) Test 2

Figure 4.1: (a) to (d): Adjustment of LUS metod parameters with different α and keeping
the parameter value constant (~x = (0.5, 0.5)) in each iteration. (e) and (f): Variation of one
value parameter in two random tests of the LUS method.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 35

GA-R vs VTR, and GA-N vs GA-R. On the other hand, the null hypothesis cannot be

rejected in all the cases of GA-R vs VTR-R. Therefore, from the hypothesis test results,

it can be said that there exists statistical evidence to affirm that the critical path values

obtained for VTR-R and GA-R are better than those obtained for VTR. However, it can

be assumed similar critical path results between GA-R and VTR-R. In the case of GA-N vs

VTR, there are circuits that null hypothesis is rejected and others not.

Figure 4.2 shows an example of the convergence of three circuits (planet, s1238 and

ecc). It is possible to observe the typical random-walk of the SA. This happens because the

temperature parameter of the SA forces the acceptance of placement solutions even with

worst cost. Looking at these graphics, there is a question: is possible to stop the algorithm

VTR-R before it reaches the final iteration? As it can be seen in Figure 4.3, there is the

possibility of improving the critical path in the last iterations. In the same figure it is possible

to see also one of the problems with a SA algorithm. A better critical path is found around

the iteration 45, but because the temperature forces to accept other placement solution, the

placement solution deteriorates. To solve this problem, it would be needed to modify the

SA algorithm with the possibility of storing the best solution for all the iterations, and at

the end of the iteration choose the better solution.

An open question is how the GA-N performs in comparison with VTR-N. The use of GAs

with the traditional cost function has been investigated in [29]. In this paper, the author

shows that a GA with the traditional cost function is not better than a VTR-N algorithm.

The results with GA-N in of this work corroborate the results of [29]. As the number of cost

function evaluations in the VTR-N can be higher than the GA-N, there is a question if it is

possible to get a better execution time using the GA-N. The tests with GA-N show it is not

possible. This is because our GA-N is not optimized for execution time and, additionally,

the traditional cost function was designed for the VTR-N. For instance, the traditional cost

function has a normalization that it is keep constant for several evaluations during a gener-

ation. This is not possible with the GA-N. Another problem, already mentioned in Chapter

2, is that the traditional cost function produces inconsistent values of the critical path (see

Figure 1.5). This is not a big problem with the VTR-N where the cost function is evaluated

for one single LB movement (an error in one cost function evaluation is compensated with

the next evaluation). But, with the GA-N, the cost function is evaluated after several LB

movements (with crossover and mutations). So, if the best individual is found with a bad

cost function prediction, it will pass to the next generation and produce a wrong offspring.

This suggest that if it is not used the routing algorithm as a cost function, like in this work,

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 36

a better model for the cost function should be found in order to be used by a GA.

The percentage differences of the critical path are shown in Table 4.9. The second and

third columns compare VTR-N respect the algorithms using the routing as a cost function.

The two last columns compares the same but with GA-N. From the comparisons, we can

see that VTR-N is better than GA-N. VTR-R and GA-R are similar and always better than

VTR-N and GA-N.

Table 4.10 shows the cost function evaluations. The VTR-R algorithm needs more eval-

uations than the VTR-N algorithm. This is because the termination criterion of the VTR-N

is fulfilled when not better placements are found. Meanwhile the fine granularity of the cost

function in VTR-R reaches improvements in new generations. It is also possible to see that

the number of evaluations in GA-N and GA-R is a constant defined by the Equation 3.6.

Note that the GA-R needs fewer cost function evaluations than GA-N, VTR-N and VTR-R

to get a better or similar result.

Besides of the constant number of evaluations, another advantage of GAs (though not

explored in this work) is that the algorithm can be easily paralleled [48] [49]. The SA has

only one thread where a new solution depends on the previous one. On the other hand, in a

GA, each individual of a generation can be run independently in a thread. As an example,

a population of 100, can be run in parallel each individual in a cluster of 100 cores. In this

case, the execution time will depend only of the number of generations (according to eq.

