
 
Abstract 

Continuous Sign Language Recognition (CSLR), 
predicting the meaning of the signs in sign language 
sentences, is one of the current challenges in translation 
between sign and spoken languages, that would benefit 
people with hearing impairment. An important limitation 
of this research field is the lack of annotated datasets, 
which could be minimized with Sign Segmentation 
approaches by automating the costly task of manually 
annotating the beginning and ending of each sign. The goal 
of this paper is to study the performance of an architecture 
which combines I3D CNN extracted features with a 
transformer-based model called ASFormer which was 
created specifically for Action Segmentation task. In our 
approach ASFormer, instead of separating actions in 
motions is separating signs in a signed speech. Several 
ablation studies are performed, and it is shown that 
ASFormer is suitable for segmenting the signs, with a 
performance near the ones of the state-of-the-art models, 
confirming the promising benefits of using attention-based 
approaches in this field. 

 

1. Introduction 
Approximately 430 million of people, up to 5 % of world 
population, possess some kind of deafness or auditive 
impairment [1]. It is of great importance to provide them 
with tools and resources for outcoming their 
communication difficulties. A significant part of the deaf 
community uses some type of sign languages, which are 
completely independent from the spoken and written 
language. Due to intelligibility between languages, even 
between sign languages, automatic translation, or more 
precisely, interpretation, is needed. 
Most of the studies related to sign language focus on sign 
language recognition, where the lexical meaning of the 
signs is identified in units called glosses. However, most 
studies focus on the recognition of isolated signs (ISLR) 
[2] from little datasets extracted in controlled conditions, 
like videos with good illumination and background. In the 
past years, however, an increased interest has appeared [3] 
in the more complete problem of continuous sign language 

recognition (CSLR), where signs are recognized inside 
continuous sentences. Several problems arise in this kind 
of scenario, like the need of huge, annotated datasets of 
signs and their meanings for every sign language. This lack 
on annotated datasets is due to the need of highly prepared 
professionals, not only for capturing the videos in enough 
variety of situations, but also experts that can understand 
the meaning of the signs and could precisely annotate their 
boundaries, and because it is a high time-consuming task. 
In addition to that, there could be discrepancies between 
annotators that make automatic recognition task even 
harder. 

Figure 1: The purpose of temporal sign segmentation is to find 
the boundaries between signs. Most of the times these boundaries 
coincide with the movement epenthesis between signs. This 
problem could be modeled as a classification task where frames 
labeled with 1 are the boundaries, and the frames labeled with 0 
are the signs. Predictions are considered correct when there is 
several consecutive 
 
For these reasons, it is of big interest to automate the 
annotation of sign language datasets. This has made the 
arise of some subproblems like sign spotting, the automate 
search of identical signs without knowing the meaning or 
Sign Segmentation, where videos are split into the signs 
without knowing their meaning. This last subproblem have 
some issues associated, like the existence of co-articulation 
(where same signs adopt different shapes depending on the 
preceding and posterior signs) or differentiating signs from 
movement epenthesis (which is a type of co-articulation 
that consists in the link between signs without any 
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associated meaning). The detection of these two situations 
could not only be seen as a research challenge, but as a way 
for finding the boundaries of the signs. 
1s near a boundary labeled in the ground truth. 
Recently, a new architecture has been proposed [4] for sign 
segmentation which combines I3D extracted features [5] 
and a MS-TCN architecture [6], both modules already used 
in the more general Action Segmentation problem, where 
user actions, instead of signs, are recognized and split. This 
solution improved results from previous works in two of 
the most important sign language datasets. Inspired in this, 
the objective of this paper is trying to improve the results 
already reached in the literature and study the viability of 
using a new transformer-based architecture called 
ASFormer [7] which has proved to perform better than 
MS-TCN in the Action Segmentation task.  
Thus, our hypothesis is that the ASFormer architecture can 
perform better segmentation of the signs and improve the 
results obtained in the MS-TCN architecture. 
In consequence, the following research question has been 
posed in this paper: Is the ASFormer a suitable solution 
for Sign Segmentation task improving previous state of 
the art results? 
 
The following objectives are explored: (1) It is 
demonstrated the effectiveness of using a transformer-
based approach to produce sign boundary predictions, (2) 
the optimal configuration of such architecture is studied, 
and (3) results are compared with other state of the art 
models for two datasets, which are BSLCorpus [8], [9], 
[10] and RWTH-Phoenix-Weather14 [11][12]  
The rest of sections of this article are a study of the 
literature on the subject (Section 2), a description of the 
Methodology employed (Section 3), Results of 
Experimentation (Section 4), Discussion (Section 5) and 
Conclusions (Section 6). 

2. 2. Related work 
This section is divided as followed. First, the systematic 
review of the state of the art that was performed this paper 
is described. Then the results are presented divided into the 
ones focusing on the detection of movement epenthesis and 
co-articulation and the ones directly focused on sign 
segmentation. After that, the review of some articles used 
in this work related to the more general Action 
Segmentation task is included. Finally, a review of 
annotated datasets prepared for Continuous Sign Language 
Recognition is done, followed by a summary with the most 
useful articles related with the final solution proposed in 
next section of this paper. 

2.1. Systematic Review 

A systematic review study has been performed for 
reviewing the literature related to the segmentation task 
and related termina. For that reason, we have consulted two 
databases: Scopus and Web of Science. A summary of the 
results given by each query could be seen in  
Table 1. 
From the 175 articles found, 46 were duplicated, 41 were 
excluded after reading the abstract and 49 were removed 
for several reasons like unavailability (2), being published 
in languages other than English or French (3), not being 
related to sign language (6), offering solutions not related 
to computer vision (6), etc. A full summary could be seen 
in the flowchart of decisions of Figure 2. At the end, 39 
articles where selected and a more deep analysis was 
performed, based on the rules suggested in PRISMA 
[13][14] which will be presented as a separate systematic 
review paper. However, the most important conclusions 
are presented in the following sections. 

Database Query Results Repeated Excluded Selected 
Scopus ALL( "sign language" AND "computer vision") 

 AND TITLE(sign OR label**** OR "pseudo*label****" OR unsupervised OR 
epenthesis OR co-articulation OR coarticulation OR clustering) 
 AND TITLE-ABS-KEY("pseudo label****" OR unsupervised OR epenthesis OR 
co-articulation OR coarticulation ) 

103  72 31 

WoS TI=(sign OR label**** OR "pseudo*label****" OR unsupervised OR 
epenthesis OR co-articulation OR coarticulation OR clustering) 
 AND TS=("pseudo label****" OR unsupervised OR epenthesis OR co-
articulation OR coarticulation ) 
 AND TS=(sign language) AND TS=(computer vision) 

27 23 3 1 

Scopus TITLE-ABS-KEY ( "sign language" AND ( "sign segmentation" OR "sign 
language segmentation" ) )  

26 5 14 7 

WoS TS=("sign language" AND ("sign segmentation" OR "sign language 
segmentation")) 

19 18 1 0 

Total  175 46 90 39 
 

Table 1 Search queries performed in Scopus and Web of Science search engines. The first two queries are related with the detection of 
movement epenthesis, coarticulation and the use of pseudo labels. The final two queries are focused on the sign segmentation task. 



 
Figure 2: Research flow for including the datasets in the review 

of the state of the art. 

