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Abstract

This work explores the use of radiomics and machine learning to extract relevant
biomarkers from ultrasound (US) images that can be used in obstetric practice. Two
clinical applications are studied: the prediction of induction of labor (IOL) failure
based on clinical data and US images obtained prior to IOL, and the estimation of
risk of preterm birth based on routinely US images acquired in the 20th week of
pregnancy. Several machine learning classifiers and feature selection techniques are
tested and the results are compared.

The best model for the prediction of IOL failure was a random forest that model
obtained an AUC of 0.75, with 69% sensitivity and 71% specificity. The best model
for the prediction of preterm birth was a random forest that obtained an AUC of
0.77 AUC, with 71% sensitivity and 69% specificity .

These preliminary results suggest that features obtained from US images can be
used to estimate risks in these two obstetric problems. Transvaginal US is cheap,
widely available at hospitals, and performed routinely. Therefore these method
can be easily implemented in clinical practice and help practitioners choose a most
personalized treatment for each patient, improving the outcomes. Further validation
with a largest and more diverse dataset is needed, especially to assess how the image
analysis methods work with images from different US vendors.
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Chapter 1

Introduction

Medical ultrasound (US) images are formed using an US probe to transmit me-
chanical wave pulses into tissue, which generates sound echoes at boundaries where
different tissues exhibit acoustic impedance differences. The resulting image quality
depends on the force exerted on the US transducer and the transducer location and
orientation, and typical artifacts in US images include signal dropout, attenuation,
speckle and shadows.

Different types of images can be formed using US equipment; the most commonly
used in clinical practice is B-mode, which displays the acoustic impedance of a two-
dimensional cross section of the tissue. Other types of US images are A-mode
(amplitude), M-mode (motion over time) and D-mode (Doppler). Figure 1.1 shows
examples of different types of US images.

US images are performed routinely in obstetrics to monitor pregnancy. Usually,
they are inspected visually by the practitioners and stored in the hospital’s PACS
(Picture Archiving and Communication System). This process is qualitative, highly
subjective. Furthermore, the quality of the images and the findings have high inter
and intra observer variability.

In recent years, quantitative analysis of US images has been proposed. Several
computer vision techniques have been used for the automatic segmentation, classifi-
cation or registration of US images, sometimes incorporating artificial intelligence to
the process. Machine learning and deep learning, which have been widely applied to
other medical imaging modalities, such as Computer Tomography (CT) or Magnetic
Resonance Imaging (MRI), have also been used for the automatic analysis of US.
However, US imaging poses specific challenges and US image analysis techniques lag
behind the other modalities [1].

Radiomics is a method that extracts a large amount of features from radio-
graphic medical images using data-characterisation algorithms [2]. The successful
application of radiomics to other imaging modalities has motivated studies using
similar techniques for US image analysis.

In this project, we analyze B-mode US images. The process consists in extracting
features from the image and then applying feature selection methods to find relevant
those that can be used as imaging biomarkers with predictive value regarding a
specific pathology, therefore providing an objective and quantitative way to extract
information from the image. We also use convolutional neural networks (CNN) to
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Figure 1.1: Example of images adquired with different US modes

extract features and compare the results.
We analyze two different clinical scenarios as different use cases of the same

technology: prediction of induction of labor failure and prediction of preterm birth.
Induction of labor (IOL) is is the treatment that stimulates childbirth delivery.

It is a very common procedure in current obstetrics; according to the American
College of Obstetricians and Gynecologists (ACOG), between 20 and 40 percent of
births are induced. About 20% of women who undergo IOL at term pregnancy end
up needing a cesarean section (C-section), mainly due to the failure of induction,
failure of progression of labor or fetal distress[3].

Bishop’s Score has been the most widely used technique for the assessment of the
cervical tissue prior to IOL. However, it is a subjective measure and has been found
not to be consistent [4]. Inducing labor can be accomplished with pharmaceutical
or non-pharmaceutical methods, including a mechanical instruments that promote
cervical ripening and the onset of labor by stretching the cervix. Thus, a criterion
for selecting of candidates for IOL as well as the most adequate IOL method is an
open issue in obstetric practice.

During pregnancy and delivery, the cervix undergoes several changes. It trans-
forms from a stiff, long and closed structure to a soft, short and dilated structure
that allows delivery. Regarding the micro-structure of the tissue, collagen is aligned
and organized in the cervix of non-pregnant women and more disorganized during
the remodeling of the cervix. Water content of the cervical tissues is also increased
in the process of preparation for delivery.

Changes in the cervical micro-structure and water content in the tissue are ex-
pected to be reflected in the image obtained from US since the consistency of tis-
sues affect their interaction with US waves. A radiomic analysis could reveal these
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Figure 1.2: Acquisition of transvaginal US

changes, even when they are not apparent to a human observer. Transvaginal US
(see Figure 1.2) allows obtaining an image of the cervix, which can be subsequently
analyzed. Images of this type are already performed routinely during pregnancy
to evaluate the state of the cervix, find complications, such as ectopic pregnancy
or anomalies (cysts, fibrosis), and assess the risk of preterm birth, but are not yet
included in the clinical guidelines for evaluation before IOL yet. However, several
measurements that can be obtained from the transvaginal US have been correlated
with the outcome of induction of labor[5, 6, 7], and some works have shown inter-
esting preliminary results for analysis of texture as well [8, 9].

Preterm birth is the delivery before 37 weeks of pregnancy. About 15 millions
of babies are affected by preterm birth complications every year, and almost 1 mil-
lion die [10]. Children who survive a preterm birth can suffer life-long disabilities,
learning problems and hearing and visual problems. Prediction of preterm birth is
usually done by measuring the cervical length in the transvaginal US (Figure 3.4
shows the different anatomical structures that can be observed on the transvaginal
US of the cervix), but it does not report any information about the compression or
the structural and histological changes of the tissue. The aforementioned changes
in the micro-structure of cervical tissue could be analysed from the US images and
seem to have value to estimate the risk of preterm birth [11]. Some treatments
to prevent it exist (progesterone, cervical cerclage) and are being developed, whih
usually are only recommended to women at high risk. A correct evaluation of the
risk of preterm delivery would help the clinicians to provide a more personalized
treatment to the patients

The aim of our study is to evaluate the feasibility of applying artificial intelligence
methods, such as machine learning and deep learning, to generate predictive models
for the two clinical scenarios, using in both cases radiomic features from transvaginal
cervical US images from the cervix. Furthermore, the possibility to combine other
sources of information, such as clinical data from the patient’s EHR (Electronic
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Figure 1.3: B-Mode transvaginal US of the cervix.

Health Record) are explored, as well as the use of CNNs for feature extraction.

1.1 Objectives

The objectives of this project can be summarized as follows:

• Exploring the use of radiomics analysis in obstetrics, particularly in transvagi-
nal US.

• Building artificial intelligence models for decision support in two clinical sce-
narios: induction of labor and preterm birth.

• Exploring ways to combine information from the US images with other clinical
relevant data. Exploring different methods to select relevant features.

• Performing an extensive evaluation of the models, to validate both the accu-
racy utility in a clinical environment.

1.2 Challenges

Working with medical images poses a series of domain specific challenges, many of
them related to the protection of the patients’ privacy, such as the need to obtain
approval from ethical committees to perform the study, the difficulty of accessing the
data, and the lack of big databases publicly available. Furthermore, working with
US images poses a technical challenge as they present a lot of noise and artifacts, and
lower resolution than other imaging modalities such as magnetic resonance imaging
(MRI) or computerized tomography (CT). The main challenges of our project are:
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• The difficulty to obtain a large enough database of US images. The database
must contain not only images, but also labels about the image content, which
requires an expert obstetrician to annotate the images.

• Obtaining a curated and structured database from the patient’s electronic
health records (EHRs) that can be additional information for the analysis of
images.

• Working with US images, which are more noisy and have less resolution than
other medical imaging modalities, making it very difficult to analyze them
automatically.

• The novelty of the proposed method. There are very few similar studies in
the literature and it is still not demonstrated that US images actually reflect
changes in the micro-structure of the cervix.

During the project the ethical and legal issues of working with data from real pa-
tients have been taking into account. The data has been collected with the approval
of the ethical committee and is fully anonymized.
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Chapter 2

State of the art

This chapter summarizes the literature related to the project. We review first the
literature on prediction of induction of labor (IOL) from US images, and then those
concerning prediction of preterm delivery. The last section in this chapter presents
a review focused on the technology rather than the clinical application. We provide
a brief summary of the state of the art of machine learning methods for US imaging,
covering different pathologies and clinical applications. Finally, we present a brief
summary of the state of the art in deep learning for medical image analysis.

2.1 Clinical background

2.1.1 Predictive markers of the failure of induction of labour

IOL (IOL) is the treatment that stimulates childbirth and delivery. Inducing labor
can be accomplished with pharmaceutical or non-pharmaceutical methods, such as
a mechanical methods that promote cervical ripening and the onset of labour by
stretching the cervix.

IOL is a common procedure in current obstetrics, according to the American
College of Obstetricians and Gynecologists (ACOG) between 20 percent and 40 per-
cent, but it can fail. About 20% of women who undergo IOL at term pregnancy end
up needing a C-section, mainly due to the failure of induction, failure of progression
of labours or fetal distress [3].

