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Abstract

Traffic light timing optimization is still an active line of research despite the wealth of
scientific literature on the topic, and the problem remains unsolved for any non-toy
scenario. One of the key issues with traffic light optimization is the large scale of
the input information that is available for the controlling agent, namely all the traffic
data that is continually sampled by the traffic detectors that cover the urban network.
This issue has in the past forced researchers to focus on agents that work on localized
parts of the traffic network, typically on individual intersections, and to coordinate
every individual agent in a multi-agent setup. In order to overcome the large scale
of the available state information, we propose to rely on the ability of deep Learning
approaches to handle large input spaces, in the form of Deep Deterministic Policy
Gradient (DDPG) algorithm. We performed several experiments with a range of
models, from the very simple one (one intersection) to the more complex one (a big
city section).





Contents

List of Figures vii

1 Introduction 1
1.1 Presentation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Traffic Simulation Concepts . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Value Iteration Algorithms . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Q-learning and SARSA . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Value Function Approximation . . . . . . . . . . . . . . . . . . 17
2.2.4 Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Multi-Agent Reinforcement Learning . . . . . . . . . . . . . . . 18

2.3 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 19

3 Proposed Approach 23
3.1 Input Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Congestion Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Data Aggregation Period . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 State Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Deep Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7.2 Leverage of the reward vector . . . . . . . . . . . . . . . . . . . 29



vi Contents

3.7.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Experiments 35
4.1 Design of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Network A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Network B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Network C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Related Work 47
5.1 Classic Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusions 55

Bibliography 57

Appendix A Infrastructure 65
A.1 Traffic simulation software . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Deep learning framework . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendix B Unsuccessful Approaches 71



List of Figures

1.1 Simple traffic network in Aimsun microscopic simulator. . . . . . . . . 4

2.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Typical architecture of a convolutional neural network . . . . . . . . . . 11
2.4 Different variants of residual learning . . . . . . . . . . . . . . . . . . . 12

3.1 Actor (left) and critic (right) networks of our basic architecture . . . . 29
3.2 Loss function (MSE) of a diverging Q network . . . . . . . . . . . . . . 31
3.3 Schedule for the discount factor γ. . . . . . . . . . . . . . . . . . . . . . 32
3.4 Sample of the evolution of the gradient norm. . . . . . . . . . . . . . . 33

4.1 Network A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Network B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Histogram of number of phases per junction in network B . . . . . . . . 38
4.4 Network C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Histogram of number of phases per junction in network C . . . . . . . . 39
4.6 Network C (detail) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Traffic detectors in Network C . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Algorithm performance comparison on network A . . . . . . . . . . . . 41
4.9 Intra-episode evolution of DDPG algorithm on network A . . . . . . . . 42
4.10 Intra-episode evolution of Q-learning algorithm on network A . . . . . . 42
4.11 Algorithm performance comparison on network B . . . . . . . . . . . . 43
4.12 Intra-episode evolution of DDPG algorithm on network B . . . . . . . . 44
4.13 Intra-episode evolution of Q-learning algorithm on network B . . . . . . 44
4.14 Algorithm performance comparison on network C . . . . . . . . . . . . 45
4.15 Evolution of the gradient norm in the best experiment on network B. . 45





Chapter 1

Introduction

1.1 Presentation of the Problem

Cities are characterized by the evolution of their transit dynamics. Originally meant
solely for pedestrians, urban streets soon shared usage with carriages and then with
cars. Traffic organization became soon an issue that led to the introduction of signaling,
traffic lights and transit planning.

Nowadays, traffic lights either have fixed programs or are actuated. Fixed programs
(also referred to as pretimed control) are those where the timings of the traffic lights
are fixed, that is, the sequences of red, yellow and green phases have fixed duration.
Actuated traffic lights change their phase to green or red depending on traffic detectors
that are located near the intersection; this way, actuated traffic light are dynamic and
adapt to the traffic conditions to some degree; however, they only take into account the
conditions local to the intersection. This also leads to dis-coordination with the traf-
fic light cycles of other nearby intersections and hence are not used in dense urban areas.

Neither pretimed or actuated traffic lights take into account the current traffic flow
conditions at the city level. Nevertheless, cities have large vehicle detector infrastruc-
tures that feed traffic volume forecasting tools used to predict congestion situations.
Such information is normally only used to apply classic traffic management actions
like sending police officers to divert part of the traffic.

This way, traffic light timings could be improved by means of machine learning algo-
rithms that take advantage of the knowledge about traffic conditions by optimizing
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the flow of vehicles.

This has been the subject of several lines of research in the past. For instance, Wiering
proposed different variants of reinforcement learning to be applied to traffic light
control [97], and created the Green Light District (GLD) simulator to demonstrate
them, which was further used in other works like [68]. Several authors explored the
feasibility of applying fuzzy logic, like [32] and [20]. Multi-agent systems where also
applied to this problem, like [16] and [74].

Most of the aforementioned approaches simplify the scenario to a single intersection or
a reduced group of them. Other authors propose multi-agent systems where each agent
controls a single intersection and where agents may communicate with each other to
share information to improve coordination (e.g. in a connected vehicle setup [34]) or
may receive a piece of shared information to be aware of the crossed effects on other
agents’ performance ([29]). However, none of the aforementioned approaches fully
profited from the availability of all the vehicle flow information, that is, the decisions
taken by those agents were in all cases partially informed.

The main justification for the lack of holistic traffic light control algorithms is the poor
scalability of most algorithms. In a big city there can be thousands of vehicle detectors
and tenths of hundreds of traffic lights. Those numbers amount for huge space and
action spaces, which are difficult to handle by classical approaches.

This way, the problem addressed in this works is the devisal of an agent that receives
traffic data and, based on these, controls the traffic lights in order to improve the flow
of traffic, doing it at a large scale.

1.2 Traffic Simulation Concepts

Before further exploring the problem, we shall briefly describe some concepts related to
traffic and traffic simulation, to provide some context to better understand the this work.

In order to evaluate the performance of our work, we make use of a traffic simulator.
We chose a third party traffic simulator software that allows to model a traffic scenario,
with roads, streets, traffic lights, etc. The traffic simulation concepts described in
this section be specific to the microscopic simulator used in our experiments, namely
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Aimsun (see section A.1 for details on the justification for the selection).

The base of a traffic simulation is the network, that is, the representation of roads
and intersections where the vehicles are to move. Connected to some roads, there
are centroids, that act as sources/sinks of vehicles. The amount of vehicles gener-
ated/absorbed by centroids is expressed in a traffic demand matrix, which contains
one cell per each pair of origin and destination centroids. During a simulation, different
OD matrices can be applied to different periods of time in order to mimic the dynamics
of the real traffic through time.

In the roads of the network, there can be traffic detectors, that mimic induction
loops beneath the ground that are able to measure traffic data as vehicles go pass
through them. Typical measurements that can be taken with traffic detectors include
vehicle counts, average speed and percentage of occupancy.

There can also be traffic lights. In many cases they are used to regulate the traffic at
intersections. In those cases, all the traffic lights in an intersection are coordinated so
that when one is red, another one is green, and vice versa (this way, the use of the inter-
section is regulated so that vehicles don’t block the intersection due to their intention
to reach an exit of the intersection that is currently in use) . All the traffic lights in the
intersection change their state at the same time. This intersection-level configuration
of the traffic lights is called a phase, and it is completely defined by the states of each
traffic light in the intersection plus its duration. The different phases in an intersection
form its control plan. The phases in the control plan are applied cyclically, so the
phases are repeated after the cycle duration elapses. Normally, control plans of adjacent
intersections are synchronized to maximize the flow of traffic avoiding unnecessary stops.

When the simulation starts, the emitting centroids start generating vehicles that are
headed towards their destination centroids, according to the amounts expressed in the
demand matrix. In order for the simulation not to start too empty, it is possible to set
up a warm-up period, during which the centroids generate vehicles so that when the
simulation starts, there are more realistic volume conditions.

In figure 1.1, it is shown a very simple traffic network in Aimsun. In consists of a single
intersection. The image belongs to a simulation step where we can see vehicles stoped
waiting because the traffic light is red, other vehicles circulating with the green traffic
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Figure 1.1 Simple traffic network in Aimsun microscopic simulator.

light, centroids emitting and absorbing vehicles and traffic detectors at the entrances
and exists of the intersection.

1.3 Preliminary Analysis

The main factor that has prevented further advance in the traffic light timing control
problem is the large scale of any realistic experiment. On the other hand, there is a
family of machine learning algorithms whose very strenght is their ability of handle large
input spaces, namely deep learning. Recently, deep learning has been successfully
applied to reinforcement learning, gaining much attention due to the effectiveness of
Deep Q-Networks (DQN) at playing Atari games using as input the raw pixels of the
game [60, 61]. Subsequent successes of a similar approach called Deep Deterministic
Policy Gradient (DDPG) were achieved in [77] and [57], which will be used in our work
as reference articles, given the similarity of the nature of the problems addressed there,
namely large continuous state and action spaces.

This way, the theme of this thesis is the application of Deep Reinforcement
Learning to the traffic light optimization problem with an holistic approach,
by leveraging deep learning to cope with the large state and action spaces. Specifically,
the hypothesis that drives this work is that Deep reinforcement learning can be
successfully applied to urban traffic light control, having similar or better performance
than other approaches.
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This is hence the main contribution of the present work, along with the different
techniques applied to make this application possible and effective.

Taking into account the nature of the problem and the abundant literature on the
subject (explored in detail in chapter 5), we know that some of the challenges of
devising a traffic light timing control algorithm that acts at a large scale are:

• Define a sensible input space. This includes finding a suitable representation of
the traffic information. Deep learning is normally used with input signals over
which convolution is easily computable, like images (i.e. pixel matrices) or sounds
(i.e. 1-D signals). Traffic information may not be easily represented as a matrix,
but as a labelled graph.

• Define a proper action space that our agent is able to perform. The naive
approach would be to let the controller simply control the traffic light timing
directly (i.e. setting the color of each traffic light individually at each simulation
step). This, however, may lead to breaking the normal routing rules, as the traffic
lights in an intersection have to be synchronized so that the different intersection
exit routes do not interfere with each other. Therefore a careful definition of the
agent’s actions is needed.

• Study and ensure the convergence of the approach: despite the successes of Deep
Q-Networks and DDPG, granted by their numerous contributions to the stability
of reinforcement learning with value function approximation, convergence of such
approaches is not guaranteed. Stability of the training is studied and measures
for palliating divergence are put in place.

• Create a sensible test bed: a proper test bed should simulate relatively realisti-
cally the traffic of a big city, including a realistic design of the city itself.

