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Abstract 
 
Cancer is one of the most challenging diseases that medical field is facing nowadays. Its 
incidence numbers are continuously increasing, and they are expected to keep on doing it for 
the next decades. Pancreatic Cancer is one of the most enigmatic among all the known cancer 
types. Even though the incidence numbers for PC are not so high as the ones for other diseases, 
its death ratio is astonishing. Life expectancy for people diagnosed with pancreatic cancer is 
less than six months.  
 
These numbers set up a difficult research environment where the characteristics of a risk 
population have not been, yet property identified, and where there is a lack of epidemiological 
information that makes further investigation in early detection very problematic. 
 
For the last decades, Artificial Intelligence has been demonstrating its benefits when applied to 
medical researches, since it can outperform human ability to identify trends and patterns inside 
huge datasets. In this work, I propose a novel and robust approach to identify the characteristic 
of a risk population in pancreatic cancer data that has been provided by surveys and researches 
performed in the whole Europe. This kind of data presents noise, bias and missing values that 
usually straiten the capabilities of the AI methods. The proposed system uses an ensemble of 
techniques that brings the ability to first recover the dataset and to later identify the most 
informative features that can be used to determine the characteristics of a risk population, to 
build a risk score for the epidemiological factors of Pancreatic Cancer.  
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Chapter 1 
Introduction   
 
1.1 MOTIVATION BEHIND THIS WORK 
 
Artificial intelligence, in any of is variants and applications, is one of the most promising areas 
of both Computer and Data Sciences. Good examples of fields and task where the use of 
artificial intelligence is promising are planning, control, diagnosis, risk analysis, optimal 
parameter adjustment etc. Most of them are useful to develop smart agents, predictors and 
classifiers. Due to their ability in detecting and analyzing embedded patterns in huge data sets, 
many of these techniques can be used to guide experts along the decision-making processes. 
 
Disease diagnosis related tasks are typical pattern recognition problems, this is why AI 
contributions to medical field in the future can be promising. Nevertheless, a previous research 
process is needed to later be able to determine what are the characteristics of the population 
whose risk of suffering of certain disease is elevated. Only if this is done, an ulterior diagnosis 
is possible. Data base analysis is, hence, important to determine what features on a dataset are 
candidates to be the most informative and, hence, the most important to identify a risk 
population for a certain disease. To build an informative-features-based risk score is, not only 
necessary for the study of a disease, but also a typical task that can be outperformed by using 
AI. 
 
Some diseases, like AIDS, Paludism, and many other, are good examples of disorders that have 
presented decreasing incidence and death rates during the last decades. They have taken 
advance of the application of several AI related approaches. Computer Vision, for instance, has 
been widely used in Computerized Axial Tomography (CAT). 
 
Despite reducing their numbers, some other diseases numbers have maintained, if not increased, 
their incidence and death rates. Mental disorders or cognitive diseases are one of the future 
challenges of medical field for the next years. Recent studies related to Computer Vision 
techniques and Machine Learning (ML) have been used to perform early diagnosis of these 
diseases, nevertheless, a great path is yet to be walked. 
 
Cancer is one among the most common and deadliest diseases in the last century (Fig. 1). Its 
incidence is mainly growing in the last decades (Fig. 2, Fig. 6) and there is not a certain 
knowledge about the deep processes that explain its behavior. Nevertheless, as computer power 
has grown and ML techniques have become common in the Research and Development (R+D) 
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field, great advances in both detection and treatment of the disease have been made leading to 
an improvement of the survival expectancy. 
 

 
Figure 1. Cancer deaths by type. Worldwide (1990-2016). (Ritchie, 2018) 

 

 
Figure 2. Predicted cancer incidence 2012-2035. (Ritchie, 2018) 

Overall cancer incidence numbers have grown a significant 24% in the last 10 years only when 
considering the USA (Division of Cancer Prevention and Control, Centers for Disease Control 
and Prevention, 2018). In fact, it is, nowadays, one of the main causes of early age death around 
the world. Nevertheless, Even though  its death ratios have decreased significatively, incidence 
numbers are still astonish (Siegel, Miller, & Jemal, 2019). Fig. 1 depicts the worldwide cancer 
incidence. Predicted incidence indicates that cancer cases will keep on growing for the next two 
decades (Fig. 2). 
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1.1.1 EPIDEMIOLOGY OF PANCREATIC CANCER 
 

Due to its poor prognosis, with almost as many deaths as cases (432,000 vs 459,000), pancreatic 
cancer is the seventh leading cause of cancer death in both sexes (Bray et al., 2018). The highest 
incidence rate can be found in Europe, North America, and Australia/New Zealand (with 5-7 
cases per 100,000 individuals). In the European Union, PC rates are rather stable compared to 
declining rates of breast cancer, and it has been projected that PC will rank as the third leading 
cause of cancer death in the future, surpassing breast cancer (Ferlay, Partensky, & Bray, 2016) 
(Fig. 5). Its low incidence (Fig. 4) represents a challenge for the screening process since only a 
small amount of data is available for study. 
 
The survival rate associated to PC is dramatically low: the overall five-year survival rate is 
about 5%, meaning that more than 90% of PC patients will die during the first 5 years after 
diagnosis. As it happens with PC incidence rates, this percentage varies between developed and 
developing countries (Fig. 4) The low survival rates associated with this disease reflects the 
fact that tumors progress rapidly with unspecific symptoms, leading to a late diagnosis of the 
disease (Hidalgo et al., 2015). In fact, the majority of cases are in an advanced development 
stage at diagnosis (most PC tumors are detected as stage 4, (Fig. 7) and only 10% of the cases 
are resectable at presentation. Among them, the 90% of the patients undergoing resection still 
die as a consequence of the disease due to local recurrence and/or distant metastases (Hidalgo 
et al., 2015). PC is, in fact deadliest that most of the cancer types (even breast) in the EU (Fig 
6). 
 
This high mortality percentage, almost equal to the incidence rate (Fig. 4), together with the 
observed cancer evolution stage at diagnosis, indicate that in the most cases, PC diagnosis is 
performed too late, with a  lack of detection of the disease when the PC is still in an early stage 
of development. Another side effect is the absence of epidemiological data about the risk-
population characteristics when the cancer is still in early stages. This situation adds an extra 
difficulty to obtain a risk score for PC screening. 
 
Although there are PC cases clustering in families, these cases only represent a small percentage 
(near 10%) of the total. Therefore, the need for obtaining an accurate and low-cost screening 
test to detect individuals at high risk of developing PC remains unmet. The low incidence of 
PC poses difficulties in having large epidemiological studies providing enough data to identify 
individuals at high risk. Furthermore, the complexity of the disease also makes very difficult to 
identify this high-risk population. Most of the international variability in the PC incidence has 
been associated to the exposure to different risk factors, mainly related to lifestyle or the 
environment (Ilic & Ilic, 2016).  
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Figure 3. Cancer incidence and deaths rate by type (Male population) World (Bray et al., 2018) 

As in other cancer types, age and gender are among the well-established risk factors for PC. 
Tobacco smoking is one of established PC risk factors (Hippisley-Cox & Coupland, 2012). 
Obesity, as well as diabetes, has been also is associated with an increased risk of PC by a pooled 
analysis of 14 cohort studies of anthropometric factors and pancreatic cancer risk. (Genkinger 
JM, Spiegelman D, Anderson KE, Bernstein L, van den Brandt PA, Calle EE, English DR, 
Folsom AR, Freudenheim JL, Fuchs CS, Giles GG, Giovannucci E, Horn-Ross PL, Larsson 
SC, Leitzmann M, Männistö S, Marshall JR, Miller AB, Patel AV, Rohan TE, Stolzenberg-
Solomon RZ, Verhage BA, Virtamo J, Willcox BJ, Wolk A, Ziegler RG, Smith-Warner SA Int 
J Cancer. 2011). So far, the identification of these risk factors has been performed individually, 
or in a very simplistic manner. Although efforts have been made to propose PC prediction 
models, their utility to identify high risk populations is limited (John R.Giudicessi, BA.Michael 
J.Ackerman., 2011), (Wang et al., 2008). In the other side, a reduced risk of pancreatic cancer 
has been associated with asthma or nasal allergies (Paulina Gomez-Rubio1, Jan-Paul Zock2, 
Marta Rava1, Mirari Marquez1, Linda Sharp3, Manuel Hidalgo4, Alfredo Carrato5, Lucas 
Ilzarbe6, Christoph Michalski7, Xavier Molero8, Antoni Farré9, José Perea10, William 
Greenhalf11, Michael O’Rorke12, Adonina Tardón1, 2015). An alternative and novel risk 
model could include all the possible epidemiological information regarding medical conditions, 
demographic information, family history of cancer, in order to better define the individuals at 
high risk. 
 
 



Introduction 
 

 
 

17 
 

 
Figure 4. Incidence and severity rates for PC. This figure shows the similarity between incidence and death rations. 

 
 
A high risk-population (RP) is the part of the entire population whose individuals have greater 
risk of suffering from certain disease than the rest of the members of the population. Risk factors 
can be classified as omics and non-omics factors. First are those that are related with the 
biomolecules originating from the organism, whereas the non-omics factors are those that come 
from the outside. 
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Figure 5. Incidence of cancer by type. World 2018 (Bray et al., 2018) 

 
Figure 6. Ferlay J, Partensky C, Bray F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta 

Oncol.2016;55:1158‐1160. 
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In this work, only the non-omics risk factors, e.g., those from the epidemiological registries, 
which may reflect life-style factors or comorbidities will be considered. Dealing with non-
omics data poses several challenges (de Maturana et al., 2019): their complex definition, 
heterogeneity or high dimensionality, among others. In order to identify the High-Risk 
Population (RP) using non-omics data is important to also consider that complex interactions 
between the different non-omics data and the PC may occur. AI techniques can be applied to 
identify the high RP considering multiple non-omics risk factors. This is in fact, a typical 
features subset selection task where the most informative tasks that are selected in the process 
will shape the set of characteristics of the risk population. 
 

 
Figure 7. Diagnosed incident cases of pancreatic cancer by stage (7mm). (Veredict Medical Devices, 2018) 

 
1.1.2 ARTIFICIAL INTELLIGENCE APPROACH TO RISK DETECTION AND 

DIAGNOSIS 
 
Merriam-Webster defines artificial intelligence as “1. A branch of computer science dealing 
with the simulation of intelligent behavior in computers” or as “2. The capability of a machine 
to imitate intelligent human behavior”. AI is, hence, related with the way computational 
understanding of a problem works. AI is nothing more than a huge set of techniques that are 
able perform basic operations that when stick together can take computation to higher levels, 
in which a machine is able to mimic human cognitive behavior.  
 
As it will be mentioned further in this work, there are different techniques that can be suitable 
to resolve some of the main weakness of human cognitive abilities. Most of them are related 
with the management of huge data sets. Even though human capabilities for pattern recognition 
are out of any doubt, when data grows, these abilities get stacked. AI can handle these situations 
and help researchers in detecting veiled relationships among features in the set. 
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Risk detection, treatment assignment support, and diagnosis are tasks in a close relationship 
with pattern recognition, what is one of the main strengths of AI. AI has become, hence, a very 
important tool for medical science (Hamet & Tremblay, 2017). Currently, Artificial Neural 
Networks (ANNs), Generative Adversarial Networks (GANs), evolutionary computation (EC) 
algorithms, together with computer vision (CV) or speech analysis (SA) are been widely used 
in diagnosis of cognitive problems as well as on studies about the epidemiological spread-out 
of a disease, or in the analysis of biomarkers for oncological problems (Regan, Freudenthaler, 
Kolle, Mollon, & Paulus, 1998), (Abdulaimma et al., 2017), (Huang, Jo, & Figueroa Garcia, 
2017)(Sharma, Sundaram, Sharma, Sharma, & Gupta, 2019). 
 
The scoreboard depicted in fig. 8 apart from been anecdotic, shows how artificial intelligence 
is entering deeper in the field of medical disease detection and diagnosis. In it, there are some 
fields in where AI has outperformed the abilities of the human eye to fight against certain 
diseases. Pneumonia, Autism, Strokes, tumor mutations prediction, or Alzheimer diagnosis are 
some examples. In other cases, as general diagnosis or the analysis of hacked images, AI shows 
a lot of deficiencies. Apart from this, the general idea behind the figure is that AI is still 
growing, what will, for sure, help in detecting, diagnosing, and curing the majority of the 
diseases in the future. 
 
Some examples of the application of AI in the medical field are provided in the annex 1. As the 
objective of this work is to apply the proposed system to PC, some examples of previous 
applications to cancer disease are now provided. 
 
1.1.2.1 AI application to fight against cancer 
 
As already mentioned, cancer is one of the most dreadful pathologies that medical researchers 
are facing nowadays. Actually, the term “cancer” comprises a large number of diseases. Each 
of them may have different signs and symptoms. Furthermore, some smaller groups that share 
certain characteristics may be defined within a different cancer type. 
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Figure 8. AI Vs Doctors Scoreboard for several diseases. (IEEE, 2018) 

Epidemiology plays an important role in cancer prevention and control by identifying risk 
factors. Traditionally, epidemiological studies have identified them at the individual level, 
ignoring the complex relationships among all individuals in the population and among the 
factors in a disease. AI algorithms could help in the identification of the high RP, by considering 
(non)-linear complex relationships. However, there are scarce examples of the application of 
AI algorithms in the primary prevention field. In fact, most of the application of AI dealing 
with the cancer field relates to diagnosis. An example is the small spot detection in 
mammography (Shen et al., 2019). Other AI techniques, such as ML have been used to identify 
signs and symptoms of the disease to anticipate the diagnosis as much as possible, as well as to 
identify the most suitable treatment depending on the cancer subtype. Some examples are: 
 



Introduction 
 

 
 

22 
 

• Breast Cancer (Hsu, 2018). It is known that women with high mammographic density 
are at higher risk of developing breast cancer. New ML techniques have shown better 
performance in determining the density ratio based in mammograms than medical 
doctors (Riaz, Wolden, Gelblum, & Eric, 2016).  

• Brain Cancer.(Wrzeszczynski et al., 2017). To define the correct treatment prescription 
to fight brain cancer is difficult. The amount of available treatments, together with the 
characteristics of the affected tissue makes this task such a difficult one that the medical 
standard is a test and set procedure that needs from several iterations to obtain a “good 
enough” result, leaving the optimal treatment apart due to this unbiased treatment search 
procedure. The IBM Watson ML system analyzes the brain cancer genome to identify 
the most accurate treatment delivering results only after 10 minutes of computing. This 
algorithm also provided advice about further medical tests and analysis to enhance the 
recommended treatment in the future. 

• Skin cancer (Waltz, 2017). Important advances have been done in the diagnosis of skin 
adenocarcinoma.  Stanford university researchers have come to an algorithm that allows 
an app to identify, by using CV techniques, the characteristics of the classical kin cancer 
spots and to study them to get to an initial diagnosis by using a camera or an image. 

• Pancreatic cancer (Paparrizos, White, & Horvitz, 2016). In their work “Screening for 
Pancreatic Adenocarcinoma Using Signals From Web Search Logs: Feasibility Study 
and Results” they proposed the idea of exploiting the information available in the data 
obtained from internet queries about pancreatic cancer and its signs and symptoms, 
together with hyperdata about the users performing the queries that indicate how, when, 
or who placed the query,  to determine what are the most common signs and symptoms 
of the disease, together with the risk factors to develop PC as well as the typical 
evolution of the disease. Promising results were obtained, they claimed that it was 
possible to detect the disease up to six months earlier than when this technique is not 
used. Nevertheless, this approach is still under review.  
 
As said, determining the most important epidemiological factors of a RP is one of the 
pending tasks in the fight against PC. Some researchers have focused their effort in this 
field obtaining, for example, relationships between PC and Tobacco or Helicobacter 
pylori Infection, by using a comprehensive approach to meta-analytical reports 
(Maisonneuve & Lowenfels, 2015). Other PC related researches have demonstrated the 
relationship among familiar relations, diabetes and PC (Capurso et al., 2010), (Lennon 
et al., 2014), (Kenner, Chari, Cleeter, & Go, 2015), (Canto et al., 2018), (Neoptolemos, 
Urrutia, Abbruzzese, & Büchler, 2018), (Corral, Mareth, Riegert-Johnson, Das, & 
Wallace, 2019). In (Ilic & Ilic, 2016), in an study of the epidemiological factors for 
pancreatic cancer. Nevertheless, although there is some bibliography available, no 
strong conclusion about the most important risk factors of PC have been met yet. 
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1.2 OBJECTIVES 
 
The aim of this work is to develop a robust and reliable hybrid ML-based technique to identify 
the features of the population at high risk of developing PC using non-omics epidemiological 
information regarding lifestyle habits and comorbidities. 
 
1.3 LIMITATIONS 
 
The limitations of this work are related with the type of data and the kind of analysis that is the 
aim of this task.  
 
First, the proposed system will only be able to work with categorical, numerical or both kinds 
of data but those datasets that includes any other type of features will not be supported. 
 
The proposed system will perform the testing phase by introducing MCAR missing values in 
complete datasets. This is not the optimal since MCAR in not the most common type of missing 
values distribution in real-life datasets.  
 
It is not the aim of this task to present diagnosis or classification of the instances of the dataset. 
The aim is to determine what are the most informative features among the provided. The use of 
a classifier is reserved for the evaluation of the quality of the proposed system.  
 
Only a sample of the PanGeneEU dataset, that does not contain any missing values, has been 
used for the development of the proposed system. The size and complexity of the entire dataset, 
together with the actual missing values rate makes the computational very complex to apply it 
to the complete PanGeneEU database. 
 
1.4 STRUCTURE OF THE DOCUMENT 
 
The structure of this document follows the standard “article” that is requested for this work. 
Nevertheless, the document is too long, so a Thesis format has also considered.  
 
This work is divided in five chapters. In the introduction chapter (Motivation behind the work) 
a brief analysis of the cancer problem and the way it has been faced by using different AI 
approaches is provided. The background chapter has been divided into two main parts, the first 
one contains the sections that describe the theoretical approach to the foundation of the ML 
techniques that are going to be used as the building blocks of the proposed system, disregarding 
those that are not useful for this research. The second part of the chapter mentions the 
application of these techniques to actual problems that have been reviewed in the bibliography 
as a part of the brainstorming process for the proposed technique. 
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The methods and materials chapter deal with the databases used to test the system, and describes 
the proposed methodology including, APIs and other side materials needed for the development 
and implementation process. 
 
The testing and result chapters first describe the obtained results for the proposed system and 
later performs the discussion about the results obtained from the corresponding evaluation 
considering the optimal configuration of the evaluation process (number of runs, time 
complexity, etc.) and, later, the accuracy of the proposed approach. 
 
The development chapter brings a brief description of the design process including the UML 
products, java implementation describing some of the most important classes of the app. Even 
though the aim of this task is not to provide a complete engineering process, more information 
about the design and implementation is provided in the annex 2.  
 
Last chapter of this work deals with the conclusions obtained from the discussion performed in 
the testing and results one. This also briefly deals with the ethics behind the AI and. It is based 
on the main weaknesses of the proposed system and on the observed strengths to provide a 
future work section 
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Chapter 2 
Background 
 
 
2.1 BRIEFLY INTRODUCTION TO MACHINE LEARNING  
2.1.1 MACHINE LEARNING TECHNIQUES 
 
There are several well-known differences between AI, ML and Deep Learning (DL), main are 
related to their different capabilities and the problems they can tackle. The most accepted 
classification sets AI as a meta-technique, comprising a family of algorithms and paradigms 
including Deep and Machine Learning. (Fig 9) 
 

 
Figure 9. Artificial intelligence field and subsets representation. (Wasicek, 2018) 

 
Machine learning is a comprise of techniques that is based on the capability of the machine to 
auto shape its performance by problem-adaptation and error backpropagation processes driven 
by the use of certain algorithms. Standard computer science approach uses the input and the 
program to bring the user an output, ML, in the other hand, takes the output and the input, 
together with the corresponding algorithm (technique) to bring the solution (the program) that 
can be adapted to further and unseen situations (Fig.10). 
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Figure 10. Traditional programming vs AI (ML). Main difference is provided by the position of the program in each model 

 
The ability of the machine to self-adapt to the output, makes this technique specially 
appropriated for certain human-related typical tasks as classification (e.g. assign a given class, 
among some, to a certain problem), regression (predicting outcomes for continuous domains) 
or clustering (grouping instances into different sets based on their similarity). The integration 
of these basic tasks may lead to higher level capabilities like planning, diagnosing, etc. Both 
ML and DL can deal with this kind of tasks, but they differ in the way they face the problem. 
ML uses a wide set of approaches to the problem meanwhile DL is limited to the use of neural 
networks (NN, ANN, GAN, KNN, etc.). As ML also uses NN, DL is a particular case of ML, 
comprising solely neural networks.  
 
As humans do, machines can learn by themselves, can learn by using examples, or by mixing 
both possibilities. ML can, hence, be divided into 
 

• Supervised Learning: This refers to the set of ML techniques in which the instances in 
the training dataset are labeled. Then, this labeled data is used by the machine to correct 
its behavior by performing error backpropagation. This technique allows the machine 
to learn by balancing its internal parameters. The learning process is based on the 
following procedure: 

o Parameters initialization. 
o One instance of the dataset is set at the input of the machine. The class is, in this 

case, not provided.  
o A prediction is made about the class of the corresponding instance at the input. 

(Classification, regression, etc.).    
o The predicted class result is compared with the corresponding actual value of 

the class in the instance and the difference is provided to the machine for auto 
balancing (backpropagation). 
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o Once all the labeled dataset is used, the machine is ready to make predictions on 
an unseen instance. This labeled data is also known as training dataset. 

o This process is repeated to complete the autotuning. The number of iterations 
and the number of instances used for the training depends on the corresponding 
training and testing procedure. 

• Unsupervised Learning: This technique helps researchers to find unknown covered 
patterns in a dataset with no previous information (labels). Typical examples are PCA, 
kMeans, Korhonen Maps, etc. 

• Semi-Supervised Learning. It is a mixed approach between supervised and 
unsupervised training which can be applied to training datasets that are usually partially 
labeled. Only some instances are labelled. One example of these kind of techniques is 
the hybridization of kMeans and kNN 

• Reinforcement learning. This approach is used to train certain techniques in which there 
is no class available but there is a rewards system. This is used to train robots on 
decision-making algorithms. Rules discovery learning systems or computational 
evolving techniques (CE) use this kind of rewards-based systems.  

 
As already mentioned, ML techniques can be properly combined to solve difficult problems. 
Different types of techniques are the following 
 
2.1.1.1 Classification techniques 
 
Classification is a problem that consists in labeling upcoming unseen instances into one of the 
available categories by using trained (typically supervised or semi-supervised) ML techniques.  
 