The Bishop scores has been the most widely used for the assessment of the
cervical tissue prior to IOL, however, it is a subjective measure and it has been
found not to be consistent [4]. Thus, a method for the proper selection of candidates
for successul IOL as well as for the most adequate method for IOL is an open issue
in obstetric practice.

The cervix is a complex structure composed by different cell types (muscle cells,
fibroblasts, glandular cells, vascular cells) embedded in an extracellular matrix
(ECM) which contains proteins -mostly collagen- and proteoglycans. The com-
position and strucutre of the ECM define the mechanical properties of the cervix.
During pregnancy and delivery, the cervix transforms from a stiff, long, closed struc-
ture into a soft, short and dilated structure that allows delivery. Collagen is alligned
and organized in the cervix of non-pregnant women, and more disorganized during
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its remodelling for delivery. Water content of the cervical tissues is also increased
in the process of preparation for delivery.

There are different ways to evaluate the composition of the cervix quantitatively,
apart from Bishop’s score.

Some techniques evaluate the deformability of the tissue, measuring the response
of the tissue to a stimulation to quantify its softness or stiffness. Transvascular US
is used for this purpose.

Cervical consistency index is the ratio of the anteroposterior diameter of the
cervix under maximal compression with the transducer compared to the anteropos-
terior diameter of the cervix prior to compression. It is correlated with gestational
age [12].

Strain elastography involves deforming the cervix and measuring the change
in tissue displacement in a region of interest, computed from the US signals acquired
before and after the deformation. The results are shown in a color map knows as
elastogram.

Dynamic elastography is a similar technique that consists in displacing the
tissue with a high-frequency US pulse and observing the reaction.

Texture analysis is based on the patterns and changes of brightness in the
images. Changes in the cervical mirostructure and water content in the tissue are
expected to be reflected in the image obtained from transvaginal US since the con-
sistency of tissues affect their interaction with US waves. This idea has been applied
to the study of neonatal respiratory morbidity from fetal lung US [13] and to assess
cervical structure with spontaneous preterm birth [11] and to predict gestational
age [14], and to predict IOL failure [9, 8].

To evaluate the current state of the art on prediction the failure of IOL using
US images, we performed a methodological review on the PubMed database. The
search term «labor indcution failure prediction» retrieved only 6 results, searching
for publications in the last 5 years, so we explanded the time limit to 10 years,
obtaining 10 results. The articles found can be classified according to the type of
technique used to evaluate the cervical tissue:

• Prediction based on the deformation of the cervix, [15, 16].

• Texture analisys from the US images, [8, 9].

• Measurement of the cervical lenght, [6, 7, 17].

In [15] cervical tissue strain, assessed by elastography, was shown to be useful
for the prediction of IOL failure. Mono and multivariate analysis was performed to
prove that this measure was independent from cervical length, that there was no
correlation with other outcomes, and that tissue strain performed better than Bishop
score and cervical lenght, which were only found to predict early response to IOL.
However, this was a preliminary study with a small dataset (77 patients). A recent
study [16] also analyzed cervical deformation, but using the cervical consistency
index instead of elastography. In their study, multivariate analylsis showed a lack
of statistical association between cervical consistency index and failure of induction.
Therefore the authors concluded that cervical consistency index cannot be associated
with the risk of C-section delivery after IOL.
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Table 2.1: Summary of the state of the art in methods for the prediction of IOL
failure using transvaginal US imaging
Year Reference Number of patients / images Method Reported results

2014 [15] 77 Bishop score, cervical
lenght, cervical strain -

2015 [7] 131, (14 with failed induction) Cervical length,
funneling, position of cervix

0.90 AUC, 77% sensitivity,
93 % specifity

2016 [9] 53 patients, (9 C-section) Local Binary Patterns
and circular Gabor filters AUC 0.83

2016 [18] 326 Simplified Bishop Score AUC 0.88

2016 [6]
308, 187 vaginal,
58 C-section,

16 failure induction
Cervical length R Pearson 0.237 p<0.001

2017 [8] 243, 22 C-section
Center Symmetric Local

Binary Patterns
and Gabor filters

84% accuracy

2018 [17] 70, 21 C-section Cervical angle,
cervical length AUC 0.94 for cervical angle

2019 [16] 464 Cervical Consistency Index
CCI not associated

with the risk of C-section
delivery after IOL

Regarding cervical lenght, in [7] they found that the cervical score (based on
cervical lenght, funneling, position of cervix, and distance of presenting part form
external) was a better predictor of IOL success than Bishop’s Score. In [6] shorter
cervical length measurement was associated with short induction-to-delivery inter-
val, and in [17] cervical length was found to be a predictor for failure of induction,
although posterior cervical angle was found to outperform both Bishop score and
cervical length. A review study published in 2016 [5] found that cervical length
measurement is useful predictor for the outcome of IOL and might be better than
Bishop’s Score. Few studies have addressed the prediction of IOL outcome based on
texture analysis. In [9], local binary patterns were used to extract texture features
from the image and k-nearest neighbour and a neural network were used to classify
according to IOL outcome. This study obtained good results, with an AUC of 0.88,
but it was based on a sample of only 56 patients, among which just 9 had had a
C-section. In [8], symmetric local binary patterns and Gabor filterbanks were used.

The main limitation of all these studies is the relatively small patient cohorts
used, together with the fact that few induced labors ended in C-section compared to
the ones that success to a vaginal delivery, that results in very few cases for training
and validating the models. Table 2.1 summarizes the state of the art in prediction
of IOL failure and the size of the database used for each study.

2.1.2 Predictive markers of preterm birth

preterm birth is defined as the birth before 37 weeks of gestation. According to the
World Heath Organization (WHO) between 5% and 18% of the births (depending
on the country) are preterm, resulting in 15 millions of preterm births per year [19].
It it estimated that about 1 million of those infants do not survive. Among the rest,
many will suffer from some kind of disability during their lives, related to learning
problems, or vision and hearing problems. Furthermore, the current tendency is an
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increase in the percentage of preterm births in developed countries, due to factors
as an increase in maternal age.

There are two main causes for preterm birth:

• Programmed preterm birth, due to clinical circumstances that make continuing
with the pregnancy a risk for the mother or the fetus.

• Spontaneus preterm birth. It can be related to eclampsia, preeclampsia, some
infections, diabetes, and other diseases. In many other cases, the cause is
unknown.

In the case of spontaneus preterm birth, cervical length i the main sonographic
measurement established for its prediction. During pregnancy, the length of the
cervix is reduced due to the pressure of the amniotic sac. Therefore, a relation
whitin preterm birth and the length of the cervix has been established [20].

However, the information obtained by cervical length is limited because it does
not provide a real measurement of the compression on the cervical tissue or the
structural changes in tissue composition. Elastography, a technique explained in
Section 2.1.1, has been applied to the prediction of preterm birth, trying to leverage
the structural changes in the tissue [21, 22]. The Cervical Consistency Index (see
Section 2.1.1) has also been proposed as a way to evaluate the risk of preterm birth
[23].

Finally, texture analysis has been applied to the prediction of preterm birth. In
[11], cervix images from 310 women were analyzed using an algorithm based on local
binary patterns, obtaining an AUC of 0.77. In [24], texture analysis was used to
predict preterm birth, but analysing the fetus lungs in the US instead of the cervix.

2.2 Artificial intelligence for medical image analysis

2.2.1 Machine learning methods

Machine learning is a branch of artificial intelligence whose objective is to develop
techniques that allow computers to learn. It is said that an agent learns when its
performance improves with experience. The resulting models or programs must be
able to generalize behaviors and inferences for a larger set of data.

It is, therefore, a process of induction of knowledge. In many cases, the field
of action of machine learning overlaps with that of inferential statistics, since the
two disciplines are based on data analysis. However, machine learning incorporates
concerns about the computational complexity of problems.

Machine learning has a wide range of applications, including search engines,
medical diagnostics, fraud detection, stock market analysis, classification of DNA
sequences, recognition of speech and written language, games and robotics. We will
offer a review of the specific application of machine learning to US image processing
in Section 2.2.5.

Machine learning algorithms are usually divided into four main groups according
to the training strategy:
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• Supervised learning: The algorithm produces a function that establishes
a correspondence between the desired inputs and outputs of the system. An
example of this type of algorithm is the problem of classification, where the
learning system tries to classify a series of vectors using one of several cat-
egories. The knowledge base of the system consists of examples with labels.
This type of learning is the most commonly used in medical applications. How-
ever, the disadvantage is the need of annotated data to train the models. Large
annotated databases of medical images or medical data are scarce, access to
medical data is restricted by ethical and law requirements and clinical experts
are needed to label the data, which is expensive and time consuming.

• Unsupervised learning: The entire modeling process is carried out on a set
of examples formed only by inputs to the system. There is no information
about the categories of these examples. Therefore, in this case, the system has
to be able to recognize patterns in order to label the new entries. This type
of learning is useful to find patterns in clinical data, but it cannot be applied
directly to the development of predictive models for medicine since the target
classes are unknown.

• Semisupervised learning: This type of algorithm combines the two previ-
ous algorithms to be able to classify adequately, both marked and unmarked
data are taken into account. Semi-supervised strategies have been applied to
medical image processing in the recent years to ease the burden of generat-
ing large annotated datasets; an example is the use of Generative Adversarial
Neural Networks to pre-train a classifier that is later refined using annotated
datasets.