1.4 Structure

This thesis is presents the following structure: in the present chapter we have provided
an overview of the problem, stating clearly the goals of this work. In chapter 2 we
provide background on the techniques on which our proposed approach relies on. In
chapter 3 we describe the approach itself, while in chapter 4 we explain the experiments
undergone to test our proposal, as well as the obtained results. In chapter 5, we provide
an overview of previous works that are closest to ours in terms of application domain
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and techniques used. Finally, in chapter 6 we discuss the obtained results, reflect on
the conclusions that can be drawn from them and propose further lines of research. As
an addendum, in appendix A we provide justification of the chosen traffic simulator
and also provide information on the hardware setup used to execute all our tests, and
in appendix B we provide an overview of techniques that we applied to the problem
but did not succeed.



Chapter 2

Background

In this chapter we provide a thorough review of the algorithms on top of which the
proposed approach relies, starting with neural networks and deep learning in section
2.1, followed by the classical reinforcement learning theory in section 2.2 and finally
making both fields converge into deep reinforcement learning in section 2.3.

2.1 Deep Learning

Artificial Neural Networks (ANNs) are machine learning models loosely inspired in
biological neural networks, in that there are discrete units referred to as neurons that
are interconnected. The organization of the network defines its architecture. There are
neural network architectures that are meant for supervised learning (e.g. multi-layer
perceptrons) while others are for unsupervised learning (e.g. self-organizing maps).

x2 w2 Σ f

activation
function

y

output

x1 w1

x3 w3

weights

bias
b

inputs

Figure 2.1 Perceptron
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The history of ANNs formally started in 1958 with the Perceptron (MLP) by Rosenblatt
[70], depicted in figure 2.1, which works as a linear approximator followed by a step
function and could be used for classification problems.

Despite the initial enthusiasm over the perceptron, some flaws where identified on it
in [40], most remarkably the impossibility for the perceptron to address not linearly
separable problems, like the exclusive or (XOR) operation. This led to the abandonment
of the research in ANNs during several years, contributing to the so-called AI winter, a
period in which the funding for AI research in the USA was cut down drastically.

...
...

...

x1

x2

x3

xm

h1

hn

y1

yp

input
layer

hidden
layer

output
layer

Figure 2.2 Multi-Layer Perceptron

The interest in connectionist approaches raised again in the 70s and 80s due to the
work of Werbos [95], who proposed a multi-layer version of the perceptron that was able
to address the XOR problem plus a new approach to train it: the backpropagation
algorithm, which is currently the preferred training methods for most neural network
architectures. The multi-layer perceptron is depicted in figure 2.2.

During the 90s and early 2000s, artificial neural network research continued at a lower
profile until there was a breakthrough: an implementation of a convolutional neural
network running on a GPU outperformed all other competitors at the ImageNet 2012
contest [54]. That event started a stage where deep learning approaches succeeded in
several areas that previously were not addressable, like the case of AlphaGo, a deep
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learning-based Go player by Google DeepMind that beat the human world champion
Lee Sedol [77].

The field of deep learning is very wide, comprising both supervised and unsupervised
learning realms. Within the deep learning landscape, the following techniques are used
in the present work:

• Stochastic Gradient Descent with minibatches (mini-batch SGD): feedfor-
ward neural networks are in most cases trained by means of the backpropagation
algorithm, which updates the weights of the different layers by differentiating
the loss function with respect of the network weights, and performing gradient
descent optimization. This implies summing up the error committed for every
individual in the training set. This does not scale well when the training set is
very large, as it becomes computationally unaffordable to iterate over the whole
set in each iteration. This led to stochastic gradient descent, which only com-
putes the loss of a single randomly selected training individual at each iteration.
The hybrid approach is to select a collection of randomly selected individuals
(i.e. the mini batch) from the training set in each iteration and compute the
accumulated loss over it. Mini-batch stochastic gradient descent also presents
better convergence behaviour than the classic gradient descent due to its ability
to better escape local minima. There are several variations of the SGD algorithm,
mainly proposing different ways of adding momentum (e.g. Nesterov momentum
[63], Adam optimizer [51]).

• Rectified Linear Units (ReLU): neural network layers have an activation
function that characterizes the output of the layer. In hidden layers, it is common
for the activation to be non-linear to add expressive power to the network.
Activation functions need to be differentiable in order to allow backpropagation
training. Typical activations are the sigmoid function and the hyperbolic tangent,
both resembling a step function. Such activation functions suffered an important
problem when the network comprised several layers: the vanishing gradients
problem: when the input weights of a neuron led it to enter its saturation regimes
(the values of the input for which the output is 0 or 1), the neuron got trapped
and could not return back to the non-saturating regime, hence being unable to
further learn through training. This was first described in [11] and further studied
in [65]. However, in [62] it was proposed to use a rectified linear activation unit
(i.e. f(x) = max(0, x)), known as ReLU, which mitigates the vanishing gradients
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problem due to being non-saturating on the positive semi axis. Despite being a
linear function in half on its domain, it is considered in all regards a non-linearity.
The key difference between a linear activation and a ReLU is that adding up
multiple linear activations result always in a linear function, while adding up
multiple ReLUs result in non-linear functions that can be arbitrarily complex.

• Leaky ReLU [58]: a small modification to the standard ReLU that instead of
clipping the output when the input is in the range [−∞, 0], outputs a linear
signal with small negative slope, as described in (2.1)

f(x) =

x if x > 0

0.01x otherwise
(2.1)

The purpose of the Leaky ReLU is to avoid the problem of the dying ReLU
([50]). A dead ReLU always outputs zero, normally due to having learned a large
negative bias for its weights, which makes it impossible to recover. The small
negative slope of the Leaky ReLU makes it impossible to get trapped into such
an state.

Other approaches proposed to handle the dying ReLU problem are Exponential
Linear Units (ELU) ([22]) and Maxout units ([39]).

• Dropout layers [78]: a regularization method that disables randomly neurons
in a layer with certain probability. This forces the network to learn several
different representations, therefore avoiding overfitting. As noted in [9] the effect
of dropout in one logistic unit is that of geometric averaging over the ensemble
of the networks resulting from the removal of units, therefore providing more
robust learning. The same effect is conjectured to multilayer networks.

• Convolutional networks: convolutional networks is an umbrella term, normally
used to refer to an arbitrary combination of convolutional layers, pooling layers
and ReLU activations, together with a final block of dense layer forming a
multilayer perceptron. A convolutional layer consists of one or several matrices
(referred to as patches) of small size (3x3 or 5x5 at most) that slide throughout
the input matrix being applied as a discrete convolution. This way, each cell of
the output matrix is computed by centering the patch on a pixel of the input
matrix and multiplying the matrix values with the associated input matrix cells
and adding them up. The weights to be optimized in a convolutional layer are the
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cells of the kernels used for the convolution. Convolutional layers effectively are
feature detectors, that is, they detect local features of the input data. Following
a convolutional layer, there is normally a pooling layer, which subsamples the
output of the convolution. The main variants are max pooling and average
pooling, which respectively take the maximum value in a region or the average
one. The pooling regions are normally very small in order not to loose to much
information. Finally, there is usually a ReLU activation.

Figure 2.3 Typical architecture of a convolutional neural network

As illustrated in figure 2.3 1, this convolutional block comprised of convolution,
pooling and ReLU has become a de facto building block for very deep neural
networks in the computer vision domain. The concatenation of several of such
blocks result in the detection of hierarchical features, that is, features that are
themselves composed of lower level features.

• Weight initialization: the learning process of neural networks consists in
optimizing the loss function over the network parameter space (i.e. the network’s
weights), which is non-convex. In convex function iterative optimization, the
point where the search begins is irrelevant, because regardless of it, the final point
will be the optimum. However, in non-convex optimization like neural network
learning, the initial point where the parameter space exploration begins, highly
influences the local optimum reached (together with the loss function shape, the
activations and the optimization algorithm). One common weight initialization
strategy is to assign random weights, but scaling with the number of inputs
in order to keep the total variance in the levels that allow sigmoid and tanh
activations to work in the linear regime, therefore improving the convergence
speed. An analysis by Glorot et al. in [37] proposed to use as initialization scale

1This image is under Creative Commons Attribution-Share Alike 4.0 International license and
was taken from https://commons.wikimedia.org/wiki/File:Typical_cnn.png

https://commons.wikimedia.org/wiki/File:Typical_cnn.png
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2/(Nin + Nout), while the improved analysis by He et al. in [44] extended the
analysis to ReLU’s, proposing 2/n as the scaling factor for weights, where n is
the number of neurons in the network.

Input

Convolution

Addition

Output

ReLU

Convolution

ReLU

Batch
Normalization

Batch
Normalization

Input

Convolution

Addition

Output

ReLU

Convolution

Batch
Normalization

Batch
Normalization

Figure 2.4 Different variants of residual learning

• Residual learning: expressive power of neural networks is directly dependent
on their number of layers (i.e. their depth)1. However, adding more layers to a
network induces overfitting to the training set. That problem is controlled via

1Note that despite the fact that multilayer percentrons with one single hidden layer with nonlinear
activations are universal approximators ([46]), there is no theoretical results that determine the
number of units that are needed to approximate an arbitrary given function. There is, nervertheless,
documented evidence of the improvement in the performance of neural networks when more hidden
layers are added, which suggests that having more hidden layers is related to the ability of the network
to model non linear functions [38]



2.2 Reinforcement Learning 13

regularization, dropout and batch normalization [47], there is a limit in the gain
of accuracy by simply adding layers: beyond a certain number of layers, there is
higher training and validation error. He et al. propose in [43] a strategy called
residual learning that enables networks to gain accuracy by adding more layers,
consisting in setting up bypassing connections, that is, adding a connection from
the input to the output of a block of processing layers. Residual learning is
usually applied to convolutional networks, which tend to combine convolutional
layers with ReLU activations and batch normalization; its application consists
of dividing the neural architecture in processing blocks and adding a bypassing
connection from the block input to the block output, and combining it with
the normal block processing by adding them up and optionally adding a ReLU
block afterwards, as shown in figure 2.4. There are other approaches that also
allow deeper architectures, like highway networks [79], but they introduce high
complexity and do not present significant improvement over residual learning.

2.2 Reinforcement Learning

Machine learning algorithms are typically categorized as either supervised learning
algorithms or unsupervised learning algorithms. Supervised learning refers to algo-
rithms that are trained to cast certain output (e.g. label) when presented with certain
input. Some examples of supervised learning problems are regression and classification.
On the other hand, unsupervised learning algorithms are only presented with input
data and the training consists in finding a representation of those data describing its
hidden structure. Some examples of unsupervised learning problems are clustering and
dimensionality reduction.

However, there is a third category of machine learning algorithms referred to as re-
inforcement learning (RL), where the goal is to train an agent so that it behaves
optimally in an environment, with the downside that it is not known which actions are
good or bad, but it is possible to evaluate the goodness of their effects after they are
applied. Using RL terminology, the goal of the algorithm is to learn an optimal policy
for the agent, based on the observable state of the environment and on a reinforcement
signal that represents the reward (either positive or negative) obtained when an action
has been applied. The underlying problem that reinforcement learning tries to solve is
that of the credit assignment. For this, the algorithm normally tries to estimate the
expected cumulative future reward to be obtained when applying certain action when
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in certain state of the environment.