3.6). Note that a circuit with higher number of blocks will require also higher execution

time in the VTR-R and the GA-R because the routing is also much complex.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 37

Crit.Path(ns)

Circuit VTR-N ± SD VTR-R ± SD GA-N ± SD GA-R ± SD

styr 3.08 ± 0.16 2.71 ± 0.02 3.07 ± 0.05 2.72 ± 0.02

planet 2.85 ± 0.08 2.59 ± 0.02 2.94 ± 0.05 2.60 ± 0.02

s1238 4.44 ± 0.09 4.11 ± 0.02 4.50 ± 0.09 4.11 ± 0.03

vda 3.24 ± 0.06 2.96 ± 0.03 3.46 ± 0.11 2.97 ± 0.03

daio-rec 3.97 ± 0.08 3.47 ± 0.02 4.15 ± 0.12 3.49 ± 0.03

mm30a 13.16 ± 0.13 12.47 ± 0.03 13.21 ± 0.16 12.50 ± 0.04

ecc 3.01 ± 0.07 2.75 ± 0.03 3.08 ± 0.07 2.75 ± 0.03

ex4p 2.74 ± 0.04 2.60 ± 0.02 2.89 ± 0.09 2.64 ± 0.03

C2670 3.74 ± 0.08 3.41 ± 0.03 4.10 ± 0.10 3.53 ± 0.07

rot 3.78 ± 0.03 3.57 ± 0.04 3.95 ± 0.20 3.59 ± 0.06

x3 2.56 ± 0.00 2.23 ± 0.03 3.01 ± 0.32 2.20 ± 0.02

i7 1.93 ± 0.00 1.67 ± 0.01 1.92 ± 0.05 1.66 ± 0.01

frg2 3.31 ± 0.01 3.00 ± 0.03 4.00 ± 0.20 3.14 ± 0.05

Table 4.6: Experimental results for critical path with the standard deviation (SD) averaged
over 30 runs.

Circuit VTR-R vs VTR-N GA-R vs VTR-N GA-R vs VTR-R GA-N vs VTR-N GA-N vs GA-R

styr 0.0001 0.0001 0.6991 0.3255 0.0001

planet 0.0001 0.0001 0.1104 0.0001 0.0001

s1238 0.0001 0.0001 1 0.4934 0.0001

vda 0.0001 0.0001 1 0.0001 0.0001

daio-rec 0.0001 0.0001 0.0594 0.0001 0.0001

mm30a 0.0001 0.0001 0.0645 0.08819 0.0001

ecc 0.0001 0.0001 1 0.0006 0.0001

ex4p 0.0001 0.0001 1 0.0001 0.0001

C2670 0.0001 0.0001 1 0.0001 0.0001

rot 0.0001 0.0001 1 0.0001 0.0001

x3 0.0001 0.0001 1 0.0001 0.0001

i7 0.0001 0.0001 1 0.1589 0.0001

frg2 0.0001 0.0001 1 0.0001 0.0001

Table 4.7: Results of the non-parametric Bootstrap hypothesis test (p-values).

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 38

(a) VTR planet (b) VTR 1238 (c) VTR ecc

(d) VTR-R planet (e) VTR-R s1238 (f) VTR-R ecc

(g) GA-N planet (h) GA-N s1238 (i) GA-N ecc

(j) GA-R planet (k) GA-R s1238 (l) GA-R ecc

Figure 4.2: Plots of convergence of the best result of the planet, s1238 and ecc circuits.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 39

Figure 4.3: Plot of convergence of a s1238 circuit with SA with the new cost function (VTR-
R).

Exec.Time(sec)

Circuit VTR-N ± SD VTR-R ± SD GA-N ± SD GA-R ± SD

styr 0.37 ± 0.05 1853 ± 377 46 ± 5 1365 ± 110

planet 0.65 ± 0.05 5031 ± 1127 50 ± 1 3592 ± 328

s1238 1.71 ± 0.62 5906 ± 1510 71 ± 24 3969 ± 310

vda 1.85 ± 0.78 8977 ± 1720 195 ± 80 6318 ± 968

daio-rec 0.95 ± 0.04 11960 ± 750 68 ± 2 3161 ± 134

mm30a 0.98 ± 0.05 11802 ± 1390 75 ± 2 3395 ± 121

ecc 0.78 ± 0.03 8617 ± 2051 203 ± 68 5902 ± 897

ex4p 3.35 ± 0.85 25236 ± 7181 220 ± 87 6536 ± 1713

C2670 12.12 ± 8.74 90184 ± 20692 167 ± 79 9199 ± 2173

rot 15.42 ± 10.06 137549 ± 23390 202 ± 51 11470 ± 3230

x3 11.52 ± 3.13 170177 ± 10699 192 ± 73 12311 ± 2171

i7 19.81 ± 4.38 241126 ± 15327 117 ± 39 11180 ± 2942

frg2 14.68 ± 2.17 258359 ± 18465 275 ± 123 12229 ± 4328

Table 4.8: Experimental results for execution time with the standard deviation (SD) averaged
over 30 runs.

CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION 40

Diff. Crit.Path(%)

Circuit ∆V TR−N vs V TR−R ∆V TR−N vs GA−R ∆GA−N vs V TR−R ∆GA−N vs GA−R

styr -11.68 -11.62 -12.77 -12.70

planet -9.14 -8.83 -13.27 -12.89

s1238 -7.45 -7.45 -9.32 -9.32

vda -8.65 -8.56 -16.65 -16.53

daio-rec -12.62 -12.23 -19.45 -18.91

mm30a -5.24 -5.02 -5.93 -5.69

ecc -8.79 -8.81 -12.12 -12.15

ex4p -5.03 -3.67 -11.08 -9.52

C2670 -8.79 -5.70 -20.29 -16.35

rot -5.86 -4.77 -11.01 -9.74

x3 -13.01 -14.01 -35.12 -36.71

i7 -13.39 -13.79 -14.96 -15.49

frg2 -9.28 -4.94 -33.50 -27.40

Table 4.9: Differences for critical path.

Number of Evaluations.

Circuit VTR-N ± SD VTR-R ± SD GA-N ± SD GA-R ± SD

styr 7969 ± 434 12510 ± 2408 70000 ± 0 8400 ± 0

planet 11754 ± 447 19207 ± 2737 70000 ± 0 14000 ± 0

s1238 12603 ± 402 21470 ± 4077 70000 ± 0 14000 ± 0

vda 25250 ± 903 23680 ± 898 70000 ± 0 14000 ± 0

daio-rec 28279 ± 1154 52662 ± 815 70000 ± 0 14000 ± 0

mm30a 30024 ± 902 47319 ± 3939 70000 ± 0 14000 ± 0

ecc 14002 ± 582 24466 ± 510 70000 ± 0 14000 ± 0

ex4p 58678 ± 1513 75667 ± 14270 70000 ± 0 14000 ± 0

C2670 127713 ± 2805 172182 ± 35844 70000 ± 0 14000 ± 0

rot 153654 ± 2791 188909 ± 38129 70000 ± 0 14000 ± 0

x3 146850 ± 2571 247564 ± 4556 70000 ± 0 14000 ± 0

i7 170669 ± 4067 276803 ± 25262 70000 ± 0 14000 ± 0

frg2 192546 ± 2660 318533 ± 20008 70000 ± 0 14000 ± 0

Table 4.10: Number of cost function evaluations with the standard deviation (SD) averaged
over 30 runs.

Chapter 5

Conclusions and Future Work

In this Master’s thesis the critical path optimization in the FPGA’s placement has been

investigated. The comparisons allow to see the differences with SA and GA in the FPGA’s

placement problem. It is found that the minimization of the traditional cost function used

in the SA not always produce a minimal critical path. To alleviate this problem, it has

been proposed to use the routing algorithm as a cost function. From the experiments, it

can be seen that VTR-N is a bit better than GA-N. This can be because several reasons.

It can be that the code and the adjustment of its parameters is not optimal causing bad

quality results. Most likely GA-N produce worst results because traditional cost is optimized

for SA. Experimental results show that the quality of the placement is improved using the

routing algorithm as a cost function (VTR-R). Observed drawback is the longer execution

time required. To reduce the execution time with the new cost function, it has been proposed

the use of a GA (GA-R). It is found that the GA-R improves the execution time maintaining

a competitive critical path. The new cost function will be useful in those cases where a

minimum critical path is needed.

While this Master’s thesis has shown the benefits of using GA and routing algorithm as

a cost function, many opportunities are still open to improve the results: (1) The inherent

parallelism of GAs can be exploited for improving the execution time, (2) in this work a

fix number of generations was set, an exit criteria depending of the algorithm’s convergence

can be investigated, (3) a better routing algorithm as a cost function can be investigated

(instead of the default used in this work), (4) to improve the placement quality, the routing

parameters (e.g. routing effort, number of tracks, etc) can be investigated.

41

Bibliography

[1] Stephen Brown, Robert Francis, Jonathan Rose, and Zvonko Vranesic. Field-

Programmable Gate Arrays, volume 180. Springer Science & Business Media, 1992.

[2] Deming Chen, Jason Cong, Peichen Pan, et al. FPGA design automation: A survey.

Foundations and Trends R© in Electronic Design Automation, 1(3):195–330, 2006.