• Reinforcement learning: The algorithm learns by observing the world
around it, so its input information is the feedback it gets from the outside
world in response to the actions. Therefore, the system learns based on trial-
error. Reinforcement learning can be used in healthcare to refine the existing
practices, analyzing the decisions which led to the maximum reward.

2.2.2 Machine learning classifiers

Several machine learning classifiers have been trained by supervised learning to
build predictive models for the two clinical scenarios studied in this project. Their
theoretical background is briefly explained in this section.

Decision Trees

A decision tree is a set of conditions or rules organized in a hierarchical structure, so
that the final decision is given following the conditions that are fulfilled from the root
node until any of the leaves. They can be used for regression or clustering, but they
are best suited for classification tasks [25]. Decision trees present advantages such as
being easy to use and to interpret, which is very important in the medical domain,
where black box systems are less likely to be trusted; they have high tolerance
to noise, non-significant attributes and missing values. However, they are weak
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learners, having a strong dependency of the sampling of examples. Two different
datasets extracted from the same underlying distribution can lead to very different
trees.

There are different algorithms for learning a decision tree from data, they differ
in the way to create and select partitions of the data at each node. There exist many
methods to measure the similarity of the examples at each node, usually based in
obtained measurements of the relative frequency of each class in the data subset
generated for the child nodes with respect to the parent node. Some rules are Gini
criteria, Gain criteria, Gain Ration, C4.5 and DKM. This is an important parameter
that has to be chosen for building the decision tree [26].

Random Forest

A random forest is a meta estimator that fits a number of decision tree classifiers
on various sub-samples of the dataset, that is, it is a modification of bagging that
builds a large number of trees and then and uses averaging to improve the predic-
tive accuracy and to minimize over-fitting [27]. It is an efficient classifier for large
databases and it is able to cope with high dimensional feature spaces giving an
estimation of which variables are important for the classification [26]. However, in
contrast to decision trees, random forests are difficult to interpret. A very important
parameter for the random forest classifier is the number of estimators (number of
trees) to be built. A higher number will lead to better performance, especially when
the dataset has a lot of atributes, but also increases significantly the computational
expense. Different similarity metrics can be used to build the trees, as explained in
Section 2.2.2, which usually affects the performance of the classifier.

Extremely Randomized Trees

Extremely randomized trees are very similar to random forests, they are also built
with bagging. However, instead of looking for the most discriminative thresholds,
the thresholds are drawn at random for each candidate feature, and the best of
those randomly generated thresholds is chosen as the splitting rule [28]. Therefore,
extremely randomized trees is even more random than random forest [29].

Support Vector Machines

Support Vector Machines (SVM) are linear classifiers that induce hyper-planes in
high dimensional feature spaces, trying to maximize the margin. That way, if the
data is linearly separable, the SVM will find the hyper-plane which is at the same
distance from the closest examples of each class. Therefore, it only considers the
points that are at the boundary of the decision region. To learn non-linear SVM
classifiers, the input feature space is transformed by a kernel function into a space of
higher dimensionality, where the classes are linearly separable (see Figure 2.1) [30].
SVM classifiers have a good performance in high dimensional spaces and are robust
to overfitting. However, a basic requisite for SVM is the correct choice of a kernel
function. Common choices are Gaussian kernels, polynomic functions, or sigmoids
[26].
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Figure 2.1: Change in the class boundaries after applying a kernel function to make
the classes linearly separable.

Multi Layer Perceptron

Artificial neural networks are a computational method that tries to emulate the
human brain. The multilayer perceptron (MLP) is a neural network with one or
more hidden layers. It is suitable for non-linear problems and can obtain good
results for both classification and regression problems [31]. Figure 2.2 shows the
architecture of an example MLP, with one hidden layer. Each neuron in the hidden
layer is connected to the output of all the neurons in the first layer. The MLP
is trained with backpropagation, so that the error due to the weights of the first
layers is calculated using mean squared error, and part of it is propagated to the
hidden layers, to take into account the error caused by those weights (assigning the
proportional part to the weights that cause it). The gradient descent technique is
used for optimization. Since the problem is not convex, convergence to a global
minima is not guaranteed. Ususally, networks converge to local minima, but these
are generally good enough solutions [26]. Weights are initialized with random values,
poor initialization values, given that can lead to non-convergence, some heuristics
can be applied to try to prevent this.

Figure 2.2: Example of a multi layer perceptron.
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Naive Bayes

The Naive Bayes method consist in applying Bayes’ theorem with the assumption
of conditional independence between every pair of features:

P (Ai|B) =
P (B|Ai)P (Ai)∑n

k=1 P (B|Ak)P (Ak)
. . .

This way we can calculate the probability that the example belongs to a class given
the value of its atributes [26].

2.2.3 Feature selection strategies

The training time and performance of a machine learning algorithm depends largely
on the characteristics of the data set. Unnecessary and redundant features slow
down the training time and also affect the performance of the algorithm. Thus, it is
necessary to select the most appropriate features to train the machine models. There
are different types of algorithms to perform feature selection, taking into account
different characteristics of the data.

Filter methods select features regardless of the machine learning algorithm
model. This is one of the biggest advantages of filter methods. Another advantage
of filter methods is that they are very fast. Filter methods can be classified into:
univariate filter methods and multivariate filter methods [32].

Univariate filter methods rank features according to specific criteria. Next, the
N first features are selected. Thera are different types of classification criteria,
for example, Fishermen’s score, mutual information and characteristic variation.
One of the main disadvantages of univariate filter methods is that they can select
redundant features because the relationship between individual features is not taken
into account when making decisions [26].

Multivariate filter methods are capable of eliminating redundant data features,
since they take into account the mutual relationship between the characteristics.
Multivariate filter methods can be used to eliminate duplicate and correlated fea-
tures.

Wrapping methods are based on greedy search algorithms, as they evaluate all
possible combinations of features and select the combination that produces the best
result for a specific machine learning algorithm. A disadvantage of this approach
is that testing all possible combinations of features can be computationally very
expensive. Another disadvantage is that this feature set may not be optimal for any
other machine learning algorithm [32].

2.2.4 Convolutional neural networks

Convolutional Neural Networks, CNNs, (LeCunn, 1989) are deep neural networks
that use convolutional layers, which perform a convolution between the input data
(or the output of the previous layer, it it is a hidden layer) and the filter composed
by the weights of the layer. Another way to say this, is that each neuron is only
connected to a locally related subset of the input and weights are shared across
all the neurons from that layer. Figure 2.3 shows the difference between the fully

19



connected layers and convolutional layers. CNNs became very popular for computer
vision applications in 2012 with the success of AlexNet[33].

In the last decades, deep learning has given a boost to medical image analysis
allowing to efficiently learn features directly from the imaging data. Instead of rely-
ing on human-designed features for classification, deep learning techniques require
only the datasets, from which the informative representations are directly inferred.
Convolutional Neural Networks, have been applied to a wide range of medical im-
age analysis tasks, including segmentation, regression and classification. The major
limitation is the need for large annotated datasets, which has been dealt with us-
ing several strategies, such as semi-supervised training, weak labels or generative
adversarial neural networks.

Figure 2.3: a) Difference between a fully connected layer and a convolutional layer,
in the which the connections are spatially limited. (b) Example of the operation
performed by convolutional layers.

2.2.5 Machine learning and deep learning applied to US im-
age analysis

US imaging is low-cost, non-ionizing, widely available and capable of real time image
acquisition and display. It is one of the most common diagnostic imaging modalities.
However, the presence of noise, artefacts, high inter and intra-operator variability,
and variability across different manufacturers can make it difficult to interpret the
images. This motivates the use of computer vision and machine learning technologies
to improve the quality of the information obtained by US imaging, to help practi-
tioners interpret the findings and make decisions, and to reduce the time needed
for those tasks. Machine learning has been used for noise reduction, segmentation,
detection and classification.

The most common approach for classification is to extract handcrafted features,
apply feature selection algorithms and then train a classifier. Features commonly
used include morphological characteristics and texture features. The existence of a
public database for breast cancer US (Breast US Image) has motivated the appli-
cation of machine learning to this task, using classifiers based on neural networks,
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support vector machines or random forests to assess the malignancy of the lesion
[34, 35, 36, 37]. Machine learning has also been used for classification of US images
on other organs, as liver, lung, kidney or heart [1]. A common limitation in most of
the studies is the reduced number of patients or images. Furthermore, the classifi-
cation usually relies on a manual selection of the region of interest (ROI), which is
time consuming and operator dependent.

Machine learning algorithms have been applied for segmentation of anatomical
and pathological structures from US images. Automatic segmentation from US
images is a very challenging task since the data is affected by speckle, shadow,
and missing boundaries. The process usually consists in a pixel-wise classification
followed by a post processing to smooth the segmentation. Machine learning has
been used for prostate segmentation from 3D US [38, 39], breast lesion segmentation
[40] and carotid artery segmentation [41].

In addition to classification and segmentation, machine learning has been used
for registration of US images. Examples include the registration of CT and US
images of the spine [42] and the registration of longitudinal US images of the prostate
[43].

