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Abstract 

Were hominins hunted or hunters? The power over the predation hegemony 

during human evolution is still nowadays controversial. Nevertheless, the truth is they 

were both at some point, but it is the shift in the balance of power what remains 

arguable. One of the ways of answering that question is studying carnivore modification 

on hominin bones. Many hominin remains present bone surface modifications (BSM) 

made by carnivores which could result from predators feeding on them primarily or 

from scavengers (post-depositional). In the present work we try using several computer 

vision models based on convolutional neural networks to compare five different types 

of carnivores, firstly jointly and then pairwise. This method shows different outcomes 

according to specific carnivore taxa, evidencing great results when comparing tooth 

scores made by lions (Panthera leo) and spotted hyenas (Crocuta crocuta), for instance, 

with an accuracy of 92% in the testing set. It also proves the huge potential of deep 

learning algorithms for correct classification of BSM and their implications. 

Furthermore, we apply some of the models to the tooth mark observed on a femoral 

shaft from a hominin dated around 500 ka. The results suggest that the carnivore 

modification may have more likely resulted from post-depositional scavenging instead 

of predation. 

 

 

Keywords: Taphonomy  Tooth marks  Convolutional Neural Network  

Carnivore  Deep Learning 
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Resumen 

¿Cazadores o cazados? El poder sobre la cima de la cadena trófica durante la 

evolución humana sigue siendo hoy en día un tema controvertido, aunque la realidad es 

que los homínidos fueron ambas cosas. Sin embargo, es el momento en el que se 

produce el cambio de poder entre carnívoros y homínidos lo que sigue dando pie a 

arduos debates dentro de la comunidad científica. Muchos restos de homínidos 

presentan marcas de carnívoros, por lo que una buena manera de dar respuesta a la 

pregunta planteada es analizándolas detenidamente, ya que pueden albergar información 

sobre si el homínido fue fuente de alimento primaria para un depredador o si son 

producto de un proceso de carroñeo post-deposicional. En este trabajo comparamos 

marcas de diente hechas por cinco carnívoros distintos mediante diferentes algoritmos 

basados en redes neuronales convolucionales, primero de manera conjunta y después 

por parejas. Este método muestra distintos resultados según el taxón de los carnívoros, 

alcanzando un 92% de acierto en la clasificación de los datos de validación, por 

ejemplo, cuando comparamos marcas infligidas por leones (Panthera leo) y hienas 

manchadas (Crocuta crocuta). Además, se han probado algunos de los modelos para 

identificar las marcas de carnívoro que aparecen en un resto de diáfisis de fémur de un 

homínido que data sobre los 500.000 años. Los resultados sugieren que las marcas de 

diente fueron probablemente infligidas por carroñeo post-deposicional, en lugar que por 

depredación. 

 

 

Palabras clave: Tafonomía  Marcas de diente  Redes Neuronales 

Convolucionales  Carnívoro  Aprendizaje Profundo (Deep Learning) 
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1. Introduction 

Archeology as a scientific discipline was consolidated throughout the nineteenth 

century, based on three major milestones: the recognition of the "Antiquity of Man" 

(publication in 1841 by Jacques Boucher de Perthes of convincing evidence of a human 

existence long before the Biblical Flood, with the support of John Evans and Joseph 

Prestwich, two important British scholars), the development of the concept of 

"Evolution" by Charles Darwin (in 1859 publishes The Origin of Species) and the 

establishment of the system of the "Three Ages" (In 1836 CJ Thomsen proposed that 

museum collections be divided between Stone Age, Bronze Age, and Iron Age). 

However, the decisive peak occurred in the middle of the 20th century, with the 

discovery of radiocarbon dating by Willard Libby and, also, with the birth of the so-

called "New Archeology" in the 1960s. Lewis Binford, along with other archaeologists, 

affirmed the great potential that archaeological evidence had for the investigation of the 

social and economic aspects of past societies, not having to limit itself to the description 

of objects and possible influences from other societies. Any archaeological 

interpretation had to be supported by a logical argumentation, being the conclusions of 

all research work capable of being contrasted by means of the scientific method. 

When we think about archaeological assemblages, one of the most common 

discoveries are bones: human, animal or the ones eaten by them. They are one of the 

main tools for research and studies about how the people from the past used to live, 

especially if we refer to Paleolithic archaeological sites, where the only traces remaining 

are lithic tools and bones. In this sense, taphonomy is crucial, since it is the only way 

we have to recover all the information left after years and years of decomposition and 

burial. 

The term of taphonomy was first used by the Russian palaeontologist Ivan 

Efremov in his article “Taphonomy: a new branch of Paleontology”, as “the study of the 

transition (in all its details) of animals remains from the biosphere to the lithosphere”, 

meaning the study of the processes where organisms pass different parts of the 

biosphere and become part of the lithosphere, after being fossilized (Efremov, 1940: 

84). This concept was used afterwards by archaeologists to describe and study the 

formation and disturbance of the archaeological record (Lyman, 2010). It became as a 

field of interest due to research of early hominid evolution during the 70s, that tried to 
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elucidate the agency in modified bones: naturally or by hominids (e.g., Behrensmeyer, 

1975; Hill, 1976). Nevertheless, the implications of the concept have been widely 

discussed, adding some other characteristics, making it evolve to what we nowadays 

mean by taphonomy (Fernández-López, 2006; Rogers et al, 2007; Domínguez-Rodrigo 

et al, 2011).  

In both palaeontological and archaeological assemblages, loss and bias of the 

information is the focal point of the studies. It is important to keep these two aspects in 

mind for making any further interpretations. This is the basis of all neotaphonomic 

investigations, where all the fragmented information remaining (material culture and 

artifacts, in archaeology) is used to make reconstructions from past behaviour. 

Taphonomy creates a balance between the loss of biological information and the 

taphonomic data collected from the archaeological remains. However, the bias 

introduced by the researcher is always there: in the identification of the marks, the 

quantification, interpretation, …  

With the present work, we try to reduce to minimum this bias by using artificial 

intelligence and deep learning algorithms. This limits the bias only to the selection of 

each kind of mark by the taphonomist, that the algorithms use as database. All the 

marks here have been obtained in controlled environments so that, in each assemblage 

we are 100% sure that those scores were made my one specific and alone carnivore. In 

this sense, the possible bias being introduced by us is close to zero. The main objective 

of the work is to use Convolutional Neural Networks to try to discern types of 

carnivores only from the analysis of the scores, something never done to date in 

Archaeology. 

Due to the success of this method to differentiate cut marks made on bare bone 

and on fleshed bone (Byeon et al, 2019; Cifuentes-Alcobendas, 2019), we intend to 

“test” the limits of this new analysis model. 