Typical examples of classification procedures include diagnosis. In this case, diagnosis is 
applied to discrete outcome because the process consists on classifying an instance (set of signs 
and symptoms) as one of the possible classes in the solutions space. Possible diagnosis 
outcomes can be either discrete, binary if provided solution is a choice between two options 
(e.g. diseased vs healthy), sorted or unsorted multinomial, either categorical or nominal, (e.g. 
the algorithm returns the name of the disease), or continuous, where the probability of suffering 
from a given disease is returned. Most commonly used classification techniques are the depicted 
in fig 15. (Kotsiantis, 2017)(Garciarena & Santana, 2017). 
 
Classification techniques can be divided into Logic based, Perceptron based, Statistical 
Learning, Support Vector Machines (SVM) and instance Based learning (Soofi & Awan, 2017). 
The tree relating the available classification techniques is in the following figure 11. 



Background 
 

 
 

28 
 

 
Figure 11. Classification techniques. (Soofi & Awan, 2017) 

Each basic technique (in-depth tour) can be further subdivided as: 
 

• Decision Trees (DT). Decision trees is a family of classifiers that are typically used in 
logic-based set of problems because they are easy to understand and the way they 
execute the process is straight forward. The technique is based on the study of each 
instance of a given dataset by analyzing the different possible values of their features to 
identify a reasoning process in which the relevance of each of these features inside the 
tree depends on their values. This drives to a hierarchy of features (represented by the 
tree structure) and, hence, to a path for the decision making (classification). The typical 
outcome is the represented in a tree (Fig. 12). 
 
Most commonly used algorithms of this family are ID3 and C4.5. Common decision 
tree-based algorithms are CART (Classification and Regression Trees), CHAID (Chis-
squared automatic interaction detection), MARS (Multivariate Adaptative Regression 
Splines), CID (Conditional Inference Trees) or RF (Random Forests) (Rokach & 
Maimon, 2005)(Guyon & Elisseeff, 2003)(Tan, Steinbach, & Kumar, 2006). 

 
Figure 12. Decision tree example. (Rokach & Maimon, 2005). 
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• Single Layer Perceptron. (SLP). This is a technique used for binary classifiers. 
Perceptron mimics the behavior of a neuron in the brain receiving inputs and generating 
an output. The training process is based on several stages. First, some inputs are received 
at the entrance of the machine. Second, the machine performs a basic prediction by 
using weighted relationships among the inputs. At last, the system compares the data 
obtained in the prediction with the actual data and backpropagates the error to modify 
the functions and processes (relationships) inside the perceptron. This procedure is 
repeated for each available training instance in the dataset. Once the training is 
performed, the machine is able to perform predictions on unseen instances. 

 
• Multilayer Perceptron (MLP). It is a class of feedforward ANN (FFANN) that can be 

considered as an extension of the SLP. This model consists in, at least, 3 layers of 
perceptrons joined in a directed graph. Two of them are external (input and output) and 
one, at least, is internal (hidden). Internal procedures for MLP are the same as in the 
case of SLP.  

 
• Bayesian Networks (BN).  It is a probabilistic graphical model that represents the 

knowledge about a domain. Bayesian networks are the application of the Naïve Bayes 
algorithm to graphical representation. Bayesian networks are direct acyclic graphs 
whose nodes represent variables in the Bayesian sense and the edges represent 
conditional dependencies.  
 

• Support Vector Machines (SVM).  These supervised learning models are among the 
most state-of-the-art approaches in ML. They were developed in the framework of the 
statistical learning theory (Evgeniou & Pontil, 2014). The aim of this technique is to 
find a hyperplane that, given a set of instances of a dataset, is able to split the data in as 
many parts as expected classes by symmetrically separating the subsets of instances by 
a maximum distance (see Figure 22 for a graphical representation of an SVM). Those 
instances that are closer to the hyperplanes are caller Support Vectors (SV). This is done 
by measuring the orthogonal distance between each data point and the hyperplane, to 
find these SV (Ng, 2000).  
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Figure 13. SVM example. Left. Set of hyperplanes that split the corresponding dataset in classes. Right. Single hyperplane 

that can be considered for the SVM. 

• K Nearest Neighbors (kNN). Contrary to the previously described techniques, which 
are based on expensive computations and iterative processes, kNN is based on pure 
statistical information. This algorithm uses information about Euclidean distances 
between the instances to find what the nearest class to the entry and, therefore, assign it 
to this class (Fig. 14) 

 

 
Figure 14. Example of KNN. k = 10. The 10 nearest neighbours determine the class of the instance. 

Euclidean distance is the most commonly used distance measurement type for SVM. 
 
The great advantage of kNN is the minimum overload of the process. There is no 
training phase since all the computation is performed in the classification stage. 
Nevertheless, the entire process has to be performed for each instance. Those techniques 
that goes through a training process use the trained outcome to make predictions, what 
is cheaper than kNN, but suffer from the training stage, that is more expensive in 
computational terms. 

 
In summary, there are several different ML techniques that are very useful for classification 
problems. Most of them are computationally expensive due to the training phase and, if training 
and evaluation processes are not correctly done, they all can suffer from overfitting. It is 
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important to notice that not all classification techniques are valid for all the problems. It is 
important to know the characteristics of each technique before their application. Although there 
are variants of each technique that have been developed to overcome some of their drawbacks, 
their description is out of the scope of this work. The techniques that have been used in the 
proposed system will be in depth studied later in this work. 
 
2.1.1.2 Clustering Techniques 
 
Clustering in the ML domain consists on grouping a certain number of instances in a previously 
unknown number of sets by measuring similitude among the given instances.  
 
As already mentioned, clustering techniques are part of the unsupervised learning algorithms 
due to the lack of labeled information about the instances to cluster.There are several different 
algorithms under the clustering umbrella. They mostly differ on the technique they use to 
perform the technique (Fig. 15). 
 

 
Figure 15. Types of clustering algorithms. 

The most relevant clustering algorithms may be grouped into the following families: 
 

• Hierarchical Clustering. This technique relies on the fact that the instances are related 
to their neighbors by distances. Some examples are Unweighted Pair Group Method 
with Arithmetic Mean. (UPGMA) or Weighted Pair Group Method with Arithmetic 
Mean (WPGMA). 

• Partitional Clustering. In this case, instances on a dataset are clustered based on a 
given criterion, typically distances between a certain group of neighbors or to a center 
of a cluster (Centroid). Most well-known techniques of this class are Centroid based 
partitional Clustering (CBPC). kMeans algorithm is a n example of this technique.  

• Bayesian Clustering. This approach uses Bayes probability measurement to first 
determine the number of optimal clusters and then to assign a given instance to a cluster. 
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To cluster instances that includes categorical (nominal) data is not an easy task. Recent 
approaches that have been developed to overcome this limitation consist on transforming 
categorical information into a quantitative one by using frequency and probability (like is done 
in the Bayesian approach) or by using dummy variables that turn categorical values into integer 
ones.  
 
2.1.1.3 Regression Techniques 
 
Procedures to solve regression problems can be considered as a variant of those used for 
classification. In this case, regression techniques infer future outcomes in a continuous domain 
of a problem instead of classifying the corresponding available data into different categorical 
possible values of a class. 
 
Generally speaking, classification deals with the problem of approaching an instance to a class 
meanwhile regression is used to approach an instance to a value. Almost any classifier can be 
easily adapted to work as a regression machine. 
 
Regression analysis is a statistical procedure that was yet widely used before AI was born.  
Statistical function approach of a dataset, and later regression of a new data point to the 
previously obtained curve is a procedure that has been used in population surveys, engineering, 
physics and many other research fields. AI brought the possibility to apply regression on huge 
datasets.  Regression techniques foundations are the same that those described in the classifiers 
section. 
 
Examples of regression analysis techniques are: Linear Regression (LREG), Logistic 
Regression (LOGREG), Polynomial Regression (POLREG), Stepwise Regression (SWR), 
Ridge Regression (RR), Lasso Regression (LASREG) or Elastic Net Regression (ENR). They 
mainly differ in the function used to later predict the outcome. Some advanced AI based 
regression techniques are: 

• Neural Net Regression (NNR).  Also named neural regression, ANN regression, or 
with many other terms, is the family of techniques that applies NN for the regression 
problem, to predict the outcome of an input. These use slightly variations of the NN 
classifiers  

• Support vector regression (SVR). It is a technique that relies in the background used 
for SVM, but instead of classifying inputs, it is used to predict possible values for a 
given feature of an unseen instance.  

• Random Forest Regression (RFR). As already mentioned, Random Forests is a 
flexible and accurate technique for classification. Based in DT algorithms, RF can be 
also used for regression. RF combines multiple DT with a banging or boosting 
procedure to approach a given function. 
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One of the most important limitations of the regression analysis is the presence of non-linear 
features in the dataset. Non-linearity can appear due to the presence of categorical data, as 
gender, common habits, working place, ethnicity, and many other features. This is this kind of 
data that takes a value among a limited number of possible ones. Other non-linearity presence 
example is the occurrence of polynomial or even higher dimensional relationship among 
instances. To overcome the first limitation, some alternative approaches have been proposed as 
the use of dummy variables or the use of the relative frequency of the feature value in the dataset 
as a numerical approach for a categorical attribute. To avoid the second one, the use of kernels 
(for SVR) or multiple hidden layers (for NNR) has been used. These will be reviewed later in 
this work. 
 
2.1.2 OTHER AI APPROACHES  
 
One important part of AI is the search for the optimal solution of a problem. Searching 
techniques, are continuously evolving to bring advanced capabilities that, when comprised with 
other ML based techniques (like, ANNs, SVM), can lead to increased performance of these last. 
Some example of informed intelligent searching algorithms are the ones comprised in the 
evolutionary computation (EC) field. 
 
2.1.2.1 Evolutionary Computation 
 
Evolutionary computation is a family of algorithms that uses nature-alike evolutionary 
processes to mix up both random and gradient-following strategies for global optimization 
problems (i.e., they are able to find optimal solutions but keeping on the searching in the rest 
of the solutions landscape for a better result). 
 
Evolutionary computation is, hence, a computerized technique to solve complex problem 
inspired by the idea of natural evolution of species (Eiben & Smith, 2008). This process is the 
baseline for evolution and is, in fact what assures the future of species.  

The strength of the evolutionary computation is the ability to select the best individuals 
(solutions) on a generation, (e.g., those individuals with best adaptation qualities) as the best 
solution for a problem by using natural genetic evolution approach. These individuals are “The 
best solution available” (elite) based on the “adaptation to the environment” (fitness). 

Traditional search strategies comprise the techniques that rely on the ability of a search 
algorithm to find an optimal solution from solution space. Random search and rules discovery 
algorithms are two examples. EC performs better that traditional approaches specially in noisy 
environments due to the mix of informed gradient-following and random searching procedures 
embedded in the technique.  
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There are different kinds of search algorithms. Uniformed search, for example, is performed in 
a random manner. The possible solutions are arbitrarily spread out along the solutions space. 
Then, the quality of each of the solutions (fitness value of the function) is measured and the 
best solution is stored. Ulterior rounds can be later executed to search for different possible 
solutions. All these solutions are called optimal (minimum or maximum) points forming a 
landscape full of valleys and hills (Fig. 19). There are some solutions, called local optimum, 
which are optimal within a neighboring set of candidate solutions, in other words, these 
solutions are the best option in a local area of the landscape. On the contrary, the global 
optimum or overall optimal solution is the optimal solution among all possible solutions 
considering the whole landscape, and the preferred one. 
 
The main drawback of the random search is that a large number of runs is required to find the 
global optimum, and that finding it is not guaranteed.  
 
Other approaches have been proposed to overcome this problem. Gradient following 
approaches are based upon the procedure of measuring the fitness of every proposed solution 
compared with that of its neighbors. If a neighbor solution is better, then it is considered as the 
best solution. Once it is done, the process of searching solutions in the neighborhood of the 
temporally best-found solution starts again until no better solution is found (convergence). This 
gradient following procedure takes the algorithm to optimal solutions quickly, much quicker 
than random search, and it is performed in a single run. Nevertheless, its main drawback is that, 
once the optimal is found, the procedure gets stuck. The algorithm can get trapped in a local 
optimal and there is no other way to improve the result but restarting a new run.  

 
Figure 16. Evolutionary Computation Main techniques in AI field 

There are different evolutionary computation techniques (Fig 16) tar outperforms gradient 
following searching algorithms. Most of them differ in the way the representation of the 
individual and the type of phenotype of  the outcome is made (e.g. binary, numerical, graphical 
or grammatical). Most important are: 

• Genetic Algorithms.  Genetic Algorithms are evolutionary computation techniques that 
are mainly used as heuristic for function optimization problems. GA are based in the 
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concept of natural selection. As already mentioned, this theory of evolution stands upon 
the concept that only the best individuals on a population can survive longer. The idea 
behind this concept is that, the longer and individual survives in a population, the greater 
its influence has on it.  

The lowest level of information that is considered in this kind of technique is the gen. 
Genes forms other structures called chromosomes, this building blocks keep on joining 
creating bigger structures until the individual is formed. Individuals are then grouped in 
a population. (Fig. 17). 
 
For GA, these low-level substructures are represented by strings of bits. Bit is, hence, 
the equivalent representation of a gen. 
 

 
Figure 17. Individual representation in GA. 

As in nature, genes may vary from one population to another. In GA this is emulated by 
using Crossover and Mutation operators. 
 
Crossover is the operation that allows two chromosomes (one of each parent) to 
recombine their genetic material during meiosis. This process is emulated in GA by 
bringing new descendants (possible solutions of the problem) recombining binary 
strings (Fig.18). There are different types of crossover operations depending on the 
number of crossover points (one, point, two points, etc.)  

 
Figure 18. Single point crossover for GA. Two parents mix their genetic material two bring two children to the population 
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Mutation is a nature-based, gene operator (e.g. change in a gene). In this case the value 
of a gene can randomly swap during the evolution process producing a new individual. 
Main mutation operators are.  

o Uniform Mutation. Mutation is performed based on a uniform probability 
distribution.	

o Fixed Distribution Mutation. Mutation based in a fixed probability distribution.	
o Swap Mutation.  Only used for binary representation. The value of a gene swaps 

based in a random selection and fixed probability distribution.	
o Insert Mutation. In this case one or more genes are inserted in the chromosome. 	

Both crossover and mutations introduce variation on the population. This is the main 
mechanism to avoid the algorithm to get stuck in a local optimal point (one of the main 
problems of the gradient following based search strategies). 	

 

Figure 19. Example of solutions space landscape. Local and Global minima are depicted. Some algorithms follow the local 
optima gradient and are unable to reach the gradient of the global optima. This phenomenon is a local optima stuck 

situation. 

• Evolutionary programming. Also Known as grammatical evolution. It is a relatively 
new global optimization algorithm (Hemberg, Ho, O’Neill, & Claussen, 2013). Given 
an objective function and a search space, that is, the grammar (Fig 20). 

 
It uses the standard grammatical derivation tree, also called parsing tree (graphical 
representation of how the strings in language are created from the corresponding 
grammar) as the phenotype of each individual, and during the process it reallocates 
branches to develop new individuals with different and new capabilities and 
characteristics. Then this is translated into the resulting program (Fig 21). 
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Figure 20. Example of grammar. Each production will be then associated with the phenotype of the individual in the 

decoding phase. 

 

Figure 21. Individual representation. Each Integer Value of the Transcription will be directly linked with the production of 
the grammar used to represent the domain of the problem. Productions can be, hence, arranged together by using this 

genotype representation 

• Evolutionary Strategies. This is one of the most used evolutionary strategies. Unlike 
GA, where the representation is made at a gen level of granularity by using binary 
representation. Evolutionary strategies move the abstraction up a level, to a phenotype 
representation granularity. To do so, Evolutionary Strategies uses real numbered 
representation for the population.  

• Genetic Programming. Genetic programming is, mainly, the genetic approach to 
evolutionary programming. It is, hence, a mix between GA and EP. Specifically, GP 
applies GA search processes to EP. 

 
Evolutionary computation is one of the most promising branches of AI search strategies since 
uses a good heuristic to perform the search, is noise resistant and does not suffer from bias. This 
makes this family of algorithms one of the most currently used in AI field.  
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2.2 MACHINE LEARNING APPLICATION TO DATABASE PREPARATION 
 
As already mentioned in previous sections of this work, ML techniques have shown exceptional 
behavior when dealing with large datasets. However, its performance highly depends on the 
quality of the studied dataset. 
 
Unfortunately, even though the desired and optimal situation is to train machines with complete 
and free-of-any-noise data, this is not the case (Onkelinx, Devos, & Quataert, 2017). Missing 
data is commonly found in data analysis, and it may be due to many different reasons. In non-
omics epidemiological studies, for example, where the data is collected through questionnaires, 
the absence of answers in certain questions is not infrequent. The presence of missing data may 
be related to factors as duration of the study, difficulty of assessing the outcome, or poor 
communication with study subjects. Presence of missing data is also common in clinical studies. 
Both clinical and epidemiological studies are also affected by the presence of wrong values or 
outliers (data that is clearly far from mean values, whose reliability is very low), which cause 
noise. The presence of noise is very common, especially with a high number of features. 
 
There are several different types of missing data in a dataset (Kang, 2013): 

• Missing Completely at Random (MCAR). This type of missing data is related to 
random information loss. An example of MCAR is the absence of data due to 
measurement equipment failures. The main advantage of MCAR is that is data does not 
introduce any bias in the dataset. However, is not the most common type of missing 
data. 

• Missing at Random (MAR): It appears when the probability of losing data is related 
with the set of observer responses This is the most frequent missing data type and adds 
bias to the dataset. 

• Missing Not at Random (MNAR): In this case, the missing data is related to 
(un)observed variables. The presence of MNAR can be problematic, leading to bias 
This situation may be handled by modelling missing data.  

 
All these, and many other, problems impair the performance of classification, regression or 
clustering techniques. Preprocessing, including feature selection, is necessary to enhance 
quality of the ML technique results. Apart from being a technique for reducing collinearity and 
noise, Feature Selection (FS) may be used to preselect the most informative features for 
predicting the outcome of a disease. This preselected subset may be further analyzed to find 
patterns defining a population at high risk of suffering from the disease. 
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2.2.1 MISSING VALUES IMPUTATION 
2.2.1.1 Traditional approaches. 
 
As mentioned, one of the most common problems regarding to database management is the 
presence of incomplete data. For example, sensors collecting information can fail, or people 
may avoid answering certain questions regarding political orientation, sexual habits or many 
other intimate behaviors. Although complete datasets allow to perform proper inference, they 
are idealistic and not real. Typical approaches for handling missing data are: 

• Deletion of data. In some cases, the best approach is to discard data suffering from 
missing values, but this can significantly reduce the amount of data available for further 
estimations, reducing the information in the dataset, and affecting the algorithm 
performance. There are several data deletion strategies. 
 
Listwise deletion is, by far, the most used method for deleting missing data. If the 
missing data is assumed to be MCAR, listwise deletion do not add bias to the process. 
It consists on erasing (omitting) those instances that suffers from missing data.  
 
Pairwise deletion consists on eliminating information only if the instance needed to test 
certain assumption is missing. If the data in the instance is missing in any other feature 
that does not affect decision point, the instance is considered, and available data is used 
for statistical computations.  

 
• Substitution (Imputation). When missing data is too common, or the data available is 

too small, deleting instances is not an option. In those cases, when omitting is not 
recommended, most applied solutions are based in substituting missing data. This is 
called missing data imputation. There are several traditional approaches to impute 
missing data 
 
Mean substitution substitutes the missing value of a given feature with the mean value 
calculated by using the instances that have no missing values for that feature. This 
method suffers from bias when the missing data is MNAR and there is a high covariance 
in the data. Mean substitution is, hence, a not recommended imputation method. 
 
Regression Imputation is another imputation process. In this case missing data values 
are substituted by their estimate obtained from a regression model using the available 
data. As this method uses information from the rest of the available data, no extra 
information (bias) is added to the dataset. This is an optimal behaviour since this 
absence of extra information means that the imputation process does not add bias to the 
process. 
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Last observation carried forward (LOCF) is based in the time series approach. In this 
case missing data is substituted by the last observation done. 
 
Maximum likelihood (ML). This method is based on considering that the data in the 
dataset is an estimation (a sample) of a bigger dataset. In this case, missing values can 
be substituted by using the conditional distribution of other variables. 
 
Multiple imputation (MI). An iterative approach, where multiple imputations are 
obtained until reaching convergence. The idea behind this approach is to perform the 
imputation of all the missing values at the very same time. In this case, in a fist iteration, 
que quality of the imputation will be bad. An imputation refinement process will be 
performed iteratively until convergence (mostly based in the number of iterations with 
no changes in the imputed values) is met. 
 

2.2.1.2 Innovative imputation approaches using machine learning algorithms. 
  
Some efforts to outperform the classical imputing approaches by using ML algorithms have 
been performed. For example, (Batista & Monard, 2003) studied the performance of kNN and 
kMeans algorithms on missing data imputation when compared with other classical approaches 
in several datasets (Bupa dataset, with 345 instances and 6 features, cm dataset with 1473 
instance and 9 features, pima dataset with 769 instances and 8 features, and breast dataset with 
699 instances and 9 features). In all the cases the classifier outperformed the classical 
approaches. Nevertheless, the performance of the proposed system depends on the type and 
structure of the data. The kNN technique does not consider the mutual information among 
features. This can make kNN method ineffective.  
 
The problem of using kNN for imputation without considering the effects of mutual information 
(MI) between variables has been already faced (García-Laencina, Sancho-Gómez, Figueiras-
Vidal, & Verleysen, 2009). Conclusions demonstrated the importance of considering MI when 
using kNN and kMeans techniques.  
 
MI measures the way one feature affects the class (features dependency) in a dataset.  It is easy 
to understand that some features have higher effect on the class that others so, distance should 
not be computed disregarding this fact (García-Laencina et al., 2009). 
 
MI between Y and Z (in categorical domain) is defined as  
 

𝐼(𝑌; 𝑍) = 	))𝑝(𝑦, 𝑧)𝑙𝑜𝑔
𝑝(𝑦, 𝑧)
𝑝(𝑦)𝑝(𝑧)														(2)

2∈45	∈6
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Where 𝐼(𝑌; 𝑍) represents mutual information between to features Y and Z , 𝑝(𝑦, 𝑧) the join 
probability distribution of y and z and 𝑝(𝑦), 𝑝(𝑧) the probabilities of y and z. 
 