To overcome the limitations of machine learning based methods, (e.g. manual
region of interest selection) and use of handcrafted sets of features, deep learning
based methods, such as convolutional neural networks, have been recently applied to
US image processing [44, 45, 46]. However, a major disadvantage for the application
of deep learning to US images is the lack of large annotated image datasets that
can be used for supervised training. The generation of large US databases faces
ethical issues (need for patient consent, ethical committee approval, anonimization
and compliance with data protection regulation) as well as practical issues (it is
very time consuming and requires highly qualified personal, such as doctors and
radiologists).

In general, the application of machine learning and deep learning to US imaging
is in an early stage, behind other modalities such as CT and MRI, but it rapidly
progressing.
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Chapter 3

Materials and Methods

This chapter presents the materials and methods used in this project.
The materials consist of two databases for each of the two clinical problems.

For IOL, both US images and clinical data from the electronic health record are
available, while for preterm birth we work only with US images. Details about the
size of the database and acquisition protocols are given in the following section.

Regarding the methods, several steps are needed to build models using US images
and clinical data. Firstly, features have to be extracted from the images, using
radiomics or CNNs. Then, all the features, either clinical or image-based, are pre-
processed, applying feature selection strategies to reduce the dimensionality of the
feature vector. We also had to solve problems such as missing values and class
imbalance. After pre-processing, we trained and built the models, and finally we
evaluated the results in terms of AUC. More details about each of the steps are
given in Section 3.2.

3.1 Materials

The following sections explain the data that was used in this project for the two
clinical scenarios: prediction of IOL failure and prediction of preterm birth. It must
be noted that for both studies, all the images as well as the clinical data have been
anonimized, and that the studies got the approval of the ethical committee of the
hospital (Hospital Universitario de Cruces, Bilbao, Spain).

3.1.1 Data about IOL

The database used in this study consists of images and clinical data from patients
admitted for IOL at Hospital Universitario de Cruces. The patients underwent
a transvaginal US before IOL. Images were acquired with a Voluson US scanner
from General Electric by the expert obstetrician, following the same protocol for all
patients. Image resolution is 720960 pixels with a pixel spacing of 0.11. All images
were provided in DICOM format. A region of interest (ROI) was drawn manually
on the images by an expert obstetrician, so only a relevant region of the cervix was
further analyzed. Figure 3.2 shows examples of the input images and ROIs.
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Data was available from a total of 182 patients, from which 130 had a vaginal
delivery and the rest, 52, needed a C-section. The data included US images, anno-
tation of the ROI and clinical data In 30 cases the cause of the C-section was known
to be failure of induction related to a cervical motive. Figure 3.1 summarizes the
database composition.

Figure 3.1: Dataset composition.

Twenty relevant clinical attributes were selected from the database to be in-
cluded in the study, (including age, weight, height, race, body mass index, num-
ber of abortions, weeks of gestation, and information about previous pregnancies).
Seven sonographic measurements, manually extracted from the trans vaginal US,
were also included: basal cervical length, compressed cervical length, basal anterior-
posterior diameter, compressed anterior-posterior diameter, basal lateral diameter,
compressed posterior diameter, compressed lateral diameter and segment.

3.1.2 Data about preterm birth

Week of delivery Number of images
preterm 178
24 - 34 weeks 93
35 - 36 weeks 85
Term 205
37 - 40 weeks 86
41 - 42 weeks 119

Table 3.1: Distribution of the patients available for the preterm birth study in
different classes.

The database used in this study consists of images from patients admitted for
IOL at the same hospital. The patients underwent a transvaginal US during a
routine examination in the 20th week of pregnancy . Images were acquired with
a Voluson US scanner from General Electric (the same as for IOL) by an expert
obstetrician, following the same protocol for all patients. A total of 383 patients
with US images were available, 178 of which had a preterm delivery, as shown in
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Figure 3.2: Examples of the transvaginal US images and the selected region of
interest for radiomic analysis.

Table 3.1. All images were provided in TIF format. Image resolution is 974×660
pixels. A ROI was drawn manually on the images by an expert obstetrician, so only
a relevant region of the cervix was further analyzed (see figure 3.2).

The clinical data related to these cases was not available at the time of this
study, so it was not incorporated.

3.2 Methods

The code for the analysis has been developed in Python, using some of the most
popular Python libraries for machine learning: Scikit-learn [28], Pandas [47] and
Keras [48].

The following sections give more insight about each of the algorithms, which
include functions for data pre-processing, feature selection strategies, radiomics and
CNNs to extract features from the US images and machine learning classifiers to
build predictive models. Figure 3.3 depicts the workflow of the project.

3.2.1 Machine learning models

Within this project, different supervised classifiers we have trained to generate
predictive models and compared their results. A theoretical description of each
classifier is given in Section 2.2.2, and Table 3.2 summarizes the classifiers used and
their more important parameters.
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Figure 3.3: General workflow of the project.

Table 3.2: Relevant parameters for the classifiers used in the study: Gaussian Naive
Bayes (GNB), Random Forest (RF), Multi Layer Perceptron (MLP), Support Vector
Machine (SVM), Decision Tree and Extremely Randomized Trees (Extra Tree).
Classifier Parameters
GNB Variance smoothing: 1e-9
RF Number of estimators: 150, impurity: Gini, minimum samples per split: 2
MLP Maximum number of iterations: 1000, number of layers: 100
SVM Kernel: radial basis function
Decision tree Impurity: Gini, minimum samples per split: 2
Extra Tree Number of estimators: 150, minimum samples per split: 2, impurity: Gini

3.2.2 Radiomics

Radiomics consist in extracting large amount of features from radiographic medi-
cal images using a data-characterisation algorithm [2]. The basic process common
to every application that uses radiomics consists in: (1) acquiring the images, (2)
segmenting the region of interest (often using semi-automatic or automatic segmen-
tation), (3) extracting the features, which may include volume, shape, texture, or
other information, and (4) analysis.

Radiomic features can be divided into:

• size and shape-based features,

• descriptors of the image intensity histogram, and,

• texture features, such as gray-level co-occurrence matrix (GLCM), run-length
matrix (RLM), size-zone matrix (SZM), and neighborhood gray-tone difference
matrix (NGTDM) derived features.
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Within this project, only texture features and intensity features are considered.
The open-source Python package PyRadiomics [49] is used for feature extraction.

The following matrices are computed and some mathematical descriptors are
extracted from them:

Gray Level Co-occurrence Matrix (GLCM): It describes the second-order joint
probability function of an image region constrained by the mask. Each (i, j)th
element of this matrix represents the number of times the combination of lev-
els i and j occur in two pixels in the image, that are separated by a given
distance of pixels along a certain angle. We chose a distance of 1 pixel; angles
are computed automatically.

Gray Level Run Length Matrix (GLRLM): It quantifies gray level runs, which
are defined as the length (in number of pixels), of consecutive pixels that have
the same gray level value. In a gray level run length matrix the (i, j)th element
describes the number of runs with gray level i and length j occur in the ROI
along angle θ. Again the distance is 1 and angles are computed automatically
as well.

Gray Level Dependence Matrix (GLDM) : quantifies gray level dependencies
in an image. A gray level dependency is defined as a the number of connected
voxels within a given distance that are dependent on the center voxel. A
neighbouring voxel with gray level j is considered dependent on the center
voxel with gray level i if |i − j| ≤ α. In a gray level dependence matrix the
(i, j)th element describes the number of times a voxel with gray level i having
j dependent voxels in its neighborhood appears in the image. The parameters
we used are distance = 1 and α = 0.

Neighbouring Gray Tone Difference Matrix (NGTDM) : It quantifies the
difference between a gray value and the average gray value of its neighbours
within a given distance (1 in this study).

Nineteen first order features based on image intensity are included as well (such as
energy, entropy, minimum, maximum, mean, median, interquartile range, skewness,
kurtosis...) To illustrate the process of texture features computation, Figure ??
shows an example of the GLCM computation from a very simple gray level image,
with distance 1 and angle 0 (horizontal). Table 3.3 presents the total of radiomic
features used.

3.2.3 Convolutional neural networks

CNNs can be trained end-to-end for regression, classification, detection or segmen-
tation. They can also be used to extract features that are then fed into a machine
learning classifier; for instance, the first approach to object detection using CNNs
[50] worked that way.

In this project, a popular CNN architecture for image classification is used to
extract features from the US images. We used ResNet50 [51], the model available
in Keras[48], which is pre-trained on ImageNet[52]. Keras is a high-level neural
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Features Total number

First-order features

energy, total energy, entropy, minimum, maximum, 10th percentile,
maximum, mean, median, interquartile range, range, mean

absolute deviation, robust mean absolute deviation, root mean squared,
standard deviation, skewness, kurtosis, variance, uniformity

19

GLCM

autocorrelation, joint average, cluster prominence, cluster
shade, cluster tendency, contrast, correlation, difference average,
difference entropy, difference variance, joint energy, joint entropy,

informational measure of correlation,inverse difference moment, maximal
correlation coefficient, inverse difference moment normalized, inverse
difference, inverse difference normalized, inverse variance, maximum
probability, sum average, sum variance, sum entopry, sum of squares

24

GLRLM

short run emphasis, long run emphasis, gray level
non-uniformity, gray level non-uniformity normalized, run length non
uniformity, run length non uniformity normalized, run percentage, gray
level variance, run variance, run entropy, low gray leven run emphasis,

high gray level run emphasis, short run low gray level emphasis,
short run high gray level emphasis, long run low gray level emphasis,

long run high gray level emphasis

16

GLDM

small dependence emphasis, large dependence emphasis, gray level
non uniformity, dependence non uniformity, dependence non uniformity

normalized, gray level variance, dependence variance, dependence entropy,
low gray level emphasis, high gray level emphasis, small dependence low
gray level emphasis, small dependence low gray level emphasis, large

dependence high gray level emphasis

14

NGTDM coarseness, contrast, busyness, complexity, strength 5

Table 3.3: Radiomic features used in this study.