As stated before, in archaeology, personal bias is always present: from what is 

decided or not to be collected in the field, to the number of tooth marks observable by 

the expert. This is one of the reasons why, in cases of controversial marks, such as those 

presented in this project, the opinion of two experts may be completely opposite, having 

only their “word” and experience as support. Thus, it is intended to create in the future a 

large database, made up of photos of all different BSM, which would be accessible to 
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the entire scientific sphere (archaeologically speaking) so that in case of doubt it can be 

consulted, corroborating or refuting the opinion of the researcher, through machine 

learning and deep learning algorithms. Making archaeological research more objective 

is a way of making it a much more credible and a less “fantasy” science than is believed 

today. 

The other important part of our 

project is the use of Machine Learning. 

Machine learning techniques teaches 

computers to do what we humans do 

naturally, that is learn by experience. In our 

case, artificial intelligence uses algorithms 

capable of learning directly from the images 

that are introduced to it, without having 

prior knowledge about the field of study 

(that is why its application is so wide, from fields such as medicine to others such as 

archeology). Normally, in the algorithm learning process, the discriminant 

characteristics of the objects of interest are first extracted, to be used later in the 

development of models capable of learning and identifying patterns from the image 

data. However, initially this feature selection process was done manually, which 

requires a lot of time and in-depth mathematical knowledge, since feature extraction 

involves the pre-processing of the images by different operators to discriminate each 

one. of the parameters that interest us for their classification (Sevillano and Aznarte 

2018; Sevillano et al. 2020). 

Recently, deep learning algorithms have been developed that automatically, 

without human intervention, select and learn these characteristics. This is important 

because, not only does it reduce the time spent by the researcher on this pre-processing, 

but it also eliminates any bias that could be introduced by the human hand when making 

the selection of characteristics. Thus, Deep Learning methods are a part of Machine 

Learning. The term refers to a general principle of “learning multiple levels of 

composition” (Goodfellow et al. 2016). 

These types of algorithms are already being used to try to solve problems such 

as facial recognition, motion detection, autonomous driving for pedestrian detection, 

Figure 1: The various fields of artificial 

intelligence (Kinsley and Kukiela 2020, Fig. 

1.01). 
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automatic parking, etc. Also, in the medical field, they are being used to detect lymph 

node metastases within breast cancer (Golden 2017); also to perform genetic profiling 

in order to track diseases and genetic disorders (Chen et al. 2016). 

Of all the possible image recognition algorithms, Convolutional Neural 

Networks (CNNs) are mostly used because they have proven to be one of the most 

powerful Deep learning algorithms when classifying images (Krizhevsky at al. 2012; 

Lecun et al. 1998). Nevertheless, for a neural network to be a model of deep learning 

they must have two or more hidden layers (most neural networks that are used 

nowadays have multiple hidden layers, so they all would be a form of deep learning) 

(Kinsley and Kukiela 2020) and for it to be “convolutional” it must contain at least one 

convolutional layer. 

A neural network is an ensemble of 

interconnected artificial "neurons" that 

exchange messages with each other (they 

are inspired by the biological brain) 

(Goodfellow et al. 2016; Kinsley and 

Kukiela 2020). All connections have 

numerical weights that the model adjusts 

during the training process, so that a 

properly trained network will respond 

correctly when presented with an image or 

pattern to recognize (Hijazi et al. 2015). Layers are constructed so that the first layer 

detects a set of primitive patterns at the input, the second one detects patterns of 

patterns, the third one detects patterns from those last patterns, and so on. Typical CNNs 

use 5 to 25 different layers of pattern recognition (Kinsley and Kukiela 2020). Their 

main advantage is that this algorithm eliminates the need for manual feature selection, 

as we stated before, doing it automatically and extracting the more discriminant features 

of the set of images (Sevillano and Aznarte 2018). This is one of the reasons why the 

CNN is the favorite algorithm for artificial vision tasks, like object classification.  

As for the architecture of the Convolutional Neural Network for processing 

images, it was inspired by the structure of the mammalian visual system (Goodfellow et 

al. 2016). The name of this kind of algorithm indicates that the network uses a 

mathematical operation called convolution, which is a specialized kind of linear 

Figure 2: Biological neuron vs artificial neuron 

(Kinsley and Kukiela 2020, Fig. 1.02). 
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operation: “convolutional networks are simply neural networks that use convolution in 

place of general matrix multiplication in at least one of their layers” (Goodfellow et al. 

2016). This type of NN is a variation of the multilayer perceptron, with the difference 

that, since its application is performed in two-dimensional matrices, they are more 

effective for artificial vision tasks, such as image classification and segmentation 

(Sevillano and Aznarte 2018). The CNNs are specially fitting for processing 2D data. 

This way, it makes the most of the 2D hidden “convolutional” layers to convolve the 

features with the input data (Sevillano and Aznarte 2018).  

Thus, by combining artificial intelligence algorithms with our sample of images 

of bone surface modifications we will simply try to answer one question: is it possible 

for an artificial intelligence to beat the human brain in differentiating these marks? 
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2. Previous studies 

One of the most important questions we must answer when studying any 

archaeological site is “Who did it?”. This is what taphonomists call agency, and its 

crucial to make any other interpretations about the site.  

Inside of bone surface modifications (BSM), we find the carnivores’ marks. 

They are very conspicuous and by observing their distribution and frequency on the 

bones, we can know if the access to the carcass was primary or secondary, namely, if it 

was preyed on or scavenged. This was decisive in the debate about a hunter or 

scavenger hominid from the past, along with the study of cut marks (BSM made by 

hominins when defleshing a carcass). Some authors supported the idea of the hominid 

as a passive scavenger (Binford, 1981, 1985, 1988; Shipman, 1984; Blumenschine, 

1986, 1989, 1991), while others defended combined strategies of scavenging and 

hunting, that gave hominids primary access to the carcasses (Bunn, 1981, 1982, 1983; 

Isaac 1983, 1984; Domínguez-Rodrigo 1996, 1997, Domínguez-Rodrigo y De la Torre 

Sainz, 1999; Domínguez-Rodrigo, 2002; Egeland et al, 2007).  

Once the main issue of the debate was surpassed and most of the academia 

recognised the hunting character of early hominids, many thorough studies were carried 

out about carnivores’ mark themselves, as an attempt to distinguish different carnivore 

agency or access to the carcasses (primary or secondary), just by looking at their shape 

and size.  

The two more common 

tooth marks present in bones are 

tooth pits and scores. They were 

first described by Blumenschine 

(1995: 29) as holes with 

“bowlshaped interiors” (pits, Fig. 1) 

and “U-shaped cross sections” with 

crushing in the surface, that gives 

the mark a different patina (Fig. 2), 

whose length is at least three times 

its width. 