RL algorithms act at discrete points in time. At each time step t, the agent tries to
maximize the expected total return RT , that is, the accumulated rewards obtained
after each performed action: Rt = rt+1+ rt+2+ · · ·+ rT , where T is the number of time
steps ahead until the problem finishes. However, as normally T is dynamic or even
infinite (i.e. the problem has no end), instead of the summation of the rewards,the
discounted return is used:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (2.2)

The state of the environment is observable, either totally or partially. The definition of
the state is specific to each problem. One example of state of the environment is the
position x of a vehicle that moves in one dimension. Note that the state can certainly
contain information that condenses pasts states of the environment. For instance, apart
from the position x from the previous example, we could also include the speed ẋ and
acceleration ẍ in the state vector.

Reinforcement Learning problems that depend only on the current state of the envi-
ronment are said to comply with the Markov property and are referred to as Markov
Decision Processes. Their dynamics are therefore defined by the probability of reaching
from a state s to a state s′ by means of action a:

p(s′|s, a) = P (St+1 = s′|St = s, At = a) (2.3)

This way, we can define the reward obtained when transitioning from state s to s′ by
means of action a:

r(s, a, s′) = E [Rt+1|St = s, At = a, St+1 = s′] (2.4)

In the following sections, we review different classic algorithms used to address RL
problems. They are the base of modern deep reinforcement learning algorithms,
which the current work relies upon, and which are described in section 2.3.
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2.2.1 Value Iteration Algorithms

The value of a state, vπ(s) is a measurement of the expected total return R obtained
when we start from that state s and follow the policy π. The value function can be
hence defined as:

vπ(s) = Eπ[Rt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣St = s

]
(2.5)

Value iteration RL algorithms try to estimate the value function in an iterative way,
that is, modifying at each time step the previous estimation for each state with the
posible rewards that can be gained by the best possible action:

vk+1(s) = max
a

E [Rt+1 + γvk(st+1)|St = s, At = a] =

= max
a

∑
s′

p(s′|s, a) [r(s, a, s′) + γvk(s
′)]

(2.6)

With the value function, we can devise a greedy policy that always chooses the action
for the current state that will provide the greatest reward, that is:

π(s) = argmax
a

∑
s′

p(s′|s, a)[r(s, a, s′) + γv(s′)] (2.7)

However, in order to be able to compute the value function, we need full knowledge on
the state transition probabilities and the associated rewards.

2.2.2 Q-learning and SARSA

Most RL algorithms rely on Bellman’s equation (2.8), which describes the expected
long term reward (i.e. the value V ) for taking the action prescribed by some policy π

when in state s knowing its immediate reward R(s, π(s)).

V π(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s))V π(s′) (2.8)

Q-learning, which is one of the landmark RL algorithms, does not focus on the value
function, but defines a different measure Q (2.9) that does not need a priori knowledge
on the state transition probabilities or rewards.

Qt+1(st, at) = Qt(st, at) + α
(
Rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

)
(2.9)
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This way, the complete Q-Learning algorithm is as defined as follows:

Algorithm 1 Q-learning algorithm
1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: Initialize s

4: for each step of episode (until s is terminal) do
5: Choose a from s using policy derived from Q (e.q. ϵ-greedy)
6: Take action a, observe r, s′

7: Q(s, a)← Q(s, a) + α[r + γ ·maxa′Q(s′, a′)−Q(s, a)]

8: s← s′

9: end for
10: end for

The SARSA (State-Action-Reward-State-Action) algorithm is very similar to Q-
Learning. Their difference is that SARSA learns action values relative to the policy it
follows, while Q-Learning learns the Q value is not constrained to only learning the
Q values from the actions it takes at every step. This way, as shown in the complete
SARSA algorithm below, in line 7, a′ is chosen based on the followed policy and then
in line 8 the Q values are updated on the basis of the chosen action a′ and resulting
state s′ Q value, therefore only learning from the policy it follows (i.e. on-policy). On
the other hand, in Q-learning the Q function is updated not only from the Q values
followed, as shown in line 7 of algorithm 1 (i.e. off-policy).

Algorithm 2 SARSA algorithm
1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: Initialize s

4: Choose a from s using policy derived from Q (e.q. ϵ-greedy)
5: for each step of episode (until s is terminal) do
6: Take action a, observe r, s′

7: Choose a′ from s′ using policy derived from Q (e.q. ϵ-greedy)
8: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]

9: s← s′, a← a′

10: end for
11: end for
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The original formulation of Q-learning and SARSA ([82]) represents Q(s, a) in tabular
form, that is, keeping a table with a cell for every combination of state and action.
This implies that both the state space and the action space are discrete. For the cases
where the state space or the action space were continuous, it was frequent to use tile
coding, which consists of partitioning the space into non-overlapping regions (e.g. [80]),
each of which was assimilated to a discrete value that could be used to index the
tabular form of Q.

2.2.3 Value Function Approximation

In order to avoid having to partition of the state space, it is common to use a value
function approximator instead of a table. Neural networks are a popular choice as
approximator. The earliest success story for such an approach was TD-Gammon [85],
in 1995, based on temporal difference learning [81, 84], with eligibility traces algorithm,
usually referred to as, TD(λ). The neural network is meant to estimate the value of a
certain state and its the parameter vector θ is updated as expressed in (2.10).

θt+1 = θt + α
[
Y (st+1)− Y (st)

] t∑
k=1

λt−k∇θYk (2.10)

Where Y (si) is the output of the network when its input is the state si, α is the learning
rate, λ is the eligibility trace factor, k is the number of traces to bufferize and ∇θyk is
the gradient of the network output with respect to the weights θ.

This is the very origin of deep reinforcement learning, which is described in detail in
section 2.3.

2.2.4 Actor-Critic

Actor-Critic methods separate the representation of the policy (referred to as actor)
and the value function (known as critic). The role of the actor is to generate actions,
while the role of the critic is to measure the performance of the actions and generating
a temporal difference error (2.11) ([82]).

δt = rt+q + γ · V (St+1)− V (st) (2.11)
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The actions are normally decided by means of the softmax method (2.12):

πt(s, a) = P (at = a|st = s) =
ep(s,a)∑
b e

p(s,b)
(2.12)

And the actor is then updated with the TD error and a step size β as in (2.13).

p(st, at)← p(sy, at) + βδt (2.13)

2.2.5 Multi-Agent Reinforcement Learning

When reinforcement learning is applied to a problem, one of the aspects that most
influences the set of applicable approaches is the nature of the actions available to the
agent. Some examples of different alternative action spaces and the type of agents
usually applied to them are:

• There is only a few amount of enumerable actions that can be applied one at
a time. Most basic reinforcement learning algorithms (e.g. tabular Q-learning,
SARSA) are specifically designed for this kind of scenario, normally coupled with
an also low dimensionality and easily quantizable state space.

• The action space is continuous with low dimensionality. Actor-critic methods
are suitable to address such a case, as the actor can generate any type of action
that is accepted by the critic (and also by the environment). Nevertheless, the
capacity of the actor bounds the dimensionality of the action space, that is, the
more dimensions, the more capacity1 the actor needs.

• The action space is high dimensional, either continuous or discrete. They are
challenging for traditional reinforcement learning approaches due to their reduced
scalability. A usual approach is to divide the problem into smaller sub-problems
where the action space is manageable by a traditional RL agent, therefore turning
the solution into a multi-agent system, and hence being referred to as Multi-Agent
Reinforcement Learning (MARL). A comprehensive and up to date survey of the
status of such a field can be found in [15]. Some examples of their application
to traffic control are [10] and [55]. The problem with MARL approaches is that
they introduce further challenges due to the need for coordinating the different
agents in order to avoid them obstructing each other.

1The term capacity refers to the concept denoted by the VC dimension ([92])
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2.3 Deep Reinforcement Learning

Deep Reinforcement Learning refers to reinforcement learning algorithms that use a
deep neural network as value function approximator, as described in section 2.2.3.
Their recent rise in popularity is due to the success of Deep Q-Networks (DQN) at
playing Atari games using as input the raw pixels of the game [60, 61].

L(θ) = E
[
(y −Q(s, a; θ))2

]
(2.14)

In DQNs, there is a neural network that receives the environment state as input and
generates as output the Q-values for each of the possible actions, using the loss function
(2.14), which implies following the direction of the gradient (2.15):

∇θL(θ) = E
[(

r + γmax
a′

Q(s′, a′; θ)−Q(s, a; θ)
)
∇θQ(s, a; θ)

]
(2.15)

The first success of reinforcement learning with neural networks as function approxima-
tion was TD-Gammon [85]. Despite the initial enthusiasm in the scientific community,
the approach did not succeed when applied to other problems, which led to its aban-
donment ([67]). The main reason for its failure was lack of stability derived from:

• The neural network was trained with the values that were generated on the go,
therefore such values were sequential in nature and thus highly correlated
with the near past values (i.e. not independently and identically distributed).

• Oscillation of the policy with small changes to Q-values that change the data
distribution.

• Too large optimization steps when large rewards are got.

In order to mitigate such stability problems, in [60, 61], the authors applied the
following measures:

• Experience replay: keep a memory of past action-rewards and train the neural
network with random samples from it instead of using the real time data, therefore
eliminating the temporal autocorrelation problem. This is possible thanks to the
off-policy nature of Q-learning that allows to feed it with updates not necessarily
coming from the policy being followed.

• Reward clipping: scale and clip the values of the rewards to the range [−1,+1]

so that the weights do not boost when backpropagating.
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• Target network: keep a separate DQN so that one is used to compute the target
values and the other one accumulates the weight updates, which are periodically
loaded onto the first one. This avoid oscillations in the policy upon small changes
to Q-values.

However, DQNs are meant for problems with a few possible actions, and are therefore
not appropriate for continuous space actions, like in our case. On the other hand,
Deep Deterministic Policy Gradient or DDPG ([57]) naturally accommodates
this kind of problems. As its name suggests, it combines the actor-critic classical RL
approach [82] with Deterministic Policy Gradient [76].