Figure 3.4: Example of calculation of GLCM matrix for a very simple 2D grayscale
image, with distance=1 and angle=0.

Figure 3.5: ResNet architecture, with skip-connections to allow training deeper
networks.
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networks API, written in Python. In this project it is used with as a TensorFlow
backend.

Figure 3.5 presents the architecture of ResNet. Features are extracted from the
last average pooling layer, obtaining a vector of 2048 features, that is reduced later
on.

3.2.4 Pre-processing of the data

Before feeding the data to the machine learning classifiers or to the feature selection
process, we had to address problems with the dataset:

1. Missing values: Different patients have different clinical data available, thus
resulting in missing values for some of the attributes. When an attribute value
was missing for more than 50% of the cases, that column was removed. In the
rest of cases, the missing values were filled with the mean, using the functions
available in the Python package Pandas.

2. Class imbalance: For both clinical scenarios, the number of instances in the
classes imbalanced, however, this problem is especially relevant in the case of
prediction of failure of IOL, with 130 and 52 cases per class. To overcome this
problem, we used SMOTE - Synthetic Minority Over-sampling Technique [53]
to generate artificial samples that are used during training.

3.2.5 Feature selection strategies

Working with radiomics leads to a high dimensional feature space, as shown in
Table 3.3, where a total of 78 features are presented. Furthermore, we add clinical
features to the radiomic features vector. In the case of features extracted from a
CNN, the vector has 2048 features.

While there is not a mathematical rule about the number of features to select,
some common heuristics are that 10 data points are needed for each model parameter
and 3 to 5 independent cases are needed per class and feature. Taking into account
that the sample size for the studies in this project is 182 and 383 cases, we can
assume that the classifiers will have difficulties learning (problem known as curse of
dimensionality). Therefore, we have applied feature selection strategies to reduce
the feature vector and the results with and without feature selection have been
compared. The Python packages Scikit-learn[28] and mlxtend [54] have been used.

Sequential Forward Feature Selection

Sequential forward feature selection is a wrapper method for feature selection. Wrap-
per methods are based on greedy-search algorithms that evaluate all the possible
combinations of the features and select the combination that produces the best
result. Sequential feature algorithms are a suboptimal solution to the exhaustive
search of all the possible feature combinations, since finding the optimal solution is
not computationally feasible in many cases.

In this project we use the Sequential Forward Feature Selection implemented in
http://rasbt.github.io/mlxtend/. The algorithm is initialized with tan empty set
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and in each iteration an additional feature is added to the selection. The feature
added is the one that maximizes the criterion function, that is, the feature associated
with the best classifier performance when it is added to the subset. In each iteration,
a new feature is added. The process goes on until the subset has the desired size. We
can plot the performance of the classifier as we add features to choose the optimal
number of features to use.

Random Forest Feature Selection

Random forest classifiers naturally assign an importance to the features when build-
ing trees. As explained in Section 2.2.2, the nodes of the tree are built based on
a metric of the quality of the generated subsets are (e.g. Gini impurity). Random
forest performs bagging, so different trees are built with different subsets of features.
For each tree, the nodes will be created according to Gini impurity; therefore, nodes
with the greatest decrease in impurity will be at the beginning of the trees. Ran-
dom forest classifiers can be used to obtain the importance of each feature, order
the features according to that, and to select the desired number of features accord-
ing to the ranking. Feature selection using random forest can be considered as a
filter method as it ranks the features according to their importance given by Gini
impurity and then select the top N features.

Principal Component Analysis (PCA)

PCA is not strictly a feature selection method, but it is included here because it
has been used to reduce the number of features used during training. PCA reduces
the dimensionality of the feature space by applying a transformation that converts
a set of observations of possibly correlated variables into a set of values of linearly
uncorrelated variables. The new features are defined in a way that the first has the
largest possible variance and the resulting vectors are an uncorrelated orthogonal
basis set. The main disadvantage of this method with respect to the previous ones
is that, as it transform the features, the newly generated features will not have a
clinical meaning and therefore the models will lack interpretability.

3.2.6 Evaluation of the results

Area under the curve (AUC)

To evaluate the performance of the classifiers, the Area Under the Curve (AUC)
is reported for every experiment. This is the area under the Receiver Operating
Characteristic (ROC) curve, which is a graphical representation of sensitivity versus
specificity for a binary classifier system as the discrimination threshold is varied.
Another meaning of this graph is the representation of the true positive ratio versus
the false negative ratio, also as the discrimination threshold is varied.

To provide a more detailed analysis of the results, for some of the most interesting
experiments the values of sensitivity, specificity, false positive ratio and false negative
ratio are provided as well.
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Statistical significance tests

Within the project, hypothesis testing is used to determine whether the difference
found in the results of some experiments are statistically significant or not and p-
values are reported. The Python package Scipy [55] is used. We use the T-test
for means of two independent samples from descriptive statistics. It is a two-sided
test for the null hypothesis that two independent samples (the results for the two
different techniques) have identical average values and the difference observed is due
to random variations. That is, the null hypothesis is that there is no difference in
the performance of the two models.
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Chapter 4

Results

This chapter explains the results obtained withing the project, for the two clinical
scenarios studied: prediction of failure of IOLand estimation of the risk of preterm
birth. The subjective discussion about the results and the conclusions will be pre-
sented in the next chapter, reserving this one for the objective data.

4.1 Prediction of IOL
Heterogeneous data is available for this problem, as explained in Section 3.1.1. The
data can be divided into: (1) clincal data from the EHR (electronic health record).
(2) sonographic measurements from anatomical structures such as cervical lenght,
cervical angle, etc., (3) radiomic features from the US image, and (4) CNN features
from the US image. Several experiments with different combinations of data have
been designed. Thus, in this section we will present results of the experiments that
used:

• only clinical data,

• only sonographic measurements,

• both clinical data and sonographic measurements,

• only radiomic features,

• results combining radiomic features, clinical data, and sonographic measure-
ments.

• only using the features extracted from the CNN.

For each combination of features we have applied different feature selection tech-
niques.

We provide a summary of the most relevant results from the best performing
experiments is provided. An extensive evaluation of the results and comparison
between the different experiments is given on Chapter 5.

It is worth noting that for every experiment, machine classifiers have been trained
using a 10 k-fold cross validation strategy, so the results reported are always the
mean of the 10 folds.
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4.1.1 Prediction of IOL using only clinical data

Table 4.1.1 shows the mean Area Under the Curve (AUC) for the models created
training machine learning classifiers (as explained in Section 3.2.1) using 20 clinical
features. The top-left plot in Figure 4.1 shows the correlation between these clinical
features, as well as the correlation between each feature and the outcome. This
correlation is very low as it can observed in the last row and the last column.

Classifier AUC(mean) AUC(std)

Gaussian NB 0.622 0.029
Random Forest 0.621 0.014
MLP 0.512 0.0575
SVM (rbf) 0.515 0.035
SVM (sigmoid) 0.499 0.0401
Decision Tree 0.572 0.030
Extra Trees 0.614 0.020

Table 4.1: Results (mean and std AUC) using only clinical data

4.1.2 Prediction of IOL using only sonographic measurements

Seven sonographic measurements (of Section 3.1.2) have been used to train machine
learning classifiers. The AUC obtained for every classifier is shown on table 4.2.

Classifier AUC (mean) AUC (std)

Gaussian NB 0.682 0.009
Random Forest 0.652 0.012
MLP 0.678 0.012
SVM (rbf) 0.507 0.029
SVM (sigmoid) 0.494 0.030
Decision Tree 0.525 0.036
Extra Trees 0.639 0.0165

Table 4.2: Results (mean and std AUC) using sonographic measurements

4.1.3 Prediction of IOL with a combination of sonographic
measurements and clinical data

The combination of clinical data and sonographic measurements yields a feature
vector of size 27. This vector can be too big for the number of instances in the
dataset, so we have explored several feature selection techniques. Three different
experiments have been performed:

• Training machine learning classifiers using all the 27 features,

• using sequential forward feature selection (SFFS, see Section 3.2.5) to reduce
the feature vector and then training machine learning classifiers, and
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Figure 4.1: Plot of the correlation between different sets of features (clinical , first
order intensity features and radiomic features).

• using random forest importance (RFFS, see Section 3.2.5) to reduce the feature
vector and then training machine learning classifiers.

Table 4.3 summarizes the results of the three experiments. For both feature selection
algorithms we have implemented a voting strategy, so that the algorithm is run
several times with different subsets of data and only the features that are consistently
selected are kept. This helps to prevent over-fitting by choosing only the most robust
features.

