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Abstract 
 
The aim of this master thesis is to assess the validity of unsupervised clustering 
algorithms to variable stars data classification for the Gaia mission. The use of 
these techniques allows to identify natural clustering without using any previous 
information about the classes and its distribution and, therefore, allows to 
discover new classes of objects. With this objective, we evaluate two 
probabilistic algorithms, one in which each cluster is characterized by a 
parametric distribution, and other, by a no-parametric distribution in a 
hierarchical clustering: Autoclass and HMAC (Hierarchical Mode Association 
Clustering). Both methods are evaluated against the same criteria, 
reproducibility, computation time, sensitivity to new classes and interpretability, 
in datasets that can grow up to 108 instances. These criteria are the first step to 
assess the feasibility of application of the algorithm but they are not enough to 
evaluate the goodness of clustering results. Despite the popular use of the 
unsupervised clustering techniques, the performance evaluation of clustering is 
an open question. It includes knowing how many clusters are actually present 
and how real is the clustering itself. Our clustering evaluation starts applying the 
expert knowledge and using a labeled dataset what allows to match some 
clusters with some variable stars types, but this is not enough to reach the 
objective of identifying each cluster. A review of the existing indices to evaluate 
clustering with objective criteria is included. Clusters and data are then 
analyzed to understand the results obtained with both methods biased by the 
method itself. A clustering combination method of these two algorithms is also 
tested as a technique that optimizes according multiple objective functions and 
trying to avoid some limitations of both algorithms. 
 
 
Keywords: Unsupervised clustering, Autoclass, HMAC, model-based clustering, 
hierarchical clustering, validation indices.  
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1. Introduction 
 
Clustering is a very popular technique of data mining and consists on the 
classification of data items into homogeneous groups that seem to fall naturally 
together. When classification operates under supervision by being provided 
information about training examples with the actual class, is called supervised 
classification. However, clustering is considered an unsupervised task because 
assumes no previous information about the data classes and its distribution and 
aims to discover it. The challenge is to find these clusters and assign instances 
to them. There are semisupervised variants of many clustering algorithms 
where prior knowledge can be incorporated into clustering algorithms but also 
can introduce any bias in the class discovery process.  
 
There are several unsupervised clustering approaches that can be applied: 
 

• Partitioning algorithms that construct various partitions and then 
evaluate them by some criterion. They are divided into major 
subcategories, the centroid and the medoids algorithms. The centroid 
algorithms represent each cluster by using the gravity center of the 
instances (k-means). The medoid algorithms represent each cluster by 
means of the instances closest to the gravity center (k-medoids).  

• Hierarchy algorithms that create a hierarchical decomposition of the set 
of data (or objects) using some criterion. There are two major methods 
under this category: one is the agglomerative, the other the divisive. 
They use different criteria to decide which clusters shoud be merged or 
splitted. Under this category are: BIRCH, CURE, ROCK,.. 

• Density-based that are based on connectivity and density functions. 
They try to find clusters based on density of data points in a region. 
Some of these methods are DBSCAN, DENCLUE. 

• Grid-based that first quantize the clustering space into a finite number of 
cells (hyperrectangles) and then perform the required operations on the 
quantized space. Cells that contain more than certain number of points 
are treated as dense and the dense cells are conected to form clusters. 
Some of them are: STING, WaveCluster and CLIQUE. 

• Model-based: A model is hypothesized for each of the clusters and the 
idea is to find the best fit of that model to each other. Among the 
algorithms that are under this category are: Autoclass, SOM. 

 
But not all clustering methods can adequately handle all sorts of cluster 
structures. And the evaluation of the goodness of clustering with objective 
criteria to select the one that better works for the data is a difficult task. So, the 
success of clustering is often measured subjectively in terms of how useful the 
results appear to be for the expert or by its ability to classify new cases.  
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1.1 Motivation 
 
In this report, some unsupervised clustering algorithms are tested in large 
astrophysical datasets that gather information about variable starts for the GAIA 
mission. 
 
Gaia is an ambitious mission planned by the European Space Agency ESA for 
2011-2020 to chart a three-dimensional map of our Galaxy, the Milky Way, in 
the process revealing the composition, formation and evolution of the Galaxy. 
Gaia will provide unprecedented positional and radial velocity measurements 
with the accuracies needed to produce a stereoscopic and kinematic census of 
about one billion stars in our Galaxy.  
 
Due to the great amount of data that will be generated, there is a consortium for 
analysis and processing of data generated, Data Processing and Analysis 
Consortium (DPAC). The pan-European consortium is organized into eight 
Coordination Units (CU) each of which is dedicated to a particular aspect of the 
full data processing task: CU1: System Architecture, CU2: Data Simulations, 
CU3: Core Processing, CU4: Object Processing, CU5: Photometric Processing, 
CU6: Spectroscopic Processing, CU7: Variability Processing, CU8: 
Astrophysical Parameters. 
 
Within CU7 there is a working package called Object Clustering Analysis (OCA) 
with the aim of developing tools from the point of view of clustering. Although all 
the objects are well known in classes and subclasses for the scientific 
community, due to the great amount of objects, it is possible that new classes of 
objects can be observed by the first time in a quantity to be statistical 
significant. From May 2008 to April 2009, this coordination unit 7 will analyze 
several clustering algorithms to decide which one to adopt. 
 
 
1.2 Contribution 
 
This paper is a first contribution to the CU7 work. With this aim, we focused in 
two unsupervised methods that rely on statistical models: Autoclass and 
HMAC (Hierarchical Mode Association Clustering) that were tested in large 
astrophysical datasets.  
 
Both methods differ in how is characterized each cluster and in its 
representation. In Autoclass, each cluster is characterized by a parametric 
distribution (multivariate Gaussian distribution for continuous data) whereas 
HMAC is characterized by a nonparametric distribution (Gaussian kernels for 
continuous data). About the representation, Autoclass allows one instance to 
belong to more than one cluster in a probabilistic way (finite mixtures) and 
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HMAC produces a bottom-up hierarchical structure, starting with each instance 
being a cluster and finishing when all instances are grouped in a unique cluster 
in a diagram called dendrogram. 
 
The study consists on assessing  the feasibility of application of both methods 
according to some important criteria for this working group: reproducibility, 
computing time, sensitivity to new classes and interpretability. The clustering 
evaluation according to some objective criteria that allows to compare them is 
also undertaken but only to show its extreme difficulty. Finally, from a detailed 
analysis of resulting clusters is also possible to extract some knowledge about 
data, the probability density model that better fits, and, consequently, to suggest 
other methods with more chances to success. 
 
As a result of the scientific validation of Autoclass, the report "Assessment of 
the validity of Autoclass for CU7 unsupervised classification" Ref: GAIA-C7-TN-
SVO-LSB-012-D (draft version) was accepted by the GAIA consortium. 
 
 

1.3 Organization 
 
This report is organized as follows. Chapter 2 is a theoretical review of both 
proposed clustering algorithms, Chapter 3 explains the datasets used and the 
analysis method, Chapter 4 and 5 show the results of applying Autoclass and 
HMAC respectively. Chapter 6 explains a clustering combination method using 
both algorithms. In Chapter 7 it is shown the difficulty to evaluate clustering, and 
this is done mainly under subjective criteria, and to finish, Chapter 8 gathers the 
final conclusions. 
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2. Unsupervised clustering algorithms: Autoclass and HMAC 
 
This chapter gives a brief theoretical background of both selected methods to 
process large astrophysical datasets and points out some differences between 
them. 
 
2.1 Autoclass 
 
Autoclass is an unsupervised clustering algorithm based on Bayesian 
classification. The goal is to find the most probable class descriptions given the 
data and prior expectations. This approach is an alternative method to 
maximum likelihood approach that tries to find the class descriptions that best 
predict data. Whereas maximum likelihood estimation favours models with 
many parameters and many number of classes (until the classes equals the 
number of data points), the Bayesian classification enforces a trade-off between 
the fit to the data and the complexity of the class descriptions. This is done 
considering that each simple parameter introduced into a Bayesian model 
brings its own multiplicative prior to the joint probability that always lowers the 
marginal. If a parameter fails to raise the marginal by increasing the direct 
probability by a greater factor than the prior lowers the marginal, the model 
incorporating that parameter is rejected. The introduction of these priors always 
favours classifications with smaller number of classes and avoids overfitting. 
 
Autoclass requires to be explicit about the space of models, a parametrized 
probability distribution of density function, one is searching in. The simplest 
model to predict is when each attribute is independent. For real attributes, one 
can use a standard normal distribution. But Autoclass can also deal with 
attributes that are not independent of each other in each class and can be 
correlated following a multivariate normal distribution. For a set of real 
continuous attributes, this means that a new set of attributes can be defined as 
linear combinations of the ones given, which vary independently according to 
normal distributions. Simple independent attribute models require fewer 
parameters than the corresponding covariant models.  
 
Autoclass follows the classical mixture model. In this method, class membership 
of each instance is expressed probabilistically. The cases are not assigned to a 
class but each case has a probability of being member of different classes, this 
is the interclass mixture probability, and the sum of these probabilities must be 
one.  
 
When the probabilities of most instances in a cluster are around 0.99 in this 
most probable class, we can assume that we are dealing with a well separated 
cluster. On the contrary, clusters characterized by instances with probability 
vectors lower than 0.5 in all classes, are low contrast clusters that can be 
assumed to be overlapped with other distributions. One can has, in addition to 
the clustering, a measure of how well the classification fits the data and the 
individual data fit the classes. 
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How Autoclass works 
 
Autoclass input is a set of data instances, a model class (normal or multivariate 
normal) over continuous real attributes and a set of search parameters to 
configure the algorithm: number of classes to start, random initializations, 
stopping criterion... 
 
The process of knowledge discovery is an iterative process. Autoclass 
repeatedly creates a random classification and then computes the probabilistic 
class memberships of data instances using the class parameters and the 
implied relative likelihoods. Using the new class members computes class 
statistics (mean and variance or covariances) and revises class parameters. 
This process is repeated until it converges to some local maximum (the clusters 
stop changing or the change is less than a threshold for several consecutive 
iterations). Each iteration is called a ”try”. 
 
Autoclass output is a set of the best classifications found. The most important 
indicator of the relative merits of these classification is the log total posterior 
probability value. As the probability is between 1 and 0 the log probability is 
negative from 0 to negative infinite, and it is expressed as follows: 
PROBABILITY exp(-1727410.430). 
 
A classification is composed of: 
 

• a set of classes described by a set of parameters (mean, covariance 
matrix for correlated model), which specify how the class is distributed 
along the various attributes. It gives also the influence of each attribute in 
the classification. 
e.g. 
Attr1 in class 0 (Mean,StDev)= (-1.46e+00 +1.64e-01) 
Attr1 in all datasets (Mean,StDev)= (-9.46e-01 +1.19e+00) 
Attr1 attribute influence in class 0 = +3.13e+00, computed as the 
difference of means of both distributions divided by the standard 
deviation of the attribute in the class. 
 

• a set of class weights describing what percentage of cases are likely to 
be in each class. This is not the number of instances belonging to a class 
but the sum of membership probabilities for that class. Autoclass also 
gives other parameters as the class strength or cross entropy. 
e. g.  
Class 0, Class weight 5199, normalized class weight 0.120 
Class 0, Log of class strength = -3.70e+001 Relative Class strength 
2.75e-005, computed as the geometric mean probability that any 
instance belongs to a class.  
Class 0, class cross entropy with respect to global class 7.25e+000, 
defined as divergence between two probability distributions. It ranges 
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form zero for identical distributions to infinite for distributions placing 
probability 1 on differing values of an attribute. 

 
• a probabilistic assignment of cases to the classes: 

Case N  (Class Prob)  (Class Prob)  (Class Prob) 
001  (12  0.964)  (25  0.034)  (11  0.002) 

 
 
2.2 HMAC- Hierarchical Mode Association Clustering 
 
HMAC is another unsupervised clustering algorithm that is based on finding 
local maxima (mode identification) of mixture densities by applying a 
nonparametric density estimate. A cluster is formed by those points that ascend 
to the same local maximum of the density function. The major advantage of this 
approach is that, without a model fitting, it yields a density description for every 
cluster.  
 
The path from a point to its associated mode, a local maximum of density, is 
solved by an algorithm called MEM (Modal Expectation Maximization) similar to 
EM algorithms but with the objective of finding the local maxima, modes, of a 
given distribution.  
 
In the implementation of HMAC used in this report, the non parametric kernel 
density estimation uses a Gaussian kernel for continuous data, having a 
spherical covariance matrix with a standard deviation σ (bandwidth) in the 
diagonal, which is equivalent to modeling the different variables separately.  
 
The use of this non parametric kernel does not determine the clustering. This 
approach can be used to find the modes of any density in the form of a mixture 
distribution because mixture components only play the role of approximating a 
density. The approach is robust even when clusters deviate substantially from 
Gaussian distributions. 
 
The algorithm also supplies a pairwise separability measure for clusters defined 
using the ridgeline between the modes of two clusters. Using this separability 
measure, it supplies a merging method for clusters weakly separated. 
 
This approach is an agglomerative hierarchical process. First we show how is 
the modal clustering in a level, and then we show the extension to hierarchical 
version. 
 
 
Modal Clustering 
 
Modal clustering comprises the following steps: 
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Let the set of data to be clustered be S = {x1, x2,....,xn} xi Є Rd .The Gaussian 
kernel density estimate is formed: 
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Σ is a spherical covariance matrix Σ  = diag(σ2; σ2; ..., σ2)= D(σ2). The standard 
deviation σ is also referred to as the bandwidth of the Gaussian kernel. 
 
With a given Gaussian kernel covariance matrix D(σ2), data are clustered as 
follows: 
 

1. Form kernel density 
2. Use f (x |S, σ2) as the density function. Use each xi, i = 1,2, ...,n, as the 

initial value in the MEM algorithm to find a mode of f (x | S, σ2). Let the 
mode identified by starting from xi be Mσ(xi). 

3. Extract distinctive values from the set {Mσ (xi); i = 1;2; ..;n} to form a set 
G. Label the elements in G from 1 to |G|. In practice, due to finite 
precision, two modes are regarded equal if their distance is below a 
threshold. 

4. If Mσ(xi) equals the kth element in G, xi is put in the kth cluster. 
 
 
Hierarchical modal clustering 
 
Hierarchical approach starts with every point xi being a cluster by itself. When 
the variances of kernel increase, the density estimate becomes smoother and 
tends to group more points in one cluster. Hierarchical clustering is performed in 
a bottom-up manner. In each hierarchical level, modes acquired at a smaller 
bandwidth are treated as points to be clustered when a larger bandwidth is 
used. A hierarchy of clusters can be thus constructed by gradually increasing 
the variances of Gaussian kernels. 
 
 
Mechanisms for merging clusters 
 
Merging clusters can be produced when increasing the bandwidth value. 
However, as this can cause that prominent clusters be clumped while leaving 
small clusters unchanged, this approach supplies two additional mechanisms 
for merging. 
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One method uses a separability measure between two clusters based on the 
ridgelines, lines that join bumps of two clusters, which takes comprehensive 
consideration of the exact densities of the clusters. Merging clusters according 
to this parameter can avoid the aforementioned problem. The idea is to absorb 
other clusters when they are not well separated or are less dominant. 
 
Other method has into account outliers. Outliers are points that are far from all 
essential clusters and tend to have high separability so they will not be merged 
with the previous mechanism. HMAC uses the parameter called "coverage rate" 
to define if merge outliers. The coverage rate define if a cluster is an outlier 
based on its size in proportion to the total dataset. Outliers will be merged to 
other clusters. 
 
2.3 Differences between both methods 
 
There are clear differences between Autoclass and HMAC. In Autoclass, each 
cluster is characterized by a parametric distribution (Normal or multivariate 
Gaussian distribution for continuous data) whereas in HMAC each cluster is 
found using a nonparametric distribution (Gaussian kernels for continuous 
data). In HMAC, there is not a model fitting. 
 
The representation of results is also different. Autoclass allows one instance to 
belong to more than one cluster in a probabilistic way and HMAC produces a 
bottom-up hierarchical structure, starting with each instance being a cluster and 
finishing when all instances are grouped in an unique cluster in a diagram called 
dendrogram.  
 
This representation produces a new difference. Autoclass supplies the final 
number of classes, but HMAC does not. Each hierarchical level has its own 
number of classes and it is necessary to incorporate expert knowledge to 
decide which hierarchical level to select. 
 
However, HMAC has some interesting advantages against Autoclass. These 
are the irrelevance of initialization and the easiness of implementing required 
optimization techniques. In addition, with HMAC approach each cluster 
accounts for a distinct hill or mode of the probability density, fact that not 
happens with parametric approaches when dealing with mixture distributions. 
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3. Data description and analysis method 
 
In this section, we review the astrophysical datasets used for the study and the 
attributes that they contain, show some plots of location of instances in several 
attributes, and define the criteria to evaluate the algorithms. 
 
 
3.1 Astrophysical datasets description 
 
To perform our experiments we used the OGLE Large Magellanic Cloud 
dataset with 43351 cases of variable stars without any information about the 
classes they belong to. The instances consisted of thirteen real attributes (with 
names and explanations listed in Table 3.1) with no missing values. We also 
used the Hipparcos dataset (2498 instances) with exactly the same attribute 
information as the original OGLE dataset. 
 
For Autoclass experiments, we assumed that attributes followed a normal 
distribution and that all of them could be correlated, which implied a multivariate 
normal distribution.  
 