The original formulation of the policy gradient algorithm was proposed in [83], which
proved the policy gradient theorem (theorem 1) for a stochastic policy π(s, a; θ):

Theorem 1. (policy gradient) For any MDP, if the parameters θ of the policy are
updated proportionally to the gradient of its performance ρ then θ can be assured to
converge to a locally optimal policy in ρ, being the gradient computed as

∆θ ≈ α
∂ρ

∂θ
= α

∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
Qπ(s, a)

with α being a positive step size and where dπ is defined as the discounted weighting of
states encountered starting at s0 and then following π: dπ(s) =

∑∞
t=0 γ

tP (st = s|s0, π)

This theorem was further extended in the same article for the case where an approxi-
mation function f is used in place of the policy π, as shown in theorem 2:

Theorem 2. (policy gradient with function approximation) The policy gradient
theorem holds valid for a function approximation f(s, a;w) of the policy π if the updates
of the weights w tend to zero upon convergence to π:

∑
s

dπ(s)
∑
a

π(s, a)[Qπ(s, a)− f(s, a;w)]
∂f(s, a;w)

∂w
= 0

and if f is compatible with the policy parameterization in the sense that:

∂f(s, a;w)

∂w
=

∂π(s, a)

∂θ

1

π(s, a)

Then,
∂ρ

∂θ
=

∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
f(s, a;w)
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In our reference articles [76] and [57], the authors propose to use a deterministic
policy (as opposed to stochastic) approximated by a neural network actor π(s; θπ) that
depends on the state of the environment s and has weights θπ, and another separate
network Q(s, a; θQ) implementing the critic, which is updated by means of the Bellman
equation (2.8) like DQN (2.15):

Q(st, at) = Ert,st+1 [r(st, at) + γQ(st+1, π(st+1))] (2.16)

And the actor is updated by applying the chain rule to the loss function (2.14) and
updating the weights θπ by following the gradient of the loss with respect to them:

∇θπL ≈ Es

[
∇θπQ(s, π(s|θπ)|θQ)

]
= Es

[
∇aQ(s, a|θQ)|a=π(s|θπ)∇θππ(s|θπ)

]
(2.17)

In order to introduce exploration behaviour, thanks to the DDPG algorithm being
off-policy, we can add random noise N to the policy:

π′(s) = π(s; θπ) +N (2.18)

This enables the algorithm to try unexplored areas from the action space to discover
improvement opportunities, much like the role of ε in ε-greedy policies in Q-learning.

In order to improve stability, DDPG also can be applied the same measures as DQNs,
namely reward clipping, experience replay (by means of a replay buffer referred to
as R in algorithm 3) and separate target network. In order to implement this last
measure for DDPG, two extra target actor and critic networks (referred to as π′ and
Q′ in algorithm 3) to compute the target Q values, separated from the normal actor
and critic (referred to as π and Q in algorithm 3) that are updated at every step and
which weights are used to compute small updates to the target networks.

The complete resulting algorithm, as proposed in [57], is summarized as follows:
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Algorithm 3 Deep Deterministic Policy Gradient algorithm
Randomly initialize critic Q(s, a|θQ) and actor π(s|θπ) with weights θQ and θπ.
Initialize target network Q′ and π′ with weights θQ

′ ← θQ, θπ′ ← θπ.
Initialize replay buffer R.
for each episode do

Initialize random process N for action exploration.
Receive initial observation state s1.
for each step t of episode do

Select action at = π(st|θπ) +Nt.
Execute action at and observe reward rt and new state st+1.
Store transition (st, at, rt, st+1) in R.
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R.
Set yi = ri + γQ′(si+1, π

′(si + 1|θπ′
)|θQ′

).

Update critic by minimizing the loss: L =
1

N

∑
i(yi −Q(si, ai|θQ))2.

Update the actor policy using the sampled policy gradient:

∇θπL ≈
1

N

∑
i∇aQ(s, a|θQ)|s=si,a=π(si)∇θππ(s|θπ)|si.

Update the target networks:
θQ

′ ← τθQ + (1− τ)θQ
′

θπ
′ ← τθπ + (1− τ)θπ

′ .
end for

end for



Chapter 3

Proposed Approach

In this chapter we explain the approach we are proposing to address the control of
urban traffic lights, as described in chapter 1, along with the rationale that led to it.

We begin with section 3.1 by defining which information shall be used as input to our
algorithm among all the data that is available from our simulation environment. We
proceed by choosing a problem representation for such information to be fed into our
algorithm in section 3.4 for the traffic state and section 3.6 for the rewards. Note that
the contents of this chapter rely on the concepts about traffic simulation and control
described in section 1.2.

3.1 Input Information

The fact that we are using a simulation system to evaluate the performance of our
proposed application of deep learning to traffic control, makes the traffic situation fully
observable to us. However, in order for our system to be applied to the real world, it
must be possible for our input information to be derived from data that is available in
a typical urban traffic setup.

The most remarkable examples of readily available data are the ones sourced by traffic
detectors. They are sensors located throughout the traffic network that provide
measurements about the traffic passing through them. Although there are different
types of traffic detectors, the most usual ones are induction loops placed under the
pavement that send real time information about the vehicles going over them. The
information that can normally be taken from such type of detectors is:
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• Vehicle count, that is, the number of vehicles that went over the detector during
the sampling period.

• Vehicle average speed during the sampling period.

• Occupancy, that is, the percentage of time in which there was a vehicle located
over the detector. This is especially useful to detect congestion situations.

This way, we shall constrain the input information that we receive as input about
the state of the network to the vehicle counts, average speed and occupancy of every
detector in our traffic networks, along with the complete description of the network
itself, comprising the location of all roads, their connections, etc.

3.2 Congestion Measurement

Following the self-imposed constraint to use only data that is actually available in a
real scenario, we shall elaborate a summary of the state of the traffic based on vehicle
counts, average speeds and occupancy. This way, we defined a measured called speed
score, that is defined for detector i as:

speed_score i = min

(
avg_speed i

max_speed i

, 1.0

)
(3.1)

where avg_speed i refers to the average of the speeds measured by traffic detector i and
max_speed i refers to the maximum speed in the road where detector i is located. Note
that the speed score hence ranges in [0, 1]. This measure will be the base to elaborate
the representation of both the state of the environment (section 3.4) and the rewards
for our reinforcement learning algorithm (section 3.6).

3.3 Data Aggregation Period

The microscopic traffic simulator used for our experiments (see section A.1) divides
the simulation into steps. At each step, a small fixed amount of time is simulated and
the state of the vehicles (e.g. position, speed, acceleration) is updated according to
the dynamics of the system. This amount of time is configured to be 0.75 seconds by
default, and we have kept this parameter.
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However, such an amount of time is too short to imply a change in the vehicle counts
of the detectors. Therefore, it is needed to have a larger period over which the data is
aggregated; we refer to this period as episode step, or simply "step" when there is
no risk of confusion. This way, the data is collected at each simulation step and then
it is aggregated every episode step for the DDPG algorithm to receive it as input. In
order to properly combine the speed scores of several simulation steps, we take their
weighted average, using the proportion of vehicle counts. In an analogous way, the
traffic light timings generated by the DDPG algorithm are used during the following
episode step.

The duration of the episode step was chosen by means of grid search, determining an
optimum value of 120 seconds.

3.4 State Representation

In order to keep a state vector of the environment, we make direct use of the speed
score described in section 3.2, as it not only summarizes properly the congestion of the
network, but also incorporates the notion of maximum speed of each road. This way,
the state vector has one component per detector, each one defined as shown in (3.2).

state i = speed_score i (3.2)

The rationale for choosing the speed score is that, the higher the speed score, the
higher the speed of the vehicles relative to the maximum speed of the road, and hence
the higher the traffic flow.

3.5 Actions

In the real world there are several instruments to dynamically regulate traffic: traffic
lights, police agents, traffic information displays, temporal traffic signs (e.g. to block
a road where there is an accident), etc. Although it is possible to apply many of
these alternatives in traffic simulation software, we opted to keep the problem at a
manageable level and constrain the actions to be applied only to traffic lights.

The naive approach would be to let our agent simply control the traffic lights directly
by setting the color of each traffic light individually at every simulation step, that is,
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the actions generated by our agent would be a list with the color (red, green or yellow)
for each traffic light. However, traffic lights in an intersection are synchronized: when
one of the traffic lights of the intersection is green, the traffic in the perpendicular
direction is forbidden by setting the traffic lights of such a direction to red. This allows
to multiplex the usage of the intersection. Therefore, letting our agent freely control
the colors of the traffic lights would probably lead to chaotic situations.

In order to avoid that, we should keep the phases of the traffic lights in each intersection.
With that premise, we shall only control the phase duration, hence the dynamics are
kept the same, only being accelerated or decelerated. This way, if the network has
N different phases, the action vector has N components, each of them being a real
number that has a scaling effect on the duration of the phase.

However, for each intersection, the total duration of the cycle (i.e. the sum of all phases
in the intersection) should be kept unchanged. This is important because in most cases,
the cycles of nearby intersections are synchronized so that vehicles travelling from
one intersection to the other can catch the proper phase, thus improving the traffic
flow. In order to ensure that the intersection cycle is kept, the scaling factor of the
phases from the same intersection are passed through a softmax function (also known
as normalized exponential function). The result is the ratio of the phase duration over
the total cycle duration. In order to ensure a minimum phase duration, the scaling
factor is only applied to 80% of the duration.

3.6 Rewards

The role of the rewards is to provide feedback to the reinforcement learning algorithm
about the performance of the actions taken previously. As commented in previous
section, it would be possible for us to define a reward scheme that makes use of
information about the travel times of the vehicles. Some examples described in the
literature are summarized in table 5.1, and include the total number of vehicles waiting
to enter each intersection, waiting queue lengths, total delay, etc.

However, as we are self-constraining to the information that is available in real world
scenarios, we can not rely on other measures apart from detector data, e.g. vehicle
counts, speeds. This way, we shall use the speed score described in section 3.2. But
the speed score alone does not tell whether the actions taken by our agent actually
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improve the situation or make it worse. Therefore, in order to capture such information,
we shall introduce the concept of baseline , defined as the speed score for a detector
during a hypothetical simulation that is exactly like the one under evaluation but with
no intervention by the agent, recorded at the same time step. This way, our reward is
the difference between the speed score and the baseline, scaled by the vehicle counts
passing through each detector (in order to give more weight to scores where the number
of vehicles is higher), and further scaled by a factor α to keep the reward in a narrow
range, as shown in (3.3).

reward i = α · count i · (speed_score i − baseline i)

= α · count i ·
[
min

(
avg_speed i

max_speed i

, 1.0

)
− baseline i

] (3.3)

Note that we may want to normalize the weights by dividing by the total vehicles
traversing all the detectors. This would restrain the rewards in the range [−1,+1].
This, however, would make the rewards obtained in different simulation steps not
comparable (i.e. a lower total number of vehicles in the simulation at instant t would
lead to higher rewards). The factor α was chosen to be 1/50 empirically, by observing
the unscaled values of different networks and choosing a value in an order of magnitude
that leaves the scaled value around 1.0. This is important in order to control the scale
of the resulting gradients. Another alternative used in [60, 61] with this very purpose
is reward clipping; this, however, implies losing information about the scale of the
rewards. Therefore, we chose to apply a proper scaling instead.

There is a reward computed for each detector at each simulation time step. Such
rewards are not combined in any way, but are all used for the DDPG optimization, as
described in section 3.7.2.