Figure 3: Hyena pit. Photography: self-elaborated. 
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Since the body size of mammalian carnivores is so different (hyenas, leopards, 

lions, pumas, lynxes, foxes, wolves, bears), the question about size and shape of tooth 

marks was raised and studies were developed to try to infer the type of carnivore that 

made them, by analyzing their main quantitative characteristics (Selvaggio and Wilder, 

2001; Domínguez-Rodrigo and Piqueras, 2003; Delaney-Rivera et al, 2009). 

 

 

Selavaggio and Wilder used the shape of pits to try to recognize the type of 

carnivore, obtained by the ratio between the major and minor axis of the mark, along 

with its area in mm. They managed to infer that it was felids who defleshed bones in the 

FLK Zinjanthropus assemblage and that hyenas had the final access. Nevertheless, the 

marks in the assemblage showed much more variability in shape than any individual 

carnivore spices (extant or extinct) present in the comparative sample. Moreover, they 

could observe that the bone density (cancellous bone, thinning cortical and dense 

cortical) is directly related to the size of the marks. 

In addition, Andrews and Fernández-Jalvo (1997) carried out a study of 

carnivore punctures to infer more than one type of carnivore in Sima de los Huesos. It 

showed that the pits size can vary depending on the anatomical element. However, they 

were only able to divide all carnivore marks in three types: small (<1 mm), mixed 

(small or large carnivore; 1-4 mm) and larger carnivores (>4 mm). This premise was 

supported afterwards by Domínguez-Rodrigo and Piqueras (2003), who stated that pits 

size could indeed be used to differentiate between small and large carnivores, but that 

they are very ambiguous to stablish specific taxa. The same team of researchers was 

Figure 4: Wolf score. It is easily observable the crushing of the surface and the change of 

color. Photography: self-elaborated. 
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later able to distinguish human-inflicted tooth marks from those made by other 

carnivores (Fernánez-Jalvo and Andrews, 2011).  

In the same way, Domínguez-Rodrigo and Piqueras (2003) showed skepticism in 

being able to identify taxa with the scores, since they are subject to much more 

variability within a single agent than pits. Its length depends on the bite type, portion of 

the bone, bone size, force of the bite, density of the bone, etc. Nonetheless, the breath 

could indeed be used as a way to infer the size of the teeth that made it, hence the size 

of the carnivore.  

In 2012, another study about differences of tooth marks was published (Andrés 

et al, 2012). The analysis includes the largest sample of tooth marks per bone section for 

some of the most important carnivores, that potentially interacted with the hominins 

from the Pleistocene, being an active agent in the formation of the archaeological 

record. They observed that there are two variables statistically detectable and 

meaningful to differentiate carnivores by tooth marks only: the carnivore size (small 

versus large) and the carcass size.  

On one hand, as previously documented (Delaney-Rivera et al, 2009; Selvaggio 

and Wilder, 2001; Domínguez-Rodrigo and Piqueras, 2003), small size carnivores could 

inflict some marks that can overlap with medium size carnivores’ ones. The tooth mark 

dimensions are more related to the size of the carnivore than to the morphology of the 

tooth: having bears more similar teeth to humans, their tooth marks are closer to the 

ones of lions and spotted hyenas (Delaney-Rivera et al, 2009; Saladié et al, 2012). 

Furthermore, the differences in in tooth mark size are more prominent on dense cortical 

shafts than those in spongy ends. This is logical if we think about the force that impose 

the dense bone compared to the cancellous bone. The age of the predator is also 

important, since subadults of the same taxa can generate a very different spectrum of 

marks (in dimensions), which could be confused by marks of adults from a different 

size taxon.  

On the other hand, the size of the carcass must be considered. Some small 

carcasses, like sheep or goats, are rather marginal in the predatory range of several large 

carnivores, in their natural environments. For example, they are not the type of prey 

consumed by hyenas or lions. However, this changes in game-depleted areas, with high 

anthropogenic impact in the local ecology, where these predators do consume smaller 
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carcasses. In this sense, it is very important to understand tooth marking of each 

carnivore within their predatory range and which carcass sizes are represented in it. 

Finally, the last noteworthy study of this kind was carried out recently 

(Aramendi et al 2017, 2019; Yravedra et al. 2017), based on geometric morphometrics. 

It showed that different carnivore types and sizes produce tooth mark samples with their 

own spectrums They tried to differentiate carnivores’ pits (hyenas, jaguars, lions and 

crocodile) through 3D models and geometric morphometrics, as a way to infer if the 

fossils OH8 (FLK NN3) and OH35 (FLK Zinj) were preyed by crocodiles or another 

agent. When considering shape, lions and jaguars presented remarkable differences 

from the rest of the carnivores, classifying their tooth marks with and accuracy >70%. 

However, the success of the classification of the other carnivores was below 45%, 

except for crocodile pits, that were much more successfully recognized from the rest of 

the carnivores, due to their special and characteristic morphology. Moreover, when 

using morphometric information based only on form, accuracy was higher, on average. 

This indicates that the size of the tooth mark is indeed a useful discriminator, even 

though tooth marks from different carnivores were only successfully classified in 

approximately 47% of the total sample (range = 37-55%) (Yravedra et al. 2017). 

Furthermore, the figures are probably inflated, since the classification process is done 

with the same marks that were used for providing the discrimination function (training 

sample). Nonetheless, the overall analysis shows that lions have the lowest diversity of 

morphologies among all the carnivores used in this study. They also display 

considerably small tooth marks regarding their body size (Yravedra et al. 2017). Jaguars 

present wider diversity in every sense, size and shape, compared to lions. On the other 

hand, durophagous carnivores (hyenas and wolves; they consume not only the flesh but 

the bone too) show even greater variation in their marks. 

In spite of the moderate success in classifying between all carnivores by taxon, 

this study proves that even though tooth marks of different carnivores are very similar, 

they still posses features that allow some degree of differentiation, especially between 

durophagous carnivores (hyenas) and felids (lion), which is already relevant for some 

important paleoanthropological studies. 

Nevertheless, all these taphonomic techniques lack the resolution to discriminate 

among carnivore types, between taxa. Thus, a lot of the questions involving carnivore 

agency are still unanswered. The fact that carnivores prayed on hominins during the 
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Pliocene has been known for many years now (Brain, 1983), but the change in the 

balance of power remains controversial (Pickering et al, 2008; Pickering, 2013; Blasco 

et al, 2010; Cueto et al, 2016).  

Many hominin fossils present evidence of carnivore damage (tooth marks), but 

was it peri-mortem or post-mortem, namely, post-depositional? Answering that question 

is important for establishing agency and if the access was primary (hunted) or secondary 

(scavenged). In this sense, for instance, it has been debated that the fossil OH7 

(holotype specimen of Homo habilis: Tobias, 1991) may have been prayed by 

crocodiles, since it shows presumably crocodile tooth marks. In fact, a new crocodile 

species (Crocodylus anthropophagus) was created under this assumption. This would 

mean that Homo habilis was preyed on since 2 Ma and even later (Brochu et al, 2010). 

