
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

Eigenclusters for predicting
users preferences

Máster en Inteligencia Artificial Avanzada

Autor: Pedro José Corral Bondia

Directores: Víctor Fresno Fernández
Roberto Centeno Sánchez

September 2019

Table of Contents

Table of Contents..2

Figures Index...5

Index of Tables..7

1. Introduction..8

1.1. Recommendation problem..8

1.2. Recommender systems...8

1.3. Cold start...9

1.3.1. New user...10

1.3.2. New item...10

1.3.3. New community..10

1.3.4. Popularity bias...11

1.4. Problems to be considered..11

1.5. Scope of this proposal...12

2. State of the art...13

2.1. Collaborative filtering...14

2.1.1. Memory-based CF...15

2.1.2. Model-based CF..18

2.2. Content-based filtering...24

2.2.1. Keyword-based systems..25

2.2.2. Semantic Analysis...26

2.2.3. User profiling techniques..29

2.3. Hybrid recommender systems..30

2.3.1. Hybrid CF and content-based recommenders...31

2.3.2. Models combining CF with other recommender systems...31

2.3.3. Hybrid CF-only recommender systems..31

2.4. Location-based recommendation..32

2.5. Risk-aware..33

2.6. Empirical performance...33

2.7. Conclusions...35

3. Hypotheses and objectives...37

3.1. Hypotheses..38

2

3.3.1. Eigenfaces...38

3.1.2. Quantum superposition...41

3.1.3. Eigenclusters...43

3.2. Objectives...43

4. Our proposal: A recommender system based on eigenclusters..45

4.1. How to generate clusters...47

4.1.1. Partition sorted by average scores...48

4.1.2. Partition sorted by standard deviation of scores...49

4.1.3. Binary partition sorted by average scores...49

4.1.4. Binary partition sorted by standard deviation of scores..50

4.1.5. Clustering by users..50

4.1.6. Clustering using K-means...51

4.1.7. Null default value..52

4.1.8. Average default value..53

4.1.9. Cluster densification...53

4.2. Relating users to clusters..54

4.2.1. Linear regression...54

4.2.2. Saturated linear model..55

4.2.3. Heuristic methods...56

4.2.4. Equal weights..56

4.2.5. BFGS...57

4.2.6. Successive approximations...58

4.2.7. Cluster-weight optimization..61

4.2.8. Inverse error..63

4.3. Alternatives for predicting preferences...64

5. Experimental evaluation..66

5.1. Datasets...66

5.1.1. Prolific IMDb Users dataset..66

5.1.2. Dense subset of Prolific IMDb Users dataset...67

5.1.3. MovieLens..67

5.2. Full stack...68

5.3. Evaluation...68

5.3.1. Evaluation metric..69

3

5.4. Experiments..70

5.4.1. Overview of clustering methods...70

5.4.2. Results from clustering methods...71

5.4.3. K-means and linear regression for well profiled users..72

5.4.4. Results from K-means variants...73

5.4.5. K-means and linear regression for different profiles..75

5.4.6. Results for different profiling..76

5.4.7. Improvements to K-means and linear regression..80

5.4.8. Results of the improvements...81

5.4.9. Model competition..82

5.4.10. Results of the model competition..84

5.4.11. Understanding the clusters..90

5.4.12. Results for different segmentations...91

5.4.13. Summary...96

6. Conclusions...97

6.1. General conclusions..97

6.2. Clustering methods...98

6.3. Default values for unrated films...99

6.4. Profiling the user...99

6.5. Comparison with previous experiments...100

7. Future work...101

7.1. Model ensemble..101

7.2. Feature generator..101

7.3. Clustering improvement...101

8. References..103

4

Figures Index

 Figure 1. Distribution of users interactions per item...11

 Figure 2. Conceptual representation of a rating network..14

 Figure 3. Graphical representation of the cosine similarity based on the angle formed by two

vectors (users)...18

 Figure 4. Example of a clustering algorithm extracted from Wikipedia...21

 Figure 5. Illustrative sample of a Markov decision process..23

 Figure 6. Sample of features obtained from Semantic Analysis...27

 Figure 7. Fragment of a screenshot taken from the Wordnet home page showing a definition of

itself..28

 Figure 8. Example of a decision tree for selecting the best recommendation approach...................30

 Figure 9. Similarity modelling experiment results for several approaches.......................................35

 Figure 10. Example of some real eigenfaces. Image extracted from [91]...40

 Figure 11. Classic states compared to quantum superposition..42

 Figure 12. Quantum superposition of wave functions from basic states...43

 Figure 13. Saturated linear model as rectifier for predictions...55

 Figure 14. Graphical explanation of the gradient descent optimization..62

 Figure 15. Histogram of common films by pairs of users for the Prolific IMDb Users dataset.......66

 Figure 16. Histogram of common films by pairs of users for the dense subset of the Prolific IMDb

Users dataset...67

 Figure 17. Histogram of common films by pairs of users for the Movielens dataset.......................67

 Figure 18. Evolution of prediction error using several partition methods with different total number

of clusters..71

 Figure 19. Evolution of prediction error using K-means with different total number of clusters and

ways of using the users and their missing scores...73

 Figure 20. Average count of the unique films per cluster generated using the Prolific IMDb Users

dataset...74

 Figure 21. Group of the smaller profiling percentages and evolution of their errors (MAE) when

increasing the number of used clusters...76

 Figure 22. Group of the smaller profiling percentages and evolution of their errors (MAE) when

increasing the number of used clusters (no Y-intercept)..77

5

 Figure 23. Second group of profiling percentages (greatest ones) and evolution of their errors

(MAE) when increasing the used clusters..78

 Figure 24. Second group of profiling percentages (greatest ones) and evolution of their errors

(MAE) when increasing the number of clusters...79

 Figure 25. Error of predictions using as model just the user's average of score...............................80

 Figure 26. First group of profiling percentages (smallest ones) and evolution of their errors (MAE)

when increasing the number of clusters...81

 Figure 27. Second group of profiling percentages (greatest ones) and evolution of their errors

(MAE) when increasing the number of clusters...82

 Figure 28. Prediction error vs clusters for several combinations using 0.1% of scores for profiling.

..86

 Figure 29. Prediction error vs clusters for several combinations using 0.2% of scores for profiling.

..86

 Figure 30. Prediction error vs clusters for several combinations using 0.5% of scores for profiling.

..87

 Figure 31. Prediction error vs clusters for several combinations using 10% of scores for profiling.

..87

 Figure 32. Prediction error vs clusters for several combinations using 80% of scores for profiling.

..88

 Figure 33. Series of smallest errors for the dense and complete Prolific IMDb User dataset...........89

 Figure 34. Results of K-means with 2 clusters and null default value..91

 Figure 35. Results of K-means with 2 clusters and average default value..92

 Figure 36. Results of K-means with 5 clusters and null default value..93

 Figure 37. Results of K-means with 5 clusters and average default value..94

 Figure 38. Distribution of users per cluster for 10 clusters and null default value...........................94

 Figure 39. Distribution of users per cluster for 10 clusters and average default value.....................95

 Figure 40. Distribution of users per cluster for 40 clusters and null default value...........................95

 Figure 41. Distribution of users per cluster for 40 clusters and average default value.....................96

6

Index of Tables

Table 1. Example of Semantic Features Analysis...27

Table 2. Classification of several ways of calculating the similarity..33

Table 3. Pseudocode for algorithm that obtains weights by the successive approximations method.

..61

Table 4. Profiling percentages for the Prolific IMDb Users dataset...75

Table 5. List of all the different elements to combine in pipelines...83

Table 6. Different pipelines formed from combinations of several elements.....................................84

Table 7. Results for different combinations of pipelines..85

Table 8. Results for different combinations of pipelines for the dense Prolific IMDb Users subset. 88

Table 9. Results for different combinations of pipelines for the Movielens database........................89

Table 10. List of segmentations performed with K-means...90

7

1. Introduction
With the normalization of use of on-line platforms for a huge quantity of different

purposes [1], the interaction between the user and these has become a crucial factor for their

popularity and success. Nowadays, the total amount of information, services or products

available to the user can even be overwhelming and sometimes impracticable to check it

completely [2] [3]. The search engines embedded in those on-line platforms can help for

narrowing down the final objective seek by the user when it is clear or at least more or less

identifiable under some parameters. There are, however, cases where what is wanted by the

users is not even known by them, just something that is liked or interesting. This is a very

frequent situation when searching content for entertainment or recreation where, in general,

every time something is consumed it uses to be new, no matters if it is a game, film [4], book,

song, comic, etc. That does not mean some people does not like to repeat some of their past

experiences enjoying these more than one, but this case is more the exception than the rule. In

the world of entertainment the main trend for users is selecting something not previously

experienced. The quest for this different content is not necessarily a radical change; in fact,

there are some patterns about the preference of consumers. That latter covers from food to

interests in life. So, basically, what a person wants, enjoys or is interested in does not use to be

a random selection, but can be grouped in sets of similar content. It is not even unusual the

kind of entertainment selected by one person has even little variation.

1.1. Recommendation problem

With the arrival of globalization there is a humongous amount of offer to be consumed,

greater than the time to consume it. Just as a sample, YouTube generates around 300 hours of

video per minute [2]. That extrapolated to other cases like video games or books, means that it

is important to make the right selection, trying to guess which of those are going to satisfy the

most their consumers. In those specific cases, it is also an additional factor like the cost of

decision, so basically the most accurate in selecting the least waist of time and money.

Historically, those decisions have been made gathering information from friends and known

people who already have consumed them providing a direct feedback, but from some time ago

this task has tried to be automatized. This is how the recommendation problem is

introduced. It can be defined as the way of giving the most accurate prediction of a user's

preferences or probability of liking some specific items such as videos, music, books, hotels,

restaurants, online dating and any imaginable service that a platform can provide. In this

automatization process is where AI is introduced in a natural way because those have become

intelligent decisions.

1.2. Recommender systems

Recommender systems [5] is the term that covers all the automatized methods and

their implementations for predicting the interests, preferences or ratings that users would

apply to items if they were consuming them. It can be said that the way those systems act is

prescriptive, trying to determine what is likely to happen and what not, and then suggesting

8

the best option among all the available ones. These systems are very popular nowadays for its

extensive use in several online platforms related to entertainment, e-commerce and others like

Netflix, Amazon, Uber, YouTube, Spotify and many more. Those systems provide competitive

value for the companies using them. A prove of it is the Netflix Prize [6] for the best

collaborative filtering algorithm focused on users' predictions for films. The accuracy of these

recommender systems has become an important concern for the companies using them

because of the economic impact that these have in the quality service to their customers.

Recommendation systems try to solve the recommendation problem using data from enormous

quantities of users, these systems identify patterns and trends from different sources to have

the best predictions. This concept was firstly formally introduced in 1990 by the Swedish

computational linguistic Jussi Karlgren [7].

Depending of the nature of the platform where those systems are implemented,

sometimes there can be only a few items to be offered, but in general it is easy to find lots of

them. When the first case is true, the system only has to provide a list of the available options

that would match the desired request from users, but even in these cases it is interesting to

have some kind of prioritization criterion. That is specially important in the cases having lots of

positive recommendations. That leads to the situation where despite those recommender

systems are used in a prescriptive way, they are based in a predictive foundation. That is,

those systems try to predict the likelihood of a good reception of an option by a user applying

some kind of evaluable metric, more concretely sortable. This sortable metric is then used for

having the right order of preferences and presenting to the user only the most promising

candidates. This not only reduces the risk of offering something that could be rejected, but also

simplifies the total offer to the user.

At the actual literature it can be found several ways of generating recommendations, and

these can be grouped in different categories depending on the selected strategy for solving the

problem. Independently from the evaluating method used for knowing the users' preferences,

in general it can always be used an algorithm that somehow evaluates users' scores for every

item that may be offered to them. After all this sequence of evaluations, it is trivial to sort them

prioritizing the best scored in order to offer the first ones as the most likelihood alternatives.

There is a common basic characteristic for the several methods that are going to be

explained. All of them use historical information about the user related to the prediction of

items or rates. Basically this is using information equivalent to the one to be predicted. This

information is obtained directly from the user where the prediction is going to be made, or

sometimes from other similar users whom behaviour is considered (somehow) close to this

user. When using data from other users, their similarity to the one to be evaluated is based on

similar interests, rating of known items or other attributes that can be justified as correlated to

what is predicted.

1.3. Cold start

This is the given name to a well known problem associated with the recommender

systems and describe these situations where it cannot infer properly or at all because the lack

of enough information [8]. When this happens it is caused by the algorithm or the model facing

a situation with a new user, item or community.

9

1.3.1. New user

This is maybe the most common case in open communities; users join these and initially

there is virtually no information about the user rather what is required for the signing up.

Despite this situation of lack of needed information, users want to access and enjoy the

benefits of the recommendation system. That leads to one dilemma where the are two clear

options to consider:

1. The systems has not enough data for providing quality recommendations but must

provide them.

2. It is established that the system avoids to offer any recommendation until a minimum

threshold of data is available for guarantee enough accuracy.

Both scenarios lead to a risky situation. If the first case happens, it is likely that the user

will judge the overall quality of the recommender just by those inaccurate suggestions. That is

because not all the users will assume that the more their interact with the system the more it

will learn and improve future recommendations. That perception of poor quality service can

even finish in a churn of the user with its economic potential consequences. On another hand,

when the second decision is taken and no recommendation is given to novel users during some

time, the risk is not offering a valuable service and that may also lead to a bad global

perception of the platform.

A common solution applied in order to solve these issues is to query the new users about

some of their preferences. Obviously, that increases the signing process and in the worst cases

it could even produce the abandon of the process, so finding the minimum valuable information

that ensures the right balance between the accuracy of the suggestions and the time and

actions needed for joining the system is the key of this approach. As mentioned earlier, the

total amount of data needed for achieving this purpose is strongly related to the selected

model.

1.3.2. New item

Similarly to the new user situation, when a new item is include to be evaluated by users

in order to recommend it or not, it uses to happen a lack of information about the item; this is

because there are no previous (or enough) interactions. In these situations of little or no

interactions the recommender systems can only but provide poor quality suggestions or none

at all.

The dilemma with new items is similar to the case of new users, but if the full catalogue is

big enough, the impact should not be as bigger as one user with unknown preferences. The risk

is not concentrated in just one user, but spread among the different users where the item could

be recommended.

1.3.3. New community

This is the worst situation to be faced because there are not enough users for providing

the critical mass of data needed for quality predictions. In communities where the content is

also generated by the users, or somehow related to them, it can even happens that there also

no items or just few of them. That case is specifically complicated because it cannot be applied

the solutions for the previous situations.

10

1.3.4. Popularity bias

This situation [9] happens when there is not a flat distribution of interactions for all the

items. In other words, not all the items have an equal proportional fraction of the interactions.

This unequally distributed attention from the users is explained by the items' popularities; it is

easy to think about some books, films, video games, etc. that have become so popular that lots

of people have formed an opinion about them. This also affects in the opposite way, all the

popularity some items have is translated in lack of interest about other less known. Just as a

sample of this non-uniform distribution, the figure 1 shows the distribution of interactions per

item at the Movielens dataset [10].

Different popularities lead to different evolution of the data associated to these items. In

one hand the popular items, with lots of data, allow to refine predictions related to them more

accurately, increasing their probability of being recommended. This is not a bad situation at all

but give some competitive advantage to unpopular items that face the opposite situation;

because of the lack of interactions their evaluation is known to be less accurate than the

popular and their probability of being offered is smaller. Despite this logic depicted, this bias

has more or less impact depending on the algorithm selected for generating the

recommendations.

1.4. Problems to be considered

Like any other tasks where AI is introduced, the way to solve the problem is using the

maximum valuable amount of information in the most efficient manner. That is basically the

combination of two different but related dimensions. On one hand the information available

and on another note how well performs the use of this information. Despite it is not absurd

thinking that one can compensate the other, a completely lack of information makes impossible

to apply any insight at all. The problem does not have to be in such radical situation, but it is

sensible considering that there are situations where the available information is pretty close to

11

Figure 1. Distribution of users interactions per item

nothing. In such cases, the methods for obtaining insights from almost no information are not

as frequent as when there is a lot of information.

The problem of obtaining information can also be also considered from two different

angles about the available data. The first, earlier mentioned, it is just the availability; the

second one is the nature of this data. This nature also affects the way the information is

extracted from pure data and how it is articulated in order of synthesize valuable insights for

predicting the users' preferences. The available data can be structured, like rates provided by

users, or it can be unstructured like textual reviews about similar items somehow related to the

ones to be evaluated. There can be also other kinds of structured information like geolocation

or personal characteristics like age or gender among several other. All this means that

depending on the obtained data, the methods for processing and combining these can be very

different; so there is no one single best solution for any environment where the

recommendation problem is wanted to be solved. With that mindset it can be justified new

ways of facing the problem of the recommendations, not necessarily arguing a direct

comparison of performance with other actual methods, but rather because the suitability of

using one or another approach depending on the circumstances drawn by the available data.

1.5. Scope of this proposal

The approach proposed in this work is specially related to the problem of the cold start,

more concretely to the situation where there is little information or none at all known about the

user in order to make good predictions. As it will be detailed in next sections, the proposal

suggest a series of variants with the aim of extracting as much information from the user as

possible. That does not mean it is strictly reduced to this area, because the methodology

exposed is robust enough for providing reasonable good enough predictions in a wide range of

different availabilities of data. But on another hand, despite it is able to be used as a general

method, it has been introduced an extra effort in dealing and obtaining the best results on this

reduced area of very little knowledge from a user.

12

2. State of the art
As mentioned during the introduction, recommendation systems are not a virgin area and

several ideas has been developed, implemented and proven to be really efficient. This section

is intended to be a compilation of the most important approaches actually available for solving

the recommendation problem. Those are grouped in several categories depending on the

conceptual approach used for obtaining a solution; these are not necessarily applied in an

isolated way; it is not unusual to have a combination of several of them within a hybrid system.

That is for having a good performance but also for compensating the different advantages and

drawback from the methods used. Just as a sample of those, the cold start [8] problem has

different impacts depending on the method used.

There is not a natural differentiation of the actual methods presented in this section in

terms of the quantity of the available data. Those approaches are general and designed to

provide predictions in a whole spectrum of circumstances independently of the system's

knowledge about its users. A completely different thing is their performance in these different

situations of having more or less data so, in general, they provide the best results when

reasonable amounts of data are available. This quality is then affected when the information for

feeding the models becomes reduced, even facing situations where the predictions show

considerable error. It is because of this situation that this section covers several of those

methods, because they are not specifically designed to deal with small data cases but it also

falls within their scope to a greater o lesser extent.

The rational behind the categories and subgroups presented can be summarized as:

• Collaborative filtering as a way of predicting user's interests with the data obtained

from other users similar enough to this one.

• Content-based filtering bases the user's predictions about items on the data coming

from other previously related items.

• Hybrid recommender systems use combinations of pre-existing methods in order to

have better results than the combined methods alone.

• Location-based recommendation has the characteristic of giving a special weight to

the geolocation information about the user, using it for filtering and prioritizing the

results.

• Risk-aware takes very seriously into consideration the possible negative impact of bad

recommendations.

Finally, at the end of the section, there is a zoom on some experiments performed using

different approaches and an evaluation of their average error. This information will be used

later for a better understanding of the results of the proposed experiments for validating the

propossed approach.

13

2.1. Collaborative filtering

Collaborative filtering (CF) [11] is one of the most popular categories for classifying the

recommendation systems. There are two main interpretations [12] of CF depending on applying

a general overview or entering in some of the hypotheses applied:

• General definition. CF refers to the use of a combination of different methods that

requires collaboration from them; those methods involve different (in content and

nature) sources of information, metrics of evaluation for users, viewpoints and others.

• Detailed definition. CF is the method that allows to predict preferences and interests

for a user using information from similar users rather than from random ones.

Going deeper into the detailed definition, CF is based on the time immutability of the

user's preferences, so knowing these preferences from the past, they are expected to be valid

also for the future. The way of evaluating and categorizing those preferences (users' interests

representation) can be very different depending on the approach, but must be consistent for all

the users that form the knowledge domain. The data extracted from many users is then used

for predicting the interests, preferences and tastes about items they have not been related

before.

Network formed by users and items (specific case of films).
Users share films in common but also films have users in
common. Every user contributes to the films reviewed with
some kind of metric related to identify their preferences
towards some of the films.

The second big assumption for CFs is based on the existence of patterns among the users

that can be exploited for segmenting them or for defining similarities among them. When two

users (u and v) belong to a same segment, by definition they share some degree of

preferences/interests/tastes in comparison to users belonging to other groups. The known

information from one user can be used for his/her segmentation or for finding similar users.

This similar user v from the same segment provide new information about preferences

unknown for the user u. This preferences from v are used to predicted some of u's own

14

Figure 2. Conceptual representation of a rating network.

unknown ones with a expected greater accuracy compared to just using information from users

with lesser similarity to u.

Summarizing, the two common assumptions for CFs are:

1. Immutability. Tastes, likes, dislikes, preferences, motivations, etc. do not change over

time, or at least it happens so slowly that these can be considered constant during the

time range to be evaluated. This time range includes the pre-existing data from users

and when any evaluation of users' interests are performed.

2. Similarity. Tastes, preferences, etc. are not randomly distributed among the users,

those follow some aggregation patterns so given two users u and v, if they share some

of those preferences, it will be more probable to have similar preferences in other

matters compared to random users who do not have common points of interest.

Despite the described methodology is based in a user-centric conception, there is a
variant known as item-based collaborative filtering that applies equivalent principles to the
items and their similarity instead of the users. This method [14] was invented and successfully
applied since 1998 by Amazon.

The following sections focus on the user-centric approach of CFs and their main variants,
but many of those user-based collaborative filtering (UBCF) cases have their equivalent item-
based collaborative filtering (IBCF). The common nexus (but also their difference) for those
methods is how the similarity between users is evaluated. These sections do not pretend to be
a completely exhaustive work of every approach available but try to provide a comprehensive
explanation and categorization of them.

2.1.1. Memory-based CF

This can be used for both user-based and item-based CFs and bases the similarity on the

rates from users to items. When an unknown rate from user u to item i is wanted to be

predicted, this is done using some aggregation function over the rest of available ratings. This

aggregation function can be expressed in the following ways depending on if its a user-based

(1) or item-based (2) CF.

ru ,i=r (u , i ,U) (1)

ru ,i=r (u , i , I) (2)

For UBCFs the expression (1) is used and U identifies the set of closest users to u in terms

of similarity. For the IBCFs the variant (2) is applied where it is considered the I set of the most

similar items of i. In a general way, both (1) and (2) use the user u and item i for evaluating ru,i

(the rating from u to i). The final way ru,i is applied can vary. In its simplest form it can just be

the average of the ratings of the elements of U or I.

ru ,i=
1

|U|
⋅∑
v∈U

rv ,i (3)

ru ,i=
1
|I|

⋅∑
j∈I

ru , j (4)

15

Once again, it is be used (3) for UBCF or (4) for IBCF. These averages are calculated on

the cardinality of |U| or |I| and the rates from other users v to the same item i, denoted as rv,i

(3) or the rates ru,j (4) of the same user u to similar items j.
The next step in sophistication for this approach is introducing some kind of coefficient

that weights the contribution of every rate to the average. In those weighted averages one

common option for evaluating every one is a direct comparison of the similarity; the greater

this similarity is, the greater this weight is going to be. For the UBCFs case, it takes the

following form:

ru ,i=∑
v∈U

w v⋅rv ,i (5)

w v=
simil (u , v)

∑
υ∈U

|simil (u , υ)| (6)

The relation (6) is introduced for guarantee that the weights wv are normalized. That can

be demonstrated by developing their sum as:

∑
u '∈U

w u '= ∑
u '∈U

simil (u ,u ')

∑
υ∈U

|simil (u , υ)|
=

∑
u '∈U

simil (u ,u')

∑
υ∈U

|simil (u ,υ)|
=1 (7)

In order to apply the relation (7), it is required that any value of similarity is always

positive or zero. The equivalent to equations (5) and (6) for IBCFs are:

ru ,i=∑
j∈ I

wu⋅ru , j (8)

w j=
simil (i , j)

∑
ι∈I

|simil (i ,ι)| (9)

As can be seen in the previous equations (8) and (9), the criteria for evaluating the

similarity is a key element for these methods. The same way the ratings can be calculated

using different approaches, the same happens for the evaluation of similarity between pairs of

users or items. In the next sections it is be covered a wide collection of different computation

techniques for obtaining the similarity.

2.1.1.1. Correlation-based similarity

This is the case that covers any use of correlation for evaluating the similarity. One

frequent election for that is the Pearson correlation through the known rates of the users or

items. A general definition of the Pearson correlation coefficient for two variables is describing

it as the covariance of these two variables divided by the products of their standard deviations.

When applying this similarity to two users u and v it is used their known rates population; that

is every user is going to be defined by their rates. In this case the population Pearson

correlation coefficient of these tow users is named as ρu,v and takes the form:

16

ρu ,v=
∑
i∈I

(ru ,i− r̄ u)(r v ,i− r̄ v)

√∑
i∈I

(ru ,i− r̄u)
2⋅√∑

i∈ I

(r v ,i− r̄ v)
2

(10)

The equation (10) is evaluated trough the set I of common items (intersection) reviewed

by them both; this is important because the similarity is then evaluated using a common

ground. The variable r̄ u represents the average rates of user u to the common items in I,

and r̄ v is the equivalent for user v. When dealing with the item-based approach, the

similarities are applied between two items i and j; in this case the common ground for them is

the population of common users U that have reviewed them both. The equivalent version of

the equation (10) is then:

ρi , j=
∑
u∈U

(ru,i− r̄ i)(ru , j− r̄ j)

√∑
u∈U

(ru , i− r̄ i)
2⋅√∑

u∈U

(ru , j−r̄ j)
2

(11)

In the equation (11), the variable r̄ i represents the average rates to the item i from the

common users, and r̄ j is the equivalent for the item j.

2.1.1.2. Vector cosine-based similarity

This is the case where the similarity is evaluated as the cosine of the angle that two

different entities form when those are represented as vectors (figure 3). Let's consider the

items as the entities so the matrix R of users U and items I has the range |U|×|I|. The two

items i and j to be considered are represented by the vectors obtained from the i-th and the j-

th columns in matrix R. Having those two vectors represented as i⃗ and j⃗ , their cosine

(similarity) is then calculated as:

cos (i⃗ , j⃗)= i⃗ • j⃗
‖ i⃗‖⋅‖ j⃗‖

(12)

In the relation (12), the operator “•” is the scalar product of the two vectors and the used

notation ‖ i⃗‖ indicates the length of this vector.