Given the stochastic nature of the microsimulator used (A.1), the results obtained
depend on the random seed set for the simulation. This way, when computing the
reward, the baseline is taken from a simulation with the same seed as the one under
evaluation.
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3.7 Deep Network

3.7.1 Architecture

Our neural architecture consists in a Deep Deterministic Actor-Critic Policy Gradient
approach (as described in section 2.3). The architecture is comprised of two networks:
the actor network and the critic network (referred to as π and Q in algorithm 3).

The actor network receives the current state of the simulation (as described in section
3.4) and outputs the actions, as described in 3.5. As shown in figure 3.1, the network
is comprised of several layers. It starts with several fully connected layers (also known
as dense layers) with Leaky ReLU activations. Across those many layers, the width
of the network increases and then decreases, up to having as many units as actions,
that is, the last mentioned dense layer has as many units as traffic light phases in the
network. At that point, we introduce a batch normalization layer and another fully
connected layer with ReLU activation. The output of the last mentioned layer are real
numbers in the range [0,+∞], so we should apply some kind of transformation that
allows us to use them as scaling factors for the phase durations (e.g. clipping to the
range [0.2, 3.0]). However, as mentioned in section 3.5, we want to keep the traffic light
cycles constant. Therefore, we shall apply an element-wise scaling computed on the
summation of the actions of the phases in the same traffic light cycle, that is, for each
scaling factory we divide by the sum of all the factors for phases belonging to the same
group (hence obtaining the new ratios of each phase over the cycle duration) and then
multiply by the original duration of the cycle. In order to keep a minimum duration
for each phase, such computation is only applied to the 80% of the duration of the
cycle. Such a computation can be pre-calculated into a matrix, which we call the phase
adjustment matrix, which is applied in the layer labeled as "Phase adjustment" in figure
3.1, and which finally gives the scaling factors to be applied to phase durations. This
careful scaling meant to keep the total cycle duration can be ruined by the exploration
component of the algorithm, as described in 3, which consists of adding noise to the
actions (and therefore likely breaking the total cycle duration), This way, we implement
the injection of noise as another layer prior to the phase adjustment.

The critic network receives the current state of the simulation plus the action
generated by the actor, and outputs the Q-values associated to them. Like the actor,
it is comprised of several fully connected layers with leaky ReLU activations, plus a
final dense layer with linear activation.
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Figure 3.1 Actor (left) and critic (right) networks of our basic architecture

3.7.2 Leverage of the reward vector

In our reference article [57], as well as all landmark ones like [60] and [61], the reward
is a single scalar value. However, in our case we build a reward value for each detector
in the network.
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One option to use such a vector of rewards could be to scalarize them into a single
value. This, however, would imply losing valuable information regarding the location
of the effects of the actions taken by the actor.

We will leverage the structure of the DDPG algorithm, which climbs in the direction
of the gradient of the critic. This is partially analogous to a regression problem on
the Q-value and hence does not impose a specific structure on the rewards apart
from the ability to compute the loss over the generated values. This way, we will
have a N -dimensional reward vector, where N is the number of detectors in the network.

This extends the policy gradient theorem from [76] so that the reward function is no
longer defined as r : S × A→ R but as r : S × A→ RN . This is analogous to having
N agents sharing the same actor and critic networks (i.e. sharing weights θπ and θQ)
and being trained simultaneously over N different unidimensional reward functions.
This, effectively, implements multiobjective reinforcement learning.

Such an approach could be further refined by weighting rewards according to traffic
control expert knowledge, which will then be incorporated in the computation of the
policy gradients.

To the best of our knowledge, the use of disaggregated rewards has not been
used before in the reinforcement learning literature. Despite having proved useful
in our experiments, further study is needed in order to fully characterize the effect
of disaggregated rewards on benchmark problems. This is one of the future lines of
research that can be spawned from this work.

3.7.3 Convergence

In this section we study different aspects of the tuning of the algorithm that were key
to the convergence of the learning process.

Weight Initialization

Weight initialization has been a key issue in the results cast by deep learning algorithms.
The early architectures could only achieve acceptable results if they were pre-trained
by means of unsupervised learning so that they could have learned the input data
structure [31]. The use of sigmoid or hyperbolic tangent activations makes it difficult to
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optimize neural networks due to the numerous local minima in the function loss defined
over the parameter space. With pre-training, the exploration of the parameter space
does not begin in a random point, but in a point that hopefully is not too far from a
good local minimum. Pretraining became no longer necessary to achieve convergence
thanks to the use of rectified linear activation units (ReLUs) [62], residual learning
[43, 45] and sensible weight initialization strategies.

In our case, different random weight initializations (i.e. Glorot’s [37] and He’s [44])
gave the best results, finally selecting He’s approach.

Updates to the Critic

After our first experiments it became evident the divergence of the learning of the
network. Careful inspection of the algorithm byproducts revealed that the cause of the
divergence was that the critic network Q′ predicted higher outcomes at every iteration,
as trained according to equation (3.4) extracted from algorithm 3.

yi = ri + γQ′(si+1, π
′(si + 1|θπ′

)|θQ′
) (3.4)

As DDPG learning -like any other reinforcement learning with value function approx-
imation approach- is a closed loop system in which the target value at step t + 1 is
biased by the training at steps t, drifts can be amplified, thus ruining the learning, as
the distance between the desired value for Q and the obtained one differ more and
more. This is shown in figure 3.2 with the loss function of the critic network Q (i.e.
the mean squared error) increasing instead of decreasing.
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Figure 3.2 Loss function (MSE) of a diverging Q network
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In order to mitigate the aforedescribed divergence problem, our proposal consists in
reducing the coupling by means of the application of a schedule on the value of the
discount factor γ from Bellman’s equation (2.8), which is shown in figure 3.3.
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Figure 3.3 Schedule for the discount factor γ.

The schedule of γ is applied at the level of the experiment, not within the episode.
The oscillation in γ shown in figure 3.3 is meant to enable the critic network not to
enter in the regime where the feedback leads to divergence.

To the best of our knowledge, discount factor scheduling has never been used
before in the literature to improve the convergence of reinforcement learning with
value function approximation. Despite having proved useful in our experiments, further
study is needed in order to fully characterize the effect of discount factor schedules on
benchmark problems. This is one of the future lines of research that can be spawned
from this work.

Gradient evolution

The convergence of the algorithm can be evaluated thanks to the norm of the gradient
used to update the actor network π. If such a norm decreases over time and stagnates
around a low value, it is a sign that the algorithm has reached a stable point and
that the results might not further improve. This way, in the experiments described in
subsequent chapters, monitoring of the gradient norm is used to track progress.
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Figure 3.4 Sample of the evolution of the gradient norm.

The gradient norm can also be controlled in order to avoid too large updates that make
the algorithm diverge, e.g. [60]. This mechanism is called gradient norm clipping and
consists of scaling the gradient so that its norm is not over a certain value. Such a
value was empirically established as 0.5 in our case. A sample of the gradient norm
over one of the experiments is shown in figure 3.4, where the effect of the gradient
norm clipping are evident.

3.8 Summary

This is a summary of the approach described throughout this chapter. Our proposal
is to apply Deep Deterministic Policy Gradient, as formulated in [57], to the traffic
optimization problem by controlling the traffic lights timing. We make use of a
multilayer perceptron type of architecture, both for the actor and the critic networks,
using leaky ReLU activations (except for the last activations, which are ReLU for the
actor and linear for the critic). The actor is designed so that the modifications to the
traffic light timings keep the cycle duration. In order to optimize the networks we
make use of stochastic gradient descent. In order to improve convergence, we make
use of a replay memory, gradient norm clipping and a schedule for the discount rate
γ. The input state used to feed the network consists of traffic detector information,
namely vehicle counts and average speeds, which are combined in a single speed score.
The rewards used as reinforcement signal are the improvements over the measurements
without any control action being performed (i.e. baseline). Such rewards are not
aggregated but fed directly as expected values of the critic network.





Chapter 4

Experiments

In this chapter we describe the experiments conducted in order to evaluate the per-
formance of the approach described in chapter 3. In section 4.1 we show the different
traffic scenarios used while in section 4.2 we describe the results obtained in each one,
along with lessons learned from the problems found, plus hints for future research.

4.1 Design of the Experiments

In order to evaluate our deep RL algorithm, we devised increasing complexity traffic
networks. In the following sections we describe the characteristics of each of them.

For each network, we applied our DDPG algorithm to control the traffic light timing,
but also applied a classical Q-Learning and random timing in order to have a
reference to properly assess the performance of our approach.

At each experiment, the DDPG algorithm receives as input the information of all
detectors in the network, and generates the timings of all traffic light phases.

The Q-learning agent only manages one intersection phase. It receives the information
from the closest few detectors and generates the timings for the aforementioned phase.
Given the tabular nature of Q-learning, both the state space and the action space need
to be categorical. For this, we use tile coding, as described in section 2.2.2. Regarding
the state space, the tiles are defined based on the same state space values as DDPG
(see section 3.4), clustered in one the following 4 ranges [−1.0,−0.2], [−0.2,−0.001],
[−0.001, 0.02], [0.02, 1.0], which were chosen empirically. As one Q-learning agent
controls the Ni phases of the traffic lights of an intersection i, the number of states
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for an agent is 4Ni . The action space is analogous, being the generated timings one
of the values 0.2, 0.5, 1.0, 2.0 or 3.5. The selected ratio (i.e. ratio over the original
phase duration) is applied to the duration of the phase controlled by the Q-learning
agent. As there is one agent per phase, this is a multi-agent reinforcement learning
setup, where agents do not communicate with each other. They do have overlapping
inputs, though, as the data from a detector can be fed to the agents of several phases.
In order to keep the cycle times constant, we apply the same phase adjustment used
for the DDPG agent, described in section 3.5.

The random agent generates random timings in the range [0, 1], and then the previously
mentioned phase adjustment is applied to keep the cycle durations constant (see section
3.5).
Given the stochastic nature of the microscopic traffic simulator used (A.1), the results
obtained at the experiments depend on the random seed set for the simulation. In
order to address the implications of this, we do as follows:

• In order for the algorithms not to overfit to the dynamics of a single simulation,
we randomize the seed of each simulation. We take into account this also for the
computation of the baseline, as described in section 3.6.

• We repeat the experiments several times, and present the results over all of them
(showing the average, maximum or minimum data depending on the case).

4.1.1 Network A

This network, shown in figure 4.1 consists only of an intersection of two 2-lane roads.
At the intersection vehicles can either go straight or turn to their right. It is forbidden
to turn left, therefore simplifying the traffic dynamics and traffic light phases. There
are 8 detectors (in each road there is one detector before the intersection and another
one after it).

There are two phases in the traffic light group: phase 1 allows horizontal traffic while
phase 2 allows vertical circulation. Phase 1 lasts 15 seconds and phase 2 lasts 70
seconds, with a 5-seconds inter-phase. Phases 1 and 2 have unbalanced duration on
purpose, to have the horizontal road accumulate vehicles for long time. This gives
our algorithm room to easily improve the traffic flow with phase duration changes.
The simulation comprises 1 hour and the vehicle demand is constant: for each pair of
centroids, there are 150 vehicles.
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Figure 4.1 Network A

4.1.2 Network B

This network, shown in figure 4.2 consists of a grid layout of 3 vertical roads and 2
horizontal ones, crossing in 6 intersections that all have traffic lights.