Attribute  Meaning 
log-f1  log of the first frequency 
log-f2  log of the second frequency 
log-af1h1-t  log amplitude first harmonic first frequency 
log-af1h2-t  log amplitude second harmonic first frequency 
log-af1h3-t  log amplitude third harmonic first frequency 
log-af1h4-t  log amplitude fourth harmonic first frequency 
log-af2h1-t  log amplitude first harmonic second frequency 
log-af2h2-t  log amplitude second harmonic second frequency 
log-crf10  amplitude ratio between harmonics of the first frequency. 
pdf12  phase difference between harmonics of first frequency 
varrat  variance ratio before and after 1st frequency subtraction 
B-V  colour index 
V-I  colour index 

 
Table 3.1. Dataset attributes. 

 
We also used some labeled datasets to validate the obtained clustering results 
and to help to identify the clusters. These datasets were taken from published 
results on the OGLE database and belong to the following classical variable 
stars: Cepheids (1313 cases - cep), double mode Cepheids (71 - dmcep), 
eclipsing binaries (2467 - ecl), eclipsing binaries (Groenewegen sample; 162 - 
new-ecl), ellipsoidals-eclipsing binaries (80 - ell-ecl), ellipsoidals (613 - ell-ell), 
long period variables (Mira and Semirregular variables; 2735 - lpv), PT Cep (14 
ptcep), RR Lyrae stars (types AB and C; 2558 - rrlyr) and double mode RR 
Lyrae stars (50 - rrd).  
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Another dataset of multiperiodic variables stars data were taken from the 
classification carried out by the hierarchical classifier presented in Sarro et al. 
(2008), and include β Cephei stars (292 cases - all.2.bcep.8), δ Scuti stars (22 - 
all.2.dscut.8), γ Doradus (102 - all.2.gdor.8), Pulsating Variable Super Giants 
(PVSG; 79 - all.2.pvsg.7), and Slowly Pulsating B stars (590 - all.2.spb-8).  
 
Data were supplied previously processed and 9 from 13 attributes presented a 
logarithmic transformation, which effect was also investigated. This 
transformation has its importance since Autoclass is a model fitting based 
algorithm and the model selected is a multivariate normal distribution. If data 
under the log-transformation do not behave normally or deviate considerably of 
a normal distribution, the fit can conduce to unexpected results. The same 
happens with HMAC algorithm that uses a Gaussian kernel to model data. 
 
However, due the nature of the attributes under this transformation 
(frequencies, amplitude of harmonics) with values greater than 0 it can be 
expected a positively skewed distribution that could be modeled by the log-
normal distribution. If in this case, this preprocessing step could improve the 
clustering. If not, there is also the possibility of being in the case of normal 
distributions with small sigma values (< 0.1) where the log-normal is visually 
indistinguishable from a normal.  
 
 
3.2 Algorithms implementation. 
 
Both algorithms were already implemented and were taken directly from their 
authors. We selected versions in C instead on R because both algorithms are 
extremely computation intensive and C executes up to 20 times faster than R.  
 
Autoclass version used was autoclass-c-win-3-3-4 compiled with Microsoft 
Visual C++ 6.0, its original version.  
 
HMAC is presented in three versions: mtree, mtreeridge and mtreesep that are 
also coded in C. 
 

- mtree is the basic version that performs the hierarchical modal 
association clustering (HMAC), and outputs the clustering results at each 
level of the hierarchy as well as the dendrogram created. 

 
- mtreeridge performs the same clustering procedure first, then computes 

the ridgeline and the density value along the ridgeline line for either a 
given pair of clusters at a given level, or for all the pairs of clusters at all 
the levels. 
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- mtreesep performs the same clustering procedure first, then conducts 
the separability and coverage rate based merging at either a given level, 
or all the levels of the dendrogram. 

 
HMAC versions were compiled with Microsoft Visual C++ 6.0. But previous to 
our tests we had to correct a code bug (related to memory deallocation) that did 
not allow to process more than 10500 instances with13 attributes. Further in this 
report, other memory problems with this code will arise.  
 
Both algorithms were run on a computer with a Corel Duo T7500 processor and 
2 GB RAM memory although the native implementation of these algorithms are 
not able to use the double core and the percentage of use of the 
microprocessor when they are running is only 50%. The O.S. was Windows 
Vista Premium. 
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3.3 Plots of datasets 
 
The best way to analyze data is to plot the location of instances in 2-D 
projections of pairs of attributes. In this section we only show a selection of plots 
of OGLE (Figure 3.1) and Hipparcos datasets (Figure 3.2) in several attributes. 
In OGLE dataset, there is an evident presence of data artifacts in attributes log-
f1 and log-f2 that, undoubtedly, will affect clustering. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 - Plot of attributes log-f1 vs log-f2, log-af1h1-t, log-crf10, pdf12.B-V and V-I  
of OGLE dataset. 
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Figure 3.2 - Plot of attributes log-f1 vs log-f2, log-af1h1-t, log-crf10, pdf12, B-V and V-I  
of Hipparcos dataset. 

 
The visual analysis over both datasets foresee that clustering over OGLE 
dataset can be easier than over Hipparcos dataset because the higher density 
of instances of it. 
 
In the process of cluster identification, we had available some labeled datasets. 
In order to try to understand the results, the labeled datasets are also plot in the 
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same attributes (Figure 3.3). Each variable star type is plot in a different color. 
Spurious values in attributes log-f1 and log-f2 are also present in these data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 - Plots of attributes log-f1 vs log-f2, log-af1h1-t, log-crf10, pdf12.B-V and V-I  
of labeled datasets. 
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Finally, we show some plots (Figure 3.4) with the attributes without the log-
transformation that already makes think about the suitable of this transformation 
due to the highly skewed distribution. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 - Plot of attributes f1 vs pdf12 and V-I of OGLE dataset. 
 
 
 
3.4 Criteria to evaluate clustering algorithms 
 
To investigate the feasibility of applying Autoclass and HMAC to the clustering 
of variable stars data in the context of CU7, Autoclass and HMAC were 
assessed attending to the following criteria: reproducibility, computation time, 
sensitivity to new classes and interpretability. 
 
The selection of these criteria comes from the fact that the clustering algorithms 
will be applied to some extremely large datasets and there must be a 
reasonable limit to the total time to process them. About the reproducibility, it is 
necessary that consecutive clustering during the mission give similar results. 
Algorithms must also be able to discover new classes, criteria that was tested 
by introducing some synthetic instances in the dataset and verifying if the 
algorithm was able to find them. Finally, the resulting clusters should have an 
intuitive relationship with known variability classes in order to the clustering has 
any utility. 
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4. Results of application of AUTOCLASS 
 
In this chapter, the results of application of Autoclass are presented. 
 
The first decision to apply Autoclass was to select the model that the data must 
fit. As we assumed that attributes followed a normal distribution (after log10-
transformation of the original data in most attributes) and that all of them could 
be correlated, the hypothesized model was a multivariate normal distribution. 
This covariant model leads to cases being classified by changes in the relation 
between the covarying attributes rather than by absolute differences in their 
values. 
 
AutoClass also requires to specify measurement uncertainty for continuous 
variables. Data that are more precise have more influence on the final 
classification. Here, all attributes were considered equally precise (0.05). 
 
4.1 Impact of randomness in clustering results.  
 
The first criterion to evaluate Autoclass is the impact of random initializations in 
clustering results when reproducible results are needed.  
 
Autoclass can be configured to have random initializations or not. To verify the 
effect of these random initializations we specify the following parameters in 
Autoclass search: force_new_search_p = true, start_fn_type = ”random”, 
randomize_random_p = true.  
 
We asked the system to find the best clustering starting with different number of 
clusters (start_j_list = 20,30,40,50,60), 24 hours of calculi (max_duration = 
86400) and all attributes following a multivariate normal distribution 
(multi_normal_cn 0 1 2 3 4 5 6 7 8 9 10 11 12). 
 
This process was repeated 5 times with random initializations over the total 
dataset (43351 cases). Table 4.1 shows the five best results obtained from 
each run. As can be observed, the number of clusters differs significantly for 
each one (75, 66, 54, 58, 93). However, this result is not enough to decide if the 
results are very different. This is so because discrepancies could possibly 
reduce to the numerous small diffuse clusters that gather noisy detections. In 
order to evaluate the discrepancies among clustering results, we analyzed the 
instances composition of the main clusters and tried to match clusters in the 
runs with the highest and lowest numbers of clusters (5 and 3 respectively). 
 
The process of matching different clusters gave the following results: 
 

• the clusters of greater weight in run 3 can easily be found on run 5 with a 
95-100 % overlap of instances. 
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• some clusters on run 3 could be identified as split into two or three 
clusters on run 5. 

 
• there were clusters on run 3 spread into many run 5 clusters with a 

maximum percentage less than 50%. 
 
This last case implies that the results of Autoclass depend on random 
initializations negatively. 
 
Nevertheless, although the clustering process gives different results depending 
on the initialization, astrophysical meaningful clusters (see Section 4.5) can be 
identified in both runs. In some cases, the mixture of instances in clusters (third 
case) takes place between clusters with the same astrophysical interpretation 
thus revealing weak support for the separation in clusters and proving that the 
variability induced by the random initialization is less harmful than expected. 
 
 

Run Results 
1 PROBABILITY  exp(-1720621.160) N_CLASSES  75 FOUND ON TRY   55  

PROBABILITY  exp(-1721327.600) N_CLASSES  79 FOUND ON TRY   24  
PROBABILITY  exp(-1721964.400) N_CLASSES  76 FOUND ON TRY   87  
PROBABILITY  exp(-1722131.330) N_CLASSES  81 FOUND ON TRY   68  
PROBABILITY  exp(-1722543.580) N_CLASSES  78 FOUND ON TRY   98  
 

2 PROBABILITY  exp(-1722692.460) N_CLASSES  66 FOUND ON TRY  125  
PROBABILITY  exp(-1723144.750) N_CLASSES  58 FOUND ON TRY   63  
PROBABILITY  exp(-1723567.070) N_CLASSES  63 FOUND ON TRY   64  
PROBABILITY  exp(-1723848.910) N_CLASSES  60 FOUND ON TRY   66  
PROBABILITY  exp(-1724399.960) N_CLASSES  59 FOUND ON TRY  142  
 

3 PROBABILITY  exp(-1721932.640) N_CLASSES  54 FOUND ON TRY  116  
PROBABILITY  exp(-1722686.420) N_CLASSES  50 FOUND ON TRY   80  
PROBABILITY  exp(-1723819.880) N_CLASSES  49 FOUND ON TRY   49  
PROBABILITY  exp(-1724247.280) N_CLASSES  57 FOUND ON TRY  155  
PROBABILITY  exp(-1724682.560) N_CLASSES  45 FOUND ON TRY   37  
 

4 PROBABILITY  exp(-1721934.470) N_CLASSES  58 FOUND ON TRY   66  
PROBABILITY  exp(-1722213.260) N_CLASSES  63 FOUND ON TRY   80  
PROBABILITY  exp(-1722794.120) N_CLASSES  67 FOUND ON TRY  128  
PROBABILITY  exp(-1723124.660) N_CLASSES  59 FOUND ON TRY   95  
PROBABILITY  exp(-1723219.280) N_CLASSES  63 FOUND ON TRY  107  
 

5 PROBABILITY  exp(-1721488.460) N_CLASSES  93 FOUND ON TRY   69  
PROBABILITY  exp(-1722657.520) N_CLASSES  88 FOUND ON TRY   68  
PROBABILITY  exp(-1722714.380) N_CLASSES  96 FOUND ON TRY   95  
PROBABILITY  exp(-1722881.730) N_CLASSES  86 FOUND ON TRY   98  
PROBABILITY  exp(-1722887.470) N_CLASSES  86 FOUND ON TRY   86  
 

 
Table 4.1: Five best results (ranked according to the marginal joint probability) found in each of 
the 5 runs with random initializations. The table includes the number of cluster in each solution 

and the try number when this solution was found. 
 
 
4.2 Impact of computation time on clustering results 
 
The second criterion to evaluate Autoclass is the impact of computation time on 
clustering results. It is important to ensure that the best clustering is somehow 
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robust to an increase in the computation time. The objective of the experiments 
is to quantify how different are two ’best’ solutions found differing only in the 
time allowed to find them. 
 
This time we run Autoclass to find the best solution after 6, 12, 24 and 48 hours 
of processing. We configured Autoclass without random initialization for 
repeatable results (force_new_search_p= true, start_fn_type = ”block”, 
randomize_random_p = false), starting with different number of clusters 
(start_j_list = 20,30,40,50,60), and all attributes following a multivariate normal 
distribution (multi_normal_cn 0 1 2 3 4 5 6 7 8 9 10 11 12). Autoclass was 
applied over the total dataset (43351 cases). 
 
Table 4.2 shows the results obtained. In all cases, the best solution was found 
on try 35, on the first 6 hours. 
 

Run Results 
6h PROBABILITY  exp(-1727410.430) N_CLASSES  48 FOUND ON TRY   35 

PROBABILITY  exp(-1727727.270) N_CLASSES  48 FOUND ON TRY   33 
PROBABILITY  exp(-1729959.700) N_CLASSES  51 FOUND ON TRY   29 
PROBABILITY  exp(-1730302.420) N_CLASSES  48 FOUND ON TRY   37 
PROBABILITY  exp(-1730347.620) N_CLASSES  55 FOUND ON TRY   25 
 
SEARCH SUMMARY 43 tries over  6 hours 11 minutes 57 seconds 
 

12h PROBABILITY  exp(-1727410.430) N_CLASSES  48 FOUND ON TRY   35 
PROBABILITY  exp(-1727727.270) N_CLASSES  48 FOUND ON TRY   33 
PROBABILITY  exp(-1729902.890) N_CLASSES  51 FOUND ON TRY   48 
PROBABILITY  exp(-1729925.720) N_CLASSES  51 FOUND ON TRY   71 
PROBABILITY  exp(-1729959.700) N_CLASSES  51 FOUND ON TRY   29 
 
SEARCH SUMMARY 82 tries over  12 hours 5 minutes 10 seconds 
 

24h PROBABILITY  exp(-1727410.430) N_CLASSES  48 FOUND ON TRY   35 
PROBABILITY  exp(-1727727.270) N_CLASSES  48 FOUND ON TRY   33 
PROBABILITY  exp(-1727775.850) N_CLASSES  48 FOUND ON TRY  135 
PROBABILITY  exp(-1728142.430) N_CLASSES  48 FOUND ON TRY  156 
PROBABILITY  exp(-1728449.990) N_CLASSES  48 FOUND ON TRY  118 
 
SEARCH SUMMARY 163 tries over  1 day 39 seconds 
 

48h PROBABILITY  exp(-1727410.430) N_CLASSES  48 FOUND ON TRY   35 
PROBABILITY  exp(-1727431.700) N_CLASSES  48 FOUND ON TRY  321 
PROBABILITY  exp(-1727450.590) N_CLASSES  48 FOUND ON TRY  314 
PROBABILITY  exp(-1727467.710) N_CLASSES  48 FOUND ON TRY  223 
PROBABILITY  exp(-1727571.550) N_CLASSES  48 FOUND ON TRY  228 
 
SEARCH SUMMARY 308 tries over  2 days 12 minutes 32 seconds 
 

 
Table 4.2: Five best results (ranked according to the marginal joint probability) found in each of 
the 5 runs with increasing allowed computation time (6, 12, 24, 48 hours). The table includes 

the number of cluster in each solution and the try number when this solution was found. 
 
In this particular case, the interpretation of the best clustering does not change 
simply because the best clustering is found in the first block of the experiment. 
So the test was repeated four more times with random initializations and 48 
hours of processing. We also changed the initial values of clusters to test (start j 
list) to induce more variability. As time increases linearly with the tries, from the 
best try we could estimate the time needed to find it (Table 4.3). 
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Run Results 
48h 
 

PROBABILITY  exp(-1722177.170) N_CLASSES  55 FOUND ON TRY   34 
PROBABILITY  exp(-1722182.650) N_CLASSES  62 FOUND ON TRY  179 
PROBABILITY  exp(-1722711.210) N_CLASSES  61 FOUND ON TRY  143 
PROBABILITY  exp(-1723109.090) N_CLASSES  62 FOUND ON TRY  245 
PROBABILITY  exp(-1723347.480) N_CLASSES  66 FOUND ON TRY   70 
 
SEARCH SUMMARY 261 tries over  2 days 4 minutes 16 seconds 
 
start_j_list = 20,30,40,50,60 

48h 
 

PROBABILITY  exp(-1723167.200) N_CLASSES  57 FOUND ON TRY  221 
PROBABILITY  exp(-1723771.670) N_CLASSES  65 FOUND ON TRY  293 
PROBABILITY  exp(-1723948.090) N_CLASSES  57 FOUND ON TRY   93 
PROBABILITY  exp(-1723991.140) N_CLASSES  55 FOUND ON TRY  208 
PROBABILITY  exp(-1723991.410) N_CLASSES  58 FOUND ON TRY  207 
 
SEARCH SUMMARY 308 tries over  2 days 13 minutes 9 seconds 
 
start_j_list = 20,25,30,35,50 

48h 
 

PROBABILITY  exp(-1731024.540) N_CLASSES  38 FOUND ON TRY   97 
PROBABILITY  exp(-1731122.000) N_CLASSES  44 FOUND ON TRY  394 
PROBABILITY  exp(-1731278.640) N_CLASSES  41 FOUND ON TRY  128 
PROBABILITY  exp(-1731392.520) N_CLASSES  41 FOUND ON TRY   70 
PROBABILITY  exp(-1731392.870) N_CLASSES  41 FOUND ON TRY  387 
 
SEARCH SUMMARY 421 tries over  2 days 2 minutes 24 seconds 
 
start_j_list = 2,4,8,16,32 

48h 
 

PROBABILITY  exp(-1721983.160) N_CLASSES  69 FOUND ON TRY   44 
PROBABILITY  exp(-1722087.630) N_CLASSES  71 FOUND ON TRY  185 
PROBABILITY  exp(-1722092.290) N_CLASSES  65 FOUND ON TRY   68 
PROBABILITY  exp(-1722151.840) N_CLASSES  66 FOUND ON TRY   46 
PROBABILITY  exp(-1722569.470) N_CLASSES  66 FOUND ON TRY  110 
 
SEARCH SUMMARY 213 tries over  2 days 6 minutes 12 seconds 
 
start_j_list = 21,32,43,54,65 
 

 
Table 4.3: Five best results (ranked according to the marginal joint probability) found in each of 
the 5 runs with random initializations and 48 hours of computation time. The table includes the 

number of cluster in each solution and the try number when this solution was found. 
 