However, the empirical evidence from other fossils of hominins, such as OH35, used to 

support this argument (Njau and Blumenschine, 2012) is questionable (Baquedano et al, 

2012; Aramendi et al, 2017). Furthermore, if these tooth marks could be used to 

differentiate between carnivore groups (not only by size) the whole passive scavenging 

behavioral model of hominins from early Pleistocene previously noted, could be 

reinforced or finally completely rejected. 

The same happens in more recent middle Pleistocene hominin accumulations, 

like Sima de los Huesos or Rising Star, where the lack of resolution in discerning the 

type of carnivore involvement in their formation and posterior modifications makes 

their interpretations uncertain. In some taphonomic studies, it is shown that felids may 

have participated in the formation of Sima de los Huesos assemblage (Andrews and 

Fernández-Jalvo, 1997), while in a recent revision, other experts suggest that carnivore 

damage is quite smaller than previously reported, being the result of post-depositional 

impact by bears (Sala et al, 2014; 2015). Something similar happens with the 

accumulation of Homo naledi in Rising Star, interpreted as exempt of carnivore damage 

(Dirks et al, 2015). However, in both cases there is strong evidence to consider that 

there is a bigger impact of carnivores in the formation of both assemblages (Egeland et 

al, 2018). 

Quite a few prehistoric ecosystems sustained a carnivore guild which included, 

at least, a large and a smaller felid, a large canid, a durophagous carnivore and 

crocodiles. For instance, Plio-Pleistocene savannas in Africa included lions, leopards, 

large canids, such as Megacyon sp., Canis africanus, Lycaon; hyenas and some 
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crocodile taxa. In European Pleistocene ecosystem, we observe Panthera 

gombaszoegensis and Panthera spelaea (large and smaller felids), along with wolves 

and hyenas. The same happens in Quaternary North America, where jaguars (Panthera 

onca), lions (Panthera atrox) and crocodiles lived in the same ecosystems at the same 

time. Large canids also inhabited these environments, some of them with bone 

crunching capabilities (Canis dirus). If taphonomist were able to attribute agency in this 

kind of habitats, we could gain extensively relevant information from the 

paleontological record. 

The other half of our project begins with understanding what Convolutional 

Neural Networks are and how they work. 

CNNs are deep learning algorithms 

composed of sequences of several layers of 

artificial neurons, which receive the 

information (input) and produce an output 

through a process that mainly involves three 

elements: weights (weights), biases (bias) 

and the activation function in each layer. 

(activation function) (Krizhevsky at al. 

2012). The networks receive the images as input and transform them through several 

hidden layers (the term deep learning refers to the multiple hidden layers). The first 

convolution layer extracts low-level features like edges, lines; and as the number of 

layer increases, so does the quality of the selected entities (last layers extract the 

highest-level features) (Sevillano et al. 2020). Each of the hidden layers includes 

convolutional layers, an activation function, pooling and fully connected layers (Byeon 

et al, 2019). Weighted inputs are pushed through an activation function that determines 

the threshold of neural activation and its signal (Cifuentes-Alcobendas and Domínguez-

Rodrigo 2019). The signal travels through all the multiple layers and emerges in the last 

output layer. This output is compared to the expected resolution from a controlled 

classification and then, the error is backpropagated in the inverse order through each 

layer, updating the weights in each layer in relation to their contribution to the bias. The 

more epochs are established, the higher the learning rate, reducing the error sequentially 

and the bigger the training sample, better results we will obtain. 

Figure 5: training of neural networks (Hijazi et 

al., Figure 2). 
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For instance, VGG-19 model is a Convolutional Neural Network that consists of 

19 layers. It is a variant of the VGG model (there are some others like VGG11 or 

VGG16). The algorithm was developed by the Visual Geometry Group (VGG) at 

Oxford (Simonyan and Zisserman, 2014a, b) and it was first runner up of the ImageNet 

Large-Scale Visual Recognition Challenge (ILSVRC) in 2014. ImageNet is an image 

database organized according to the WordNEt hierarchy: every node of the hierarchy is 

depicted by hundreds and thousands of images (https://www.image-net.org/ ). It also 

hosts the ILSVRC, where researchers from around the world are challenged to find that 

yields the lowest Top 1 and Top 5 error rates, where Top 5 error rate is composed by the 

amount of images whose correct label is not one of the model’s five most likely labels. 

In this competition, the models are given up to 1.000 class training set over 1.2 million 

of images, a 50.000 images for the validation set and 150.000 images for the test 

(https://www.image-net.org/ ). This competition is a way to improve the models and 

push the existing boundaries, as it happened with VGG-19 in 2014, a model that 

surpassed all previous models results. 

ResNet50 was also winner of this competition IN 2015, being trained with 

approximately 1.2 million of images, as VGG-19. In this kind of deep networks, 

residual learning is used. In this way, rather than hoping that every stacked layer fits a 

desired underlying mapping, it expressly let the layers fit a residual mapping (He et al. 

2016). These networks imitate cortical neurons in biology (human or animal): the apical 

dendrite skips layers, at the same time, basal dendrites recollect signals from previous 

layers. In summary, residual networks skip connections, getting a shortcut to fit the 

input from the layers before on to the next ones without modifying the input (He et al. 

2016). Moreover, ResNet50 was winner of MS COCO 2015 (COCO is a large-scale 

object detection, segmentation and captioning (recognition in context) dataset 

(https://cocodataset.org/#home ).  

Inception layers work as shortcut branches and few deeper branches for deep 

networks (“highway networks”) (He et al. 2016; Srivastava et al. 2015). This kind of 

layers improve the speed and accuracy of the learning process of neural networks. There 

are several of them, such as Inception v1, v2, v3, v4, Inception ResNet. Every version 

of this network is an iterative improvement over the one before. InceptionResNet 

constitutes a hybrid, based on the premise of introducing residual connections that add 

the outcome of the convolution function inside the inception module to the input 

https://www.image-net.org/
https://www.image-net.org/
https://cocodataset.org/#home
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(Szegedy et al. 2017). The network Inception, also called GoogLeNet (Google and 

“LeNet” for professor Yan LeCun’s LeNet) (LeCun et al. 1998), was winner of the 

ILSVRC 2014, competing with the already mentioned VGG-19 and it has been vastly 

used for image classification problems. 

Furthermore, we have NASNet, created by the Google Brain team, which is a 

team of researchers investigating on artificial intelligence with the goal of “improving 

people’s live” (https://research.google/teams/brain/ ). With this network the developers 

proposed searching for an architectural building block for a small dataset to transfer it 

afterwards to a much bigger one. Specifically, the idea behind it was to search for the 

best-performing convolutional layer on the CIFAR-10 dataset (labeled subset of the 80 

million-instances Tiny Images dataset, consisting on 60.000 color images in 10 classes; 

6.000 images per class: https://www.cs.toronto.edu/~kriz/cifar.html ), to apply it 

afterwards to the ImageNet dataset (Zoph et al. 2018). 