In the case of continuous domains:  
 
 

𝐼(𝑌; 𝑍) = 	7 7 𝑝(𝑦, 𝑧)𝑙𝑜𝑔
𝑝(𝑦, 𝑧)
𝑝(𝑦)𝑝(𝑧) 𝑑𝑦𝑑𝑧.				(3)

	

4

	

6
 

 
Once computed, MI is used to create a weighted imputation system that uses a parameter 𝜆 as 
a modifier for the imputation process. An observed conclusion of the process proposed in 
(García-Laencina et al., 2009) is that MI modifies the relationship between features in such a 
way that distance among them cannot be, hence, calculated by using standard distance 
equations. Their proposed metric is a modification of the Euclidean distance operator: 
 

𝑑(𝑥=, 𝑥>) = 	?)𝜆@𝑑@(𝑥=@, 𝑥>@)A		
B

@CD

													(4) 

 
Where 𝑑(𝑥=, 𝑥>) represents the distance among 𝑥= and 𝑥>, 𝑑@(𝑥=@, 𝑥>@)	 represents the 
Euclidean distance between features and 𝜆@ (modifier), is obtained by using (5). 
 

𝜆@ = 	
𝐼(𝑋@; 𝐶)

∑ 𝐼(𝑋@; 𝐶)B
@CD

																										(5) 

 
This MI based kNN modification demonstrated to have a good performance in those cases 
where imputation was used for later classifications. MI distance modification has been 
considered for the analysis and implementation phases of the proposed system. 
 
The performance of KNN and K Means based algorithms has also been studied but in order to 
use the imputed data for a later regression processes (Van Hulse & Khoshgoftaar, 2014). This 
method is called Incomplete-case KNN imputation (ICCkNNI). The kNN technique, as before 
mentioned, is commonly applied because is cheap in computational terms. Nevertheless, it 
requires a complete case library of instances from which the algorithm must take the 
corresponding values for the nearest neighbors. This is why kNN is often called complete case 
kNN imputation (CCkNNI). In their work, Van Hulse & Khoshgoftaar introduce a method that 
does not require the complete library of instances to perform the imputation. 
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Their main idea was that the set of instances eligible for imputation should be the one that 
contains the same information availability as the rest of features than the corresponding to the 
imputed one. That is, the condition that forces the instances to have a complete feature values 
to be used for computation are relaxed. This approach suffers from ignoring the consideration 
of mutual dependency between the features and the class, adding some bias to the dataset. 
Nevertheless, their results showed a clear performance improvement when the algorithm is 
compared with CCkNNI. This option will also be considered in our research, but there is a need 
to bear in mind that in their study, the missingness rates were less than 40%. 
 
(Tutz & Ramzan, 2015) and (García-Laencina et al., 2009) also used kNN as imputation 
method. They proposed a very similar approach where they consider the effects of the 
relationship (correlation) among each of the features and the class and proposed a new distance 
metric to determine the value of the k nearest individuals based on the mutual information using 
eq. 4. Then they applied this metric to build a novel weighted average approach to decrease the 
performance dependency of the algorithm on the value of k. This approach, which considers 
the relationship among features and/or between each feature and the class attribute, resulted in 
an improvement of classical kNN and kMeans algorithms performance when applied to the 
Gene Expression Data DLBCL. This dataset contains information of 77 patients and 6817 
genes.  
 
Other approaches using mutual information, information gain, entropy or correlation to 
improve the  kNN and K Means algorithms performance are briefly described next. (Pan, Yang, 
Cao, Lu, & Zhang, 2015) developed the feature weighted grey kNN imputation algorithm 
(FWGKNN). This algorithm uses MI to measure the relevance of the feature. The MI values 
are later on used to develop a new distance metric to be used for nearest neighbor discovery. 
Although the results were promising, the approach was applied to a dataset where the proportion 
of missing data were small (~10%). Other applications of FWGKNN  can be found in (Patil, 
Joshi, & Toshniwal, 2010), (Raja & Thangavel, 2016). 
 
Another modification of the kNN algorithm is the iterative procedure GkNN (Zhang, 2012), 
which uses the gray instead of the Minkowski distance to measure the similarity between 
instances. They demonstrated that considering the gray distance outperforms the use 
of Minkowski distance. This is mainly a consequence of using a single metric for both 
categorical and numerical features. Zhang extends this use of the modified kNN technique to 
datasets with both numeric and categorical features. 
 
Imputing categorical data by using kNN strongly depends on the way the categorical data is 
converted into numerical features. There are different possible approaches. The use of dummy 
variables is a well-known one. Using dummy variables allows to use Gray distances (as already 
seen in (Zhang, 2012)) for distance computation. However, this approach increases the 



Background 
 

 
 

43 
 

dimensionality of the problem. Other approaches used ordered numerical values for categorical 
families. For example, by sorting nationalities of a survey population into an alphabetical order. 
As a drawback of this approach, to follow this procedure add bias to the dataset. It adds extra 
information, the ordering information. This information is not implied in the original 
categorical feature. This extra information is not desired and, hence, this process must be 
avoided. Alternative approaches use probabilistic methodology to perform the categorical to 
numerical transformation. The categorical value of a feature is directly substituted by its 
corresponding frequency in the dataset. This approach allows to use real-based algorithms to 
the problem with no bias or noise. 
 
The relative frequency approach for categorical data was studied in (Salem, Naouali, & Sallami, 
2017). Conclusions of this work show that this approach is better not only in terms of accuracy 
but also in scalability and has to be considered for further researches. The coding and decoding 
process have been observed as the most important limitation of the technique. (Salem et al., 
2017), (Faisal & Tutz, n.d.), (Kumar, Chandola, & Boriah, 2014), (Ranjani, 2012) offers 
different metric approaches used for distance based weighted imputation for categorical values 
using relative frequency. The problem of categorical data imputation has also been considered 
in (Ben, Naouali, & Chtourou, 2018). In this case metrics are used for unguided procedures 
(clustering with k means). 
 
There are some other kNN and kMeans variants (fuzzy kNN and fuzzy kMeans) that consider 
that the imputation of features is a matter of membership among different clusters. In their 
work, (Li, Gu, & Zhang, 2010), (Di Nuovo, 2011), (Aydilek & Arslan, 2013), (Lu, Ma, Yin, 
Xie, & Tian, 2013), (Sefidian & Daneshpour, 2019), (Rahman & Islam, 2016), (Kolen & 
Hutcheson, 2002) introduce fuzzy clustering algorithms for imputation. In this case each 
missing value is imputed in accordance to its distance (typically, frequency-based distance) to 
the corresponding centroid of previously obtained clusters. Once done, an instance imputed 
feature value is determined as a membership value of each of this clusters. Hybrid methods, 
like the presented in (Aydilek & Arslan, 2013), use fuzzy k-means algorithms together with 
other regression techniques to obtain the final imputed value for the feature. 
 
However, this are not the only family of algorithms studied for performing missing values 
imputation. Other techniques use combination of SMV, ANN, LogREG, RF or GA, for the task. 
(Pantanowitz & Marwala, 2009) proposed an evaluation of several techniques for missing data 
imputation. Radom Forest (RF), Auto-associative NN with GA (ANN-GA), Auto-associative 
Neuro-Fuzzy configurations (AANF-GA) and two hybrid approaches of RF and GA. (RF-
ANN-GA) and (ANN-GA-RF). Random Forest will be considered for the development phase 
of the proposed system due to the observed outstanding performance in these papers. 
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Hybrid methods showed robustness and outperformed other simple imputation techniques. The 
use of MI and a weighted imputation based on a fuzzy approach will be considered for the 
proposed system due to their good performance demonstrated in the referenced works.  
 
In this work, we, hence, purpose an alternative and novel approach that will use a fuzzy kMeans 
algorithm where the distance is measured by using both frequency-based categorical to 
numerical transformation and mutual information. 
 
2.2.2 FEATURES SELECTION 
 
Once the imputation process is performed, and the database is reassembled, classification, 
regression or any other task can be now fulfilled.  
 
When the number of features in the dataset (dimensionality) is too big, the accuracy of the 
desired task (classify, regression, etc.) trend to decrease. In the other side, computational costs 
associated to the corresponding analysis techniques typically grow. This effect is, of course, 
not desired. In this situation, the possibility of suffering from interdependencies between 
features trend to grow and the value of a given variable will not vary by its own (independently), 
but by a combination of factors that will include one or more other features in the instance. 
Interdependency among variables in a dataset is not always a property easy to identify.  
 
Features selection is the process in which the number of features in the is reduced by removing 
those features that do not add any extra information to an instance (noise), or those whose 
information is previously included in any other feature or set of features of the instance 
(correlation). The problem of finding a feature subset for a problem was formally described on 
Kohavi, R. & John, G.H work (Kohavi & John, 1995) as: 
 
“Given an inducer (a machine that performs any kind of inference), and a dataset D with 
features XI, X2, . . . , X,,, from a distribution D over the labelled instance space, an optimal 
feature subset, Xopt, is a subset of the features such that the accuracy of the induced classifier 
C = Z(D) is maximal”.  

Most commonly used techniques, that are the building blocks of more advanced FS techniques 
are: 

• Filtering Techniques 
• Wrapper Techniques 
• Embedded Techniques 
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2.2.2.1 Filtering Techniques 
 
Filtering methodologies for feature selection chooses features before the application of the 
model (Blum & Langley, 2002). This means that there is no evaluation during the process. 
Filtering techniques are based on the use of statistical evaluation of the subset of selected 
features. The techniques used for the selection typically study both the information provided 
by an attribute to the problem, and the relationship among the attributes of the problem 
(typically by using interdependency, correlation, Information Gain, IG, and/or mutual 
information, MI). The main advantages of this strategy are its processing speed and small 
computational overload 
Some typical examples of filtering techniques are: 

• Pearson’s Correlation (PC) 
• Linear discriminant analysis (LDA) 
• Analysis of variance (ANOVA) 
• Chi-Square 
• Inter/intra class distance 
• Pointwise mutual information (PMI) 
• Principal Components analysis (PCA) 
• Information Gain. Mutual Information (IG/MI) 

 
2.2.2.2 Wrapper Techniques 
 
The wrapper approach, as is described in (Kohavi & John, 1995) is a technique that scores 
subsets of features by using predictive models (typically classifiers).  
 
Filtering techniques computes the quality of a given features subset by only using statistical 
information. When the rate of missing values in the dataset is elevated, the accuracy of the 
filtering approaches shrinks even though its efficiency its maintained. Loadout reduction is an 
important issue but, in some cases, accuracy is desired over computational time. In those cases, 
wrapping approach is more effective. Wrapping approach as introduced in (Ron Kohavi & John, 
1995) is the resulting technique of measurement the quality of the features subset using the 
classifier as the evaluator (Fig. 22).  
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Figure 22. Flowchart depicting the overall description of a wrapper features selection technique 

 
The way this approach works is by dividing the task in three stages (Fig. 22)  

• Feature subset search and selection: A subset of features is selected as a solution to 
test from all the possible subsets.  

• Dataset evaluation and classification. By using the predictor. It consists of monitoring 
the error rate of the model by the Application of the subset to the test dataset. Then the 
quality of the outcome of the predictor is computed by using the previously selected 
subset of features. The higher the error rate, the lower the score is. 

• Final Evaluation. Best quality subset is returned as a result of the process. 
 

The main advantage of the wrapper techniques is that they are both accurate and tailored to the 
problem. As the selection process is not based on statistical approaches but on the performance 
of a predictor (classification or regression model), the accuracy of the selection process is 
usually high. The main drawback, is related with the computational costs of the procedure since 
it performs a ML training and testing process for every subset, increasing computational time 
with the dataset size. The Fig. 22 shows a basic layout of the wrapping technique. Nevertheless, 
some alternatives can ameliorate the computational load by slightly increasing the error rate. 
To use of sampling of the dataset or genetic algorithms to perform a guided search on part of 
the solution space, are some valid approaches. The Correlation-Based Features Selection (CFS) 
is appropriate to predict the outcome of the FS process by using statistical techniques that 
partially substitute the use of the predictor  (Yu & Liu, 2003).  
 
Feature subset search and selection.  
 
There are two main steps on the wrapper approach for the features selection problem. Subset 
selection (search phase) and evaluation phase. Feature selection is, therefore, dependent in both 
the search strategy and in the way the quality of the subset will be measured (John, Kohavi, & 
Pfleger, 2014).  
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There are several different search algorithms that can be applied to the wrapping process. 
Forward search or backward search are, as mentioned in (Blum & Langley, 2002), (Yu & Liu, 
n.d.), (Koller, Sahami, & Building, n.d.), (Yu & Liu, 2004), (Ron Kohavi & John, 1995), (Hall, 
2000b) the most used search strategies when facing this process.  
 
Forward search is an informed subset search in which the heuristic that guides the process is 
based in the analysis of correlation, information theories, or many other metrics. In this case, 
one feature is selected only if the information added to the features set improves its quality. 
When applied to wrappers, a given feature is only selected when the classification/regression 
quality is improved.  
 
Backwards elimination (Nilsson, 1997) is based in the same metrics but opposite concept. In 
this case, as the search evolves, features are continuously removed from the original set to form 
the corresponding final subset. A feature is removed from the set if the information provided 
by the subset does not decrease when removing this specific feature.  
 
Nevertheless, this “Test and set procedure” is not the best process for searching into solution 
spaces. Both backwards and forward procedures are based in a backtracking approach that is 
very computationally expensive even when there is a heuristic available to prune the search. In 
fact, getting the optimal dataset is an NP-Complete problem.  
 
One of the most effective searching techniques available today is evolutionary computation. 
Genetic algorithms are easy search algorithms as well as best performers. They can be useful 
in the searching phase of the features selection algorithm. (Panthong & Srivihok, 2015), 
(Krawiec, 2002), (C. Liu, Wang, Zhao, Shen, & Konan, 2017), (Vafaie & De Jong, 2002), 
(Mohamad, Deris, & Illias, 2005) used GA to improve search quality in the features space. In 
this case, evolutionary strategies (most precisely GA) can be used to mark a certain feature as 
selected in the features subset searching process. Inherent GA gradient following/hill climbing 
procedure has demonstrated to improve computational times and efficiency of feature selection 
processes becoming, together with fast correlation-based techniques as one of the most state-
of-the-art, and promising, techniques for this task. 
 
In this approach a comprise of forward, backward and Genetic search strategies have been 
considered for FS. 
 
Dataset evaluation and classification  
 
Independently of the searching strategy, there is a need to determine whether the selected 
feature, when added to the features subset, ads any additional information to it. 
 



Background 
 

 
 

48 
 

Filtering techniques use statistical approaches to measure the quality of this process, in the case 
of the wrapper technique, as mentioned, a predictor is used instead. In this case, once the subset 
is selected, the dataset available is filtered by removing those features that are not selected by 
the searching strategy. Then data is divided into training and testing, and it is used to train and 
test the embedded predictor. Once done the results of the quality (prediction accuracy) are used 
to determine whether the temporally selected subset improves the prediction quality results 
obtained by other subsets or not. If the quality of the prediction is improved by the selection of 
the feature, it will be added to the optimal subset and used as a base to search for the next 
feature.  
 
Different algorithms can be used as embedded predictor. In this task an ANN has been 
considered to the flexibility of the approach. 
  
Final Evaluation. 
 
When no improvement is observed by the searching and testing approach, then the searching 
algorithms stops, and the optimal features subset is returned. This brings the most informative 
features subset that can be applied to the problem. 
 
2.2.2.3 Other wrapping related approaches. 
 
As mentioned, naïve filtering techniques provide inaccurate selection of features. Nevertheless, 
in some cases they are convenient due to their speed and reduced computational overload. In 
the case of the wrapping approach the considerations are the opposite. They accuracy is high 
but the computational overload is it too. To avoid this (Yu & Liu, n.d.) introduced an innovative 
technique that can help to quickly identify relevant features without using pairwise correlation 
analysis. It is called “fast correlation-based filter” (FCBF). In their approach they first computed 
the symmetrical uncertainty (SU) among features (SU is a normalized version of MI, for every 
feature (eq. 6)). Then, they used a heuristic process to select the features with the highest SU 
values in a sample of the datasets Lung-Cancer, Promoters, Splice, USCensus90, CoIL2000, 
Chemical, Musk2, Arrhythmia, Isolet and Multi-features. 
 

𝑈(𝐴, 𝐵) = 2.
𝑀𝐼(𝐴, 𝐵)

𝐻(𝐴) + 𝐻(𝐵)										(6) 

 
The approach of Yu & Liu has been considered in this work for the development of the proposed 
tool
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Chapter 3 
Methods and Materials 
 
 
3.1 METHODOLOGICAL APPROACH TO THE PROBLEM. DESCRIPTION OF 

THE PROPOSED SYSTEM 
 
3.1.1 DATASETS USED FOR THE ANALYSIS 
 
To use well known (or at least, previously known) datasets whose characteristics, as noise or 
bias have been previously identified, allows a more precise later evaluation of the abilities of 
the proposed approach what is important when facing the process of designing a novel system. 
Nevertheless, as the intended objective of the whole work is to be able to develop a system that 
can be later applied to the PC problem, a portion of a real-life PC database (PanGeneEU) has 
been also considered as a part of the study.  
 
Main characteristics of the selected dataset are now provided. 
 
Lung Cancer.  Lung cancer database is a biased (certain attributes, as fat percentage, showed 
a biased relation to the class value) dataset that has been previously used to test the ability of 
some approaches to work under these kinds of conditions. Lung Cancer is a small dataset with 
32 instances and 57 features. The instances per feature rate is, hence, 0,56. All the features are 
categorical. The dataset was first published in "Optimal Discriminant Plane for a Small Number 
of Samples and Design Method of Classifier on the Plane", (Hong, Z.Q. and Yang, J.Y.  Pattern 
Recognition, Vol. 24, No. 4, pp. 317-324, 1991).  And its bias later analysed in "The Dangers 
of Bias in High Dimensional Settings" (Aeberhard, S., Coomans, D, De Vel, O). 
 
Credit. This dataset contains 690 instances and 16 features, so, the average number of instances 
per feature is 43,125. The dataset contains both numerical and categorical features what makes 
it a good candidate to make an in-depth analysis of the proposed technique. Six of the features 
are categorical, since the rest are numerical (Fig. 23, represents the number of categorical and 
numerical features by dataset). No significant problems (noise, bias, etc.) has been observed in 
this dataset. 
WaveForm. WaveForm dataset contains 5000 instances and 21 features. All of them 
numerical. The dataset was first used in “Classification and Regression Trees” (Wadsworth 
International Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984)). It classifies 
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three different types of waveforms by using 21 features. All of them contain noise (no filtering 
in the data was provided so some features of certain instances contain outlier, and noisy values). 
The distribution of each of the classes is 33%.  
        
Breast Cancer. This dataset contains 10 categorical-only features. The dataset contains 286 
features with an instances-to-features relationship of 28,6. It was first used by William H. 
Wolberg, W. Nick Street, Olvi L. Mangasarian, from the University of Wisconsin, and first 
used in their work “Nuclear feature extraction for breast tumor diagnosis” (1993). The features 
of this dataset are computed from a digitized image of a fine needle aspirate (FNA) of a breast 
mass. They describe characteristics of the cell nuclei present in the image. This dataset has been 
used for several tests of different ML approaches like FS (Hsu, Schuschel, & Yang, 1999), (H. 
Liu, Motoda, & Dash, 1998), NN (Street, 1998), SVM (Campbell & Cristianini, 1999) and 
many others. Those, and other references demonstrated that this dataset contains noise (mostly 
outliers and erroneously measured values). 
 
Contact Lenses. This is a dataset that contain 5 categorical features with 24 instances. The 
dataset has a instances-to-features relation of 4,8. It was first mentioned in "PRISM: An 
algorithm for inducing modular rules" (Cendrowski, J. International Journal of Man-Machine 
Studies, 1987, 27, 349-370). The database is known for been complete and correct, absolutely 
free of noise. This dataset is a simplification of a lager database.  
 
Diabetes. It contains 9 features and 768 instances. The records were obtained from both an 
automatic electronic recording device and paper records. One of the features that is important 
for the diabetes dataset is the date in which the record was made (including accurate time). The 
electronic measurement devices provide exact timing record, in the other way, paper records 
have approximated uniform recording times.  Electronic records, hence, have more realistic 
time stamps. The lack of accurate timing in the paper-based data introduces noise and bias to 
the dataset. As in the case of the breast cancer dataset it has been considered for several different 
studies as for GA (Eggermont, Kok, & Kosters, 2004), (Wei & Altman, 2004) or many other 
papers where the biasing of the dataset is studied. 
 
Vote. It comprises the data coming from the 1984 United States Congressional Voting Records 
Database obtained from the Congressional Quarterly Almanac, 98th Congress, 2nd session 
1984, Volume XL: Congressional Quarterly Inc. Washington, D.C., 1985. It has been used in 
“Concept acquisition through representational adjustment. Doctoral dissertation” (Department 
of Information and Computer Science, University of California, Irvine, CA). This is a complete 
dataset with no known noise or bias consisting on 435 instances and 17 features. 
 
Iris2D. Is a dataset that contains 150 instances and 3 features. The instances-per-feature rate is, 
hence, 50. It is obtained from the Iris dataset. It has been widely used in different studies since 
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it is an example of a non-linearly separable dataset. Nevertheless, no bias or noise is present in 
the dataset. It is formed by numerical-only features. 
 
PanGeneEU Dataset. PanGeneEU. It is a multicentric European case control study that was 
initiated in 2009 to identify relevant risk factors of PC including lifestyle and environmental 
factors, biomarkers of exposure to these factors as well as genetic factors. Eligible PC cases 
were recruited to overcome selection bias due to the rapid progression of the disease, and the 
diagnosis was confirmed through the review of medical records. Eligible controls were subjects 
free of PC as well as of any condition related to known PC risk factors. The final study 
population used in this analysis comprised 311 cases and 194 controls with 68 features 
(including the case or control class). All the features are categorical an include non-omics data. 
Some of the features are lifestyle related (smoker, non-smoker, meat intake. etc.), medication 
(corticoids intake), geographical (country), sex and gender, or many other. The data provided 
have not been filtered so no info about noise of initial bias is available. 
 
 

 
Figure 23. Number of categorical and numerical features for each dataset. 

As a conclusion, some well-known datasets have been used to develop, train and test the 
proposed system. The idea behind the selection of these datasets is to test the proposed approach 
under noise (two datasets), bias (two datasets), clean situations (where no noise or bias have 
been previously detected, two datasets) and under other typical real-life conditions as small 
datasets, large datasets with small amount of features, and small datasets with great amount of 
features.  

 
Figure 24. Datasets used to test the capabilities of the proposed system. The number of available instances per feature is 
represented in the last row. Datasets in red suffer from noise, and those in orange from bias. Those that are coloured in 

green have no identified problem. PanGeneEU is represented in a different colour. 