2.2. Epenthesis and Co-articulation studies 

Epenthesis and co-articulation are important concepts in 
sign language and very interesting for the sign 
segmentation perspective because they could be used as 
boundaries of the signs. In several works, however, 
epenthesis and co-articulation concepts are mixed. As 
defined in [15] coarticulation would be “the modification 
of signs when using them in utterances compared to when 
using them isolated” [15]. Meanwhile, in [16] it describes 
coarticulation as the process of joining two lexically 
different glosses in a sentence, and could be divided into 
hold deletion, in which the transition between signs is 
smooth, with minimum length of inter-sign pauses posing 
a challenge for finding the boundary between both signs, 
metathesis, in which “the point of articulation of a sign is 
affected by the next one in a sequence”, assimilation, in 
which a sign takes the characteristics of the next one and 
move epenthesis, which are transitions between signs 
without any lexical information. Based on this, move 
epenthesis is a type of coarticulation formed when the 
hands move from the ending location of one sign to the 
starting location of the next one. Knowing this, in our 
literature research some studies were find that use 
coarticulation term to refer only to Movement Epenthesis 
[17]. 
Several studies tried to automatically detect ME or 
coarticulation between signs. Some of them are based on 
the study of the changes in velocity [18][19] , 
acceleration[20] or trajectories [17][21]. 

 
1 It was decided to include this study even that it is not part of computer 

vision solution, because of the interesting approach based on trajectory 
detection that could be applied using computer vision as well. 

As per speed changes, in [18], following the hypothesis 
that transition movements were faster than sign 
movements, authors detected and removed the co-
articulated strokes when their speed was about 3/2 above 
the average speed. Another study [19] concluded that 
transitions were delimited by two local minima in the norm 
of the velocity, and created a semi-automatic segmentation 
by detecting the speed minima of the hand motions. Due to 
a high number of false positives, this process was only used 
for improving manual annotations though. Another variant 
from this type of detection, but a slightly different type of 
feature is the one of [22] where epenthesis was detected by 
using the motion vectors partially decoded in H.264/AVC 
compressed videos. Frames with low-speed hand-motions 
are considered signs while frames with high speed are 
considered ME. 
Another study [20] detected co-articulation of 
fingerspelling alphabets by finding peaks in acceleration 
between signs because stable movement was inferred as 
part of dynamic signs. 
Several studies study the influx of the trajectories in 
detecting ME. For example, in [17] authors detect changes 
on trajectories, with a pair of gloves and magnetic trackers1 
to segment “phonemes”. Also, in [21] differentiates 
movement epenthesis from trajectory signs ( which were 
not part of any sign language though) using the trajectory 
phase as a feature. First, it segmented the sign using the 
height of the hand trajectory, and then used a feature set 
(two spatial feature, pairwise geometric histogram (PGH) 
and two temporal ones, height and orientation of the 
rectangle formed by the trajectory formed of p number of 
points at a time) for recognizing the segmented signs. 
Some studies like Enhanced Dynamic Programming (EDP) 
[23] and 3-SU[24] are based in subunits sign modelling 
frameworks where signs are divided into components. 
While in [23] Parallel Hidden Markov Model (PaHMM) 
and 5 subunits are used, in [24], Bayesian parallel Hidden 
Markov Model (BPaHMM) is used an only 3 subunits 
(hand shape, velocity and position). These subunits are 
feed into the modelling phase. By using dynamic time 
warping DTW and minimum entropy clustering (MEC), ME 
are removed from the training 
In [25] authors use an optical flow based approach to 
distinguish between signs and ME. For each frame, the 
optical flow is calculated with the Horn-Schunck method 
and the 2-norm of its magnitude parameter. Values above 
a threshold are considered movement epenthesis, and 
values below are considered signs. 
In [26], [27] and [28] the concept of “signemes” is used, 
which are the part of the signs after removing the co-
articulation. In [26] the edge pixels of the skin-colored 



patches are transformed as points in the Space of Relational 
Distribution (SoRD), then, the signemes are built by taking 
the parts of the sentences with the same sign that has 
highest resemblance score and taking the mean model of 
all them. In [27] the signemes are instead extracted by 
using a Bayesian framework. Possible starting points and 
width of signs are collected building conditional density 
functions, based on dynamic time warping (DTW) 
distances, and running several times Iterative Conditional 
Modes (ICM) to extract the signemes. HMM is used to 
correct DTW when the result of both models is very 
different. Also, in [28] signemes are extracted by aligning 
the videos with the speech cues and studying different 
techniques: HMM, coupled HMM and parallel HMM, 
concluding that the best one is the fusion of DTW and 
HMM) 

2.3. Sign Segmentation studies 

After looking at studies that only focused in detecting and 
or removing move epenthesis, we focus on studies that 
segment the signs, even when some of them use move 
epenthesis or coarticulation to find the boundaries. Sign 
Segmentation solutions could be classified [29] as mainly 
based on three approaches: (1) based on velocity- ,(2) 
template-matching-based features or (3) modelling of signs 
and ME. 
Methods that are based on velocity are the most numerous. 
For example, in [29] a method is proposed for distinguish 
ME from signs by using adaptative thresholds on three 
features, shape (Zernike moments), velocity change 
(Lucas-Kanade optical flow method) and displacement of 
centroid (geometric moments). If two of these variables are 
above the thresholds it is considered as ME. 
In [30] authors create a semi-automatic annotation system 
that analyses hand shapes, hand speed and face landmarks 
to annotate features and segment the signs. After that, the 
signs are classified into lexical (with a defined meaning), 
and iconic (illustrative) types based on a probabilistic 
model. In more detail, the temporal segmentation is done 
by using hand speed and taking into consideration that each 
sign begins with a maximum peak on speed and ends with 
a minimum. To avoid confusion with signs that perform 
repetitive movements, there is a scan that merges 
segmented signs with similar hand shapes. Authors 
argument that most of the time signs remain stable, even if 
there are some signs that change hand shape. Another 
contribution of this paper is the introduction of task source-
free domain adaptation where the source data is available 
only in the initial training phase but not in the adaptation 
phase (for example, avoiding problems of data privacy) 
In [31] hand shape trajectories are segmented and 
candidate boundaries are obtained based on minimal 
velocity and maximal change of direction. These points are 
filtered out by a set of rules. PCA of the final segments are 

extracted and clustered by k-means to derive “phonemes” 
or basic part of signs 
In [32] segmentation of signs is achieved by computing the 
standard deviation extracted from the variation in waves of 
a RF signal that captures the movements of the hands.  
In [33] motion features are extracted and the relative 
velocity between hands is compared to identify symmetric 
movements and static signs identifying possible 
Boundaries between signs. After that, hand shape is 
extracted to correct the limits that do not correspond to a 
hand shape changing. In [34] the segmentation proposed in 
previous article is used for suggesting annotations in a 
semi-automatic way, using Zebedee, a system for 
codifying and classify signs, where a sign is considered a 
set of dynamic geometric constraints applied to a skeleton, 
and a descending classification method. 
From the second group, where template matching 
features are used, authors present a model [35] that uses 
Level building approach for segmenting and recognizing 
signs. They use DTW approach and enhancing it for 
considering Movement Epenthesis without modelling it 
explicitly, i.e., Frames are be labeled as ME, if not good 
sign matching is found. This same approach is followed by 
[36], [37] and[38] where DTW is replaced with a Hidden 
Markov Model (HMM) 
 