Lastly but not least, we have DenseNet 201 and Jason networks. After LeNet5 

composed by 5 layers, VGG-19 having 19 and Highway Networks and ResNets 

surpassing 100 layers each, DenseNet 201 became a milestone with its 201 layers 

(Huang et al. 2018). With the appearance of so deep CNNs, a new problem arose: as all 

the information on the input passed through so many layers, sometimes it disappeared 

or “washed out” by the time it reached the end or the beginning of the network (Huang 

et al. 2018). This was addressed by the already mentioned Highway Nets and ResNet, 

by skipping information from one layer to another through identity connections. At the 

end, what they do is create shortcuts from the first layers to the last ones. In this sense, 

what DenseNet 201 proposes is a simple connectivity pattern: for ensuring maximum 

information flow through all the layers in the network, DenseNet connects all layers 

with matching feature-map sizes directly with each other (Huang et al. 2018). In 

addition, every layer acquire further inputs from all previous layers and passes on its 

own feature-maps to the next ones, in order to preserve the feed-forward nature of the 

network. The effectiveness of this kind of network was tested on three different dataset: 

the already mentioned CIFAR (in this case with the two datasets: CIFAR-10 and 

CIFAR-100), SVHN dataset (Street View House Numbers; contains 32x32 colred 

images; 73.257 in the training set and 26.032 in the testing, with 531.131 additional 

images for training the network) and ImageNet for the ILSVRC 2012 (1.2 million of 

images for training the net and 50.000 with 1.000 classes for the validation set) (Huang 

https://research.google/teams/brain/
https://www.cs.toronto.edu/~kriz/cifar.html
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et al. 2018). As for Jason2, this comprehensive model was created by Jason Brownlee 

(Brownlee 2017). It is a sequential model inspired in the structure of VGG-16 and 

VGG-19 models (Pizarro-Monzó et al. 2020). It is a model much simpler that all the 

ones described above, but it was interesting to introduce since in deep learning not 

always more means better: for instance, overfitting can occur if we expose an 

inadequate sample to a too complex network, since it learning process is too fast and it 

becomes “incapable” of improving its results. 

In summary, in the present work, we test the power of these pre-trained CNN to 

classify tooth score marks from five different types of carnivores simultaneously: lions, 

spotted hyenas, jaguars, wolves and crocodiles. We will also do a pairwise comparison 

between lions and spotted hyenas and, between both agents and crocodiles, given their 

relevance to many of the interpretations about hominin-carnivore interactions in the 

formation of the Africa early Pleistocene archeological record (Abellán et al. 2021). 

Ultimately, we are targeting the discrimination of modifications identified on hominin 

bones too, in order to assess when the shift in the balance of power took place during 

human evolution. For this purpose, we will use one preliminary example from the site 

of Thomas Quarry I (Morocco), where a hominin femur has been modified by 

carnivores (Daujeard et al. 2016). 
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3. Method 

Sample 

For the tooth sample, the marks were obtained from controlled experiments, 

making sure that only one carnivore intervened. We collected tooth marks from four 

different carnivore mammals and one reptilian. The crocodile was included with the 

purpose of checking how diagnostic their ichnological assemblages were compared to 

those of mammal carnivores (Abellán et al. 2021). 

For de crocodiles (Crocodylus niloticus), eight female crocodiles were used: one 

small (1.3 m in length from nose to end of tail), two medium-sized (1.8 m) and five 

large (2.3 m to 10 m). They were feed in an enclosure area of the zoo Faunia (Madrid, 

Spain), once a week over four complete months with 19 partial carcasses. Carcasses 

were collected after 15h of exposure to crocodiles, even though most part of the feeding 

took place during the first hour. The feeding process was monitored for the first 1.5 h, to 

be able to relate carcass part consumption to individual crocodiles. These carcass parts 

were composed of articulated limbs of suids (pig and boar) and bovids (sheep and cow). 

They were prepared by butchers, who removed most feet bones, except in two limbs. A 

total of 198 elements were retrieved, counting every end and shaft of unfused bones 

from juvenile individuals as one (Abellán et al. 2021). 

With the concern of using adequate parameters in analogical reasoning, we used 

three carnivores (lions -Panthera leo-, spotted hyena -Crocuta Crocuta- and jaguar -

Panthera onca-) from Cabárceno reserve (Cantabria, Spain), where animals live in open 

spaces (areas comprising several thousands of square meters: 

http://www.parquedecabarceno.com) and do not undergo typic behaviors that carnivore 

display in cages or small enclosures (Gidna et al. 2015). They were fed with the same 

type of carcasses at regular intervals: equid carcass limbs, being the bones collected 

after a few days of exposure (when they were completely defleshed and unattended, 

which usually spanned 1–4 days). In the case of the hyenas, the protocol had to be 

modified since when bones were exposed for more than 1 day, they tended to be 

completely consumed. Consequently, the bones in their enclosure were collected earlier 

only after a few hours of consumption, on the same day most of the times (Abellán et al. 

2021). This may be due to their durophagous behavior, since hyenas consume the bone 

as well as the meat, in comparison with felids that tend to avoid touching the bone. 

http://www.parquedecabarceno.com/
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All these predators were fed equid long limb bones to keep the structural and 

substantial parts of the experimental analogy the same (Abellán et al. 2021)—with some 

variation in the environmental part (Gidna et al. 2013)—conform to Bunge’s principles 

of correct analogy (Bunge 1981)-. The characteristics of the samples and experimental 

conditions described above over this bone assemblage, was widely explained in the 

original studies (Gidna et al. 2013; Dominguez-Rodrigo et al. 2015). 

The experimental assemblage of bones modified by wolves bones was obtained 

at Monte Campelo, in the northwest of north Spain. More specifically, the bone 

collection consists of remains of some colts hunted and consumed by wolves in the 

summer-autumn of 2009 and of a group of mares scavenged also by wolves during the 

winter. At the end, 17 carcasses were analyzed. The sample was collected at the kill 

sites and their surroundings. To be able to confirm and control the modifying agent of 

the bones, infrared cameras activated by movement were installed in the area, which 

showed that wolves were the only carnivores that altered the bones. A total of 379 

elements were collected and properly identified from the site (Yravedra et al, 2011). 