The features eventually kept are different for the two algorithms, as shown in
Table 4.4. Figure 4.3 shows the results of running sequential forward feature selection
on different subsets of the data. It can be seen that the selected features are different
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All the features Selected features (RFFS) Selected features (SFFS)
AUC std AUC std AUC std

Gaussian Naive Bayes 0.643 0.029 0.705 0.01 0.670 0.018
Random Forest 0.754 0.021 0.765 0.011 0.608 0.007
Multi Layer Perceptron 0.599 0.048 0.582 0.04 0.680 0.015
SVM (RBF) 0.486 0.054 0.48 0.046 0.650 0.020
SVM (sigmoid) 0.509 0.047 0.5 0.048 0.495 0.034
Decision Tree 0.631 0.046 0.637 0.018 0.580 0.019
Extra Trees 0.719 0.012 0.747 0.012 0.608 0.015

Table 4.3: Results (mean ± AUC) of the models for IOL prediction using sono-
graphic measurements and clinical data with:(1) all the features, (2) features se-
lected using random forest for feature selection (RFFS), (3) features selected using
sequential forward feature selection (SFFS).

SFFS RFFS

previous C-section,
number of abortions,

number of ectopic pregnancies,
number of previous deliveries,

number of previous induced deliveries,
race, weeks of gestation,
previous way of delivery
(vaginal or C-section),

body mass index

age, body mass index,
weight, height,

number of previous vaginal deliveries,
basal cervical lenght,

compressed cervical lenght,
basal anterior posterior diameter,

basal lateral diameter,
compressed anterior posterior diameter,

compressed lateral diameter,
estimated fetal weight,

weeks of gestation, segment

Table 4.4: Selected features using sequential forward feature selection and random
forest feature selection

on every run, but the number of optimal features (arrow) is always around 10 to 13.

4.1.4 Prediction of IOL using only radiomic features vs. com-
bining features and radiomic features

As explained in Section 3.2.2, radiomic features have been extracted from the
transvaginal US images. To test their predictive value as biomarkers of failure of
IOL, several experiments have been peformed:

• Training using only the radiomic features,

• combining radiomic features with the clinical and sonographic features (used
in the previous sections),

• combining radiomic, sonographical, and clinical features, applying feature se-
lection strategies, with either SFFS or RFFS.

Table 4.5 shows the results for all the experiments, excetp the results for feature
selection with SFFS becasue that selection algorithm was not consistent. As it can
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Figure 4.2: Example of four plots obtained in different runs of the sequential feature
selection algorithm. Performance is plotted against number of features. The arrows
indicate the maximum points, which correspond to the optimal number of features.

be seen on figure 4.3, the number of selected features was very different between
different runs.

Figure 4.3: Example of two plots obtained in different runs of the sequential feature
selection algorithm. Performance is plotted against the number of features.
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Only radiomics Radiomics + other Selected features

AUC std AUC std AUC std
Gaussian Naive Bayes 0.471 0.022 0.487 0.017 0.505 0.026
Random Forest 0.521 0.034 0.642 0.019 0.746 0.017
Multi Layer Perceptron 0.471 0.033 0.501 0.049 0.505 0.052
SVM (RBF) 0.500 0.000 0.497 0.008 0.500 0.000
SVM (sigmoid) 0.459 0.039 0.542 0.056 0.510 0.041
Decision Tree 0.511 0.042 0.582 0.033 0.620 0.032
Extra Trees 0.495 0.018 0.626 0.026 0.769 0.014

Table 4.5: Mean AUC and std for all the experiments: (1) radiomic features, com-
bination of radiomic features, (2) clinical data and (3) sonographic measurements
and features selected using random forest feature selection.

4.1.5 Prediction of IOL with features extracted from the CNN

In the last experiment, a feature vector of 2048 features is extracted from the images
using a Convolutional Neural Network (CNN). Because the feature vector is too big,
before feeding the features into the classifiers they are transformed using Principal
Component Analysis (as explained in Section 3.2.5) to obtain a vector of 10 features.

Two different experiments have been carried out: (1) extracting features from
the whole image, (2) extracting features only from the ROI (the same region used for
the radiomic feature extraction). Table 4.6 shows the results for both experiments.

Whole image ROI

Classifier AUC(mean) AUC(std) AUC(mean) AUC(std)
Gaussian NB 0.554 0.017 0.594 0.021
Random Forest 0.534 0.023 0.579 0.019
MLP 0.525 0.020 0.524 0.025
SVM (rbf) 0.456 0.041 0.585 0.025
SVM (sigmoid) 0.471 0.027 0.509 0.044
Decision Tree 0.499 0.050 0.515 0.026
Extra Trees 0.513 0.020 0.585 0.018

Table 4.6: Results (mean AUC and std) for the classifiers trained with image features
extracted using a CNN (ResNet50), from the whole image and from a ROI.

Finally, in order to compare the results using only radiomics and only CNN fea-
tures in the same conditions, PCA has been applied to radiomic features. Table 4.7
summarizes the results.

Classifier AUC(mean) AUC(std)
Gaussian NB 0.471 0.022
Random Forest 0.521 0.034
MLP 0.471 0.033
SVM (RBF) 0.500 0.000
SVM (sigmoid) 0.459 0.039
Decision Tree 0.511 0.042
Extra Trees 0.495 0.018

Table 4.7: Radiomic features after PCA feature selection (mean and standar devia-
tion).
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4.1.6 Summary of the 7 experiments

Many different experiments have been done. To facilitate the comparison between
them and the further analysis of the results, these section provides a summary of
the best performing experiments. Furthermore, for the best performing classifiers,
sensitivity, specificity, false positive rate, and false negative rate are provided as
well as AUC, to give more insight about their behavior and performance. Table 4.8
summarizes the data used in each experiment. Table 4.9 shows the AUC(mean)
and std for all the classifiers, while table 4.10 presents sensitivity, specificity, false
positive rate and false negative rate for the best classifiers.

Exp. Data description Total
1 Clinical 20 features
2 Clinical and sonographic 27 features
3 Clinical and sonographic, after feature selection 16 features
4 Sonographic 7 features
5 Clinical and sonographic + radiomic 104 features
6 Clinical and sonographic + radiomic after feature selection 16 features
7 Features extracted from CNN, after PCA 10 features

Table 4.8: Summary of the data used for each experiment

Classifier Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7
Gaussian NB 0.622±0.029 0.643±0.029 0.705±0.01 0.682±0.010 0.487±0.017 0.505±0.026 0.584±0.014
Random Forest 0.621±0.014 0.754±0.021 0.765±0.011 0.652±0.012 0.642±0.019 0.746±0.017 0.566±0.02
MLP 0.512±0.058 0.599±0.048 0.582±0.04 0.678±0.012 0.501±0.049 0.505±0.052 0.531±0.019
SVM (RBF) 0.515±0.035 0.486±0.054 0.48±0.046 0.507±0.029 0.497±0.008 0.5±0 0.603±0.014
SVM (sigmoid) 0.499±0.04 0.509±0.047 0.5±0.048 0.495±0.031 0.542±0.056 0.51±0.041 0.49±0.03
Decision Tree 0.572±0.03 0.631±0.046 0.637±0.018 0.525±0.037 0.582±0.033 0.62±0.032 0.526±0.021
Extra Tree 0.614±0.02 0.719±0.012 0.747±0.012 0.639±0.016 0.626±0.026 0.769±0.014 0.571±0.018

Table 4.9: Mean AUC and std for all the experiments

Classifier Sensitivity Specificity FPR FNR AUC

Exp. 1 Gaussian Naive Bayes 0.808 0.338 0.662 0.192 0.622
Random Forest 0.423 0.885 0.223 0.635 0.621

Exp. 2 Random Forest 0.462 0.831 0.169 0.538 0.754
Extra Trees 0.423 0.885 0.115 0.577 0.719

Exp. 3 Random forest 0.596 0.825 0.175 0.404 0.765
Extra trees 0.451 0.858 0.142 0.549 0.747

Exp. 4 Gaussian Naive Bayes 0.632 0.682 0.318 0.368 0.682
MLP 0.600 0.677 0.323 0.400 0.678

Exp. 5 Random forest 0.365 0.838 0.162 0.635 0.642
Extra trees 0.308 0.900 0.100 0.692 0.626

Exp. 6 Random Forest 0.692 0.715 0.285 0.308 0.746
Extra Trees 0.481 0.846 0.154 0.519 0.769

Exp. 7 Naive Bayes 0.523 0.571 0.429 0.477 0.584
Random Forest 0.462 0.674 0.326 0.538 0.566

Table 4.10: Sensitivity, specificity, false positive rate and false negative rate for the
two best classifiers for each of the experiments.
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All features Selected features

AUC (mean) std AUC (mean) std
Gaussian NB 0.755 0.003 0.773 0.002
Random Forest 0.757 0.005 0.768 0.005
MLP 0.504 0.021 0.500 0.016
SVM (rbf) 0.500 0.000 0.500 0.000
SVM (sigmoid) 0.505 0.018 0.486 0.032
DecisionTree 0.632 0.021 0.524 0.023

Table 4.11: Results (mean AUC and std) for the experiment with the 77 radiomic
features and the 54 features selected based on their correlation.