Table 4.4 summarizes these results. 
 

Run Clusters Try Total tries Time estimation Probability 
1 48 35 308 6h exp(-1727410.430) 
2 55 34 261 12h exp(-1722177.170) 
3 57 221 308 36h exp(-1723167.200) 
4 38 97 421 12h exp(-1731024.540) 
5 69 44 213 12h exp(-1721983.160) 

 
Table 4.4. Comparison of different runs and time estimation of the best result according to the 

marginal joint probability. 
 
The results show that the best solution can be obtained very early in the 
processing and that a reasonable increase in computation time does not imply a 
better solution according to the log posterior probability value of the 
classification under the Autoclass assumptions. Again, the results are 
conditioned by the initialization parameters. 
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4.3 Impact of dataset size on computation time 
 
The next investigated aspect is the increment of processing time with increasing 
dataset size, assuming that the algorithm must be able to handle the order of 
108 instances. 
 
In order to perform our experiments we took the original dataset of 43351 cases 
and we duplicated instances to get datasets of 50000, 75000, 100000, 200000, 
500000, 1000000 cases. Autoclass was configured to find a solution over each 
dataset with the following parameters: no random initializations 
(force_new_search_p = true, start_fn_type = ”block”, randomize_random_p = 
false), a fixed number of iterations (max_n_tries = 50), starting with different 
number of clusters (start_j_list = 20,30,40,50,60), and all attributes following a 
multivariate normal distribution (multi_normal_cn 0 1 2 3 4 5 6 7 8 9 10 11 12). 
The results were meaningless (see Table 4.5) when the dataset increased its 
size over 100000 instances. 
  

Instances Processing time (secs) Clusters found 
50000 28337 58 
75000 47183 56 

100000 77696 49 
200000 5573 2 
500000 17342 4 

1000000 28149 8 
 

Table 4.5: Time needed to perform 50 iterations with different datasets sizes and number of 
clusters characterizing the most probable solution. The table illustrates the problem with 

increasing number of instances. 
 
We created other datasets with sizes between 100000 and 200000 instances to 
find the exact point where the processing time reduced. We found (Table 4.6) 
that the critical point is between 129000 and 130000 instances but solutions 
started to make no sense from 125000 instances. Although the run with 129000 
instances had 50 clusters, closer examination of these clusters proved the 
existence of a single cluster with a weight of 99.8 %. 
 

Instances Processing time (secs) Clusters found 
100000 77696 49 
125000 114767 1 
128000 100235 130 
129000 243110 50 
130000 4869 1 
131000 7193 1 
150000 3854 1 
200000 5573 2 

 
Table 4.6: Time needed to perform 50 iterations with datasets sizes between 100000 and 

200000 instances. 
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We tried another two different configurations with 129000 instances: random 
initializations (force_new_search_p = true, start_fn_type = ”random”, 
randomize_random_p = true), other starting list of clusters (start_j_list = 
60,100,140,200,300), maintaining a fixed number of iterations (max_n_tries = 
50). Both configurations gave, as the best solution, 1 cluster. Most interesting, 
we also tried a different simpler model (single_normal_cn) with many less 
parameters and the results were again in agreement with the density structure 
of the data points. 
 
Finally, we tried a classification using only 5 attributes and the multivariate 
normal distribution. We found that, for 129000 instances, Autoclass could find a 
sensible solution. However the problem reappeared again when Autoclass had 
to process 500000 instances: premature convergence and small number of 
clusters (Table 4.7). 
 

AutoClass CLASSIFICATION for the 129000 cases 
SEARCH SUMMARY 50 tries over  9 hours 24 minutes 52 seconds 
 
PROBABILITY  exp(-2419278.140) N_CLASSES  79 FOUND ON TRY   23 *SAVED*  -1 

AutoClass CLASSIFICATION for the 500000 cases 
SEARCH SUMMARY 50 tries over  4 hours 51 minutes 33 seconds 
 
PROBABILITY  exp(-6491241.150) N_CLASSES   4 FOUND ON TRY   14 *SAVED*  -1 
 

 
Table 4.7: Autoclass results using only 5 attributes and different dataset sizes. 

 
Up to now, no clear explanation has been found for these seemingly awkward 
results, although it seems that this version of Autoclass can only manage data 
and models below a certain combination of dataset size and number of adjusted 
parameters.  
 
But a possible explication can be related with the fact that Autoclass favours 
models with small number of classes and simple models. The same than MLE 
algorithm can finish with a class for each unique case, Autoclass, trying to avoid 
that behaviour, can finish with a unique class containing all cases. 
 
The fact that the datasets were formed with duplicated instances also has its 
importance. Final test over datasets without duplicated instances, formed by the 
original value plus a random value between -0.05 and 0.05 produced results 
according to the number of classes expected. Thus, Autoclass found 116 
classes in a dataset of 150000 instances constructed in this way, and took 1 
day 16 hours 58 minutes 35 seconds to process them. When processing 
500000 instances in these same conditions, Autoclass could find 168 classes 
on try 39 and took 7 days 22 hours 23 minutes 43 seconds. (Table 4.8) 
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AutoClass CLASSIFICATION for the 150000 cases 
SEARCH SUMMARY 50 tries over  1 day 16 hours 58 minutes 35 seconds 
PROBABILITY  exp(-6049605.560) N_CLASSES  116 FOUND ON TRY   40 

AutoClass CLASSIFICATION for the 250000 cases 
SEARCH SUMMARY 50 tries over  2 days 18 hours 45 minutes 50 seconds 
PROBABILITY  exp(-10106252.800) N_CLASSES  90 FOUND ON TRY   43 
 

AutoClass CLASSIFICATION for the 500000 cases 
SEARCH SUMMARY 50 tries over  7 days 22 hours 23 minutes 43 seconds 
PROBABILITY  exp(-20048326.500) N_CLASSES  168 FOUND ON TRY   39 

Table 4.8: Autoclass results using different dataset sizes with no duplicated instances. 
 

 
The increase in the number of classes can be explained in the manner in which 
the new instances were created. Now, a time extrapolation is possible 
considering that computational time increases linearly with size of the dataset. 
So, to process 108 instances can take with this implementation of Autoclass 4.8 
years what implies the need of speeding up the algorithm by parallelization. 
This has been already implemented with different strategies in the literature [11] 
to handle very large data set in reasonable time. 
 
 
4.4 Sensitivity to new classes 
 
Autoclass is now evaluated on its ability to detect new classes. The experiment 
consisted in introducing new synthetic data (k instances) in the real dataset with 
a given mean μ and covariance matrix Σ and checking if Autoclass was able to 
find it or not. 
 
Autoclass was configured with the following parameters: no random 
initializations (force_new_search_p = true, start_fn_type = ”block”, 
randomize_random_p = false), a fixed number of iterations (max_n_tries = 50), 
starting with different number of clusters (start_j_list = 20,30,40,50,60), and all 
attributes following a multivariate normal distribution (multi_normal_cn 0 1 2 3 4 
5 6 7 8 9 10 11 12). 
 
Table 4.9 shows how the data were generated and the results thus obtained. 
Data of experiments 7, 8, 9 were generated with mean values in the middle of 
each attribute range. Data of experiments 10 and 11 were generated in the 
vicinity of cluster 19. The mean value of each attribute was computed as the 
mean value plus the standard deviation of that attribute in cluster 19. Synthetic 
data in experiment 12 were also generated near cluster 19, but the mean values 
were computed as the mean value plus 0.5 times the standard deviation of each 
attribute. Figure 4.1 shows the location of synthetic instances in experiments 10 
and 11.  
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Exper. Parameters to generate synthetic instances Result 
1 k=20, μ=0, Σ=(diagonal 1, rest of values 0) Mixed 
2 k=20, μ=0, Σ =(diagonal 1, rest of values 0.5) Mixed 
3 k=20, μ=0, Σ =(diagonal 1, rest of values 0.9) Found 
4 k=20, μ=-1, Σ =(diagonal 1, rest of values 0.1) Found 
5 k=20, μ=-1, Σ =(diagonal 1, rest of values 0.5) Mixed 
6 k=20, μ=-1, Σ =(diagonal 1, rest of values 0.9) Mixed 
7 k=20 

μ={-1,-1,-1.21,-2.5,-2.75,-1.5,-1.5,-2.25,-0.5,-0.5,0.5,1.25,1} 
Σ=(diagonal 1, rest of values 0.1) 

Mixed 

8 k=20  
μ={-1,-1,-1.21,-2.5,-2.75,-1.5,-1.5,-2.25,-0.5,-0.5,0.5,1.25,1} 
Σ=(diagonal 1, rest of values 0.5) 

Mixed 

9 k=20  
μ={-1,-1,-1.21,-2.5,-2.75,-1.5,-1.5,-2.25,-0.5,-0.5,0.5,1.25,1} 
Σ=(diagonal 1, rest of values 0.9) 

Found 

10 k=50  
μ={-0.236,0.279,-0.797,-1.404,-1.869,-2.198,-1.884,-2.441,-
0.553,2.09,0.0739,0.654,0.649 } 
Σ=(diagonal 0.1, rest of values 0.01) 

Mixed 

11 k=50  
μ={-0.236,0.279,-0.797,-1.404,-1.869,-2.198,-1.884,-2.441,-
0.553,2.09,0.0739,0.654,0.649 } 
Σ=(diagonal 0.1, rest of values 0.09) 

Mixed 

12 k=50  
μ={-0.37,-0.116,-0.885,-1.597,-2.1395,-2.459,-2.017,-2.6405,-
0.686,1.845,0.04885,0.577,0.585} 
Σ=(diagonal 0.01, rest of values 0.009) 

Mixed 

Table 4.9: Parameters used to generate the synthetic clusters and whether Autoclass was able 
to single it out or mixed it with original data. 

 
 
More in detail, the results were 
 

1. 85% of the synthetic instances were mainly found in two clusters: Cluster 
47 with 12 synthetic instances and 4 real ones and Cluster 56 with 5 
synthetic instances and 2 real ones. 

2. 95% of the new data were mainly found in two clusters: Cluster 50 with 
15 synthetic instances (100%) and cluster 51 with 4 synthetic instances 
(40%) and 6 real ones. 

3. The new data were grouped in cluster 54 with a composition 100% of 
synthetic instances. 

4. The new data were grouped in cluster 48 with a composition 100% of 
synthetic instances. 

5. The new data were split in two clusters: cluster 55 with 7 synthetic 
instances (100%) and cluster 46 with 13 synthetic instances out of 19 
(68%). 

6. The new data were grouped in cluster 50 with a composition of 20 
synthetic instances and 1 real data. 

7. The new data were assigned to Cluster 43 (20 synthetic instances and 2 
real ones). 
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8. The new data were assigned to two clusters: Cluster 50 with 19 synthetic 
instances and 1 real instance and cluster 66 with 1 synthetic instance 
and 10 real ones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 - Plot of the location of synthetic instances in experiments 10 (red) and 11 (blue) 
 
 
The results show that Autoclass is very sensible to detect new classes that 
follow a multivariate distribution even in the vicinity of existing peaks in the point 
density distribution. The number of instances used (k=20, k=50) was very 
reduced and Autoclass showed very good performance detecting them. Even 
when the result column in Table 4.9 states ’Mixed’, i) it is always expected to 
find real cases close to the synthetic ones, and ii) the percentage of true 
variables is always below 20%. 
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4.5 Astrophysical interpretation 
 
We tried a cluster interpretation taking the results obtained on trial 6h 
processing (max_duration = 21600), without random initializations, 
(force_new_search_p = true, start_fn_type = ”block”, randomize_random_p = 
false) starting with list (start_j_list = 20,30,40,50,60), and all atributes following 
a multivariate normal distribution (multi_normal_cn 0 1 2 3 4 5 6 7 8 9 10 11 12) 
and applied over the total dataset (13 attributes, 43351 cases).  
 
We also used the OGLE test datasets belonging to the classical variable stars. 
We asked Autoclass to predict class membership of these previously labeled 
examples. Table 4.10 shows the results of prediction in the form of percentages 
of class assignments, that is, what percentage of the original dataset was 
assigned to cluster number i. We only show results with a significance above 
than 5%. The main conclusions based on the visual analysis of two-dimensional 
plots are summarized in the following sections. 
 
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 

4   6.03 22.74  
5     81.23
7   28.57 6.79 21.25 78.62   
8   27.89  

14   18.02  
15   13.89  
16   35.79 30.24   
17   30.11 24.69   
18   7.9 14.19   
19 49.35  42.85   
20   16.17 16.04 65   
21 39.83    
23     10.47
24  92.95 21.42  94 6.52
28   6.98  
29   7.14   

 
Table 4.10: Autoclass prediction of class membership for labeled instances. 

 
 
Clusters 0 and 6: Ogle Small Amplitude Red Giants or OSARGS 
 
Cluster 0, the largest with 5199 instances, corresponds to the so called OGLE 
small amplitude. In order to prove this assertion we include two plots of the 
examples in cluster 0 representing the V −I colour as a function the logarithm of 
the first (Figure 4.2) and second (Figure 4.3) detected frequencies. 
 
In Figure 4.2 we have included three labels A, B and D with the proposed 
location of the corresponding sequences described in Soszynski et al. (2004). 
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According to Soszynski et al., objects in the A sequence (OSARGS) have 
secondary frequencies in the A, B and D sequences (see Figure 4.2 of their 
work) with diffuse and negligible contribution to the C and C” sequences. We 
see in Figure 4.3 that the second frequency of our cluster 0 behaves as 
described by Soszynski et al. if our sequence identification is correct. As a 
reinforcement to this identification, it must be stated that (linear) correlations 
between V−I colour and first and secondary periods agree both quantitative and 
qualitatively with the values in Soszynski et al. (2004). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 and 4.3: Plots of the location of instances in cluster 0 in the log-f1 (logarithm of the 
first frequency)- (V − I) colour index plane and in the log-f2 - (V-I). 

 
Interestingly, cluster 6 with 1878 instances also represents OSARGS but with 
inverted ordering of frequencies, that is, with a first frequency in the D sequence 
and the second frequency in the A or B sequences. (Figures 4.4 and 4.5) 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4 and 4.5: Plots of the location of instances in cluster 6 in the log-f1 (logarithm of the 

first frequency)- (V − I) colour index plane and in the log-f2 - (V-I). 
 
 
Clusters 8, 14 and 28: Mira and semirregular stars 
 
Sequences C and C” are less visible in the survey plots. They should appear 
between sequences A, B and D, and group Mira and Semirregular variables. 
These sequences (C and C”), if correctly identified, must have secondary 
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frequencies in the C, C” and D sequences as is actually the case (see Figures 
4.6-4.7, 4.8-4.9 and 4.10-4.11), therefore confirming our initial identification. 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 4.6 - 4.7: Plot of the location of instances in cluster 8 in the log-f1 - (V−I) and log-f2-(V-I) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 4.8-4.9: Plot of the location of instances in cluster 14 in the log-f1 - (V−I) and log-f2-(V-I) 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 4.10-4.11: Plot of the location of instances in cluster 28 in the log-f1 - (V−I) and  
log-f2 - (V-I) 

 
 

Clusters 5, 23 and 24: RR Lyrae stars 
 
Clusters 5 and 23 are basically defining the same locus on the multidimensional 
space of parameters (see Figures 4.12-4.13 and 4.14-4.15). The only apparent 
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difference in the 2D projections is a larger scatter of the colour indices in the 
smaller cluster (cluster 23, 418 instances) with respect to the main one. 
 
Cluster 24 is composed of variable stars with slightly higher frequencies than 
the other two clusters (see Figures 4.16-4.17) and lower amplitude ratios of the 
first two harmonics of the most significant frequencies R21. They occupy the 
locus of the RRc and RRd (double mode RR Lyrae) as confirmed by the log-f1 
vs. log-f2 plots. Therefore, we interpret this cluster as grouping the more 
sinusoidal light curves of RRc stars and double mode RR Lyrae pulsators. 
There is a separatrix  between the two subcomponents according to their 
frequency ratios that is not found significant enough by Autoclass so as to 
separate the two groups. This is because the two subcomponents seem to 
share common ranges for all other parameters, although this separation 
sensitivity would be desirable. 
 
Comparison plots created solely with preclassified stars can be found in 
Soszynski et al. (2003) and Sarro et al. (2008). 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 4.12-4.13: Plots of the location of instances in cluster 5 in the log-f1 -φ21 plane, where 
φ21 is the pdf12 attribute listed in Table 3.1 and in the log-f1 - (V−I) colour index plane. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14-4.15: Plots of the location of instances in cluster 23 in the log-f1 -φ21 plane, where 
φ21 is the pdf12 attribute listed in Table 3.1 and in the log-f1 - (V−I) colour index plane. 
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Figures 4.16-4.17: Plots of the location of instances in cluster 24 in the log-f1 -φ21 plane, where 

φ21 is the pdf12 attribute listed in Table 3.1 and in the log-f1 - (V−I) colour index plane. 
 
 
Clusters 16, 17, 18 and 20: eclipsing binary systems 
 
Clusters 16 and 17 represent the same type of stars (eclipsing binaries) the only 
difference being the value of the second frequency. In all instances of both 
clusters, the second frequency is a spurious detection with a characteristic ratio 
for each cluster. Whereas clusters 16 and 17 are clearly defined by a vanishing 
value of the phase difference between harmonics of the first frequency (φ12) and 
low values of the colour indices (see figures 4.18-4.19), we see that cluster 18 
contains some contamination of spurious detections (log-f1 = 0.0) with random 
values of φ21 (and colour indices consistent with those of clusters 16 and 17), 
and cluster 20 is characterized by the same vanishing values of φ21 but with a 
larger scatter of colour indices and first frequencies. 
 