3.2 PROPOSED TECHNIQUE DESCRIPTION.  
 
The proposed technique is a flexible and robust ensembled system that completes three main 
stages (Fig. 25):  

• Missing Values Imputation. This task involves three steps, the upper front-end the 
lower front-end and the overall imputation stages. This last has been designed to use 
either ANN or a weighted approach for the imputation. Only missing data goes through 
this step; otherwise, data will go straightly to the next stage, the features selection stage. 
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• Features selection. It consists on a voting system that uses filtering, wrapping and GA 
techniques to determine the most relevant features in the dataset. 

• Classification. Used to bring an idea of the effectiveness of the two previous stages. If 
the classification process equals, or even outperforms the one performed by using the 
dataset with no imputation, the performance of the proposed approach can be considered 
as successful. An ANN binary classifier has been selected for this stage. 
 

 
Figure 25. Proposed system overlay. Dataflow is depicted 

3.2.1 MISSING VALUES IMPUTATION (FRONT-END STAGE) 
 
We propose a three-stages imputation approach. The system comprises an upper and a lower 
stage imputation stage that are compared in a third decision stage. The third stage will, hence, 
return a unique imputation result. As it will be detailed later in this work, upper and lower stages 
are also formed by a set of techniques.  
 
Further description of the system is now provided. 
 
3.2.1.1 Upper front-end imputation stage. 
 
It is formed by an ensemble approach (Fig. 26) that combines two imputing machines for each 
feature (feature-imputing machines). Each pair of machines is used for the imputation of a 
single attribute on the instance. The resulting imputed value for the corresponding feature is a 
tradeoff between the results provided by the machines used for each feature. Ensemble methods 
are known from bringing robustness and quality to the imputation, this advantage is used in the 
upper front-end imputation stage. 
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Figure 26. Upper Front-End Imputer set of imputation Machines. Set of machines for each attribute is formed by two 

imputing machines. Resulting value is the trade-off between both attribute imputing machines  

 
The techniques used for the imputation of each feature are, ANN and SVR for numerical 
features prediction, and RF and BN for categorical features. Log Reg and SMO were also tested 
providing low accuracy results. They were discarded.  
 
Training Process for the upper-front end imputation stage 
 
A complete dataset to train each of the feature-imputing machines was used. An iterative 
approach has been added to enhance the performance of the training stage based in a refinement 
procedure until convergence. This process, apart from bringing robustness to the system allows 
to perform good training with a small amount of available data. The fact that training stages of 
the features imputing machines does not request big datasets to bring accuracy to the system is 
one of the strong points of the technique. Further details on the datasets used in the process and 
the corresponding results will be later reviewed in this work.  
 
The preferred training technique for each of the two features-imputation machines is the use of 
training and testing datasets (by using a 50-50 split criteria), nevertheless a 10-folds cross 
validation (CV) was also considered as a backup training and testing method for very small 
datasets (less than 50 instances).  
 
Once the features-imputation machines are trained, the balancing system is then trained. The 
process consists in balancing the output provided by each machine until the outcome equals the 
actual value of the feature. The weights needed to perform these operations are stored for later 
use in the imputation phase. 
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Figure 27. Weighted Upper Front-End Imputation System 

 
Formally, weighted balance system is based in the optimization (error reduction) between 
imputed an actual feature value (Fig. 27). Imputed value for a feature is the following: 
 

𝑎R = 𝑓(𝛼R, 𝑖𝑚R, 𝛽R, 𝑖𝑚X
R)								(7) 

 
Where 𝑎R is the actual value for an imputed feature, 𝑖𝑚R and 𝑖𝑚′Rare the imputed values for 
each of the feature-imputing machines, and 𝛼R and 𝛽R are the weights assigned to each 
imputation to perform the balancing process.  
 
As this is a multivariate optimization problem, it can be solved by using different approaches, 
including GA. If GA is selected, the overall imputation technique computational costs will 
boost. To avoid the computational costs, that are associated to a search process in a big solutions 
space, a reduction in the search space has been proposed. This reduction includes a limitation 
that forces the sum of 𝛼R and 𝛽R to be equal to one. If 𝛼R and 𝛽R have the same value 	is, hence, 
set to 0.5. By doing this, the searching strategy is reduced to the solution of simple linear 
equations. 
 
Weights (matrix W) will be obtained by considering the following equation 
 
𝑊	(2𝑥𝑛) = {	∀	𝑖	(1,2… . 𝑛)	∃	𝛼R, 𝛽R	|𝐼R = 𝑓(𝛼R, 𝑖𝑚R, 𝛽R, 𝑖𝑚X

R)		𝑎𝑛𝑑		𝑑(𝐼R, 𝐴R) ≅ 0}					(8)		 
 
The previously described way to obtain the weights for each imputed value is valid for those 
cases where the outcome of both machines is numerical. To impute categorical values there is 
a need to modify the procedure. The approach proposed for categorical features is based on the 
transformation of the categorical value to a numerical equivalent. To do so the use of relative 
frequency categorical to numerical transformation have been used. This procedure turns 
categorical values into numerical ones enabling the application of the previously described 
balancing procedure for this categorical kind of features. 
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In the case of categorical features, once the balancing process is finished, a binary balancing 
approach has been considered. The weighted value will be set to 1 in the machine whose 
imputation is better. The associated weight for the other machine will be, hence, set to 0. This 
forces a selection between the values obtained from the feature-imputation pair of machines.  
 
As a result of this mentioned balancing imputation process, two outputs will be obtained: 

• A set of trained feature-imputation machines. One pair for every feature.  
• A set of weights provided by the weighted balancing system (Fig. 28). 

 
Since this training process is repeated for every instance of the training dataset, once the 
balancing process is completed a set of balances is obtained. One per each instance in the 
training dataset. Nevertheless, as mentioned, only one weights balance set is desired. This set 
must include the balances values for each feature defined in the dataset. This balance will be 
used in the imputation stage when an unseen instance is set at the input of the proposed system. 
 

 
Figure 28. Weighted upper imputation training process. Weights are obtained from minimum distance between actual and 

imputed values. Iterative process provides shaped tuning (j=2). 

A ranking procedure is used to obtain the unique balance set. This procedure obtains a single 
pair of balances from all the available for each feature. The ranking procedure is based on the 
fact that not all the instances used for the training process present missing values in the same 
features. This means that there will be cases in where a single balance of weights is collected 
for a given feature meanwhile the collected set of balances for another feature can be as long 
as the entire dataset. 
 
This fact implies that when a large number of weights are available, the likelihood of suffering 
from bias on this computation is lower than with a more reduced number. There is, hence, a 
need to design a procedure to avoid this bias. To ameliorate this bias, a measure of the quality 
of the balance computation is used. This value is based on the quality of the imputation 
performed by each pair of feature-imputation machines.  
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The balance quality value is obtained by considering two aspects: 
• Imputation quality: Mean average Euclidean distance between the imputed values 

provided by each pair of feature-imputing machines and the actual value of the feature. 
In this case the machine that better approach the imputed value for the feature to the 
actual one will have the best imputation quality. 

• Difficulty of the imputation: Related to the number of missing values (number of 
imputations) to perform by instance. If the instance used to train the system have a large 
number of missing values, the overall difficulty of the imputation is high. The higher 
the missing rate, the larger the difficulty. The difficulty is a modifier calculated by 
dividing the number of features to impute by the number of total features in the instance. 

 
The quality is later obtained by a normalization of the product of both the imputation quality 
and the difficulty of the computation. 
 
Once the quality of each imputation is obtained, each feature balances set (coming from each 
of the instances on the training dataset) is sorted by quality. A limit to the ranking is provided 
by a drop-off value. When quality drops more than 50% of the current mean, no more 
individuals are considered and only those balances that are in the top of the ranking will be used 
to get the final mean balance values for the imputation of the feature. In the Fig.29 an example 
of the imputation results for a pair of features is given. In this case, the system returns the weight 
for the features imputation machine 1 and 2 together with the computed quality of the 
imputation. For example (0,5, 0,5 Q= 0,98) means that for the first instance using the feature 
imputation machines that have been trained for feature number 1, the weights that have to be 
applied for each machine are 0,5 and 0,5. For this first instance, with this configuration the 
calculated quality of the imputation is 0.98.  
 

Feature 1 Feature 2 
(0.5, 0,5, Q=0.98) 
(0.4, 0.6, Q=0.82) 
(0.2, 0.8, Q=0.2) 

(0, 1, Q=1) 
(0.2, 0.8, Q=1) 

(0.9, 0.1, Q=0.9) 
(0.42, 0.58, Q=0.2) 

Figure 29. Example of mean balance computation per 2 features. Every weight and quality presented for a column indicates 
the balance and quality computed for a given instance during the training process. 1st row is related with the 1st instance, 2nd 
row with the second instance etc. Thee ate cases where an instance does not present a missing value for the corresponding 

feature (4th row) in this case this information will be disregarded. The quality measurement allows to select the best possible 
balance of feature imputation machines even with a reduced number of instances. 

One of the advantages of the proposed system is that it can be trained by using a single instance, 
nevertheless, this is not desired since a great training quality cannot be assured in this case. To 
enhance the quality of the training process it will be repeated in a double loop.  
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Two not-nested loops (Fig. 30) are used to both iteratively train the feature-imputation 
machines and the balancing system. The iterative process will continue until convergence is 
reached. Convergence is met when no change on the values of the process occurs in a great 
number of iteration (100 has been selected due to computational costs). Once done, the outer 
loop repeats the process for every available instance in the training dataset. This training process 
is performed by injecting random missing values (from 10% to 90% of the dataset) in the 
training dataset. No distribution has been used to set up the missing values. An MCAR approach 
has been, hence, used in this case. Nevertheless, a minor modification to the MCAR procedure 
was added. The random missing values injection process was set up in such a wat that there is 
no possibility to find a feature in the dataset that has not been set as missing at least in one 
instance. By using the missing values injection process, the learning process can be performed 
by comparing imputed values with actual ones. 
 

 
Figure 30. Representation of the training process. The outer loop is repeated for every instance. Inner loop (loop 1) provides 

refinement for each feature. 

Once this training process is finished, the feature imputing machines and the balances for each 
feature will be obtained. The upper front-end stage is then ready to perform imputations.  
 
Imputation Process for the upper-front end imputation stage 
 
Imputation is divided into two stages that are performed at the same time. Feature and instance 
imputation. Instance imputation is based in the imputation of each feature. When a feature of 
an unseen instance gets to the imputer, an initial naïve imputation is made. This naïve 
imputation consists on storing position indexes of the features that need to be imputed and 
substituting each missing numerical feature by the mean and each missing categorical value by 
the mode. Then, the naïvely imputed instance is refined. The procedure consists in performing 
an imputation of each missing feature by using the already trained sets of feature-imputing 
machines together with the obtained balances of weights for each pair of features-imputing 
machines and the previously imputed values for each feature (Fig.33). The naïve imputation is, 
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hence, only the starting point of the iterative imputation process. The iterative process is then a 
refinement process (Fig. 31). 
 

 
Figure 31. Imputation process for a single feature. The value for the feature marked as missing is firstly naïvely imputed and 

later iteratively imputed until convergence is met. The process is performed for all the features marked as missing in an 
instance at the same time. 

As each imputed feature value is getting closer to the optimal value though the iterations, then 
it affects the imputed values of the rest of the features. Iterative refinement (Fig. 32) modifies 
the values of each of the features by using the previous iteration imputed ones until convergence 
(100 iterations) is met. 
 

 
Figure 32. Imputation process layout. Squares in red represents missing values. Squares in yellow naïvely imputed values. As 

the iterative process keep on iterating, quality of the imputation is improved until convergence is met. 

3.2.1.2 Lower front-end imputer 
 
It is based on the already mentioned information gain kMeans technique combined with a fuzzy 
kMeans algorithm. The proposed system is called information gain modified fuzzy kMeans 
approach. The first part of the proposed technique is based on the determination of what is the 
optimal value for the number of clusters observed in the dataset (k). Second part is a fuzzy 
kMeans approach where the imputed value is obtained by using a weighted voting approach 
where the weight is obtained as a membership function of the previously obtained k clusters 
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and centroids. To obtain the value ok k and the corresponding values of the centroids an initial 
free-of-missing-values subset of instances on the dataset is needed. (Fig. 33) 

 
Figure 33. Proposed "training process". In this stage the lower front-end imputer optimal number of clusters, together with 

the value of the centroids are set. 

Main key points of the proposed approach are: 
 
• The proposed technique must be useful for both categorical and numerical 

features.  There is, hence, a need to transform categorical values into numerical ones. 
The proposed technique uses a relative frequency approach to transform categorical into 
numerical values.  

• Information based approach has been considered as a foundation of the technique. 
As a consequence of the relative frequency based categorical to numerical 
transformation, the proposed lower front-end imputer approach considers the features 
as they were standalone. Considering the use of the information theory will introduce 
the relationship among features in the technique. 

• The proposed approach will not consider any previous information about the 
number of classes (clusters) available in the dataset. The lower imputation stage is 
based on the use of instances that contains missing values, but that are previously 
classified (class is never set up as missing in any instance). The standard approach when 
performing classification in this case is, obviously, to use one cluster per value of the 
class feature. Nevertheless, to determine if there are hidden relationships among the 
variables in the dataset, intra and inter-cluster relationship values will be considered to 
determine what is the optimal number of clusters in the dataset. Optimality is provided 
by the relationship between intra and inter-cluster dependency. Different number of 
clusters will be tested to determine what is the optimal number. 

• Imputation will be fuzzy. Referenced works showed that best-performing algorithms 
are related to fuzzy computation. In this case, feature imputed value will be obtained as 
a factor of membership of different available clusters.  
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As already mentioned, statistically based approaches, like kMeans, does not need from any 
training to perform classification or regression tasks so, there is no need to perform a training 
stage for the lower front-end imputer. Nevertheless, as the proposed systems is a comprise of 
techniques, there is a need to perform a previous “tuning” of some of the parameters of the 
technique. Most important previous task, as mentioned, is to determine what is the optimal 
number of clusters in the database (k). 
 
To determine what is the optimal number of clusters in the dataset, the relationship between 
intra and inter-cluster dependencies will be used. As no previous knowledge of the number of 
clusters in the dataset is considered the computation of k will be performed in an iterative 
process for every possible value of k (from 1 to the number of instances in the dataset). This 
process requests a dataset that does not contains any missing values. When an optimal 
relationship between intra and inter-cluster dependency is obtained for a given value of k, this 
k will be considered as the optimal number of clusters in the dataset.  
  
As mentioned, to obtain the optimal value for k, an intra-cluster and inter-cluster correlation 
relationship will be used. Several measures have been considered for determining the best value 
of k, all of them considering  information theory (Boriah, Chandola, & Kumar, 2008). In their 
approach, Davis and Bouldin (Davies & Bouldin, 1979) proposed DB index (Fig 34) as the best 
option to easily identify the best clustering approach in a dataset. This has been the reference 
in the proposed system as this value brings the idea of how large the cohesion in the clusters of 
the dataset is.  

 
Figure 34. DB Index influence. Good DB Index (left) indicates good clustering. 

If all the instances on the dataset are placed next to the corresponding cluster centroid and far 
from other clusters, this coefficient will be high. A high coefficient will, hence, indicate that 
the number of clusters provides a distribution where all the instances on a cluster are highly 
corelated, but they clearly differ from the instances of the rest of the clusters. (See Fig. 35) 
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Figure 35. Representation of inter-cluster and intra-cluster distances. Intercluster mean distance measures the coherence in 

the cluster, meanwhile intercluster mean distance measures how the clusters differ. 

 
“Training” Process for the lower-front end imputation stage 
 
The training phase of the lower front-end imputation ends with the determination of the optimal 
number of centroids in the dataset. Once k is obtained, the centroids of every of the k clusters 
are calculated by using already mentioned, information modified distance measurement 
methods.  
 
Imputation Process for the lower-front end imputation stage 
 
Once the system is “trained” (optimal k is calculated) the imputation occurs when an unseen 
instance reaches the input of the lower front-end imputer. The proposed system imputation 
stage is based in a fuzzy kMeans algorithm. The information gain modified Euclidean distance 
that is proposed in this work will be used to measure the similarity from the unseen instance to 
the corresponding k clusters. This will be also used as the membership function (see Fig. 37) 
By doing this, the value of the imputed features is not straightly assigned to the value of the 
closest centroid. They are obtained by using a weighted voting system where the value of the 
feature is obtained by using the weighted mean of the values of all the centroids for the feature 
under imputation. The weight modifier for each centroid value is the membership function 
(distance) from the instance to the corresponding centroid (Fig. 37).   
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Figure 36. Fuzzy K Means example. Once a value in set on the corresponding solutions space, it can be assigned to more 
than one cluster. Membership function is used to determine the rate of similarity of the instance with the corresponding 

cluster. 

The number of clusters to be used to compute the weighted value is determined by using a 
threshold on the distance. If the threshold is set to max (what is the standard) all the centroids 
will be used for the computation.  
 

 
Figure 37. Representation of a single feature imputation process. The value of the missing feature (xi) is obtained by the 

weighted mean of each of the values for the corresponding feature and every centroid. 

The distance between the instance that is going to be imputed and each centroid is obtained by 
performing an initial naïve imputation of the instance containing missing values. Once this 
initial imputation is made the process is iteratively repeated until convergence is met. Once the 
process is stopped the imputation refinement process is ended and the instance imputation is 
finished (Fig. 39). 
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Figure 38. Lower front-end imputation process. Iterative kMeans refinement process is performed until convergence. 

One important key point of the proposed system is that both the training, and the imputation 
processes request to measure distance between features. This can only be done if all the features 
are numerical. As the procedure has to be applied for both categorical and non-categorical 
features, a transformation from categorical to numerical is mandatory. To do so, a categorical 
to numerical transformation based on relative frequency procedure has been proposed.  
 
The procedure is based on measuring relative frequency of a feature value in the available 
dataset (Fig. 39). This method will turn nominal data into numerical features. 

 

 
Figure 39. Relative frequency table (left) and representation (right). 

 
Other key point of the proposed system is that, as the imputation process strongly depends on 
the relationship among the features, there is a need to introduce this relationship in the kMeans 
algorithm.  
 
The proposed method will consider information gain modified Euclidean distance as a 
similarity measurement modifier for both numerical and categorical translated values as already 
detailed in eq. (1) to (6).  
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3.2.1.3 Overall imputation process (front-end imputer).  
 
The two imputed instances obtained in the upper and lower front-end stages will be finally set 
at the entrance of the overall imputation process. Two options have been tested for this process, 
a trained set of ANNs, and a weighted system that balances both upper and lower imputed 
values to obtain the final one.  
 
ANN imputation 
 
In the first approach, one ANN was created for each of the features of the dataset. Each one 
takes both upper and lower-imputed values for the given feature as the input and bring the 
overall imputed valued for this feature as the output (Fig 40). The ANN had two input one 
output and auto hidden layer creation. So, the number of hidden layers was different depending 
on the feature that was going to be imputed. 
 

 
Figure 40. Front-End Stage (Imputer) Option 1 Structure Layout and flow diagram 

Training Process for the ANN imputation stage 
 
The training process for the ANNs is performed following the same procedure as the used to 
train the feature-imputation machines in the upper-front end imputer (Fig. 41). That is, a subset 
of the original dataset is used. This subset must not contain any missing values. To train the 
ANN, a completely-at-random process is used to set some features as missing. Once done, these 
features are imputed by using upper and lower imputers. These results are used to train the 
ANN by comparing the predicted overall imputation for the feature with its actual value. 
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Figure 41. Training process for the front-end imputer ANNs. 

Imputation Process for the ANN imputation stage 
 
Once trained, when an unseen instance that have been already upper and lower imputed reaches 
the input of the ANNs, the output regression procedure is performed to perform the imputation. 
The output of this process is a front-end imputed feature of the instance. This instance is later, 
iteratively imputed until convergence is reached. 
 
Weighted imputation 
 
The second proposed approach for the front-end imputer is a weighted sum imputer (Fig. 42). 
In this case, weights are adjusted during the training phase by using the same approach that was 
presented for upper stage (eq (6) and (8)). Once the weights are obtained, the system is trained 
and ready for later imputation. When an instance that contains missing values and its 
corresponding lower and upper imputed values reach the weighted sum system, weights are 
applied, and result obtained. This is hence, a simple and computationally cheap technique. 
 

 
Figure 42. Front-End Stage (Imputer) Option 2 Structure Layout and flow diagram 
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3.2.2 FEATURES SELECION. IDENTIFYING HI-RISK POPULATION PATTERN OF 
FEATURES 

 
The objective of this work is to perform a feature selection process in which those features that 
add more information to the dataset are selected. These are the most informative features. When 
the process is applied to the PanGeneEU database, the most informative features will, most 
probably, be the characteristics of a PC high-RP. 
  
The proposed system is a cohort of different FS techniques and a weight computation system 
(Fig. 43). The use of multiple algorithms brings robustness to the system and, also allows the 
researcher to measure how informative a feature is based on the frequency of the feature 
(weight) in the features subsets. Three approaches have been selected for the FS stage: Fast 
Correlation Based features selection (FCBFS) algorithms, wrapping techniques, and a wrapper 
techniques ensembled with a GA searching strategy to obtain an enhanced searching process 
for the optimal subset of features. 
 

 
Figure 43. Proposed overall Features Selection system  

3.2.2.1 FCBFS 
 
More than one approach is available to measure correlation between features. Been linear 
correlation measurement one of the standards, the use of a modified approach that considers 
Information Theory for measuring correlation has been contemplated for the proposed work.  
 
Fast Correlation Based Algorithm have been used for this approach due to their proven to show 
a very effective behavior, moreover when they are applied to large datasets, as in the case of 
the PanGeneEU dataset. Fast Correlation Based algorithms procedure  is based on a correlation-
based relevancy of a feature(Yu & Liu, n.d.), (Senliol, Gulgezen, Yu, & Cataltepe, 2008). 
Feature selection is based on its correlation with the class: the higher the correlation the most 
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likely is the feature to be selection. To measure the correlation, the proposed system uses 
Symmetrical Uncertainly (SU)  
 

𝑆𝑈, (𝑋, 𝑌) = 2 h
𝐼𝐺(𝑋|𝑌)

𝐻(𝑋) + 𝐻(𝑌)j									(10) 

 
Where 𝐼𝐺(𝑋|𝑌) corresponds to the information gain provided by each pair of features and their 
relation. As correlation is related to the amount of available information in the overall dataset, 
it is strongly related to IG.  In this case a feature X is said to be more correlated to a class (or 
another feature) Z than Y if 
 

𝐼𝐺(𝑋|𝑌) > 𝐼𝐺(𝑍|𝑌)								(11) 
Were 

𝐼𝐺(𝑋|𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)									(12) 
 
H represents the entropy. 
 