Figure 4.2 Network B
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Traffic in an intersection can either go straight, left or right, that is, all turns are
allowed, complicating the traffic light phases, which have been generated algorithmically
by the software with the optimal timing, totalling 30 phases. There are detectors
before and after each intersection, totalling 17 detectors.
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Figure 4.3 Histogram of number of phases per junction in network B

As shown in figure 4.3, 4 out of 6 junctions have 5 phases, while the remaining two
junctions have 4 and 6 phases each.

The traffic demand has been created in a random manner, but ensuring enough vehicles
are present and trying to collapse some of the sections of the network.

4.1.3 Network C

This network, shown in figure 4.4 is a replica of the Sants area in the city of Barcelona
(Spain). There are 43 junctions, totalling 102 traffic light phases, and 29 traffic detec-
tors. The locations of the detectors matches the real world and they are highlighted
in figure 4.7. The traffic demand matches that of the peak hour in Barcelona, and it
presents high degree of congestion.

As shown in figure 4.5, the number of controlled phases per junction 1 ranges from 1
to 6, having most of them only two phases.

1Note that phases from the network that have a very small duration (i.e. 2 seconds or less) are
excluded from the control of the agent



4.1 Design of the Experiments 39

Figure 4.4 Network C
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Figure 4.5 Histogram of number of phases per junction in network C
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Figure 4.6 Network C (detail)

Figure 4.7 Traffic detectors in Network C
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4.2 Results

In order to evaluate the performance of our DDPG approach compared to both normal
Q-learning and random timings on each of our test networks, our main reference
measure shall be the episode average reward (note that, as described in section 3.6
there is actually a vector of rewards, with one element per detector in the network, that
is why we compute the average reward) of the best experiment trial, understanding
"best" experiment as the one where the maximum episode average reward was obtained.
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Figure 4.8 Algorithm performance comparison on network A

In figure 4.8 we can find the performance comparison for network A. Both the DDPG
approach and the classical Q-learning reach the same levels of reward. On the other
hand, it is noticeable the differences in the convergence of both approaches: while
Q-learning is unstable, DDPG remains remarkably stable once it reached its peak
performance.

We can further explore the behaviour of the algorithm by studying the intra-episode
performance: in figure 4.9 it is shown the performance of the first episode of the DDPG
algorithm and its performance at its best episode; the performances are shown as step
average reward with min-max bands (the average and the minimum and maximum
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are computed over all trials executed for the same experiment). We can see that
the improvements over the baseline are not constant throughout the episode, but are
prominent by the end.
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Figure 4.9 Intra-episode evolution of DDPG algorithm on network A

The same pattern can be seen in the intra-episode performance of the Q-learning
algorithm shown in figure 4.10.
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Figure 4.10 Intra-episode evolution of Q-learning algorithm on network A
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In figure 4.11 we can find the performance comparison for network B. While Q-learning
maintains the same band of variations along the simulations, DDPG starts to converge.
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Figure 4.11 Algorithm performance comparison on network B

Given the great computational costs of running the full set of simulations for one
network, it is simply not affordable to let it run indefinitely, despite the promising
trend. For instance, simulating and episode plus training the algorithm takes 2 minutes;
we run episodes of 1000 steps; we run 5 trials for each of the 3 algorithms (DDPG,
Q-learning and random), which accounts for a total of more than 20 days of computing
time (2 mins/step x 1000 steps/episode x 5 episodes/algorithm x 3 algorithms).

In figures 4.12 and 4.13 we can appreciate the different ways in which DDPG and
Q-learning respectively acted during the episodes.
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Figure 4.12 Intra-episode evolution of DDPG algorithm on network B
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Figure 4.13 Intra-episode evolution of Q-learning algorithm on network B

Figure 4.14 shows the performance comparison for network C, from which we can
appreciate that both DDPG and Q-learning performs at the same level, and that such
a level is beneath zero, from which we know that they are actually worse than doing
nothing.
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Figure 4.14 Algorithm performance comparison on network C

This way, the performance of DDPG is clearly superior to Q-learning for the simplest
scenario (network A), slightly better for scenarios with a few intersections (network B)
and at the same level for real world networks.
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Figure 4.15 Evolution of the gradient norm in the best experiment on network B.
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From the evolution of the gradient for medium and large networks shown in figure 4.15,
we know that convergence is not achieved, as it remains always at the maximum value
induced by the gradient norm clipping. This suggests that the algorithm needs more
training time to converge (probable for network B) or that it diverges (probable for
network C). In any case, further study would be needed in order to assess the needed
training times and the needed convergence improvement techniques.



Chapter 5

Related Work

In this chapter we identify and explore research lines that are especially close to ours,
either regarding the techniques used, or regarding the problem they address.

5.1 Classic Reinforcement Learning

Reinforcement Learning has been applied in the past to urban traffic light control.
Most of the instances from the literature consist of a classical algorithm like Q-Learning,
SARSA or TD(λ) to control the timing of a single intersection. Rewards are typically
based on the reduction of the travel time of the vehicles or the queue lengths at the
traffic lights. Table 5.1 (reproduced from [30]) shows a summary of the different
approaches followed by a subset of articles from the literature that apply reinforcement
learning to traffic light timing control. As shown there, many studies use as state
space information such as the length of the queues and the travel time delay; such
type of measures are rarely available in a real-world setup and can therefore only be
obtained in a simulated environment. Most of the approaches use discrete actions (or
alternatively, discretize the continuous actions by means of tile coding (see section
2.2.2), and use either ε-greedy selection (choose the action with highest Q value with
1 − ε probability, or random action otherwise) or softmax selection (turn Q values
into probabilities by means of the softmax function and then choose stochastically
accordingly). In most of the applications of reinforcement learning to traffic control,
the validation scenario consists of a single intersection, like in [87]. This is due to the
scalability problems of classical RL tabular approaches: as the number of controlled
intersections increases, so grows the state space, making the learning unfeasible due to
the impossibility for the agent to apply every action under every possible state.
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Study RL method State space Reward/Penalty Action

[87] SARSA(λ) Vehicle counts in
the links leading to
intersection

(Penalty) Time required
to release a fixed volume
of traffic through a road
network

ε-greedy

[98] Model-based
Q-learning

Number and loca-
tion of vehicles in
the links leading to
intersection

(Penalty) Total delay in-
curred between successive
decision points

ε-greedy

[3] Q-learning Queue lengths in
the links leading to
intersection

(Penalty) Total delay in-
curred between successive
decision points

softmax

[18] Q-learning Number and loca-
tion of vehicles on
the links leading to
intersection

(Penalty) Number of vehi-
cles waiting at intersection

ε-greedy

[25] Similar to
Q-Learning

Vehicle counts in
the links leading to
intersection

(Penalty) Squared sum of
the incoming links queues

ε-greedy

[69] Modified
Q-Learning

Current cycle
length, current
phase durations,
detectors status

(Penalty) Number of cars
that entered intersection
over the last time step

softmax

[75] Q-learning Total delay of the
intersection

Total delay of the intersec-
tion

ε-greedy

[72] Modified
Q-Learning

Vehicle counts in
the links leading to
intersection

(Reward) Number of ve-
hicles getting out of the
junction minus number of
vehicles still waiting

softmax

[7] Q-learning Change in the to-
tal queue length in
the last time step

(Penalty) Change in total
queue length in last time
step

ε-greedy

[5] Q-Learning Relative delay at
each lane leading
to intersection

(Reward) Savings in the
delay

ε-greedy

Table 5.1 Survey of RL methods applied to traffic control (reproduced from [30]).
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This led some researchers to study multi-agent approaches, with varying degrees of
complexity: some approaches like that from [5] train each agent separately, without no-
tion that more agents even exist, despite the coordination problems that this approach
poses. Others like [98] train each agent separately, but only the intersection with
maximum reward executes the action. More elaborated approaches, like in [18], train
several agents together modeling their interaction as a competitive stochastic game.
Alternatively, some lines of research like [55] and [6] study cooperative interaction of
agents by means of coordination mechanisms, like coordination graphs ([41]).

As described throughout this section, there are several examples in the literature of
the application of classical reinforcement learning to traffic light control. Many of
them focus on a single intersection. Others apply multi-agent reinforcement learning
techniques to address the problems derived from the high dimensionality of state
and action spaces. Two characteristics of most of the explored approaches are that
the information used to elaborate the state space is hardly available in a real-world
environment and that there are no realistic testing environments used.

5.2 Deep Reinforcement Learning

There are some recent works that, like ours, study the applicability of deep reinforce-
ment learning to traffic light controls. In this section we explore in detail their specific
approaches, identifying similarities with our work plus strengths and weaknesses in
each other:

• Li et al. studied in [56] the application of deep learning to traffic light timing in
a single intersection.

Their testing setup consists of a single cross-shape intersection with two lanes per
direction, where no turns are allowed at all (i.e. all traffic either flows North-South
(and South-North) or East-West (and West-East), hence the traffic light set only
has two phases. This scenario is therefore simpler than our simple network A
presented in 4.1.1. For the traffic simulation, they use the proprietary software
PARAllel MICroscopic Simulation (PARAMICS) [17], which implements the Cell
Transmission Model. This model does not take into account individual vehicles.
Instead, it divides the road into cells and computes the flow of vehicles moving
inside each cell. Therefore, it implements a very simplified version of the traffic
dynamics.
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Their approach consists of a Deep Q-Network (as described in section 2.3)
comprised of a heap of stacked auto-encoders [12, 93], with sigmoid activation
functions where the input is the state of the network and the output is the Q
function value for each action.

The inputs to the deep Q network are the queue lengths of each lane at time t

(measured in meters), totalling 8 inputs. The actions generated by the network
are 2: remain in the current phase or switch to the other one. The reward is the
absolute value of the difference between the maximum North-Source flow and
the maximum East-West flow.

The stacked autoencoders are pre-trained (i.e. trained using the state of the
traffic as both input and output) layer-wise so that an internal representation of
the traffic state is learned, which should improve the stability of the learning in
further fine tuning to obtain the Q function as output ([8, 31]. The authors use
an experience-replay memory to improve learning convergence.

In order to balance exploration and exploitation, the authors use an ϵ-greedy
policy, choosing a random action with a small probability p.

For evaluating the performance of the algorithm, the authors compare it with
normal Q-learning (as described in section 2.2.2). For each algorithm, they show
the queue lengths over time and perform a linear regression plot on the queue
lengths for each direction (in order to check the balance of their queue length).

The work in [56] compares with our present work in the following ways:

– The actions are discrete, which enables them to use Deep Q-learning. In
our case, the actions are continuous, so we use Deep Deterministic Policy
Gradient.