As for the model based approaches, authors in [39] propose 
a system of system recognition using phonemes instead of 
signs and train the model using Hidden Markov Models 
HMM. In this approach, movement epenthesis is 
considered at the same level as the recognized lexical signs. 
In [40] authors use GLATA, a Greedy cLustering 
Algorithm along the Time Axis, to segment signs based in 
k clustering. For each frame, the distance to only two 
clustering centers is computed. The algorithm optimizes 
iteratively the sum of the distances of all frames. A 
modification of this algorithm is used for training a 
recognition system and remove epenthesis as well. Then, 
the classification of sign and ME frames is performed by 
means of an FSM model. 
In [41] Conditional random fields (CRF) is used for 
detecting the coarticulation points and use them to segment 
continuous sentences  
Some solutions use subtitles [42] for finding the 
boundaries and align the sign with its meaning. 
In [43] a random forest is proposed combined with 
geometric features computed from 3D body joint positions 
as input features. 
In [4] it is proposed to use I3D for feature extraction and 
MS-TCN for the sign segmentation phase. Authors 
improve the model by adding Changepoint-Modulated 
Pseudo-Labelling (CMPL) [44]. This algorithm applies a 
pseudo-labelling technique an adds changepoint detection 
for avoiding bias towards under-segmentation. With 
pseudo-labelling a classifier is retrained on its own 



predictions on unlabeled data for improving performance. 
The purpose of changepoint detection is to locate state 
changes, this increases sensitivity to abrupt changes in 
feature space and helps avoiding under segmentation. 
Finally, there are several articles that while not being 
focused specifically on Sign Segmentation, but on the more 
general sign recognition problem, they introduce 
modifications to consider non signs.  
For example, several authors use pseudo-labelling [45], 
[46], [47] and [48], for improving the results of a sign 
classifier by modifying the boundaries of the “labeled” 
signs. First, videos are divided into clips of 8 frames (4 of 
them overlapping adjacent clips) and features are extracted 
via a deep learning model. (18-layer 3D ResNet with 
dilated Convolution [45], ResNet-18 and ResNet-3D fused 
with ConvolutionPyramid (TCP) and Multi-Layer 
Perceptron (MLP) [46], 3D-ResNet [47] and I3D (3D-
CNN inflated from Inception-v1 [48] ) Pseudo-labels are 
generated then as a process of sequence learning using 
Connectionist Temporal Classification which introduces a 
“blank” label that represent no signs. These pseudo-labels 
(“pseudo” because they are generated by the model) are 
then feed iteratively into the feature extractor to improve 
the results. 
There are also articles that doesn’t segment signs, but parts 
for them, like in [49], where a framework called 2 S-U is 
introduced where Statistical subunits are built, which are 
primitives for building the signs. For building these 
statistical subunits, sentences are divided into dynamic and 
static training a 2-state ergodic HMM model to separate 
movements from non-movements. Dynamic subunits are 
modelled with the direction feature vector and clustering 
employing DTW. Static subunits, which are low velocity 
SUs, are clustered based on the position feature vector. 

2.4. Action Segmentation studies 

Sign segmentation is a problem that could be included 
inside the more general Action segmentation where the 
objective is to recognize different actions performed in a 
video by one or several actors. Review its state of the art 

give us good insights of the possible methods we could use 
in Sign Segmentation. 
In [6] it uses Multi-Stage Temporal Convolutional 
Network (MS-TCN) which is an architecture built on 
several stages, each one performing a dilated temporal 
convolution. Results on the Action Segmentation 
benchmark were later improved by a solution based on 
transformers called ASFormer [7]. 
Special mention to the work published in the article Action 
Segment Refinement Framework (ASRF) [50] where 
limits between actions where considered as boundaries, 
calculated with a regression approach and used to refine the 
results obtained in the normal Action Segmentation part of 
the framework. 

2.5. Datasets for Continuous Sign Language 
Recognition 

In this section, a non-exhaustive review of the most 
important datasets used in Continuous Sign Language 
Recognition is presented. As the particularities of Sign 
Language Segmentation task aligns with the Recognition 
one, we could use them for this task. 
Normally, most of datasets have been created for isolation 
sign language recognition (ISLR) but Continuous Sign 
Language Recognition (CSLR) needs bigger datasets with 
a sufficient variety of sign vocabulary, signers, and enough 
repetitions of each sign. In Table 2, the most important 
datasets for this task are shown. In addition, the existence 
of several different signs languages makes important to 
have at least one proper dataset for each language. This 
limitation, however, is not so important for Sign Language 
Segmentation, as the structure of sign languages is very 
similar, but it is reflected in the review for completeness. 
The most used benchmark found in the literature[3] is the 
family of RWTH-PHOENIX-Weather in their versions of 
2012 [51][52], 2014 [12] and 2014T [53] which is specially 
prepared for the problem of Sign Language Translation 
which not only recognizes signs but focus on the 
translation of sentences. This family of datasets was the 

Dataset Language # Signers # Signs Vocabulary Sentences # Hours Year Public 
[51] RWTH-PHOENIX-Weather (2012) DGS 7 21822 911 1980 3.25 2012 Yes 
[12] RWTH-PHOENIX-Weather14 (2014) DGS 9 65277 1558 6861 10.73 2014 Yes 
[53] RWTH-PHOENIX-Weather14T (2018) DGS 9 76000 1066 7096 11 2018 Yes 
[10] BSLCorpus BSL 249 72K 5000 125 125 2013 Yes 
[84] S-pot FinSL 5 1211 6000 4k 9 2014 Yes 
[54] KETI KSL 14 15k 524 105 28 2019 - 
[85] Greek SL Lemmas GSL 7 41k 310 10k 10 2020 Yes 
[55] BSL-1K BSL 40 273K 1064 1M 1060 2020 No 
[56] CSL-Daily  CSL 10 151k 2000 21k 23 2021 Yes 
[57] BOBSL BSL 39 452k 2281 1.2M 1467 2021 Yes 
[58] How2Sign ASL 11 - 16k 35000 79 2021 Yes 

 
Table 2: Review of the most important datasets used for Continuous Sign Language Recognition. The datasets highlighted are the ones 

used in this paper. 