17

2.1.2. Model-based CF

The main difference of this variant is the direct use of mathematical models for predicting

the unknown 3-tuples user-score-item. Instead of looking for a specific way of evaluating

according to the closest ones, the logic for predicting user scores is into the model itself. Those

models are fitted using the available data for users and items. The main benefit of this

approach is there are several generic models that can be applied according to what is more

convenient for every case; in general, what is more convenient uses to be defined as what is

more accurate in terms of predictions. The models can be data-mining algorithms or the

nowadays popular machine learning [13] ones.

The data-mining approach covers different variants that are pretty close to the dataset.

Those can be based on specific patterns, that means that the patterns are found in the

different datasets and situations that are wanted to be solved or these use to happen on a

reduced collection of datasets or just only one. Because of that, those methods are not

necessarily easy to generalize in different environments. Maybe a very specific behaviour can

be found in one concrete dataset and it is very accurate; that offers a good solution to this

concrete problem, but if it cannot be extended to other scopes then it is less useful than other

more general methods. Independently of that, it can be used some statistical models, like

linear or non-linear regressions that use known attributes from the users (and maybe also the

items) for predicting the ratings. Such solution is still bounded to the dataset structure, the

available attributes for users and items depend on the present information, but it is a higher

level of abstraction in the way of proposing a methodology. The problem domain is then

reduced to properly identify and measure the available attributes. There exists other general

solutions [15] covered by the the data-mining category like Bayesian networks, clustering

algorithms, regression-based and some others; those are introduced in the next sections.

2.1.2.1. Bayesian belief networks

Those are directed acyclic graphs (DAG) where nodes represent probabilities and the

edges define their conditional dependencies [16]. The probabilities contained into the nodes

are Bayesian variables that can represent from observable metrics to assumptions in the form

of hypotheses or unknown variables. When there are no nodes between nodes, the variables

they represent are conditionally independent [17]. These Bayesian belief networks (BNs) can

be used as classificatory models. The strengths of these models are the following:

18

Figure 3. Graphical representation of the

cosine similarity based on the angle formed

by two vectors (users).

• Inferring unobserved variables can be performed and used for solving probabilistic

queries.

• These networks can learn their parameters applying the principle of maximum entropy

under some circumstances.

• Can be used to perform inference.

2.1.2.2. Simple Bayesian CF

This model uses a naïve Bayes (NB) algorithm and its predictions to be for supporting CF.

The NB prediction is the one with highest probability among all the different classes evaluated;

these probabilities are calculated under the assumption that probabilities are independent for

every class.

NB is a conditional probability model [18] that assigns a probability to every possible

outcome (class) ck (from class set C) considering the features vector that are a collection of

independent variables x=(x1,x2,...,xn). This probability is denoted as p(ck | x1,x2,...,xn). The simple

Bayesian model deals with the problem of incomplete data calculating the probabilities from

observed data, and then selecting as prediction the class (outcome) with higher probability.

That is formally described as:

ck=arg max j∈C p (c j)∏
o∈O

P(X o=xo |c j) (13)

In order to avoid conditional probabilities with value 0, it is used additive smoothing [19]

setting the specific smoothing parameter to α=1.

There are some approaches [20] where the multi-class is converted to binary-class data in

order to evaluate boolean variables associated with the rating matrix. Despite this simplifies

the application of algorithm, it faces scalability problems because of the class reduction loss of

information. This is a real problem when tackling the usual scenario of multi-class data; in those

cases some results [21] show that using all the classes has better scalability than Pearson

correlation-based CF but worse accuracy than it.

2.1.2.3. NB-ELR and TAN-ELR

NB-ELR stands for naïve Bayes (NB) optimized by extended logistic regression (ELR),

whilst TAN-ELR means tree augmented naïve Bayes (TAN) optimized by ELR. Those are

advanced algorithms developed with the aim to face situations having incomplete data. Even

when this incompleteness of data is not the case, these two models use to provide better

accuracy when classifying [22], [23]. More concretely, there is a clear improvement compared

to simpler Bayesian algorithms, and this is even greater when this comparison includes other

memory-based methods. On another note, the drawback comes from the computational effort

introduced as result of a more sophisticated algorithm, this is directly translated into

consuming longer times for training the algorithms.

2.1.2.4. Bayesian belief networks with nested decision trees

This is a direct improvement in the inference capacity for Bayesian networks. It expands

the probability approach gathered in every of the network's node introducing the logic of

19

decision trees. More concretely, every of those nodes is associated to one item, and the

different buckets that the trees can use for predicting is one of the reachable states where a

different rate makes the difference between them.

The empirical analysis [24] of these algorithms proves better results in comparison to

vector cosine and clustering algorithms, but equivalent to memory-based when using the

Pearson correlation as similarity function.

2.1.2.5. Clustering

These methods cover the different clustering options used for CF. The clusters can be

defined as sets of elements where their internal similarities (every element vs other elements

in the same cluster) are statistically different to others clusters similarities. That ensures the

different clusters define groups of similar elements, no matter if those are users or items. Once

again, there are several candidates for becoming the similarity function and it is not unusual to

use the Pearson correlation or the Minkowski distance for that. This latter metric can be applied

to any n-dimensional hyperspace representing users or items, and can be interpreted as the

generalized transition between the Manhattan and the euclidean distance. Its mathematical

expression for two n-dimensional vectors u⃗ and v⃗ is:

d (u⃗ , v⃗)=(∑
i=1

n

|ui−vi|
p)

1
p (14)

The order p in the equation (14) is what modulates the Minkowski distance from the

Manhattan one (p=1) to the euclidean distance (p=2) but it is not limited to just those values.

In general, those clustering techniques are not completely exhaustive in the sense of looking

for the absolute optimal cluster distribution that minimizes a cost function. That is consequence

of the enormous quantity of configurations to be evaluated, so these methods use to apply

some kind of heuristic approach that leads to good enough solutions in the sense of a right

balance between computational effort and the quality of results.

Clustering (figure 4) is a popular practice in several data-mining and analytics domains,
so it has some degree of development and maturity. The clustering methods can be divided
into different categories depending on the strategy that their algorithms apply; these are:

• Hierarchical clustering, also known as connectivity-based clustering because it

considers that some objects are closely related to nearby neighbours rather than to
others further away. The way that distances between objects are computed changes
depending on the algorithm. It also depends on the criterion for linkage. These methods
do not provide a single result but a set of alternatives where the user can choose the
appropriate clusters. The main problem with this approach is it does not deal properly
with outliers.

• K-means clustering [25] is a centroid-based clustering where every cluster has a

centroid which is a central vector formed from all the vectors of the objects the cluster
contains. It applies a strategy for finding the cluster centres and assigning the different

objects to the closest one. In general, the total number of clusters denoted by k is a

parameter chosen initially by the user.

20

• Distribution-based clustering is a way of generating clusters identified by some kind

of distribution model that is applied to all the cluster members. Despite those methods
are able to generate complex clusters capturing how the objects' attributes depend and
are correlated, it is not always easy to find a distribution model for an empirical
distribution. On another hand, those also easily overfitted.

• Density-based clustering tries to identify and differentiate the areas with specific

densities; these areas can have different shapes as far as they can be distinguished
from the neighbour clusters. The main advantages of this method are that the
complexity for solving it is linear related to the number of elements and the solutions
are mainly deterministic except for the border points.

The clustering methods are not always used as the basis for a CF approach, sometimes
those are just used for preliminary studies. Some of their applications [26] are for partitioning
the data and then apply a memory-based method over this data. One advanced approach is
the flexible mixture model (FMM) that allows users and items to be clustered at the same time.
These FMM methods have been found to provide better accuracy [27] than the Pearson
correlation CFs among others. In general, clustering methods provide better scalability than
other CF methods; that is because they can focus on subsets (the clusters) instead of the whole
population.

Clustering performed with 20 groups represented
with different colours. The abscisses and
ordinates are normalized and nondimensional as
those variables are the result of a dimensional
reduction of the different attributes that define
every point. As can be observed, some of the
clusters are constituted just by one element.

21

Figure 4. Example of a clustering algorithm

extracted from Wikipedia.

https://en.wikipedia.org/wiki/File:SLINK-density-data.svg

2.1.2.6. Regression-based recommendation algorithms

As it was advanced at the beginning of the Model-based section, the regressions are

simple models that can predict continuous values instead of discrete ones. The attributes,

preferences or any other kind of information that can translated into a metric, can be used for

predicting the rates of the users, but in general what is used is just the known scores from

users [29]. Let's define Y as the matrix of ratings, so every yij is the rating of user i to item j, so

Y = (yij) ∈ ℝn × m. On the other hand, X is the matrix of ratings from m users to k items and

X = (xkj) ∈ ℝk × m. These two matrices of ratings from users can be related as

Y=Α X+β (15)

where Α is the coefficients matrix and β is the vector related to the noise bias to be corrected

in the equation. In the less conventional notation used, the addition of a vector to a matrix is

defined as Mij + βi, where M = XΑ . One frequent problem is that Y uses to be sparse, and in

order to solve that it has been developed a sparse factor analysis [28] where the missing

elements are replaced with some criteria from the default voting values. This approach

provides better scalability than the Pearson correlation-based CFs.

An alternative approach also based on regression was proposed by Vucetic and Obradovic

[29]; they evaluated the similarities on the items. For doing that it is needed a series of linear

models fitted using the standard regression method of least squares.

2.1.2.7. Markov decision processes

Markov decision processes (MDP) [31] could be described as the set of rules that describe

how systems [30] transition from one states into others. This excessive simple but intuitive

definition may help to understand the more rigorously speaking, MDP is a 4-tuple (S,A,R,P)

system where every of its elements is described as:

• S is a finite set of states that can be reached. This constrain in size is applied when

developing practical algorithms but it is not a limitation of the theory.

• A corresponds the set defining the actions, defined finite for the same reasons as S is.

• R is the function that allows to evaluate the rewards when transitioning from state s to z

because of the effect of an action a.

• P identifies the function that provides the probability at time t of transitionning from

state s to z at time t+1 by applying the action a.

The solution for this problem goes through finding a policy function π(s) that identifies

what action a should be taken when staying in state s. That function allows to fix the actions

and reduce the problem to a Markov chain [32], gathering the different probabilities of

transition P(st+1=z | st=s) into a Markov transition matrix. More concretely to the problem of

recommendations, it can be implemented through an iterative process of refinement of the

policy function π(s). That means that starting with an initial policy function

π0(s) = arg maxa A∈ R(s,a), it can be computed the reward value function Vi(s) of decisions

22

selected by π0(s). This reward value is then used for updating the policy π0(s) to a new policy

π1(s). This can be done iteratively from πi(s) to πi+1(s) achieving a convergence in a final optimal

policy [33].

A practical appliance for MDPs was proposed by Shani et al. [34] with the following
concrete identification of the elements forming it:

• The states defining the set S are k-tuples of items; some of them are unknown.

• Rewards are identified as the utility of selling an item (from the e-commerce

perspective) like the net-profit.

• The actions that populate A are the recommendations of items.

• The state z that follows an action (recommendation) a can be only accepting the

recommendation, select a non-recommended item or not taking anything at all.

The comparison [34] for this specific MDP was performed on an online bookstore in an A/B
testing where the baseline was not using any recommendation at all, and the metric of
improvement was the business case in terms of economic profit.

2.1.2.8. Latent semantic CF models

The main purpose of this technique is to identify users' profiles that identify prototypes

with specific and differentiated interests using latent class models. Those models relate the

observed variables to the latent (unobserved) ones; these latent variables are discrete. In

general, this technique provides better accuracy and scalability than the memory-based

methods [35].

Hofmann and Puzicha [27] introduced a specific proposal named aspect model. This

model obtains the latent class variables from the observed tuples formed by users and items,

23

Figure 5. Illustrative sample of a Markov decision

process.

considering those independent from each other for every of those latent variables. This has

been successfully applied to EachMovie [37] where the results show a better performance than

previous approaches like linear regression and nearest neighbour CF.

Other variations are the multinomial model [38] and multinomial mixture model

[39] where the former is a simple probabilistic one that assumes just one type of user, whilst

the latter considers there are several types and the rating variables are independent between

them and users' identities. Finally, the user rating profile (URP) model [38] combines

characteristics from the aspect model and multinomial mixture model with Latent Dirichlet

Allocation [40] obtaining better performance that just the aspect model or multinomial

mixtures model alone.

2.1.2.9. Other CF techniques based on models

Cohen et al. [36] proposed a model for determining the order of preferences rather than

the rates. This order learning CF is a model that uses available data for training a preference

function. Once this function is obtained, it is used for sorting new data affording a measure of

the likelihood of this preference by pairs of elements. Some experiments performed using

EachMovie's [37] data applying a greed-order algorithm have shown a better results than the

ones obtained with nearest neighbour CF or linear regression models.

When the focus is in the top-N recommendations rather than the whole options set, the

association rule based CF algorithms are specially applicable. Sarwar et al. [41] used

association rule mining algorithms for finding any good enough rules (according to a

established threshold) for predicting and taking the first N best ranked items. Another

implementation of this method was applied by Fu et al. [42] for recommending web pages

using the users' history of visited URLs for obtaining the association rules.

There are also models that have used maximum entropy [43] for predicting their

results. Those first segment the data with some kind of clustering analysis and after that, on

every cluster it is obtained a specific maximal entropy model.

A faster alternative to Bayesian belief networks are dependency networks [44], but at

the cost of worst accuracy at predictions. Those models are graphs describing probabilities

between conditions nested in their nodes.

Some other models are decision trees [45] which use these algorithms for classification,

or the horting [46] approach based on graphs where nodes represent users and the arcs are

the similarities between them. There are also other approaches like probabilistic principal

components analysis [47], matrix factorization [48] or multiple multiplicative factor

models [49].

2.2. Content-based filtering

This filtering process is based on the information from data associated to items relating

them to the users' profiles [50], once again in order to be able to predict their preferences.

From the item perspective, there is available information about its attributes. Those attributes

can be anything like title, category, genre or any available used for classifying them. Profiling

the user does not only include general information about him/her, but may also have records of

previous interactions with the recommender system. As part of this characteristic information

about the users, it is not unusual to explode textual records like reviews or opinions. Taking into

24

consideration these are based on unstructured information, there exist several techniques that

allow to synthesize them into concrete values and/or categories.

One interesting approach is learning from the user's profile rather than try to force the

user to provide one. This is usually done using machine learning techniques where the model is

able to learn, from some training data, to classify new cases. The drawback with those models

is they need to be feed with structured data, which is not necessarily how it is available. It is

usual to find textual descriptions or opinions about the items, so it is needed to apply some

transformation to the data in order to synthesize some specific metrics. That is not a trivial

problem as there are some word characteristics that complicates it; those are the polysemy

and the synonymy where there can be found words with several meanings for the former and

several words for the same meaning for the latter. There are strategies like semantic analysis

that using lexicons or ontologies is able to extract to some degree of precision the information

needed for feeding the ML models.

2.2.1. Keyword-based systems

One of the most popular representation for structuring users' texts is the TF-IDF (term

frequency-inverse document frequency) [51], it is used at 83% of recommender systems for

digital libraries. It is based on evaluating how many times a word appears in a text, but also

including some weights for specific words used very frequently because are the fundamentals

of the grammar. The way this is implemented use to be applied is with a Vector Space Model

(VSM) approach, which is basically a n-dimensional vector where every word from a selected

vocabulary is represented by one of those dimensions. These VSMs can be identified with texts

using some kind of correspondences like TF-IDF. This can defined in a more formal way like a

set of documents D={d1,d2,...,dN} usually called corpus and a selected dictionary T={t1,t2,...,tn}

that matches the VSM's dimension. It is a common practice to generate T from a selection of

the relevant terms, words or tokens found in D. Narrowing down into the definition of the

elements of D, those dj can be defined as dj={w1j,w2j,...,wnj} and every wkj is the obtained

weight of the term tk within the document dj. With that notation TF-IDF is calculated as:

TF-IDF(t k , d j)=TF(tk , d j)⋅log
|D|
nk

(16)

TF(t k , d j)=
f kj

max z f zj
(17)

where in equation (16) the cardinality |D| is the size of documents within the corpus, νk is the

frequency of documents where the term can be found. This frequency is different from f kj the

one that counts how many times the term tk appears in the document dj. It is a common

practice to apply cosine normalization to the expression (16) in order to refine the values of the
weights:

w kj=
TF-IDF(t k ,d j)

√∑
s=1

|T|

TF-IDF(t s , d j)
2

(18)

25

Those weights are important for calculating the similarity between documents, there are

some options for that but one common choice is the cosine-similarity that is defined as:

simil(d i , d j)=
∑
k

w ki⋅w kj

√∑
k

w ki
2⋅√∑

k

wkj
2

(19)

This similarity is used for determining the interest of a user to an item, and this is

possible because both profiles (user and item) are translated into vectors composed by

weights. There exists several cases of web recommender systems that successfully exploit

different kind of information available from the user:

• Letizia [52] is an add-on for web-browser able to track the user's navigation patterns

and uses the key-words found for deducing the user's preferences.

• Amalthaea [53] uses filtering agents feed by the user using pages that represent his/her

preferences.

• iWeb [54] introduces some innovations to the Amalthea's approach, including direct

feedback and disinterests from the users. It is also able to include a temporal

component for disinterests that can be evaluated as a progression in time.

For the specific domain of news filtering some samples among the most representatives

systems, there are NewT [55], PSUN [56], INFOrmer [57], NewsDude [58] or YourNews [59].

Some of them are able to deal with every kind of news falling in different

sections/categories/topics using different agents trained in this specific domain. NewT includes

the explicit feedback from users at articles (or parts of them), authors and sources. YourNews

uses term vectors from past consumed news for identifying the 100 terms with highest weights

and generate the prototype vectors.

As a different sample of application in other domain, LIBRA [60] is a recommender for

books that uses naïve Bayes on the description of products from Amazon. For movie

recommendation, it is worth noting INTIMATE [61] which uses text extracted from films'

synopses in IMDb. Movies2GO [62] has a similar approach but reducing the used synopses to

just the ones from the films rated by the user. In music recommendation, Pandora [63] uses

textual descriptions for its recommendation whilst FOAFing the music [64] extracts the

information from RSS specialised in music.

Main conclusions about keyword-based representation are their good performance when

there is enough data available. Despite of that, they do not include "semantic intelligence"

which is the next step for improving their performance.

2.2.2. Semantic Analysis

This is a refinement in the understanding of the texts which allows to capture more

specific details related to the language rather than just isolated terms. The aim for this

approach is more ambitious than previous methods as it is intended to provide the logic and

knowledge needed to understand natural language and reason about the documents' content.

26

There are two main categories for classify the existing systems, ontology-based and

encyclopedic-based depending on the data sources and structure used for feeding them.

The additional information extracted from texts can be obtained from its meaning or

context. Table 1 shows a sample with some categories associated to several names of

presidents of the USA. In order to be useful, the selected categories for enhancing the words

should be relevant for the specific knowledge domain to be explored. On another hand,

Figure 6 shows some extra features generated using Semantic Analysis, where the new

information provides a more detailed understanding about the role every specific word is

having within its sentence. This kind of more sophisticated analysis allows to refine the textual

information and to introduce details, but also requires more complexity for several dimensions,

like conceptually and technically.

Democrat Republican
Former

Governor

Former
Vice-

President

2-Full Terms
in Office Still Living

L.B. Johnson + - - + - -

Nixon - + - + - -

Ford - + - + - +

Carter + - + - - +

Reagan - + + - + -

Bush (sr.) - + - + - +

Clinton + - + - + +

Bush (jr.) - + + - - +

Table 1. Example of Semantic Features Analysis.

2.2.2.1. Ontology-based SA

In information science, an ontology covers one or several domains of knowledge where it

provides a representation, well defined categories, related concepts with properties and the

data and entities that support it. One good example of it is WordNet [65], a lexical database for

English that also has its content linked by concepts to other languages (EuroWordNet,

27

Figure 6. Sample of features

obtained from Semantic Analysis.

MultiWordNet, etc.). The following is a small sample of the most representative systems and a

brief description about them.

The first system (according to actual documentation) using sense-based representation of

its knowledge is SiteIF [66] and it uses MultiWordNet for exploring multilingual news web sites.

News are associated to MultiWordNet synsets generating a semantic network. The news to

evaluate are translated in the same way and compared using a semantic network value

technique [68]. ITR (ITem Recommender) is a multi-domain recommender that covers interests

like movies, books, music and others working in a similar way to SiteIF but adding some

differences in its data structure. It uses synsets directly from WordNet and introduces a vector

space model that generalizes the bag-of-words [69] to bag-of-synsets. One system worth to

mention is Quickstep [70] as it is focused on the academic research papers available on-line. It

uses as its basis ontology the DMOZ open directory project [71]. The way semantic is

introduced by Quickstep is by clustering (applying K-means) the papers using the paper topic.

Other systems like Interactive Digital Television [72] apply reasoning techniques for

recommending TV programs.

The success of the previous samples and others has helped WordNet to become the most

widely used lexical ontology for semantic interpretation, supporting that with their good

performance. This is based on the fact the lexical ontology is the corner stone when tackling a

specific domain, and for the general approach itself all studies including it have improved

results when compared to more traditional/basic content-based methods.

2.2.2.2. SA based on Encyclopedic Knowledge

With the different techniques for applying Natural Language Processing, it can be used

general knowledge databases like Wikipedia, Yahoo! Web Directory or the Open Directory

Project. The first one has been used for evaluate movie similarity at the Netflix Prize [6]

competition using k-nearest neighbour algorithms. Despite the results obtained are good, it

does not show a clear improvement in general accuracy when compared to other methods

actually implemented.

28

Figure 7. Fragment of a screenshot taken from the Wordnet home page

showing a definition of itself.

The actual status of these approaches is in early stage of study and development, those

seem to be very promising areas of research but there is not available any specially remarkable

result and even some of them have not been already implemented for profiling users.

2.2.3. User profiling techniques

The most popular models used for that fall within the category of machine learning. Those

models can learn from training documents and their accuracy can be estimated using

validation techniques like cross-validation [73]. As the final decision uses to be that a user is

interested or not in one specific item, it is reduced a classificatory problem with just two

classes. Nowadays, the development and popularity of machine learning is huge, this has been

specially boosted by the successful cases of use of deep learning. The next sections are just a

small summary of the most used ones rather than a complete collection.

2.2.3.1. Naïve Bayes

This is a probabilistic approach that has been explained in previous sections, but what

makes the difference is the variables used for its appliance. As it is a Bayesian classifier, it can

evaluate the probability of the two classes {c+,c-} (interest or no interest) using information

from documents. It has a technical problem related to data availability as the documents use to

be evaluated only once. That does not mean that cannot be evaluated but the statistical

robustness of the predictions is not good. For tackling this problem, it is introduced a known

false assumption that considers that all terms from document d are conditionally independent

between them. The rational behind this decision is that probabilities of terms can be estimated

individually instead of all together, what is very convenient for increasing the sampling used for

inference. Several results [74] show that this decision is justified in terms of obtaining good

results. Despite there are other specific ML methods that perform better than naïve Bayes, in

general it can be considered very efficient and easy to implement.

2.2.3.2. Relevance Feedback

This is a technique using feedback from users for improving the decisions of the

recommender systems. This feedback is related to known recommendations proposed

previously by the system and allows to tweak it in order to avoid those mistaken

recommendations and others similar to them in the future. The way this is implemented with

text categorization is a mature algorithm named Rocchio's formula [75]. This option is one of

the most used by content-based recommenders for this task.

When working with linear classifier models like logistic regressions, this Rocchio's can be

used for rectifying their predictions according to Rocchio's formula:

c⃗ i '=α⋅c⃗ i+
β

|D+|
⋅∑
c⃗ j∈D+

c⃗ j−
γ

|D-|
⋅∑
c⃗ j∈D-

c⃗ j (20)

where α, β and γ are the coefficients that modulate the impact (α) of the original vector c⃗ i ,

the set D+ of the positive feedback documents (β) and the set D- with negative feedback ones

(γ). The vector c⃗ i is the original classifier for the category ci and it is formed by the scalar

29

values of its weights c⃗ i=(w1 i ,w2 i ,... ,w|T|i) . where |T| is the cardinality of the vocabulary T. It

is a common choice to simply set =α 1.

2.2.3.3. Other methods

This last section related to content-based recommender systems is a small selection of
the most important ML models excluding the previous two methods (naïve Bayes and relevance
feedback).

Decision trees are widely used [76] modeles (not only in this scope) that provide some
benefits like the easiness to understand the underlying logic behind their "intelligence". Those
receive the name from their architecture based on nodes with nested branches connected to
new nodes in a non-cyclic descending way. The nodes include conditions to evaluate and the
different results (usually just a boolean value as true or false) are connected to one specific
branch that leads to the next node. Finally there are reached a terminal node that provides a
prediction instead of a new condition. The Figure 8 shows an example illustrating this
procedure. Those models are created partitioning the available training data in a recursive way
that selects the conditions that minimize the error obtained from the residuals, that is the error
from the difference of the model generated values and the observed ones. A similar model is
decision rules which operates in an close way but use to obtain more compact classifiers than
the former ones. That is because these try to explore all the available rules applicable to the
data.

Nearest neighbour is another of the widestly used models. These store samples from
training data in order to have a reference when comparing new items. This comparison is
performed using some kind of similarity function and the nearest neighbour or some of them
are used with their classes for determining which label should be applied to a new item. They
are very effective in terms of accuracy but from computational perspective these perform lots
of calculations as they need to compare every new item with all the pre-existing ones.

2.3. Hybrid recommender systems

Nowadays it has become popular to have recommender systems that combine different

approaches for obtaining better results. These different approaches include collaborative

filtering, content-based or any other that may provide an improvement. A priori there is no

known reason for limiting any method that can be combined for forming a hybrid method. In

general, evidence shows that hybrid methods perform better than single ones. One of the most

popular ones combines content-based models with CF recommenders. That is performed using

30

Figure 8. Example of a decision tree for selecting the best

recommendation approach.

the CF or the content-based one as base model and then adding the other one's

characteristics. Just as sample, one of the problems of content-based recommender systems is

the previously mentioned cold start; this can be solved introducing an additional method that

compensates this lack.

2.3.1. Hybrid CF and content-based recommenders

As has been introduced in previous sections, the cold start problem usually faced by

content-based models can be reduced combining one approach with a complementary method.