– The input and action spaces are small (8 inputs, 2 actions), and the test
setup is not realistic (e.g. no turns are allowed at all). In our case, the input
and action spaces of the most complex of our examples are two orders of
magnitude larger, and the testing setups range from simple (but realistic)
to complete cities.

– The reward function reflect the balance between the flow in horizontal and
vertical directions at every sampling time step. This presents scalability
problems and introduces the assumption that in the flows in both directions
should be similar, which does not hold true in real world scenarios. Our
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reward function directly evaluates the lack of congestion, which scales well
and is well suited for real environments.

– The the network is a stacked auto-encoder with sigmoid activations and pre-
training. This architecture is known to suffer from the vanishing gradients
problem. Our network uses ReLU as basic activation, therefore avoiding the
vanishing gradients and making pre-training unnecessary.

– The input space of the network consists of the queue lengths, which prevents
it to be applied to real world scenarios, in which such data is seldom available.

– The simulation software loosely reflects the dynamics of real traffic, given
the coarse grained approach of the cell transmission model. In our case, we
use a full microscopic simulation, where individual vehicles are modeled.

– The evaluation of the performance of the algorithm only offers weak evidence
of the improvements of the algorithm over other alternatives. There is
no comparison with the baseline behaviour where there is no algorithm
controlling the traffic light timing but only a fixed control program or
actuated traffic lights. Our evaluation of the performance is directly done
against the baseline behaviour and we also compare different algorithms.

• Van der Pol explores in their Master Thesis [90] the application of deep learning
to traffic light coordination, both in a single intersection and in a more complex
configuration.

Their testing setup consists of a single cross-shaped intersection with one lane per
direction, where no turns are allowed. For the simulation software, the author
uses SUMO (Simulation of Urban MObility), a popular open-source simulator
that simulates vehicles individually, modeling the dynamics described by the
Krauß model (further details can be found in section A.1 where we explore
simulator candidates for the present work). Given that SUMO teleports vehicles
that have been stuck for a long time, the author needs to take this into account
in the reward function, in order to penalize traffic light configurations that favour
vehicle teleportation.

Their approach consists on a Deep Q-Network. The author experiments with
two two alternative architectures, taken verbatim respectively from [60] and [61].
Those convolutional networks were meant to play Atari games and receive as
input the pixel matrix with bare preprocessing (downscaling and graying). In
order to enable those architectures to be fed with the traffic data as input, an
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image is created by plotting a point on the location of each vehicle. The action
space is comprised of the different legal traffic light configurations (i.e. those that
do not lead to flow conflicts), among which the network chooses which to apply.
The reward is a weighted sum of several factors: vehicle delay (defined as the
road maximum speed minus the vehicle speed, divided by the road maximum
speed), vehicle waiting time, the number of times the vehicle stops, the number
of times the traffic light switches and the number of teleportations.

In order to improve convergence of the algorithm, the authors apply deep rein-
forcement learning techniques such as prioritized experience replay and keeping
a shadow target network, but also experimented with double Q learning [42, 91].
They as well tested different optimization algorithms apart from the normal
stochastic gradient optimization, such as the ADAM optimizer [51], Adagrad [28]
or RMSProp [89].

The performance of the algorithm is evaluated visually by means of plots of the
reward and average travel time during the training phase.

The author also explores the behaviour of their algorithm in a scenario with
multiple intersections (up to four) by means of a multi-agent approach. This is
achieved by training two neighbouring intersections on their mutual influence and
then the learned joint Q function is transferred for higher number of intersections.

The work in [90] compares with our present work in the following ways:

– The original traffic information is converted into an image so that the
convolutional neural networks from [60] and [61] can be used. On the other
hand, in our case the raw information is kept in its very nature, and is only
aggregated over time. It might be possible for the convolutional approach by
Van der Pol to profit from the geometrical information of the urban traffic
network, as it has the spatial view of the environment 1 (see appendix B
for details on our attempts to use information about the connections of the
roads in the network) but the author’s approach does not actually profit
from this, as the algorithms are not trained in realistic scenarios.

– The dynamics of the traffic vehicles are not realistic due to the behaviour of
the traffic simulator used, and the author needs to mitigate teleportations as
part of its algorithm. In our case, the dynamics follow real world behaviour

1Despite having the spatial information about the traffic network, given the information lost in
the conversion to the pixel matrix, it is probable that the ability of the algorithm to profit from the
geometrical information is low.
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and therefore we do not need to address any kind of issue as part of our
approach.

– The state space and the reward function are comprised of information that is
not available in real-world scenarios, and has to deal with the abnormalities
of the simulation software (i.e. teleportations). In our case, the reward
function is fully available in any real world environment.

– The scalability of the algorithm to multiple intersections relies on the ability
to coordinate multiple agents, while our approach leverages the ability of
deep neural nets to receive huge input spaces to take coordinated decisions
in a centralized manner.

• Genders et al. explore in [35] the the application of deep convolutional learning
to traffic light timing in a single intersection.

Their test setup consists of a single cross-shaped intersection with four lanes in
each direction, where the inner lane is meant only for turning left and the outer
lane is meant only for turning right. As simulation software, the authors use
SUMO, like the work by Van der Pol [90] (see previous bullet). However, Genders
et al do not address the teleportation problem and do not take into account its
effect on the results.

Their approach consists of a Deep Convolutional Q-Network. Like in [90], Genders
et al. transform the vehicle positions into a matrix so that it becomes a suitable
input for the convolutional network. They, however, scale the value of the pixels
with the local density of vehicles. The authors refer to this representation as
discrete traffic state encoding (DTSE). The actions generated by the Q-Network
are the different phase configurations of the traffic light set in the intersection.
The reward defined as the variation in cumulative vehicle delay since the last
action was applied. The network is fed using experience replay.

The work in [90] compares with our present work in the following ways:

– The original traffic information is converted into an matrix to feed the
convolutional network taking advantage of information locality. It would be
interesting to explore the learned features, as done in [50] to visualize the
weights or in [99] to infer the regions of the image that influenced the result
most, to study the traffic patterns used to trigger different actions.
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– The dynamics of the traffic vehicles are not realistic due to the vehicle
teleportation behaviour of SUMO, and the authors do not take this into
account.

– The state space and the reward function are comprised of information that
is not available in real-world scenarios, that is, the exact location of each
vehicle in the traffic network. In our case, the reward function is fully
available in any real world environment.
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Conclusions

We studied the application of Deep Deterministic Policy Gradient (DDPG) to increas-
ingly complex scenarios. We obtained good results in network A, which is analogous
to most of the scenarios used to test reinforcement learning applied to traffic light
control (see chapter 5 for details on this); nevertheless, for such a small network,
vanilla Q-learning performs on par, but with less stability, though. However, when the
complexity of the network increases, Q-learning can no longer scale, while DDPG still
can improve consistently the obtained rewards. With a real world scenario, our DDPG
approach is not able to properly control the traffic better than doing nothing. The
good trend for network B shown in figure 4.11, suggests that longer training time may
lead to better results. This might be also true for network C, but the extremely high
computational costs could not be handled without large scale hardware infrastructure.

Our results show that DDPG is able to better scale to larger networks than classical
tabular approaches like Q-learning. Therefore, DDPG is able to address the curse of di-
mensionality [38] regarding the traffic light control domain, at least partially. However,
it is not clear that the chosen reward scheme (described in section 3.6) is appropriate.
One of its many weaknesses is its fairness for judging the performance of the algorithm
based on the individual detector information. In real life traffic optimization it is
common to favour some areas so that traffic flow in arterials or large roads is improved,
at the cost of worsening side small roads. The same principle could be applied to
engineer a more realistic reward function from the point of view of traffic control theory.

Another aspect that needs further study is the effect of the amount and location of
traffic detectors on the performance of the algorithm. In our networks A and B, there
were detectors at every section of the network, while in network C their placement was
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scattered, which is the norm in real world scenarios. We appreciate a loose relation
between the degree of observability of the state of the network and the performance
of our proposed traffic light timing control algorithm. Further assessment about the
influence of observability of the state of the network would help characterize the per-
formance of the DDPG algorithm and even turn it into a means for choosing potential
locations for new detector in the real world.

An issue regarding the performance of our approach is the sudden drops in the rewards
obtained through the training process. This suggests that the landscape of the reward
function with respect to the actor and critic network parameters is very irregular,
which leads the optimization to fall into bad areas when climbing in the direction of
the gradient. A possible future line of research that addressed this problem could be
applying Trusted Region Policy Optimization [73], that is, leveraging the simulated
nature of our setup to explore more efficiently the solution space. This would allow it
to be more data efficient, achieving comparable results with less training.

We have provided two contributions that, to the best of our knowledge, have not
been used before in the deep reinforcement learning literature, namely the use of
disaggregated rewards (described in section 3.7.2) and the scheduling of the discount
factor γ (described in section 3.7.3). These techniques need to be studied in isolation
from other factors on benchmark problems in order to properly assess their effect and
contribution to the performance of the algorithms. This is another possible line of
research to be spawned from this work.

On the other hand, we have failed to profit from the geometric information about the
traffic network (see appendix B). This is clearly a possible future line of research, that
can leverage recent advances in the application of convolutional networks to arbitrary
graphs, similar to [26].

Finally, we have verified the applicability of simple deep learning architectures to
the problem of traffic flow optimization by traffic light timing control on small and
medium-sized traffic networks. However, for larger-sized networks further study is
needed, probably in the lines of exploring the results with significantly larger training
times, using the geometric information of the network and devising data efficiency
improvements.
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Appendix A

Infrastructure

In this appendix we briefly present the infrastructure used to support the research in
this work. Although this is a side aspect, we consider it to be important on its own
due to the non negligible amount of time that was needed to define it.

In section A.1 we present the factors taken into account to select a traffic simulation
software while in section A.2 we do the same for the deep learning framework on top of
which our algorithms have been devised. Finally, in section A.3 we show the hardware
setup used to perform all the experiments described in chapter 4.

A.1 Traffic simulation software

In order to test our control algorithms we need a simulation infrastructure that can
mimic the traffic of a city and that allows external control of the traffic lights by our
controlling agent.

Urban traffic simulation software can keep models at different levels of abstraction:

• Microscopic traffic models: simulate vehicles individually computing their posi-
tions at every few milliseconds (typically in the order of hundreds of milliseconds).
The dynamics of the vehicles are governed by a simplified model that drives the
behaviour of the driver under different conditions.

• Mesoscopic traffic models: simulate vehicles individually but compute their
positions with larger time steps, typically at the times at which vehicles enter or
leave road sections and in an event-driven manner (as opposed to a clock-driven
simulation like microscopic models). This implies that the history of positions
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within a road section for each vehicle is unknown. On the other hand, mesoscopic
simulations require less computing resources.