[3] Zainalabedin Navabi. VHDL: Analysis and modeling of digital systems. McGraw-Hill,

Inc., 1997.

[4] Donald Thomas and Philip Moorby. The Verilog R© Hardware Description Language.

Springer Science & Business Media, 2008.

[5] Xilinx Inc. 7 series FPGAs overview, may. 27, 2015 (version 1.17).

[6] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and routing tool

for FPGA research. In Field-Programmable Logic and Applications, pages 213–222.

Springer, 1997.

[7] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-driven placement for

FPGAs. In Proceedings of the 2000 ACM/SIGDA eighth international symposium on

Field programmable gate arrays, pages 203–213. ACM, 2000.

[8] Chih-Liang Eric Cheng. RISA: accurate and efficient placement routability modeling. In

Proceedings of the 1994 IEEE/ACM international conference on Computer-aided design,

pages 690–695. IEEE Computer Society Press, 1994.

[9] VTR tool, University of Toronto. http://https://github.com/

verilog-to-routing/vtr-verilog-to-routing/. Accessed: 2016-05-17.

[10] Mingjie Lin and John Wawrzynek. Improving FPGA placement with dynamically adap-

tive stochastic tunneling. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 29(12):1858–1869, 2010.

42

BIBLIOGRAPHY 43

[11] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu, Kon-

stantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu, Nooruddin Ahmed, et al. VTR

7.0: Next generation architecture and CAD system for FPGAs. ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 7(2):6, 2014.

[12] MCNC LGSynth93. Benchmarks. Obtained from http://www. eecg. toronto. edu/˜

lemieux/sega/ccts blif. tar.

[13] FPGA Actel. Data book and design guide. Actel Corp, 955, 1995.

[14] Imran Masud and Steven Wilton. A new switch block for segmented FPGAs. In Field

programmable logic and applications, pages 274–281. Springer, 1999.

[15] Herman Schmit and Vikas Chandra. FPGA switch block layout and evaluation.

In Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-

programmable gate arrays, pages 11–18. ACM, 2002.

[16] Hongbing Fan, Jiping Liu, Yu-Liang Wu, and Chak-Chung Cheung. On optimal hyper-

universal and rearrangeable switch box designs. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 22(12):1637–1649, 2003.

[17] The Xilinx website, xilinx inc. http://www.xilinx.com/. Accessed: 2016-04-05.

[18] The Altera website, altera inc. http://www.altera.com/. Accessed: 2017-04-05.

[19] Carl Sehen. An improved simulated annealing algorithm for row-based placement. In

Proc. IEEE Int. Conf. on Computer-Aided Design, pages 478–481, 1987.

[20] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for

deep-submicron FPGAs, volume 497. Springer Science & Business Media, 2012.

[21] Sudip Nag and Rob Rutenbar. Performance-driven simultaneous placement and routing

for FPGA’s. IEEE Transactions on Computer-Aided design of integrated circuits and

systems, 17(6):499–518, 1998.

[22] Emilio Vasconcelos de Lima, Antônio Carlos Cavalcanti, and Luis dos Anjos Formiga

Cabral. A new approach to VPR tool’s FPGA placement. In Proceedings of the World

Congress on Engineering and Computer Science (WCECS), 2007.

BIBLIOGRAPHY 44

[23] Ali Asghar and Husain Parvez. An improved diffusion based placement algorithm for

reducing interconnect demand in congested regions of FPGAs. International Journal of

Reconfigurable Computing, 2015:8, 2015.

[24] Zoltan Baruch, Octavian Creţ, and Horia Giurgiu. Genetic algorithm for FPGA place-

ment. In Proceedings of the 12th International Conference on Control Systems and

Computer Science (CSCS12), volume 2, pages 121–126, 1999.

[25] Rahman Venkatraman and Lalit Patnaik. An evolutionary approach to timing driven

FPGA placement. In Proceedings of the 10th Great Lakes symposium on VLSI, pages

81–85. ACM, 2000.

[26] Manuel Rubio del Solar, Juan Antonio Gomez Pulido, Juan Manuel Sanchez Perez, and

Miguel Angel Vega Rodriguez. Genetic algorithms for solving the placement and routing

problem of an FPGA with area constraints. Proc. IEEE ISDA, pages 31–35, 2004.

[27] Siva Nageswara Rao Borra, Annamalai Muthukaruppan, Sivaprakasam Suresh, and Viri

Kamakoti. A novel approach to the placement and routing problems for field pro-

grammable gate arrays. Applied Soft Computing, 7(1):455–470, 2007.