This is the case of the content-boosted CF algorithm that successfully mixes a naïve Bayes for

categorizing the content with a weighted Pearson correlation-based CF. It is generated a

pseudo rating matrix combining the values from the naïve Bayes and fill the missing values

with the latter model's predictions. It not only solves the cold start problem but also is a

solution for dealing the sparsity problem. Empirically there are similar approaches like

Greinemr et al. using TANELR [77] for the content prediction that have proven a performance

increase from the error reduction perspective [78].

2.3.2. Models combining CF with other recommender systems

One simple way of combining models is using switching hybrid recommenders that are

able to combine several predicting models according to certain criteria that ensure the best

model is used for every evaluation. Weighted hybrid recommenders use several models for

predicting and weights for combining their outcome. The way those weights are obtained using

different methods like weighted majority voting [79] or weighted average voting [80]. Other

methods worth to mention are meta-level recommenders [81], cascade hybrid recommenders

[82], mixed hybrid recommenders [83] among others.

As main conclusion about these approaches it has empirically proved that they generate

more accurate predictions than the combined methods applied alone. It is worth mentioning

that there is a special benefit in the cases of new users or items, where CF methods face more

difficulties.

2.3.3. Hybrid CF-only recommender systems

This section covers the hybrid systems formed exclusively by two CF different

approaches, more concretely the most important two, memory-based and model based. As

shown when introducing earlier hybrid models, the performance of their recommendations use

to be better than their isolated components. The following is just a small selection of two of

them:

• Personality diagnosis combines existing information with some randomness. It is

selected an active user from a random pick among all the known ones; this active user

represents the one his/her preferences are wanted to be predicted. The obtained

preferences of this active user are slightly smothered by introducing a little randomness

in their values. This active user is then used for evaluating the rates of different items. A

practical application of this hybrid method was investigated by Brees et al. [24] using

EachMovie [37] and CiteSeer [84], confirming the benefits of this CF method

combination.

• Probabilistic memory-based CF [85] is another hybrid sample with better accuracy

than stand-alone approaches like Pearson correlation-based CF or naïve Bayes. For

31

generating the predictions uses a distribution of all the ratings from known users. Some

technical issues like computation effort when having big databases are solved using

reduced representative subsets.

2.4. Location-based recommendation

As can be deduced from its name, this category of recommender systems gives an

important role to the location information obtained from the user, mainly from devices like

smartphones. This information is not only used for profiling the user but also, in the case of

physical items, to consider the nearest ones to the requester. These systems are used in

location-based social network (LBSN) like Foursquare, Gowalla, Yelp and others.

According to some authors [86] there are three main ways of calculating the similarity

function: similar users, similar friends and geographical distance.

The similar users way of scoring is decomposing it into a mathematical expression of the

probabilities of users visiting places. The function p(u,l) denotes this probability of user u and

the location l. Given two users u and v a set L of locations they could be interested, the

similarity is calculated as:

simil(u , v)=
∑
l∈L

p (u ,l)⋅p(v ,l)

√∑
l∈L

p(u , l)2⋅√∑
l∈L

p (v , l)2
(21)

Every one of the probabilities p(u,l) in equation (21) are obtained from applying

previously introduced approaches like user-based CF:

p(u , l)=
∑
v∈U

simil (u , v)⋅simil(u , l)

∑
v∈U

simil(u , v)
(22)

where U is the set of users. The similar friends variant uses the cosine similarity calculated

with the common connections (colleagues, friends, etc.) according to some social network/s
indicators as:

simil(u , v)=η
|Fu∩F v|
|Fu∪F v|

+(1−η)
|Lu∩Lv|
|Lu∪Lv|

(23)

where Fu, Fv, Lu and Lv are the friend and location sets for users u and v respectively. The

normalized parameter η [0,1] modulates the balance of the influences from friends and∈

places. Finally, the geographical distance approach uses it in an inverse proportion, so the
closer the distance the greater the similarity.

32

2.5. Risk-aware

This is a very reduced category for recommender systems where it is incorporated the

risk of proposing recommendations that could disturb somehow to the user. This is related to

the investment in time, effort or economical that the user could apply for trying a

recommendation. DRARS [87] is a system that incorporates this risk consideration using the

approach of the multi-armed bandit [88] in order to maximize the gain of its decisions.

2.6. Empirical performance

Some authors like Seroussi et al. [108] have performed experiments where several of the

previously explained approaches have been evaluated with real data. More concretely, Seroussi

et al. propose a MCMU (Multi Class, Multi User) model combining other previous models in a

weighted way. Some of the models just use scores from users, but others are able to include

textual information from reviews or even additional external sources like e-mails or others. It is

not a exhaustive check of the performance of all the available models but provides an

understanding of the errors that can be expected from several of the most important

approaches. Those results are introduced also for having a reference for evaluating the

experiments proposed in the next sections.

Rating-based Text-based

All films AIR AIT, AIP

Films commonly reviewed CRR CRT, CRP

Table 2. Classification of several ways of calculating the similarity.

The Table 2 contains a summary of the two main kinds of models evaluated by Seroussi

et al., depending on if their similarity evaluations of users is based on rates or texts. The

rating-based models only use information from the ratings, whilst in the other hand, the

text-based models exploit uniquely documents written by the users. The second criteria for

dividing these depends on if the similarity is calculated using all the films labelled by the users

or it is focused just in those films in common. The following is a brief description of the different

models used:

• Pan and Lee's [89] model for single users SCSU (Simple Class, Simple User) comparable

to content-based recommendation systems.

• MCMU combines different classifiers using some weights. This is described by the

equation (24), where rf,u is the rate of user u to the film f, μu is the average rate of this

user, σu is the standard deviation of these rates and wv are the weights associated to the

contribution of rates from other users. There are different ways of obtaining those

weights, but it is usually based on the use of the similarity function described in

equation (25). There the similarity must be greater than a threshold value smin in order

have a positive value for the weight wv.

33

rf ,u=μu+σu ∑
v∈U (wv

(∑v∈U

w v)
⋅
r f , v−μv

σv) (24)

w v={f (simil(u , v)) for simil (u , v)>smin

0 otherwise
(25)

• All Item Rating (AIR) uses ratings and evaluates the similarity taking into account to

what range from 1 to 10 they belong. If two users u and v have the ratings Ru and Rv,

more specifically the Ru.r and Rv,r represent all the ratings of those users for a very

specific value r. The Hellinger distance between users u and v compares them on every

range r ∈ {1,2,3,...,10}, one by one:

simil(u , v)=1−√ 1
2
∑
(r=1)

10 (√|Ru ,r|
|Ru|

−√|R v ,r|
|Rv|)

2

∈[0,1] (26)

• Co-reviewed Ratings (CRR) compares two users using the cosine similarity or the

Pearson correlation only with their common reviews.

• All Item Terms (AIT) uses available documents from users for evaluating the Jackard

coefficient as metric of their similarity.

• Co-reviewed Terms (CRT) uses a similar approach like AIT does but only with the

common films that every pair of films review.

• All Items PSP (AIP) proposes an equivalent to AIR (equation 26) but using the Hellinger

distance between PSP distributions. PSP (Positive Sentence Percentage) is a metric

introduced by Pang and Lee that evaluates the percentage of positive sentences among

all the available ones in a review.

• Co-reviewed PSP (CRP) is based on the Pearson correlation coefficients of the

calculated PSP on the commonly evaluated films.

The dataset used for the evaluation is the Prolific IMDb Users [108] where different

numbers of reviews have been considered, labelled and are used for calculating the similarities

and weights, and the rest (unlabelled) are tried to be predicted. Those results can be seen at

Figure 9 where it can be concluded that initially SCSU is the worst performing approach when

using little data but systematically reduces its error with a constant increment of available

labelled revies. EQW is an specific case of MCMU where all the weights are set with the same

normalized value. As can be observed, EQW performs better for small amount of data from

users but it does not take so much benefit from increasing the total number of rates used as

SCSU.

As can be directly observed at Figure 9, the evolution of the error through the amount of

labelled reviews evinces how the size of consumed information reduces the error. That happens

independently from the used model, despite some models benefits more or less of this. It is

remarkable the case of SCSU that is specially sensible to the quantity of information available.

34

Considering that its performance is systematically improved when using more and more data, it

can even cross some boundaries of MAE that the rest of models cannot achieve. It is in the

range going from 100 to 200 labelled reviews when it begins to be the most accurate model,

outperforming the rest. This scenario cannot even be considered small data as some other

models, like EQW, provide a similar result using just 50 of those labelled reviews. The other

models use to have closer behaviours, evolving in a more regular way. Independently from how

well they adapt to the increase of available information, it is proven that little information has a

negative impact in their performance. That it is specially remarkable with the situation of less

than 5 labelled reviews, that has not even been considered for review.

This image has been directly taken from [108], showed at page 9 of this

document.

2.7. Conclusions

As it has been exposed in the current section, there are several different approaches for

solving the recommendation problem and even combinations of them. Some of the most

advanced ones also use information obtained from reviews through some NLP that allows to

extract and structure the data for generating final metrics about the processed documents.

This is an interesting approach for trying to infer a user's rate for items directly from reviews. In

general, all the methods introduced have some maturity degree that ensures these are able to

be applicable when there is enough data from the users and/or items. It can be said that the

main trend is to use as much available data as possible and try to exploit more sophisticated

data sources, producing both usually an increment of the solution's complexity.

On the other side there are less mature solutions for dealing with the initial situations

where not so much information is known from the users and/or items. This is a situation where

every user-item interaction is really valuable because it makes the difference between nothing

and and very little information, or between a very little and a bit more of data. For the general

cases with a well known community of users and lots of interactions, having one more or less

data per user is not going to make a difference, or in other words, this difference is not going to

35

Figure 9. Similarity modelling experiment results for several approaches.

be considerable. This same situation changes completely when little or no data at all is

available for new users or items. It also has been explained why those initial scenarios are

important for providing a good recommendation to the users, so they perceive a quality in

service.

36

3. Hypotheses and objectives
This chapter contains the details about the proposal of the current work. For doing that,

first of all some used concepts and notations are introduced, and after this, it is presented the

frame hypotheses, some inspiration for selecting such a specific approach and, finally, the

objectives to be achieved.

As a basic context, must be said the focus of this work is applied just on all those

previously mentioned circumstances where there is almost no information about the users or

even none at all. Aligned with the more general definition of collaborative filters, this thesis

proposes a collection of approaches that try to extract any available information for improving

the accuracies of the predictions. Due to the lack of information in those cases, some of the

hypotheses proposed are based on a priori knowledge about what kind of results can be

expected and also how the proposed model of evaluation works.

The basis general notation used for the proposed approach includes users, entities and

scores understood as:

• User is every person that interacts with the recommendation system. Their preferences

about the different options depend on the user and the domain of the options. The users

are the receivers of the recommendations from these systems.

• Entity is the generic way of identifying every item/entity/choice that can be offered to

the users as alternatives to be considered. These options are the recommended (or

omitted from recommendation) objects, depending on some criteria of the expected

acceptance from the user to them.

• Score is the numerical metric that identifies the user's acceptance/satisfaction/liking to

options. It can be only one real expected score from one user to one option.

When users are mentioned, it is always referred as a set of users U of size |U|. The

same applies to the entities, which are all covered within the set O. The reason for using Ο

(omicron) to define the entities is because the translation of entity into Greek is . Forοντότητα

the scores, as those go from every user u from U to the available entities |O|, it is expected

have a total size of |S|=|U|⋅|O| for all the users and entities, but this is just its upper limit.

That is because there are not necessarily one score per all the combinations of user-entity; so

in general it will be easier express the scores in terms of the users. Every user ui has associated

a set of scores Si in the form of:

S i={s i1,s i2, si3, ... , sim } (27)

In general, for the following sections, the use of indices i and j will be used exclusively for

referring to the i-th user the former and the j-th entity the latter. Using that notation, every

score that is an element of Si is denoted as sij. In general, the cardinalities |Si| may be

different for different users ui and uk, so |Si|≠|Sk|.

37

3.1. Hypotheses

Once the notation and concepts are specified, the fundaments, in terms of hypotheses for

this work are summarized and described as:

• No-a-priori bias. Given an open community and a set of users participating being part

of this, it is not considered any pre-existing bias that could filter the profiles of users in

terms of preferring some entities rather than others. That is the likelihood of having one

or other user profile and preferences depends only on the empirical data but not in a

policy that restricts or bias them.

• Archetypes. In this community it is expected to exists similarities between users in

terms of preferences and perception of the available entities. There are not expected

completely random and equidistant distribution of users, all of them equally similar and

distinct between comparing by random users. That is translated in the assumption of

the existence of several archetypes representing some of the users interests.

• Multiple profiling. The way a user can be profiled is by some traits resembling him/her

to the available archetypes. Those traits/similarities to the archetypes are not exclusive,

so a user can be define with several or all the archetypes having some of them more or

less relevance determining the user. Every user can be considered a specific

combination of archetypes.

The reasons and motivation for the previous hypotheses are variated. The no-a-priori bias

proposes a pure data driven approach where the results cannot be advanced and are

completely dependant on the dataset (community) that is evaluated. The archetypes in

combination with the multiple profiling are the basis and foundation of the present exercise and

make the main difference with any other pre-existing approaches. As so many other works like

the collaborative filtering consider the similarities with other isolated users, one by one, this

approach looks for these similarities in abstract groups that simplify their behaviour. At the

same time, combining the archetypes for defining unique users also provides a flexible feature

model for specifying every user with the required degree of resolution in terms of preferences.

On another note, this different traits/archetypes are a easier way of understanding why a user

has the preferences it has and why some known entities are indicators of the motivation toward

other entities.

For providing a good context and background for the additional details about the

proposed approach, it is exposed before two main sources of inspiration for that. Those are

presented in the next sections.

3.3.1. Eigenfaces

This is the main source of influence for the proposed method. Eigenfaces [90] was an idea

developed by Sirovich and Kirby in 1987 for dealing with the problem of representing human

face traits. After them, Matthew Turk and Alex Pentland applied it [91] for face recognition.

When working with training images of faces, the dimension of this dataset can be reduced

using a smaller basis of images that can be combined for representing the original dataset. The

different features of the faces are distributed on these eigenfaces, so every face can be

reproduced as a linear combination of those standard eigenfaces. Just as an easy example, let’s

suppose a dataset reduced to 3 eigenfaces where the first real human face is composed from

38

50% of eigenface 1, 17% of eigenface 2 and -13% of eigenface 3. The contribution of the

eigenfaces can be negative as some of the features they contain can be found in more than

one eigenface. If eigenface 1 has two main features (A and B) but eigenface 2 has only this B

feature, the only way of representing the feature A is combining eigenface 1 minus eigenface 3.

Despite those are not real samples, these can help to understand why the contributions of

eigenfaces can have values not necessarily bounded from 0% to 100%.

The way the eigenfaces are generated is applying principal component analysis (PCA)

[92] to an initial dataset of human faces. This dataset should be big enough for containing all

the features that would like to be captured by the eigenfaces. More formally, when having a set

of images {Γ1,Γ2,...,ΓM} it can be defined the average face as:

Ψ= 1
M

∑
i=1

M

Γ i (28)

 that can be used to redefined the whole set of images one by one as:

Φ=Γi−Ψ (29)

Using PCA, it can be obtained a set of orthogonal eigenvectors uk and their associated

eigenvalues λk allowing to form the covariance matrix C as:

C= 1
M

∑
I=1

M

ΦiΦi
T=AAT (30)

The set of weights ΩT=(w1 ,w2,. ..,wM ') that define how a face is composed based on the

obtained eigenvectors uk are wk and are calculated as:

w k=uk
T (Γ−Ψ) (31)

This approach not only reduces the dimensionality of the problem but empirically

frequently happens that not many eigenfaces are needed in general for defining a human face.

It also uses to happen that the eigenfaces obtained show something resembling a human face.

That is because every eigenface could represent some characteristic that can be present in

several images of faces but not easily interpreted as a basic human trait. On another hand, it is

fairly invariant when it is used for reducing big datasets. Just as a sample, this can be seen in

the Figure 10 (extracted from [91])showing a real extraction of 4 eigenfaces obtained from

real experiments.

The way eigenfaces are obtained using PCE is applying an orthogonal transformation to

the training dataset in order to extract a set of images that are linearly uncorrelated. That

means despite the faces images from the dataset can be reproduced as a linear combination of

the found eigenfaces, those cannot be reproduced using themselves. In other words, an

eigenface cannot be generated as a linear combination of the rest of them, those are

orthogonal.

39

Despite this technique has been mainly developed and tested within the domain of facial

recognition it has other applications like handwriting and voice recognition, medical imaging

analysis and other related to communication like voice recognition, lip reading and

interpretation of sing language. Because of this historical relation with facial recognition, this

area has been specially developed achieving the best improvements there. Anyway, if the test

dataset is considerable greater than the generating dataset it is not unlikely to have failures for

identifying the new faces. The process of face recognition is performed through five main steps:

1. The training dataset is used for generating the vector base (eigenfaces).

2. Every face of the training dataset is described by the set of weights indicating the

contribution of the eigenfaces.

3. New faces are also decomposed into the previous eigenfaces for obtaining the

weights of the new samples.

4. Those new weights are compared with weights from training using a distance

metric.

5. The closest face in terms of weights is identified as the recognized image.

As mentioned, the applicability range of this approach suggests that it may be used

successfully for other domains; at least, those related to human activities where there can be

found some kind of correlation between the activity. That applies directly to human interests

40

Figure 10. Example of some real eigenfaces. Image

extracted from [91]

where despite the enormous diversity, those are not completely random and can easily fall in

some kind of predefined categories.

3.1.2. Quantum superposition

This principle of quantum mechanics has a less obvious and direct influence to the

eigenclusters methodology when compared to eigenfaces. In a completely different way

compared to what happens in classical mechanics, the quantum state of a system can be

represented as the sum of different quantum states. An equivalent situation in classical physics

would be the mechanical or electromagnetic waves that also can be formed as the result of

combination of several waves of their own nature.

 The electron e- spin (intrinsic angular momentum) [93] is one of the simplest cases that

can be used for explaining this. This spin can take only values 1/2 and -1/2 for the electron, and

those are used to be represented by the quantum states | and | . Using these two states, a↑⟩ ↓⟩

more general state for an electron e- can be defined using two coefficients c↑ and c↓ as:

|ψ ⟩=c↑|↑ ⟩+c↓|↓ ⟩ (32)

These two coefficients in (32) are complex numbers related to the probabilities of finding

the electron e- in one of the two states; more concretely those are |c↑|
2 for the state |↑⟩

and |c↓|
2 for the state |↓⟩. As the electron must be detected in one of these to states, the

total probability has to be 1, so |c↑|
2+|c↓|

2=1 is a mandatory constrain. When generalizing this

to more complete scenarios and other particles, the states can be defined as:

|Ψ(t)⟩=∑
n

Cn(t)|Φn ⟩ (33)

In equation (33), |Ψ(t)⟩ represents the state of the particle at any time t and the

different coefficients Cn(t) again take complex values. This definition (33) is only valid for the

cases where n takes discrete values. In an equivalent situation comparable to the electron's

example, the n different coefficients evaluate the probabilities of finding the system at the

state |Φn ⟩ through the time. These probabilities are calculated as |Cn(t)|
2
. Taking into

account the constrain about covering the total probability of detecting the system with one of

the different states, it must be satisfied that:

∑
n

|Cn(t)|
2
=1 (34)

The physical interpretation of this quantum superposition and the probabilities is the

interesting point for the proposed approach of eigenclusters. There are several states where

the system can be found; those states can be understood as a description of the system, and

the right values of the coefficients Cn(t) determine any prediction to be done about the

system at any future time t. In the quantum theory, the way of obtaining the states is solving

the Schrödinger equation [94]:

41

i ℏ ∂
∂ t

|ψ (t)⟩=Ĥ|ψ (t)⟩ (35)

In this Schrödinger equation (35) the operator Ĥ is called the Hamiltonian and

represents the total energy of the system; it sums the kinetic and potential energies for all the

particles contained in the system. Despite that when working with eigenclusters the way those

are obtained is not based in this approach at all, when there is little information about the users

the different clusters representing them can be seen as the observed profiles that can describe

the users behaviours. There is a parallelism between the clusters and the states as they both

are the different possibilities that a user or a system can show. In the case of clusters is clear

that users are intended to be profiled being influenced by more than one cluster at one; what is

exactly the equivalent of the quantum superposition principle. That would became more

important when tackling those cases where there is very little or not at all information about

the user and using probabilities is the way to statistically try to reduce the error of the

predictions. The equivalent of coefficients Cn(t) in quantum mechanics would be interpreted

in the eigenclusters approach like the weights wik, despite the later ones do not depend on time

t. Finally, the last difference is those weights can be only sometimes obtained from a

probabilistic approach, but in general do not have a probabilistic interpretation, so there is no

need to apply a probability constrain like (34) to them.

The Figure 11 shows a conceptual explanation of the quantum superposition for an easy

understanding of the concept at high level. For the classical mechanics the state of a system is

a perfectly determined situation that lacks of any ambiguity. Oppositely to that, in the world of

quantum mechanics the final state can be a combination of more basic states. It can be even

found a different set of convenient base states for representing the combined states. The

Figure 12 shows how this can be interpreted when working with two wave functions

associated to a pair of states. The final wave function is itself a linear combination of the two

basis wave functions in the proportion of the coefficients associated with the states. Regardless

this interpretation is fully accepted, it has been historically discussed by some important

physicists like Albert Einstein or Erwin Schrödinger. This later scientists created the paradox of

the Schrödinger's cat as a way of criticizing this concept of quantum superposition. Basically,

this critics presents a hypothetical scenario where a cat staying into a closed box is under the

superposition of two clear states. In a very simplified version, into the box there is also a poison

able to kill the cat and this can only be activated by an atom in one specific state. For instance

a decaying atom emitting a concrete radiation measured by a Geiger counter. As this

(hypothetical and simplified) atom can be in both states at once, the poison can be liberated or

42

Figure 11. Classic states compared to quantum superposition.

not, producing a simultaneous reality where the cat is also in a superposed state of being dead

or alive.

3.1.3. Eigenclusters

This is the proposed method in this work. As has previously explained, it is a variant of

collaborative filtering that introduces some new ideas about how to profile users, even when

there is very reduced information about them. Some CF approaches use direct information

about the closest neighbours in terms of similarity and some of the more sophisticated CFs

apply some kind of segmentation that identifies every user with one specific group or cluster

depending on the user's preferences. This assumption, proven to be statistically right, can be

generalized starting from the point there exists at least a cluster that represents the user.

Despite this basic assumption seems sensible, it constrains the number of clusters to profiling

the user to just only one. A priori there is no further justification for selecting just one cluster;

this is an assumption that simplifies the algorithm but not necessarily reflects the reality. This

proposal explores the fact that a user can be profiled as a linear combination of different

categories. In other words, a user can be identified with one group of users to some degree, but

it also can be identified to other groups sharing other preferences with them. Similarly to a

multidimensional space where a point is determined by several coordinates that perfectly

define it, this different grade of identification of a user with every one of the clusters can be

seen as a vector that identifies every user with the right precision. The selected name for this

method, eigenclusters is inspired in the eigenfaces approach explained earlier. For both cases

a dimension reduction is applied for representing the training dataset.

3.2. Objectives

Given an open community of users where there are several entities that can be offered to

them our methodology eigenclusters has the aim of predicting the expected scores these users

would give to that entities. Those predictions are expected to have an acceptable accuracy and

be purely based on the hypotheses introduced previously. It will be also added some

assumptions and constrains, fully compatible with the mentioned hypotheses, in order to

improve the overall performance of the predictions.

The main goal when introducing this method is to provide a new perspective and a

different way of solving the problem of recommendation. Because eigenclusters propose an

intuitive methodology that also minimizes the requirements of information needed for applying

43

Figure 12. Quantum superposition of wave

functions from basic states.

it, this is intended to be a good basis, a corner stone upon it can be built more sophisticated

systems that use it and (maybe) combine its results with other complementary methods.

It is not intended to challenge the state of the art of the most outperforming models, but

rather than that just achieve a reasonable good results. Those general results evaluated in

some standard datasets do not have to provide the least error but one that is acceptable in real

environments.

One specific objective for this methodology is being able to generate results with

reduced errors in those specific cases where the information is really reduced. These results

should be small enough for a system in production being able to provide active

recommendations with clearly more successful cases than mistakes.

The last of the objectives is proposed to be achieved through the fulfilment of the

previous ones, using them as a proof of the viability of the general proposal, the existence of

archetypes being able to be decomposed into eigenclusters.

44

4. Our proposal: A recommender system based on
eigenclusters

As a remainder of what has been exposed previously, a simple way of understanding

eigenclusters is to consider that there are some user archetypes that represent the main

different behaviours of users. Each one of those archetypes may have more or less users

identified by it, so some profiles could be more popular than others. These would be applicable

to lots of users whilst other archetypes only represent some minor groups. There is no initial

restriction about the size of this clusters in terms of users, so they can have similar number of

users or not at all. Here lays the main difference to other statistical approaches, what has been

shown in the state of the art is a set of methods that predict the preferences/rates by

averaging the closer neighbours, one or several of them. This method is more focused on the

qualities or traits that define them as a group instead of their individual behaviour. Those

qualities are captured by the clusters and the user’s preferences/rates are then evaluated by

this cluster influence rather than individual contributions. It moves the contribution from

closest users to contribution of closest clusters. These clusters can be identified as an ideal

profile, not a real one; in other words, something that defines one user with a very extreme

tastes. It seems very rare to happen that there could be any user only defined by one cluster

and to some degree maybe there can be more inclination to belong to one cluster than to

other, but this purity in behaviour seems very unlikely to happen in a absolute way as people

are not 100% equal ones to the others, even in the cases where people share lots of treats in

common; there is always some kind of difference.

From the mathematical point of view, this approach can also be interpreted as a

compensation to the possible dataset bias. There is no reason for thinking that all the different

trends, interests and opinions are equally represented. That means that some groups with

some specific preferences can be more or less eager to share their opinion. That can happen by

social discrimination; when someone has unpopular preferences from the point of view of social

acceptance, exposing those interests to others can have some negative reaction from

antagonist groups. It is not clear how those interactions work but it is reasonable thinking that

it can be expected some effect in the distribution or presence of different opinions, tastes and

points of views. Translating this to statistical terms means that there could be an over-

representation of interests that cannot be applied to the majority of users, even if those

interests are the majority. On another note, it also may happen that important groups in terms

of presence would have very few recorded interactions representing they interests. If that

unbalance between recorded interests and real users’ interests is present, working with

archetypes identified with some groups of interests can help to balance back the predictions.