For all the carnivores involved in 

the present study, we only used tooth 

scores, since they are the BSM never 

included before in this kind of 

experiment (Fig. 3 y 4). Tooth pits were 

also documented, but they were 

removed from this experiment, because 

they produced smaller and unbalanced 

sample (Abellán et al. 2021). The total 

tooth score sample consists of 591 tooth 

scores: 207 made by lions, 42 made by 

jaguars, 207 tooth marks made by 

wolves, 48 made by crocodiles and 80 

by spotted hyenas. Crocodiles leave 

many anatomical elements complete and 

without any marks (Njau and Blumenschine 2005, 2012; Baquedano et al, 2012; Sahle 

et al, 20), because they usually eat the part completely, sometimes even in anatomic 

connexion, although the bones that had marks, could have from 1 up to 20 (pits and 

Figure 6: crocodile, hyena and jaguar scores (Abellán 

et al. 2021, Fig. 1). 
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scores). This makes the recovery of tooth marks more difficult, thus, the smaller number 

of tooth scores recovered.  

The smaller sample from the 

jaguar- and crocodile-modified bones 

could be a potential bias, because their 

small size may preclude any substantial 

accuracy in CNN methods. 

Nevertheless, this places the accuracy 

of the present study on a lower 

threshold than would probably 

correspond if their sample size was 

bigger (Abellán et al. 2021). To try to 

counter this possible effect of the small 

sample size of those two assemblages, the complete tooth mark sample was artificially 

increased using image augmentation techniques as is usually recommended (Chollet 

2017; Brownlee 2017). All BSM images were collected with a binocular microscope 

(Optika) at × 30, using the same light intensity and angle, in order to keep the different 

samples as similar as possible for the later analysis. Successively, they were 

transformed into black and white shades to standardize them during image processing in 

the Keras platform, using bidimensional matrices for standardization and centering. 

They were also reshaped to the same dimensions (80 × 400 pixels). The Keras library 

was used with the TensorFlow backend (Abellán et al. 2021). Finally, this image data 

bank was used for analysis through the CNN models, explained in detail in the 

following section. 

As for the analyses, two kind were carried out, the first one involving a 

simultaneous comparison of all the carnivores; and the second one focusing on marks 

made from spotted hyenas and lions; lions and crocodiles; and hyenas and crocodiles, 

due to their potential interaction among themselves and with Plio-Pleistocene African 

hominins. The pairwise comparisons are important because carnivore-hominin 

interaction have been modeled after a felid-hominin pattern. If we are able to identify 

carnivore agency with this model, differentiating between lions and hyenas as potential 

post-depositional carcass scavengers, we can finally validate or reject completely some 

carnivore-hominin models. Also, interactions with hominins involves potential 

Figure 7: lion and wolf score (Abellán et al. 2021, Fig. 

1). 
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predation on hominins (more likely resulting from felids) or post-depositional 

modification imparted by scavengers, like hyenas. For this second type of analysis, we 

will use the three most successful models from the previous generic carnivore 

comparison (Abellán et al. 2021). 

Moreover, to show the great potential of application of these referential analogs, 

we have selected one hominin femur that supposedly belongs to Homo heidelbergensis, 

from the site of Thomas Quarry I (Morocco), which has marks inflicted by carnivores 

(Daujeard et al. 2016). We chose the best example of tooth score from among all the 

BSM present in this femur to be analyzed by the CNN model and classified as either 

felid or hyenid (which are the only two possible agents capable of modifying the 

specimen to the extent that was reported; thus, it was only necessary a pairwise 

comparison). The CNN model was applied to the original published photograph of the 

specimen (Abellán et al. 2021). We selected this hominin specimen because it was used 

to discuss whether Middle Pleistocene hominins were still prey to the larger carnivores 

or just a post-depositional source of carrion (Daujeard et al. 2016), so the results of the 

analyses, whatever they may be, would be important in trying to put an end to the 

debate. During the Middle Pleistocene, hominins and other mammal predators 

competed over the same resources, which ecologically results in predation on 

competitors (Schaller 2009). Middle Pleistocene North African ecosystems contained 

large felids, such as Homotherium and lions, who lived with hyenas (both Hyeana and 

Crocuta) and small canids, like jackals and foxes, but large canids were extremely rare 

(Abellán et al. 2021). Additionally, the modifications described on the ThI94-UA28-7 

femur diaphysis (the epiphyses were chewed off) can only be explained by the action of 

a large felid, such as a lion or a hyena, taphonomically speaking, since the thickness of 

the shaft would have prevented other carnivores from having modified it to the extent 

that is documented (Abellán et al. 2021). The tooth marks cluster and the “chewing” in 

the ends of the shafts, also reinforce the hypothesis that it was a large carnivore with a 

strong durophagous behavior the one who modified the bone. Furthermore, the tooth 

sizes observed on the specimen fall within the range for only lions, hyenas and bears. 

However, bears do not damage long bone epiphysis with furrowing, nor they consume 

them completely (Arilla et al. 2014). Therefore, the two most likely species for having 

modified the specimen are lions and hyenas. Because of this, we will test de models for 

the hominin remains using only these two taphonomic agents. 
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Method: Deep Learning and CNN models 

As explained previously, CNNs are a form of deep learning since they have 

several hidden layers and they differentiate from normal neural networks (Fig. 8) on the 

presence of, at least, one convolutional layer. 

Before starting our model, it is important to always partition the data, at least 

between training and testing, so that we will put the network to the test by making 

predictions on a part of the data that has not yet known. 

Thus, after training the neural network, it should be tested with a verification 

sample. This shows the percentage of precision and the predictive classificatory 

potential. The loss function, the optimizer and the metric selected to monitor the 

function of the network are the most crucial elements of this part of training. The loss 

function measures how the network is behaving with the training data. The optimizer 

updates the network according to the loss function and finally the selected metric 

monitors the performance of the network in the training and test data sets (“accuracy”) 

(Kinsley and Kukiela 2020). 

 

Figure 8: example of a neural network with 3 hidden layers, 16 neurons each (Kinsley and Kukiela 

2020). 

The pooling/subsampling makes features robust against noise and distortion. It 

replaces the output of the net at a certain location with a summary statistic of the nearby 

outputs (Goodfellow et al. 2016). There are two basic ways to do pooling: average and 

max pooling. In both cases, the input is divided into non-overlapping two dimensional 

spaces (Hijazi et al, 2015).  
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The activation function are layers that work as the “trigger” function to signal 

distinct identification of likely features on each hidden layer, computing the hidden 

layers values. They “describe” the features. CNNs can use a variety of specific 

functions, such as rectified linear units (ReLU) and continuous trigger (non-linear) 

functions, to efficiently implement this. The activation function ReLU implements the 

function y = (max(0,x)) (Goodfellow et al. 2016). This increases the nonlinear 

properties of the decision function and the overall network without affecting the 

receptive fields of the convolution layer. The advantage of the ReLU is that the network 

trains many times faster. This activation function is the most recommended one when 

using feedforward neural networks (Goodfellow et al. 2016). 