Most interesting, there is a clear correlation between the amplitudes of the 
increasing harmonics and the cluster, in the sense that cluster 16 groups 
eclipsing binaries with the largest departures from sinusoidality (most detached 
systems, with narrow eclipses and high values of harmonic amplitudes) and 
subsequent clusters are characterized by decreasing values of the higher 
harmonics and, therefore, more sinusoidal light curves characteristic of 
semidetached and close binary systems. This clustering has to be investigated 
further in order to check if it supports the new classification scheme by Sarro et 
al. (2006) or, on the contrary, is more in agreement with the traditional EA, EB, 
EW classification system.  



 
Page 33 of 82 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 4.18-4.19: Plot of the location of instances in cluster 16 in the log-f1 ( 
logarithm of the first frequency)- φ12 plane and in log-f1 - (V-I) color index plane. 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 4.20-4.21: Plot of the location of instances in cluster 17 in the log-f1 ( 
logarithm of the first frequency)- φ12 plane and in log-f1 - (V-I) color index plane. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.22-4.23: Plot of the location of instances in cluster 18 in the log-f1 (logarithm of the first 

frequency)- φ12 plane and in log-f1 - (V-I) color index plane. 
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Figures 4.24-4.25: Plot of the location of instances in cluster 20 in the log-f1 ( 
logarithm of the first frequency)- φ12 plane and in log-f1 - (V-I) color index plane. 

 
 
 
Clusters 19 and 21: Cepheid stars 
 
The most meaningful tools for the interpretation of neighboring clusters 19 and 
21 are the log-f1 vs (V − I) and φ21 (the phase difference between the first two 
harmonic components of the first frequency). Figures 4.26-4.27 show two such 
plots for cluster 19 and Figures 4.28-4.29 for cluster 21. It is evident from the 
plots that Autoclass is separating first overtone pulsators (cluster 19) and 
fundamental mode cepheids (cluster 21). For a confirmation of this assertion, 
equivalent plots in Udalski et al. (1999) constructed only with preclassified 
cepheids in the LMC can be consulted. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 4.26-4.27: Plot of the location of instances in cluster 19 in the log-f1 (logarithm of the 
first frequency)- φ21 plane.  
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Cluster 7 : ellipsoidal stars 
 
While previous clusters were clearly identified on the basis of their properties, 
Cluster 7 has only been identified with the aid of examples labeled by the OGLE 
team. Among the several samples of variability types in the LMC, SMC and the 
bulge, the sample of ellipsoidals in the LMC was used to interpret the clusters 
(see below). It turns out that approximately 80% of stars in the sample of LMC 
ellipsoidals were classified in cluster 7. Although they do not seem to form a 
particular subset of cluster 7, one can not interpret that all instances in cluster 7 
(1871) are ellipsoidals due to the large ranges spanned in frequencies, 
amplitudes and amplitude ratios. Only in the log-f1 vs (V − I) space (Figure 
4.30) does the cluster appear sharply defined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.30: Plot of the location of instances in cluster 7 in the log-f1 (logarithm of the first 
frequency)- (V − I) colour index plane. 

 
 
Cluster 13 : BE stars 
 
Cluster 13 occupies the locus characterized by short frequencies and blue 
colour indices (see Figure 4.31). In order to interpret the astrophysical content 
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of this cluster we have investigated the classification of objects in the Hipparcos 
database falling in this same region of the parameter space. At least for the 
bluest objects of the cluster with the lowest frequencies, there was a remarkable 
prevalence of BE variables according to the SIMBAD database. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.31: Plot of the location of instances in cluster 13 in the log-f1 (logarithm of the first 
frequency)- (V − I) colour index plane. 

 
 
Multiperiodic variables 
 
In this section we used other datasets to try to identify clusters of multiperiodic 
variables stars. Obviously, the OGLE database is not necessarily well suited for 
these target classes, so it comes as no surprise that the results are not 
satisfactory. The input data were taken from the classification carried out by the 
hierarchical classifier presented in Sarro et al. (2008), and include β Cephei 
stars (292 cases), δ Scuti stars (22), γ Doradus (102), Pulsating Variable Super 
Giants (PVSG; 79), and Slowly Pulsating B stars (590). We used Autoclass to 
predict class membership of these examples, some of which are indeed 
spurious frequency detection at the alias frequencies of the OGLE LMC survey. 
The results can be found on Table 4.11 and, again, the figures shows 
percentages above 5%. It is evident that the largest fraction of candidates (we 
would like to stress that these are mere candidates) falls in cluster 1 that groups 
the shortest period variables (most stars with periods of several cycles per day 
and outside the classical RR Lyrae locus are in this cluster). All other significant 
contributions to the table are compatible with the clusters assigned and the 
contamination expected in the candidate lists. 
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Cluster All-2-bcep-8 All-2-dscut-8 All-2-gdor-8 All-2-pvsg-7 All-2-spb-8 

1 25.68 75.94 75.49 68.64 13.63 
3  7.62  
9 6.5 9.49  

10   9.09 
11 9.58 7.59 22.54 5.42 9.09 
12  5.06   
13 30.47   
18 12.67  45.45 
22 14.04  13.63 
29  5.06   

 
Table 4.11: Autoclass prediction of class membership for multiperiodic data instances 

 
 
4.6 Experiments with a reduce attribute set. 
 
Our next experiment was to run Autoclass to find a solution using only 5 out of 
the original 13 attributes (log-f1, log-af1h1-t, log-crf10, pdf12, V-I), and predict 
class assignments for the same set of labeled examples taken from the OGLE 
database. We tried a new cluster interpretation taking the results obtained on 6h 
processing (max duration = 21600), without random initializations, 
(force_new_search_p = true, start_fn_type = ”block”, randomize_random_p = 
false) starting with list (start_j_list = 20,30,40,50,60), and using the 5 attributes 
following a multivariate normal distribution (multi_normal_cn 0 2 8 9 12) and 
ignoring the rest, and applied over the total dataset (43351 cases). 
 
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 

0   15.24  
2     80.76
5   14.28   
6   22.92  
8   32.02 40.12   

10   33.6 14.81   
11   7.34   
13   5.55   
15    20 
20   18.72 17.28 13.75   
21   6.14  
25   16.52  
27   13.75   
28 42.49    
29     12.78
30   5.3  
31   6.85   
32   8.7  
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33   7.5   
35   7.5 50.57   
38 13.17 21.12 21.42  76 
40 26.19 69.01 7.14   
45   17.5   
48  5.63   
49   14.28   
52   8.55  
55   7.14 13.75   
62   14.28   
67 5.55  21.42 13.75   

Table 4.12: Autoclass prediction of class membership for labeled instances using only 5 
attributes 

 
 
Under these setup, the class predictions were distributed according to the 
results shown in Table 4.12. This time Autoclass found 73 clusters. Again, we 
only show results when the percentage of instances in a given cluster is above 
5%. With 5 attributes, the vectors of probabilities become more diffuse thus 
making the cluster assignments less clear. 
 
The increasing number of clusters (52% more) with respect to the model with 13 
attributes could be interpreted as an overfitting to the data, easier with lesser 
attributes and models with many parameters as the multivariate gaussian. 
 
The results with 5 attributes instances can be summarizes as follows: 
 

1. Long period variables continue being the best separated class, with little 
contamination from other classes. 

2. RR Lyr stars are still well separated, but double mode RR Lyrae stars 
(RRd) are now clustered together with Cepheids. This effect was also 
encountered in Sarro et al. (2008) and deserves further investigation. 

3. Eclipsing binaries keep being well resolved. 
4. Fundamental and First Overtone Cepheids and Double Mode Cepheids 

that were separated on the basis of second frequency information, are 
now clustered, as expected, together.  

5. Ell-ecl and ell-ell are now separated. 
 
In general, this trial shows less resolving power at separating clusters as a 
consequence of the reduce attribute space. 
 
 
4.7 Autoclass applied to cluster the database of labeled examples. 
 
Finally, we used Autoclass to find a solution over the sum of all test datasets 
(10063 instances). These datasets are supposed to gather classical variable 
stars characteristics (avoiding low signal-to-noise detections and spurious 
detections) so the clustering has to be simpler. The processing conditions were 
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the same as in the previous experiment (see section 4.5) but using again the 
original set of 13 attributes. Autoclass found 35 classes and the analysis of the 
results (Table 4.13) implies that the classification is very similar to the one 
obtained on the OGLE LMC dataset: LPVs (Long Period Variables) and RR 
Lyrae clusters well separated, RRd stars are again well separated, and the rest 
of types with similar entries in the contingency table. 
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 

0     62
1   34.29 28.39   
2   31.44  
3   22.88  
4   20.1 10.49   
5   8.75 79.93   
6 37.92    
7   16.16  
8 28.25 67.6 64.28   
9   14.44  

10   13.37 11.11 56.25   
11   12.16 20.37   
12     13.25
13 19.04    
14  28.16 7.14 8.75 7.34   
15   6.21  
16     6.05
17     5.94
18    94 
19   28.57 11.25   
20   6.79   
21   7.4   
24   5.55 6.25   
25 7.69    

 
Table 4.13: Clustering structure using only labeled datasets. Only percentages above 5% are 

shown for clarity. 
 
 
4.8 Effect of considering log-normal attributes 
 
Our previous experiments were performed under the assumption that the 
attributes log-f1, logf2, log-af1h1-t, log-af1h2-t, log-af1h3-t, log-af1h4-t, log-
af2h1-t, log-af2h2-t, log-crf10 were normally distributed, so f1, f2, af1h1-t, 
af1h2-t, af1h3-t, af1h4-t, af2h1-t, af2h2-t, crf10 were log-normally distributed. 
 
In order to verify this hypothesis, we repeated the experiment using a linear 
scale for attributes 1, 2, 3, 4, 5, 6, 7, 8, 9. Autoclass was configured with the 
following parameters: different number of clusters (start_j_list = 
20,30,40,50,60), 6 hours of calculi (max_duration = 21600) and all attributes 
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without the log-transformation following a multivariate normal distribution 
(multi_normal_cn 0 1 2 3 4 5 6 7 8 9 10 11 12). In 6 hours, Autoclass was only 
able to perform 11 iterations (in comparison to the 43 performed previously) 
because it needs more cycles to satisfy the convergence criterion (this criterion 
was not relaxed with respect to the previous tests). The parameter max_cycles 
was fixed to 1000 and even with this value, most of the tries were non-
convergent. Under this conditions, Autoclass found 51 classes. 
 
We also applied the anti-log transformation to the test datasets to validate the 
results of clustering. The results of Autoclass prediction of class membership 
are shown in Table 4.14.  
 
The membership pattern is similar to the one obtained considering log-normal 
variables. 
 

Cluster cep dmcep ptcep ecl new_ecl ell-ecl ell-ell lpv rrd rrlyr 
1   42.23  
2   14.28 9.87 40 39.47   
5   7.5 15 8.33  
6     55.94
9   8.26  

13   39.6 32.71 25   
16   6.69  
18 65.49  7.14   
19   11.11  
20     24.04
21   5.48  
23  5.63 7.14  6 
24   11.34 9.87   
27   5.05   
28   13.53 12.34   
29  21.12 21.42 10   
33    68 13.09
34   13.57 9.87   
35   6.48 11.11   
36 6.47 73.23 21.42  26 5.12
40 18.58  21.42   
45   7.14 26.1   

 
Table 4.14: Autoclass predictions with antilog attributes. 

 
This could be interpreted as, although the total data points form a skewed 
distribution, the density of points that forms clusters do not so in that way. 
Considering that a log-normal and a normal distribution are almost visually 
indistinguishable if sigma values are low, this is what is happening in most 
clusters. Outliers points make the main difference between the two probability 
models. 
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4.9 Comparison with Hipparcos dataset 
 
In this section, we apply Autoclass to the Hipparcos dataset (2498 instances) 
with exactly the same attribute information as the original OGLE dataset. 
 
First of all, we used Autoclass to find the best solution after 6 hours of 
processing (max_duration=21600), without random initialization, 
(force_new_search_p = true, start_fn_type = ”block”, randomize_random_p = 
false), starting with different number of clusters (start_j_list = 20,30,40,50,60), 
and all attributes following a multivariate normal distribution (multi_normal_cn 0 
1 2 3 4 5 6 7 8 9 10 11 12). 
 
Autoclass best solution is composed of 13 clusters, but in this experiment most 
of the best models are actually duplicates, that is, solutions found already 
several times in the six hours run. Not only is the best solution composed of a 
smaller number of clusters, also the variance of the number of clusters found in 
the 10 best solutions is much smaller than when calculated for the OGLE runs. 
 
The class membership prediction for the classical variable stars datasets are 
shown in Table 4.15. It is evident that Autoclass finds clusters with less 
astrophysical homogeneity in this much smaller dataset, as expected given the 
seemingly more diffuse Probability Density Function (PDF) of the Hipparcos 
dataset (see Figure 3.2). 
 
 

Cluster cep dmcep ptcep ecl new_ecl ell-ecl ell-ell lpv rrd rrlyr 
0   9.95 44.86  
1 6.47 25.35 21.42 51.11 58.64 83.75 85.31 18.86 56 31.58
2  52.11 6.79  36 
3 79.05 14.08 78.57   12.54
4 5.78  37.21 27.16   40.38
5   5.15  
8   20.51  

11  5.63 5.14 5.55   12
12    6 

 
Table 4.15: Autoclass prediction of class membership for OGLE labeled instances using the 

clustering structure inferred from the Hipparcos dataset. 
 
We also tried to match these cluster with the ones obtained with the OGLE LMC 
dataset. In order to perform this match, we used Autoclass to produce OGLE 
clusters assignment probabilities for each set of instances defining a Hipparcos 
cluster. The results are shown in Table 4.16. Rows correspond to OGLE 
clusters, and columns, to Hipparcos clusters. Cells contain the percentage 
Hipparcos instances that are members of each OGLE cluster. This table shows 
that there is not a clear correspondence among clusters of both datasets. 
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Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12

4    15.06 8.69   
5    9.14   
7  29.48  11.51   28.57 25
8    8.69   

13  10.62    
14    9.58 27.27   
16    15.33   
17    17.1   
18   11.55   
19    31.74   
20  10.62  14.88 43.95  12.5 
22   38.94   14.28
23    5.6   
24   5.52 5.33   
25  10.07  18.89   
28    11.81 12.32   
29   27.63 16.57   35.71
31 21.25   45.66 30.13 34.78 13.63 15 12.5 
32    5.47   
34 17.32 12.08 10.3 14.32 10 6.25 21.42
37 6.6   10  
38     6.25 
40 18.75 5.67  9.44 12.32 8.69 27.27 30 43.75 
43    13.63   
44 16.07   9.44 6.84 30.43 15 18.75 25
46      50

 
Table 4.16: Contingency table for clusters found in the OGLE and Hipparcos datasets. 
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5. Results of application of HMAC 
 
In this section, we present the results obtained with HMAC applying the same 
evaluation criteria than the specified ones for Autoclass. Any of them, as the 
impact of randomness, is not applicable because of the irrelevance of 
initialization of this algorithm but this criterion and others are maintained by 
coherence. 
 
For Autoclass, we assumed that attributes followed a multi normal distribution. 
But, in this implementation of HMAC this hypothesis will not be important 
because of this approach can be used to find modes of any density in the form 
of a mixture distribution.  
 
 
5.1 Impact of randomness in clustering results. 
 
Nonparametric clustering approaches present among their advantages the 
irrelevance of initialization. To test this fact, HMAC algorithm was run over the 
OGLE Large Magellanic Cloud dataset with 43351 cases of variable stars 
ordered in two different ways to verify that the results remained the same. 
 
HMAC(mtree) was configured to perform a hierarchical clustering over the total 
dataset and using 13 attributes. The rest of parameters were configured with its 
default values (step size of the bandwidth sequence=0.1, maximum bandwidth 
in sequence = 2.0). This invocation of HMAC search took 1 day 22 hours 56 
minutes and 5 seconds and gave a dendrogram of 8 levels shown in Table 5.1: 
 
Level 1 2 3 4 5 6 7 8 
Band- 
width 

0.1694400 0.3388799 0.5083199 0.6777598 0.8471998 1.016640 1.186080 1.524960 

# clusters 36289 4306 260 32 5 3 2 1 
Size 1st 
cluster  

2463 3599 8119 14545 23363 30609 30609 43351 

Size 2nd 
cluster 

521 2977 5063 8132 12740 12741 12742  

Size 3rd 
cluster 

341 2129 4956 7244 7246 1   

Size 4rd 
cluster 

315 2036 4287 6455 1    

Size 5rd 
cluster 

225 1995 4277 5899 1    

Size 6rd 
cluster 

209 1825 2892 337     

Table 5.1. Dendrogram obtained by HMAC search over the OGLE LMC dataset 
 
 
The second run over the disordered dataset gave exactly the same results what 
confirms the hypothesis of the irrelevance of initialization. 
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5.2. Impact of computation time on clustering results 
 
The next criterion to evaluate HMAC is the impact of computation time on 
clustering results. This is other criterion without sense in the context of HMAC, 
because the computation time needed to find a solution in a fixed dataset is 
always the same and the solution that the algorithm finds too. 
 
From the results of section 5.1 we could see that the hierarchical clustering can 
be an intensive processing task. We also saw that, although level 3 has 260 
clusters, there are only 54 clusters with more than 5 instances. We considered 
these 206 clusters no relevant. The same happens with level 4, with 32 clusters, 
only 7 have more than 5 instances. So, we focused on the results that could be 
obtained with bandwidth (sigma) values between 0.50832 and 0.67776. 
 