That works when predicting using clusters instead of total number of recorded interactions.

According to this introduced logic, another point for taking into account is the total

number |C| of defined clusters. Let’s suppose there are really a set A of archetypes with

cardinality |A|, but the chosen cluster set C is smaller, so |C| < |A|. In that case, some

of the archetypes are going to be distributed among other clusters, it is not going to be a

cluster per archetype. When that happens, the cluster representing several archetypes is going

to be an weighted average of the profiles of the different users described by these archetypes.

45

Obviously, the only way for those archetypes to be represented properly is choosing a value

of |C| that at least is as great as |A|.
For the previously explained cases of a user belonging to only one of the clusters, a very

common representation of him/her is using a vector w⃗=(w1,. .. ,w k) where every w i∈{0,1}
and all of them satisfying the following constrain:

∑
i=1

K

wi=1 (36)

With the eigenclusters approach this representation is still valid, but rather than

restricting w i∈{0,1}, the new paradigm is defined mainly as w i∈(0,1) and, despite the

extreme values 0 and 1 are (in theory) allowed, technically those are seldom seen. This

statement obviously excludes the case where there exists only one cluster. This approach is

inspired in two main precedents used with successful results, eigenfaces and quantum

superposition. Finally, it also will be shown some approaches where it is applied even less

restricting constrains like w i∈(−1,1) just as a sample.

As an advanced of the next sections, eigenclusters is more similar to eigenfaces than

quantum superposition. Like in the former, clusters are used and combined as representative

traits of the user that specially define him/her. In quantum superposition, when a measure is

performed, only one of the states is finally observed and it becomes the new state describing

the system. Anyway, in our approach several questions are raised about those clusters:

1. How can those clusters be found?

2. How much a user should belong to each cluster?

3. How these weights of users belonging to different clusters can be articulated for

generating predictions?

From the last three questions, the last one is the only one that can be defined in a very
specific way that will be always the same for all the cases. Knowing that helps to answer the
first two questions. Intuitively, every cluster can make a prediction for one or several entities;
there is no limit for how many entities a cluster can evaluate. Let's define a set of clusters

named as C and with cardinality |C|. For every cluster ck belonging to C where ∀k ∈ [1,|C|]

there is an associated score set named Zk:

Zk={zk 1 , zk 2 , zk 3, ... , zkm} (37)

In (37) the value m is the cardinality of the set of entities |O|, so |Zk|=|O| and is a

constant depending on the size of the used dataset. In previous studies where every user may

belong only to one cluster, the different values {zk 1 , zk 2 , zk 3 , ..., zkm } can be interpreted as the

scores that every user belonging to this k-th cluster would apply for every entity. In the actual

case, where every user may belong to several (or even all) cluster to some degree, this

definition gets smoother. It can be still interpreted as the scores coming from the cluster ck ,

but more concretely it is the contribution of cluster ck to the expected scores for every of its

46

users. For gathering all this contributions together in one final predicted score it is needed to

define how much every user belongs to every cluster.

The way a user is categorized by the clusters in C is given by w⃗=(w1 , ...,w|C|) and with

those vectors it is defined the weight matrix W with dimension |U|×|C|. This matrix defines

every user per row and every k-th column is the weight (equal to the user's wk) that identifies

the user with the cluster ck. According to this notation, every user ui correlated to

cluster ck now defines a double-indexed weight w ik , so every user's profile can be defined

as:

ui=(w i1, wi2,wi3, ... ,wi|C|) (38)

Now, (37) and (38) can be related to predict the final scores of user ui for any j-th entity.

Let's be ŷ ij this final evaluated score, it is calculated according to:

ŷ ij=∑
k=1

K

w ik⋅zkj+αi (39)

According to (39), depending on the values of w ik , zkj could be interpreted as a score or

a contribution to the final score (a partial score from the clusters). This interpretation helps to

understand the different values that w ik and zkj may have. Intuitively it can be expected

that w ik are normalized but despite it would bring some elegance in the approach, it is not

mandatory. It can be easily understood that some values could be 0, but nothing prohibits

having negative values. Further explanation on this cases will be introduced in the next parts.

On another note, despite that zkj would seem to be reduced to the range of the different

values of the scores, once again, a priori there is no restriction what values those may have.

What it is clear, is that according to (39) the election of w ik and zkj needs to provide the

most accurate values for ŷ ij . Despite of the different interpretation for the values zkj , for

simplicity, the different vectors Zk will be always named cluster scores vector and it will be

always a vector Zk associated to every cluster ck .

4.1. How to generate clusters

There are several techniques that can be applied for clustering. Some of them can seem

more logical a priori than others, but for this specific exercise the optimal clustering method

would be the one that maximizes the accuracy of the predicted preferences using all the

clusters. As the clusters are defined for all the users, and are going to be immutable, its

definition is going to affect them all. It is also remarkable that for defining the optimal

clustering, first it must to be known how users are correlated to the clusters, and how the

user's information about the cluster is going to be used for prediction. This is the fitness

function that will be defined latter. A perfect optimal clustering algorithm would begin with the

whole population of users U, distributing them in different clusters and selecting the one that

47

maximizes this fitness function. If |C| is the total number of clusters created, and |U| the

total number of users, it should be always considered that |C|<|U|. It does not make any

sense to have more clusters than users. If that would be the case, in theory it may be

generated a unique cluster per user that only defines this user's preferences. That situation

would break the principle of collaboration because if every user only needs one cluster to

define him/her, because this cluster is adapted to his/her needs there will be no other users

belonging to it. Other users also would have their own totally customised cluster and lead to

use clusters with only the information of the user they define. Knowing that, |C|<|U| will

force the users to share their clusters, it can be explored different values of |C| that satisfy

this constrain.

Even considering every user can belong to different clusters, it would be nice to define

clusters that identify one specific profile as much differentiated from the others as possible.

The rational behind that is equivalent to find an orthonormal vector basis; despite there are

several equivalent elections, selecting a right one can simplify the representation of any

element of the subspace. In this case, the elements are the different users' profiles, more

concretely their preferences.

Because clustering based on maximizing the accuracy of the fitness function comes with

a heavy computational cost, it is specially interesting look for some kind of heuristic method for

segmenting the users able to provide good enough results. In the next sections it is going to be

exposed several intuitive ideas for clustering the users.

4.1.1. Partition sorted by average scores

This is a basic distribution of the entities for defining the ck clusters instead of using the

users themselves. Given all the average scores for every entity j, those are sorted in

descendant order and distributed within the K different buckets. The value K is equivalent

to |C|. This distribution is a partition, so every entity is associated to only one cluster. This

can be intuitively understood as a categorization of entities in groups of same average score,

from top rated to the lowest rated ones. Every cluster ck has then an associated constant

number of |ck| entities except the last one |cK| according to:

|ck|=⌊ nK ⌋ (40)

|c K|=n−K ⌊ nK ⌋ (41)

Looking for the same number of entities for every cluster, |ck| is the entire part of

dividing n per K. As n may not be a multiple of K, this difference is gathered in the last

cluster |cK| that captures the remainder of the division n/K, modulo operation [95]. The set of

entities associated to every cluster ck defines them as ck={ok 1, ok 2, ok3 , ... , ok|c k|
} with the

previously determined cardinality. The different elements okl represent the l-th entity belonging

to the cluster ck. The way these entities okl are identified comes from the partially ordered set

48

[96] S= {o1 , o2 ,... , o|S|} . Those are sorted using as ordering criterion their average score, so o1

is always the entity with the highest average score, whilst om is always the entity with the

lowest average score. The formal definition for the binary relation ≤ for comparing two entities

oa and ob is evaluated as their average score from all the users. That is oa≤ob is true only if

the average score of oa is equal or lesser than the average score of ob. From this partially

ordered set S the first |c1| entities belong only to c1, while the next |c2| entities belong only

to c2. This sequence ensures that o1 always belongs to the first cluster c1 and om always belongs

to the last cluster cK. The associated cluster scores vectors Zk have their elements

Zk={zk 1 , zk 2 , zk 3 , ... , zk|S|} defining every zkj according the following evaluation:

zkj={avg (f j) if f j∈ck

0 if f j∉ck

(42)

As this method uses a partition for the entities (42), every entity is evaluated only by one

cluster. Different users will predict the same entities using their associated clusters, just

weighting by their personal values according to (39).

4.1.2. Partition sorted by standard deviation of scores
This distribution is very similar to the previously introduced partition sorted by average

scores but with the difference of using the standard deviation of the entities scores instead of

the average of the scores for sorting the entities. The number of clusters K and their associated

cardinalities |ck| defined in (40) and (41) and everything else is exactly the same as

described in the partition sorted by average scores except the sorting criterion, defined by the

binary relation ≤ with a different evaluation. Given two entities oa and ob, let's define their

respective standard deviation for their scores as σ a and σb . The binary relation applied as

oa≤ob is only true when σ a≤σb is also true, and false otherwise.

The way the different components zkj for the associated vectors Zk are defined is also

the same as it is described in (42).

4.1.3. Binary partition sorted by average scores

This way of obtaining the clusters is, once again, equivalent to partition sorted by

average scores, but with one big difference on how the vectors Zk={zk 1 , zk 2 , zk 3 , ..., zk|S|} are

evaluated. Instead of using (42), the next criterion is applied:

zkj={1 if f j∈ck

0 if f j∉ck

(43)

The rational sustaining this segmentation approach (43) is that every cluster ck will

contribute with the same value 1 for all the entities included within it; or 0 otherwise. That

means several entities with a very close average scores fall within the same cluster ck and the

49

prediction for a given user is be the same for those entities. As it is also a partition, all the

entities within ck share the same prediction for a user despite it will be different predictions for

different users because of the weights and (39). This is because the contributions of any other

cluster that is not ck is zero because (43), so every entity is evaluated only using one cluster.

4.1.4. Binary partition sorted by standard deviation of scores

This is also based on a previously introduced clustering method, concretely on partition

sorted by standard deviation of scores. The relation is equivalent to the one between binary

partition sorted by average scores and partition sorted by average scores. In this case all the

way the clusters are calculated is quite equivalent to partition sorted by standard deviation of

scores but, exactly as happened in the previously described binary partition the way the

vectors Zk={zk 1 , zk 2 , zk 3 , ..., zk|S|} are evaluated is based on the criterion (43) not the (42). The

rational behind this approach is also equivalent to the previous binary partition: it is used a

criterion for sorting (standard deviation of scores) but all the entities associated to a cluster ck

are scored with the same value for a same user.

4.1.5. Clustering by users

This a conceptual idea rather than a concrete method. It is based on clustering the users

in different groups according a similarity criterion. These clusters ck would then define groups

of similar users where this similarity can be extrapolated to their preferences. Knowing how

much a user is related to the different clusters is used for predicting this user's preferences

using the function (39). In this approach, the clusters are defined by the users they represent,

this is the main difference with the previous four clustering methods.

There is a concept that is worth to be highlighted: how a user belongs to a cluster, and

that is different depending to the situation. It has been explained previously that every user

belongs to several clusters but in this specific methodology the goal is to define the clusters

based on users. This creates a recursive situation where the user and the clusters may fall in a

endless spiral of definition based on each other. The proposed way for solving this is starting

from something known, information about the users, those users including their information are

named as clustering users or c-users. This c-users are the basis and foundation for clustering

by users. Once this clusters are generated, the profiled users or p-users are the

ones that may belong to several clusters at once as described in (38) by the

vector ui=(w i1, wi2,wi3, ... ,wi|C|) . This process is divided in two steps: the first step is using the

c-users for generating the clusters, the second one is using the clusters for determine the p-

users. This different naming for the users it is useful to determine at what state the user is,

either defining the cluster or being defined by the cluster.

Independently of how to distribute the c-users within the different clusters, it must be

established a method for generating the different score vectors Zk associated to every cluster

ck. For doing that let’s define Uk the set of c-users U k={uk 1 , uk 2, uk 3 , ..., uk|U k|
} defining (by

belonging) a cluster ck. As all this users Uk define ck, the score vector Zk can be obtained from

the scores of these users. Considering every user with the same importance/weight into the

cluster ck, then all them must be considered equally; that means the different scores for the

entities must be averaged for having the cluster consensus for them. This cluster consensus

50

defines then the vector Zk={zk 1 , zk 2 , zk 3 , ..., zk|S|} where every c-user uki contributes with the

scores of the entities reviewed. It is important to mentioned that not all the c-users uki have

evaluated and scored the same entities. It could even happen that there are only a reduced set

of entities seen and evaluated by these users; if these users are similar it is not unlikely they

have pretty close interests. This can be mathematically defined as:

zkj=
1
n
∑
i=1

n

s j(uki) (44)

zkj=
1

|ck|
∑
i=1

n

s jki (45)

Both equations (44) and (45) are equivalent ways of expressing the evaluation of the

cluster's score zkj using different notations. In the expression (44) s j(uki) is the score of

c-user uki (user i-th from cluster k-th) to the entity identified with index j; this s j(uki) is a

function of uki . For the expression (45), s jki is the result of this evaluation s j(uki), s jki is

exactly the score of user uki to the entity associated to the index j. Independently of what

notation is used, both (44) and (45) define every score zkj to the entity j from a cluster ck as

the average of its values only from the c-users of the cluster; the rest of c-users do not

contribute to this score.

4.1.6. Clustering using K-means

This is a classical but also very popular machine learning algorithm for segmenting

populations of any kind of items; those only have to be defined by their attributes. The benefit

of this algorithm is that is generic, in the sense that can be applied independently of the nature

of the problem to be tackled. That does not mean it can be used systematically for any kind of

problem, but it has been proved to be useful in a very wide range of problems with different

natures [97].

K-means uses a distance function for evaluating the similarity/difference/distance

between the elements to be compared. This function can be specified for special purposes but

it is a common choice using the euclidean distance between elements. The way this is

performed is characterizing every element as a multidimensional vector of n dimensions, where

every one of those dimensions correspond to one of its attributes. These attributes can be

continuous values or categorical ones. In the last case, the way an item is defined as belonging

or not to a category is using values like 1 or 0.

The specific case to be faced is the clustering of a set of c-users depending on the scores

of the entities they have reviewed. Fore every user ui the c-user is represented by his/her

known scores for all the entities:

ui=(s i1 , si2 , si3 , ... , sim) (46)

It is important to differentiate the alternative ways of representing a user. On one hand

the vector (46) identifies a specific user with his/her scores for the entities, but on the other

hand the vector (38) does the same profiling ui with the clusters instead of the scores.

51

In (46), m is the cardinality of the entities set |O|, so there is a score for every entity.

That represents a problem because there may be entities not evaluated by a given c-user ui but

there must be a value for those in order to apply the similarity function with the k-means. As

the similarity function is the euclidean distance, this function applied to two users ui and uj is

checked as:

|ui−u j|=√∑
l=1

|O|

(sil−s jl)
2 (47)

 When evaluating (47) the partially unrated entities constitute a problem, that is the

entities rated by one user but not by the other. If an entity is rated equally from ui and uj the

difference between those s il−s jl=0 , so there is no increment of the similarity (47) because of

that. This same rule can be applied to a completely unrated entity that neither ui nor uj have

rated it. This can be implemented by excluding this rate from the sum or using one specific

value for the unrated entities. This value is not going to make any difference because

sil−s jl=0 . A completely different scenario happens when there is a partially unrated entity,

this happens when one of the c-users (let’s say ui) has scored the l-th entity with sil but the

other c-user uj has not. In this case, the default value used for representing the unrated scores

from user uj is going to have an impact to s il−s jl and consequently to |ui –u j| according to

(47). There has been explored two entities for establishing the default value for an unrated

entities and those are exposed in the next sections.

4.1.7. Null default value

This is the first approach proposed for dealing with the default values for unrated entities

when clustering by users using a k-means algorithm. The rational behind this is considering

that having or not scored an entity is a preference in itself. The assumption is that users see

(and rate) the entities they expect that they are going to like. Obviously, these expectations

may be wrong and finally they could see an entity with a difference experience, disappointing

and then scoring poorly or just the opposite, better than expected applying a high score.

The numerical implementation of the null default value is based on using the zero value

for unrated entities. This value uses to be so different to the averages scores that guarantees a

considerable difference for the cases sil−s jl . If it is assumed that ui is the c-user who has

scored the entity and uj has not, then the previous expression is reduced to sil. Comparing this

scenario to the cases where there is a score for both c-users ui and uj, and considering that

always s il>s il – s jl it is easy to see that this rule penalizes the comparison of partially unrated

entities. The null default value forces the cases where there are partially scored entities having

a similarity (fitness function) greater than the hypothetical case where these same users would

have scored the same entities. This behaviour is a way of forcing the k-means algorithm to

consider the users that have scored the same entities more similar than the ones that do not.

This, intuitively, can be understood as facilitating the k-means to generate clusters with c-users

that have seen the same entities, which may be the preference pattern to validate.

52

4.1.8. Average default value

This alternative to set the default value is based on a different assumption. This considers

that for every c-user their average score is the most likely expected value for an unrated entity.

Despite that scoring an entity depends on several factors, it assumes there is a personal trend

for every c-user to rate within his/her specific personal range. This specific range is reduced

just to its average value, that is every user ui has an average score s̄i . When two c-users

ui and u j are evaluated by the k-means (using the euclidean distance), the contribution of

the entities not rated at all will be evaluated according to (47) as s̄ i− s̄ j . If the are n entities

not rated at all by any of both ui and u j , from (47) it can be conclude that their similarity

will be not less than:

|ui−u j|≥n⋅|s̄ i−s̄ j| (48)

For the partially rated entities, the contribution of the l-th (if the rating c-user is ui)

is s il− s̄ j .

4.1.9. Cluster densification

One of the problems associated to the previous methods for obtaining the scores

matrices is their sparsity. This sparsity may appear when the common number of entities

reviewed by several users is low. As it is shown later, one of the datasets used has this specific

characteristic. Mathematically speaking, this sparsity is noticed in clusters where there are

entities not rated at all by any of their c-users. In those cases, the cluster’s proposed score

would be zero. Taking a look at (39) and considering some cases with small number of clusters

|C|, when there is no score at all for the j-th entity in the cluster ck, there is no contribution

(score is 0) from this cluster. That impacts the final evaluation of ŷ ij reducing its value. When

there are several of those clusters without an evaluation of the j-th entity, the impact on the

value ŷ ij is stronger. The lack of score for an entity from a cluster ck can be understood as

rating it 0 from this cluster. The rational behind this cluster densification is that clusters without

a score for an entity should have a neutral contribution to the evaluation of ŷ ij as much as

possible. The way this is articulated is replacing the null value in the cases where there is no

score from a cluster with a value. That is, for every cluster ck having an associated scores

vector Zk the replacement of the unrated values from 0 to some default value. Not all the

zeros, just the ones coming from a lack of scores.

One of the options for this default value is looking for a neutral one, but this desirable

neutrality has to be checked as being feasible or not. According to (39), every cluster ck

contributes to ŷ ij with a proportion weighted as wik which is different for every p-user. That

makes impossible to select a value that does not affect ŷ ij so absolute neutrality cannot be

guaranteed. On another hand, the clusters and their scores vectors are introduced for

contributing somehow to the evaluation of the p-user’s scores instead of avoiding them. Taking

those last facts into consideration, the final default value will not be neutral but a committed

one, like any other within Zk. According to that, the proposed solution is to use a default score

53

from the rest of values zkj belonging to Zk={zk 1 , zk 2 , zk 3 , ... , zk|S|}. Applying a partition to Zk,

its elements can be split into two different subsets, Vk for the evaluated/labelled scores and Xk

for the unevaluated/unlabelled ones. The two subsets Vk and Xk must satisfy the following

relations:

V k⊆Zk

X k⊆Zk

V k∩X k=∅
(49)

All the vkj values from Vk are used for determining the elements of Xk. In fact, all the

elements of Xk are evaluated with the same value z̄k . This value is obtained averaging all the

scores from Vk, as:

z̄k=
1

|V k|
∑
l=1

|V k|

v kl (50)

The rationale to use (50) for obtaining the default values z̄k for every Zk is that an

average value from the known scores is going to be the most accurate value that can be

obtained considering no addition information. At least, it is easy to assume it may be a better

value than just zero, which is a specific score very biased from the habitual values.

4.2. Relating users to clusters

This is the process of profiling the p-users by their proximity to every of the clusters C.

In other words, generating the weight matrix W that contains all the relations between users

and clusters . This matrix defines every p-user per row i whilst each column k contains the

weight wik that identifies the p-user ui with the cluster ck. According to this definition the

dimensions of the weights matrix W are |C|⨯|U| and there are lots of ways of obtaining

them. Because the weights wik are continuous values, they a priori could have any value, so

their combinations are infinite. According to this, there is no right way of obtaining the weights

but the most convenient according to one specific purpose. In the present problem, the

ultimate goal is to maximize the accuracy of the predictive model for ŷ ij (39). The

prediction ŷ ij is the estimated score that user ui would apply for the j-th entity, and the closer

it gets to the user's real preference ŷ ij≈sij the better the model is. This goal determines how

measure an optimization of the matrix W, but it does not completely determines the way the

weights wik may be obtained. On the next sections it is explained some of the methods

proposed for finding those weights and the rational behind them.

4.2.1. Linear regression

This is the simplest and most direct method for evaluating the weights of the matrix W.

Taking into account that (39) is a linear model [98], for every p-user ui depending on the

54

regressor variables sjk and the Y-intercept αi, the problem of finding the weights wik can be

understood as a linear regression to be fitted in order to maximize the ŷ ij≈sij accuracy. The

way these weights are fitted is using the method of least squares [99], a standard approach for

obtaining the most approximated solution to these problems. There is calculated a regression

for every p-user ui.

It has been explored two variants to this approach depending on the treatment applied to

the Y-intercepts αi. This intercept can be evaluated directly from the linear regression or can be

forced to be zero for some specific purposes; both cases have been studied because they can

be interpreted in different ways. For illustrating the meaning of the Y-intercepts αi let's explore

the extreme case where there is no one single cluster, that is |C|=0 . This no-clusters case

reduces the model (39) to just ŷ ij=α i its intercept; this can be interpreted as every p-user ui

will be predicted with an average score α i= s̄ i . As it was mentioned earlier, every p-user has

his/her own score range where falls the majority of his/her scores. This score range is like a

fingerprint that helps to identify the p-user and also improves the predictions. The minimum

representation of this range is the average score s̄ i obtained from all the entities the user has

reviewed. When there are some clusters (|C|>0) , the Y-intercepts αi from (39) can then be

understood as the personal bias towards some specific score.

4.2.2. Saturated linear model

One of the problems when working with linear regressions is there are no upper or lower

limits to the values they predict. It could predict scores above the maximum logic value 1 or

even negative values. Obviously, those values never are going to be found when evaluating the

prediction and can be fixed with a very simple correction on the prediction boundaries. This fix

is the saturated linear model depicted at Figure 27.

The model (39) is used as the basis prediction to be improved where three different cases

can be found depending on the range of the obtained value of ŷ ij :

55

Figure 13. Saturated linear model as rectifier for predictions.

a) The predicted score ŷ ij is greater than 1 (maximum possible value)

b) The predicted score ŷ ij is within the range [0,1] (allowed values)

c) The predicted score ŷ ij is negative

The case b (prediction falling within the allowed values) is the one not requiring fix at all.
It may be a more or less accurate but a priori it cannot be evaluated. The case a can be fixed

using as output the minimum value between ŷ ij and 1. A similar logic can be applied to case

c when the output value is lesser than 0, selecting always the maximum between ŷ ij and 0

guarantees a realistic score. Putting all these scenarios together, the saturated linear

model ŷ ' ij would be a correction to ŷ ij described as:

ŷ ' ij={ 1 for ŷ ij>1
ŷ ij for 0≤ ŷ ij≤1
0 for ŷ ij<0

(51)

Without having to compare their accuracies or entering in further mathematical

demonstrations, it is a fully safe conjecture that ŷ ' ij will be always equally or more accurate

than ŷ ij when predicting p-user’s scores.

4.2.3. Heuristic methods

Using linear regressions for obtaining the matrix weights W has some drawbacks. Maybe

the main con is the need of using at least |C| known scores for every p-user. This is because

a linear function with n regressors and one Y-intercept, requires no less than n+1 records for

adjusting the function coefficients. This is not a big problem when the total number of samples

(reviewed entities) per p-user is really greater than the final number of clusters |C|. On

another note, it is just the opposite when there are just a few of samples for evaluating the

weights in comparison to the number of clusters |C|. That does not mean there are not ways

of finding W, but certainly no using a linear regression.

The heuristic methods cover a collection of several ways of calculating the weights

introducing some assumptions that constrain the final values of W. The aim of these methods

is not obtaining the most efficient way of reducing the error of the predictive model (39), but at

least a solution that is accurate enough. As mentioned, these are specially important in the

cases where there are almost no previous information about the p-users; maybe a few rates or

even none at all.

4.2.4. Equal weights

The simplest approach when trying to figure out what are the right weighs that define

how much a p-user is describe by every cluster ck, is accepting that without more information

or additional assumptions, a priori all the clusters share the same likelihood. In other words, all

the clusters have the same chance of describing an unknown p-user. Setting as K the total

number of clusters, all them should contribute with the same weights to the final score

56

evaluation ŷ ij using (39). As the αi Y-intercept can be understood as the contribution of a

virtual cluster cK+1 with systematic ratings of 1, αi should have the same value as the rest of

weights. According to all this, depending on using or not the Y-intercept, the weights can be

calculated as:

w ik={ 1
K+1

when using Y-intercept αi=wik

1
K

when not using Y-intercept αi=0
(52)

αi={ 1
K+1

when using Y-intercept

0 when not using Y-intercept
(53)

The decision of using or not the Y-intercept can be understood as relying just on the

clusters for evaluating ŷ ij or adding some personal bias to the final score. This uses to be the

case when αi can be properly evaluated for every p-user ui. Because this method is applied

when there is very little or not information at all about the p-user, if αi is considered, having the

same value as the rest of weights, then the interpretation has to be understood just as the

contribution of an extra virtual cluster cK+1.
Finally, it is worth to mention that the advantages of this method are its simplicity but

also, because of the way of evaluating the weights, the final prediction does not need any

correction; it always falls within the range [0,1].