first benchmark focused specially on CSLR and were 
directly responsible in the increase of articles in the subject. 
Even though, with a vocabulary of only 1558 signs, 
RWTH-PHOENIX-Weather14 was not fully suitable for 
complete Continuous Sign Language Recognition. This 
lack of vocabulary and examples were minimized by the 
fact that this dataset only focusses on a specific domain, the 
weather newscast videos from the German television. This 
approach is taken by other datasets like KETI [54], where 
the domain is composed only from emergency-related 
sentences in Korean Sign Language. 
Other datasets focused in recording not only individual 
signing interpretation, but actual conversations between 
signers, like BSLCorpus [10]. This dataset, alongside with 
RWTH-PHOENIX-Weather, and BSL-1K[55] were used 
as benchmarks of the sign segmentation problem for the 
work of [4] and [44] and is the one used in this paper for 
comparing our results. BSL-1K dataset is not publicly 
available though so it is not used in this research. 
Recently there have been three datasets that have increased 
significatively the corpus of signs: CSL-Daily[56] a 
benchmark for Chinese Sign Language, BOBSL [57], the 
biggest one, which is the public extension of BSL-1K [55] 
formed both of them in British Sign Language from the 
BBC newscast, and How2Sign[58], which contains 
sentences in American Sign Language and it is only 
annotated at sentence level, not specifying the specific 
glosses of each sign, what makes it not suitable for sign 
segmentation. 
These datasets must be correctly annotated to be used in 
sign segmentation models. This is carried mostly manually, 
by using tools such as ANVIL[59] and ELAN [60]. 
Annotation on such huge datasets is very time consuming, 
and need the collaboration between several experts in sign 
language2 so it is of great importance to follow annotation 
guidelines like the one defined by the team responsible of 
BSL Corpus[61]. 
Additionally, there are some works that have tried to 
automate the annotation task outside of the automatic sign 
segmentation effort. For example the authors of [62] 
demonstrate that a crowdfunding effort of non-experts in 
sign language could reach around 93% of accuracy when 
segmenting the signs. In another study [42], it was shown 
a way to recognize signs with subtitles. For annotating 
BOBSL [57], several techniques were applied like sign 
spotting using mouthings [55], the movements of the 
mouth that are part of several signs, dictionaries [63]and 
using weakly-aligned subtitles as well for localizing the 
signs[64]. 
These new datasets are not free of limitations, though, one 
of the most important is the lack of examples of partly-
lexical[65] and non-lexical units, as sign languages have 

 
2 As explained in [79], the results of an annotating challenge [65] show 

that different teams come up with different annotations for the same signs 
[81]–[83]. 

special signs that represent object position or are actually 
more like “theatrical plays” without lexical meaning or 
grammatical structure that are used to illustrate situations, 
stories, or emotions. Datasets with examples of these kind 
of signing are needed, as this would prove the next big 
challenge in Sign Language Translation Problem. 
Following this need, LSE-UVIGO[66], a dataset that takes 
into account some of this non-lexical signs for Spanish 
Sign Language, is being prepared. 

2.6. Summary 

 
As seen in this section, several solutions have been 
proposed for segmenting signs and / or detecting 
movement epenthesis and other co-articulation 
movements, which could be used as boundaries in sign 
segmentation. One of the latest proposed [4], uses I3D [5] 
for extracting the features from video frames, and MS-
TCN[6] for learning to segment the signs. The same team 
improved their results in [44] with a pseudo-labelling 
method, establishing the actual state of the art results for 
Sign Segmentation task. 
Also, a brief review of Action Segmentation techniques 
was shown, highlighting ASFormer [7], a transformer-
based architecture that improved the results reached by 
using MS-TCN in that particular problem. 
Finally, some of the most used datasets for continuous sign 
language recognition where reviewed along their 
limitations, RWTH-Phoenix-Weather14 [12] and 
BSLCorpus [10] being two of them. These two datasets 
have been used recently as a benchmark for sign language 
segmentation and are described in more detail in the next 
section. 

 
Figure 3: Proposed model from [4] which inspire this work, 

features are extracted from video frames as vectors using I3D. 
These features are used by the MS-TCN architecture for 

learning and predicting the segmentation of the signs. 
  



 

3. 3.Methodology 
In this section, the solution proposed, and the data used is 
described. It divides as follow. First, the sign segmentation 
problem is explained in section 3.1. Then, the datasets used 
and the split between training, validation and testing data 
is exposed in section 3.2. Finally, the method used for 
extracting the features, I3D is presented in section 3.3 and 
the ASFormer architecture in section 3.4. 

3.1. Introduction 

 
Figure 4: In our proposed model, features are extracted from 

video frames as vectors using I3D. These features are used by 
the ASFormer architecture for learning and predicting the 

segmentation of the signs. 
While in sign recognition we are interested in the 
translation of signs into glosses or sentences, in sign 
segmentation we are only interested into finding the 
boundaries between signs, and detect the Movement 
Epenthesis, the parts that does not belong to any sign. We 
need to prepare a training dataset where frames are labeled 
as signs (1) and non-signs(0). Since there could be some 
labels between signs that are detected as non-signs we need 
to have a way to define a sign as a consecution of “sign” 
labels 
Let be 𝑉 = {𝑉ଵ, … , 𝑉௡} where n is the number of videos, 
𝑥 = ൛{𝑥ଵଵ, … , 𝑥ଵ,௠ൟ, … {𝑥௡ଵ, … , 𝑥௡௠} being x the frames of 
the video n with variable length m and the labels 𝑦 =

൛𝑦, … , 𝑦ଵ,௠ൟ, … {𝑦௡ଵ, … , 𝑦௡௠} ∈ {0,1}௡  where 0 reflect a 
sign and 1 the boundary between signs respectively. 
Model training: The proposed method takes a video 
sequence as input and generates a proposed sequence of 
labels. The model is divided into two steps , the feature 
extraction phase, which uses I3D and the segmentation 
phase which is based in ASFormer.  

3.2. Datasets used 

As already introduced in previous sections, it was decided 
to use the features already extracted from the dataset in the 
work of [4] since we are interested to measure the 
performance of ASFormer in comparison to previous 
works. These datasets where already presented in the state-
of-the-art section and are RWTH-PHOENIX-
Weather14[12], and BSLCorpus[10]. BSL-1k [55] which 
was used as well, was not publicly available, so it was not 
used in this study. 

Dataset Languag
e 

 Trainin
g 

Validatio
n 

Testin
g 

BSL Corpus 
[10] 

BSL # videos 5413 763 703 
# signers 157 20 21 
Vocabula
ry 

969 671 620 

RWTH-
PHOENIX-
WEATHER
14 [12]  

DGS # videos 5672  540 629 
# signers 9 9 9 
Vocabula
ry 

1081 467 500 

Table 3: Characteristics of the datasets used and division of the 
data intro training validation and testing sub sets. 

 
Datasets are split into training and testing parts as shown 
in Table 3. However, we have used part of the training 
dataset of BSL corpus for hyperparameter optimization 
when performing k-cross validation with K=5. The dataset 
is divided into 5 and trained iteratively, each time taking 4 
of the parts as training and one as the validation part. The 
final result is the mean of the 5 iterations. 
In addition, the only dataset annotated in RWTH-Phoenix-
Weather14 is the training part, following the work made by 
[67], for that reason, we split the training dataset into 4556 
sequences of training and 1115 of testing. 3.3 Feature 
extraction 
Feature extraction phase is the initial one, which takes the 
temporal convolutional I3D architecture [5], pretrained for 
action recognition on the Kinetics dataset [68] and 
BSLCorpus. 
I3D is formed by two 3D Inflated ConvNet architectures 
trained separately: one based in RGB inputs and the other 
in optical flow algorithms. More in detail, Inflated 3D 
ConvNets are 2D ConvNets inflated into 3D by adding an 
additional temporal dimension to all the filters and pooling 

 
(a) 

 
(b) 

Figure 5: Examples of datasets from BSLCorpus (a) and RWTH-PHOENIX-Weather14 (b) datasets 



kernels. This way, it avoids the more complexity of other 
3D ConvNets architectures [69], that make models more 
difficult to train, but maintaining the same functionality. 
The pretraining using Kinetics was adopted by previous 
work [4] arguing that it provide representation sensitive to 
fine-grained human motions. Also, in action segmentation 
task, its use improved significatively the results [5]. After 
that, I3D was also pretrained with BSLCorpus for making 
the model adapt better to sign language specific features. 
As one of the objectives of our problem is to compare with 
the previous solutions found in the literature with using the 
new ASFormer approach , the features used are the ones 
already extracted in the works of [4] and [44] which are 
publicly available. 