4.2 Prediction of preterm birth

The results for the second clinical case, the prediction or estimation of the risk of
preterm birth are presented in this section. Because clinical data was not available,
only features extracted from the US images are used (radiomic features and CNN
features). Methods for feature selection have been explored as well.

4.2.1 Prediction of preterm birth with radiomic features

Table 4.11 shows the results for the models built using the 77 radiomic features. The
correlation between the features was analyzed as well, and the features that were
very correlated were removed, as they are are redundant. Consequently, a vector of
54 features was kept.

4.2.2 Feature selection for the prediction of preterm birth

The same feature selection process of the previous section (prediction of failure of
IOL) has been applied to this case, that is, SFFS and random forest importance
feature selection. Sequential forward feature selection resulted in 12 features, while
only 8 were kept after RFFS. Figure 4.4 depicts the plots of two runs of the sequential
feature selection algorithm on different subsets of the data. Table 4.12 compares the
results with both methods.

SFFS RFFS

AUC (mean) std AUC (mean) std
Gaussian NB 0.692 0.006 0.767 0.009
Random Forest 0.739 0.009 0.762 0.006
MLP 0.715 0.040 0.596 0.043
SVM (rbf) 0.593 0.010 0.484 0.019
SVM (sigmoid) 0.504 0.031 0.497 0.030
DecisionTree 0.631 0.021 0.640 0.022

Table 4.12: Results for the two feature selection algorithms, sequential forward
feature selection (SFFS) and random forest feature selection (RFFS).
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Figure 4.4: Example of two plots obtained in different runs of the SFFS algorithm
for the dataset for preterm birth prediction. Performance is plotted against number
of features.

4.2.3 CNN features for the prediction of preterm birth

As we did for IOL failure, we extracted features using a CNN (ResNet50) and
reduced the feature vector using PCA. Two experiments were performed, using the
whole image and using only the selected ROI. Table 4.13 presents the results.

Whole image Region of interest
AUC (mean) std AUC (mean) std

Gaussian NB 0.679 0.006 0.756 0.004
Random Forest 0.686 0.005 0.753 0.008
MLP 0.639 0.006 0.674 0.009
SVM (rbf) 0.544 0.017 0.521 0.012
SVM (sigmoid) 0.530 0.015 0.571 0.024
DecisionTree 0.584 0.023 0.638 0.023

Table 4.13: Results for the models built using CNN features, extracted from the
whole image and from the manually chosen ROI.

4.2.4 Summary of the 4 experiments

To provide more insight about the performance of different classifiers, sensitivity,
specificity, false positive rate and false negative rate are provided for the best classi-
fiers. Table 4.14 summarizes the results for experiment 1 (54 features selected after
removing the ones with higher correlation), experiment 2 (12 features selected after
sequential forward feature selection), experiment 3 (8 features selected with random
forest feature selection) and experiment 4 (CNN features after PCA).

39



Classifier Sensitivity Specificity FPR FNR

Exp. 1 Gaussian NB 0.572 0.834 0.165 0.427
Random Forest 0.701 0.697 0.302 0.298

Exp. 2 Random Forest 0.706 0.668 0.331 0.293
MLP 0.671 0.640 0.360 0.328

Exp. 3 Gaussian NB 0.830 0.525 0.474 0.169
Random Forest 0.711 0.662 0.337 0.288

Exp. 4 Random Forest 0.661 0.752 0.247 0.338
Gaussian NB 0.706 0.732 0.2673 0.293

Table 4.14: Sensitivity, specificity, false positive rate (FPR) and false negative rate
(FNR) for the two best classifiers that had the best performance for prediction of
preterm birth.
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Chapter 5

Discussion

This section presents the discussion of the results obtained and the conclusions we
can draw from them. First, the results for both experiments (prediction of failure
of IOL and prediction of preterm birth) are discussed independently, then they are
compared and global conclusions are obtained.

5.1 Prediction of failure of IOL

The results for the prediction of failure of IOL (IOL) are detailed in Section 4.1.
Clinical data alone (as seen in Table 4.1.1) does not seem to have high predictive
value (the best classifier, Gaussian naive Bayes, achieves 0.62± 0.02 AUC), while the
predictive value of the sonographical measurements alone (cervical length, cervical
angle ...) is shown to be better, with a maximum AUC of 0.682 ± 0.009 when using a
Gaussian naive Bayes classifier, the complete results are in Table 4.2. This is consis-
tent with previous studies in the literature which have shown a correlation between
cervical length and other anatomical measurements and the outcome of IOL [?].
In the next experiments (tables 4.3 and 4.5) we combine clinical data, sonographic
measurements and radiomic features. The results obtained only with clinical data
and sonographic measurements are similar to the results obtained adding radiomic
features. Similar maximum AUC values are achieved. The random forest and ex-
treme trees classifiers perform the best in both cases, yielding AUC values between
0.747 and 0.769. When comparing the highest AUC values from both methods (ex-
periment 3, random forest: 0.763 ± 0.011; experiment 4, extra trees: 0.769 ± 0.014)
the difference is not statistically significant (T-test, p value = 0.1934).

Nonetheless, differences in the performance of the classifiers can be seen by an-
alyzing their behavior with respect to false negatives and false positives. A more
detailed analysis of the results, provided in table 4.10, shows the sensitivity, speci-
ficity, false positive rate and false negative rate for these classifiers. Overall, false
negative rate is higher than the false positive rate. From a clinical point of view,
this situation (sending a patient for IOL that ends up in C-section) is better than
the opposite (performing a C-section when IOL would have succeeded).

It can be observed that adding radiomic features increases the sensitivity and,
consequently, reduces the false negative rate of the classifiers. We obtain useful
information from the radiomic analysis that makes the model more balanced, 0.75
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AUC with a sensitivity of 69% and a specificity of 71% using a Random Forest
classifier, in contrast to the rest of models which achieve good specificity but have
too low sensitivity. This means that radiomics contain relevant information and
may help avoiding unnecessary C-sections. However, as seen in Table 4.5, radiomic
features alone are not enough to predict failure of IOL (the best AUC is 0.52 ± 0.03
when using a Random Forest classifier).

Table 4.9 highlights the importance of feature selection. Comparing experiment
2 with experiment 3 and experiment 5 with experiment 6, it can be seen that for
most of the classifiers the AUC improves after feature selection, even though for
some classifiers (MLP, SVM) it remains similar. Furthermore, the feature selection
process allows us to understand which features are more relevant. When clinical
and sonographic features are combined, many of the high-ranked features are sono-
graphical (5 features), but a few clinical data are kept as well: weight, height, age,
estimated fetal weight, number of previous pregnancies, previous vaginal births, and
weeks of pregnancy. While using only clinical data is not enough to predict IOL (ta-
ble 4.1.1), adding this information to sonopraphical measurements helps improving
the models. In the next experiment, combining clinical data, sonographic measure-
ments and radiomics, the same five sonographic measurements are selected again,
as well as some clinical variables (height, estimated fetal weight, body mass index,
number of vaginal births) and 4 radiomic values (energy, long run high gray level
emphasis, run length non uniformity, run entropy). The fact that radiomic features
are high-ranked in the feature selection process suggests that radiomic features from
transvaginal US can be useful for the prediction of IOL failure. However, it must
be noted that the selected features are not necessarily the most important ones.
When the dataset has two or more correlated features, from the point of view of
the model any of them can be used as the predictor, with no preference for one over
the other. But, once one of them is added to the set of selected features, the the
importance of the other correlated features is significantly reduced since they do not
add new information, and they will not be selected. Therefore, features that may
actually have a high correlation with the outcome can be removed if they also have
high correlation to other features that have already been selected. This is not an
issue when we want to use feature selection to reduce the dimension of the dataset,
since it makes sense to remove features that are mostly duplicated by other but can
lead to the incorrect conclusion that one of the variables is a strong predictor while
the others in the same group are unimportant. Figure 4.1 shows that some features
have a very high correlation to other, so some of them will be removed and consider
unimportant by the feature selection process.

The next experiment consisted in using a CNN to extract features from the image
and from the selected ROI. The best performing classifier is a random forest when
using the ROI and yields 0.57 ± 0.01 AUC. In general, it can be seen that classifiers
perform better with the features extracted from the ROI than when using the entire
image (table 4.6).

The low performance obtained from classifiers trained using only radiomic fea-
tures and from classifiers trained using CNN features suggest that data extracted
from the image alone is not predictive of failure of IOL. However, the results may
improve by adding more training data. The hypothesis for the image analysis is
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that changes in the micro-structure of the cervical tissue could result in changes
in the speckle of the US image, and those changes are correlated with IOL failure.
These changes in the pattern in the speckle are not even visible to a human observer
and should be found by the classifiers, inferred from the training data. As seen in
figure 3.1, from the 52 patients that a C-section, only in 30 cases the induction failed
because the cervix was not mature or because the dilatation stopped after the cervix
was mature. In other patients the causes for operative delivery were not related to
a cervical problem. Thus, it is probable that there are no changes in the cervical
tissue of these patients. That would mean that a different speckle pattern would be
present only in 30 cases, and that is a very small number for the machine learning
classifiers to learn. Therefore, recruiting more patients with a failure of induction
related to a cervical motive might improve the results from the image-based analysis,
and would also reduce the class imbalance.