4.2.5. BFGS

The Broyden-Fletcher-Goldfarb-Shanno [100] is a specialised algorithm that performs

numerical optimizations through several iterations. It belongs to the group of quasi-Newton

methods, applying a hill-climbing optimization in order to achieve a stationary point. This

stationary point is reached when the gradient of the cost function is zero. In the specific case of

the weights optimization, the cost function is the error of the all known evaluations ŷ ij vs the

real scores sij for a p-user. As the weights have a direct impact (39) in ŷ ij then the function

cost depends on W and its gradient can be used for minimizing this error.

Despite the BFGS algorithm has a well defined logic, the quality of the final results has a

strong dependency on the initial values W0 used as starting point. Those initial weights W0 can

be closer or further of the optimal W that minimizes the error, so its election is also a decision

to be taken into account. Exactly the same as there are several ways of obtaining W there are

also several ways of selecting the initial weights W0; the one applied is based on the previous

method of fixed-weights. The rational behind this decision compared to a random within a

range selection of weights is because the random selection would lead to different values of

errors for every time the BFGS is applied, so its performance would be random despite

constraint into a domain. On the other hand, the fixed weights election for initial weights W0

combined with the deterministic BFGS guarantees the same results and accuracy for every

execution.

57

Finally, as this method relies on an optimization it cannot be assured that the final

weights will not predict invalid results for ŷ ij so there is room for applying a saturation

rectifier in order to limit those to [0,1].

4.2.6. Successive approximations

This method is directly inspired by the several mathematical ones covered by this name

with the objective of finding a solution. Like those methods, the proposed one is a recursive

process where on every step it is found the best simple solution and the resultant error of that

is reduced at the next steps. More concretely, for every c-user ui searches the cluster ck which

Zk combined with an optimized w ik minimizes the error εik for this user's predictions using

just the cluster ck. That is, minimizes:

εik=∑
j=1

|Oi|

|sij−wik⋅zkj| (54)

In the expression (54), |Oi| is the cardinality of Oi the set of all the entities reviewed

by the c-user ui. For every of these c-users ui the evaluation is performed through all the

clusters selecting just the ck with the least error εik and its associated weight w ik . This error

εik for the selected cluster ck is obtained from a collection of different individual errors ξikj,

one per c-user ui and the j-th entity; that can be expressed as:

εik=∑
j=1

|Oi|

|ξ ikj| (55)

ξikj=sij−w ik⋅zkj (56)

These individual errors per c-user and entity ξikj are the ones used in the next

iterations. This method is applied for evaluating all the errors for every cluster ck but it can be

also generalized for obtaining the Y-intercept αi for (39). As it has been explained earlier, the

Y-intercept can be understood as the prediction of a virtual cluster that systematically scores

with value 1 every entity. Mathematically this is translated directly from (54) as:

εiα=∑
j=1

|Oi|

|sij−αi| (57)

The equivalent for (56) when defining the individual errors from the Y-intercept are:

εiα=∑
j=1

|Oi|

|ξiα j| (58)

ξiα j=sij−αi (59)

58

Using (57), (58) and (59) as the way of evaluating the errors of the Y-intercept, this can be

evaluated like the clusters. In fact, this is part of the selection of the cluster ck, the Y-intercept is

like an extra cluster. For simplifying the explanation of the method, it will considered as a

virtual cluster cα that will be treated exactly the same way as the others, except for the

evaluation of its errors.

For describing the next iterations let's set k the index of cluster ck that minimized the

error for the user ui. That may include the Y-intercept as the selected entity. During the next

iteration it will be available all the clusters but not ck (or maybe cα if it is the case), so all the

remaining clusters will be evaluated looking for the one cq≠k (or cq≠α) that will reduce the new

error εiq . Those iterations are performed with almost the same exact logic explained but

using ξikj as the target value to match instead of sij. The equation (54) adapted from the first

iteration to any of the next ones takes the form:

εiq=∑
j=1

|O i|

|ξijk−wiq⋅zqj| (60)

The evaluation of individual errors ξiqj and the sum of these absolute values εiq is now

performed as it is described in (60). Taking that into account, instead of using (56), the next

iteration will define ξiqj as:

ξiqj=ξikj−w iq⋅zqj (61)

This process can be generalized from one iteration where the selected cluster is ck (or cα)

to the next iteration where the selected cluster will be cq. The only consideration to (60) and

(61) is the first iteration, where instead of using the values ξikj it is used sij instead, as it is

shown in (57) and (59). For the virtual Y-intercept cluster cα, its specific evaluation equations

are:

εiα=∑
j=1

|Oi|

|ξijk−α i| (62)

ξiα j=ξikj−α i (63)

What it is expected from this approach is not to evaluate all the weights at once but one

after the other considering the Y-intercept like any other weight. This process begins with the

most influencing one in the evaluation of ŷ ij until the least influencing one. The term

influencing must be understood as the weight or Y-intercept that has minimized most the error

at every step. Once introduced the general approach, it is needed to explain how to obtain the

weights w iq or αi that minimize the error for cq or cα at every step. The procedure is not based

in the first iteration but it can be easily generalized for that just switching from ξikj to sij in

59

every equation. Obtaining the optimal w iq for (60) is equivalent to find this weight for the

equation:

εiq=∑
j=1

|O i|

(ξijk−wiq⋅zqj)
2 (64)

Despite that (60) and (64) do not have the same behaviour, they share the same

minimum value w iq so it can be obtained from (64) and just apply it at (60). In order to

simplify the notation, (64) can be rewritten as a function ε=ε(w) of w that is specific for

every c-user ui, cluster cq and its previous errors ξ j from the preceding iteration:

ε(w)=∑
j=1

|Oi|

(ξ j−w⋅z j)
2 (65)

At the equation (65) it has been removed the index i that defines the user ui for the sake

of simplicity. For obtaining the extreme value w that minimizes ε(w) the standard approach

is the least squares method. As ε(w) is a minimum, it cannot be decreased changing the

value of w , that is:

∂ε(w)
∂w

=0 (66)

∂ε(w)
∂w

=
∂(∑

j=1

|O i|

(ξ j−w⋅z j)
2)

∂w
=2⋅∑

j=1

|Oi|

z j⋅(ξ j−w⋅z j)=0
(67)

Finally, isolating w from (67), its evaluation is performed as:

w=
∑
j=1

|Oi|

z j⋅ξ j

∑
j=1

|Oi|

z j
2

(68)

This calculation for w is only for the clusters ck but not the Y-intercept or the first

iteration. The expression (68) rewritten for the first iteration only needs to replace the previous

errors ξ j by the c-user's score sj for the j-th entity:

w=
∑
j=1

|Oi|

z j⋅s j

∑
j=1

|Oi|

z j
2

(69)

60

For the calculation of the Y-intercept αi, the expression takes the form:

α= 1
n
⋅∑

j=1

|Oi|

ξ j (70)

For a better understanding of the whole method, the Table 3 shows a pseudo-code

describing how successive approximations are applied:

W is the users' weight matrix
Z is the clusters' score matrix
S is the users' scores matrix

function weights_estimator(Zk,R)
 # Weights for cluster k are obtained applying (68)
 let Wk = sum(Zk·R)/sum(Zk·Zk)
 # E (errors matrix) is obtained applying (54) or (60)
 let E = abs(Wk·Zk) - S
 # the function returns a tuple of two values
 return (E,Wk)

function successive_approximations(Z,S)
 let W = empty collection
 let first_iteration = true
 for Zk in Z
 if first_iteration
 # initially S is used as the error to be reduced
 (new_R,Wk) = weights_estimator(Zk,S)
 # it is no longer the first iteration
 let first_iteration = false
 else
 (new_R,Wk) = weights_estimator(Zk,old_R)
 # reassigned the W weights matrix
 let W = append(W,Wk)
 # reassigned the value old_R
 let old_R = new_R
 # after the loop let's calculate different values with (α 70)
 let α = mean(old_R)
 # the function returns weights and Y-intercepts as tuples
 return (W,α)

Table 3. Pseudocode for algorithm that obtains weights by the

successive approximations method.

4.2.7. Cluster-weight optimization

This method combines the process of weight estimation with the optimization of the

clusters' scores vectors Zk. It does not introduces any new method for obtaining the weights, in

fact, it uses any of the available ones previously introduced in this document. What is new is

that it performs a double-step iteration for refining the clusters when the weights are obtained.

With this improved clusters scores vectors, a new evaluation of weights is performed and the

process is repeated several times until there is not achieved any further improvement.

61

Let's call WGM to a selected weight generation method (any of the available ones) that

gives a good collection of weights W given a collection of K clusters and their scores vectors Zk.

Let's now define as CO the cluster optimization algorithm proposed in this section that given a

weight matrix W adjust the scores vectors from Zk to Z'k. Those improvements when moving

from Zk to Z'k are small and also is small the error reduction between the new predicted ŷ ' ij

and the real c-user's scores sij. Because of the new scores vectors Z'k the values W do not

guarantee any longer being the best ones (in terms of reducing the error). Using the same

WGM to the new scores vectors Z'k a new weights matrix W' may be obtained. If W and the

new W' are the same, then an optimal 3-tuple weights-score-vectors has been achieved. If

there is a significant difference between W and W', then the CO is applied again to Z'k for

obtaining a new Z''k, iterating until having no further improvement. This process can be more

easily understood viewing the next figure that shows the double-step iteration for reducing the

overall evaluation error.

The first part of this optimization is the WGM which is known and only has to be chosen,

whilst the second part of every step is the CO and it is calculated using the gradient descent

method. Using the matrix notation Z for all the clusters' score vectors Zk and considering (39)

the error of evaluation can be written as:

E= ∑
i=1 , j=1

|U |,|O|

|εij|= ∑
i=1 , j=1

|U|,|O|

|s ij− ŷ ij|= ∑
i=1 , j=1

|U|,|O| |sij−∑
k=1

K

wik⋅zkj+αi| (71)

The gradient is obtained considering the evaluation of the errors εij in (71) and applying

to it the nabla [101] operator ∇ as ∇ E . In the specific case of the scores vector, ∇ is

defined as:

62

Figure 14. Graphical explanation of the gradient

descent optimization.

∇= ∑
k=1 , j=1

|C|,|F|

u⃗kj
∂

∂ zkj
(72)

The vectors introduced in (72) are unitary and define a hyperspace of dimension |Z|;

every of those dimensions zkj is a variable that can be improved. With a similar rational to

previously minimized errors, optimizing (71) is equivalent to the minimization of the quadratic

substitution of the absolute values per their squared version:

E= ∑
i=1 , j=1

|U|,|O|

(s ij−∑
k=1

K

w ik⋅zkj+αi)
2

(73)

When applying ∇ to (73) the total error's E first partial derivative with respect every

of the dimensions zkj becomes:

∂ E
∂ zkj

=−2⋅ ∑
i=1 , j=1

|U|,|O|

wik⋅(s ij−∑
k=1

K

wik⋅zkj+α i) (74)

When evaluating those partial derivatives (74) there are obtained small increments that

reduce the error as:

Zn+1=Zn−γ ∇ E(Zn) (75)

In fact, (75) should be considered as an iterative improvement. Every time this is applied,

it is considered the provided CO contribution to the double-step. The improved scores

vector Zn+1 comes from the previous scores vector Zn and a small contribution of the

gradient of the error E(Zn) evaluated in Zn . It is not difficult to assume that ∀ γ∈|ℝ|

small enough, the error evaluated at E(Zn+1) is always equal or lesser than its

previous E(Zn) .

4.2.8. Inverse error

That is the last of the weight evaluation methods proposed. Like some of the previous

ones it is heuristic because is based in an assumption and also can be applied when having

very little information about the p-users; just one single known score is enough for it. The

assumption introduced is that the clusters with lesser errors, the ones that their scores vectors

Zk are closer to the p-users scores S should have more impact (greater weights) compared to

the ones with more error in the final evaluation of ŷ ij using (39). Naming the error of a cluster

ck for a specific p-user ui as εik and considering it only depends on its scores' vector Zk, this is

evaluated as:

εik=∑
j=1

|Fi|

|sij−zkj| (76)

63

In the present method, εik is evaluated differently than (54) in the method of successive

approximations. In this case, there is not defined any weight that optimizes (54), the weight is

obtained directly from the inverse of εik . Initially, all the p-user's weights wik are defined as:

w ik=
1

εik+γ (77)

The γ value shown in (77) satisfies γ≥0 and is a parameter empirically obtained.

Once having the weights wik, those are normalized for obtaining the final ones w'ik. This is

performed using:

w ' ik=
wik

∑
l=1

K

wil

(78)

As can be directly deduced from (77) and (78), there is no evaluation for αi. This is

because it is considered αi=0 by default. In this case, the Y-intercept is not considered as a

virtual clusters cα.

4.3. Alternatives for predicting preferences

Despite the general model for predicting the scores is using the model (39) there are

some alternative ways for the same purpose. Those are based just on averages, a very simple

approach that can be used as a baseline for comparing the performance of other approaches.

The first of these alternative predicting methods is the user's scores average. This

basically predicts ŷ ij using the average of the p-user's known scores like:

ŷ i=∑
j=1

|Oi|

sij (79)

In (79) all the different ŷ ij for a p-user ui have the same predicted value ŷ i that is

systematically applied to any prediction. The different values covered by the index j are the

known scores for the user's evaluated entities Oi.

A similar approach is the entity's scores average, where the average is applied to all

the known scores for an entity. It is equivalent to the user's scores average but focusing the

average in the entity rather than in the user. In this case all the different ŷ ij for an entity oj

are the same ŷ j for independently of the p-user ui. That is:

ŷ j=
1

|U j|
⋅∑
i=1

|U j|

sij (80)

64

In (80) the index i covers all the users Uj that have scored the j-th entity oj, averaging

these users' scores for the entity.

Considering the earlier methods of scores averages as exceptions, the rest of the

evaluations are based on (39) combining different methods for generating the weights and,

maybe, a saturation rectifier.

65

5. Experimental evaluation
One of the previously explained ideas about the eigenclusters methodology is that it is

designed to be generic. For the evaluation it is proposed a more specific domain of well known

entities. That is the case of films, where there are available datasets with the required data

quality in terms of quantity and variety so the performance of eigenclusters can be measured.

The idea is apply all the proposed hypotheses, objectives and the whole methodology to

this specific domain, so from this point until the conclusions, the entities become just films, so

it can be used both words for the same purpose.

5.1. Datasets

In order to have some standard datasets, the experiments have been performed using

three concrete ones. From these three datasets, two of them are popular enough for being a de

facto standard and the third one is a just a dense subset of the first one.

5.1.1. Prolific IMDb Users dataset

The first dataset is the IMDb62, a subset of the Prolific IMDb Users dataset [108] created

in 2009. This is a big collection of reviews for 62000 reviews distributed into 27222 different

films. The number of users is 62 with a total of 1000 reviews per user. One of the main

characteristics of this dataset is its sparsity; 18340 of the films only have one score, that is the

67.31% of the cases. Despite this dataset includes scores and reviews written from these 62

users, all the used methodology completely ignores the text information available. This

dataset has a great sparsity that is an important factor for explaining several of the results

obtained from several experiments performed with it. Observing the Figure 15, as a rule of

thumb it can be said that two random users have less than 30% of their reviews (same films) in

common. The average number of films in common for two users is around 60, just a 6% of their

total reviewed films.

66

Figure 15. Histogram of common films by pairs of users for the Prolific

IMDb Users dataset.

5.1.2. Dense subset of Prolific IMDb Users dataset

The second dataset is a dense subset of the first dataset, in the sense that only considers

the films that at least have 4 reviews. That filter reduces the total number of films to 4111, only

a 15.1% of the films from the original dataset. As can be seen at Figure 16, despite the

number of films is smaller and the sparsity has been reduced, the distribution of films in

common for two users is still very similar, lesser than 60.

5.1.3. MovieLens

The third of the used datasets is the MovieLens one [109], a synthetic set created for

such kind of specific purposes. This is a more dense selection compared to the plain IMDb62.

67

Figure 16. Histogram of common films by pairs of users for the dense

subset of the Prolific IMDb Users dataset.

Figure 17. Histogram of common films by pairs of users for the

Movielens dataset.

The main problem when working with different datasets is their specific but incompatible

format. That requires a special treatment for transforming them in a common data model that

is used internally by the algorithms and the models. Once the format problem is addressed, the

scale for the scores is the second one. The scores for the IMDb62 dataset cover the whole

range between 0 and 10, allowing the mentioned extremes. In the other hand, the MovieLens'

range is reduced to 0 an 5. Once again, for having a standard format, both datasets have been

re-scaled to values going from 0 to 1 and obviously including decimals. The main reason behind

this decision is the easiness when comparing the different weights for the model (39) and the

Y-intercept. Using this normalized scoring system, the Y-intercept can be understood in two

different ways: first as the systematic user's bias but also as the hypothetical weight of a

virtual cluster where all the scores were always 1 (the maximum one). As explained in previous

sections, this double interpretation provides criteria when deciding to include or ignore the

Y-intercept in different weight evaluation methods.

5.2. Full stack

All the implementations introduced in the present document are based in a compact code

developed using the Scala [102] programming language. It has a good balance between

efficiency and performance whilst combining the best practices mixing the functional

programming paradigm with the object-oriented one; both with a strong static type system.

Another of the reasons for using Scala is its easiness parallelizing processes, which is a good

strategy for reducing the computation time for heavy load processes.

The JVM [103] used is concretely the OpenJDK 1.8.0_212 [104] for 64 bits. Using the JVM

as support for the Java bytecode [105] generated with the compilation of the Scala code, also

contributes for high efficiency among other features, like Garbage Collection [106], native class

implementation and JIT compilation [107].

The operating system supporting the execution of the JVM with the Scala code is a Linux

Debian distribution based on the Linux Kernel 4.17 for 64 bits. The operating system election

guarantees the best performance for generic execution of native implementations compared to

any other common operating systems. This performance is obtained out of the box with the

standard installation.

The hardware used is a Intel i7-3770 CPU at 3.40 GHz, with 8 virtual cores for parallel

execution of different threads. The RAM memory is 32 Gb and a hard disk of 1 Tb, where the

used space was around 19 Gb.

5.3. Evaluation

This section explains the way all the previous methods are articulated for evaluating

them. Independently of the method to be treated, the process for the evaluation is a cross-

validation [73] where some data is used for generating a predictive model, and the rest of the

data is used for measuring the accuracy of the model. In this process is specially important to

completely split the data in two datasets, the training dataset and the test dataset. These

datasets must be a partition of the whole available data sharing no content at all. If that were

not the case, then some of the data to be predicted would be used for generating the model. It

would have part of the information to be predicted which is not only invalid, but it is a

circumstance that never would happen in reality; there is no need at all to predict information

68

already known. The notation for identifying those datasets is UT and UP for the c-users and the

p-users. The same naming convention is applied for the scored films used for training and

prediction FT and FP.

The training dataset, independently of its size, is used for fitting the model in a way or

another. Once the model is ready, it is applied to the specific cases of the test dataset. The

model's predictions could or not match the expected value. The general case when predicting

continuous values is a numerical difference between the actual value and the predicted

value. From these differences it is obtained the prediction error.

The cross-validation is an extra layer introduced to this way of evaluating the accuracy. Its

rational is based in that there is a non-null probability that a specific combination of the

training and test datasets would maximize the accuracy of the predicted results. That

probability is present no matter which model is used despite its final value related to the nature

of this model. The cross-validation handles this repeating the process several times with

different distributions of the training and test datasets applied to the same model family and

averaging the final accuracy among all the performed individual evaluations. Despite the cross-

validation can be exhaustive, exploring all the available ways of dividing the original dataset in

different training and test subsets, in this exercise it has been applied a non-exhaustive

approach, where the obtention of the subsets and evaluation of results has been performed 10

times per experiment. Despite 10 times is not a statistically high number, it is enough for

avoiding in most of the cases the distribution of the subsets that lead to extremes values for

the accuracy. It does not avoid that some of those cases could happen, put these results will be

averaged with others so the final impact is compensated. Obviously, the benefits of this

approach would be yield using greater numbers than 10, but the reason for not going beyond

10 times is that some of the algorithms for training the models are really time consuming. This

value provides a good balance between effectiveness and computation effort.

5.3.1. Evaluation metric

The accuracy measure used for evaluating the predictions' errors is the MAE [110] Mean

Absolute Error, defined as:

MAE=1
n
∑
i=1

n

|ŷi− yi|=
1
n
∑
i=1

n

|εi| (81)

In (81) every i-th case is considered an evaluation where ŷ i is the predicted p-user's

score for a film and y i is the known actual score for it. That difference ŷ i− y i defines the

error εi . Is important not to get confused with the i-th case and the i-th p-user ui. In order to

facilitate the notation understanding, it is introduced the specific notation where the index i

refers to the i-th p-user ui and the index j refers to the j-th film. Considering this in combination

with (81) it can be rewritten as:

MAE= 1
|FP|

⋅ ∑
i=1 , j=1

|U P|,|F i
P|

|ŷ ij−sij| (82)

69

In (82) the cardinality |U P| refers to the test subset of the p-users used for evaluating,

whilst |F i
P| is the cardinality of the films subset rated by the p-user ui. The cardinality |Fp|

considers the whole test subset of the rated films for all the p-users.

As the cross-validation is perform 10 times, every iteration/time t the error is evaluated as

MAEt, this is included for the obtaining the final MAE in the way:

MAE= 1
10

⋅∑
t=1

10

MAE t=
10−1

|Ft
P|

⋅ ∑
i=1, j=1, t=1

|U t
P|,|F it

P|, 10

|ŷ ijt−sij| (83)

This equation (83) is the final general way of evaluating the resulting MAE for model

using cross-validation.

5.4. Experiments

All the methods previously introduced can be combined in different ways; among those

just a few ones have been considering as the proposed experiments. In this section it is

explained with some degree of detail these experiments.

5.4.1. Overview of clustering methods

The main purpose of this exercise is provide a first approach for identifying what

clustering methods are the most promising for minimizing the prediction error. It has not been

conceived for pointing out the most optimized clustering method but to have a global idea

about their expected performance. This evaluation is not based on cross-validation and

predictions but an analysis of the residuals [111] of the models. The residuals are fitting

deviations from the model evaluation of scores and the real scores. The models and the

residuals share the same definition εij= ŷ ij−sij as it was introduced earlier but its main

difference is the domain of their evaluation. The residuals are obtained from evaluating the

model through the training subset of UT and FT (c-users and films). As there is no need for

predicting with those models, the training subsets are just the whole subsets UT = U, FT = F
(and the c-users become also p-users). Even considering the possible effect of overfitting in the

models, it is difficult to have a prediction error lesser than the residuals. That means that the

evaluation of the residuals of a model is a good indicator of the best error that may be obtained

from using this model for predicting. In other words, the expected prediction errors are very

likely to be equal or higher but not lesser than the residuals.

The way those residuals are used is considering their final MAE, where the smaller ones

are selected for focusing on their development and refine the way of reducing their prediction

error. As the selected methods are the ones to improve, lately it is evaluated their prediction

power using the errors at the test set, not just the residuals. This approach is a way of

introducing an initial approximation for selecting the best methods as a rational alternative to

simply try to refine every proposed method to its limit. That aims to reduce the scope and

effort while achieving the best results.

The clustering approaches (see previous sections) selected for this initial comparison

include the following that will named by their acronyms:

70

• PSAS - Partition sorted by averages scores

• PSSDS - Partition sorted by standard deviation of scores

• B-PSAS - Binary partition sorted by average scores

• B-PSSDS - Binary partition sorted by standard deviation of scores

• K-M - Clustering using K-means

For having a fair comparison when compared these methods for clustering, the way for
relating the p-users to clusters (obtaining the weights for them) must be the same for all the
five. The selected method for this purpose is the linear regression introduced at section 4.2.1.
This method requires more information than others but on another note it also guarantees
obtaining the optimum weights in order to reduce the residuals. It is worth to mention that the
first four methods PSAS, PSSDS, B-PSAS and B-PSSDS can be evaluated using as many clusters
as wanted, there is no limit on that as far as there are less clusters than films evaluated, that

is |C|<|F|. On another hand, the K-M approach introduces a limitation coming from the

K-means method; that is the constrain for the total number of clusters, it cannot be greater that
the total number of users. In other words, K-means requires at minimum one user per clusters,

or in mathematical expression |C|<|U|.

5.4.2. Results from clustering methods

The evaluation of the several methods for clustering (5.4.1.) are summarized at the

Figure 18 where on the abscisses are represented the number of clusters from 1 to 100 and

the error (MAE) at ordinates. It can be easily observed the big difference in terms of error for

the different methods proposed. The worst ones are the binary partition methods with a MAE

that begins being closer to 10 and is reduced when clusters are increased; B-PSSDS has an

almost linear decrease whilst B-PSAS sinks quickly when increasing the clusters from 1 to 10.

From this point of 10 clusters until arriving to the 100, B-PSAS is under a MAE of 5, closer to the

errors of models like PSSDS and PSAS. This allows concluding the binary version of these

partition methods has a noticeable worse performance than their non-binary equivalents.

Used the Prolific IMDb Users dataset with 44 users for clustering and
weighting the clusters and 9 for evaluating with a total number of folds

71

Figure 18. Evolution of prediction error using several partition methods
with different total number of clusters.

for the cross-validation of 10. The binary partition methods B-PSAS and
B-PSSDS are the worst while K-M reveals itself as the most promising
one.

The case of the K-M is clearly different, with a enormous smaller error despite with some
drawbacks, it is not defined for any number of defined clusters. It covers from 1 to 44 clusters

because K-means requires at least as many users as clusters, that is |C|≤|U|. For the specific

case of the Prolific IMDb Users dataset, the total number of c-users for creating the clusters is
using 44 for clustering and 9 for evaluating the results. It is also worth mentioning the case

of |C|=24, where the error 109 is so high that it is completely out of scale. This is something

observed from time to time, despite K-M looks very promising compared to the other methods
there are some specific cases where it performs really badly. Despite of that, it is clear that
K-means is the clustering method with most promising results to be developed and in the next
sections it is shown the improvements introduced around it but also the results obtained from
that.

5.4.3. K-means and linear regression for well profiled users

Just as an advance of the results to be shown in the next sections, there is a special
interest in the clustering using K-means and the linear regression as it is a combination with
better performance than the other ones. This second experiment focus and zooms these
methods combined in order to understand which variations provide the best results. In this
case, the evaluation method is the proposed cross-validation instead of just the residuals.
There are two main variants for this exercise:

1. Full population. The training and test dataset are just the same for all the users but

not the films scored. That is UT = UP = U but , where the score sets ST S∩ P = ∅, ST ⊂ S

and SP ⊂ S. The training set is 80% of total scores, |ST|=0.8⋅|S| and the test set is the

other 20%, |SP|=0.2⋅|S|.