3.3. Segmentation process. 

We replace the method MS-TCN used in previous works 
and instead use ASFormer[7] (for Action Segmentation 
transformer) which is transformers-based architecture 
adapted for the Action Segmentation problem, due to 
original transformer being not prepared for the specific 
requirements of this problem. Video input are normally too 
long and datasets too small for the original transformer 
model[70]. In consequence, there is a lack of inductive 
biases that difficult the training of the model and the vanilla 
transformer finds issues in forming an effective 
representation. 
To avoid these limitations, ASFormer is designed with 
some modifications like removing positional encoding, 
adding dilated temporal convolution for bringing local 
inductive bias, or adding a hierarchical representation-
pattern in the self-attention layer to improve cooperation 
between meaningful locations . These changes are 
described in more detail in Appendix 2.Transformers. 
In addition, the loss used in both ASFormer and MS-TCN 
combines a classification loss and a smoothing loss for 
penalizing over-segmentation problem which is common 
in Action Segmentation problem. 

𝐿 = 𝐿௖௟௦ + 𝜆𝐿௦௠௢ = −𝑙𝑜𝑔൫𝑦௧,௖̂൯ + 𝜆
1

𝑇𝐶
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ଶ
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4. Experimental results 
Results obtained are presented in the following Sections. 
First, the metrics used are explained in section 4.1, then 
ablation studies for finding the best hyperparameters are 
performed in section 4.2. Finally, the final results are 
presented compared with previous works from the 
literature in section 4.3. An additional section 4.4 is added 
with considerations about the Computational Cost of 
ASFormer. 

 
3 This was verified when performing preliminary experiments. Values 

higher than batch size of 8 give memory problems. However, it was 

4.1. Evaluation metrics 

The metrics used are the same ones proposed in [4], [44] 
based on the similarity of distance of the predicted 
boundaries to the ground truth and the width of the signs 
respectively. A boundary is considered a series of 
followings 1s. 
mF1B. The boundary is considered correct if the distance 
of the boundary to the ground truth is lower than a 
threshold. mF1B is the mean of all F1 scores with 
thresholds of the interval [1,4] 
mF1S. A sign segment is considered correct if the IoU 
between prediction and ground truth is higher than a 
threshold. mF1S is the mean of scores in the interval 
[0.4,0.75] with step size 0.05. This metric is not considered 
as important as MF1B as it is highly dependent on the 
annotator style[44]. 

4.2. Hyperparameters 

There are several hyperparameters that are necessary to 
affine, starting with selection of the batch size and learning 
rate. The authors of ASFormer [7] recommend a batch size 
of 1, due to problems of lack of memory that could make 
the algorithm stopping unexpectedly so this value is the 
one used.3 They also use a learning rate of 0.0005, a weight 
decay of 10-5 and a learning rate scheduler that reduces by 
half the learning rate when the loss doesn’t improve for 
more than 3 epochs. These values are used in the following 
experiments. 
Authors of ASFormer performed a study of the optimal 
number of decoders and blocks for the action segmentation 
problem concluding that the optimal solution is 3 decoders 
and 10 blocks [7]. A similar study is performed to study the 
same parameters in sign segmentation problem but doing a 
K-Cross Validation with K=5 to ensure results are 
statistically reliable. The training dataset was split into 5 
parts and in each iteration one of these parts was used as 
validation set, while the others were using for training the 
model. Results could be seen in Table 4 for the comparison 
of number of decoders and Table 5 for the comparison of 
number of blocks 
 

# Decoders mF1B mF1S 
1 64.78 ± 0.88 55.1 ± 0.87 
2 65.42 ± 0.59 55.27 ± 0.98 
3 64.14 ± 2.28 54.02 ± 2.74 
4 64.22 ± 2.6 54.31 ± 2.26 

Table 4: Results of the BSLCorpus dataset for the variation of 
num of decoders with batch =1, lr= 0.0005, 10 blocks and epoch  
50 
 

decided to stick with the batch size of 1 as the original ASFormer 
recommended. 



# Blocks mF1B mF1S 
6 65.65 ± 1.8 55.43 ± 2.14 
7 66.64 ± 1.51 56.67 ± 1.43 
8 63.66 ± 5.29 52.92 ± 6.21 
9 65.64 ± 2.62 55.48 ± 3.06 

10 64.14 ± 2.28 54.02 ± 2.74 
11 64.73 ± 0.8 54.96 ± 1.1 

Table 5: Results of the BSLCorpus dataset for the variation of 
num of blocks inside each decoder with batch =1, lr= 0.0005 and 

3 decoders. And epoch = 50 
It could be seen that the best solution is that of 2 decoders 
and 7 blocks. However, looking more carefully into the 
evolution of the metrics over each iteration of the training, 
we could see a high variability in the results. For example, 
in Error! Reference source not found. we could see that 
results of 1 decoder are generally lower than the rest, but 
for the other results this is not so evident. Even more, 

maximum is reached for 3 decoders in epoch 28 with a 
value of mF1B =68.04. 
Results given in the study of the relationship with the 
number of blocks in each decoder, show a similar behavior, 
as it can be seen in Error! Not a valid bookmark self-
reference.. A maximum value of mF1B is reached in 
epoch 28 for 8 decoders. 
A maximum value of mF1B is reached in epoch 28 for 8 
decoders. 
  

 

  
:Figure 6 Examples of datasets from BSLCorpus (a) and RWTH-PHOENIX-Weather14 (b) datasets 

 
Figure 7: Comparison of the evolution of the performance per number of blocks and each iteration on the validation set. Graphs take 

the mean value of the K=5 iterations 



These results, make necessary the re-evaluation of the rest 
of the hyperparameters, starting with learning rate. 
Preliminary studies shown that using a value of 0.0005 
gave slightly better results than the rest of values, this, and 
the fact that original ASFormer authors selected it in their 
experiments was the reason of using it in first place. 
However, after doing a K-cross validation it was evident 
that, even though a learning rate value of 0.0005 gives the 
best results on single iterations, the results of a learning rate 
of 50·10-5 give better mean results and more stable over the 
epochs. 

Learning rate mF1B mF1S 
0.0005 64.14 ± 2.28 54.02 ± 2.74 
5 10-5 65.48 ± 0.91 54.17 ± 0.79 
5 10-6 60.89 ± 0.64 48.51 ± 0.42 
Table 6: Results of the BSLCorpus dataset on epoch 50 for the 

variation of learning rate for a batch size of 1, 3 decoders and 10 
blocks. Results above 0.005 were not reflected since they do not 

converge 
Having seen that 5·10-5 give more stable results, the study 
of the number of decoders and blocks inside them should 
be repeated for more insightful results. 