The procedure works by deciding about relevancy and redundancy (Fig. 44). First is based in 
the SU value, the second is a pairwise correlation. As SU is also a pairwise correlation, 
establishing a threshold for SU can lead to avoid complexity of this kind of computation. 
 

 
Figure 44. Algorithm for FCBFS (Yu & Liu, n.d.).  
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This approach has been proven to perform very effectively specially when applied to large 
datasets this is one of the reasons why it has been considered for the proposed system. It has 
been implemented using the APIs provided in the Weka library for java (Hall, 2000a).  
  
3.2.2.2 Wrapping 
 
The figure 45 corresponds to a schematic representation of the wrapper. The technique has been 
applied according with the characteristics mentioned in the background section of this work. 
 

 
Figure 45. Wrapping technique flowchart. Searching technique is represented in the square process where the generation of 

the subset performs the exploration of the solution space meanwhile the learning algorithm estimates the efficiency of the 
subset in terms of features selection. 

The proposed system uses both backward and forward searching strategies in combination with 
different learning algorithms: RF, BN and ANN for this technique. All these have been applied 
from the APIs provided by Weka. 
 
3.2.2.3 Wrapping with Genetic Approach procedure 
 
In this case classical wrapping approach is modified by using a Genetic Algorithm as the search 
engine. The classifier used in the proposed approach is RF. This have been done due to the 
good performance that RF have shown when working with datasets that contain both numerical 
and categorical features. 
 
Every wrapping approach is composed of a searching strategy and a classifier, in this case, GA 
is the search strategy to be applied on a wrapping features selection technique, meanwhile the 
RF classifier provides the fitness value for the technique. The procedure used in this technique 
following:  
 

• Dataset adjustment. Once the corresponding features has been selected, the dataset is 
reconstructed to erase the data contained in those features that are going to be 
disregarded. This step is performed by filtering the database with the subset of features 
selected in the corresponding search step of the GA searching process. 

• Storage of the class feature for every training instance. This is provided for further 
fitness measurement. These values will be used to measure the classification 
performance of the RF. 

• Classification of the training instance. 
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• Computation of the fitness value. Fitness value, in this case, is the accuracy of the 
predictor in the wrapper. 

• Repetition of the process for the next instance until all the dataset is used. 
 
For the GA search engine, gene and individual representations will be done by using binary 
values. In this case an individual will embody the complete set of available features (Fig. 46). 
By using this approach, the gen will, hence, indicate whether the corresponding feature is 
included in the corresponding subset (value 1) or not (value 0). 
 

 
Figure 46. Genotype decoding process. Each gen value of the individual will be directly be translated to selected features 

 
A population is formed by a set of individuals. The bigger the population is, the greater the 
diversity and, hence, the technique will, most likely find and optimal solution earlier and 
disregarding local optima. Nevertheless, the size of the population is a tradeoff between 
diversity and computational capabilities of the computer. This value has been set to 20 (Weka 
default value for the technique) 
 
The fitness measurement is done using the classifier (RF) accuracy.  Genetic algorithm search 
strategy is based in optimizing this fitness value, that is, the optimal solution will be this subset 
of features that brings best prediction accuracy to the classifier. 
 
To execute the process, mutation rate threshold has been set to 0.03 and crossover rate to 0.6 
with a maximum generations number of 20 (all default values provided by Weka). 
 
3.2.2.4 Overall FS Process 
 
At the end of this process, the optimal subset of features of a given dataset is obtained, even 
when it contains missing values. When applied to PanGeneEU, once this stage is over, the 
features of the dataset that are more informative will be obtained, that means, the characteristics 
of the PC risk population are found.  
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Once each of the techniques have finished each corresponding FS process one subset of features 
will be obtained from each FS algorithm. Each of these subsets may be different since the 
approaches used to obtain them are different. Based on this difference a modifier is created for 
each of the features on the dataset. This modifier is based in the frequency of each feature when 
all the features in the subset are considered. If a feature is present in every subset, the modifier 
value will be one. If, for instance, the feature is part of two subsets out of four, the modifier 
value will be 1/2. If the feature is not selected by any FS method, its modifier value is 0 (this 
feature will, hence, not be selected). 
 
As a result of this process a set of features and a set of weights to these features are obtained.  
The set of features include all the features selected by every of the FS techniques; the set of 
weights include the weights for each of the features in the maximal set. 
 
The weights are useful when a threshold value for the overall FS process is set up. If the desired 
outcome is such that must include any selected feature by any technique in the cohort, the 
threshold must be set to 0. In the proposed approach, this will be the case. 
 
3.2.3 CLASSIFICATION 
 
As already mentioned, the main objective of the proposed system is to be able to determine 
what are the most informative features in an imputed dataset with both robustness and accuracy. 
To be able to determine whether an instance is a case or a control, (classify) is, hence, not the 
final objective of the task. However, the use of a classifier allows the researcher to determine 
whether the features selection process has been successful or not, by measuring the classifier 
accuracy when comparing imputed and non-imputed datasets. 
 
That is, hence, the reason why the add-on of a final classification stage has been planned for 
the proposed technique. In this case a basic classifier (ANN) has been used. The methodology 
to test the performance of the classifier has been the following. A portion of the original dataset 
has been reserved to train and test the classifier. This has been done by using non-imputed 
complete datasets but considering only the features that have been selected on the FS stage of 
the proposed system that come from the imputation stage. The quality of the classifier in 
predicting the outcome is then compared with the quality obtained by a classifier that is trained 
and tested by used the same dataset and all the features.   
 
The structure of the classifier is, hence, very straight forward. All the parameters of the ANN 
have been maintained as default. The input are the instances on the dataset and the output will 
be the classification into cases and controls. No further changes have been performed in this 
stage.  
 



Methods and Materials 
 

 

71 
 

3.3 TRAINING AND TESTING PROCESS 
 
Training the proposed ML system is one of the most important steps in the whole process. 
Generally speaking, training processes can add noise, bias, overfitting or other similar problems 
to the technique. To avoid this, the selected training and testing strategies are based in the 
following steps (see fig 49).  
 

• First step is to remove all the instances that contained any missing values from the 
original dataset to create a “clean” dataset (dataset with no missing values) as the 
basement of the future training and testing datasets. 

• Second step is to split the resulting dataset into several training and testing sets for each 
technique in a 50%-50% training and testing subset basis. One pair of training and 
testing datasets will be reserved to train and test each of the techniques that are 
comprised in the proposed system.  

• Last step is to add missing values to the proposed training and testing dataset. These 
datasets are used to later compare the classification/regression capabilities of each of 
the components of the technique with the actual values of the corresponding features to 
refine the training and testing process. Different percentage of MCAR values have been 
added to the system (40% to 90%) for accuracy testing purposes. 

 
The original training data available, once free of missing values is, hence, split to be used in 
most of the processes (upper imputation, lower imputation, overall imputation and 
classification), and, at the same time a 50% of each of these subsets is used for training each 
process and 50% of the data for testing them (future work should add more instances to the 
training dataset if enough training and testing data is available) (Fig. 47). The features selection 
process does not use original data, but it is performed by using the imputed dataset that is 
obtained as the outcome of the imputation (front-end) imputation stage. 
 
The training and testing processes are performed by adding completely-at-random (MCAR) 
missing values to the dataset. Different rates of have been used (40%, 60%, 70%, 80% and 
90%). Once missing values have been added, the actual values for the modified features are 
stored for latter evaluation and refinement of the proposed technique. These sets are, then, 
imputed by the upper and lower imputers.  
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Figure 47. Dataset splitting procedure to create testing and training datasets. 

 
The training and testing processes for the feature selection technique were also performed by 
splitting the available data (outcome from the imputation stage) into training and testing dataset 
(see fig 47). Nevertheless, there is no way to determine whether the selection of features is 
correct or not. The only available mean to do so is to use the wrapper embedded classifier 
accuracy for the wrapping technique, or to use the last stage of the proposed technique 
(classifier) to evaluate the process.  
 
The classification process is also based in the quality of features selection technique, that is, at 
the same time, dependent on the missing values imputation quality, as already mentioned. Once 
feature selection is performed a reserved portion of the original dataset is used to train the 
classifier. The accuracy value obtained during the classifier testing process is later compared 
with the one obtained when no data is missing. The relationship between those values will bring 
the idea of how accurate the entire proposed system is. 
 
Final evaluation for the FS process is performed by comparing the obtained features subsets 
with those PC risk factors that have been previously identified in the bibliography. 
 
3.4 EXTERNAL APIS 
 
As described, the proposed system is a comprise of different techniques so, as it will be later 
introduced in this work, the implementation of the majority of the techniques have been entirely 
performed. Nevertheless, some techniques have been based in some provided Application 
Programming Interface (API). All of them coming from Weka 3.8. 
 
Weka is a free AI software created by researches from the University of Waikato. Its name 
stands for “Waikato Environment for Knowledge Analysis”. It is licensed under the GNU 
General Public License. Weka comprises a set of tools and algorithms that can be used for data 
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analysis and predictive modeling. It provides graphical representation capabilities and a set of 
ML techniques that can be used for classification, regression, clustering, FS or filtering of 
datasets. Weka is implemented using the Java programming language. 
 
In the other hand, Weka provides a full Java integration capability by its APIs. This allows the 
researcher to implement different objects that encapsulate the AI techniques that are also 
available in the graphical interface. During the implementation of the proposed system, the 
techniques that have been used are: 
 

• BayesNet: Bayesian Networks classifier provided by Weka. The main parameters of 
the technique are:  

o BIFFile. Select an external file to compare the structures of different files. 
Default nil. 

o Search algorithm. Modifies de searching algorithm of the BN procedure. 
Default Bayes. 

o Estimator algorithm. Modifies de Estimator Algorithm of the procedure. 
Default Simple Estimator. 

o Batch Size. Modifies the size of the batch if desired 
o numDecimalPlaces. Number of decimals to be used during computation. 

Default 2. 
• Random Forest. Implements the random forest technique. Main Parameters are 

o bagSizePecent. Size of each bag related to the size of the training set. Default 
100. 

o batchSize. Preferred number of batch instances. Default 100. 
o breakTiesRandomly. Boolean variable that determines if the ties have to be 

broken randomly. Default False. 
o calcOutOfBag. Whether the out of bag error is calculated. Default False. 
o computeAttributeImportance. Computes importance of each attribute by 

mean impurity descends. Default False. 
o maxDepth. Maximum depth of the tree. Default unlimited. 
o numDecimalPlaces. Number of decimals to be used during computation. 

Default 2. 
o numExecutionSlots. Threads to use to construct the structure. Default 1.  
o numFeatures. Number of randomly selected features. Default 0. 
o numIterations. Number of iterations to build the system. Default 100. 
o Seed. Random number of seeds used. Random 1. 

• Multi-Layer Perceptron. Implements Neural Networks. Most important parameters 
are: 

o hiddenLayers. Number of hidden layers in the NN. Default automatic. 
o learningRate. Stablish the learning rate of the technique. Default 0.3 
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o momentum. Stablish the learning momentum applied to the weight of the NN. 
Default 0.2 

o nominalToBinaryFilter. Determines if nominal features have to be filtered or 
not. Default True. 

o normalizeAttributes. Determines if the attributes have to be normalized or not. 
Default True. 

o numDecimalPlaces. Number of decimals to be used during computation. 
Default 2. 

o Seed. Random number of seeds used. Default 0. 
o Training Time. Training iterations to create the NN. Default 500. 
o Validation Set Size. Stablish the percentage size of the validation set. Default 

0  
o Validation Threshold. Determines the validation testing threshold. Default 20. 

• Wrapper Subset Eval. FS evaluator to implement wrapping FS approach. Main 
parameters are 

o Classifier. Determines what classification technique will be use in the wrapping 
approach. Default ZeroR. 

o Do not check capabilities. Determines whether or not evaluator capabilities 
will be checked before it is built. Default False. 

o Evaluation Measure. Stablish the measurement criteria to evaluate the 
performance of the attribute combination process. Default accuracy by RMSE 

o Folds. Determines the number of folds to create the technique. Default 5. 
o Seed. Random number of seeds used. Default 1. 
o Threshold. Determines the threshold value to repeat the process while 

evaluating. Default 0.01. 
• CFS Subset Eval. It evaluates the worth of a subset of attributes by considering the 

individual predictive ability of each feature along with the degree of redundancy 
between them. Those subsets of features that are highly correlated with the class while 
having low intercorrelation are preferred. Main parameters are 

o Locally Predictive. Identify locally predictive features. Default True. 
o NumThreads. Number of threads to use for the training stage. Default 1.  
o Missing Separate. Consider a missing value as a different one. Default False. 
o Pool Size. Size of the thread pool. Default 1. 
o PreComputeCorrelationMatrix. Determines whether or not a correlation 

matrix will be computed at the beginning of the execution. Default False. 
o Search Method. Stablish the solutions space subset searching algorithm. 

Default Best First. 
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Chapter 4 
Testing and results 
 
 
 
4.1 OBTAINED RESULTS 
 
The proposed system is a three stage ML approach consisting in: 1) An imputation stage, 2) a 
FS stage and 3) a Classification stage.  
 
Each of the stages of the proposed system are an ensemble of different techniques whose 
performance is highly dependent on the set up of the parameters that define every one of them.  
Therefore, there is a need to perform multiple evaluations to determine what is the optimal 
value of these parameters.  
 
First of the tasks that have to be done before applying any quality measurement on the algorithm 
is to be sure that the testing process that is going to be used for this duty is valid. To do so, two 
initial studies have to be done. First is to measure if there is a change of measured quality on 
the algorithm when the number of tests is also varied, and second is to determine what is the 
execution time associated to the technique (to assess its scalability).  
 
To measure the number of testing runs needed to get a good quality measurement for the 
accuracy of the proposed technique, the process consisted in testing the entire system 1, 5, 10 
and 30 times and to later determine what is the minimal number of iterations that brings a good 
(stable) evaluation outcome.  
 
To measure the time complexity, a first theoretical approach was performed, and, crosschecked 
with the actual values obtained when applying the technique with a dataset. 
 
After this is testing process evaluation, next is to determine what are the values for the main 
parameters of the technique (iterations needed to perform an stable the imputation, to meet 
convergence) and last to measure the quality of the proposed technique when used with the para 
meters that have been previously obtained. 
 
As the objective of this processes is to evaluate the testing process itself and the time complexity 
of the technique, the use of a single and, complex dataset is considered to be enough. Credit 
dataset has been, hence, selected. 
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4.1.1 DETERMINING THE APROPRIATE NUMBER OF TESTS NEEDED TO 
MEASSURE THE ACCURACY OF THE PROPOSED SYSTEM 

To bring the idea of the accuracy of the proposed system, there is a need to avoid the noise and 
the outliers that can appear in the testing process when it is performed a single time (unitary 
tests). Unitary tests can lead to biased conclusions.  

To analyze the behavior of the system in terms of the stability of the prediction, an analysis 
using the credit dataset was done. Several runs where performed (1, 5, 10, 30 and 100) 

If the outcome of this evaluation indicates that the behavior of the proposed system is stable, 
then the smaller possible number of iterations will be used to assess the behavior of the 
technique. 

 
Figure 48. Testing stability evolution for credit dataset and 60% missing values. Same results have been obtained for 

different number of iterations. 10 testing runs are considered to be enough to test the accuracy of the proposed technique. 
UNO (Upper imputation for nominal features, UNU, Upper imputation for numerical features, LNU, Lower imputation for 

numerical features, LNO lower imputation for nominal features, WNO weighted imputation for nominal features, WNU, 
weighted imputation for numerical features, ANNNU ANN imputation for numerical features, ANNNO ANN imputation for 

nominal features)  

Results demonstrated that for any rate of missing values, 10 test runs provided good information 
about the proposed technique accuracy. So, to later evaluate the accuracy of the proposed 
technique, the mean accuracy value coming from 10 iterations will be considered. The Fig. 48 
shows the accuracy of the imputation when 1 to 100 testing runs are performed on the credit 
dataset with a missing rate of 60.   
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4.1.2 DETERMINING COMPUTATIONAL EXECUTION TIMES. TIME COMPLEXITY 
 
Computational overload is strongly related to the complexity of the system. In this case, the 
process of training and testing the imputer includes the training of all the methods comprised 
in the proposed technique. The systems time complexity is the same as the most expensive of 
its parts. In this case, due to the loops that are comprised in the Imputation stage, measuring 
computational time complexity of the imputation stage is enough to determine overall time 
complexity. 
 
Training the imputer is, in fact, the most expensive of all the processes related to the proposed 
system. The figure 49 shows the execution times required to train and test the system with 
different missing values rates (40, 60, 70, 80 and 90%) for the complete ensemble of datasets. 
Generally speaking, results suggest that systems execution times (time complexity) are slightly 
correlated with the percentage of missing values in the dataset. This is explained by the fact 
that the training process of all the comprised techniques (features-imputer pair of techniques, 
weighted systems, ANN system, etc.) is always performed, even when the percentage of 
missing data is small. Nevertheless, it is mainly the size of the dataset what boost or not the 
execution times. 
 

 
Figure 49. Execution times per dataset and missing values rate. Results for the WaveForm and Iris2D are omitted due to the 
huge execution times obtained even for 40% of missing values rate in the first case (36 hours), and the small ones obtained 

for iris 2D (small dataset size). 

Evaluation of the technique accuracy testing process time complexity order is cubic 
(𝑂(𝑚 · 𝑛A)), where 𝑚 is the number of testing loops (10) and 𝑛 represents the total number of 
features in the dataset. When no testing is desired, the overall computation, features selection, 
and classification process time complexity is, hence, quadratic 𝑂(𝑛A).  Neither the complexity 
of the testing, nor the execution is optimal. Scalability of the process in, hence, difficult.  
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Figure 50. Execution times per number of features in the dataset. Results for the WaveForm and Iris2D are omitted due to 

the huge execution times obtained even for 40% of missing values rate in the first case (36 hours), and the small ones 
obtained for iris 2D (small dataset size). 

The Fig. 50, shows that there is a correlation between the size of the dataset (number of 
instances in the dataset) and the execution times (computational loadout). This is what expected, 
nevertheless, credit database does not initially follow this behavior. After analyzing the process, 
early convergence was observed for this dataset, what can be derived from the correlation 
among features. This early convergence reduced the number of iterations needed for the training 
and testing phases of the imputer (that is the more expensive part of the process) and hence the 
computational costs.  
 
4.1.3 IMPUTATION RESULTS. ITERATIONS NEEDED TO OBTAIN 

CONVERGENCE FOR THE IMPUTATION PROCESS  
 
As the imputation process is iterative, the optimal number of iterations needed for each of the 
main stages (for both training and imputation) of the upper front-end imputation phase to 
perform correctly was obtained. 

 
Results demonstrated that, when datasets are big enough (larger than 150 instances, as is the 
case of the credit dataset) the quality of the imputation is enhanced with the number of iterations 
used in the training stage of the technique, but this behavior is not observed in the imputation 
phase. In this condition, the machine, hence, benefits from the iterative training but not from 
the iterative imputation. A total of 50 training iterations have been demonstrated to be good 
enough to provide an accurate training (fig. 51), meanwhile 1 to 20 iterations are good for 
imputation (fig. 52). When reaching this number of iterations, the proposed technique meets 
convergence.  
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Figure 51. Success rate (y) of the upper front-end by number of iterations (colour code) during the training phase. NO refers 

to categorical values. UN refers to numerical values. Numeric prefix indicates the number of iterations. Credit dataset 

 
Figure 52. Success rate (y) for the upper front-end imputer by number of iterations (colour code) during the imputation 

phase. NO refers to categorical values. UN refers to numerical values. Numeric prefix indicates the number of iterations. 
Credit dataset 

In the case of smaller datasets (150 or less instances, a larger number of iterations are needed 
to meet convergence. In these cases, 100 iterations are good for both training and imputation, 
meanwhile a larger number of runs means huge computational costs with no associated 
accuracy enhancement. 
 
4.1.4 ACCURACY OF THE IMPUTATION PROCESS  
 
To measure imputation accuracy of each of the phases, success rate has been considered as an 
adequate metric for the proposed system. Success rate measures the similarity between imputed 
and actual values for all the imputed values in the dataset. If the imputed value for a given 
feature and instance is equal to the actual value, then a hit is obtained. Success rate measures 
the number of hits per total number of imputed missing values in a dataset. For the case of 
continuous variables MSE between the imputed and the actual value for the corresponding 
feature has been used. In this case, when this error deviates more than 10% from the 
corresponding actual value, the imputation is marked as incorrect. This makes the quality 
measurement for the numerical values very hard-hitting measure of quality. 
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4.1.4.1 Upper Front-End Imputer 
  
Upper front-end imputation accuracy is shown in the table 1 what depicts the imputation 
accuracy for the lung cancer, credit, waveform, breast cancer, contact lenses, diabetes, vote and 
iris 2D datasets for different missing values rate. The results for the upper front-end imputer 
are represented in the columns labeled with the letter U. The results for the numerical attributes 
are labeled with the acronym NU and the categorical with the acronym NO. At the same time 
the percentage of missing values randomly added to de datasets are also represented in the table. 
Results for the PanGen dataset were not presented since it is a real-life dataset and the objective 
of this work and will be later studied. 
 
The accuracy values ranged from 12 to 99%, depending on both the missing values rate and the 
feature type. For numerical features, the accuracy ranges from 12.14% (iris 2D with a 90% 
missing rate) to 70.6% (credit dataset) with a 40% of missing values rate), whereas for nominal 
features it ranges from 75.15% (credit dataset with 90% of missing values) to 99.12% (for credit 
data set and 40% of missing rate). The best imputation accuracies for both numerical and 
categorical features was found in the credit and vote datasets, where no know noise or bias were 
found. On the contrary, the worst imputation quality was obtained with the iris 2D dataset. 

 
Table 1. Mean imputation quality for imputation by rate of success. Results for 10 iterations in the test. (U) Upper imputation 

stage. (L) Lower imputation stage. (W) Weighted imputation stage option. (ANN) ANN Based imputation stage. (Time) 
Execution time for the test. (NU) Numerical features, (NO) Nominal Features. 

Results show that the imputation quality is better for categorical (nominal) features than for 
numerical. In particular, it is shown that categorical features of larger datasets are better 
imputed (see Fig 53 and 54), even with large missing rates. For large datasets (+11k datapoints 
(instances x features)), the accuracy of the upper front-end imputer is the highest (near 99% for 
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a 40% of missing values and near 75% for a 90% missing values rate). When the number of 
instances is lower (near 2000, like Ling Cancer), worse accuracies are obtained (85% of success 
rate for a 40% missing rate to 60% of success rate for 90% missing rate). 
 