The objective of the experiment was to quantify if processing time could be 
reduced using these preliminary results and focusing us in these bandwidth 
values avoiding preliminary steps of hierarchical clustering. 
 
Again, HMAC(mtree) was configured to perform a hierarchical clustering over 
the total dataset and using the 13 attributes. We executed the algorithm with 
different sigma range values. Table 5.2 shows these results. 
 
Run Bandwidth values (clusters) Processing time (sec) 
1 0.63 1d 11h 1m 45s 
2 0.61(72), 0.63(58), 0.65(39) 1d 15h 23m 30s 
3 0.60(89), 0.63(58), 0.66(35)  1d 8h 9m 36s = 115776s 

 
Table 5.2. Sigma values and processing time needed to test them. 

 
The number of clusters obtained was coherent, but not equal, with the sigma 
value independently from the starting point of the search. So, to have a 
preliminary general clustering to quantify bandwidth values of interest can be 
helpful to reduce processing time. 
 
Another question we wanted to answer is if a hierarchical clustering is needed. 
So we repeated run 3 in the same conditions as before but without enforcing 
nested hierarchy. This invocation of HMAC-search(mtree) took 4 days 6 hours 
49 minutes 45 seconds, so to enforce nested hierarchy is needed if we want to 
test several sigma values and reduce processing time. The clusters obtained in 
the first hierarchical level were equal, but not in the next levels. The results are 
logical due to the reduction of data to process for consecutive levels in nested 
hierarchy. 
 
However, the most important factor in time reduction comes from a reduction in 
data dimension as it is explained in the next section. 
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5.3. Impact of dataset size on computation time. 
 
The next investigated aspect is the increment of processing time with increasing 
dataset size, assuming that the algorithm must be able to handle the order of 
108 instances. 
 
In order to perform our experiments we took the original dataset of 43351 cases 
and we duplicated instances to get datasets of 100000, 200000, 500000 and 
1000000 cases. HMAC(mtree) was configured to perform over the total dataset 
and using the 13 attributes. We executed the algorithm with only one sigma 
value (0.58). The experiment had to be aborted due to the long processing time 
required (more than a week for 100000 instances). The experiment was then 
reduced to process datasets of 25000, 50000 and 100000 instances. Table 5.3 
shows the results thus obtained and a poor extrapolation of time needed to 
process 108 instances in these conditions. 
 

Dataset size Processing time (sec) 
25000 8 hours 55 min 58 sec = 32158 sec 
50000 1 day 22 hours 41 min 34 sec = 168094 sec 

100000 7 days 2 hours 23 min 49 sec = 613438 sec 
10^8 791357490.5 sec = 25.09 years 

 
Table 5.3. Time needed to process 25000, 50000 and 100000 instances with only one sigma 

value. 
 
These time results are only one iterative step of the hierarchical clustering. 
Without any code optimization, this algorithm, as it is presented, seems to be 
non viable of applying in the context of CU7. This time estimation exceeds 
500% the Autoclass estimation.  
 
But it is possible to reduce computation time using an hybrid clustering method. 
A preliminary clustering as k-means can be applied to reduce data dimension. 
The number of clusters resulting from this preliminary clustering has to be large 
enough compared with the desired number of clusters to retain the topological 
structures in the non parametric density estimate. The purpose of this 
preliminary clustering is more of quantizing than clustering. 
 
We do not show the time reduction that this measure for enhancing speed 
produces because it also depends on the preliminary clustering method 
selected, but further, in this report this optimization technique is used with the 
aim of reducing memory requirements of this algorithms with good results. 
 
A combination of procedures is also shown in section 6, with the aim of 
improving clustering that also has effect reducing computing time. 
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5.4. Sensitivity to new classes. 
 
HMAC is now evaluated on its ability to detect new classes. The experiment 
consisted in introducing new synthetic data (k instances) in the real dataset with 
a given mean μ and covariance matrix Σ and checking if this approach was able 
to find it or not. 
 
HMAC(mtree) was configured to perform a hierarchical clustering over the total 
dataset and using 13 attributes. The rest of parameters was configured with its 
default values (step size of the bandwidth sequence=0.1, maximum bandwidth 
in sequence = 2.0). 
 
Data of experiments are the same than the used for Autoclass. But the number 
of trials was reduced due the high processing time that HMAC requires. Table 
5.4 shows the experiments carried out and its correspondence with the 
Autoclass ones. 
 
9 k =20  

μ ={-1,-1,-1.21,-2.5,-2.75,-1.5,-1.5,-2.25,-0.5,-0.5,0.5,1.25,1} 
Σ =(diagonal 1, rest of values 0.9) 

Not found

10 k =50  
μ ={-0.236,0.279,-0.797,-1.404,-1.869,-2.198,-1.884,-2.441,-
0.553,2.09,0.0739,0.654,0.649 } 
Σ =(diagonal 0.1, rest of values 0.01) 

Not found

11 k =50  
μ ={-0.236,0.279,-0.797,-1.404,-1.869,-2.198,-1.884,-2.441,-
0.553,2.09,0.0739,0.654,0.649 } 
Σ =(diagonal 0.1, rest of values 0.09) 

Not found

12 k =50  
μ ={ -0.37,-0.116,-0.885,-1.597,-2.1395,-2.459,-2.017,-2.6405,-
0.686,1.845,0.04885,0.577,0.585} 
Σ =(diagonal 0.01, rest of values 0.009) 

Not found

13 k =50  
μ ={ -0.37,-0.116,-0.885,-1.597,-2.1395,-2.459,-2.017,-2.6405,-
0.686,1.845,0.04885,0.577,0.585} 
Σ =(diagonal 0.01, rest of values 0) 

Mixed 

 
Table 5.4. Parameters used to generate the synthetic clusters and result of HMAC detection. 

 
 
More in detail, the results were: 
 

9. In level 1 and 2 , each synthetic instance forms a cluster. In level 3, the 
new data were found in 15 clusters: cluster 2 with 1 synthetic instance 
and 4956 real ones, cluster 3 with 5 synthetic instances and 332 real 
ones, the rest are in 4 clusters, three singletons and one with two 
instances. In level 4, most of the synthetic instances have been absorbed 
by big clusters: cluster 0 with 8 synthetic instances and 6455 real ones, 
cluster 1 with 7 synthetic instances and 14545 real ones, cluster 4 with 1 
synthetic instances and 7244 real ones, cluster 6 with 2 synthetic 
instances and 5899 real ones. The two synthetic instances that remains 
are singletons. 
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10. Only in level 1 with bandwidth 1.694614e-001, synthetic instances were 
found not totally mixed with real ones. In this level, the new data were 
found in 18 clusters: Cluster 32547 with 28 synthetic instances 1 real 
one, cluster 33445 with 5 synthetic instances and 1 real one, cluster 
36288 with 2 synthetic instances, and finally, 15 cluster with just 1 
synthetic instance). In level 2, bandwidth 3.389228e-001, all the synthetic 
instances are diluted in clusters with real instances: cluster 20 with 34 
synthetic instances and 3633 real ones, cluster 27 with 4 synthetic 
instances and 731 real ones and cluster 49 with 12 synthetic instances 
and 480 real ones.  

 
11. In level 1 with bandwidth 1.694614e-001, each synthetic instance is a 

singleton. In level 2, with bandwidth 3.389237e-001, the synthetic 
instances are totally mixed with real instances: cluster 20 with 26 
synthetic instances and 3600 real ones, cluster 27 with 16 synthetic 
instances and 728 real ones, cluster 49 with 6 synthetic instances and 
483 real ones and clusters 4269 and 4270 with just a synthetic instance.  

 
12. In level 1 with bandwidth 1.694339e-001, the 50 synthetic instances are 

found in cluster 1104 together with 47 real instances. In level 2 with 
bandwidth 3.388679e-001, cluster 90 is formed by 50 synthetic instances 
and 189 real ones. In level 3, with bandwidth 5.083018e-001, cluster 11 
has the 50 synthetic instances and 5573 real ones. 

 
13. In level 1, with bandwidth 1.694350e-001, the 50 synthetic instances are 

found in cluster 5849 together 39 real instances. In level 2, cluster 90 is 
formed by 50 synthetic instances and 164 real ones. In level 3, cluster 11 
has the 50 synthetic instances and the 5573 real ones. 

 
In all cases, hierarchical clustering impedes to improve these results in higher 
levels. 
 
The conclusion is that modal clustering is not very sensible to detect new 
classes formed by very few instances, dispersed and overlapping other clusters. 
Clusters that contain a large portion of data tend to absorb surrounding disperse 
instances and smaller clusters. Detection requires higher density or to be far 
from surrounding clusters. 
 
We have to notice that, for Autoclass, synthetic instances were generated 
following exactly the same model than Autoclass was searching for (multivariate 
gaussian) so the detection had to be necessarily simpler. For HMAC, the 
instances should have been created in other conditions. 
 
5.5. Astrophysical interpretation 
 
In this section, we tried a cluster interpretation using the results obtained in 
section 5.1. The identification of clusters with variable star types is done by 
comparing them with the Autoclass clusters identified by the expert. 
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In this case, HMAC (mtree) is not able to predict the class membership of the 
labeled dataset to identify clusters. But we know that these instances were 
extracted from OGLE Large Magellanic Cloud dataset. So we looked for these 
instances in it to analyze the HMAC clustering of the labeled examples.  
 
We only show results with a significance above than 5%. We are only interested 
on level 3 (Table 5.6) that counts with 54 relevant clusters, but, as the results 
show a mixture of classes, we also show level 2 (Table 5.5) to verify if this 
mixture could have been avoided at a previous step. The results show that, in 
level 2, some clusters with a pure composition of just one type of stars can be 
found, but the large number of clusters obtained in this level, makes it more 
difficult to manage the analysis. 
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 
1   6.85   
3   10.27   
5   55.28 65.43   
6   10   

12   12.56 5.99  
14   5.41  
17   10.92   
20  14.08 14.28  100 97.96
21   5.33  
24   9.79  
25   8.8 8.62  
27 53.69  50   
33   7.14 35.54 18.51 47.5   
49 32.74 45.07 7.14   

124  33.8   
828   7.14   

3586   7.14   
3591   7.14   

 
Table 5.5. HMAC classification of labeled instances in hierarchical level 2 (percentage > 5%). 

 
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 
1   15   
2   7.14 94.68 87.65 60   
3   14.28 6.17 20 41.1 36.59  
4   15.17   
7   7.5 19.73 21.6  

11 57.12 49.29 64.28  100 98.24
12   5.26  
13   6.25 19.15  
22 33.73 45.07 14.28   

 
Table 5.6 HMAC classification of labeled instances in hierarchical level 3 (percentage > 5%). 
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As clusters are not labeled by its weight in the classification, Table 5.7 shows 
the most important clusters found. 
 

Cluster Instances Cluster Instances Cluster Instances 
3 8119 14 421 57 63 

11 5041 5 332 37 59 
2 4956 10 329 79 55 
7 4287 23 226 84 29 
6 4277 26 183 50 28 
9 2892 35 182 44 25 
4 2012 33 169 38 25 
1 1926 0 160 28 22 

12 1669 34 137 32 18 
13 1522 18 117 40 15 
16 1121 17 104 53 14 
20 574 21 100 70 14 

8 545 30 97 75 12 
22 530 36 96 114 11 
19 424 31 88 47 11 

Table 5.7. Clusters ordered by the number of instances. 
 
5.5.1 Preliminary analysis of clustering 
 
A preliminary analysis of clusters 3 and 11 of hierarchical level 3 based on the 
visual observation of two dimensional plots are summarized in the following 
paragraphs. 
 
Cluster 3 - OSARGS + Mira and semirregular stars + ellipsoidal stars 
 
Cluster 3 is the cluster of the highest weight in the classification. This first result 
is deceiving because cluster 3 gathers instances belonging to different variable 
stars types that are visually well separated in different groupings. We include 
two 2-D plots representing the V-I colour as a function of the logarithm of the 
first (Figure 5.1) and second (Figure 5.2) frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 5.1 and 5.2. Plots of the location of instances in cluster 3-level3 in the log-f1 - (V-I) color 

index plane and in the log-f2 - (V-I). 
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Cluster 11 - RRLyrae + Cepheid stars 
 
Cluster 11, the second with greatest weight, presents the same problem than 
cluster 3. It is grouping RRLyrae stars and cepheids stars, types of variable 
stars visually well separated (see Figures 5.3 and 5.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 5.3 and 5.4. Plots of the location of instances in cluster 11 in the log-f1 - pdf12 and  
log-f1- (V-I) index plane 

 
As the results were not good enough we studied the evolution of groping in 
previous hierarchical levels that conducts to this situation. 
 
For this analysis, we focused in cluster 3 of level 3 and we saw that this cluster 
came from 13 main clusters in level 2 (clusters with more than 20 instances that 
are the 92.4% of the total). We removed small clusters to simplify the analysis 
(in total, cluster 3 of level 3 is formed by 544 clusters in level 2). The same 
happened with cluster 11 of level 3. This cluster is formed by grouping 172 
clusters in level 2, but only 8 clusters of them have more than 20 instances 
(96,2%). Figures 5.5 and 5.6 show the subclusters of cluster 3 , and Figures 5.7 
and 5.8 the subclusters of cluster 11 in different colours. Although some 
instances overlap, it is clear that HMAC has grouped in level 3 clusters of level 
2 that should have been left alone. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 5.5 and 5.6. Plots of the location of instances of clusters in level 2 of cluster 3 in level 3 

in the log-f1 - (V-I) colour index plane and in the log-f2 - (V-I) in different colours. 
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Figures 5.7 and 5.8. Plots of the location of instances in cluster 11 in the log-f1 - pdf12 and  
log-f1- (V-I) index plane 

 
At this point the decision to deal with is if it reasonable to work in level 2 with so 
many quantity of clusters (4306 clusters in total, 174 with more than 5 
instances) or if it is better to try a next level of hierarchical clustering in other 
conditions. 
 
There are two possibilities to reduce the number of clusters: 
 

• to try a sigma step smaller than the used (0.3388 in level 2, 0.5083 in 
level 3) 

• to specify a merge parameter in HMAC algorithm. 
 
We tried both options. In option 1 we executed HMAC(mtree) to perform a 
hierarchical clustering but we specified a bandwidth sequence (0.17, 0.34, 0.42, 
0.51) including the intermediate value 0.42. The results were again deceiving, 
because we split out some classes in cluster 3 (Figures 5.9 and 5.10) but not in 
cluster 11 (Figures 5.11and 5.12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 5.9 and 5.10. Plots of the location of instances of clusters in level with bandwidth value 

0.42 of cluster 3 in level 3 in the log-f1 - (V-I) colour index plane and in the log-f2 - (V-I) in 
different colours 
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Figures 5.11 and 5.12. Plots of the location of instances of clusters in level with bandwidth value 

0.42 of cluster 11 in level 3 in the log-f1 - pdf12  and in the log-f1 - (V-I) in different colours 
 
It seems that, modifying only sigma values of the kernel, the results indicate the 
need of selection of clusters in different hierarchical levels according to the 
clustering obtained. It supposes an injection of knowledge about what one 
wants to obtain. To select just a hierarchical level by the number of prominent 
clusters it contains has shown to be very inefficient. 
 
In option 2, we tried to execute HMAC (mtreesep) in the same conditions as the 
used previously (section 5.1) but specifying parameters for merging (-v 0.5, -c 
0.99 -w 2). This is a two step merging in level 2, one based on separability 
between pairs of clusters, the other on coverage rate. With these parameters, 
clusters with separability smaller than 0.5 will be merged and clusters with 
relative size lower than 1% of data are considered outliers and merged to a 
cluster. What we wanted to avoid is that prominent clusters be clumped, fact 
that happened increasing bandwidth value in level 3. With the coverage rate, we 
prevented that outliers, that generally have a high separability, forced to 
increase too much the bandwidth value to join them to a prominent cluster.  
 
However, mtreesep was unable to execute with these parameters. The 
algorithm code has enormous problems with memory allocation because it 
stores in memory all the data of all hierarchical levels without any optimization. 
Although we tried to correct major problems, we gave up to re-code the 
algorithm. 
 
So, in order to reduce computation time and memory requirements, we did not 
process the original dataset but the results of previous executions. We used the 
modes obtained in level 2 as dataset input and we created a weight file with 
number of points of each cluster. The density estimate now uses this weight 
value for each term in the summatory. This is not an approximation to 
accelerate execution, this is an exact execution of the algorithm since we were 
using a previous clustering produced by the same method. 
 
HMAC reduced initial clustering with 4306 clusters to 2838 with a sigma value 
3.749834e-001. After that, it merged clusters with the conditions specified. Then 
the algorithm reduced from 2838 clusters to 25, 24 clusters were left as they 
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were formed and cluster 0 absorbed the rest of small clusters creating the 
biggest cluster (8852 instances). Table of contingence 5.8 shows that this 
merging produced very bad results, results even worse than the obtained 
without merging and sigma value 0.5083199. 
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 
0 6.7 33.8 28.57 95.33 87.65 61.25 26.43  
1 55.82 15.49 64.28  100 98.16
2   24.95 15.5  
5   16.31 6.39  
6   7.5   
8   10.09  
9   12.56   

10   7.5 5.41  
11 33.51 45.07 7.14   
14   8.31   
21   16.25 5.38   
24   15.39  

 
Table 5.8. Class membership for labeled instances after merging: bandwidth=3.749834e-001 

separability=0.5, coverage rate=99%(percentage >5%) 
 
Other merging parameters values were tested and the results were: 
 

1. separability 0.25 and coverage rate 1: In this clustering, only separability 
is being considered. The algorithm reduced the number of clusters from 
2838 to 1623 clusters 

2. separability 0.25 and coverage rate 0.995. The final number of clusters 
was 38. 