2. Subpopulation. It uses 80% of users (c-users) with 100% of their scores for generate
the clusters and the 20% of the users (p-users) for evaluating the model. That is

UT U∩ P = ∅, UT ⊂ U, UP ⊂ U, |UT|=0.8⋅|U| and |U P|=0.2⋅|U|. Viewed from the

scores perspective ST S∩ P = , ∅ ST ⊂ S, SP ⊂ S, |ST|=0.8⋅|S| and |SP|=0.2⋅|S|. These

20% of remaining users (p-users) and the remaining scores SP have their weights

evaluated using the 80% of their scores SPW , and the rest 20% of films' scores are then

predicted SPP. That is SP = SPW ∪ SPP and SPW ∩ SPP = ,∅ |SPW|=0.8⋅|SP| and

|SPP|=0.2⋅|SP|. This last constrain can be rewritten as |SPP|=0.04⋅|S|.

As a general conclusion for both variants it can be observed that it is used a lot of
information for clustering and profiling the users. The subpopulation method, which is the one
using lesser information for profiling, uses 800 different scores for profiling every p-user. This
situation contrasts with the next experiments using heuristic methods where the situation is
dealing with users with a relatively unknown profile.

There are two additional variants that are combined with the previous ones. Those come
from the circumstance where the score to be predicted is not present in any of the clusters.
That is not an unusual situation, in the case of working with the IMDb62 dataset, it was

72

announced that 67.31% of the films only had been scored once. This situation is tackled using

one of the two following alternatives for evaluating the prediction ŷ ij (p-user ui and j-th film):

a) User's average. The inexistent score ŷ ij is evaluated averaging all the known scores

(no matter to what films) of the p-user ui.

b) Film's average. The lacking score ŷ ij is obtained averaging all the known scores (no

matter which p-users) from all the films.

The combination of the former variants and the later alternatives becomes into the 4 next
flavours: 1-a (full population, user's average), 2-a (subpopulation, user's average), 1-b (full
population, film's average) and 2-b (subpopulation, film's average). All these 4 flavours have
been evaluated.

There is one more case of study included in this experiment for the simple purpose of
having a reference about the impact of using weights for relating p-users with several clusters
at once. This reference is the classical approach (1) of using only one cluster per user, that is

that every p-user has only one weight wik = 1 and the rest are 0. The way of obtaining those

weights is just applying directly the results from the K-means clustering. With this classical
approach, the experiment also evaluates the previous 4 flavours having only one cluster per
user.

5.4.4. Results from K-means variants

At Figure 19 can be observed the results related to the previous experiment 5.4.2 and

its variants and flavours: 1-a (full population, user's average), 2-a (subpopulation, user's

average), 1-b (full population, film's average) and 2-b (subpopulation, film's average). The

dataset used corresponds to Prolific IMDb Users and the evaluation metric is MAE for

predictions done with different number of clusters obtained with the K-means method. Every

point from each series is obtained applying cross-validation with 10 folders.

Used the Prolific IMDb Users dataset for predicting scores with a total
number of folds for the cross-validation of 10. The variants 1-a and 1-b
show the worst error compared to 2-a and 2-b.

73

Figure 19. Evolution of prediction error using K-means with different
total number of clusters and ways of using the users and their missing
scores.

It is easy to identify at the results from Figure 19 that methods 1-a and 1-b, both related

to the full population perform noticeably worse to the cases where a subpopulation is selected.

Despite that all the series show a general trend to augment the error when increasing the total

number of clusters, it is more evident for the full population variants (1-a, 1-b). The increasing

trend for the subpopulation variants (2-a and 2-b) is so smooth that the variability of the error

is greater than the trend (slope) itself. There is also some variability in the full population

variants (1-a, 1-b) but in general it is smaller than the trend itself. This variability is due to the

random initialization of the K-means algorithm; it does not provide the most optimal clusters

but a good result that is always different in proportion to the total number of elements for

distributing among the clusters. Another of the previously mentioned behaviours is the limit of

clusters that can be obtained using K-means, always |C|≤|U| with 44 c-users used from the

Prolific IMDb Users dataset.

The Figure 20 shows how often films are repeated per cluster for the used dataset,

pointing out a small density of scores per film that quickly decreases. The average unique film

count per cluster is close to 2 scores per film when having only 1 cluster. This is reduced to less

than 1.25 scores per film before reaching 4 clusters; from this point it slowly decreases until the

maximum number of clusters. This behaviour is important to explain why the results from

Figure 19 get worse when increasing |C|. It may seem counterintuitive that adding more

clusters that allows to profile users with higher precision results have their error increased, but

that can be explained in relation to this frequency of unique films. As the eigenclusters method

is based on an statistical approach, it is very important that every cluster has enough cases per

film in order to provide not only a good segmentation but also for having a robust prediction.

When only a few samples per firm are available on every cluster, this lack of information is

translated in worse evaluations for the clusters' associated scores vectors Zk and worse

accuracy on predictions. This problem is more associated to the sparseness of the Prolific IMDb

Users dataset than the method itself.

The high sparsity of the dataset leads to quickly fall in a situation where
the films only have one or two samples for evaluating the average score.

74

Figure 20. Average count of the unique films per cluster generated
using the Prolific IMDb Users dataset.

This proportion tends quickly to just one score per film when increasing
the total number of clusters generated. This evolution of the cluster
density of scores is pretty similar independently of the variant used.

Independently of the convenience of using the evaluated dataset and being consistent
with the results obtained for the different variants, it is easy to conclude the subpopulation
method intrinsically provides a clear better performance. As the scores are normalized, it is
easy to identify the minimal MAE for the full population variant 0.3 as a 30% of error from the
score scale. This error for the full population series is able to increase to values greater than
0.6, that is a 60% when using the maximum number of clusters.

5.4.5. K-means and linear regression for different profiles

The next experiment after the previous overview about K-means and linear regression is

zooming into the most promising variants; more concretely exploring different ranges of

profiled p-users. For doing that it has been created different groups of profiling defined by the

total number of known/labelled scores from their users. Every group is identified by a profiling

percentage that determines how many of the known scores per user are used for profiling.

These scores falling into the profiling percentage are used for calculating the p-users weights,

and the rest of scores are used for evaluating the accuracy/error of the model. The following

are the selected profiling percentages explored by this experiment and their translation when

using the Prolific IMDb Users dataset.

Profiling percentage Scores per user (profiling) Scores per user (predicting)

0.1% 1 999

0.2% 2 998

0.3% 3 997

0.4% 4 996

0.5% 5 995

1% 10 990

10% 100 900

20% 200 800

40% 400 600

80% 800 200

Table 4. Profiling percentages for the Prolific IMDb Users dataset.

For all the different profiling percentages it is selected 80% of the users population for

training the models; that is to feed the K-means and generate the clusters, so |UT|=0.8⋅|U|.
The remaining 20% of the users are fully used for the predictions, |U P|=0.2⋅|U|. Finally, for

the evaluation of the distances using K-means, the cases of non-scored films are fulfilled
applying the previously explained null default value.

As can be seen from the profiling percentages, the model is going to be evaluated in a
very wide range of knowledge about the users. The reason for this and the next experiments is
the validation or refusal of the hypothesis that the effectiveness of the method varies
noticeable with the total information about the user.

75

Another dimension introduced in this exercise is the use or absence of the Y-intercept into
the linear regression. As has been already discussed, this Y-intercept can act like the average
score for a user, so it may have a strong influence in the model.

5.4.6. Results for different profiling

The following figures show the results of the previous experiment applied to the Prolific

IMDb Users. Figure 21 is a selection of small percentages of scores from p-users used for

profiling them that covers from 0.5% to 10%, using the Y-intercept as part of the predicting

model. In this figure and the rest of them exposed at this section it has been filtered out all the

results with extremely bad MAE, those go from 109 to 1013. The results exposed at this figure do

not cover the same number of total clusters |U| because the linear regression needs at least

as much points (scores in this case) as total number of clusters |U|. That implies that the

smaller the percentage of scores used for training the smaller the number of clusters can be.

This reduced number of training points is directly interpreted as knowing not so much about

the user. What is important from Figure 21 is the slope of the series. The error uses to be

almost the same for 1 cluster and tends to increase when adding more clusters. This rule has

an exception when using 0.5% of the scores (5 c-users) for clustering; in this case the initial

error (1 cluster) is greater than the rest despite it also follows the trend of increasing with the

number of clusters. It can also be concluded that the slope is flatter the greater the scores

percentage is used for clustering. That supports the rationale that more samples (scores)

provides more information and more statistically robust evaluations with better predictions.

That is translated as the flatter slopes point out the more accurate models.

All the outliers with an error greater than 1011 have been removed. The predicting
model is the regular linear regression including its Y-intercept. The series with less known
scores cannot be explored with more clusters and provide an error proportionally greater

76

Figure 21. Group of the smaller profiling percentages and evolution of their errors (MAE)

when increasing the number of used clusters.

compared to the ones with more scores percentage. Except the 0.5% series, the rest almost
begin from a pretty similar error for the case of just one cluster.

The comparison of the results from Figure 21 vs Figure 22 shows an evident better
performance in predictions when using the Y-intercept compared to when ignoring it. Just with
one glance, it can be seen only the cases of 0.5% and 2% of profiling percentage (using
Y-intercept) reach an error greater than 7.5 for the prediction. For the case of non-using Y-
intercept, almost all the series reach errors greater than 7.5. Figure 22 reveals a scenario with
similar behaviours for the series of different percentages of scores but with different slopes and
initial errors for just 1 cluster. The included-Y-intercept version of the predicting linear model
manages to almost have the same MAE for the different series whilst the excluded-Y-intercept
option shows worse initial error inversely proportional to the population percentage. The slopes
are also flatter in the included-Y-intercept.

All the outliers with an error greater than 1011 have been removed. The predicting
model is the regular linear regression excluding the Y-intercept at all. The series with less
scores cannot be explored with more clusters and provide an error proportionally greater
compared to the ones with more known scores. Almost any series increases its error until
overreaching the value 7.5.

Figure 23 is the natural continuation of Figure 21 but comparing profiling percentages
that go from 10% to 80% on the same dataset Prolific IMDb Users. The results are equivalent to
the smaller profiling percentages in terms of having an initial error that is almost independent
from the series and it tends to increase when using more clusters; it also shows an equivalence
having a flatter slope when increasing the known scores percentage. Despite this slope
reduction is proportional to the scores count, it is not directly proportional because the

77

Figure 22. Group of the smaller profiling percentages and evolution of their errors (MAE)

when increasing the number of used clusters (no Y-intercept).

reduction of the slope when moving from the 10% series to the 20% is greater than when
moving from 20% to 40%.

All the outliers with an error greater than 109 have been removed. The predicting
model is the regular linear regression including its Y-intercept. All the series begin from a
similar error for the case of just one cluster and tend to increase it with the addition of more
clusters.

Similarly to the parallelism between Figure 23 and 21, the Figure 24 is the equivalent
of Figure 22 also evaluating cases without Y-intercept and profiling percentages that go from
10% to 80% using the dataset Prolific IMDb Users. In these new cases there is a closer initial
error for all the series when using just one cluster meaning that greater known scores
percentages are directly translated into more statistically significant results, more stability of
the models and better accuracy. When comparing the higher profiling percentages (from 10%
until 80%) in the variants of using and excluding the Y-intercepts from the predicting models,
Figure 23 and 24 expose how every series has a worse behaviour with the non-Y-intercept
version. In Figure 23 all series stay below an error smaller than 0.5 except for the series of
10% of scores that crosses the 1.5 MAE limit, but their equivalent series seen in Figure 24
overpass the values 0.5, 1, 2 and 6 of error. All this leads to a general conclusion of the
importance of the Y-intercept for improving the accuracy of the model.

This comparison of the same approach using and ignoring the Y-intercept evidences how
this term gathers information that improves the prediction making more stable the model for
different profiling percentages. As the model is a personalized linear regression per every
p-user it is easy to conclude that the Y-intercept gathers the user's bias to predict one specific
average value. The greater is the sample of scores for fitting the linear regression with the
clusters more cases are included in this Y-intercept so its evaluation is less probably an isolated
atypical score but a clear trend of the user.

78

Figure 23. Second group of profiling percentages (greatest ones) and evolution of their errors

(MAE) when increasing the used clusters.

All the outliers with an error greater than 109 have been removed. The predicting
model is the regular linear regression avoiding to use the Y-intercept. All the series begin from
a similar error for the case of just one cluster and tend to increase it with the use of more
clusters.

For supporting this explanation about the impact of the Y-intercept, the Figure 25 shows
the results of using just this Y-intercept as a predictor, in other words the case of using 0
clusters. When no clusters at all are used, the linear regression is performed just over a
constant becoming a simple average of all the scores to predict. The most remarkable evidence
exposed at Figure 25 is how reduced the error is compared to previous approaches. The
maximum error when using just one score per user as predictor is lesser than 0.2112 of MAE,
falling very quickly when increasing the number of scores until reducing MAE to the value
0.1545. This range delimiting the error is clearly smaller than any other error range shown in
previous results. The explanation for this behaviour lies in the intrinsic reduced variability of
the whole set of scores when comparing to the predictions. The maximum possible variability
for scores is 1 (from 0 to 1) in the worst scenario.

Despite the errors filtered out from the previous Figure 21, 22, 23 and 24 are
humongous, those are easy to detect; whatever prediction out of the range [0,1] can be
automatically excluded. The reason why those errors can be so greater is based on the linear
model used for prediction (39) and the values of their weights. A priori, a linear model has no
bounds for its predictions so the same happens for its errors; those are not limited and only
depend on the precision of the regression itself. This is one of the problems explained in section
4.2.2 for justifying the introduction of saturated linear models that enclose any prediction
coming from a linear model into the ranges [0,1].

79

Figure 24. Second group of profiling percentages (greatest ones) and evolution of their

errors (MAE) when increasing the number of clusters.

The predictions has been performed using different percentages of the user's
scores for training. The maximum and minimum errors are between the range
(0.15, 0.22), falling this error very quickly when increasing slightly the number
of scores used for evaluating the model.

5.4.7. Improvements to K-means and linear regression

Based on the conclusions of previous experiment 5.4.6, it seems obvious that applying

some kind of method that can guarantee more stable predictions, preferably into the range

[0,1], will lead to an obvious reduction of the prediction errors. In order to do that, this exercise

covers two small improvements that can be applied to the K-means and linear regression on

several profile levels for the users. Those improvements are the following:

1. Using the saturated rectifier for improving the output of the linear model. That should

help to contain the extreme predictions when those get out of range. That may happen

in the case of small profiling percentages, where the number of clusters K is similar to

the total number of scores used. In those cases, the found weights may lead to

unexpected values instead of taking advantage of a robust regression with lots of

samples.

2. Introducing the dense clusters approach for having more stable weights. Using

sensible values for the non-evaluated elements of the scores vector avoids using

extreme values like 0 as part of the evaluations (section 4.1.9). That helps to have a

more viable weight for a cluster ck that reduces the range of the predictions within the

limits [0,1].

These two actions are only changes introduced, the rest of the experiment is under the
constrains and conditions described for the experiment K-means and linear regression for
different profiles.

80

Figure 25. Error of predictions using as model just the user's average of score.

5.4.8. Results of the improvements

After introducing the previously mentioned improvements (saturated rectifier and dense

clusters), their results are shown at Figure 26 and Figure 27 for the different order of

percentages of scores used for profiling the p-users. The experiment has been performed with

the Prolific IMDb Users dataset. These figures can be compared directly with Figure 21 and

Figure 23 and the exact mapping between them corresponds as {Figure 26 → Figure 21} and

{Figure 27 → Figure 23}. When comparing the results from Figure 26 with Figure 21 it is

shown a clear improvement in the error for the new results that include both improvements.

The MAE obtained applying dense clusters and the saturated rectifier is clearly under 0.4,

whilst the previous experiments arrive to values above 1 very easily. The general reduction

happens in the order of magnitude. That is even more important when considering that the

final results obtained and shown at Figure 26 have not been filtered at all. The methods

applied introduce improved accuracy and stability. The same happens when comparing the

group of great percentages of scores shown at Figure 27 and Figure 23 where the prediction

error is also noticeably reduced. It is easy to conclude that those improvements combined have

empirical evidence supporting the rationale that justify their use.

The clusters have been treated to become dense and a saturated rectifier has been applied
to the predictions.

Despite it is not the reason why the saturated rectifier has been introduced, it also can be
used for evaluating the difference of errors between a specific model that uses it for
compacting its output and the same model without this restriction. This difference of errors can
help to understand the impact of the saturated rectifier or, viewing it from a different angle,
how much the error is increased because of predictions that fall out of the range [0,1]. That is
useful for having a specific metric about if the model is using enough information for guarantee

81

Figure 26. First group of profiling percentages (smallest ones) and evolution of their errors

(MAE) when increasing the number of clusters.

the stability of its predictions into the valid range [0,1]. As can be seen in the comparison of
the group of great percentages of scores at Figure 27 and 23, the error is reduced using linear
saturation in an inverse proportion to the percentage of scores consumed for profiling. That can
be understood as the model has more information for understanding that predictions must fall
in the valid range. In other words, the model not only has more understanding for performing
better predictions but it also learns what is the expected range of values where the predictions
can fall in.

The clusters have been treated to become dense and a saturated rectifier has been
applied to the predictions.

5.4.9. Model competition

This is the last one of the experiments performed and it has been evaluated using the

Prolific IMDb Users dataset, its dense version and also Movielens. It is a global comparison of

different ways of obtaining the clusters and the weights; this also include small variations like

using rectifiers, different comparison of unknown scores for K-means, including the use or not

of Y-intercept and others. The codes identifying the elements that can be combined are

gathered at the Table 5. Using the acronyms for the elements from this table, there are

generated the different pipelines shown at Table 6.

82

Figure 27. Second group of profiling percentages (greatest ones) and evolution of their

errors (MAE) when increasing the number of clusters.

Code Used for Element

UAvg Evaluating of missing values for the
K-means distance

Average of know user's scores

null
Evaluating of missing values for the
K-means distance Null as default value

dense Clusters' scores vector improvement Dense clusters

LR Profiling Linear regression

Eqw Profiling Equal weights

BFGS Profiling BFGS

SApr Profiling Successive approximations

CWO Clustering method + profiling Cluster-weight optimization

inv(0.05) Profiling Inverse error with size factor 0.05

inv(0.1) Profiling Inverse error with size factor 0.1

inv(0.2) Profiling Inverse error with size factor 0.2

inv(0.5) Profiling Inverse error with size factor 0.5

inv(1.0) Profiling Inverse error with size factor 1.0

LS Prediction rectification Lineal saturation

w[-1,1] Constrain applied to profiling Weights between ±1

w[0,1] Constrain applied to profiling Weights normalized

w[0,x] Constrain applied to profiling Positive weights

YI Constrain applied to profiling Y-intercept is part of the model

NYI Constrain applied to profiling Y-intercept is null

Table 5. List of all the different elements to combine in pipelines.
Elements represent models, rectifiers, constrains and others that
can be combined in order to generate pipelines of algorithms that
predict the expected scores of a p-user to certain films.

The result expected from this experiment is the final prediction error (MSE) for every of

the methods in the Table 6. The content of this table has been created combining different

models and approaches from the previous sections, but it also includes two concrete cases:

• baseline-user-avg is the code for a baseline model that is very easy to implement when

there is little information about the user. The model just provides a prediction based on

his/her mean scores from the previous reviews, even if there are just a fistful or one.

• baseline-film-avg is the other code for the second baseline model. It is very similar to

baseline-user-avg but with the difference that the aggregation level is performed around

the film, so all the previously known scores about this film are averaged for generating

the prediction.

83

Short name Clustering FFNS Complement
to clustering

Profiling Complement to
profiling

Rectifier

null-dense-LR K-means null dense LR - -

null-dense-Eqw K-means null dense Eqw - -

null-dense-Eqw-NYI K-means null dense Eqw NYI -

null-dense-SApr K-means null dense SApr - -

null-dense-SApr-LS K-means null dense SApr - LS

null-dense-BFGS-w[-1,1] K-means null dense BFGS w[-1,1] -

null-dense-BFGS-w[-1,1]-LS K-means null dense BFGS w[-1,1] LS

null-dense-BFGS-w[0,1] K-means null dense BFGS w[0,1] -

null-dense-BFGS-w[0,1]-LS K-means null dense BFGS w[0,1] LS

null-dense-BFGS-w[0,x] K-means null dense BFGS w[0,x] -

null-dense-CWO K-means null dense CWO - -

UAvg-dense-LR K-means UAvg dense LR - -

UAvg-dense-Eqw K-means UAvg dense Eqw - -

UAvg-dense-Eqw-NYI K-means UAvg dense Eqw NYI -

UAvg-dense-Inv(0.05) K-means UAvg dense Inv(0.05) - -

UAvg-dense-Inv(0.1) K-means UAvg dense Inv(0.1) - -

UAvg-dense-Inv(0.2) K-means UAvg dense Inv(0.2) - -

UAvg-dense-Inv(0.5) K-means UAvg dense Inv(0.5) - -

UAvg-dense-Inv(1.0) K-means UAvg dense Inv(1.0) - -

UAvg-dense-BFGS-w[-1,1] K-means UAvg dense BFGS w[-1,1] -

UAvg-dense-CWO K-means UAvg dense CWO - -

Short name Prediction method Rectifier

baseline-user-avg Every user's prediction is the average of their known scores -

baseline-film-avg Every film's prediction is the average of their known scores -

Table 6. Different pipelines formed from combinations of several elements.
Pipelines of algorithms predict the expected scores of a p-user to certain
films. At the table's bottom there are two additional entries for the
baseline models that are used for providing a reference of the error
values.

5.4.10. Results of the model competition

The model competition results for the Prolific IMDb Users dataset are shown in the

Table 7 where every row identifies one of the possible combinations described in the Table 6.

The short name of these combinations are shown in the first column (with the same

name) of the Table 7 and every additional column is the results associated to a specific

percentage of scores per p-user used for profiling it. Every cell (combination of row and

column) of this table shows information about the optimal number of clusters that minimize the

error. That is obtained repeating the combination of methods given by the row with the scores

percentages identified by the column several times using from 1 to 63 clusters, and from those

results selecting the result with lesser error. This information is shown in the cell, which is

divided in two lines; the first line is the error measured as the MAE and the second the value

of |C| that minimized this error. For every column with different percentages of scores, it is

selected a cell highlighted with boldface that indicates the combination with lesser error among

all in the same column.

84

Combination 0.1% 0.2% 0.3% 0.4% 0.5% 1% 10% 20% 40% 80%

null-dense-LR - 98.539
C1

3.154
C1

3.455
C1

0.6498
C1

0.1982
C1

0.1604
C1

0.1563
C1

0.1462
C1

0.1432
C3

null-dense-Eqw 0.1695
C30

0.1681
C31

0.1676
C38

0.1694
C35

0.1662
C39

0.1641
C26

0.1666
C40

0.1681
C37

0.1672
C42

0.1683
C34

null-dense-Eqw-NYI 0.1644
C32

0.1676
C43

0.1660
C23

0.1672
C21

0.1672
C24

0.1668
C6

0.1681
C21

0.1671
C40

0.1673
C18

0.1679
C12

null-dense-SApr 0.1935
C19

0.1846
C1

0.1711
C1

0.1708
C1

0.1646
C1

0.1624
C1

0.1477
C1

0.1555
C1

0.1502
C1

0.1562
C1

null-dense-SApr-LS 0.1946
C19

0.1940
C1

0.1739
C1

0.1810
C1

0.1673
C1

0.1653
C1

0.1570
C1

0.1465
C1

0.1529
C1

0.1487
C1

null-dense-BFGS-w[-1,1] 0.1916
C3

0.1792
C37

0.1698
C24

0.1723
C36

0.1729
C21

0.1676
C9

0.1621
C4

0.1551
c2

0.1573
C1

0.1644
C39

null-dense-BFGS-w[-1,1]-LS 0.1833
C22

0.1763
C27

0.1707
C29

0.1724
C34

0.1743
C25

0.1694
C38

0.1570
C2

0.1623
C2

0.1570
C1

0.1649
C33

null-dense-BFGS-w[0,1] 0.1925
C34

0.1792
C44

0.1716
C32

0.1733
C30

0.1724
C35

0.1670
C3

0.1647
C3

0.1569
C2

0.1593
C2

C.1646
C14

null-dense-BFGS-w[0,1]-LS 0.1866
C13

0.1755
C37

0.1728
C41

0.1705
C37

0.1707
C2

0.1713
C6

0.1638
C1

0.1581
C1

0.1606
C1

0.1659
C41

null-dense-BFGS-w[0,x] 0.1919
C39

0.1774
C41

0.1701
C37

0.1725
C1

0.1728
C39

0.1678
C41

0.1663
C2

0.1628
C19

0.1597
C2

0.1694
C6

null-dense-CWO 0.1854
C23

0.1739
C34

0.1737
C32

0.1697
C38

0.1703
C36

0.1672
C30

0.1654
C10

0.1669
C19

0.1655
C29

0.1671
C37

UAvg-dense-LR - ∞ ∞ ∞ ∞ ∞ 0.1446
C2

0.1371
C1

0.1412
C1

0.1374
C5

UAvg-dense-Eqw 0.1698
C11

0.1670
C38

0.1684
C25

0.1677
C11

0.1660
C20

0.1654
C38

0.1655
C11

0.1648
C19

0.1625
C17

0.1643
C11

UAvg-dense-Eqw-NYI 0.1639
C7

0.1620
C6

0.1643
C5

0.1658
C6

0.1587
C9

0.1662
C5

0.1648
C12

0.1643
C7

0.1612
C8

0.1640
C8

UAvg-dense-Inv(0.05) 0.1604
C11

0.1613
C14

0.1580
C14

0.1578
C7

0.1590
C5

0.1564
C5

0.1546
C7

0.1560
C4

0.1564
C22

0.1560
C5

UAvg-dense-Inv(0.1) 0.1604
C8

0.1620
C7

0.1599
C10

0.1605
C6

0.1591
C14

0.1581
C7

0.1562
C8

0.1581
C5

0.1581
C5

0.1581
C6

UAvg-dense-Inv(0.2) 0.1600
C5

0.1605
C7

0.1616
C10

0.1588
C4

0.1628
C6

0.1612
C8

0.1631
C11

0.1589
C6

0.1584
C14

0.1624
C4

UAvg-dense-Inv(0.5) 0.1633
C2

0.1620
C5

0.1614
C12

0.1588
C5

0.1602
C11

0.1609
C9

0.1597
C10

0.1626
C18

0.1645
C14

0.1629
C8

UAvg-dense-Inv(1.0) 0.1611
C7

0.1619
C3

0.1605
C16

0.1650
C6

0.1625
C5

0.1638
C10

0.1627
C6

0.1640
C12

0.1631
C8

0.1621
C9

UAvg-dense-BFGS-w[-1,1] 0.1822
C8

0.1756
C15

0.1667
C34

0.1682
C4

0.1670
C18

0.1650
C2

0.1605
C5

0.1583
C1

0.1567
C1

0.1635
C30

UAvg-dense-CWO 0.1764
C13

0.1756
C25

0.1711
C27

0.1702
C16

0.1676
C20

0.1661
C11

0.1662
C10

0.1651
C5

0.1662
C12

0.1656
C28

baseline-user-avg 0.2112 0.1875 0.1778 0.1725 0.1697 0.1618 0.1548 0.1546 0.1546 0.1545

baseline-film-avg 0.1804 0.1791 0.1829 0.1805 0.1802 0.1821 0.1963 0.2088 0.2088 0.2291

Table 7. Results for different combinations of pipelines.
Different combinations of algorithms predict the expected
scores of a p-user and films of the Prolific IMDb Users dataset.
Every row one combination of several methods and every
column identifies a specific percentage of scores used for
profiling p-users. Cells contain the smallest error for a whole
range of clustering options going from 1 to 63 clusters,
showing the MAE and the cluster with lesser error.