[28] Mei Yang, Any Almaini, and Liu Wang. FPGA placement by using a genetic algorithm.

Engineer IT, 6(1), 2007.

[29] Peter Jamieson. Revisiting genetic algorithms for the FPGA placement problem. In

GEM, pages 16–22. Citeseer, 2010.

[30] Peter Jamieson. Exploring inevitable convergence for a genetic algorithm persistent

FPGA placer, 2011.

[31] Robert Collier, Christian Fobel, Laura Richards, and Gary Grewal. A formal and

empirical analysis of recombination for genetic algorithm-based approaches to the FPGA

placement problem. In Electrical & Computer Engineering (CCECE), 2012 25th IEEE

Canadian Conference on, pages 1–6. IEEE, 2012.

[32] Peter Jamieson, Farnaz Gharibian, and Lesley Shannon. Supergenes in a genetic algo-

rithm for heterogeneous FPGA placement. In Evolutionary Computation (CEC), 2013

IEEE Congress on, pages 253–260. IEEE, 2013.

BIBLIOGRAPHY 45

[33] Dionisios Diamantopoulos, Kostas Siozios, Sotirios Xydis, and Dimitrios Soudris. A

framework for supporting parallel application placement onto reconfigurable platforms.

In Proceedings of the PARMA Workshop, HiPEAC Conference, Berlin, Germany, 2013.

[34] Yonghong Xu and Mohammed AS Khalid. QPF: efficient quadratic placement for FP-

GAs. In Field Programmable Logic and Applications, 2005. International Conference

on, pages 555–558. IEEE, 2005.

[35] Marcel Gort and Jason Anderson. Analytical placement for heterogeneous FPGAs. In

Field Programmable Logic and Applications (FPL), 2012 22nd International Conference

on, pages 143–150. IEEE, 2012.

[36] Venu Gudise and Ganesh Venayagamoorthy. FPGA placement and routing using par-

ticle swarm optimization. In VLSI, 2004. Proceedings. IEEE Computer society Annual

Symposium on, pages 307–308. IEEE, 2004.

[37] Wenyao Xu, Kejun Xu, and Xinmin Xu. A novel placement algorithm for symmetrical

FPGA. In ASIC, 2007. ASICON’07. 7th International Conference on, pages 1281–1284.

IEEE, 2007.

[38] Haim Akbarpour, Giri Karimi, and Ahmed Sadeghzadeh. Discrete multi objective par-

ticle swarm optimization algorithm for FPGA placement. International Journal of

Engineering Transactions C: Aspects, 28(3):410–418, 2015.

[39] rand s , MSDN Microsoft Website. http://stackoverflow.com/q/398299. Accessed:

2016-05-17.

[40] Looping in a spiral, stack overflow website. https://msdn.microsoft.com/en-us/

library/sxtz2fa8.aspx. Accessed: 2016-05-17.

[41] Roland White. A survey of random methods for parameter optimization. Transactions

of the Society for Computer Simulation, 17(5):197–205, 1971.

[42] Magnus Erik Hvass Pedersen and Andrew John Chipperfield. Local unimodal sampling.

HL0801 Hvass Laboratories, 2008.

[43] Carl Ebeling, Larry McMurchie, Scott Hauck, and Steven Burns. Placement and routing

tools for the Triptych FPGA. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 3(4):473–482, 1995.

BIBLIOGRAPHY 46

[44] David Lewis, Elias Ahmed, David Cashman, Tim Vanderhoek, Chris Lane, Andy Lee,

and Philip Pan. Architectural enhancements in Stratix-IIITM and Stratix-IVTM. In

Proceedings of the ACM/SIGDA international symposium on Field programmable gate

arrays, pages 33–42. ACM, 2009.

[45] Berkeley logic interchange format (BLIF). Oct Tools Distribution 2, 1992.

[46] Joseph Romano et al. Bootstrap and randomization tests of some nonparametric hy-

potheses. The Annals of Statistics, 17(1):141–159, 1989.

[47] Samuel Sanford Shapiro and Martin Wilk. An analysis of variance test for normality

(complete samples). Biometrika, 52(3-4):591–611, 1965.

[48] Erick Cantú-Paz. A survey of parallel genetic algorithms. In Calculateurs paralleles.

Citeseer, 1998.

[49] Enrique Alba and Marco Tomassini. Parallelism and evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 6(5):443–462, 2002.