3. separability 0.25 and coverage rate 0.95. The final number of clusters 
after merging was 6. 

4. separability 0.75 and coverage rate 0.99. The final number of clusters is 
20. 

 
The first and second case show that there were many clusters considered as 
outliers at this level and merging by coverage rate was not efficient. On the 
other hand, merging by separability was not enough to reduce the number of 
clusters. Merging seems not to be a solution at very early stages of hierarchical 
modal clustering where there are many clusters still growing. 
 
 
5.5.2 Final analysis of clustering 
 
Finally, we tried a cluster interpretation from the results obtained from a new 
execution of the algorithm. HMAC (mtree) was configured to perform a 
hierarchical clustering with the following parameters: bandwidth sequence 
(1.694400e-001, 3.388799e-001, 0.37, 0.40, 0.42, 0.45, 5.083199e-001, 
6.777598e-001, 8.471998e-001, 1.016640e+000, 1.186080e+000, 
1.524960e+000). The initial values for sigma used previously were maintained 
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but we introduced some more intermediate values between the sigma values 
that generated level 2 and level 3 in previous executions. 
 
In this conditions, the dendrogam obtained is shown in table 5.9. 
 
Level 1 2 3 4 5 6 7 8 9 10 11 
Band- 
width 

0.1694 0.3389 0.3700 0.4000 0.4200 0.4500 0.5083 0.6778 0.8472 1.0167 1.1860 

# 
clusters 

36289 4306 3958 2281 1782 1215 494 59 14 4 2 

 
Table 5.9. Dendrogram obtained by HMAC search over the OGLE LMC dataset 

 
We tried a clusters interpretation taking level 7. The sigma value applied in this 
level is the same than the selected in section 5.1 but the number of clusters 
obtained now is different because of the bandwidth sequence used. The results 
in these new conditions are better than before. 
 
 
Cluster 17 RRLyrae and Cepheid stars 
 
Cluster 17 (Figures 5.13 and 5.14) still combines RRLyrae and fundamental 
mode Cepheids. This cluster is formed by 12 clusters from previous level but 
only two of them form the 97% of data. Figures 5.15 and 5.16 show how these 
types of stars are separated in level 6 (sigma 0.45). It is necessary to descend 
to level 1 to separate spurious values log-f1 = 0 that are joined to RR Lyrae in 
another differentiated cluster. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 5.13 and 5.14. Plots of the location of instances of clusters 17 in level 7 in the log-f1 - 
pdf12  and in the log-f1 - (V-I) 
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Figures 5.15 and 5.16. Plots of the location of instances of clusters 17 in level 6 in the log-f1 - 
pdf12  and in the log-f1 - (V-I) where rrlyrae and cepheid stars are separated. 

 
 
 
Cluster 35: cepheids 
 
Cluster 35 (Figures 5.17 and 5.18) contains first overtone pulsators cepheids.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 5.17 and 5.18. Plots of the location of instances of clusters 35 in level 7 in the log-f1 - 
pdf12  and in the log-f1 - (V-I) 

 
 
 
Cluster 5: eclipsing binary systems 
 
This is the greatest cluster and represents eclipsing binary systems. The cluster 
also gathers instances with spurious data in the log-f1 and log-f2 attributes. See 
figures 5.19 and 5.20. 
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Figures 5.19 and 5.20. Plots of the location of instances of cluster 5  in level 7 in the log-f1 - 
pdf12  and in the log-f1 - (V-I) 

 
 
Cluster 6: ellipsoidal stars 
 
Figure 5.21 shows a plot of the cluster 6 identified as containing ellipsoidal 
stars. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.21. Plots of the location of instances of cluster 6 in level 7 in the log-f1 - (V-I) 
 
 
Cluster 32: BE stars 
 
Cluster 32 (Figure 5.22) occupies the locus of BE stars according to previous 
identification in Autoclass clustering.  
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Figure 5.22 Plots of the location of instances of cluster 32  in level 7 in the log-f1 - (V-I) 
 
 
 
Clusters 3, 21, 12, 1, 27, 16, 7: OSARGS (and mira and semirregular stars). 
 
The identification of these clusters is complicated. Sometimes mira and 
semirregular stars appear together and it is difficult to decide which one 
dominates. Clusters are mentioned and grouped looking for similarities with the 
classification proposed for these type of stars in Autoclass clustering.  
 
Cluster 3 (Figures 5.26-5.27) has a mixture of classes although it seems that 
OSARGS predominate over mira and semirregular stars.  
 
Cluster 21 (Figures 5.28-5.29), 27, 16 and 7 have OSARGS and correspond 
with cluster 6 of Autoclass. 
 
Cluster 12 (Figures 5.30 and 5.31) and 1 have OSARGS and correspond with 
cluster 0 of Autoclass 
 
Cluster 10, 14 and 19 occupy the location of OSARGS although log-f2 attribute 
in both clusters present spurious data. 
 
Cluster 20 and 26 occupy the location of OSARGS although log-f1 attribute 
presents spurious data. 
 
As there are several clusters representing the same type of stars, here we show 
how they merge in a higher hierarchical level (Table 5.10). The agglomerative 
process merges these clusters but also with other clusters not related with 
OSARGS. 
 

Level 8 1 1 3 3 3 9 13
Level 7 1 27 3 7 16 12 21

 
Table 5.10. Cluster merging of OSARGS in next hierarchical level 
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Figures 5.26 and 5.27. Plots of the location of instances in cluster 3 in the log-f1- (V-I) and log-

f2 - (V-I) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 5.28 and 5.29. Plots of the location of instances in cluster 21 in the log-f1- (V-I) and log-

f2 - (V-I) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 5.30 and 5.31. Plots of the location of instances in cluster 12 in the log-f1- (V-I) and log-

f2 - (V-I) 
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We notice that, in section 5.1, OSARGS and mira and semirregular stars were 
grouped in just one cluster, and now, with exactly the same bandwidth value, 
these stars appear divided in several clusters. In relation with RRLyrae and 
cepheid stars happens the same. We tried sigma value 0.42 and these types of 
stars were grouped, now with the same value, they are separated. This makes 
think that initial strategy of bandwidth sequence was erroneous. The step 
between one sigma value and the next one has to be smaller enough as it is 
now. But we have not completely avoided the need of selecting clusters of 
different hierarchical levels. 
 
5.6 Experiments with a reduce attribute set. 
 
Our next experiment was to apply HMAC(mtree) to find a solution using only 5 
of 13 attributes (log-f1, log-af1h1-t, log-crf10, pdf12, V-I). The search was 
configured to perform a hierarchical clustering over the total dataset and using 
these 5 attributes. The rest of parameters were configured with its default 
values (step size of the bandwidth sequence=0.1, maximum bandwidth in 
sequence = 2.0). This invocation of HMAC search took 1 day 51 minutes 53 
seconds and gave a dendrogram of 5 levels. Tables 5.11, 5.12, 5.13 show the 
results obtained in level 1 (bandwidth 1.694400e-001, clusters 1471), 2 
(bandwidth 3.388799e-001, clusters 46), and 3 (bandwidth 5.083199e-001, 
clusters 9). Again, we only show results with a percentage of instances 
belonging to a cluster greater than 5%. With 5 attributes the clusters have a 
similar composition to the obtained with 13 attributes. Although level 1 has 
produced 1471 clusters, most of the labeled instances show already the 
preferences of grouping that will maintain in higher levels, except lpv stars that 
are dispersed in many clusters.  
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 
4   5.22   
5 5.78 69.01 21.42  98 99.76
6   6.03 6.72  
7   7.66   
9   8.48 7.42  

10   91.81 82.09 47.5   
23   9.57  
25 58.64 14.08 50   
35   8.64   
40   8.02 36.25 6.03   
80 26.19 11.26 14.28   

111   6.03   
120   6.52   
187   8.64   
491   14.28   

 
Table 5.11. Contingency table using clustering of level 1 of the dendrogram (percentage> 5%) 
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Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 

0   8.64 42.5 43.55 44.82  
1   14.28 20.22 11.7  
2   12.13  
3   6.25 14.51 24.31  
4 95.5 94.36 85.71  98 99.8
5   7.66   
7   92.82 82.09 47.5   
8  5.63   

13   8.64   
 

Table 5.12. Contingency table using clustering of level 2 of the dendrogram (percentage > 5%) 
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 
0   11.72 48.75 67.21 70.93  
1   14.28 29.03 13.38  
2  5.63 15.53  
3 95.5 94.36 85.71  98 99.8
5   92.94 82.71 47.5   

 
Table 5.13. Contingency table using clustering of level 3 of the dendrogram (percentage > 5%) 

 
The conclusion is that these five attributes are relevant for the clustering and 
could be used instead of the original thirteen. 
 
 
5.7 HMAC applied to cluster the database of labeled examples. 
 
Finally, we used HMAC to find a solution over the sum of all test datasets 
(10063 instances). The processing conditions were the same as in the previous 
experiment but using again the original set of 13 attributes. The algorithm found 
8 hierarchical levels. We focused our attention in level 4 and the analysis of the 
results (Table 5.14) implies that the classification is very similar to the one 
obtained on the OGLE LMC dataset. The main major clustering structures are 
retained in both datasets. Both classifications in the level of comparison are not 
using the same sigma value (0.5429795 in level 4 over the labeled examples 
against 0.5083199 in level 3 over the OGLE dataset). 
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Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 

0   10 18.27 59.34  
1   14.84  
2   6.61  
3   6.69  
9   21.42 98.25 95.06 80   

12   7.5   
17 58.49 40.84 64.28  100 98.24
26   18.43   
29   20.88   
39 32.9 53.52 7.14   
51   7.14   
53  5.63   
56   14.35   
64   9.78   

 
Table 5.14: Clustering structure of level 4 using only labeled datasets. Only percentages above 

5% are shown for clarity 
 
 
5.8 Effect of considering log-normal attributes 
 
We repeated the experiment using a linear scale for attributes 1, 2, 3, 4, 5, 6, 7, 
8, 9. HMAC (mtree) was configured to perform a hierarchical clustering, step 
size of the bandwidth sequence=0.2 and maximum bandwidth in sequence = 
3.0. 
 
The results show that the log-transformation is very useful for HMAC clustering. 
With the linear scale, in level 1, HMAC found 131 clusters, but only to analyze 
the percentage of instances of each cluster was enough to verify that the 
clustering was not very efficient. As can be seen in Table 5.15, cluster 0 (sigma 
value= 5.347489e-001), with greater weight (56.8% of instances), gathers 
almost all type of stars. 
 
 

Cluster cep dmcep ptcep ecl new-ecl ell-ecl ell-ell lpv rrd rrlyr 
0 6.77 5.63 21.42 9.24 15.43 75 93.8 99.59  
4   87.15 80.86 25   
5     47.41
8  39.43 7.14  98 41.2

10 88.72 54.92 71.42   
24     8.01

 
Table 5.15 Clustering structure using the labeled dataset 

 
This is due to that, without the log-transformation, the data points density 
between 0-2 range values increase considerably, and clusters that are mainly in 
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that range values have a lower separability. The bandwidth step should be very 
reduced to analyze this range values. 
 
 
5.9 Comparison with Hipparcos dataset 
 
We applied HMAC to the Hipparcos dataset (2498 instances) with exactly the 
same attribute information as the original OGLE dataset. HMAC (mtree) was 
configured to perform a hierarchical clustering, step size of the bandwidth 
sequence=0.1 and maximum bandwidth in sequence = 2.0. 
 
There is no way to verify the clustering goodness because this implementation 
of HMAC can not be used to predict the class membership of other labeled 
instances to validate the results. So, we only show plots of the location of 
clusters and instances in different colors for the most relevant attributes. (See 
Figure 5.32). Clustering interpretation can be only carried out by a domain 
expert or comparing to Autoclass results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.32. Main clusters obtained over Hipparcos dataset in the most relevant attributes(log-f1 

vs log-crf10 pdf12, B-V, V-I) in different colors. 
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6. A clustering combination method: Autoclass and HMAC 
 
In this chapter, a combination of the two clustering algorithms, taking the best of 
both approaches, is undertaken to try to improve clustering performance. As 
clustering is an optimization procedure based on a specific clustering criterion in 
which it bases, a combination of two procedures can be regarded as a 
technique that optimizes according to multiple criteria.  
 
On previous chapters, HMAC has shown to be expensive computationally to 
process large datasets, at least, without any code optimization. Autoclass has 
shown to work well but, perhaps it is a little restrictive due to the need of fitting a 
model. However HMAC can solve this problem. The combination of both 
procedures can be use to override the restrictive behaviour of Autoclass and to 
reduce data points to HMAC clustering and, consequently, reduce processing 
time. 
 
The idea is to combine clustering in two sequential steps. First to apply 
Autoclass to find a first basic clustering, and then, to apply HMAC to take 
advantage of its agglomerative properties to merge clusters without having into 
account a restrictive model fit for modifying the initial result. 
 
Now Autoclass has to be configured to produce more clusters than the ones 
produced in section 4. A good number of cluster for HMAC input could be 200. 
This can be obtained if Autoclass does not use a covariant model for data, this 
is, if considering independent attributes. When it is clear that the attributes are 
correlated, Autoclass will need more normal distributions to fit data. The input 
dataset to HMAC is formed by the resulting mean values for each attribute of 
each Autoclass cluster. And, as each cluster is formed by different number of 
instances it is also necessary to introduce to HMAC the weight for each cluster. 
 
Then, Autoclass was configured  with the following parameters 18h processing 
(max_duration = 64800), without random initializations, (force_new_search_p = 
true, start_fn_type = ”block”, randomize_random_p = false) starting with list 
(start_j_list = 150,200,250,300), and all atributes following a single normal 
distribution (single_normal_cn 0 1 2 3 4 5 6 7 8 9 10 11 12) and applied over 
the total dataset (13 attributes, 43351 cases).  
 
In these conditions, Autoclass found 259 clusters on try 31 of 119. As 
mentioned previously, these clusters were the dataset input to HMAC.  
 
After that, HMAC (mtree) was configured to perform a hierarchical clustering 
with the following parameters: bandwidth sequence (1.112001e-001,2.224002e-
001, 2.780002e-001, 3.336002e-001, 3.892002e-001, 4.448003e-001, 
5.004003e-001, 5.560004e-001, 6.672005e-001, 7.784005e-001, 8.896006e-
001, 1.000801e+000, 1.223201e+000).  
 
Now, HMAC search only took 8 seconds to process the dataset and the 
dendrogam obtained is shown in table 6.1. 
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Level 1 2 3 4 5 6 7 8 9 10 11 
Band- 
width 

0.11120 0.22240 0.27800 0.33360 0.38920 0.44480 0.50040 0.55600 0.66720 0.77840 0.88960

# 
clusters 

259 256 235 192 127 82 53 36 19 5 3 

Table 6.1. Dendrogram obtained by HMAC after Autoclass clustering 
 
 
Again, outliers are a problem to identify the hierarchical level of interest. After a 
detailed inspection, the most interesting level is 5. 
 
Now, not all the resulting clusters are shown but just a few cases to show how 
the combination of methods has worked: 
 

• RR Lyrae: Autoclass found 3 clusters that contained RRLyrae stars, now, 
only one is found. This cluster does not contain spurious data (log-
f1=0.3) as HMAC cluster does. 

 
• Ellipsoidal stars: Visually this cluster presents more defined borders and 

better compactness than the one obtained by Autoclass. 
 

• Cepheids: There are also two clusters separating first overtone pulsators 
and fundamental mode Cepheids. 

 
• Other clusters representing OSARGS and Mira and semiregular are 

more complicated to interpret. 
 
 
As a conclusion, this combination procedure seems to give good results: 
 

• To merge clusters for Autoclass. If data do not behave exactly as the 
specified model in Autoclass search, there will be several distributions to 
fit data that have to be merged.  

 
• To reduce large datasets for HMAC search. Data reduction have a high 

impact in processing time without great differences in final results.  
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7. Performance evaluation 
 
Up to now, we have shown the results of application of two different algorithms 
for unsupervised clustering. The identification of major clusters obtained has 
been performed applying the domain expert knowledge and using the labeled 
datasets. But not all the clusters have been identified and some types of stars 
are characterized by several clusters. In addition, there is a remain problem of 
global clustering evaluation, which one of the two clustering algorithms gives 
best results. This is not an easy question to answer when dealing with 
unsupervised clustering.  
 
7.1 Comparative evaluation of different clustering algorithms 
 
Unsupervised clustering counts on its difficulties the evaluation of the results 
obtained according to a quality criteria global shared among all algorithms that 
allows to compare them in the same conditions. 
 
One evident global criteria to verify the goodness of the clustering could be by 
its ability to classify correctly labeled instances. This ability could be measured 
by the error of classification. But in our study we have seen that this is not an 
easy task. If we had enough and good labeled instances to use in this task, why 
to use unsupervised methods instead of supervised ones for clustering? In our 
case we did not have many labeled instances and, for some classes, they were 
totally insufficient (PTcep 14 instances, RRLyrae 50). In some cases, a cluster 
gathers different classes so, with which criteria should we evaluate this cluster? 
Moreover, sometimes the algorithm is not able to predict a classification of new 
cases. For that task, the algorithm requires to model each cluster with a 
parametric function. In this study we have seen that Autoclass has that ability 
but HMAC does not so, as an example, we have not able to extract any 
conclusion from the results of application of HMAC over Hipparcos dataset. 
 