 
Figure 53. Performance of the upper front-end imputation for those datasets that only contains categorical features (y) by 

dataset size (x) and missing values rate. 

Regarding the imputation quality of numerical values, it ranged from ~10% (90% missing 
values) to 71% (40% missing rate), and on the contrary to the imputation performance in 
categorical features, larger datasets did not have better imputation quality.  
 

 
Figure 54. Performance of the upper front-end imputation for those datasets that only contains numerical features (y) by 

dataset size (x) and missing values. 

The relationship between the number of instances per feature and the quality of the imputation 
was also analysed, (see Fig 55). Results show that the imputation accuracy of categorical 

features is larger with a higher number of instances. 
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Figure 55. Relationship among the quality of the imputation (mean quality) (y) and the number of instances per features in 

the dataset (x). 

No direct relationship between the number of instances and the accuracy of the system is 
observed since a reduction in the quality seems to occur when the number of instances grows, 
but this tendency is broken by the credit and waveform datasets that obtain better results with 
more instances, and not with the iris 2D that obtain worst values with less instances. (Fig. 58). 
 

 
Figure 56. Relationship between the instances per number of features on different datasets (x), and the accuracy of the 

imputer (by success rate) (y). 

4.1.4.2 Lower front-end imputation 
 
The results obtained when applying the lower front-end imputation stage to the available 
datasets indicate that, in all the cases, when this imputer is compared with the upper front-end 
imputation stage the accuracy is decreased. Table 1 depicts the accuracy per dataset and missing 
values rate in those columns labeled as “L”.   
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Figure 57. Average accuracy rate (y) for the lower front-end imputation technique by missing rate(x) 

Fig. 57 shows the performance of the lower front-end imputer in terms of averaged accuracy 
rate obtained when categorical and numerical features were imputed considering different 
missing values rates. The highest averaged accuracy (55%) was obtained when categorical 
features were imputed with a missing rate of 40%. As for the upper front-end imputer, 
numerical features were imputed with lower accuracy, ranging from 12% to 45%. 
 

 
Figure 58. Accuracy reduction form upper to lower front-end imputation stage for both categorical (in blue) and numerical 

(in grey) features. 

Generally speaking, results show that the lower front-end imputation stage (L) has a worse 
performance in terms of imputation accuracy than the upper front-end imputation (see Table 
1).   
 
Figure 58 shows the reduction in accuracy when imputations obtained with the upper front-end 
and lower front-end imputation machines were compared. The maximum accuracy reduction 
was observed in those cases where the actual accuracy of the upper front-end imputation stage 
is higher since distances between blue and grey dots in the same column is reduced while 
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moving to the rightmost part of the table (greater accuracy for the upper front-end imputation 
stage) The maximum reduction (near 33%) is observed for both categorical and numerical 
values considering a missing rate of 40%. A smaller reduction (near 6% for numerical and 20% 
for categorical) is observed when the accuracy of the upper front-end imputation stage is also 
lower (near 90% missing rate). 
 
Figure 59 shows that the imputation quality of the lower front-end imputer is not dependent on 
the size of the dataset. By comparing the same color dots in the figure, no clear behavior is 
observed when the number of features vary (70% accuracy in very small datasets (leftmost side) 
and nearly the same values for 10k instances datasets (rightmost side)) 
 

 
Figure 59. Performance of the lower front-end imputation for categorical features (y) by dataset size (x) and missing values 

rate. 

The Fig. 60 shows the behavior of lower front-end imputer with different dataset size and 
missing values rates. Although the best performance was obtained with the largest dataset, no 
trend was observed. Moreover, it can be seen that its imputation performance is not depend on 
the missing values rates.  
 

 
Figure 60. Performance of the lower front-end imputation for numerical features (y) by dataset size (x) and missing values. 
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Figure 61 shows the performance of the lower front-end imputation stage according to the 
number of instances per feature. As previously, no clear trend is observed. Contrary to the 
behavior of the upper front-end stage, the lower front-end imputer performance does not 
improve either with larger dataset or with larger number of instances per features. 
 

 
Figure 61.Relationship between the quality of the imputation (mean quality) (y) and the number of instances per features in 

the dataset (x) for the lower front-end imputation stage. 

In summary, an erratic behavior on the performance of the lower front-end imputer was 
observed in relation to the missing values rate and the dataset size. 
 
4.1.4.3 Weighted front-end imputer 
 
The imputed values obtained in the upper and lower front-end imputers are presented as the 
input of a final stage to obtain a single imputed value. Weighted imputer uses a weight 
balancing system to estimate what is the best relationship between upper and lower front-end 
outcomes to produce the best available final output for the front-end imputer. 
 

 
Figure 62. Average accuracy rate (y) for the weighted front-end imputation technique by missing rate(x) 
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As the performance of the lower front-end imputation stage is not as good as the one of the 
upper front-end imputer, the accuracy of the imputation of the final weighted front-end 
imputation technique is impaired (see Figure 62). As in the upper and lower front-end stages, 
the weighted imputation performs better when categorical features are imputed. In this case, 
the averaged accuracies ranged 40-50%, and 12-35% otherwise. 
 

 
Figure 63. Performance of the weighted front-end imputation for categorical features (y) by dataset size (x) and missing 

values 

Figures 63 and 64 represent the accuracy of the system for both categorical and numerical 
values related to the size of the dataset. As in the case of lower front-end imputation stage, no 
clear relationship among the size of the dataset and the accuracy of the system is observed. 
Moreover, a no clear pattern regarding the relationship between imputation accuracy and 
missing rates is observed. Surprisingly, a better performance is obtained with a 60% of missing 
rate over the 40% missing rate. 
 

 
Figure 64. Performance of the weighted front-end imputation for numerical features (y) by dataset size (x) and missing 

values 
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Figure 65. Relationship between the quality of the imputation (mean quality) (y) and the number of instances per features in 

the dataset (x) for the weighted front-end imputation stage. 

 
Last, results show that there is no relationship between the number of instances per feature and 
the accuracy of the imputer (Fig. 65).  
 
4.1.4.4 ANN front-end imputer 
 
In addition to the weighted imputation stage, an ANN imputation was also considered as a 
method to compute the outcome of the overall front-end imputing machine.  
 
Unfortunately, its imputation accuracy did not improve the one obtained by the weighted 
imputation (see Figure 66). 
 

 
Figure 66. Average accuracy rate (y) for the ANN front-end imputation technique by missing rate(x). 
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4.1.5 FEATURES SELECTION  
 
Generally speaking, FS process is highly dependent on the imputation quality (trash in à trash 
out concept). Thus, poor imputations can lead to a non-valid set of features, even when the FS 
process is correct. As the FS process for the proposed system is performed over the 
corresponding imputed dataset, there is no way to measure the quality of the selection 
independently from the imputation stage.  
 
The proposed method uses an ensemble of ML techniques to perform the FS process: a CSF 
algorithm including both backwards and forwards search, and a wrapper approach with both a 
greedy search algorithm and a genetic search algorithm. Results depicted in Table 2 shows the 
subset of features that have been selected by every FS technique. In the case of the credit 
dataset, CFS algorithm combined with a forward searching strategy selected an optimal subset 
containing six features [5,7,8,10,14,15]. On the contrary, when the GA search engine is applied 
to the RF wrapping strategy the selected subset of features was [3,4,5,7,8,10,11,12,13].  
 

 
Table 2. Results for the features selection process. (Selected features per technique) 

As depicted in Table 2, CFS for both forward and backward searching strategies selected the 
same subset of features in all tested datasets. Generally speaking, in the majority of the cases, 
the subsets obtained from the wrapping approaches, are more precise, moreover in the case 
where the GA is selected as a searching strategy. In this case, the number of features in the 
optimal subset are the smallest. 
 
In order to obtain a unique set of features, a weighted system for each selected feature was 
considered. Table 3 shows the selection frequency for each feature in its corresponding dataset. 
For instance, in the contact lenses database, feature 1 was selected with a frequency of 0.2, 
whereas features 2 and 3 were selected with a frequency of 0.4. The remaining features were 
not selected by any of the FS methods, so their frequency is 0, and not considering in the final 
features subset. 
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Table 3. Results for the features selection process. Relevance of the feature on the dataset. 

4.1.6 CLASSIFIER AND OVERALL PROCESS 
 
The classification performance of the overall process after performing the imputation and FS 
was assessed by computing the accuracy of the last stage of the machine (RF classifier) using 
a 10-fold CV approach with small datasets and a training-testing approach otherwise. The RF 
classifier accuracy when the complete dataset (i.e., without missing values) was considered was 
compared to the one built using an imputed dataset. 
 
Figure 67 shows the results of the classification performance of the RF classifier using the 
selected features. The proposed system equals or even outperforms the predictive accuracy of 
the classifier when all the data (with no missing values) is used to build the classifier. Best 
obtained results outperform the accuracy of the classifier build by using no missing data by 
near a 41% in the best case-scenario, underperforming this classifier as much as a 10% in the 
worst-case scenario. 
 

 
Figure 67. Classifier (Random Forest) accuracy. Comparison of the results obtained using the features selected from the 

imputed dataset (upper row) and considering all the features (lower row). 

 
4.1.7 APPLICATION OF THE PORPOSED TECHNIQUE TO THE PC RISK STUDY 
 
The main objective of this TFM was to build a ML approach to identify the features that define 
a population at high risk of developing PC in order to reach to an early diagnosis. So far, the 
description of the approach was presented, including the design, development and 
implementation of the proposed technique, using standard well-known testing algorithms and 
datasets. In this section, the results of applying the proposed system to the PC case study are 
presented. 
 
In order to train the system, a subset of the PanGenEU epidemiological database containing 
504 instances, and 63 categorical (including the case or control class feature) and 5 numerical 
features values was used. This subset did not contain any missing values in order to test the 
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proposed technique to an epidemiological database, although this could add bias to the system 
since the likelihood of not presenting missing values in a subset of instances can be related to 
certain type of values for a subset of features that can condition the corresponding class of the 
instance under study. Moreover, considering a complete dataset could enable the comparison 
of the performance of the system in the other datasets. 
 

 
Figure 68. Obtained results for PanGen. Over 10 tests. Different missing rates were used; 30% (top-left corner), 40% (top 

right corner), 60% (bottom left corner) and 70% (bottom right corner). Suffix NU indicates numerical features and NO 
categorical ones. Prefix U, L, W and ANN indicates upper front-end imputation, lower front-end imputation, weighted 

imputation and ANN imputation. In all cases the blue area (Upper imputation quality) was the best performer. 

4.1.7.1 Imputation 
 
As it happened with the datasets used to test and set the system, the imputation quality of the 
categorical features was better when they were imputed by the upper front-end imputer (see 
Figure 68, where the dark blue area indicates that the upper front-end imputation stage 
outperformed any other imputer), independently of the missing values rate. The imputation 
quality ranged 83-90% with 40% and 70% of missing values. When numerical features were 
imputed, the imputation accuracy decreased to a range of 15-25% for the worst-case scenario 
and to an average range of 40-50%. 
 
For the lower front-end stage, the imputation quality of the numerical features was better. As it 
happened in the other datasets used to test the system, the imputation accuracy of the lower 
front-end imputer was poorer than its counterpart of the upper front-end one.  
 
Regarding ANN and the weighted imputer, similar performance as the one observed in the 
previously used datasets was observed. The averaged (and standard deviation) performance of 
the system decreased with a larger missing values rate. Results show that the imputation quality 
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depends on the missing values rate: the larger the missing values rate, the lower the imputation 
quality is.  
 
4.1.7.2 Features Selection 
 
The features selection process in the PanGeneEU dataset may be biased since a subset of the 
PanGenEU database that do not contain missing values was analyzed.  That means that it 
contains certain features that can present interdependency with the class feature just because 
every instance in the PanGeneEU dataset that does not contains missing values have the same 
value for this specific feature.  
 
As in the previous datasets, the accuracy on both the imputation and FS processes is assessed 
by evaluating the performance of the classifier. Table 4 shows the features selected by at least 
one algorithm as well as the frequency of the feature being selected. 
 

 
Table 4. FS process results obtained for the sample of PanGen used in this work. In green are those features that does 

overtake a threshold value of 0,25. 

The importance of each feature (how informative it is) is therefore measured using the 
frequency of each feature in the features selection process. In this case, the features that were 
selected in at least 25% of the FS processes were considered in the final set. This is an arbitrary 
threshold that could be tuned in the process after measuring the classifier accuracy. 
 
Results show that the most important features that best classifies PC cases and controls are 
country of origin, recruitment center, presence of other conditions as diabetes, asthma, previous 

FEATURE ID RATE FEATURE FEATURE ID RATE FEATURE FEATURE ID RATE FEATURE

1 1,000 Country 34 0,400 allocates 63 0,200 acidburntreat
3 0,200 sex 35 0,200 allceliac 64 0,200 acidburntreat
9 0,800 alcohol_status 36 0,200 alladdi 67 0,200 nsaidmed

10 0,600 allchronpan 37 0,200 allhyper 68 1,000 cortmed
11 0,400 diabcat 38 0,600 hypercat 42
12 0,200 fhpdac 40 0,600 allmumps 43
14 0,200 ses4b 41 0,200 allhbp 46
16 0,600 asthma 42 0,200 cancer 47
19 0,600 FHDiabetes 43 0,400 allhburn 49
20 0,600 FHDiabetes 44 0,600 allacid 51
21 0,400 FHAsthma 46 0,400 gastric 52
22 0,200 FHAllergies 49 0,400 FPC 53
23 0,200 FHCystic 51 0,200 coffee 56
26 0,200 allupus 52 0,200 tea 57
27 0,200 allsclero 54 0,400 extnumb 60
28 0,200 allpoly 55 0,400 cigtype 61
29 0,200 allpane 58 0,400 ex.10 62
31 0,200 allulcer 60 0,800 marital 66
32 0,600 gstones 61 1,000 center 67
33 0,600 allcrohns 62 0,200 acidburnmed 68
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diagnosis of cancer, Chron disease, mumps, , hyper and hypothyroidism, use of asthma 
medication, corticoids, family history of PC, drinking of alcohol, and smoking have been 
selected by the system as the most informative features of the sample. The most important 
feature is the use of corticoids, which was selected by all FS processes, followed by the use of 
alcohol status (frequency =0.8), and previous diagnosis of diabetes asthma or Chron disease 
(frequency=0.6). It is remarkable that most of these features have been previously identified as 
influencing factors for the PC (Klein, 2013)(Risch, Yu, Lu, & Kidd, 2015), but, in this case, by 
using the proposed system, they have been selected after imputing and recovering the 
information of  a dataset that contains 40% of missing values.  
 
4.1.7.3 Classification 
 
As mentioned, the classifier accuracy may be considered as a good metric of the ability of the 
system to perform both the imputation and the FS processes. A bad classification accuracy can 
indicate that there is some information in the dataset that have been lost in either the imputation 
stage, in the FS stage, or in both. 
 
Table 5 shows the classifier accuracy considering different values for the minimum frequency 
required for a feature to be finally selected after the FS process. The minimum accuracy was 
obtained when all features were included in the classifier (93.47%). When only the features that 
were selected in 50% of the processes were considered, the classifier accuracy was the highest 
(95.25%).  
 

 
Table 5. Accuracy of the last-stage classifier associate to different FS thresholds. 

 
The use of thresholding can be used in the future to obtain an autotuning system by using the 
accuracy of the classifier as the fitness function. To increase the number of runs can also help 
in refining the thresholding process. 
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4.2 DISCUSSION 
 
The proposed system is a three-stages technique that performs missing values imputation, FS 
and classification. 
 
The strengths of the proposed system are 1) the novelty of the approach; 2) its high imputation 
quality, especially when imputing categorical features; and 3) the high classification 
performance, even with large datasets. Regarding the imputation quality, the performance of 
the upper front-end stage when categorical features are imputed is really promising, especially 
because PanGenEU database contains mainly categorical features. The better performance of 
the upper front-end imputer could be explained by the fact that the categorical features are not 
converted into numerical. Interestingly, the upper front-end imputer outperformed the lower 
one except when small datasets were imputed. This behavior could be explained by the fact that 
the upper front-end imputer is impaired when the training is performed in small datasets. An 
improvement of the system, especially indicated to analyze small datasets, could be to use a 
chained iterative approach to first impute in the upper front-end stage and then refine the results 
by using fuzzy k means. In this case, the use of the upper front-end will allow to perform a good 
initial imputation to set the imputed feature in the solution space in such a way that the impact 
on the centroids displacement due to the introduction of the imputed instance will be reduced, 
leading to better imputation specially for numerical values. Nevertheless, the application of the 
proposed system to other databases would be necessary to further evaluate it. 
 
The limitations of the proposed system comprise a possible overfitting during the training stage. 
To avoid this problem, the initial dataset was divided in two subsets, and used them for training 
and testing the system in a 50%-50% slip basis. Even though this 50-50 approach was 
performed to assure and efficient use of the dataset in such a way that all the splits needed for 
the training and testing of the techniques where big enough, the use of other training and testing 
split configuration (70%-30%) can be convenient for future enhancements of the training stage 
since a greater training dataset demonstrated to drive to a reduced number of training iterations. 
When the dataset was small, a 10-folds CV approach was considered. Moreover, the poor 
performance of the lower front-end imputation stage compared to that of the upper front-end 
imputer, impaired the overall performance of the imputer, and only the results of the upper front 
end have been selected. The erratic behavior of the lower front-end imputer may be due to the 
use of the frequency when categorical features are imputed. An approach that may ameliorate 
this effect is the fuzzy approach, consisting in using a membership function to determine the 
best option during the imputation process. In this case, the fuzzy approach could be used to 
work with different imputation options that will be modified by the corresponding membership 
value obtained from the similarity measurement between the imputed features in the instance 
and the different possible values associated to the categorical feature. The fuzzy approach will 
be used to continue the iterative imputation process by using the similarity measure as a 



Testing and Results 
 

 
 

94 
 

probability of selection for the corresponding class to frequency equivalent associated value. If 
this is done, the down selection of imputed instances will occur iteratively when the weight 
value is to low (Amiri & Jensen, 2016). This proposed approach can be considered for future 
work. Another improvement of the system could be to use a hash unique encoding for the 
numerical values to avoid this problem. If this is done, the problem of translating the frequency 
into an equivalent categorical value for the feature in those cases where to categorical values 
can have the same frequency disappears since a unique hash key will be assigned to each 
frequency equivalent. A chained approach like the performed in the Multiple Imputation by 
Chained Equations (MICE) could be an alternative low front-end imputer. 
 
Since the quality of the FS process is highly dependent on the imputation quality, it is not 
possible to evaluate it independently. However, the use of an ensemble of techniques for the FS 
process assures robustness, a desired characteristic of the proposed system. Although the use 
of the wrapper as FS method is computationally expensive, its high accuracy overcomes this 
limitation. The selection of the final subset of features depends on an arbitrary threshold 
regarding the frequency of each feature being selected by each FS process. In the proposed 
technique most of the features selected by the system which define a population at high risk of 
developing PC are well-known risk/protective factors that have been previously associated with 
PC risk. However, other features as tea/coffee consumption are not considered neither as risk 
nor protective factor.  Nevertheless, a future improvement of the system could add an auto-
thresholding system to ease the risk factors identification process. 
 
The system also shows a good behavior in the classification stage. The quality of the classifier 
was calculated as the difference between the performances of the classifier built over datasets 
including missing values or not. The performance demonstrated by the classifier when it is built 
by using the values of the dataset that does not contain any missing vales, but the features that 
were selected in the FS process, and the obtained when the imputed features are used, where 
tested demonstrating good results. Classification performance of the system is promising, since 
the classification performance of the selected features was similar (or better) to the one obtained 
with the entire dataset. This result also suggests that the imputation is good enough to obtain a 
valid features subset even with a large missing values rate.  
 
 
4.2.1 BIAS OF TESTING DATA SETS.  
 
As already mentioned, the imputation system was tested in different datasets considering a wide 
range of missing values rates (40, 60, 70, 80, 90). This process emulates an MCAR situation. 
However, this situation is not the most common one in real world datasets, and a future test of 
the system should include to test it using a dataset with missing values. Due to the robustness 
of ensembled systems and the imputation process that considers the relationship among features 
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by using mutual information theory- based approaches, it is expected that the presence of MAR 
does not induce a large bias into the system.  
 
4.2.2 OVERFITTING 
 
As said, the quality of the imputation was very favorable, especially when considering the 
results of the upper front-end imputer. However, when any ML technique obtain good results 
it is possible that overfitting is occurring, especially when both the training and the testing 
phases are performed by using the same dataset or a very similar one. When the amount of 
available data is small, cross validation is recommended for both training and testing the 
processes since not enough data is available to set up two different testing, and training datasets. 
In this case, training and testing has been performed by using different samples of the dataset, 
that comes from the split of the data available in such a way that some portions of the datasets 
are reserved to train and test every of the stages of the proposed techniques, meanwhile, at the 
same time, this portions are also split in a 50%-50% basis to obtain a training and testing dataset 
for the corresponding stage. This procedure trend to minimize the overfitting. However, it does 
not eliminate conditions as bias and noise. The drawback of avoiding overfitting is that this 
splitting procedure provides less amount of data is available for training. To overcome this, an 
iterative imputation process was followed, by using each instance to iteratively train, and then 
impute until convergence, after this is done, next instance is used in the same way. This provides 
the best possible training and imputation quality for each available instance in the training and 
testing datasets.  
  
4.2.3 IMPUTATION  
 
The advantage of the first approach (used for categorical values) is that the quality is improved 
in the best-case scenario, but the system is most likely to fail if the training of the imputation 
machines for each feature is not performed properly. In the other hand, the approach used for 
numerical data relies on the weighted mean value of the qualities of the imputation machines, 
this decreases the quality of the results, but makes the system more stable. 
 
The problem of the weighted mean is shared for both the lower and weighted imputation stages. 
In this case it appears in both the numerical and categorical values. As already mentioned, the 
multiple iterations performed in the upper stage may bring better imputation quality, in this 
case, as there is no iterative refining process, the quality strongly decreases. Further 
improvements for future work should include an iterative process for both lower, weighted and 
ANN imputation. 
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4.2.4 FEATURES SELECTION AND OVERALL RESULTS 
 
Avoiding previous overfitting is very important since the performance of the features selection 
process highly depends on it. The use of the majority of the data available for training and 
testing imputation phase has allowed to reduce the overfitting as much as possible in the first 
stage what drives to a better features selection process. When applied to the PanGeneEU 
dataset, the results demonstrated that, when compared with the PC risk factors obtained by 
different studies results were very promising. 
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Chapter 5.  
Development and implementation of the 
tool 
 
5.1 ALGORITHM DESIGN AND FLOWCHART 
 
Implementation has been performed in accordance with the overall set of techniques used for 
imputation, features selection and classification.  
 