• Macroscopic traffic models: estimate aggregated measures of the traffic, like the
density in the different sections of the traffic network by taking into account
parameters of the roads, like their capacity. Macroscopic models are less ex-
pensive computationally, and are normally used as a first approach to compute
traffic densities with which individual traffic path assignment are calculated and
subsequently used in microscopic simulations.

To our interests, the proper simulation level would be either the microscopic or meso-
scopic, because we need information of individual vehicles and their responses to
changes in the traffic lights. Nevertheless, in sake of more realistic results, we shall
prefer microscopic simulations.

The following third party traffic simulators are the most widely used ones and have
been considered as candidates for the infrastructure of the current work:

• SUMO (Simulation of Urban MObility) [52]: open source microscopic simulator
created and maintained by the Institute of Transportation Systems, which is
part of DLR1. It is actively maintained after more than 15 years of development
and has a very large community, with even user conferences 2. Lots of scientific
publications rely on it 3. It provides a programmatic interface to control the traffic
lights from several different programming languages. Also, it offers the possibility
to import real city maps from OpenStreetMap, a collaborative cartographic
service similar in functionality to Google Maps.

• MITsimLab [94]: open source microscopic simulator created at the MIT In-
telligent Transportation Systems (ITS) Program. Its very initial purpose was
precisely to evaluate traffic control software. Like SUMO, there are lots of scien-
tific publications relying on it 4, but it has no integration with OpenStreetMap
maps and currently is has low momentum, having had its peak activity at early
2000s.

1DLR (Deutsches Zentrum für Luft- und Raumfahrt e.V) is the German Agency for aerospace,
energy and transportation research.

2http://www.dlr.de/ts/desktopdefault.aspx/tabid-10490/18168_read-42578/
3See http://sumo.dlr.de/wiki/Publications for a list of publications
4See https://its.mit.edu/publications for a list of publications

http://www.dlr.de/ts/desktopdefault.aspx/tabid-10490/18168_read-42578/
http://sumo.dlr.de/wiki/Publications
https://its.mit.edu/publications
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• Aimsun [4, 19]: commercial microscopic, mesoscopic and macroscopic simulator
with powerful modelling capabilities, integration with OpenStreetMap, and a
Python API, and widely used, both in the private consulting sector and in traffic
organization institutions.

• Vissim [33]: commercial microscopic simulator that is widely used traditionally
by traffic organization institutions globally.

We shall note that in traffic research at academia, a very common microscopic simu-
lation model is the Cell Transmission Model (CTM) [24]. It divides roads into small
segments called cell. The division is performed both in the longitudinal axis and in the
lateral one, hence forming a grid along the road. The length of the cell is computed to
be equal to the distance traveled in free flow traffic in one time step, while its width
is that of a single lane. During the simulation, each cell is associated a density that
is computed based in the inflows and outflows. The cell transmission model, despite
being very popular in the academic realm, is seldom used in real-world applications
and has therefore being discarded as candidate.

Among the selected candidates, in terms of behaviour of vehicles, all of them are valid.
SUMO implements the Krauß model [53], Aimsun implements the Gipps model [36],
Vissim offers the Wiedemann model [96] and MITsimLab implements a custom model.
However, in mixed traffic conditions all of them perform in similar manner ([49]), only
differing in interurban setups where the distance between consecutive vehicles are larger.

After careful evaluation, we selected SUMO as simulation framework, because it
was easily accessible (it is open source) and it is superior to MITsimLab, in terms
of community and also regarding integration with OpenStreetMap, making it more
difficult to simulate already existing maps.

However, after the first experiments it was realized the difficulty of having a simulation
that was close to reality, because we lacked a demand configuration and the tooling
provided by SUMO to create random demand configurations cast very unrealistic
results. This happened in a time frame were Aimsun was made available to the
author, along with realistic demand configurations of different cities. Therefore, it was
decided to switch the simulation framework from SUMO to Aimsun.
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A.2 Deep learning framework

Deep Learning research has been a very active field in the last years. This fact has led
to the appearance of several open source deep learning libraries, many of them backed
by research labs or big companies. The most remarkable ones are:

• Theano [86]: a low level Python library that allows to express arbitrary compu-
tations in the form of computational graphs and to compute them either on the
CPU or the GPU, supporting also automatic differentiation of the computations.
It was devised at Yoshua Bengio’s lab at University of Montreal. It was the first
solid deep learning library and it used extensively for deep learning research at
academia and industry.

• Tensorflow [2]: a low level Python library created by Google, similar in purpose
to Theano, but more flexible in terms of distributed computing.

• Lasagne [27]: a Python library that works on top of Theano, making it simpler
to define neural networks.

• Keras [21]: a Python library that works on top of Theano or Tensorflow (it is
configurable), making it simpler to define neural networks and also allowing to
switch the backend to Theano or Tensorflow, which is useful in case of hitting a
bug or misbehaviour in either of them.

• Torch [23]: a deep learning C library created at Yann LeCun’s lab at University
of New York. It has bindings to other programming languages such as C++,
Python and Lua. It is heavily used at Facebook. It was formerly used at Google
DeepMind, and they used it for their landmark articles [60, 61].

• Caffe [48]: a C deep learning library created at Berkeley University, extensively
used for research. It offers bindings to other languages like Python, R and Matlab.

• Deeplearning4j [1]: a Java deep learning that is popular in industry due to the
possibility of using it from any JVM language.

Note that all libraries rely on CUDA and cudnn, the libraries offered by nvidia to
access the functionality of their GPUs.

Given that all evaluated traffic simulators offer a Python API, it was desirable to
choose a Python-enabled deep learning framework. We decided to use Keras as deep
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learning framework, not only because it was accessible from Python, but also because
the possibility to switch between Theano and Tensorflow as computing backend, and
the strong community Keras has, which readily provides support and advice. During
our research, we decided to settle with Tensorflow as backend in order to avoid some
Theano bugs we found.

Given the availability of several open source implementations of deep reinforcement
learning algorithms on top of Keras, we decided to use library keras-rl [66] as a
starting point for our implementation.

A.3 Hardware

In order to compute efficiently train deep learning models it is necessary to run them
in capable hardware. We chose the following setup: an Intel Core i7-5820K 3.3Ghz
processor, with 32GB DDR4 RAM and an nvidia GeForce GTX 980 GPU with 4GB
of GDDR5 RAM.

Regarding the processor, Intel i7 architecture was the most powerful in terms of
computing capabilities within domestic hardware. Regarding the GPU, it was necessary
to have an nvidia graphic card. The reason is that only such vendor supports the de
facto standard GPGPU computing platform, namely CUDA. Despite the fact that
CUDA is proprietary and that no other vendor supports it, deep learning software
mainly offers support for it. The alternative vendor, AMD, supports the open GPGPU
standard called OpenCL, whose adoption is very low. This way, currently, nvidia GPUs
are the only feasible hardware option to perform deep learning research.





Appendix B

Unsuccessful Approaches

In this chapter we briefly describe some approaches that were studied but led to no
improvement over the more simple approach followed (described in chapter 3). This
lines of research did not undergo full formal testing and therefore no associated results
are included. Nevertheless, it was considered useful to mention other paths researched
during the elaboration of this work.

The most successful cases of deep reinforcement learning ([60, 61]) receive the pixels of
a video game as inputs, that is, the input state is a matrix. This enables the authors
to apply convolutional neural networks in they deep reinforcement learning approach.
Convolutional layers exploit the locality of the information to identify features, that is,
they learn to detect groups of pixels that have some trait.

This way, a convolutional neural architecture may be able to profit in the same way
from the locality of the detector information.

It is possible define the concept of "group of pixels" because the organization of pixels
in a matrix gives us information of which pixels are next to other pixels, and such
neighbourhood is homogeneous: one pixel always has only one pixel to the left, only
one pixel to the right, one pixel above and one below. However, in our case we do not
have a matrix as input, but a collection of (detector, detector info) tuples. Nevertheless,
there is also the notion of locality in the detectors: there is certain travel time from
one detector to another that can be used as a distance measure. However, such notion
of locality is not homogeneous and does not enable us to apply convolutional networks
to the detector information.
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With the distance information, we could create a weighted directed graph where each
node is associated to a detector and each pair of nodes is connected by an arc whose
weight is the travel time between the detectors. We could define a threshold for the
minimum distance for an arc to be present, so that we do not have a connect for every
pair of detectors, but only for those that are below certain travel time.

There are research lines that study the possibility of applying convolutions to graphs,
mostly by obtaining matrices derived from the graph, such as the graph laplacian
[13, 71, 88], or by using diffusion kernels [59], or by elaborating a custom matricial
receptive field [64]. Others, follow similar approaches but focus on the graph Fourier
transform. There are also some research on deep learning on random walks over the
network [14].

In our case, we have to take the following into account:

• It is not possible to define an embedding in the line of [14], as we need to represent
the full connection graph, and not only a single node.

• Level of connectivity in our graph is arbitrarily set, that is, we define an arbitrary
threshold of the travel distance among detectors under which there is connectivity.
Therefore, applications that assume a formal graph structure like [13, 71, 88],
may not make sense.

Therefore, it would be possible to use an ad hoc approach to represent our input space
in a way that makes it possible to apply convolutions: for each detector d, we find a
path that connects 2K + 1 detectors so that the middle detector is d. Such path is
elaborated in the following way:

• Based on macroscopic simulations, we extract paths assigned to vehicles in our
simulation. Let this set of paths be referred to as P .

• For every detector d1, we traverse P and find the probability of finding any other
detector d2 close in the same path. That is, we find a mapping between a pair of
detectors and a probability: f : DxD ← R. This mapping may not be complete,
depending on the paths on P .

• For every detector d1, we compose a path that contains d1 in its center position
and that contains K detectors to the right of d1 and K detectors on its left. In
order to compose it, we find the most probable detector to be found after d1,
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that is argmax dif(d1, di). We do this sequentially for K steps, and then do the
same in backwards direction.

This way, for each detector di, now we have a path of length 2K+1, where our detector
is in the middle; let us call this path p(di), defined as a collection of 2K + 1 elements,
and where p(di, j), refers to the jth element in the path. Then, we define a transformed
input state in which we have a matrix with the same number of rows as number of
detectors in the traffic network, and with 2K + 1 columns, where in each row i and
column j, we have the speed score (as defined in section 3.2) of detector p(di, j). This
allows us to apply 1-dimensional convolutions to the input space, capturing the network
structure of our detector information.

Once a suitable input space is available, it can be fed into a convolutional architecture:
a Deep Deterministic Actor-Critic Policy Gradient architecture (as described in section
2.3) with a path-based state space as described previously in this appendix. The layers
used are classical ConvNets, as described in section 2.1: repeated blocks convolutional
layers, followed by max pooling layers, which residual learning to improve learning
while allowing greater depth.

The early results obtained did now improve over the simpler approach described
throughout chapter 3, but did increase the complexity of the architecture, therefore
the convolutional architecture with path-based state space was dropped.
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