4.3. Comparison in performance 

Having studied the hyperparameters in previous section, 
we run 5 times our model with the best results given for a 
combination of batch size of 1 and a learning rate of 
0.0005, which was 2 decoders and 7 blocks per decoder. 
Since results from other studies were studied for only 10 
epochs and 3 different seeds, it was decided to repeat the 
training for 50 epochs and 5 different seeds.  
Comparative results can be in the following tables por BSL 
Corpus Table 7 and Table 8 and for Phoenix-Weather14 in 

Table 9 and Table 10. For the results of Phoenix-
Weather14, we are comparing the results when using I3D 
features pretrained with BSLCorpus dataset, not with 
Phoenix-Weather14. We could expect a better performance 
if the I3D is pretrained with the examples of its own dataset 
as it was proved in [44]. 

 mF1B mF1S 
Geometric features + RF [43] 50.49 ± 0.1 37.46 ± 0.1 

I3D + MS-TCN [4] 68.68 ± 0.6 47.71 ± 0.8 
I3D + MS-TCN  

(Current experiment) 
68.21± 0.61 46.24 ± 1.64 

I3D + ASFormer  66.26 ± 1.29 44.10 +- 2.11 
Table 7: Results in the BSL-Corpus dataset with a training of 10 

epochs. First two rows were extracted from [4] and were 
repeated 3 times. In our experiments it was decided to repeat 

them 5 times. 
 mF1B mF1S 

I3D + MS-TCN (Current 
experiment) 

65.17 ± 
0.14 

48.65 ± 
0.63 

I3D + ASFormer (Ours -50 
epoch) 

65.89±1.35 44.89± 
1.93 

Table 8: Results in the BSL-Corpus dataset with a training of 50 
epochs and 5 repetitions. 

 
In general, it could be seen how results achieved by MS-
TCN are better than the ones of ASFormer in all examples. 
Results are better in ASFormer for 50 epochs, but MS-TCN 
performed better with only 10 epochs in all cases. 
In Table 9, results from [44] paper are included as the 
actual state of the art of PHOENIX-Weather14 benchmark, 
but, since they apply an additional pseudo-labelling 
process, results are not fully comparable, as it is expected 
that the use of such technique in ASFormer would also 
improve the results obtained. 
 

 
Figure 8: Comparison of the evolution of the performance per learning rate and each iteration on the validation set. 



 mF1B mF1S 
I3D + MS-TCN [4] 65.06±0.5 44.42±2.0 

CMPL inductive [44] 65.99±1.0 33.82 ± 0.0 
CMPL inductive [44] 67.01±2.2 49.96 ± 0.6 

I3D + MS-TCN 
(Current experiment) 

64.71±0.74 42.85±2.73 

I3D + ASFormer (Ours) 63.86±0.32 40.37 ± 1.43 
Table 9: Results in the PHOENIX dataset with a training of 10 

epochs. First three rows were extracted from [4]and were 
repeated 3 times. In our experiments it was decided to repeat 

them 5 times. 
 mF1B mF1S 

I3D + MS-TCN 
(Current experiment) 

60.36±0.31 45.10±0.31 

I3D + ASFormer (Ours) 65.88±0.77 43.67 ± 1.03 
Table 10: Results in the PHOENIX dataset with a training of 50 

epochs 

5. Discussion 
Sign Language Segmentation task separates the signs in a 
Continuous Sign Language Sentence into the different 
signs without knowing their meaning. The purpose of this 
paper was, as explained before, study the use of a 
transformer-based architecture, confirming if it was 
suitable for this task, and comparing with the top state of 
the art solutions. 
Analyzing the results from the previous section, it could be 
seen that replacing MS-TCN architecture used in previous 
work of [4] with ASFormer give a similar performance, but 
slightly lower. This confirms the viability of such solution 
for the sign segmentation task. 
However, we have faced issues in finding the optimal 
hyperparameters due to a high variation in each iteration of 
the process for the learning rate selected in first place. The 
study of hyperparameters should continue since we expect 
an improvement in results for the final solution. On that 
matter, final ablation study on learning rate showed that the 
use of a learning rate of 10-5 for a batch size of 1 gives more 
stable results. 
Aside from this, the particularities of ASFormer should be 
carefully analyzed to find the reason why it doesn’t reach 
as promising results as in the Action Segmentation task. 
First, it should be noted that in action segmentation, tasks 
usually are formed by slower movements that in sign 
segmentation and sometimes involve objects (like 
preparing the food or eating). Sign segmentation, on the 
contrary, takes usually fast movements that involve only 
the hands, face, and body of the signer. Hands also took 
complex shapes and sometimes there are occlusions that 
complicate the processing of this information. 
Knowing this, ASFormer architecture authors made some 
decisions for improving performance in Action 
Segmentation, like removing the positional encoding step 
of the encoder and decoder blocks of the transformer, due 
to the use of temporal convolutions made it redundant. The 

higher complexity of signs could make the use positional 
encoding more important in this case. Modifying these 
architectures and adapt them for the specific needs could 
be the answer for improving the performance already 
achieved with ASFormer. 
In addition, we have seen a huge difference in the 
computational cost used for training ASFormer related to 
the one expended for training MS-TCN, which is much 
lower. We must consider if it is worthy to use ASFormer 
when results are not improving the ones of MS-TCN. 
As coming back to the research question made at the 
beginning of this paper Is the ASFormer a suitable 
solution for Sign Segmentation task improving 
previous state of the art results? We should say that 
ASFormer could be used for sign segmentation, as it is near 
the best results achieved in the actual state of the art but 
being the training computationally more expensive and the 
results slightly worse, this is discouraged unless a more 
optimal set of hyperparameters is found. Also, we could 
foresee the promise of using transformer-based approaches 
for Sign Segmentation, where modifications in the 
ASFormer architecture adapted to this task could lead to 
even better performances. 
As for the applications of this architecture, the most evident 
is that of helping in building new datasets and annotating 
the existing ones. Annotators could benefit from an initial 
segmentation of the signs and their work will transform 
into reviewing that the signs are correctly split and 
correcting only the errors. Also, the use of this architecture 
as a module of sign language translation could help in 
improving communication between deaf and speaking 
communities both helping in translating between sign 
languages, or between a sign language and a spoken one. 

5.1. Limitations 

Apart from the hyperparameter tuning issues and high 
computational cost discussed in previous section, there 
were two important limitations in this study. First, the need 
of even bigger datasets for training, but this is exactly what 
motivated this work on first place. The other limitation was 
the need a huge computation power for managing the 
computational cost of ASFormer and the k-cross validation 
studies made for hyperparameter tuning. Resources 
available, where limited which makes important to seek for 
more efficient alternatives.  
Another possible limitation of this approach is that, while 
ASFormer is designed for Action Segmentation task, 
which is more general problem that Sign Segmentation, the 
differences between both tasks could explain why 
ASFormer didn’t get even better results. Action 
segmentation benchmarks where ASFormer was tested on 
first place, are composed by long videos where actions are 
usually longer than the duration of signs in sign language, 
and there are also some objects involved. In contrast, sign 



segmentation uses benchmarks with videos where the signs 
change very fast, and are composed only by the hands, 
face, and body of the signer. A deeper study on the 
characteristics of the normal datasets that sign 
segmentation faces proves necessary to modify the 
architecture 
In addition, it would have been ideal to train our model in 
other languages, but the lack of annotated datasets and time 
constraints made it impossible. Even though, thanks to 
similarities between different sign languages, we could 
foresee similar performances. 