On the other hand, fully connected layers are often used as the final layers of a 

CNN. They mathematically sum a weighting of the previous layer features, indicating 

the precise mix of “ingredients” to stablish a specific target output result. In this case, 

all the elements of all the features of the previous layers get used in the calculation of 

each element of each output feature.  

In this way, the whole neural network forms itself in the following way. Firstly, 

sequential layers are created with a starting convolutional layer. It applies a 

convolutional process to the input, that computes the dot products of the weights of the 

layers and a small region that is connected to the input layer (Kim, 2017). This layer 

works as a receptive field that has predetermined dimensions and slides of a certain 

number of small areas, creating a feature map. After this, pooling layers use feature 

maps to compress information and generalize the features, reducing the overfitting of 

the training data. This generates a second feature map. It is the alternation between 

convolutional and pooling layers that forms most part of the neural network, finishing 

with the fully connected layer. That flat feedforward neural layer uses the non-linear 

activation function, which depends on the classification problem at hand (for multiple 

categories: softmax, for example) (Cifuentes-Alcobendas and Domínguez-Rodrigo, 

2019). 

The most successful CNN models use millions of parameters. Several of these 

architectures (e.g., Alexnet, ResNet50, VGG16, Inception, GoogleNet) have been 

winners of the Imagenet Large Scale Visual Recognition Challenge (ILSVRC), the 

largest competition of image classification (Abellán et al. 2021). Some of these models 

are capable of identifying up to 1000 categories with accuracy rates > 90%. 
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Nevertheless, training them from the beginning requires powerful computation. Luckily, 

several of these models, already built and trained on hundreds of objects can be used as 

pre-trained architectures. This also enables other projects which are further away from 

computational sciences, like ours, to use this method for their analyses. Transfer 

learning consists of using a model that has already been trained for a different problem, 

exposing it to types of images for which the model was not trained in origin 

(Goodfellow et al. 2016). Training for complex features, such as the 1000 image 

categories, makes pre-trained models very efficient in detecting minor features that 

identify different categories. This includes microscopic features of BSM. Here, we use a 

selection of the most successful pre-trained models to classify tooth marks from the five 

selected carnivore taxa (Abellán et al. 2021) 

Previously, in a similar study where we used the same approach, nine of the 

most successful architectures (some of them winners of the ILSVRC competition) were 

compared in their accuracy when classifying correctly tooth scores of very similar 

carnivores like lions and jaguars (Jiménez-García et al. 2020a, b). Although most of the 

models yielded very similar accuracy, the most successful classifiers: VGG19, 

DenseNet 201, InceptionResNetV2, NASNet Large, ResNet50 (pre-trained models) and 

a simpler architecture based on VGG16-19 modules (Jason2) (Jiménez-García et al. 

2020a). Here, we use these six architectures to test the accuracy in classifying tooth 

marks from such a diverse set of carnivores. Afterwards, we select the two most 

successful models to make pairwise comparisons between selected carnivores. The 

characteristics of every architecture and their parameters were summarized in Jiménez-

García et al. (2020a), Domínguez-Rodrigo et al. (2020) and Abellán et al. (2021): 

- VGG19. VGG-16 and VGG-19 architectures were winners of the ILSVRC 

in 2014 (Simonyan and Zisserman 2014a, b). VGG-16 architecture consists 

of more than 138 million parameters. It was composed of 16 layers with 

weights at first, organized in a series of 3 × 3 kernel CNN sequentially so 

that they followed each other with increasing depth, spanning from 64 filters 

to 512 filters in duplicated sequences. This way, VGG-19 was born as an 

extension of VGG-16, with a total of 19 weighted layers. The matrix size 

was reduced applying max-pooling layers in-between neural layers 

(Simonyan and Zisserman 2014a, b). 
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- ResNet50. As previously stated, this is a deep residual network, with 50 

layers in total. It became winner of the 2015 ILSVRC with an error of only 

3.5% in classifying the test set of ImageNet dataset. Its architecture uses 

residual functions that improve the training of extremely deep networks. 

These functions are used via a skip connection and allow to pass the input 

through blocks without having to pass through weight layers. It helps with 

the problem, usually present in very deep CNNs, of vanishing gradient. This 

way, through this architecture, it is possible to train a residual CNN made up 

by more than 100 layers. Specifically, this model extends the VGG repeated 

layer blocks typical of VGG-16 and VGG-19 architectures. Each block is 

three layers deep. The first one (initial) has 64 7 x 7 kernel filters, followed 

by max pooling 2 x 2 kernel layer. The second one is a block of three layers, 

one contains 64 1 x 1 kernel filters, one 64 3 x 3 and one formed by 256 1 x 

1 kernel filters; this block repeats three times. Afterwards, there is another 

series of CNN, composed of four blocks of two 128 filter units and one of 

512 units. They use the same size of filter as the previous block. This is 

succeeded by one series formed of six blocks of two 256-filter layers and one 

1024-filter layer. Finally, the last series has three blocks with three layers 

each: two with 512 filters and one with 2048. The model is topped with an 

average pooling layer and fully connected layer (He et al. 2016). 

- InceptionResNetV2. This model has a depth of 164 layers, combining series 

of different blocks, like the last one explained. The stem block or initial one 

is composed of a 5x Inception-ResNet-A block, Reduction-A block, 10x 

Inception-ResNet-B, Reduction-B block, 5x Inception-ResNet-C, average 

pooling layer and a 0.2 dropout layer. The Inception block A is formed of 1 x 

1 and 3 x 3 CNNs; the block B is made up by a combination of 1 x 1 and 1 x 

7 CNNs. The third or block C is composed of 1 x 1 and 1 x 3 CNNs. One 

positive point to highlight of this model is that it is computationally more 

efficient than some other highly ambitious options, like Inception-V4 

(Szegedy et al. 2017). 

- NASNet Large. “NAS” stands for Neural Architecture Search, since it is the 

first model not designed directly by analysts: it is the result of using 

reinforcement learning search methods, through recurrent neural networks 

(RNN). It uses some CNNs to produce a feature map of the same dimensions 
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(normal cells) and other CNNs whose feature map is reduced by order of two 

(reduction cells). The controlling unit is a RNN composed of 100-hidden-

unit layer that uses a softmax prediction activator. Then, the RNN processes 

the joint probability distribution, selecting the most probable classification 

options. This is operated via parallel computation, because the original 

model spent 500 GPUs and > 2.000 GPU hours to build the conv cells for the 

architecture of the model. This way, NASNet Large has become one of the 

models with highest accuracy existing today (Zoph et al. 2018). 

- Jason2. Its architecture was created in 2017 (Bronwlee 2017), simplifying 

the VGG architectures. The model consists of three blocks of double layers 

of 32, 64 and 128 neurons (3 x 3 kernels), separated by max pooling layers 

(2 x 2). Inside every block, there is a batch normalization layer, finishing 

with dropout layer that varies in a increasing proportion per block: 0.2, 0.3 

and 0.4. Then, there is flattening and a dense layer of 128 filters, followed 

again by a dropout of 0.5 and lastly a dense layer with softmax activation 

function. Each CNN has been tuned with a “He uniform” kernel initializer 

and with padding of the type “same” (Abellán et al. 2021). 