It is easy to see that the best combinations are based on heuristic models for small

percentages of scores (for profiling) until 1%, from 10% until 80% the linear regression is

systematically the most accurate model. The heuristic weights models are the inverse error in

85

combination with the average default value and values 0.2 and 0.05 for the parameter γ and

very closely to this model the equal weights (without Y-intercept) combined with the same

processing variants.

Additionally to those general results at Table 7, the figures from Figure 28 to

Figure 32 show a specific zoom on the results of model BFGS (and others for reference).

Figure 28 exposes the case of using just 1 known score per user for profiling where the most

86

Figure 28. Prediction error vs clusters for several combinations using 0.1% of scores for

profiling.

Figure 29. Prediction error vs clusters for several combinations using 0.2% of scores for

profiling.

simple methods equal weights and inverse error have a clear better performance to more

sophisticated ones like BFGS and CWO. When increasing the total known scores per user to 2

(0.2%), Figure 29 shows that the two couples of models are closer in terms of error, but still

with a clear difference that begins to smooth when using 32 clusters or more; at this range the

error series begin to slightly mix. This progressive approach of the prediction errors is

stimulated by the increase in the known scores as can be seen at Figure 30, Figure 31 and

Figure 32, that show the equivalent series of errors for the (scores) percentages 0.5%, 10%

and 80% respectively.

87

Figure 30. Prediction error vs clusters for several combinations using 0.5% of scores

for profiling.

Figure 31. Prediction error vs clusters for several combinations using 10% of scores for

profiling.

It is also worth mentioning the gap from Figure 31 to Figure 32 (from 10% of scores to

80%) in terms of error. For lesser percentages of known scores it is a clear reduction of the

error for every of the different ways of obtaining the weights of the users (equal weights,

inverse error, BFGS and CWO), but starting from this 10% this trend is stuck and in general the

error is not reduced by increasing the total number of known scores.

For the case of the dense Prolific IMDb Users subset the Table 7 shows the model

competition for some of the available combinations of pipelines. As its equivalent results

Table 7, the Table 8 has highlighted in boldface the combinations with lesser error (MSE) for

every column. As general conclusion can be said that the error is reduced around 1% for the

best combinations when comparing the best results with their equivalent in the Table 7.

Combination 0.1% 0.2% 0.3% 0.4% 0.5% 1% 10% 20% 40% 80%

null-dense-BFGS-w[0,1] 0.1763
C14

0.1714
C37

0.1681
C28

0.1679
C44

0.1668
C36

0.1603
C16

0.1548
C35

0.1570
C5

0.1527
C5

0.1521
C16

null-dense-BFGS-w[0,1]-LS 0.1852
C19

0.1803
C23

0.1717
C36

0.1682
C3

0.1626
C36

0.1605
C6

0.1585
C6

0.1567
C1

0.1533
C1

0.1499
C1

null-dense-CWO 0.1678
C40

0.1715
C29

0.1625
C4

0.1631
C3

0.1644
C10

0.1602
C37

0.1548
C39

0.1547
C4

0.1559
C18

0.1572
C16

UAvg-dense-LR - ∞ ∞ ∞ ∞ ∞ 0.1332
C1

0.1346
C1

0.1338
C1

0.1300
C3

UAvg-dense-Eqw-NYI 0.1515
C1

0.1540
C6

0.1546
C7

0.1518
C1

0.1549
C12

0.1518
C6

0.1530
C5

0.1518
C10

0.1536
C6

0.1518
C15

UAvg-dense-Inv(0.05) 0.1500
C7

0.1502
C6

0.1496
C8

0.1509
C4

0.1507
C8

0.1511
C3

0.1485
C7

0.1474
C3

0.1471
C8

0.1428
C13

UAvg-dense-Inv(0.2) 0.1525
C6

0.1509
C6

0.1516
C6

0.1482
C7

0.1484
C9

0.1491
C7

0.1483
C9

0.1491
C5

0.1441
C3

0.1484
C6

baseline-user-avg 0.2109 0.2142 0.1944 0.1889 0.1796 0.1711 0.1567 0.1559 0.1558 0.1545

baseline-film-avg 0.1730 0.1747 0.1760 0.1737 0.1757 0.1753 0.2028 0.2211 0.2216 0.2132

Table 8. Results for different combinations of pipelines for

the dense Prolific IMDb Users subset.

88

Figure 32. Prediction error vs clusters for several combinations using 80% of scores for

profiling.

For a better understanding of the MSE difference when using the Prolific IMDb User

dataset and its dense subset, the Figure 33 shows a summary of the best results coming from

these subset and dense selection. The two series appearing at Figure 33 are created selecting

for every percentage of known scores the best error from Table 7 and Table 8 respectively.

Despite the scale for the abscisses is neither linear nor logarithmic it clearly exposes how this

error is reduced for the best combination of every series whilst increasing the percentage of

used scores. Despite the two series show a similar behaviour keeping a difference in benefit of

the dense subset, in the case of percentage 0.1% of scores the error difference is 1% globally

and when arriving at the percentage 80% their difference is reduced to a global 0.75%. There

are fluctuations where sometimes using more scores seems to lead to worse errors but those

seem caused by how scores per used are distributed; in other words, those are specific of the

dataset and its data.

Combination 0.1% 0.2% 0.3% 0.4% 0.5% 1% 10% 20% 40% 80%

UAvg-dense-LR - ∞ ∞ ∞ ∞ ∞ 0.1481
C1

0.1358
C1

0.1340
C1

0.1314
C3

UAvg-dense-Inv(0.05) 0.1475
C16

0.1479
C10

C.1473
C20

0.1461
C7

0.1461
C19

0.1469
C3

0.1453
C4

0.1454
C19

0.1446
C9

0.1441
C4

UAvg-dense-Inv(0.1) 0.1474
C2

0.1483
C13

0.1472
C9

0.1472
C3

0.1472
C17

0.1459
C9

0.1465
C4

0.1462
C17

0.1455
C9

0.1449
C9

UAvg-dense-Inv(0.2) 0.1478
C2

0.1465
C4

0.1477
C2

0.1483
C14

0.1458
C3

0.1479
C6

0.1475
C11

0.1462
C9

0.1485
C14

0.1473
C19

baseline-user-avg 0.1948 0.1898 0.1863 0.1815 0.1796 0.1686 0.1491 0.1475 0.1463 0.1460

baseline-film-avg 0.1712 0.1711 0.1705 0.1722 0.1732 0.1754 0.1972 0.2006 0.1999 0.1953

Table 9. Results for different combinations of pipelines for

the Movielens database.

The last dataset evaluated is the Movielens database which has a different distribution of

users and scores per film. This different content processed with the same combinations of

pipelines obtains different results but similar behaviours. Those are shown at Table 9, where

89

Figure 33. Series of smallest errors for the dense and complete Prolific IMDb User

dataset.

not all the possible ones are exposed but only the ones with the best results from the Table 7

and Table 8 in order to being able to make comparisons. These comparisons evidence the

importance of the dataset for having better or worse results, at least for the smaller

percentages of scores used for profiling. Comparing the results from Prolific IMDb Users and

Movielens starting from 1% to 80% (of scores) are improved with the latter but not as much as

for the percentages from 0.5% (of scores) and below, where the reduction of the MAE is greater

than 1%. On another note, the same comparison between the dense Prolific IMDb Users and

the Movielens database shows a smoother difference. For the small percentages (of scores)

from 0.1% to 0.5% the Movielens database provides better results with improvements of less

than 0.5% of MAE, but for greater percentages (of scores) from 1% to 80% the dense Prolific

IMDb Users subset is the one improving the MAE reducing it until more than 1% in some

specific cases.

5.4.11. Understanding the clusters

Despite in the previous experiments the methodology has been detailed as far as the

results obtained, the clustering process can be studied at results level. In section 4.1.6 it has

been explained how the K-means algorithm works and what can be obtained from it, but the

results shown so far do not provide light about how specifically those clusters look like. In order

to focus in some practical cases, this experiment explores applying K-means to the Prolific

IMDb User dataset in conjunction with the two methods for evaluating the c-users' missing

scores. That is when the c-user has not rated a film but some significant value is needed for

being able to evaluate the distance between this c-user and others or the centroids. At section

4.1.7 it was proposed the null default value and at section 4.1.8 the average default value,

both used in almost all the previous experiments.

As the results have exposed that average default value is the approach that helps to

provide the smallest errors (see Table 7), it is not clear how this is affecting the way the

clusters are generated. For giving visibility to all questions, this exercise is divided in a

collection of different appliances of K-means with the following specific details gathered at

Table 10.

Combination code Number of clusters Default value method

null-2 2 null default value

avg-2 2 average default value

null-5 5 null default value

avg-2 5 average default value

null-10 10 null default value

avg-10 10 average default value

null-40 40 null default value

avg-40 40 average default value

Table 10. List of segmentations performed with K-means.

90

5.4.12. Results for different segmentations

The results for the experiments with K-means are shown in the following figures of this

section. For the case of null default value and 2 clusters, the Figure 34 evidences that K-

means produces a cluster for containing all the users except one (outlier) that has his/her own

cluster.

The Figure 34 is a matrix of range 2×2 where every row i and column j represents a

cluster, so given a cell (i,j) this is the comparison of cluster ci with cluster cj. The cell (i,j) is in

itself nesting a user matrix comparing the c-users from cluster ci and the c-users from cluster

cj. These nested user matrices have |c i| rows and |c j| columns. The way those cardinalities

are evaluated is considering |c i| the total number of c-users belonging to ci and |c j| the

total number of c-users belonging to cj. Basically, every user matrix (i,j) is a heat map [112]

where its cells (k,l) show a colour intensity from white to dark blue proportional to the number

of common reviewed films of the k-th c-user and the l-th c-user. The cases where i=j and k=l
show the maximum intensity in dark blue because it is a c-user compared to itself obtaining a

value of 1000 scored films for this Prolific IMDb User dataset. The cases where i=j compare a

91

Figure 34. Results of K-means with 2 clusters and null default value.

cluster with itself, showing the nested matrix of its users while the rest i≠ j compare different

clusters. The Figure 35 is an equivalent clustering for 2 centroids using the user default value

approach; this figure has to be interpreted with the same format and colour code as the

Figure 34 despite its content is completely different.

Despite both clusterings have been performed on the same dataset Prolific IMDb User

dataset it is clear that Figure 35 shows a more equilibrated clustering, distributing the

population in 26 c-users for the first cluster and 36 c-users for the second one. The second

clustering does not considers users as outliers.

The results of clustering again with null default value and average default value using 5

clusters are exposed in the Figure 36 and Figure 37 respectively. These show a parallelism to

what has been observed comparing both methods with 2 clusters in the sense that Figure 36

shows again 5 clusters where almost all the population is in the 2nd cluster and the other four

clusters contain only 1 or 2 c-users. When clustering with null default value the population use

to be considered pretty homogeneous except for a few users considered outliers and placed in

additional clusters as K-means considers them not similar enough (even between them).

92

Figure 35. Results of K-means with 2 clusters and average default value.

The Figure 37 shows how average default value helps K-means to find a more

equilibrated distribution in terms of the clusters' sizes. The clusters have relative close sizes

except the last one with just a couple of users that the algorithm interprets as outliers that

deserve their own cluster as not being similar enough to the rest of them.

For the next cases where it has been used 10 clusters, the previous heat map requires so

much resolution that makes it unfeasible for being used to illustrate the results. These are

presented using a simpler approach counting every cluster's users in bars. The Figure 38

shows that for the null default value that follows its usual trend of concentrating the majority of

users in one cluster and isolating the rest as exceptions in their own clusters of one or two

users. On another note, the Figure 39 shows again how average default value finds more

proportional clusters. In this case it is clear that users are distributed with closer similarities in

a population-descendant way, as the first cluster is the greatest one with 18 members, the

second has 16 and so on, being the latest clusters the ones keeping two pairs of outliers each

one.

93

Figure 36. Results of K-means with 5 clusters and null default value.

94

Figure 37. Results of K-means with 5 clusters and average default
value.

Figure 38. Distribution of users per cluster for 10 clusters and null

default value.

The final results involve a total of 40 clusters on the Prolific IMDb User dataset and can

be observed at the Figure 40 and 41. Similarly to previous results obtained applying null

default value, the Figure 40 shows a very biased distribution of the users among the clusters.

The first clusters gather the greatest number of users, more than 3 times the content of the

second clusters. From the 3rd to the 40th cluster there is a collection of small clusters form

around just 1 user. When evaluating again with 40 clusters and the same dataset but using

average default value the result varies from the previous one. This is shown in Figure 41,

where the same count of clusters contains a different distribution of users. Despite that

previous segmentations of average default value show more heterogeneous distributions of

users, this case is more homogeneous despite not as much as Figure 40. The Figure 41

shows a big first clusters with 6 users, 3 clusters of 4 users, the next 3 clusters with 3 users

and the rest containing just 1 user. According to those results, can be said that in this case the

difference between both methods only appears at the 8 first clusters, and the 32 resting have

the same size. This is just for the content's distribution but it is not specified if the distribution

of the users per cluster coincides or not.

95

Figure 39. Distribution of users per cluster for 10 clusters and average

default value.

Figure 40. Distribution of users per cluster for 40 clusters and null default value.

5.4.13. Summary

Compiling the several conclusions extracted from all the previous results the most

important insights can be extracted as a timeline. From section 5.4.1 and 5.4.2 the alternative

ways of clustering show a clear winner in terms of efficiency. K-means produces the best results

with a difference several times more reduced than any other method explored.

The sparsity of the Prolific IMDb User dataset has a strong impact augmenting the error

whilst increasing the total number of clusters used for modelling. That is directly extracted from

sections 5.4.3 and 5.4.4, where it is also evinced that using information from the same users is

an important key for improving the accuracy of predictions.

As it was expected, the use of more data is the way that error can be reduced. Sections

5.4.5 and 5.4.6 expose this in an opposite way. As the number of clusters increments the error

because the sparsity of the dataset, this is compensated more efficiently when more data

about the user's scores is used for profiling this user.

Sections 5.4.7 introduces some rational about how the predictions can be improved,

introducing the dense clusters approach and the saturated rectifier as simple fixes. The results

from section 5.4.8 prove these conjectures are right and yield clearly better results.

The model competition is the final comparison between different combinations of

approaches. Its results from section 5.4.10 expose that heuristic methods, based on probability

more than pure data-driven modelling provide good results. Those are especially relevant when

considering the reduced amount of data used for that.

Finally, the analysis of the clusters allows to understand that different approaches for

dealing with the fitness function of the k-means produce different behaviours and distributions

of the users among the clusters. Being average default value a more balanced way of grouping

users by archetypes, knowing that this is reflected in better results at the model competition.

96

Figure 41. Distribution of users per cluster for 40 clusters and average default value.

6. Conclusions
Considering all the different approaches, experiments and results reviewed, the

conclusions obtained from them are also diverse and this section tries to analyse these. It has

been introduced how recommendation systems are important nowadays and it is expected to

increase their influence and popularity in a near future. It has also been going through the state

of the art of different approaches for obtaining the most accurate recommendations, showing

different categories like collaborative filters or content-based and how those can be combined

for improving the results. Despite the actual trends go in the direction of using more data and

making more sophisticated systems, the present approach wanted to explore the opposite side,

proposing simpler methods when there is little information or even nothing available at all.

6.1. General conclusions

According to the objectives introduced for the present work, it has been designed,

implemented and proved a mechanism able to segment users by archetypes and use them for

performing reasonable good predictions. It has been specially achieved the goal of having at

least one feasible alternative for the cases with no information, while in another hand, several

variants of the heuristic methods are able to generate good results when there is at least very

reduced information.

The way of obtaining clusters and predicting the scores for the users provides so many

combinations that not all of them can be explored, but the diversity of results allows to

conclude constant behaviours. The main general conclusions related to the proposed approach

can be summarized as the following ones, not sorted necessarily in order of importance:

• There is not a single approach that is better than the others. The different

results obtained and exposed at Table 7 (Prolific IMDb Users) and Table 9 (Movielens)

evidence that when having different amounts of information available for profiling the

users it is best to use the method that provides the best results from the data. The

different heuristic methods combined with other approaches produce the best results

when little information. On another hand, linear regressions are the best for obtaining

the weights that profile users when there is lot of information statistically robust about

them. Even the same models for obtaining the weights produce different results for

different hyperparameter tuning. That can even be applied to the baseline models built

using the scores average aggregated by user or film. Which one is the best of them in

terms of reducing the prediction error depends on the data availability so, when very

little information about a user is found using the film information is the best option, but

when there begins to be some samples about the user's preferences this generates

better predictions.

• The dataset impacts the performance of predictions. When comparing the three

different datasets (and subsets) used for the experiments it is clear that the expected

prediction's error is going to be very depending on the dataset. This is a two sides coin

where on one hand the data is going to limit the results, but on another hand if

gathering more data is possible, it shows this is a path that can be explored when the

97

accuracy of predictions needs to be improved. Independently of that, the datasets used

do not allow to determine what are the limits of improvement in the results when

increasing the amount and kind of data used for prediction. This is a very interesting

analysis that can initiate future lines of investigation.

• Simple methods may provide better results than sophisticated approaches.

When observing the results from different pipelines of methods used obtained for the

three different explored datasets it is clear that some simple heuristic methods provide

good results when using from 1 to 10 scores for profiling users. This is the case of the

inverse error way of generating the weights relating the users with the clusters. This

method is the best performing one almost systematically in this range [1,10] of scores

when it is combined with the values {0.05, 0.1, 0.2} for the parameter γ. Another of

those methods (even simpler than this) is the equal weights, specially its variation with

no Y-intercept. This case is not the best performing one but it is very close in error to

inverse error within this small range of scores. For the range of 100 scores or more per

user, the linear regression is the outperforming model for obtaining the weights. This

simple model provides results comparable to the obtained from other methods

developed by previous researchers [108].

• The methodology proposed may be applied to other recommendation

domains. Despite all the experiments proposed have been performed using datasets

related to preferences about films, more concretely scores, the approach and the

rationale supporting its conception is general enough an susceptible of being exported

to other domains like books, music, TV series and others without the need of having to

tweak so much the approach, it can be almost directly applied.

6.2. Clustering methods

From the experiments performed at section 5.4.1 it is easy to conclude how much

convenient is the K-means algorithm for creating the clusters that most reduce the modelling

error. Other methods cannot even provide a segmentation that is comparable in terms of error.

Despite of that, nothing indicates that the clustering process cannot be improved. An approach

similar to the proposed cluster-weight optimization at section 4.2.7 is very likely to improve the

final results. That does not mean that the improvement is going to be enormous or that the

way of obtaining the segmentation is going to be as fast and computationally light as K-means,

but that would be a future line to explore. Applying other optimization methods like gradient

descent to randomly initialized clusters will obtain minimums of the error that could fall close

enough of the absolute minimum. Another way of obtaining good results for the clusters goes

trough the use of genetical algorithms. Anyway, both methods, despite they are powerful and

performant optimizing, require a lot of computation consumption that is proportional to the

number of users and films reviewed. K-means seems a very reasonable way of clustering with a

good balance between efficiency and computation requirements. That does not mean that

other clustering methods, heuristic or more generic cannot be applied for this purpose.

98

6.3. Default values for unrated films

Understanding the importance of these variants is key for explaining why average default

value provides more accurate results that null default value. In this case, results of the

evaluation of the final error (Table 7, Table 8 and Table 9) and how users are distributed

among the clusters (Figure 34 vs Figure 35, Figure 36 vs Figure 37) provides a reasonable

explanation: average default value tends to lesser concentrated distributions of users through

the clusters. The more the clusters contain as many users as possible, the more combinations

of users can be covered without having to increase the number of clusters. Obviously this is a

rule of thumb that is not the only criteria for improving the clustering process. The way

average default value achieves that is considering the unrated films as being more probably

close to the user's own average value. That focus the similarity of the users when clustering

mainly in a comparison of average values, making the difference the ones in common that can

be closer or not. On another hand, null default value has a strong emphasis on basing the

similarity process in a proportion of how many films users have seen. That allows to infer that

when clustering, similarity in average scoring seems to be a more important factor for relating

users than their common interests. The average user's score impacts more on the results'

accuracy than what films he/she has scored.

6.4. Profiling the user

One of the main hypotheses of eigenclusters is that identifying the user with one or more

archetypes represented by clusters may provide a better understanding of their behaviour and

would make easier to predict the future preferences. The results evince that the presented

approach provides benefits in the form of a reasonable MAE for several ways of obtaining the

weights for predicting. A complete different debate is how many of those clusters are relevant

and how this number is related to the amount of information available. Once again, the two

main ranges of known scores for profiling (1% or less of the scores vs 10% and more) show

different needs in terms of the total number of clusters. For the small range, it is easy to find

the best performing approaches with 7 or more clusters in general. There are some outliers

with 3 or 2 clusters, but do not represent the trend. For the big range of scores, where the

linear regression is the constant winner as best method for generating the weights, it is usual

to need only 1 cluster for that. It also has some exceptions with 2 or 4 clusters, but even those

are small numbers. For the special case of using 80% of the scores, this situation is reverted

again, having cases of needing from 3 to 5 clusters. All these different amounts of clusters and

how many scores are used for profiling the user allow to infer several behaviours:

• Profiling with less than 10% of user's scores can easily use more clusters than

scores are known from the user. In those cases there is not enough information for

deterministically obtain the weights, so the heuristic models provide their best; more

concretely the most simple ones. As they are not constrained under a very rigid logic

and are based on probabilistic assumptions this is how the results can be interpreted.

The weights in such situations can be interpreted as a probability of the user being

significantly defined by one specific cluster-archetype. This is because the heuristic

model cannot infer the real profiling in terms of the available data. Only some of the

heuristic models are able to refine these probabilities increasing the ones of the clusters

99

that explain a bit better the known user's scores. The concrete case of the equal

weights (equation 52), that do not use any of the available information of the user at all,

shows (Table 7) a clear improvement vs the baseline models and it is purely

probabilistic.

• Using 10% or more of user's scores can be interpreted less in terms of probability

and more in terms of pure profiling; those weights represent how much the clusters

define the traits of the user. In those cases the linear regression model is the best

performing and in general, the more information it uses the more accurate the

predictions are because the improvement of the profiling.

6.5. Comparison with previous experiments

One of the reasons why the section 2.6 (Empirical performance) has been included as

part of the state of the art is for providing a reference point; helping to understand the scale of

the results obtained from the eigenclusters' method. Taking into account the evaluation that

Seroussi et al. [108] performed is not completely the same developed here, both are based in

the same database of Prolific IMDb Users (IMDb) and allow to extract some conclusions.

Looking at Figure 9, it can be seen the Overall MAE exposed is in terms of the scores ranges

from 1 to 10. For a fare comparison those must be normalizing simply dividing them by 10, so

these MAE values move from 0 to 1. Using this scale and comparing these with the results

gathered at the Table 7, it can be seen how models like SCSU perform worse than

UAvg-dense-Inv(0.2) or UAvg-dense-Inv(0.2) for the cases where the labelled scores used for

profiling are less than 10. For the case of 200 labelled scores, SCSU is the best performing

model also with AIT. At this point UAvg-dense-LR (Table 7) performs slightly better than EQW.

100

7. Future work
When comparing the obtained results from Table 7 to the references at Figure 9 it can

be seen that the MSE obtained is in the order of what can be considered good enough for a

ready-to-production model. This conclusion is even more reasonable when it is also considered

how reduced is the information used for profiling the users and that external information like

written documents from the users is not necessary at all for this approach.

One of the future lines of development may be use additional datasets for defining the

clusters. As those represent the archetypes, real user profiles that exist beyond one specific

website, it makes sense to expect that different datasets from other places could be combined

to have a better determination of clusters, and also to correlate the information available per

user with the ideal number of clusters.

Observing the approach from Seroussi et al. [108] it seems obvious that adding external

information like documents from users would be natural way of continuing improving the

predictions. The following sections summarize several ways of expanding this approach using

external information.

7.1. Model ensemble

The results from the eigenclusters approach can be the foundation of a prediction to

refine using the text-based analysis about sentiment or any other kind. These base results can

be just refined or combined with other models for providing the final values. Merging with other

available ways of predicting, it can be applied some kind of classificatory model based on the

user attributes, like decision trees, that may apply a predictive way (among available ones)

personalized to the user.

7.2. Feature generator

This is an alternative way of using the insights that eigenclusters provides. Every cluster

can be identified with a unique feature, despite these are not necessarily uncorrelated. These

features are directly applicable to ML algorithms in different ways. One use for these features is

directly predicting the final score of a new film. This approach can be used also in combination

with a clustering of the films in an equivalent way to how the users have been segmented. This

segmentation of films would be a second set of features to be used in combination with the

ones coming from the user. A second way of using them (in addition or not to the features

obtained from clustering films) is for feeding as additional variables some of the actual ML

classificatory algorithms.

7.3. Clustering improvement

Using different algorithms or additional information from texts is another of the ways of

improving the predictions. As was shown at Figure 18 the results from diverse segmentation

techniques lead to significantly different values of the error; that keeps the door open to

assume that the used K-means is not necessarily the absolute optimal approach but just some

101

kind of good approach for that. On another note, using flexible mixture model (FMM) is a

reasonable candidate for improving the performance as it is able to cluster both users and films

at once.