As the ensembled system consists on a chained set of imputation, features selection, and 
classification techniques, packages and classes will be designed and implemented accordingly.  
 
Two versions have been implemented (Figs 69 and 70). First is an ANN based final imputation-
based technique and second is an ensemble weighted imputation-based approach. In the first 
one, the weighted balances system mentioned in previous sections of this work is applied 
meanwhile the ANN based final imputation process is also tested for results.  
 

 
Figure 69. Proposed system. Version 1 
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Figure 70. Proposed system. Version 2 

These two versions have been implemented and tested. Results shows that none of them 
outperforms upper imputation stage results. As mentioned, upper imputed values will be used 
for further computing. Other options like iterative chaining can substitute this process in an 
opposed-like system. 
 
5.1.1 DEVELOPMENT CYCLE 
 
The code needed for developing this technique includes approximately 10000 code lines. 
Hybrid development cycle has been used. Agile techniques have been considered to modify the 
code to adapt the algorithms for better results. As the objective of this work is to execute the 
process by using a completely functional and correct technique, no advanced GUI has been 
developed. Console input and output has been used as the only input and output systems; future 
work should provide improved MHI characteristics if the algorithms outperform other classical 
approaches to the task.  
 
As dynamic approaches to design and implementation request constant changes, continues 
stand-alone, unit and integration test have been performed. Several discrepancies where 
detected when using the app with small dataset. Recommended quality processes have been 
followed at the maximum possible extent. The idea behind this approach was to assure that, 
with so many coding, no improper implementation has been made and, hence, obtained results 
are realistic.  
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5.2 IMPLEMENTATION 
 
The proposed system has been implemented by using and iterative engineering approach. Using 
the agile standards to select the most important requisites for the implementation process, until 
all the necessary where met.  A brief description of the engineering process and the user´s 
manual is provided in the annex 2. JavaDoc files are also available with this task. 
 
5.2.1 CLASS DIAGRAM 
 
Class diagram for the implementation of this task is the depicted in figure 73. As seen, the use 
of modules has been extended to the maximum, and the using of an MVC structure has been 
applied when connecting different modules of the execution flow.  
 
5.2.2 BRIEF ESSENTIAL CLASSES DECRIPTION 
 

• Training Process. This class emulates the overall training process. Once a dataset is 
received, training process selects those instances in the dataset that does not contains 
missing features. Part of this dataset will be used for training both upper imputation 
machines set and lower kMeans clustering process. This is done by using preprocessing 
Filter class. Once done, the reserved dataset is, once again, spitted. One part is used to 
train weighted imputation process and ANN based overall imputation process.  
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Figure 71. MLU diagram for the developed application 

The rest is used to test the performance of the imputer.  
 
Training process connects with other classes like upper and lower-front end trainers, 
that perform specific training. 

 
• Testing Process. This class uses the remaining of the dataset (testing dataset) to 

generate random missing values and test imputation process by comparing results with 
actual values. Its methods use the output from training process class (weights balance, 
features imputing machine sets and kMeans clusters) to obtain imputed values. This are 
compared with actual instances and are, hence, evaluated.   
 

• Upper Front-End Trainer. This class is in charge of performing upper imputation 
phase of the technique. This trainer takes the training portion of the dataset and split it 
taking a part for the upper training. Then it performs the training of the overall process 
by setting up the corresponding values of the weights in the iterative process that has 
been mentioned in the algorithm description part of this work. Once this training is 
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performed, the set of trained features imputing machines and the corresponding balance 
weights are stored to be used during imputation stage. 
 
 

• Upper Front-End Imputer. This class takes the data provided by the upper-front end 
trainer and performs the imputation. The imputation process is performed by an iterative 
process that impute the values by using both the imputing machines and weights. Prior 
to this process an initial naïve computation is performed. Once finished, iterative 
process continuously improves imputation quality until convergence is met. 
 

• KMeans Computer. This stage performs the training of the lower imputation stage. 
This uses information gain-based weights (IGBaseWeights) and DB Indexes to obtain 
the optimal number of clusters for the dataset.  

 
• Lower Front-End Imputer. This class takes the data coming from the training phase 

and imputes an unseen instance. The imputation process is performed by measuring IG 
modified distance. Once this is done a membership value for the instance to each cluster 
is obtained. With this value, a weighted mean instance is obtained.  

• Auxiliary Computer and Pre-processing filter. These two classes perform basic 
computations associated to other main classes. These are in charge of performing 
computations like obtaining weights, computing IG based distances, adding missing 
values, and other similar operations. 

• Features Selection Process. In charge of performing features selection process and 
determining what are the corresponding more important features in the dataset.  
 

 
Further information on this classes and methods can be found to the java documentation 
provided with the proposed system. 
 
5.3 SELECTION OF TECHNOLOGIES FOR DEVELOPMENT 
5.3.1 JAVA 
Application have been developed using Java kit (JDK) 8. Java has been chosen due two several 
reasons. It is a well know standard, very portable with great scalation capabilities. There are 
several different machine learning libraries that were specially created for java and that were 
later adapted for other languages.  
 
Java is very modular and clear. As is mounted on a VM it has the drawback of consuming a lot 
of memory. In fact, java efficiency in the use of memory is one of the main problems of the 
language, that tries to be solved by using garbage collector demon. Nevertheless, java is a good 
option to stablish a backend of any current or future application. Other approaches like 
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functional programming using Haskell could have been a good development options but where 
disregarded due to the fact that latter inverse engineering processes (if needed) to fix or review 
the app can be difficult. 
 
Eclipse oxygen, a free Java IDE, has been used. Eclipse is a well-known developing option that 
has been used previously and it shows certain capabilities that are not available in other non-
free licensed and expensive development software. As Eclipse is continuously evolving, some 
interesting design features have been recently added. UML plug-ins have been used in this 
work. 
 
5.3.2 WEKA 
 
Weka is an app that is used for filtering, classifying, regression, features selection and many 
other ML related tasks. It contains different techniques and offers several different modules to 
analyze data. As a collection of algorithms can be used for almost any ML od data mining tasks.  
 
Weka also provides a java-implemented library for several different programming languages, 
including java. It is open source and it is continuously improved under a GNU General Public 
License. Weka API used for this work has been Weka 3.9. The classes that have been used and 
their parameters configuration are available at the methods and materials section of this work. 
  
 
Weka has been selected for two main reasons: 1) its good performance, and 2) its offline 
flexibility as well as multiple different techniques. Java ML and some other third-party APIs 
(TensorFlow, Amazon ML, etc.) were considered, but due to the ease of use, previous 
experiences and characteristics, Weka was finally selected. 
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Chapter 6. 
Conclusions and future work 
 
6.1 ETHICAL IMPLICATIONS 
 
One of the main problems of the AI is related to the ethical implication of the use of the 
proposed techniques when applied to real life problems. The fact that AI techniques are, 
breakthrough technologies, and usually associated with the black box concept (i.e.,  the 
algorithm is designed and trained with small knowledge about the actual internal processes that 
are taking place in the system) brings the idea that AI will dramatically decide over human 
problems (and lives) using data and avoiding human empathy. Society is usually living under 
the influence of the “False Dilemma” fallacy, and under this, ones think that AI has been 
developed to substitute (or even terminate) humans, since others think that it is nothing useful. 
The truth is that AI is simply, an awesome powerful tool. 
 
The proposed system is dedicated to the development of an AI system able to find patterns in 
the data, to fill information gaps and help in finding the characteristics of the population at high 
risk of PC. AI can find patterns into the data that bared human eye cannot see. Further 
application of the proposed technique can also help in the early diagnosis of the PC disease. 
But this can only be done if the machine is supervised by an expert system, it is the human 
behind the machine who has the ability to modify its behavior.  
 
The control of this kind of algorithms will be very important in the future. They can find missing 
data and predict the outcome of temporal series, they can be used to modify stock markets, 
social media or the human perception of the world. Humans using these kinds of techniques 
must be able to control the use and modification. Ethics in this case, rely on the human 
controller of the machine. As the chained results of the application of this kind of technologies 
is almost unpredictable, they must be used only in controlled domains with limitations and 
under supervision of the human expert. 
 
Other ethical implication of the use of these kinds of techniques is the accessibility. If there is 
a possibility of developing a technique that is able to early detect cancer, it should be accessible 
to all the mankind. As in the case of the first industrial revolution, industry 4.0, that is boosted 
by the extended use of AI, can make the breach that separates social classes even greater. 
Developing these kind of AI techniques request highly prepared personnel and hi-tech 
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equipment that can make the system unreachable to certain part of the population. In the other 
hand, if this kind of technology is accessible to everybody, it can help to reduce the mentioned 
social gap. 
 
Human bias is the last implication that is going to be mentioned. The proposed system, as any 
other AI techniques, relies on the available data. The bias that the data collection process 
(typically performed by humans) adds to the dataset will determine the ability of the system to 
bring a good solution. This links with the already mentioned social gap problem. There is a 
need to perform an appropriate data collection, to avoid bias that can make the machine to get 
only to those solutions that are more “convenient” for the user, and to rely on its ability to get 
to the best endings. 
 
The proposed system, as many other AI techniques and just for been this, is under the scope of 
the ethical application of the AI. But, in my opinion, since these algorithms are nothing more 
that very powerful tools, is the human user ethics what has to be studied. In many other 
occasions in the human history, those that can beneficiate from a technological advance not 
only used it for they benefit, but to destroy the others. AI is nothing more than a tool in the 
hands of the humans, the ethics applied in the way it is going to be used will define our society 
in mankind history.   
 
6.2 CONCLUSIONS 
 
The conclusions of this work are: 
 
1). To solve the problem of finding a risk score based on the selection of the most informative 
features on a dataset is highly dependent on the quality of the data. If the data contains a lot of 
missing values (as is the case of PanGeneEU) a correct missing values imputation technique is 
the key point of the overall process.  
 
2). Overfitting has been considered as one of the major threads for the technique. To evaluate 
the behavior of the proposed system against overfitting different test runs have been performed 
by using separated dataset for the training and testing processes. This have been repeated for 
different datasets. The behavior of the systems was the same in all the cases. This last indicates 
good capabilities in terms of robustness.  
 
3). To perform the testing process an MCAR approach has also been considered. MCAR, even 
though possible, is not the most common missing values type in the majority of the datasets, 
further test and improvements in this area are seriously recommended since the not at random 
alternative is more usual. 
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4). The proposed system shows interesting performance with high missing rates, especially 
when related to the upper front-end imputation stage and categorical features. The quality of 
the imputation is decreased for numerical features in the upper imputation stage, and in any 
case for the rest of techniques. The decision to use only upper stage imputation results for 
further computations was, hence taken. The technique relies in both the quality of the machines 
performing features imputation as well as an iterative training and imputation process that has 
shown the capability of enhance the overall imputation quality. Nevertheless, this ability has 
been observed as more relevant when working with datasets that contain small number of 
instances. In this case, imputation is enhanced but the risk of overfitting also grows. This 
innovative proposed system has, hence, shown promising results specially when dealing with 
categorical data. Future work must be centered in improving numerical characteristics since, 
even though the quality of the imputation is interesting, to assure correct future features 
selection the higher this numbers are, the more reliable the feature selection process will be.  
 
5). Features selection performance of the proposed system is strongly dependent on the results 
of the missing imputation phase. The proposed system is a voting system that combines 
statistical methods with the wrapper approach and a genetic algorithm search strategy. The 
proposed voting system provided a weighted features selection system that allows the 
researcher to obtain an overall picture of how the corresponding feature affects the dataset. In 
this case, the accuracy of the measurement is provided by the number of different feature 
selection techniques comprised in the voting system. Due to computational overload reasons, 
the maximum number of considered techniques was four. Final subset was selected by using a 
threshold to determine what is the minimum weight associated to a feature to select it as a part 
of the subset. In this case, threshold was set to zero, so all the features that were selected by the 
corresponding techniques were farther considered. This means that the quality of the “features 
filtering” process was not the best available. An auto-threshold feature should be considered 
for further improvements of the proposed system. This will reduce both the noise and the 
computational overloads. 
 
6). The classifier that is set up in the final stage of the proposed technique, brings the 
corresponding final flavor of the quality of the process. The best conclusion is that, to achieve 
a good performance in this part, a great performance in the previous stages is essential. Lower 
qualities in the numerical imputation stages induced errors in both the features selection 
process, and the classification stage. This is an area of improvement for future work since 
further uses related with diagnosis can be possible. 
 
As a conclusion. The proposed system has shown robustness and enhanced quality for the 
imputation of categorical values, lacking on the numerical ones. It also demonstrated good 
resistance against noise and overfitting and extremely good behavior specially with elevated 
high missing values rates. Nevertheless, techniques based on the information theory to modify 
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weighted imputation have demonstrated bad results when applied to a mix of numerical and 
categorical data. The features selection process is highly dependent in the imputation stage, as 
expected, and has shown an overall good behavior but, further refinement is needed to obtain a 
minimal subset that allows direct application to the entire PanGeneEU database. Future work 
must, hence, cover this improvement areas to take this innovative embraced approach to higher 
standards. 
 
6.3 FUTURE WORK 
 
As mentioned, there are at least two characteristics of this proposed system that need to be 
strongly enhanced: the improvement of the numerical imputation, and the improvement of the 
computation overload.  
 
The problem about numerical values can be faced in an iterative way. The use of chained 
approaches as MICE but using the results of both the imputation and the classification for the 
training of the machines may be a good approach to refine numerical imputation and will 
enhance system capabilities.  
 
The second problem can be solved by using two different approaches. The way java manages 
memory does not help in reducing the computational execution times. Future improvements 
may be focused in using other computation languages that does not require virtualization and 
lacks from memory problems. Using parallelization will also improve the performance of the 
machine. 
 
Additionally, future work should test the capabilities of the proposed approach when dealing 
with MAR data, as well as establishing an automatic set up of the parameters of the machines 
is also necessary. Using search algorithms like evolutionary strategies can help in obtaining a 
set of parameters that will take the system to the its best performance. 
 
 

 
 
 
 
 



 

107 
 

 
Bibliography 
Abdulaimma, B., Hussain, A., Fergus, P., Al-Jumeily, D., Montañez, C. A. C., & Hind, J. 

(2017). Association mapping approach into type 2 diabetes using biomarkers and 
clinical data. Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10362 LNCS). 
https://doi.org/10.1007/978-3-319-63312-1_29 

Amiri, M., & Jensen, R. (2016). Missing data imputation using fuzzy-rough methods. 
Neurocomputing, 205, 152–164. https://doi.org/10.1016/j.neucom.2016.04.015 

Aydilek, I. B., & Arslan, A. (2013). A hybrid method for imputation of missing values using 
optimized fuzzy c-means with support vector regression and a genetic algorithm. 
Information Sciences, 233(January), 25–35. https://doi.org/10.1016/j.ins.2013.01.021 

Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data treatment 
methods for supervised learning. Applied Artificial Intelligence, 17(5–6), 519–533. 
https://doi.org/10.1080/713827181 

Ben, S., Naouali, S., & Chtourou, Z. (2018). A fast and effective partitional clustering 
algorithm for large categorical datasets using a k -means based approach ☆. Computers 
and Electrical Engineering, 68(May), 463–483. 
https://doi.org/10.1016/j.compeleceng.2018.04.023 

Bhattacharyya, P., W Bynum, J. P., Carrillo, M., Davis, R., Gustafson, D., Karlawish, J., … 
Weiner, M. (2017). The National Institutes of Health National Institute on Aging Cost-
Effective Early Detection Cognitive Decline of. Retrieved from 
https://www.nia.nih.gov/sites/default/files/2018-01/final-cognitive-decline-summary.pdf 

Blum, A. L., & Langley, P. (2002). Selection of relevant features and examples in machine 
learning. Artificial Intelligence, 97(1–2), 245–271. https://doi.org/10.1016/s0004-
3702(97)00063-5 

Boriah, S., Chandola, V., & Kumar, V. (2008). Similarity measures for categorical data: A 
comparative evaluation. In Society for Industrial and Applied Mathematics - 8th SIAM 
International Conference on Data Mining 2008, Proceedings in Applied Mathematics 
130 (Vol. 1, pp. 243–254). 

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global 
cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 
36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. 
https://doi.org/10.3322/caac.21492 



Bibliography 
 

 
 

108 
 

Brayne, C., Matthews, F. E., McGee, M. a, & Jagger, C. (2001). Health and ill-health in the 
older population in England and Wales. The Medical Research Council Cognitive 
Function and Ageing Study (MRC CFAS). Age and Ageing, 30, 53–62. 
https://doi.org/10.1093/ageing/30.1.53 

Campbell, C., & Cristianini, N. (1999). Simple learning algorithms for training support vector 
machines. Unpublished Manuscript, 1–29. 

Canto, M. I., Almario, J. A., Schulick, R. D., Yeo, C. J., Klein, A., Blackford, A., … Goggins, 
M. (2018). Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic 
Cancer Undergoing Long-term Surveillance. Gastroenterology, 155(3), 740-751.e2. 
https://doi.org/10.1053/j.gastro.2018.05.035 

Capurso, G., Falconi, M., Calculli, L., Arcidiacono, P. G., Del Chiaro, M., Presciuttini, S., … 
Maisonneuve, P. (2010). Familial pancreatic cancer in Italy. Risk assessment, screening 
programs and clinical approach: A position paper from the Italian Registry. Digestive 
and Liver Disease, 42(9), 597–605. https://doi.org/10.1016/j.dld.2010.04.016 

Corral, J. E., Mareth, K. F., Riegert-Johnson, D. L., Das, A., & Wallace, M. B. (2019). 
Diagnostic Yield From Screening Asymptomatic Individuals at High Risk for Pancreatic 
Cancer: A Meta-analysis of Cohort Studies. Clinical Gastroenterology and Hepatology, 
17(1), 41–53. https://doi.org/10.1016/j.cgh.2018.04.065 

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. 
https://doi.org/10.1109/TPAMI.1979.4766909 

de Maturana, E. L., Alonso, L., Alarcón, P., Martín-Antoniano, I. A., Pineda, S., Piorno, L., 
… Malats, N. (2019). Challenges in the integration of omics and non-omics data. Genes, 
10(3). https://doi.org/10.3390/genes10030238 

Di Nuovo, A. G. (2011). Missing data analysis with fuzzy C-Means: A study of its application 
in a psychological scenario. Expert Systems with Applications, 38(6), 6793–6797. 
https://doi.org/10.1016/j.eswa.2010.12.067 

Eggermont, J., Kok, J. N., & Kosters, W. A. (2004). Genetic programming for data 
classification: Partitioning the search space. Proceedings of the ACM Symposium on 
Applied Computing, 2, 1001–1005. 

Eiben, A. E., & Smith, J. E. (2008). Introduction to Evolutionary Computing (Natural 
Computing Series). %7 %8 October %9 %? %! %Z %@ %( %) %* %L %M %2 %3 
book %4 %# %$ (Vol. %6). https://doi.org/10.1007/978-3-662-44974-8 

Evgeniou, T., & Pontil, M. (2014). Support Vector Machines : Theory and Applications 
WORKSHOP ON SUPPORT VECTOR MACHINES : THEORY AND 
APPLICATIONS, (May). https://doi.org/10.1007/3-540-44673-7 



Bibliography 
 

 
 

109 
 

Faisal, S., & Tutz, G. (n.d.). Nearest Neighbor Imputation for Categorical Data by Weighting 
of Attributes, 1–28. 

Ferlay, J., Partensky, C., & Bray, F. (2016). More deaths from pancreatic cancer than breast 
cancer in the EU by 2017. Acta Oncologica, 55(9–10), 1158–1160. 
https://doi.org/10.1080/0284186X.2016.1197419 

Fornazzari, L. (2001). Mild cognitive impairment. Behavioral Neurology in the Elderly, 
(Mci), 279–286. https://doi.org/10.1016/j.lpm.2018.01.017 

García-Laencina, P. J., Sancho-Gómez, J.-L., Figueiras-Vidal, A. R., & Verleysen, M. (2009). 
K nearest neighbours with mutual information for simultaneous classification and 
missing data imputation. Neurocomputing, 72(7), 1483–1493. 
https://doi.org/10.1016/j.neucom.2008.11.026 

Garciarena, U., & Santana, R. (2017). An extensive analysis of the interaction between 
missing data types, imputation methods, and supervised classifiers. Expert Systems with 
Applications, 89, 52–65. https://doi.org/10.1016/j.eswa.2017.07.026 

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal 
of Machine Learning Research, 3, 1157–1182. 

Hall, M. A. (2000a). Correlation-based feature classification for discrete and numeric class 
learning. 

Hall, M. A. (2000b). Feature Selection for Discrete and Numeric Class Machine Learning 1 
Introduction. Machine Learning Proc Seventeenth International Conference on Machine 
Learning, 1–16. https://doi.org/10.1.1.34.4393 

Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism: Clinical 
and Experimental, 69(0), S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011 

Hemberg, E., Ho, L., O’Neill, M., & Claussen, H. (2013). A comparison of grammatical 
genetic programming grammars for controlling femtocell network coverage. Genetic 
Programming and Evolvable Machines, 14(1), 65–93. https://doi.org/10.1007/s10710-
012-9171-8 

Hidalgo, M., Cascinu, S., Kleeff, J., Labianca, R., Löhr, J. M., Neoptolemos, J., … 
Heinemann, V. (2015). Addressing the challenges of pancreatic cancer: Future directions 
for improving outcomes. Pancreatology, 15(1), 8–18. 
https://doi.org/10.1016/j.pan.2014.10.001 

Hippisley-Cox, J., & Coupland, C. (2012). Identifying patients with suspected pancreatic 
cancer in primary care: Derivation and validation of an algorithm. British Journal of 
General Practice, 62(594), 38–45. https://doi.org/10.3399/bjgp12X616355 

Hsu, C., Schuschel, D., & Yang, Y.-T. (1999). The ANNIGMA-Wrapper Approach to Neural 



Bibliography 
 

 
 

110 
 

Nets Feature Selection for Knowledge Discovery and Data Mining. Institute of 
Information Science. 