5.2. Future work 

There are several lines of work that could be interesting to 
follow, the most evident is to continue studying the 
influence of the hyperparameters of ASFormer in Action 
Segmentation to find the optimal set, adding weight decay 
as well and the learning rate scheduler hyperparameters. 
Also, it could be interesting to use a different loss more 
adapted to the specifical characteristics of the problem of 
Sign Segmentation as it was made in ASRF [50] for the 
Action Segmentation task or try to pretrain I3D with 
different strategies for capturing better the movements 
associated with sign language. For alleviating the high 
computation cost of studying this set of parameters 
alternative approaches can be considered such as DEHB 
[71], an algorithm that combines Hyperband with a 
Differential Evolution approach for exploring the 
hyperparameter results.  
Another approach to explore is adding pseudo-label 
algorithm for improving the results, like it was presented 
in [44]. Taking into consideration that this method 
improved significatively the results from the original MS-
TCN solution, it is expected that replicating it with 
ASFormer can give better results as well. 
There are several newer solutions that improve results on 
the Action Segmentation task that worth to be explored in 
upcoming investigation. To name a few: Cross-
Enhancement Transformer (CETNet) [72], Efficient U-
Transformer(EUT) [73] and Unified Video Action 
Segmentation model via Transformers (UVAST), which 
views action segmentation as a seq2seq task instead of a 
frame-level prediction [74]. Additionally, another 
interesting approach to explore is the one inspired by 
UARL (Uncertainty-aware representation learning) 
method [75] which treats action segmentation boundaries 
not as abrupt changes, but as gradual transitions, something 
that could suit very well to the phenomenon of movement 
epenthesis. 
Aside from the action segmentation task, it would be more 
important to focus in finding an optimal architecture for 
sign segmentation, taking into account its characteristics as 
explained in previous section. It would be interesting to 
search the influence of the removal of the positional 

encoding step in the transformer, as well as finding 
solutions for capturing the fast movements of sign 
language. 
Another possible line of study could be applying this 
segmentation algorithm for the sign recognition problem as 
a middle section between the feature extraction and the 
learning sequence steps. 
Finally, our intention is to create a Systematic Review 
paper with all the sign segmentation related articles found 
and analyzed in detail. 

5.3. Ethical considerations 

The most important ethical considerations of this work are 
in relationship with the data, its source, composition, and 
the use we give to it. 
All the data used in this study, was publicly available for 
research purposes. Even more, thanks to the use of I3D 
features instead of real images, this method could be used 
for training models without the need of the images or 
videos of the signer, which is an important step for privacy. 
Also, data used in this study ensures there is enough variety 
of signers in age, gender, and ethnicity as we analyze the 
datasets used. BSLCorpus [76] has examples recorded 
from 192 signers of different regions of United Kingdom 
from different ages, backgrounds and origins. Phoenix-
Weather could pose more a problem in that sense, since the 
variety of signers is much lower (only 9). 
Finally, as per the use of this model, it is expected to use it 
specially in the building of datasets. However, if it is 
needed in some real application, I3D and ASFormer 
models could be shared as there is no identification over 
the users that participated in the data used for training this 
model. 

5.4. Lessons learnt 

In this section, I give some considerations about lessons 
learnt in the research process. 
Firstly, I want to highlight the importance of the systematic 
review performed as it was key for (1) identifying the lack 
of annotated datasets as one of the biggest problems in sign 
language recognition, (2) discovering automatic sign 
segmentation as possible solution for it, and (3) learnt 
about past solutions given to this problem for getting the 
inspiration for the final proposal. However, as a negative 
note, I should note that following PRISMA guidelines, 
which ensures the rigor of the approach, has a steep high 
curve that may not be convenient for a Master thesis. 
PRISMA structure follows closely the final review paper, 
focusing too early in defining the abstract, writing the 
introduction, etc. I have missed a more natural approach, 
where defining the research questions, identifying the 
search engines, or building up the correct research queries 
comes first 



While reviewing the literature, I have noticed that several 
studies did not do enough repetitions, and use little 
datasets, so their results were not fully reliable or 
statistically significative. This analysis would be reflected 
on the upcoming systematic review paper. To avoid this, I 
employed k-cross validation for hyperparameter 
finetuning. Ideally, an optimal k value would have been 10, 
but it was decided to use 5 because of time constraints. 
Related to this, however, I should point out the importance 
of reaching a compromise about using statistically reliable 
results and making the first surveys, specially when 
working with models that requires a high computational 
cost and the computational resources are limited. Because 
of this, bad hyperparameter decisions lead to a full week 
lost. On the other hand, when doing a single execution for 
selecting the learning rate, it appeared that the best solution 
was 0.0005, but .further executions made visible that the 
mean was not as it was not stable enough to appreciate 
differences between different solutions. To alleviate this, it 
would have been worthy investing time preparing 
TensorFlow for looking at the loss in the training and 
validation tests, since it would have given tips about 
models overfitting. 
Related to time constraints, another important lesson 
acquired is the importance of investing time in 
parallelization of the tasks, specially on co-validation. 
Having used a batch size of 1, the use of a GPU was not so 
important, but the use of different threads reduced the time 
of the process from 11 days of execution to 7 which was 
already a huge improvement. However, parallelization is a 
double-edged sword, because too many threads could 
compete for the CPU cores and make the final time even 
longer. Other important investment would have to program 
an Early Stopping strategy, at least for preliminary results 
as I would have saved time with it. 
Finally, I should mention the importance of selecting a 
good strategy for hyperparameter finetuning. I have 
invested a lot of time on making DEHB algorithm [71] 
working, which used Hyperband and Differential 
Evolution for exploring the space of all hyperparameters 
and select a good set of them. Again, due to time 
constraints it was not possible to use it at the end, as I 
decided to perform a classic ablation study, but it would 
have been a good contribution for this paper since I would 
have avoided some of the issues experienced with the 
manual selection of hyperparameters for my experiments. 

6. Conclusion 
In this paper, the combination of I3D features with the 
ASFormer architecture is explored as a viable solution to 
the sign segmentation problem. This solution gives results 
near the top state of the art that show the promise of using 
transformed-based approaches in this task. Further study 

should be performed to find the optimal set of 
hyperparameters. 
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Appendix 1.Table Results 
 

Decoders K Iter mF1B mF1S 
1 1 64.69 55.46 
1 2 66.47 56.16 
1 3 63.92 54.97 
1 4 64.45 55.39 
1 5 64.38 53.54 
2 1 65.95 56.09 
2 2 65.98 53.62 
2 3 65.74 56.35 
2 4 64.85 54.82 
2 5 64.57 55.49 
3 1 61.99 51 
3 2 66.36 57.26 
3 3 66.87 56.88 
3 4 61.15 50.92 
3 5 64.32 54.06 
4 1 61.23 51.25 
4 2 65.13 54.97 
4 3 68.38 58.05 
4 4 64.7 54.3 
4 5 61.65 52.96 

Table 11: Results depending on # decoders when # blocks 
= 10 bz=1 and lr = 0.005 in epoch = 50 

 
Learning rate K Iter mF1B mF1S 

0.0005 1 65.28 48.97 
0.0005 2 61.99 51 
0.0005 3 66.36 57.26 
0.0005 4 66.87 56.88 
0.0005 5 61.15 50.92 
5·10-5 1 64.32 54.06 
5·10-5 2 64.05 53.18 
5·10-5 3 66.01 54.28 
5·10-5 4 64.83 53.74 
5·10-5 5 65.92 54.07 
5·10-6 1 66.59 55.56 
5·10-6 2 61.65 49.03 
5·10-6 3 60.84 48.6 
5·10-6 4 61.2 47.92 
5·10-6 5 61.02 48.86 