102

8. References

[1] Olenski, S. (2015, December 29). The Evolution Of eCommerce. Forbes. Retrieved

from https://www.forbes.com/sites/steveolenski/2015/12/29/the-evolution-of-

ecommerce/

[2] https://www.omnicoreagency.com/youtube-statistics/

[3] Amazon Annual Report 2017.

[4] Number of movies released in the United States and Canada from 2000 to 2018.

Statista. Source: Box Office Mojo.

[5] Francesco Ricci and Lior Rokach and Bracha Shapira, Introduction to Recommender

Systems Handbook, Recommender Systems Handbook, Springer, 2011, pp. 1-35

[6] "The Netflix Prize". Archived from the original on 2009-09-24. Retrieved 2012-07-09.

[7] Karlgren, Jussi. 1990. "An Algebra for Recommendations." Syslab Working Paper 179

(1990).

[8] Bobadilla, Jesús; Ortega, Fernando; Hernando, Antonio; Bernal, Jesús (February

2012). "A collaborative filtering approach to mitigate the new user cold start

problem". Knowledge-Based Systems.

[9] Hou, Lei; Pan, Xue; Liu, Kecheng (7 March 2018). "Balancing the popularity bias of

object similarities for personalised recommendation". The European Physical Journal

B. 91 (3).

[10] http://license.umn.edu/technologies/z05173_movielens-database

[11] John S. Breese, David Heckerman, and Carl Kadie, Empirical Analysis of Predictive

Algorithms for Collaborative Filtering, 1998 Archived 19 October 2013 at the

Wayback Machine.

[12] Terveen, Loren; Hill, Will (2001). "Beyond Recommender Systems: Helping People

Help Each Other". Addison-Wesley. p. 6. Retrieved 16 January 2012.

[13] Koza, John R.; Bennett, Forrest H.; Andre, David; Keane, Martin A. (1996). Automated

Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic

Programming. Artificial Intelligence in Design '96. Springer, Dordrecht. pp. 151–170.

[14] "Collaborative recommendations using item-to-item similarity mappings"

[15] Xiaoyuan Su, Taghi M. Khoshgoftaar, A survey of collaborative filtering techniques,

Advances in Artificial Intelligence archive, 2009.

103

http://license.umn.edu/technologies/z05173_movielens-database
https://www.statista.com/statistics/187122/movie-releases-in-north-america-since-2001/
https://ir.aboutamazon.com/static-files/917130c5-e6bf-4790-a7bc-cc43ac7fb30a
https://www.omnicoreagency.com/youtube-statistics/
https://www.forbes.com/sites/steveolenski/2015/12/29/the-evolution-of-ecommerce/
https://www.forbes.com/sites/steveolenski/2015/12/29/the-evolution-of-ecommerce/
https://www.forbes.com/sites/steveolenski/2015/12/29/the-evolution-of-ecommerce/
https://www.hindawi.com/journals/aai/2009/421425/
https://patents.google.com/patent/US6266649
http://www.grouplens.org/papers/pdf/rec-sys-overview.pdf
http://www.grouplens.org/papers/pdf/rec-sys-overview.pdf
https://web.archive.org/web/20131019134152/http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=231&proceeding_id=14
https://web.archive.org/web/20131019134152/http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=231&proceeding_id=14
https://link.springer.com/article/10.1140%2Fepjb%2Fe2018-80374-8
https://link.springer.com/article/10.1140%2Fepjb%2Fe2018-80374-8
http://oa.upm.es/15302/
http://oa.upm.es/15302/
https://web.archive.org/web/20090924184639/http://www.netflixprize.com/community/viewtopic.php?id=1537
http://www.inf.unibz.it/~ricci/papers/intro-rec-sys-handbook.pdf
http://www.inf.unibz.it/~ricci/papers/intro-rec-sys-handbook.pdf

[16] Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cambridge

University Press. ISBN 978-0-521-77362-1.

[17] Dawid, A. P. (1979). "Conditional Independence in Statistical Theory". Journal of the

Royal Statistical Society, Series B. 41 (1): 1–31.

[18] Gut, Allan (2013). Probability: A Graduate Course (Second ed.). New York, NY:

Springer. ISBN 978-1-4614-4707-8.

[19] C.D. Manning, P. Raghavan and M. Schütze (2008). Introduction to Information

Retrieval. Cambridge University Press, p. 260.

[20] K. Miyahara and M. J. Pazzani, “Collaborative filtering with the simple Bayesian

classifier,” in Proceedings of the 6th Pacific Rim International Conference on Artificial

Intelligence, pp. 679–689, 2000.

[21] X. Su and T. M. Khoshgoftaar, “Collaborative filtering for multi-class data using belief

nets algorithms,” in Proceedings of the International Conference on Tools with

Artificial Intelligence (ICTAI ’06), pp. 497–504, 2006.

[22] R. Greinemr, X. Su, B. Shen, and W. Zhou, “Structural extension to logistic

regression: discriminative parameter learning of belief net classifiers,” Machine

Learning, vol. 59, no. 3, pp. 297–322, 2005.

[23] B. Shen, X. Su, R. Greiner, P. Musilek, and C. Cheng, “Discriminative parameter

learning of general Bayesian network classifiers,” in Proceedings of the 15th IEEE

International Conference on Tools with Artificial Intelligence, pp. 296–305,

Sacramento, Calif, USA, November 2003.

[24] J. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms

for collaborative filtering,” in Proceedings of the 14th Conference on Uncertainty in

Artificial Intelligence (UAI ’98), 1998.

[25] MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate

Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics

and Probability. 1. University of California Press. pp. 281–297. MR 0214227.

Zbl 0214.46201. Retrieved 2009-04-07.

[26] M. O’Connor and J. Herlocker, “Clustering items for collaborative filtering,” in

Proceedings of the ACM SIGIR Workshop on Recommender Systems (SIGIR ’99),

1999.

[27] T. Hofmann and J. Puzicha, “Latent class models for collaborative filtering,” in

Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI

’99), pp. 688–693, 1999.

[28] J. Canny, “Collaborative filtering with privacy via factor analysis,” in Proceedings of

the 25th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pp. 238–245, Tampere, Finland, August 2002.

104

https://zbmath.org/?format=complete&q=an:0214.46201
https://www.ams.org/mathscinet-getitem?mr=0214227
http://projecteuclid.org/euclid.bsmsp/1200512992
http://projecteuclid.org/euclid.bsmsp/1200512992
https://books.google.com/books?id=LLkhAwAAQBAJ

[29] S. Vucetic and Z. Obradovic, “Collaborative filtering using a regression-based

approach,” Knowledge and Information Systems, vol. 7, no. 1, pp. 1–22, 2005.

[30] R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, USA,

1962.

[31] "Definition of system ". Merriam-Webster. Springfield, MA, USA.Retrieved 2019-01-13.

[32] Gagniuc, Paul A. (2017). Markov Chains: From Theory to Implementation and

Experimentation. USA, NJ: John Wiley & Sons. pp. 1–235. ISBN 978-1-119-38755-8.

[33] R. A. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge,

Mass, USA, 1960.

[34] G. Shani, D. Heckerman, and R. I. Brafman, “An MDP-based recommender system,”

Journal of Machine Learning Research, vol. 6, pp. 1265–1295, 2005.

[35] T. Hofmann, “Unsupervised learning by probabilistic latent semantic analysis,”

Machine Learning, vol. 42, no. 1-2, pp. 177–196, 2001.

[36] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order things,” Journal of

Artificial Intelligence Research, vol. 10, pp. 243–270, 1999.

[37] EachMovie dataset, http://www.grouplens.org/node/76.

[38] B. Marlin, “Modeling user rating profiles for collaborative filtering,” in Neural

Information Processing Systems, 2003.

[39] B. Marlin, Collaborative filtering, a machine learning perspective, M.S. thesis,

Department of Computer Science, University of Toronto, 2004.

[40] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” Journal of Machine

Learning Research, vol. 3, no. 4-5, pp. 993–1022, 2003.

[41] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl, “Analysis of recommendation

algorithms for E-commerce,” in Proceedings of the ACM E-Commerce, pp. 158–167,

Minneapolis, Minn, USA, 2000.

[42] X. Fu, J. Budzik, and K. J. Hammond, “Mining navigation history for

recommendation,” in Proceedings of the International Conference on Intelligent User

Interfaces (IUI ’00), pp. 106–112, 2000.

[43] D. Y. Pavlov and D. M. Pennock, “A maximum entropy approach to collaborative

filtering in dynamic, sparse, high dimensional domains,” in Advances in Neural

Information Processing Systems, pp. 1441–1448, MIT Press, Cambridge, Mass, USA,

2002.

[44] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie,

“Dependency networks for inference, collaborative filtering, and data visualization,”

Journal of Machine Learning Research, vol. 1, no. 1, pp. 49–75, 2001.

105

http://www.grouplens.org/node/76
http://www.merriam-webster.com/dictionary/system

[45] D. Nikovski and V. Kulev, “Induction of compact decision trees for personalized

recommendation,” in Proceedings of the ACM Symposium on Applied Computing,

vol. 1, pp. 575–581, Dijon, France, April 2006.

[46] C. C. Aggarwal, J. L. Wolf, K. Wu, and P. S. Yu, “Horting hatches an egg: a new graph-

theoretic approach to collaborative filtering,” in Proceedings of the 5th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD ’99), pp.

201–212, 1999.

[47] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,” Journal

of the Royal Statistical Society. Series B, vol. 21, no. 3, pp. 611–622, 1999.

[48] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Investigation of various matrix

factorization methods for large recommender systems,” in Proceedings of the IEEE

International Conference on Data Mining Workshops (ICDM ’08), pp. 553–562, Pisa,

Italy, December 2008.

[49] B. Marlin and R. S. Zemel, “The multiple multiplicative factor model for collaborative

filtering,” in Proceedings of the 21st International Conference on Machine Learning

(ICML ’04), pp. 576–583, Banff, Canada, July 2004.

[50] Peter Brusilovsky (2007). The Adaptive Web. p. 325. ISBN 978-3-540-72078-2.

[51] Robertson, S. (2004). "Understanding inverse document frequency: On theoretical

arguments for IDF". Journal of Documentation. 60 (5): 503–520.

doi:10.1108/00220410410560582.

[52] Manouselis, N., Costopoulou, C. Experimental Analysis of Design Choices in Multi-

Attribute Utility Collaborative Filtering. International Journal of Pattern Recognition

and Artificial Intelligence, 21(2):311–332, 2007.

[53] Perny, P., Zucker, J.D. Collaborative Filtering Methods based on Fuzzy Preference

Relations. In Proc. of EUROFUSE-SIC 99, pages 279–285, 1999.

[54] Adomavicius, G., Tuzhilin, A. Towards the Next Generation of Recommender Systems:

A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on

Knowledge and Data Engineering, 17(6):734–749, 2005.

[55] Siskos, Y., Grigoroudis, E., Matsatsinis, N.F. UTA Methods. Springer, 2005.

[56] Stolze, M., Rjaibi, W. Towards Scalable Scoring for Preference-based Item

Recommendation. IEEE Data Engineering Bulletin, 24(3):42–49, 2001.

[57] Stolze, M., Stroebel, M. Dealing with Learning in eCommerce Product Navigation and

Decision Support: The Teaching Salesman Problem. In Proc. of the 2nd

Interdisciplinary World Congress on Mass Customization and Personalization.

Munich, Germany, 2003.

106

[58] Cantador, I., Fernandez, M., Castells, P. A Collaborative Recommendation Framework

for Ontology Evaluation and Reuse. In Proc. of the International ECAI Workshop on

Recommender Systems. Riva del Garda, Italy, 2006.

[59] Adomavicius, G., Kwon, Y. New Recommendation Techniques for Multi-Criteria Rating

Systems. IEEE Intelligent Systems, 22(3):48–55, 2007.

[60] Pazzani, M., Billsus, D. Learning and Revising User Profiles: The Identification of

InterestingWeb Sites. Machine Learning, 27(3):313–331, 1997.

[61] Masthoff, J. Modeling the Multiple People That Are Me. In Proc. of the International

Conference on User Modelling (UM2003), pages 258–262. Johnstown, USA, 2003.

[62] Perny, P., Zucker, J.D. Preference-based Search and Machine Learning for

Collaborative Filtering: the Film-Conseil Movie Recommender System. Information,

Interaction, Intelligence, 1(1):1–40, 2001.

[63] Adomavicius, G., Tuzhilin, A. Towards the Next Generation of Recommender Systems:

A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on

Knowledge and Data Engineering, 17(6):734–749, 2005.

[64] Falle, W., Stoefler, D., Russ, C., Zanker, M., Felfernig, A. Using knowledge-based

advisor technology for improved customer satisfaction in the shoe industry. In Proc.

of International Conference on Economic, Technical and Organisational aspects of

Product Configuration Systems, Technical University of Denmark, Kopenhagen, 2004.

[65] WordNet - A Lexical Database for English

[66] Recommendation of e-Learning Quality Approaches. In Proc. of the 16th World

Conference on Educational Multimedia, Hypermedia and Telecommunications

(EDMEDIA). Lugano, Switzerland, 2004.

[67] Manouselis, N., Sampson, D. A Multi-criteria Model to Support Automatic

Recommendation of e-Learning Quality Approaches. In Proc. of the 16th World

Conference on Educational Multimedia, Hypermedia and Telecommunications

(EDMEDIA). Lugano, Switzerland, 2004.

[68] Tang T.Y., McCalla, G. The Pedagogical Value of Papers: a Collaborative-Filtering

based Paper Recommender. Journal of Digital Information, 10(2), 2009.

[69] Schmitt, C., Dengler, D., Bauer, M. The MAUT-Machine: An Adaptive Recommender

System. In Proc. of the Workshop on Adaptivitat und Benutzermodellierung in

Interaktiven Softwaresystemen(ABIS). Hannover, Germany, 2002.

[70] Mukherjee, R., Dutta, P.S., Jonsdottir, G., Sen, S MOVIES2GO: An Online Voting Based

Movie Recommender System. In Proc. of the 5th International Conference on

Autonomous Agents, pages 114–115. Montreal, Canada, 2001.

107

https://wordnet.princeton.edu/

[71] Ariely, D., Lynch, J.G.Jr., Aparicio, M. Learning by Collaborative and Individual-based

recommendation Agents. Journal of Consumer Psychology, 14(1&2):81–95, 2004.

[72] Cheetham, W. Global Grade Selector: A Recommender System for Supporting the

Sale of Plastic Resin. Technical Information Series, GE Global Research, TR

2003GRC261, 2003.

[73] Kohavi, Ron (1995). "A study of cross-validation and bootstrap for accuracy

estimation and model selection". Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann. 2 (12):

1137–1143.

[74] Manouselis, N., Costopoulou, C. Analysis and Classification of Multi-Criteria

Recommender Systems. World Wide Web: Internet and Web Information Systems,

10(4):415–441, 2007.

[75] Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., Nones, M. Product

Recommendation with Interactive Query Management and Twofold Similarity. Proc.

of the 5th Internatinal Conference on Case-Based Reasoning, Trondheim, Norway,

2003.

[76] Reilly, J., McCarthy, K., McGinty, L., Smyth, B. Incremental Critiquing. Knowledge-

Based Systems, 18(4-5):143–151, 2005.

[77] R. Greinemr, X. Su, B. Shen, and W. Zhou, “Structural extension to logistic

regression: discriminative parameter learning of belief net classifiers,” Machine

Learning, vol. 59, no. 3, pp. 297–322, 2005.

[78] X. Su, R. Greiner, T. M. Khoshgoftaar, and X. Zhu, “Hybrid collaborative filtering

algorithms using a mixture of experts,” in Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence (WI ’07), pp. 645–649, Silicon Valley,

Calif, USA, November 2007.

[79] M. J. Pazzani, “A framework for collaborative, content-based and demographic

filtering,” Artificial Intelligence Review, vol. 13, no. 5-6, pp. 393–408, 1999.

[80] X. Su, R. Greiner, T. M. Khoshgoftaar, and X. Zhu, “Hybrid collaborative filtering

algorithms using a mixture of experts,” in Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence (WI ’07), pp. 645–649, Silicon Valley,

Calif, USA, November 2007.

[81] M. Balabanović, “Exploring versus exploiting when learning user models for text

recommendation,” User Modelling and User-Adapted Interaction, vol. 8, no. 1-2, pp.

71–102, 1998.

[82] R. Burke, “Hybrid recommender systems: survey and experiments,” User Modelling

and User-Adapted Interaction, vol. 12, no. 4, pp. 331–370, 2002.

108

[83] B. Smyth and P. Cotter, “A personalized TV listings service for the digital TV age,” in

Proceedings of the 19th International Conference on Knowledge-Based Systems and

Applied Artificial Intelligence (ES ’00), vol. 13, pp. 53–59, Cambridge, UK, December

2000.

[84] CiteSeer ResearchIndex, digital library of computer science research papers,

http://citeseer.ist.psu.edu.

[85] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel, “Probabilistic memory-based

collaborative filtering,” IEEE Transactions on Knowledge and Data Engineering, vol.

16, no. 1, pp. 56–69, 2004.

[86] Ye, Mao; Yin, Peifeng; Lee, Wang-Chien; Lee, Dik-Lun (2011-01-01). Exploiting

Geographical Influence for Collaborative Point-of-interest Recommendation.

Proceedings of the 34th International ACM SIGIR Conference on Research and

Development in Information Retrieval. SIGIR '11. New York, NY, USA: ACM. pp. 325–

334. ISBN 9781450307574.

[87] Bouneffouf, Djallel (2013), DRARS, A Dynamic Risk-Aware Recommender System

(Ph.D.), Institut National des Télécommunications.

[88] Gittins, J. C. (1989), Multi-armed bandit allocation indices, Wiley-Interscience Series

in Systems and Optimization., Chichester: John Wiley & Sons, Ltd., ISBN

978-0-471-92059-5.

[89] Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment

categorization with respect to rating scales. In: Proceedings of the 43rd Annual

Meeting of the Association for Computational Linguistics (ACL), Ann Arbor, Michigan

(2005) 115–124.

[90] L. Sirovich; M. Kirby (1987). "Low-dimensional procedure for the characterization of

human faces". Journal of the Optical Society of America A. 4 (3): 519–524.

[91] M. Turk; A. Pentland (1991). "Face recognition using eigenfaces". Proc. IEEE

Conference on Computer Vision and Pattern Recognition. pp. 586–591.

[92] Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in

Space". Philosophical Magazine. 2 (11): 559–572.

[93] Griffiths, David (2005). Introduction to Quantum Mechanics (2nd ed.). pp. 183–4.

[94] Schrödinger, E. (1926). "An Undulatory Theory of the Mechanics of Atoms and

Molecules". Physical Review. 28 (6): 1049–1070.

[95] Leijen, Daan (December 3, 2001). "Division and Modulus for Computer Scientists".

Retrieved 2014-12-25.

109

http://research.microsoft.com/pubs/151917/divmodnote.pdf
https://web.archive.org/web/20081217040121/http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
https://web.archive.org/web/20081217040121/http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
https://doi.org/10.1080%2F14786440109462720
https://doi.org/10.1080%2F14786440109462720
http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
https://tel.archives-ouvertes.fr/tel-01026136/fr/
https://dl.acm.org/citation.cfm?doid=2009916.2009962
https://dl.acm.org/citation.cfm?doid=2009916.2009962
https://dl.acm.org/citation.cfm?doid=2009916.2009962

[96] Simovici, Dan A. & Djeraba, Chabane (2008). "Partially Ordered Sets". Mathematical

Tools for Data Mining: Set Theory, Partial Orders, Combinatorics. Springer. ISBN

9781848002012.

[97] MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate

Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics

and Probability 1. University of California Press. pp. 281–297. MR 0214227. Zbl

0214.46201.

[98] Rencher, Alvin C.; Christensen, William F. (2012), "Chapter 10, Multivariate

regression – Section 10.1, Introduction", Methods of Multivariate Analysis.

[99] Stigler, Stephen M. (1981). "Gauss and the Invention of Least Squares". Ann. Stat. 9

(3): 465–474.

[100]Broyden, C. G. (1970), "The convergence of a class of double-rank minimization

algorithms", Journal of the Institute of Mathematics and Its Applications, 6: 76–90.

[101]Schey, H. M. (1997). Div, Grad, Curl, and All That: An Informal Text on Vector

Calculus. New York: Norton. ISBN 0-393-96997-5.

[102]Odersky, M.; Rompf, T. (2014). "Unifying functional and object-oriented programming

with Scala". Communications of the ACM. 57 (4): 76.

[103]"The Java Virtual Machine Specification : Java SE 7 Edition" (PDF). Docs.oracle.com.

Retrieved 2015-06-26.

[104]Darcy, Joe (June 8, 2009). "OpenJDK and the new plugin". Retrieved September 5,

2009.

[105]Lindholm, Tim; Yellin, Frank; Bracha, Gilad; Buckley, Alex (2015-02-13). The Java

Virtual Machine Specification (Java SE 8 ed.).

[106]Matthew Hertz; Emery D. Berger (2005). "Quantifying the Performance of Garbage

Collection vs. Explicit Memory Management". OOPSLA 2005. Retrieved 2015-03-15.

[107]Aycock, J. (June 2003). "A brief history of just-in-time". ACM Computing Surveys.

35 (2): 97–113.

[108]Seroussi Y., Zukerman I., Bohnert F. (2010) Collaborative Inference of Sentiments

from Texts. In: De Bra P., Kobsa A., Chin D. (eds) User Modeling, Adaptation, and

Personalization. UMAP 2010. Lecture Notes in Computer Science, vol 6075. Springer,

Berlin, Heidelberg.

[109]F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and

Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19

(December 2015), 19 pages. DOI=http://dx.doi.org/10.1145/2827872.

110

http://people.cs.umass.edu/~emery/pubs/gcvsmalloc.pdf
http://people.cs.umass.edu/~emery/pubs/gcvsmalloc.pdf
http://dx.doi.org/10.1145/2827872
http://docs.oracle.com/javase/specs/jvms/se8/html/
http://docs.oracle.com/javase/specs/jvms/se8/html/
http://mail.openjdk.java.net/pipermail/jdk6-dev/2009-June/000604.html
http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
https://doi.org/10.1093%2Fimamat%2F6.1.76
https://doi.org/10.1093%2Fimamat%2F6.1.76
http://projecteuclid.org/euclid.aos/1176345451
https://books.google.com/books?id=0g-PAuKub3QC&pg=PA19
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://books.google.com/books?id=6i-F3ZNcub4C&pg=PA127
https://books.google.com/books?id=6i-F3ZNcub4C&pg=PA127
https://books.google.com/books?id=6i-F3ZNcub4C&pg=PA127

[110]Willmott, Cort J.; Matsuura, Kenji (December 19, 2005). "Advantages of the mean

absolute error (MAE) over the root mean square error (RMSE) in assessing average

model performance". Climate Research. 30: 79–82.

[111]Cook, R. Dennis; Weisberg, Sanford (1982). Residuals and Influence in Regression

(Repr. ed.). New York: Chapman and Hall. ISBN 041224280X. Retrieved 23 February

2013.

[112]Wilkinson, Leland; Friendly, Michael (May 2009). "The History of the Cluster Heat

Map". The American Statistician. 63 (2): 179-184.

111

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.7924
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.7924
http://www.stat.umn.edu/rir/

	Table of Contents
	Figures Index
	Index of Tables
	1. Introduction
	1.1. Recommendation problem
	1.2. Recommender systems
	1.3. Cold start
	1.3.1. New user
	1.3.2. New item
	1.3.3. New community
	1.3.4. Popularity bias

	1.4. Problems to be considered
	1.5. Scope of this proposal

	2. State of the art
	2.1. Collaborative filtering
	2.1.1. Memory-based CF
	2.1.2. Model-based CF

	2.2. Content-based filtering
	2.2.1. Keyword-based systems
	2.2.2. Semantic Analysis
	2.2.3. User profiling techniques

	2.3. Hybrid recommender systems
	2.3.1. Hybrid CF and content-based recommenders
	2.3.2. Models combining CF with other recommender systems
	2.3.3. Hybrid CF-only recommender systems

	2.4. Location-based recommendation
	2.5. Risk-aware
	2.6. Empirical performance
	2.7. Conclusions

	3. Hypotheses and objectives
	3.1. Hypotheses
	3.3.1. Eigenfaces
	3.1.2. Quantum superposition
	3.1.3. Eigenclusters

	3.2. Objectives

	4. Our proposal: A recommender system based on eigenclusters
	4.1. How to generate clusters
	4.1.1. Partition sorted by average scores
	4.1.2. Partition sorted by standard deviation of scores
	4.1.3. Binary partition sorted by average scores
	4.1.4. Binary partition sorted by standard deviation of scores
	4.1.5. Clustering by users
	4.1.6. Clustering using K-means
	4.1.7. Null default value
	4.1.8. Average default value
	4.1.9. Cluster densification

	4.2. Relating users to clusters
	4.2.1. Linear regression
	4.2.2. Saturated linear model
	4.2.3. Heuristic methods
	4.2.4. Equal weights
	4.2.5. BFGS
	4.2.6. Successive approximations
	4.2.7. Cluster-weight optimization
	4.2.8. Inverse error

	4.3. Alternatives for predicting preferences

	5. Experimental evaluation
	5.1. Datasets
	5.1.1. Prolific IMDb Users dataset
	5.1.2. Dense subset of Prolific IMDb Users dataset
	5.1.3. MovieLens

	5.2. Full stack
	5.3. Evaluation
	5.3.1. Evaluation metric

	5.4. Experiments
	5.4.1. Overview of clustering methods
	5.4.2. Results from clustering methods
	5.4.3. K-means and linear regression for well profiled users
	5.4.4. Results from K-means variants
	5.4.5. K-means and linear regression for different profiles
	5.4.6. Results for different profiling
	5.4.7. Improvements to K-means and linear regression
	5.4.8. Results of the improvements
	5.4.9. Model competition
	5.4.10. Results of the model competition
	5.4.11. Understanding the clusters
	5.4.12. Results for different segmentations
	5.4.13. Summary

	6. Conclusions
	6.1. General conclusions
	6.2. Clustering methods
	6.3. Default values for unrated films
	6.4. Profiling the user
	6.5. Comparison with previous experiments

	7. Future work
	7.1. Model ensemble
	7.2. Feature generator
	7.3. Clustering improvement

	8. References