Regarding the difference in performance of the machine learning classifiers, in
general meta-estimators based on trees (random forests, extra trees) show the best
performance. These classifiers perform better in noisy datasets and with high-
dimensional feature spaces; random forest classifiers have been widely used for
medical image analysis for that reason. The main disadvantage is the difficulty
to interpret the results, as compared with a traditional decision tree. On the other
hand, the worst performing classifiers for most of the experiments are SVM classi-
fiers. This is probably because only two kernels have been used (RBF and sigmoid).
Finding a good kernel for SVM classifiers is very crucial, otherwise the data will not
be separable in the transformed space, so probably a more exhaustive parameter se-
lection process should be performed to find the adequate settings for SVM classifiers
to work.

The dataset used is small (182 patients) and highly imbalanced. We tried to
alleviate it using SMOTE. We also dealt with the problem known as the curse of
dimensionality, which in the context of machine learning means that the number
of features is very high compared to the number of instances in the database (104
features in one of the experiments). Learning is very difficult for some classifiers in
these conditions. While the results obtained are good (we achieve a maximum AUC
of 0.75, with 69% sensitivity and 71% specificity when using a random forest classi-
fier) with radiomic, clinical, and sonographic features, these values are still far away
from the accuracy needed in clinical practice. Higher AUCs for the prediction of IOL
failure using transvaginal US are reported in the state of the art (see Table 2.1) but
the datasets used are small and imbalanced, containing very few examples of failure
of induction. For instance, [9] report an AUC of 0.83 using local binary patterns,
but their dataset only has 9 patients that ended up needing a C-section. A bigger
study [56], which did not incorporate imaging data, only clinical data extracted from
clinical reports, achieved an AUC of 0.867 with a patient cohort of 10,487 cases. Ob-
taining a large dataset for an image-based analysis is more challenging since many
times the US images are not saved or even performed before IOL, but it would be
necessary in order to compare the results of clinical data alone with image-based
analysis to establish whether a transvaginal US should be recommended before IOL.

43



5.2 Prediction of preterm birth

Results for the prediction of preterm birth are presented in Section 4.2. In this
case, the clinical data was not available, so the analysis is only image-based. The
feature vectors used are smaller (77 radiomic features, 10 CNN features) than for
the previous clinical scenario and the database is bigger (383 patients) and more
balanced. Therefore, the results are better in general (except for SVM), and the
differences between experiments and classifiers are smaller. Results above or close
to 0.7 AUC are achieved for many of the models.

An AUC of 0.768 ± 0.005, with 71% sensitivity and 69% specificity, is achieved
using a random forest classifier with radiomic features, after removing redundant
features based on correlation. This can be considered as the best result for radiomic
analysis, since the model is more balanced. In this case, the results are very similar
with and without feature selection.

Using CNN features, 0.753 ± 0.008 AUC with 70% sensitivity and 73% specificity
is achieved using a Random Forest classifier. Even though the Gaussian naive Bayes
classifier obtains better results in terms of AUC, the RF is chosen as the best one
because it has more balanced results in terms of sensitivity and specificity, which is
preferred from a clinical point of view.

These results are close to the state of the art (0.77 AUC reported by [11] using
local binary patterns) but still far from being useful in a clinical practice.

Causes for preterm birth are urinary infections, diabetes, renal or cardiac disease,
eclampsia and preeclampsia, streess, smoking... However for many patients (about
50% of the cases) that end up in spontaneous preterm birth, the cause cannot be
established. Therefore, it is difficult to assess whether in all the training and test
samples of our database the cause of the preterm birth is related to alterations that
appear in the US image.

5.3 Conclusions and future work

Good results have been obtained for image-based analysis, both with radiomics and
CNN features (0.768 ± 0.005 and , 0.753 ± 0.008 respectively), with transvaginal US
from the cervix for the prediction of preterm birth, without adding any other clinical
information to the model, which is consistent with the hypothesis that transvaginal
US can reflect changes that occur in the cervical tissue. In the case of IOL, an AUC
of 0.68 ± 0.009 is obtained with the sonographic features such as cervical lenght,
diameter, etc., proving that transvaginal US images provide valuable information
for the prediction of IOL failure. While radiomics and CNN features alone do
not have a good performance, the combination with clinical data and sonographic
measurements yields 0.75 ± 0.02 AUC. In this scenario, image-based analysis alone
is not enough, but the difference in the performance of these features between the
two clinical scenarios could be explained by the difference in the datasets, given that
the preterm birth dataset is bigger and more balanced than IOL dataset.

Furthermore, a novel methodology for IOL failure prediction based on radiomics
has been applied to these images for the first time. We have shown how a com-
bination of radiomic features with cervical measurements and clinical data can be
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used to build a predictive model that achieves an AUC of 0.75 with 69% sensitivity
and 71% specificity. These preliminary results indicate that US can provide the
clinicians with useful information prior to the IOL.

An important limitation of our study is the size of the patient cohort, with 182
patients from which only 52 had a C-section. Furthermore, only in 30 cases the
IOL failure was related to a cervical motive. All the images come from the same
hospital and have been acquired following the same protocol with US devices from
the same vendor. Poor generalization is a common problem working with radiomics,
as different protocols or vendors could result in different image properties, which
implies that the selected features and models could be overfitted for the current
available data. Further validation should be performed with a larger and more
diverse database to assess the robustness of the proposed method. Future works
should also develop techniques for obtaining measurements, such as cervical length
and cervical angle, automatically from the US images.

Regarding prediction of preterm birth, future research should address the combi-
nation of clinical data with image-based analysis. A more extensive database should
be created and curated, highlighting the cause of preterm delivery. If enough number
of images is available, the multi-label classification could be used instead of binary
classification to account for the difference between late and moderate preterm birth
(between 32 and 36 weeks of gestation), extremely preterm (less than 28 weeks) and
very preterm (28 to 32 weeks). Another approach could be a regression to estimate
the week of delivery from the images or clinical data. More extensive validation
with a bigger database is needed as well to study the generalization of the models
to data sets acquired by different obstetricians with different acquisition protocols
or vendors.

Another limitation of the study is that for the image-based analysis the region of
interest has been drawn manually. This requires a lot of work from the radiologists
and introduces inter observer variability. Future works should explore automatic
segmentation techniques to obtain the ROI.

End-to-end deep learning networks could be applied to the classification of transvagi-
nal US images for both clinical scenarios if a larger database is available, allowing
the network to automatically extract the most relevant features from the images in-
stead of using a set of manually designed radiomic features or a pretrained network,
which has been trained on natural images (ImageNet) instead of US images.

The results of our work have been accepted for publication in the MICCAI
Workshop on Perinatal, Preterm and Paediatric Image analysis (Shenzhen, China),
the author accepted manuscript version of the paper is included in Appendix I.
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Chapter 6

Conclusion

In this project we have applied machine learning and image analysis techniques to
build predictive models in two clinical scenarios: preterm delivery and induction
of labor. Transvaginal US images are widely available in hospitals and clinics, not
expensive and fast, however, they are usually only visually examined by the radiol-
ogists and then stored in the hospital PACS, sometimes, they are not even stored.
In this preliminary study, we assess whether applying artificial intelligence to these
images could provide valuable information to the clinicians, improving patient care
without significant additional costs.

Two different approaches have been explored for image analysis: extraction of
radiomic features and CNN extracted features. Several machine learning classifiers
have been trained to build models and the results obtained are close to the state-
of-art.

For prediction of failure of induction of labor, clinical data and sonographic
measurements manually extracted from the images were included as well, leveraging
the imaging and clinical data.

Prediction of preterm birth is usually done by measuring the cervical length in
the transvaginal US, but it does not report any information about the compression
or structural and histological changes of the tissue. Transvaginal US images are
performed in routine examinations for pregnancy follow up, but no further analysis
is made. Our results show that cervical US images can help can help estimating the
risk of preterm birth using texture analysis and machine learning. We achieved 0.768
± 0.005 AUC with 71% sensitivity and 69% specificity. The correct identification of
women who are at risk of preterm delivery could help the practitioners give a more
personalized treatment, perform additional follow up. or recommend interventions
to prevent preterm birth.

Correctly evaluating the probability of successful IOL is still an open issue in
modern obstetrics, since 20% of the induced women have a C-section and the current
evaluation method, Bishop’s Score, has been found to be subjective and inconsistent.
The results presented in this project agree with previously reported results [6, ?] in
that cervical length and cervical angle measured from the transvaginal US are useful
for the prediction of IOL failure (0.682 AUC, 63% sensitivity, 68% specificity).

Furthermore, a novel methodology for IOL failure prediction based on radiomics
has been applied to these images for the first time. We have shown how a com-
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bination of radiomic features with cervical measurements and clinical data can be
used to build a predictive model that achieves an AUC of 0.75 with 69% sensitivity
and 71% specificity. These preliminary results indicate that US can provide the
clinicians with useful information prior to the IOL.

Future work should perform an extensive technical evaluation of the models with
a larger and more diverse database, including US images from different vendors.
Eventually, a clinical evaluation should establish the relevance of the results for the
clinical practice.

47



Chapter 7

Appendix I: Author accepted
manuscript version of the paper for
MICCAI Workshop on Perinatal,
Preterm and Paediatric Image
analysis
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