But, in addition, to evaluate a clustering intervene other subjective criteria. In 
the context of GAIA, it seems that one of the objectives is to use unsupervised 
methods for new classes discovery. It supposes to detect anomalous instances 
but sharing some characteristics to group them. And, in general, these clusters 
are formed by very few instances compared to the expected clusters. So, 
clustering algorithms that give few importance to small clusters and these 
clusters can be absorbed by neighbouring clusters with large quantity of data, 
will be evaluated worse than other that considers equal big and small clusters. 
With this criterion, Autoclass has more probabilities to detect new and small 
classes than HMAC. HMAC has also possibilities to detect them, but as it is an 
agglomerative algorithm, in the level where a new small class could be 
detected, there will be also a lot of small clusters growing, so the identification 
could be more difficult.  
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In the case in which we do not want to discover new classes but question actual 
classification, the use of labeled datasets would never be a way to verify 
clustering because traditional classification is what is being questioned. One 
can use the new classification as a departure point to construct new models or 
theories. And how to evaluate this with objective quality parameters without 
using the most important factor that is the domain knowledge of the expert. 
 
Another possibility is to use the different internal quality criteria that each 
algorithm utilizes. Autoclass tries to maximize the marginal likelihood of data 
over the parameters of a distribution, and the quality of the results are 
measured by the logarithm of this parameter. HMAC uses modal expectation 
maximization to find the local maxima of a given distribution. But these 
measures are only valid to compare different executions (and only in the first 
case) of the same method, not to compare the results among them. The same 
happens with other internal quality criteria that other algorithms use as the 
minimization of the intraclusters distances or maximization of intercluster 
distances. The differences  between these internal quality measures make them 
practically impossible to objectively compare clustering algorithms. 
 
We could also generate some synthetic datasets according some probability 
distributions, and ask to the different algorithms to find the best solution. In this 
case one could have available some statisticals of error rate to compare results. 
But, can we be sure that the data of our domain follow that distribution? This 
method is only valid on a theoretical basis but not in a real context. Moreover, 
the criteria that could be valid for a domain could not be valid for other. 
 
 
Despite these considerations there exist some validation indices in the literature 
that try to evaluate clustering results using objective criteria. These are 
classified into three groups: 
 
1. Internal validation indices: These indices determine if the structure is 

intrinsically appropriated for the data and is based on calculating properties 
of the resulting clusters, such us compactness, separation, roundness. 
These methods does not require additional information about the data. 
 
Some of these indices are Dunn's indices defined as the ratio between the 
minimum distance between two clusters and the size of the largest cluster; 
the Silhouette index defined as the average, over all clusters, of silhouette 
width of their points; the Hubert's correlation with distance matrix that 
measures the similarity between the points to be grouped; Davies-Bouldin 
index that is a function of the ratio of the sum of within cluster scatter to 
between cluster separation. 
 

2. External validation indices: Compares the clustering to an a priori 
structure and tries to quantify the match between the two. External validation 
corresponds to a kind of error measurement either directly or indirectly. For 
example, the Rand index can be used to match between two clustering 
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measuring the proportion of pairs of vectors that agree by belonging either to 
the same cluster or to different clusters. Other indices are Jaccard 
coefficient, that measures the proportion of pairs that belong to the same 
cluster in both partitions, relative to all pairs that belong to the same cluster 
in at least one of the two partitions, and Folkes and Mallows index 
measures the geometric mean of the proportion of pairs that belong to the 
same cluster in both partitions, relative to the pairs that belong to the same 
cluster for each partition. 

 
3. Relative validation is based on comparison of partitions generated by the 

same algorithm with different parameters of different subsets of data. These 
methods do not require either additional information. Some indices are 
Figure of merit is designed to aid decision of which clustering method is 
appropriate and how many clusters are optimal or Stability that measures 
the ability of a clustered data set to predict the clustering of another data set 
sampled from the same source. But these indices perform well for synthetic 
data however there is not guarantee that this index and other will be optimal 
for real data, and the characteristics of data can affect performance in 
unknown ways. 

 
Experimental tests over these indices indicate that the performance of validity 
indices is highly variable. For complex models or when a clustering algorithm 
yields complex clusters, both the internal and relative indices fail to predict the 
error of the algorithm. Some external indices appear to perform well, whereas 
others do not. The conclusion is that one should not put much faith in a validity 
score unless there is evidence, either in terms of sufficient data for model 
estimation or prior model knowledge, that a validity measure is well-correlated 
to the error rate of the clustering algorithm. 
 
From these indices, stability could be an interesting index to try because it 
expresses that the results of a good clustering algorithm are stable with respect 
to the sampling process, this is that they do not change much if one draw 
another sample or add or delete some point from the dataset. This is in relation 
to the GAIA mission that will gather data along the mission lasts and the dataset 
will grow accordingly. Results from consecutive analysis must be stable in 
relation to the number of clusters and meaning. Stability must also be 
maintained in the presence of noise, so this is an important property of 
clustering since astrophysical data used seem to be noisy. Consequently, 
stability is an indication if whether the model proposed by the algorithms fit to 
the data or not in these conditions and not only in a simple test. 
 
Another index that could have been used for analyzing Autoclass results in 
section 4.1 is the Rand index or the Adjust Rand index, a variant version of 
the former. The statistic is based on the relation of every pair of cases in the 
study and whether these relations differ between two solutions. This avoids the 
need to specify one solution as correct, and then assess how well the second 
solution reproduces the first. The index takes a value of 1 for perfect agreement 
between two clustering solutions, and a value of 0 if agreement is equal to that 
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expected solely due to chance. There is a wider range of values that the 
Adjusted Rand index can take compared to the Rand index increasing its 
sensitivity. 
 
Just as an example, these two indices have been applied to the results obtained 
in section 4.1 where the two more different Autoclass solutions were compared 
to see the impact of randomess in results. The match between clusters was 
done by hand and small clusters were removed to calculate these indices 
although most of the instances were used ( 85.7%, 37171 instances). The 
values obtained were: 
 

Rand Index between solution 3 and 5 = 0.9859 
Adjusted Rand Index between solution 3 and 5= 0.8620 

 
Taking into account that both indices have 1 for prefect agreement, the values 
obtained confirm the qualitative analysis performed in section 4.1 and both 
solutions are very similar. However, qualitative analysis perhaps supply better 
knowledge about where are the discrepancies and if they can be afforded or 
not, than a simple figure. 
 
 
 
None of these indices will be applied more deeply to compare our clustering 
results. Only a qualitative analysis of each one of the clustering methods 
applied is shown in the following sections with the information that each algoritm 
supplies. 
 
 
7.2 Autoclass evaluation 
 
Autoclass is a model based clustering. In this approach it is assumed that the 
data are following a mixture of underlying distributions in which each distribution 
represents a different cluster. In our case we have supposed that each cluster is 
characterized by a multivariate normal distribution. This means that the clusters 
are ellipsoidal, centered at the means μk, and the covariances matrix Σk 
determine other geometrical characteristics as the axis orientation.  
 
If data do not follow this model, if densities of individual clusters are multimodal 
and cannot be accurately modelled by basic parametric distributions or if data 
are contaminated by spurious detections, as happens with some attributes in 
OGLE LMC dataset, Autoclass will produce more cluster than expected due to 
the need of model each real cluster by a set of multivariate normal distributions. 
 
Autoclass supplies several parameters that permit to analyze clustering and to 
verify how good is the clustering obtained. The first indicator to verify if the 
classes are well separated is the vector of probabilities of each instance to 
be member of a cluster. If a great number of instances of a cluster have a high 
percentage of being member of other cluster, then one could conclude that this 



 
Page 69 of 82 

 

classes are not well separated. Another parameter is the class strength 
defined as the geometric mean probability that any instance belongs to a class. 
It thus provides a heuristic measures of how strongly each class predicts its 
instances. 
 
There is also information on the importance of the individual attributes, both for 
the classification overall and for each class. The divergence measure is the 
Kullback-Leibler distance (or relative entropy). This is a useful measure of 
distance between data distributions because it takes into account both the 
centre of the distribution and the variability of the data around the centre. 
However, it is not a true metric because distances are not symmetric. Thus the 
distance from distribution Q to distribution P does not necessarily equal the 
distance from P to Q. The DKL of P to Q for continuous variables is defined as 
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where p and q denote the densities of P and Q. DKL is 0 when the two 
distributions are identical. 
 
The modelled distribution of each attribute for each class is also supplied, 
ranked by the attribute relative importance in describing the class. Lastly, the 
overall divergence of each class from the overall distribution of cases, 
calculated as the summed DKL over all attributes, is reported. However, for 
covariant models as the used here, a single attribute parameters are mixed with 
those of all of the other attributes through the covariant terms, so the calculus is 
not easy. For this reason, the relative importance of each attribute is just the 
term cross entropy divided by the number of attributes modeled in the term 
because all attributes in a multiple term have common influence, so 
consequently, all of them have the same value. The real interaction among 
them can be seen in the covariance matrix. 
 
Table 7.1 shows all these indices: relative class strength of the class, the class 
divergence, and the rest of the values indicate the number of standard deviation 
separating the class-attribute mean from the global mean. Positive values are  
the class-attribute distribution on average greater than the global distribution, 
while negative values indicate the opposite. Grey rows are the distributions with 
minor class divergence or Kullback-Leiber distance between the class and the 
global distribution. The attribute influence of these classes have a DKL < 1 for 
each attribute. (This value has been chosen arbitrarily). Obviously, greater 
clusters will have minor DKL values. 
 
According to the class divergence as it is calculated by Autoclass for covariant 
models, clusters 0 (OSARGS), 1, 2, 3, 4, 6 (OSARGS), 7 (Ellipsoidal), 8 (Mira 
and Semirregular), 9, 11, 12, 15 have distributions not very different from the 
overall distribution although they can be different from other classes.  
 
Cluster 5 is the class with the highest class strength that means that is the 
cluster that better predicts its instances. The smallest cluster, cluster 47, is the 
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cluster most divergent from the global distribution. So, divergence of a class 
does not necessarily imply class strength, as it is shown in these two examples. 
 
Interpretation of rest of figures in class-attribute combination can be done 
individually in the following way. For example, class 13 (BE stars) represents 
variable stars with low log-f1, B-V, V-I mean values compared to the global 
classification; Cluster 26 shows stars with very high log-f1 values that diverge 
from the global distribution whereas the rest of mean values are near of the 
overall distribution ones. Clusters with spurious values in the log-f1 and log-f2 
attributes can also be easier detected, for example, cluster 4 with log-f2 value 
equal to 0, or Cluster 33 with log-f1 values equal to 0. 
 
 
Class Rel class 

strength 
Class 

divergence
Attr
0 

Attr 
1 

Attr 
2 

Attr 
3 

Attr 
4 

Attr 
5 

Attr 
6 

Attr 
7 

Attr 
8 

Attr 
9 

Attr 
10 

Attr 
11

Attr 
12

0 2.75e-005 7.25e+000 -3 -1 -2 -2 -3 -2 -1 -1 -1 0 1 5 3
1 3.34e-006 8.08e+000 4 3 0 0 0 0 0 0 0 0 6 -1 -1
2 1.32e-005 8.15e+000 19 0 -2 -2 -2 -2 -1 -1 0 0 2 3 2
3 1.56e-006 6.34e+000 -1 0 -3 -2 -2 -2 -3 -2 0 0 2 3 1
4 2.79e-007 1.08e+001 -3 12 0 0 0 0 0 0 0 0 0 1 1
5 1.00e+000 1.77e+001 23 4 8 9 7 5 2 1 6 9 -7 -5 -7
6 4.61e-006 1.08e+001 -8 -5 0 0 0 0 0 -1 0 0 0 4 2
7 8.21e-008 8.34e+000 -2 -1 0 -1 -1 -1 0 0 -1 0 -1 0 0
8 3.08e-007 1.08e+001 -4 -4 1 0 0 -1 1 1 -1 0 0 3 2
9 1.06e-007 8.21e+000 0 3 -1 -1 0 0 0 0 0 0 6 0 0

10 3.26e-005 2.39e+001 19 0 2 4 3 2 -2 -1 8 0 1 -1 -1
11 2.58e-008 1.10e+001 0 0 0 0 0 0 0 0 0 0 2 -1 -1
12 4.00e-008 9.73e+000 0 3 4 2 3 3 4 3 0 0 2 -2 -2
13 1.87e-007 1.34e+001 -6 0 0 0 0 0 0 0 0 0 -1 -16 -11
14 2.53e-008 1.36e+001 -4 -5 1 0 0 0 1 1 0 0 -1 2 2
15 2.73e-008 1.28e+001 19 0 0 0 0 0 1 0 0 0 0 1 1
16 3.88e-003 1.68e+001 3 1 2 3 3 2 2 0 3 -2 -1 -4 -4
17 1.29e-003 1.53e+001 3 3 1 3 3 3 1 0 6 -2 -1 -9 -10
18 1.18e-006 1.50e+001 4 2 0 0 0 0 0 0 1 0 1 -13 -11
19 7.97e-006 1.69e+001 2 0 3 1 0 -1 -1 -1 -1 3 -12 -3 -5
20 4.81e-007 1.30e+001 1 0 1 2 3 2 1 1 2 -1 -1 -2 -2
21 6.15e-002 3.01e+001 3 1 12 11 7 3 0 0 5 9 -12 -4 -5
22 1.84e-008 2.94e+001 2 0 0 0 0 0 0 0 0 0 -1 -15 -11
23 3.17e-005 1.59e+001 19 1 3 4 3 3 1 1 5 7 -3 -2 -2
24 6.69e-006 1.54e+001 5 3 4 2 1 1 1 1 0 3 -2 -5 -7
25 1.00e-009 3.93e+001 -7 0 1 1 1 1 1 1 0 0 0 -2 -2
26 8.07e-009 5.59e+001 19 0 0 1 1 1 0 0 1 0 1 -1 -1
27 1.04e-008 6.24e+001 0 12 -1 -1 -1 -1 2 3 0 0 0 0 0
28 4.79e-008 2.32e+001 -5 -4 3 3 2 1 2 2 0 0 -5 2 2
29 1.45e-010 6.98e+001 3 0 1 1 1 1 1 0 0 0 0 -2 -2
30 3.12e-009 3.81e+001 0 0 -2 -2 -2 -1 -2 -1 0 0 2 2 2
31 1.27e-010 1.13e+002 -5 0 1 1 1 0 0 0 0 0 0 2 1
32 1.88e-010 1.63e+002 -7 -10 2 1 1 1 2 3 0 0 -2 1 3
33 5.19e-007 4.45e+001 19 0 2 3 2 0 -2 -1 8 0 1 -1 -1
34 1.91e-011 1.21e+002 0 0 1 0 0 0 0 1 0 0 -1 0 0
35 1.72e-009 7.92e+001 0 0 -2 -1 -1 -1 -1 -2 0 0 2 1 0
36 8.89e-011 3.52e+002 -2 -3 1 1 1 0 1 2 0 0 0 -1 -2



 
Page 71 of 82 

 

37 2.66e-011 1.38e+002 1 -1 -1 -1 -1 -1 0 0 0 0 1 1 2
38 2.02e-011 1.82e+002 0 0 3 3 2 1 0 0 1 0 0 0 1
39 3.04e-011 2.09e+002 -2 -3 0 0 0 0 0 0 -1 0 0 0 0
40 1.31e-012 5.48e+002 0 1 1 1 1 1 1 1 0 0 0 0 0
41 8.80e-011 5.13e+002 0 1 -1 -3 0 0 0 0 -4 0 1 0 0
42 1.18e-010 3.95e+002 -1 0 0 0 0 -1 0 0 0 0 0 1 0
43 3.49e-011 4.46e+002 0 -1 0 0 -1 0 0 0 0 0 0 2 1
44 4.23e-014 2.27e+003 -1 0 0 1 0 0 0 0 1 0 0 0 0
45 5.40e-011 1.76e+003 1 0 0 0 0 0 0 0 1 0 3 0 -1
46 8.51e-010 1.71e+003 -5 0 0 -2 0 0 0 0 -7 0 0 2 2
47 5.63e-011 1.21e+004 8 3 0 1 1 0 1 0 1 -1 0 -1 -2

 
Table 7.1. Relative class strength, class divergence and deviation of each attribute from overall 

distribution for each Autoclass cluster. 
 
 
Finally, we have analyzed the Autoclass clusters according to the vector of 
probabilities of each instance to be member of a cluster to verify how good is 
the fit of identified classes to a multivariate normal distribution. The procedure of 
verification has been as follows. We have investigated the second probability of 
membership of each instance. We have calculated the percentage of instances 
in each cluster with probabilities greater than 25% in this second probability 
(this value has also been selected arbitrarily). The results are that none cluster 
presents a very overlapped probability distribution with other cluster. What we 
can say is that most clusters representing the same type of variable stars have 
probability distributions with any kind of overlapping. But there are exceptions. 
Following we show just some cases. 
 
 
Cluster 0 and Cluster 6 representing OSARGS.  
 
Cluster 0. This cluster contains OSARS. However, instances of this cluster do 
not have any probability to be members of cluster 6, the other cluster with this 
type of variable stars.  
 
The probabilities point to other non-identified clusters: 3, 8 and 4 as the most 
relevant and in order of importance. However very few instances (a maximum of 
3.5% for cluster 3) have relevant probabilities (more than 25%) of being 
membership on these clusters. The mixture of membership comes from 
neighbouring clusters with not very well defined frontiers. 
 
Cluster 6. This is the other cluster that corresponds with OSARGS stars. We 
consider this other cluster moderately well separated because its instances 
have correspondence with clusters 3, 14, 7 and 18 in a small percentage (a 
maximum of 4.8% with cluster 3 with probabilities greater than 25%). 
 
Both clusters have as one of the most relevant attributes the logarithm of the 
first frequency in relation to the global classification but both clusters do not 
share the range of values of this attribute. 
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So we can conclude that, although both clusters are formed by the same type of 
stars, the differences stated in point 4.5 makes them a different type of stars 
and need two different multivariate normal distributions to model them. 
 