Table 12: Results depending on # of blocks when # decoders = 
10, bz=1 and lr = 0.005 in epoch = 50 

 
 

Blocks K Iter mF1B mF1S 

6 1 61.99 51 

6 2 68.48 57.87 

6 3 66.87 56.88 

6 4 63.26 52.62 

6 5 64.32 54.06 

7 1 68.58 57.66 

7 2 66.46 57 

7 3 65.28 55.85 

7 4 68.13 58.47 

7 5 64.75 54.37 

8 1 65.96 56.65 

8 2 66.62 55.39 

8 3 65.87 55.06 

8 4 53.11 40.57 

8 5 66.73 56.92 

9 1 65.5 55.8 

9 2 68.55 57.73 

9 3 66.66 57.32 

9 4 60.78 49.5 

9 5 66.73 57.06 

10 1 61.99 51 

10 2 66.36 57.26 

10 3 66.87 56.88 

10 4 61.15 50.92 

10 5 64.32 54.06 

11 1 63.97 56.3 

11 2 65.15 55.35 

11 3 63.62 53.5 

11 4 65.78 55.8 

11 5 65.11 53.83 

Table 13: Results depending on # of blocks when # 
decoders = 10, bz=1 and lr = 0.005 in epoch = 50 

 
  



Appendix 2.Transformers. 
In this appendix, the foundations of transformers and 
particularly ASFormer would be explained. First, the need 
of transformer would be explained. Then transformer 
architecture will be shown. Finally, ASFormer 
modification would be explained 

9.1. Transformers: 

While in previous methods from literature like RNN[77] or 
LSTM [78], the trained model considered the memory 
context, this was limited, and an improvement was needed. 
In this context, Transformers [70] were introduced as a new 
paradigm with two important improvements. First, it is 
based on the concept of attention, which has an infinite 
reference window, considering all the previous data. 
Second, their architecture allowed an easy parallelization 
of processes as we would see later. 
Transformer’s architecture is based in an Encoder-Decoder 
structure, as we could see in Figure 9. The encoder is 
responsible of mapping the input sequence into an abstract 
representation, while the decoder takes it and generates the 
output sequentially, feeding it continuously with the 
generated results. 

 
Figure 9: Transformer architecture taken from [70] 

Before entering the proper encoder, data must pass two 
steps, the input embedding and positional encoding. In the 
Input embedding the data is transformed into an 
“embedding space” transforming each input into a vector 
that could be digested by the encoder, with the particularity 
that similar data would be located in nearby places as 

representing “meaning”. For example, “synonyms” would 
share the same vector. However, as this is not enough to 
represent the location, an additional step is added, the 
Positional encoding, which adds context based on the 
position of the data by using the following formulas. 

Odd positions: PE(pos, 2i + 1)  =  cos ቆ
୮୭ୱ

ଵ଴଴଴
మ౟

ౚౣ౥ౚ౛ౢ

ቇ 

Even positions: PE(pos, 2i)  =  sin ቆ
୮୭ୱ

ଵ଴଴଴
మ౟

ౚౣ౥ౚ౛ౢ

ቇ 

Once the data has been mapped to the embedding space 
considering both meaning and position, then it enters the 
encoder formed by N layers of a Multi-Head Attention 
sublayer and a Feed-Forward encoder. The concept is that 
each of the N layers learns a different representation to 
boost the performance. 
In the attention layer, the data is divided into three: The 
query, the key and the value and recombined as in the 
following formula. The dot product between query and the 
key generates a matrix that determines the relationship 
between different words of the sequence. This matrix is 
then divided by the square root of the dimension and then 
a SoftMax function is applied for depressing the lower 
scores and increasing the highest ones for enhancing the 
difference. After this, it is multiplied by the value 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄𝐾்

ඥ𝑑௞

ቇ 𝑉 

The multi-head attention takes this basic model and repeats 
it several times (8) for taking the weighted average. 

 
Figure 10:  Scaled Dot-Product Attention 

 



 
Figure 11: Multi-Head attention. 

After passing through the attention layer, the data enters a 
Feed Forward network which transforms the attention 
vector preparing it from entering the following layer. In 
this step we could benefit from the use of parallelization. 
Finally, there are residual connections between layers, and 
they are also followed by a normalization layer that helps 
stabilize the network. 
This info is passed into the decoder which is formed by the 
same modules of the Encoder: it uses the embedding and 
positional encoding to transform the output into vectors 
and then passes to a multi-header attention layer with a 
variation. As we do not know which would be the future 
values of the output, it is masked, and the upper part of the 
matrix should be 0. 
Then, the result of this module, united with the result of the 
decoder is feed into a new multi-head attention layer. The 
result is feed into a feed forward layer as it was in the 
encoder and then passes to a SoftMax layer that calculates 
the probability distribution. The final output would be the 
most probable “word”. 
 

9.2. ASFormer 

ASFormer [7] is a transformer modified for the problem of 
Action Segmentation. As pointed in their paper, there are 
three main limitations of the original transformer in the 
Action Segmentation Task: 

1. Datasets are small, and the size of the training set 
is small. In consequence there is a lack of 
inductive biases that makes it difficult for the 
model to be learnt. 

2. Videos are usually very long which makes the 
transformer hard to form an effective 
representation. 

3. Finally, original encoder-decoder architecture 
does not meet the refinement demand of action 
segmentation task where temporal relationships 
between actions are important (e.g., the action 
after taking a bottle of water and pouring it inside 
a glass usually is drinking the water). In that 
sense, some works before ASFormer apply 
additional TCNs or GCNs over the initial 
prediction to enhance it. 

To avoid these problems, the following modifications to 
the original transformer are made. 

 Local inductive bias is strengthened by adding 
temporal convolutions in each layer. In the 
encoder and decoders, the feed forward layer is 
not a pointwise fully connected layer as in the 
original, but a dilated temporal convolution 

 Since this temporal convolution has already the 
ability to model the positional relationships 
between actions, position encoding is redundant, 
and it is shown that removing it improves the 
performance. 

 In the encoder, a single-head self-attention layer 
is used instead of the multiple-head one. 

 As the model has difficulties to learn meaningful 
locations, a pre-defined hierarchical 
representation pattern is set in the self-attention 

Figure 12: ASFormer architecture taken from [7] 



layer. This, way, the low-level self-attention 
layers focus on the local relations while the high-
level ones gradually capture longer dependencies. 
An improvement of this change is a reduction of 
memory from original transformer  from J·T·T to 
((2 − ε) ∙ 2୎  ∙  T)  where J is the number of 
blocks, T is the length of the video and Ԑ is a small 
number 

 Finally, to improve the refinement demand of the 
action segmentation task, there is a cross-attention 
mechanism added in the decoder: every position 
in the encoder attend all positions in the 
refinement process for avoiding the disturbance of 
the encoder to the learned feature space in the 
refinement phase 

 
ASFormer performed better in the Action Segmentation 
problem than other architectures like MS-TCN [6], or 
ASRF [50] 