Ilic, M., & Ilic, I. (2016). Epidemiology of pancreatic cancer. World Journal of 
Gastroenterology, 22(44), 9694–9705. https://doi.org/10.3748/wjg.v22.i44.9694 

John, G. H., Kohavi, R., & Pfleger, K. (2014). Irrelevant Features and the Subset Selection 
Problem. In Machine Learning Proceedings 1994 (pp. 121–129). Elsevier. 
https://doi.org/10.1016/b978-1-55860-335-6.50023-4 

John R.Giudicessi, BA.Michael J.Ackerman., 2013. (2011). Combining PubMed Knowledge 
and EHR Data to Develop a Weighted Bayesian Network for Pancreatic Cancer 
Prediction. J Biomed Inform, 23(1), 1–7. https://doi.org/10.1038/jid.2014.371 

Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of 
Anesthesiology, 64(5), 402–406. https://doi.org/10.4097/kjae.2013.64.5.402 

Kennedy, E., Wiitala, W., Hayward, R., Sussman, J., Liu, X., & Leufkens, H. (2015). 
Personalised Medicine Strategy. Medical Care, 51(3), e0174944. 
https://doi.org/10.1371/JOURNAL.PONE.0174944 

Kenner, B. J., Chari, S. T., Cleeter, D. F., & Go, V. L. W. (2015). Early Detection of Sporadic 
Pancreatic Cancer. Pancreas, 44(5), 686–692. 
https://doi.org/10.1097/mpa.0000000000000369 

Klein, A. P. (2013). Identifying people at a high risk of developing pancreatic cancer. Nature 
Reviews Cancer, 13(1), 66–74. https://doi.org/10.1038/nrc3420 

Kolen, J. F., & Hutcheson, T. (2002). Reducing the time complexity of the fuzzy c-means 
algorithm. IEEE Transactions on Fuzzy Systems, 10(2), 263–267. 
https://doi.org/10.1109/91.995126 

Koller, D., Sahami, M., & Building, G. (n.d.). Toward Optimal Feature Selection. 

Kotsiantis, S. B. (2017). Supervised Machine Learning: A Review of Classification 
Techniques. Journal of Manufacturing Science and Engineering, Transactions of the 
ASME. Retrieved from https://datajobs.com/data-science-repo/Supervised-Learning-[SB-
Kotsiantis].pdf 

Krawiec, K. (2002). Genetic Programming-based Construction of Features for Machine 
Learning and Knowledge Discovery Tasks. Genetic Programming and Evolvable 
Machines (Vol. 3). 

Kumar, V., Chandola, V., & Boriah, S. (2014). Similarity Measures for Categorical Data – A 
Comparative Study, (November). 

Lennon, A. M., Wolfgang, C. L., Canto, M. I., Klein, A. P., Herman, J. M., Goggins, M., … 



Bibliography 
 

 
 

111 
 

Hruban, R. H. (2014, July 1). The early detection of pancreatic cancer: What will it take 
to diagnose and treat curable pancreatic neoplasia? Cancer Research. American 
Association for Cancer Research Inc. https://doi.org/10.1158/0008-5472.CAN-14-0734 

Li, D., Gu, H., & Zhang, L. (2010). A fuzzy c-means clustering algorithm based on nearest-
neighbor intervals for incomplete data. Expert Systems with Applications, 37(10), 6942–
6947. https://doi.org/10.1016/j.eswa.2010.03.028 

Liu, C., Wang, W., Zhao, Q., Shen, X., & Konan, M. (2017). A new feature selection method 
based on a validity index of feature subset. Pattern Recognition Letters, 92, 1–8. 
https://doi.org/10.1016/j.patrec.2017.03.018 

Liu, H., Motoda, H., & Dash, M. (1998). A monotonic measure for optimal feature selection. 
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), 1398(May 2014), 101–106. 
https://doi.org/10.1007/bfb0026678 

Lu, Y., Ma, T., Yin, C., Xie, X., & Tian, W. (2013). Implementation of the Fuzzy C-Means 
Clustering Algorithm in Meteorological Data, 6(6), 1–18. 

Maisonneuve, P., & Lowenfels, A. B. (2015). Risk factors for pancreatic cancer: A summary 
review of meta-analytical studies. International Journal of Epidemiology, 44(1), 186–
198. https://doi.org/10.1093/ije/dyu240 

Mohamad, M. S., Deris, S., & Illias, R. M. (2005). A HYBRID OF GENETIC ALGORITHM 
AND SUPPORT VECTOR MACHINE FOR FEATURES SELECTION AND 
CLASSIFICATION OF GENE EXPRESSION MICROARRAY. International Journal 
of Computational Intelligence and Applications, 05(01), 91–107. 
https://doi.org/10.1142/s1469026805001465 

Neoptolemos, J. P., Urrutia, R., Abbruzzese, J. L., & Büchler, M. W. (2018). Pancreatic 
Cancer. Pancreatic Cancer. Springer New York. https://doi.org/10.1007/978-1-4939-
7193-0 

Ng, A. (2000). CS229 Lecture notes Margins : Intuition. Intelligent Systems and Their 
Applications IEEE, pt.1(x), 1–25. https://doi.org/10.1016/j.aca.2011.07.027 

Onkelinx, T., Devos, K., & Quataert, P. (2017). Working with population totals in the 
presence of missing data comparing imputation methods in terms of bias and precision. 
Journal of Ornithology, 158(2), 603–615. https://doi.org/10.1007/s10336-016-1404-9 

Pan, R., Yang, T., Cao, J., Lu, K., & Zhang, Z. (2015). Missing data imputation by K nearest 
neighbours based on grey relational structure and mutual information. Applied 
Intelligence, 43(3), 614–632. https://doi.org/10.1007/s10489-015-0666-x 

Pantanowitz, A., & Marwala, T. (2009). Evaluating the Impact of Missing Data Imputation 
through the use of the Random Forest Algorithm, (January). https://doi.org/10.1007/978-



Bibliography 
 

 
 

112 
 

3-642-03156-4 

Panthong, R., & Srivihok, A. (2015). Wrapper Feature Subset Selection for Dimension 
Reduction Based on Ensemble Learning Algorithm. In Procedia Computer Science (Vol. 
72, pp. 162–169). Elsevier. https://doi.org/10.1016/j.procs.2015.12.117 

Paparrizos, J., White, R. W., & Horvitz, E. (2016). Screening for Pancreatic Adenocarcinoma 
Using Signals From Web Search Logs: Feasibility Study and Results. Journal of 
Oncology Practice, 12(8), 737–744. https://doi.org/10.1200/jop.2015.010504 

Patil, B. M., Joshi, R. C., & Toshniwal, D. (2010). Missing Value Imputation Based on K-
Mean Clustering with Weighted Distance (pp. 600–609). https://doi.org/10.1007/978-3-
642-14834-7_56 

Paulina Gomez-Rubio1, Jan-Paul Zock2, Marta Rava1, Mirari Marquez1, Linda Sharp3, 
Manuel Hidalgo4, Alfredo Carrato5, Lucas Ilzarbe6, Christoph Michalski7, Xavier 
Molero8, Antoni Farré9, José Perea10, William Greenhalf11, Michael O’Rorke12, 
Adonina Tardón1, N. M. (2015). Reduced risk of pancreatic cancer associated with 
asthma and nasal allergies. Gut, 10. 

Rahman, M. G., & Islam, M. Z. (2016). Missing value imputation using a fuzzy clustering-
based EM approach. Knowledge and Information Systems, 46(2), 389–422. 
https://doi.org/10.1007/s10115-015-0822-y 

Raja, P. S., & Thangavel, K. (2016). Soft Clustering Based Missing Value Imputation (pp. 
119–133). https://doi.org/10.1007/978-981-10-3274-5_10 

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., … Ng, A. Y. (2017). 
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep 
Learning, 3–9. Retrieved from http://arxiv.org/abs/1711.05225 

Ranjani, R. (2012). Categorical Data Clustering using Cosine based similarity for Enhancing 
the Accuracy of Squeezer Algorithm, 45(20), 41–45. 

Regan, B. C., Freudenthaler, N., Kolle, R., Mollon, J. D., & Paulus, W. (1998). Colour 
discrimination thresholds in Parkinson’s disease: Results obtained with a rapid 
computer-controlled colour vision test. Vision Research, 38(21), 3427–3431. 
https://doi.org/10.1016/S0042-6989(97)00402-1 

Riaz, N., Wolden, S. L., Gelblum, D. Y., & Eric, J. (2016). HHS Public Access, 118(24), 
6072–6078. https://doi.org/10.1002/cncr.27633.Percutaneous 

Risch, H. A., Yu, H., Lu, L., & Kidd, M. S. (2015). Detectable Symptomatology Preceding 
the Diagnosis of Pancreatic Cancer and Absolute Risk of Pancreatic Cancer Diagnosis. 
American Journal of Epidemiology, 182(1), 26–34. https://doi.org/10.1093/aje/kwv026 

Rokach, L., & Maimon, O. (2005). DECISION TREES. In DATA MINING AND 



Bibliography 
 

 
 

113 
 

KNOWLEDGE DISCOVERYHANDBOOK. https://doi.org/10.1007/0-387-25465-X 

Ron Kohavi, & John, G. H. (1995). Wrappers for feature subset selection. Artificial 
Intelligence, 1997(97), 273–324. 

Salem, S. Ben, Naouali, S., & Sallami, M. (2017). Clustering Categorical Data Using the K-
Means Algorithm and the Attribute ’ s Relative Frequency, 11(6), 708–713. 

Sefidian, A. M., & Daneshpour, N. (2019). Missing value imputation using a novel grey 
based fuzzy c-means, mutual information based feature selection, and regression model. 
Expert Systems with Applications, 115, 68–94. 
https://doi.org/10.1016/J.ESWA.2018.07.057 

Senliol, B., Gulgezen, G., Yu, L., & Cataltepe, Z. (2008). Fast Correlation Based Filter 
(FCBF) with a different search strategy. 2008 23rd International Symposium on 
Computer and Information Sciences, ISCIS 2008. 
https://doi.org/10.1109/ISCIS.2008.4717949 

Sharma, P., Sundaram, S., Sharma, M., Sharma, A., & Gupta, D. (2019). Diagnosis of 
Parkinson’s disease using modified grey wolf optimization. Cognitive Systems Research, 
54, 100–115. https://doi.org/10.1016/j.cogsys.2018.12.002 

Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., & Sieh, W. (2019). Deep 
Learning to Improve Breast Cancer Detection on Screening Mammography. Scientific 
Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-48995-4 

Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer 
Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551 

Soofi, A., & Awan, A. (2017). Classification Techniques in Machine Learning: Applications 
and Issues. Journal of Basic & Applied Sciences, 13(September), 459–465. 
https://doi.org/10.6000/1927-5129.2017.13.76 

Street, N. (1998). A Neural Network Model for Prognostic Prediction. Proceedings of the 
Fifteenth International Conference on Machine Learning, (December), 540–546. 

Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Classification : Basic Concepts , Decision 
Trees , an model evaluation. Introduction to Data Mining, 67(17), 145–205. 
https://doi.org/10.1016/0022-4405(81)90007-8 

Tutz, G., & Ramzan, S. (2015). Improved methods for the imputation of missing data by 
nearest neighbor methods. Computational Statistics & Data Analysis, 90, 84–99. 
https://doi.org/10.1016/j.csda.2015.04.009 

Vafaie, H., & De Jong, K. (2002). Genetic algorithms as a tool for restructuring feature space 
representations (pp. 8–11). Institute of Electrical and Electronics Engineers (IEEE). 
https://doi.org/10.1109/tai.1995.479372 



Bibliography 
 

 
 

114 
 

Van Hulse, J., & Khoshgoftaar, T. M. (2014). Incomplete-case nearest neighbor imputation in 
software measurement data. Information Sciences, 259, 596–610. 
https://doi.org/10.1016/j.ins.2010.12.017 

Wang, W., Chen, S., Brune, K. A., Hruban, R. H., Parmigiani, G., & Klein, A. P. (2008). 
PancPRO: Risk Assessment for Individuals With a Family History of Pancreatic Cancer. 
Clin Oncol, 25(11), 1417–1422. 

Wei, L., & Altman, R. B. (2004). An Automated System for Generating Comparative Disease 
Profiles and Making Diagnoses. IEEE Transactions on Neural Networks, 15(1), 597. 

Wrzeszczynski, K. O., Frank, M. O., Koyama, T., Rhrissorrakrai, K., Robine, N., Utro, F., … 
Darnell, R. B. (2017). Comparing sequencing assays and human-machine analyses in 
actionable genomics for glioblastoma. Neurology: Genetics, 3(4). 
https://doi.org/10.1212/NXG.0000000000000164 

Yu, L., & Liu, H. (n.d.). Feature Selection for High-Dimensional Data: A Fast Correlation-
Based Filter Solution. 

Yu, L., & Liu, H. (2003). Feature Selection for High-Dimensional Data: A Fast Correlation-
Based Filter Solution. Proceedings, Twentieth International Conference on Machine 
Learning, 2(June), 856–863. 

Yu, L., & Liu, H. (2004). Efficient Feature Selection via Analysis of Relevance and 
Redundancy. Journal of Machine Learning Research (Vol. 5). 

Zhang, S. (2012). Nearest neighbor selection for iteratively kNN imputation. Journal of 
Systems and Software, 85(11), 2541–2552. https://doi.org/10.1016/j.jss.2012.05.073 

 
 
 

 
 
 
 
 



 

115 
 

 
ANNEX 1 
Medical Application of AI. 
 
 
AI IN EARLY DETECTION DIAGNOSIS AND TREATMENT OF DISEASES 
 
Computer science capabilities have been applied in the medical field since its birth. Due to its 
powerful capabilities, AI is not an exception. Different AI variants and applications as computer 
vision (CV), Machine Learning (ML) or robotics are been widely used to search for patters, 
build risk scores, perform early detection and diagnosis as well as helping I am selecting the 
most adequate treatment for every disease.  
 
Cognitive diseases 
 
Alzheimer, dementia and Parkinson are not the only but a subset of the most infamous cognitive 
diseases. Cognitive problems incidence is growing with life expectancy. Cognitive structures 
and tissues get degraded trough time and some studies reveals, the importance of early detection 
for and accurate treatment of the disease. Some reports have identified this situation and are 
analyzing the possibilities of some AI techniques to develop financially sustainable early 
detection systems (Bhattacharyya et al., 2017). Although there is no option for cure yet, 
determining the characteristics of a risk population can lead to early detection of cognitive 
diseases, as in the case of cancer, will help in providing a cure to the disease.  
 

 
Figure 72. Life expectancy by each cognitive impairment combination. (Brayne, Matthews, McGee, & Jagger, 2001) 
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Unfortunately, there is no current accurate test to early detect a cognitive impairment disease. 
The only way to do it, is by performed initial screening in different test in which the sings off 
the disease can be observed. Once this is done, further image tests must be performed 
(Fornazzari, 2001).  
 
Once again AI, has become a key player in early detection and diagnosis support for severe 
diseases. In 2016, researchers from Harvard University, Massachusetts General hospital and 
China´s Huazhong University of Science and Technology developed a machine learning based 
technique that combines Magnetic Resonance Imaging (MRI) brain scan images with clinical 
data from the subjects on study to make predictions that will help in early detection of the 
disease (Nordrum, 2016). Although much more development is yet needed, results were 
promising. These results demonstrate the strengths of combing human expert knowledge, ML 
algorithms, CS, and High-Tech diagnosis support systems.  
 
 
Coronary Heart Diseases and Heart Attacks prediction. 
 
Next to a 50% of stokes and other coronary heart incidents occurs in patients that were not 
identified as been part of a risk population. (Strickland, AI Predicts Heart Attacks and Strokes 
More Accurately Than Standard Doctor's Method, 2017). Coronary heart diseases are an 
important cause of death is most developed countries. Bad habits, smoking, obesity, age, lack 
of exercise and sedentarism have been usually identified as some of the most important and 
traditionally linked causes of coronary heart diseases, nevertheless, after applying machine 
learning to already known dataset, several different sign, symptoms  and characteristics 
correlations that take to additional positive and more accurate predictions (Kennedy et al., 
2015). The structure of the technique (ANN) is depicted in fig. 11. 
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Figure 73. ANN structure created for the task. Green lines are positive predictors and red are negative. Thickness represents 

the weight balance.(Kennedy et al., 2015). 

 
 
Pneumonia  
 
By 2017 and study performed by Stanford AI researches developed an algorithm that was able 
to outperform the abilities of radiologists on detecting signs of pneumonia in X-Ray Images 
(Perry , 2017). To do so as much a 112120 X-ray images were provided to a ML algorithm that 
took a month to learn to make predictions among 14 different types of possible diagnoses. This 
algorithm is called CheXnet (Rajpurkar et al., 2017). This algorithm takes an input image and 
combines Computer Vision (CV) techniques together machine learning algorithm to first find 
areas in the image that can indicate the presence of the illness and then to perform an initial 
screening of this images to bring a diagnosis among 14 possible options. 
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Figure 74. Output of CheXnet. It identifies areas where pneumonia is detected. The algorithm also marck them that are more 

indicative of the pathology. (Rajpurkar et al., 2017). 

CheXnet relies in the capabilities of convolutional neural networks (CNN). This kind of 
networks uses convolutional operations to perform identification of areas on images. In this 
case, the algorithm uses CNN with 121 layers. By using this technology, CheXnet achieves 
accuracy values of 0,435 (mean) better accuracies that the obtained by any of 4 radiologists. 
The mean accuracy of those was 0.387. (see fig.13) 
 

 
Table 6. Accuracy comparations for 4 different radiologists and CheXnet algorithm (Rajpurkar et al., 2017). 
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Cancer and Robotics 
 
The relationship between cancer and robotics is stablished by the development of surgical 
robots that are able to use a cohort of AI technique to perform difficult surgery. (Cueva,2007), 
(Doulgeris, Gonzalez-Blohm, Filis, Shea, Aghayev, Vrionis, 2014) (Harvey, 1974). 
 
Near 116000 entries have been found when searching surgery and cancer, the biggest part of 
them deal with laparotomy, tissue cleavage, and similar tasks. There are two type of surgery 
robots that are commonly used nowadays: 
 

• Pathfinder (neurosurgery). Its use is extended. Helps in performing difficult surgeries 
like brain cancer related surgery. 

• NeuroArm. This robot uses Magnetic resonance image (MRI) to help doctors in 
performing remote surgery and very complex surgery. By doing this it also combines 
other AI fields like ML, CV with robotics.  

 
Figure 75. Typical classification of the surgery robots. 

 
• Da Vinci. This is one of the most advanced robots. Is used for abdominal surgery. Can 

be remotely controlled it coordinate several different robotic arms with extraordinary 
precision to help in the extirpation of complicated and small tumoral tissues.  
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ANNEX 2 
Engineering process. 
 
INTRODUCTION 
 
As the objective of the proposed system is not to provide a complete engineering product, not 
all the quality assurance engineering processes followed during the design and implementation 
of the technique will be detailed. The information presented in the main body of this task and 
completed in this annex will bring the main ideas behind the engineering process. 
 
SYSTEM DESCRIPTION 
 
The proposed system is a simple standard input and output interface-based single user app that 
uses a terminal command line as human to machine interface. The user will be able to provide 
the data for the training and testing process and they can also provide the percentage of missing 
values and the number of tests to perform in the testing process and whether the testing process 
want to be used or not. 
 
The input is, hence, an “arff” formatted dataset, the number of testing rounds and the desired 
missing values for the testing process. The outcome, for the training option is the quality of the 
imputation process, the imputed dataset and the features selection result. When no training is 
desired, the result is the imputed dataset and the selected features.  
 
The system has to be able to integrate different algorithms in a modular way using packages, 
classes and methods in such a way that ease maintenance must be met. Each of the proposed 
system techniques (upper front-end, lower front-end, ANN imputation, weighted imputations, 
features selection cohort of techniques, and classification) must be separated in different classes 
to allow easy replacement and scalability.  
 
An MVC paradigm has been considered using the controller and model concept to its maximum 
extend, this will allow an easy proxy transformation and on-line transformation for further 
back-end application in a complex distributed app. 
 
REQUISITES 
 
From the definition of the proposed system there are some requirements that have to be met by 
the system. The following are the most remarkable: 
 
 
 



Annex2· Engineering Process 
 

 
 

122 
 

Functional 
Requirement ID Functional Requirement Description 
FR 1 The user should be able to execute the evaluation of the proposed system 
FR 2 The user should be able to perform database feature.es weight computation. 

FR 3 
The user should be able to select the percentage of missing values to be added to the 
system when in testing mode 

FR 4 The user must be able to select the database to execute the training or imputation stages 
FR 5 The system must use .arff dataset format 

FR 6 
The system must provide accuracy measurement based on the quality of the imputation 
process   

FR 7 
The system must provide accuracy measurement based in the last-stage classification 
quality 

FR 8 The system must provide the selected features set per technique 

FR 9 
The system must be able to provide the weights of each selected feature for the overall of 
the techniques. 

FR 10 
The system must provide a “provision for” capability to allow future auto-thresholding 
and self-parameter adjustment processes. 

FR 11 The system must provide standard input and output HMI 

FR 12 
The system must provide information on the execution status of each algorithm by using 
standard output. 

Table 7. Functional Requirements for the proposed system. 

 
USER CASES DIAGRAM 
 
As the system strength is the development of a back-end area of an application with a limited 
front-end development. User cases that have to be delivered are very simple. As mentioned in 
the description. The user must be able to perform training, evaluation and imputation of the 
database. The Fig. 78 depicts a classic user cases diagram 
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Figure 76. User Cases diagram for the proposed technique. 

TESTING 
 
The testing process has been specified in the main body of this work. Unitary test and 
integration test were also performed during the iterative development  
 
USERS GUIDE 
 
As already mentioned, the proposed system has been designed to be easily integrated as the 
backend of future apps. It is only applicable to “.arff” datafiles that contains numerical, 
categorical or both kind of features. In every case the class feature must be categorical. 
Nevertheless, a simple HMI has been provided via standard input and output. The java jar 
executable file has been named TFM2. 
 
To execute the code a standard java call to TFM2 has to be done by using the following call 
structure 
 

java -jar TFM2.jar + (dataset) [missing rate] [training rounds] [testing mode] 
 

(dataset) indicates the name of the dataset. It must include the path to the file. The dataset must 
be a valid arff file. If no dataset is provided a file not found exception message will be returned. 
 

System

<User>

Select Dataset

Perform Training

Perform Evaluation

Execute Features 
Scoring

Modify execution 
parameters

<extends>

<extends>

<extends>

<extends>

<extends>

<uses>

<uses>

Perform Imputation

Perform Features Se-
lection

Perform Classification

<uses>
<uses>

<uses>

<uses>

<uses>

<Process Controler>

AI techniquecontrolers
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[testing mode] It indicate if the dataset will be used to perform the system performance 
evaluation or not. 0 indicates that no testing mode is desired, 1 indicates that the testing mode 
is desired. 
 
[missing rate]. A value between 0 and 100 indicating the missing rate desired for the testing 
mode. If no missing rate is provided the applied value will be 50%. If testing mode is not 
selected this value will be disregarded. 
 
[training rounds]. A Value above 0 that the user wants to use for testing the process. If no value 
is provided 10 will be the standard. If testing mode is not selected, this value will be disregarded. 
 
No further possible interaction with the system is possible. The systems will provide error 
messages in the case of failure. 