 
Cluster 16, 17, 18 and 20 representing eclipsing binary systems 
 
Cluster 16. Cluster 16 only has an overlapping with cluster 20, another cluster 
with the same type of stars, but the percentage of instances is small. A 14.4% 
of instances has any probability of being member of cluster 20 but only a 0.8% 
with a percentage greater of 25%. 
 
Cluster 17. Instances of this cluster have probabilities of being member of 
clusters 20 and 18. The 33.2% have any probability of being member of cluster 
20 but only a 1.2% with a probability greater than 25%. The 17.4% have a 
probability of membership in cluster 18  but this percentage reduces to 1.7 % 
with a great probability.  
 
Cluster 18. Cluster 18 is the cluster worse separated. It has overlapping with 
clusters 1, 22, 11, 26, 17 and 20 in order of importance. A 7% of instances has 
a percentage greater than 25% of being members of cluster 0. 
 
Cluster 20.  This cluster is related with clusters 17, 16 and 7. The greatest 
percentage, a 2.73%, of instances, have a probability of class membership of 
cluster 17. 
 
The attributes log-1 and log-f2 make the main difference between cluster 16 
and 17 because, it seems that the spurious detection of log-2 proportional to 
log-f1 is enough to separate them in two well differentiated clusters. So, 
although for Autoclass cluster 16 and 17 are perfectly separated, the separation 
is based on an attribute with erroneous values what makes this separation 
without meaning.  
 
To know if these clusters maintain its composition we asked Autoclass to repeat 
clustering twice only with the instances that are part of these four clusters. 
Autoclass found more clusters (6 and 10) but there were not a mixture of 
instances in classes what means that Autoclass finds any type of structure in 
data and is able to make subtle distinctions among data. We also asked 
Autoclass to repeat clustering with 12 attributes without log-f2, the attribute that 
presents some spurious data, to know if these values were affecting clustering. 
This time Autoclass found 9 classes but they did not maintain their composition. 
New clusters present instances coming from the four original clusters.  
 
The explanation to this is that Autoclass has been forced to find models with 
correlated attributes as strongly happens with attributes log-f1 and log-f2. It is 
logical that Autoclass finds these models more probable because they better 
describe the data distributions. At this point, it is problem of the domain expert 
to decide if the attribute log-f2 should be used or if data presenting erroneous 



 
Page 73 of 82 

 

values in this attribute should be removed or filtered before clustering. Other 
possibility is not to correlate attributes that present this behaviour. 
 
 
Cluster 19, 21 representing cepheid stars. 
 
Cluster 19. This cluster corresponds with cepheid stars. Some instances have 
any probability of membership in clusters 24 (rrlyrae) and 21 (cepeids). A 13.2% 
of instances have any probability of being member of cluster 24 but only a 1.3% 
has a probability greater than 25%. The probabilities with cluster 21 are lower 
than with cluster 24, a 3.4% has any probability in cluster 21, and a 0.3 with a 
relevant probability. 
 
Cluster 21. This other cluster containing cepheid stars has any overlapping with 
clusters 19 and 34. A 27.8 % of instances has a probability of being member of 
cluster 19 but only a 1.5% with a relevant percentage. Cluster 34 is a non 
identified cluster with very few weight in the classification. The percentage of 
membership is insignificant. 
 
The most important attributes to differentiate these two clusters are log-af1h1-t, 
pd12 and log-crf10. They make think in two different distributions representing 
different objects than in two different distributions representing a single object 
that does not follow exactly a multivariate distribution. 
 
 
Cluster 5, 23, 24 representing RRLyrae stars. 
 
Cluster 5. This cluster has instances with a probability of membership to 
clusters 23 (24.2%) and 24 (5.1%). However the number of instances with a 
probability greater than 0.25% is about 1.2 % so we consider it a well separated 
cluster. 
 
Cluster 23. This cluster has instances with a probability of membership to 
clusters 5, 24 and 29. A 31% of instances have a probability of belonging to 
cluster 5, and from this, a 5.6% with a percentage greater than 25%. A 10.2% of 
instances have a probability of belonging to cluster 24, but this percentage 
reduces to 1.2% with a relevant probability. 
 
Cluster 24. This cluster has instances with a probability of being members of 
clusters 5 (10.5%), 29 (8.5%), 19 (7.7%) and 23 (3.8%). The major number of 
instances with a probability greater than 0.25% is a 2.8% in cluster 5. 
 
Cluster 24 has more differences in values, but cluster 5 and cluster 23 look as 
being the same type of object. It seems that it is necessary the use of two 
probability distributions to define the type of stars. 
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Autoclass was asked to repeat twice the classification with the instances of 
these 3 clusters. Autoclass found 5 clusters in both runs with basically the same 
composition than in the previous one.  
 
Analyzing 2D projection plots, one could conclude that 5, 23 and 24 are 
representing the same type of stars. The three clusters have basically the same 
mean values in all attributes but the correlation matrix presents different 
orientations in the ellipsoid formed by the sigma values. Instances that present 
more diffuses probabilities of being member of a class are located near of the 
mean values. See Figure 7.1. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1, Detail of the location of instances of cluster 5 (red), 23(red) and 24(green). Instances 

of cluster 23 having a probability of being member of cluster 5 in blue, Instances of cluster 23 
having a probability of being member of cluster 24 in cyan. The plot is in the log-f1 and V-I color 

index plane. 
 
However, there are also subtle differences that figure 7.1 does not show. 
Cluster 23 presents log-f2 values with the greatest dispersion and cluster 24 
show differences in mean values in the log-af1h3-t and log-af2h4-t attributes 
what lead to the three different distributions that Autoclass finds. So we 
conclude that these are the reasons why Autoclass needs three multivariate 
distributions to define this type of stars 
 
 
Clusters 8, 14 and 28: Mira and semirregular stars. 
 
Cluster 8. Cluster 8 has mainly an overlapping with cluster 0 (OSARGS), 14 
and 28 in order of importance. A 33.3% of instances has any probability of 
being member of cluster 0 and a 8.7% with a percentage greater than 25%. The 
percentages with clusters 17 (22.3% - 3.4% relevant) and 18 (4.3% - 1.7% 
relevant) containing the same type of stars are minor. 
 
Cluster 14. Instances of this cluster have probabilities of being member of 
clusters 32, 8, 27 and 28. The 18% have any probability of being member of 
cluster 32, cluster not identified, but with very few relevance. Although the 
global probability of instances of being member of cluster 8 is lower than with 
cluster 32, the relevant percentage increases to 4%.  
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Cluster 28. Instances of cluster 28 have probabilities in clusters 8 (28.0%), 14 
(22.2%), 6 (11.5%) and 7 (5.7%). Greatest relevance is with cluster 8 (4.7%). 
 
Cluster 8 and cluster 0 (OSARGS) have mean values very different in several  
attributes so overlapping has to be produced with outlier instances. Both 
clusters can be considered different distributions. Cluster 28 is a cluster with 
very few weight in the classification and with a value of a relative class strength 
very small: 4.79e-008 so it is predictable that this cluster could disappear in 
other run. Cluster 14 has also a value of relative class strength very small 
2.53e-008. The major differences with cluster 8 comes from log-f1 attribute with 
mean and sigma values far enough to consider them different distributions. 
 
 
Cluster 1, cluster unidentified. 
 
Cluster 1. This cluster, the second in importance, shows how spurious data in 
attributes log-f1 and log-f2 affect to the classification. This cluster has not been 
identified due to these erroneous values in these attributes. 
 
This cluster presents some overlapping (less than 3% the greatest value) with 
clusters 9, 12, 3, 11 and 18 in order of importance. But this overlapping is not 
important. These clusters have in common noise in attributes log-f1 and log-f2 
what explains this mixture in some instances. 
 
 
7.3 HMAC evaluation 
 
In HMAC, there is not a model fitting. In HMAC each cluster is characterized 
applying a non parametric density estimator which can be useful when clusters 
deviate substantially from any parametric distribution. In a theoretical basis, this 
approach should give very good results, even better than parametric 
approaches since they are not constrained to fit data to a model that perhaps 
data do not follow exactly. However, now one can see that the results are not as 
good as one could expect.  
 
For example, in the case of RR Lyrae stars, finally we have decided that this 
type of stars deviate from a multivariate normal distribution and this is the 
reason Autoclass needs three clusters to characterize them. HMAC should 
have been able to find just one cluster for this type of stars. And this is what has 
happened. HMAC has grouped the three clusters that Autoclass founds for this 
type of stars. But, HMAC has also grouped spurious data in the log-f1 attribute 
and find some difficulties in separate them from fundamental mode cepheids. 
So, one can also start to detect some problems in this approach.  
 
In relation with eclipsing binary systems, HMAC found only one cluster that 
contains this type of stars as opposed to Autoclass that found four. But, in this 
case one can not be sure that this is good. The domain expert was able to see 
in one of these Autoclass clusters of eclipsing binary systems a subtle 
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distinction that could suggest a new classification scheme that had to be 
investigated. Perhaps this cluster, after a detailed study, does not conduct to a 
new classification, but HMAC eliminates any possibility of doing it. Clustering by 
density is canceling those small differences that could conduct to a new class 
discovery. 
 
The characterization of Cepheids stars by HMAC was basically good. HMAC 
found first overtone pulsator Cepheids without any problem. First overtone 
pulsators appeared aggregated to RR Lyrae but they could be segregated in 
lower hierarchical levels. 
 
Other clusters are more difficult to analyze because of the lack of information . 
For example, ellipsoidal stars cluster found by HMAC can only be compared to 
the same Autoclass cluster. Although, the core of these clusters is the same, 
both clusters aggregate surroundings instances that make them lightly different. 
In this case, there is not a clear criteria to decide which one is best. The same 
happens with BE stars. Autoclass and HMAC find a cluster in the same location 
but the size and shape of the clusters have small differences. If one wanted to 
venture to decide which one is better, visual analysis over the log-f1 vs V-I plots 
points to select HMAC cluster for ellipsoidal stars and Autoclass cluster for BE 
stars. But this is only a selection criteria based on the cluster shape in two 
attributes where the clusters appear sharply defined without having into account 
the rest of them. 
 
Finally, OSARGS and Mira and Semiregular stars remain to be analyzed. 
Autoclass found a relationship between these types of stars and HMAC 
presented them joined. Both method have produced several clusters to 
characterize these type of stars what makes think in the difficulties in separating 
these types of stars. Attending to the identification done by the expert domain in 
Autoclass clustering, HMAC seems to be the approach working worse. 
 
The additional information that HMAC supplies for analysis is the separability 
matrix. Separability values are not symmetric, this is, the separability values of 
two clusters can be different depending on which one is considered as 
reference to calculate the value. As, the analyzed level had 494 clusters, it is 
complicated to show this matrix. But, in general, the separability measure of 
clusters analyzed show good separabiliy values. 
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8. Conclusions and future work 
 
In this master thesis, the focus of the study was to asses the validity of two 
unsupervised clustering algorithms based on very different approaches as a 
clustering tool for astrophysical data. Both have shown pros and cons.  
 
 
1. About native implementation of both algorithms 
 
Related to native C implementations, Autoclass is not totally viable to process 
the expected amount of data unless the problem described in section 4.3 be 
exactly identified and corrected. The hypothesis is that the problem is related to 
the use of duplicated instances to increase the dataset size in the experiments. 
EM algorithms, or variants like this, can not proceed if observations are very 
nearly colinear. EM breaks downs when the covariance matrix corresponding to 
one or more components becomes ill-conditioned (singular or nearly singular). 
This problem gets worse because of the measurement error specified for each 
attribute in the classification that treats each value as attr_value ± 0.05 (the 
error was specified equal for all attributes) making that the dataset have 
probably more similar instances than the expected. In fact, if this error is 
decreased to 0.0005 and the dataset is processed exactly in the same 
conditions than in section 4.5, the number of clusters increases from 48 to 58 
showing the influence of this parameter.  
 
HMAC is impractical as it is coded now because of the memory requirements 
(and bugs in code related with memory allocation) and the high processing time 
it needs, considering HMAC approach by its own, to reach a solution. In fact, it 
has not been able to process the main dataset without any code optimization. 
 
However, parallelization seems to be possible in both algorithms to reduce 
processing time. 
 
2. About number of clusters 
 
HMAC results presents a limitation compared with Autoclass because it not 
provides exactly a final number of clusters as Autoclass does. This would not be 
so important if one could find in just one level all cluster with astrophysical 
meaning. But HMAC forces to choose clusters in several hierarchical levels so 
an important knowledge injection is required about what one wants to get. This 
problem seems to come from the different sizes, shapes and data points 
densities of the clusters. For Autoclass this is not a problem because each 
cluster is characterized by variables as the magnitude of the correlation or the 
relative sizes of the classes that constitutes the specific model parameters for 
each cluster. In fact, HMAC number of clusters and clusters have only been 
identified in comparison with the ones obtained by Autoclass.  
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3. About additional information supplied by the algorithms 
 
Autoclass supplies a valuable information to analyze clustering results, relative 
entropy, class strength, attribute influence, covariance matrix,... HMAC gives 
separability values among clusters, a hierarchical structure that allows to 
establish relations between clusters,.. Depending on the context, one 
information is more interesting than the other. 
 
4. About the efficiency finding new (synthetic) classes 
 
Autoclass has shown high sensitivity detecting synthetic clusters formed with 
very few dispersed instances only with the condition that they follow a 
multivariate Gaussian distribution but HMAC does not. HMAC requires higher 
densities and closer distance between points to detect them as a cluster. Even 
so, HMAC also requires that small clusters be at a sufficient distance from 
prominent clusters to have enough separability from them. 
 
5. About the ability to classify new instances 
 
Autoclass has the ability to predict the classification of new instances and this 
presents another advantage since HMAC does not have it. This allows to have 
an additional tool to evaluate the goodness of clustering. 
 
6. About data preprocessing 
 
HMAC has not shown convincing results (to the author). The main problem 
found is stated in point 2 and in how it handles dispersed points (outliers). 
Perhaps a preprocessing step could have improved the results. HMAC uses a 
Gaussian kernel having a spherical covariance matrix with a standard deviation 
σ for all variables. This can be considered as using a “distance σ” as a 
parameter to merge points in each hierarchical level. This now makes think that 
data should have been normalized so all attributes have some standard mean 
and some standard deviation. However this preprocessing has not been 
performed. This work remains to be done. 
 
About log-transformation, for both algorithms this preprocessing step has shown 
to be very suitable. Autoclass reduces processing time although it not improves 
results, HMAC improves classes discrimination considerably. 
 
The OGLE dataset, the main dataset of this study, presents some evident 
problems with spurious data in some attributes. Although this situation seems to 
be not desirable and should be avoided, Autoclass is able to differentiate these 
data and form specific clusters containing these undesirable data whereas 
HMAC absorb them in clusters with astrophysical meaning. Perhaps using 
“missing values” instead of inventing correlated values in frequencies could be 
of interest to improve results. If datasets grow as it is expected, another solution 
could be to remove instances with spurious data to improve clustering. If the 
algorithm is stable, to reduce the dataset will not change clustering although it 
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will not classify all instances. Attribute selection could be another possibility. 
The influence analysis of noisy attributes could also conclude that these 
attributes could be removed from analysis without changing main clusters 
pattern. All these preprocessing steps, it is sure that conduce to a reduced 
number of clusters and a better astrophysical interpretation of them. 
 
7. About astrophysical interpretation 
 
Autoclass has proved extremely useful at identifying the classical variability 
types. In general, HMAC presents the same clustering pattern than Autoclass 
but interpretation is more complicated (at least for a non expert in the domain). 
In addition, outliers are a problem for HMAC because in this dataset many data 
are considered outliers that are not joint to a cluster until final steps of 
clustering. If using merging mechanisms of the algorithm, all outliers are added 
to the same cluster creating a very big cluster that losses its astrophysical 
meaning.  
 
The tests described in this report prove that the parametric approach to 
clustering with Gaussian Mixtures in the OGLE variability context is adequate 
and correctly describes the main components of the point density distribution, 
even in cases where one attribute deviates strongly from gaussianity. The 
interpretability of gaussian components is straightforward and simple, the  
disadvantage being the necessity to fit several components (clusters) to 
describe a group that deviates from gaussianity. These components are not 
qualitatively different groups, and their analysis therefore distracts attention 
from the more interesting cases. 
 
In the case of the need to fit several components to describe a class, HMAC 
has shown to be useful to merge clusters with the same meaning. In fact, 
HMAC is more effective to be used for merging previous clustering than for a 
complete clustering over the total large dataset. 
 
8. About objective performance evaluation 
 
Unsupervised clustering evaluation is still an open question. Although there are 
in the literature some proposed indices to carry out this task it seems they 
supply uneven results. Among them, the stability index could be an interesting 
indicator to incorporate to the ones used to evaluate algorithms in the CU7 
context. It shows that the results are stable with respect to the sampling process 
and that the model proposed by some algorithm fits to the data or not. But this 
index only analyze the suitability of an algorithm but does not give an indicator 
to compare among algorithms. But this is an important index for the Gaia 
mission that will see its dataset increased along the time and the algorithm used 
must assure that the results are stable and clustering does not change 
drastically with the incorporation of new observations. 
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9. About other algorithms to test 
 
Autoclass has supplied very interesting results even though the real clusters 
can not be modeled by a basic parametric distribution. Algorithms that can deal 
each cluster with a mixture of normals could supply better results. 
 
There are in the literature different approaches to probability model selection to 
fit data that could also be interesting to try. 
 
10. About the difficulties to carry out this work 
 
Clustering seems to be a very interesting exploratory tool for astrophysical data. 
But unsupervised clustering algorithms does not supply a perfect solution that 
can be managed by anyone. Validation requires that clusters found are 
consistent with the prior knowledge one has about sample categories or data in 
the problem domain. If the analyst does not have that knowledge then he/she 
founds unable to decide if results are useful and to propose or find new 
solutions. Variable stars data is a complicated domain to handle. 
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