- DenseNet 201. This model constitutes a very deep network with a total of 

201 layers. Every sequential layer obtains the feature maps of all the 

previous layers as inputs, resulting in new feature maps that are passed 

through subsequently to the following layers. This way, the network 

becomes thinner and condensed, thus, easier to work with. This structure, 

combined with the depth of sequential CNN layers, enables the detection of a 

wider diversity of features in images compared to other alternative 

architectures (Abellán et al. 2021). The network model is built on dense 

CNN blocks of 1 x 1 and 3 x 3 sequential layers, separated by transition 

blocks of 1 x 1 CNN and 2 x 2 pooling layers (Abellán et al. 2021). 

Moreover, the sequence of CNN for every dense block is repeated six times 

for the first block, twelve times for the second one; 24, 32, 48 and 64 times 

for the third one and finally, 16, 32 and 48 times for the last one. The final 

transitional layer is a global average pooling layer (7 x 7) (Abellán et al. 

2021). 
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For every model, we used the already mentioned ReLU activation function, for 

the last fully-connected layer a “softmax” activation function was used (joint 

comparison) and a “sigmoid” one for the pairwise analysis; the loss function chosen was 

categorical cross-entropy, since it was suitable for comparison with multiple outcomes. 

Specifically, for the pairwise comparison, we used a binary cross-entropy: it measures 

distances between probability distribution and predictions (Chollet 2017; Abellán et al. 

2021). As for the optimizer, we selected Stochastic Gradient Descent (SDG): learning 

rate 0.001 and momentum 0.9. Finally, for compilating the model we used “accuracy” 

as metric, to observe the percentage of success in the classifications (Abellán et al. 

2021). 

Furthermore, we tried data augmentation in our sample to try avoiding 

overfitting by artificially increasing our sample. We considered it necessary since two 

of the carnivores’ samples were significatively smaller than the rest, due to the factors 

previously explained. This is usually recommended when dealing with imbalances 

samples or datasets that are not big enough (Goodfellow et al. 2016; Chollet 2017), 

because it intensifies the heuristics of the NN (Chollet 2017). In the present work, the 

samples were augmented through random transformation of the original images, shifting 

width and height (20%) and also shear and zoom range (20%). We included horizontal 

flipping and a rotation range of 40º too (Abellán et al. 2021). In the case of the pairwise 

comparison, we tested the models with and without augmentation. 

The complete image dataset was divided in two parts for implementing the 

models: one for the training (70%) and other for the testing of the different architectures 

with unknown data (30%). Both for the test sample and for the training one, we used 

mini-batch kernels: training size 64 for the multiple comparison and size 32 or 20 for 

the pairwise analyses; testing size 32 for multiple comparison and size 20 for the 

pairwise ones. For the weight update we applied a backpropagation process of 100 

complete epochs. All the analyses were carried out in a HP workstation (GPU), using 

Python 3.7 through Jupyter Notebook platform, being the total computation time for the 

whole study one week (Abellán et al. 2021). 

As previously stated, for the pairwise comparisons we used only the three most 

successful model, considering the ones with highest accuracy and lowest loss, always 

taking into account a moderate or high level in the balance of the classification (Abellán 
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et al. 2021). The architecture of the models was not changed for these analyses, 

excepting the loss function (categorical cross-entropy was replaced by binary cross-

entropy since we only had two possible outcomes) and the activation function for the 

fully-connected layer (“softmax” was changed for “sigmoid” function for the same 

reason) (Abellán et al. 2021). 

As for the ensemble learning, we imported the model with all the layers, aside 

from the top fully connected layer from the output-end of the model (Abellán et al. 

2021). This way, the training algorithm is able to fine tune the weights for feature-map 

extracting layers and then use that information to create a new fully connected top layer 

specifically for our problem, generating a prediction. To achieve this, we replaced the 

top layer with a flattened one and added the fully-connected layers of the new classifier 

(Abellán et al. 2021). 

In addition, we tried stacking ensemble learning (SEL) after all the comparison 

of the different models was done (Jiménez-García et al. 2020b). This method assembles 

the various classification algorithms into a single classifier (Abellán et al. 2021). This 

way, a baseline set of predictions derived from the original classification algorithms is 

generated, which are used afterwards by a meta learner to create an aggregate final 

classification (Abellán et al. 2021). The stacking method is recognized for being 

stronger at classifying than other ensemble methods, in particular, single-trained ones 

(Wolpert 1992). In the present work, we use four of the most successful models as base 

learners and we produce other three different SEL architectures with three distinct meta-

learners (Abellán et al. 2021). Firstly, we generated 100 trees with tuned random forest, 

without specifying the maximum depth. We did specify the number of features selected 

through the square root of the feature range. Afterwards, tuned extra-randomized trees 

was used to produce 100 trees. Lastly, we applied the third meta-learner: gradient 

boosting tree, up to 500 different models (Abellán et al. 2021). This method resulted in 

different models that were contrasted with a testing dataset, carefully watching the 

degree of balanced classification. The numeric results are shown in Table 2 (multiple 

carnivore analyses), since we observed better results than with the single models (Table 

1). 

Finally, for the marks present on the femur of the hominin, we applied a gradient 

visualization technique to detect the possible microscopic features that influenced the 
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BSM classification, using Grad-CAM (gradient weighted activation mapping algorithm) 

(Jiménez-García et al. 2020a). It uses the weighted activation to generate a heat map 

overlaying the original image, based on gradients of the predicted class obtained from 

the last convolutional feature map (Abellán et al. 2021). The highlight areas in the mark 

are the ones that the algorithm considered the most important for the prediction and the 

classification of the BSM. 
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4. Results 

Multiple-carnivore comparisons: single models 

Here I present the results of all the analyses carried out. 

Table 1: Accuracy and loss values for every of the model architecture used on the testing set of tooth 

marks from the five selected carnivores. 

 Accuracy Loss 

DenseNet 201 57.02 1.58 

Jason2 50.72 1.94 

VGG19 50.72 1.94 

ResNet50 34.06 1.75 

InceptionResNetV2 45.65 2.23 

NASLarge 37.68 1.45 

 

As shown in Table 1, when comparing the single models, the one that yielded 

the highest accuracy was DenseNet 201, presenting a 57.02% of correct classification of 

the tooth marks. Moreover, Jason2 and VGG-19 both have shown the exact same 

accuracy rate: 50.7% (Table 1; Fig. 9). In the rest of the models, we observe significant 

lower scores: ResNetInceptionV2 reaches a 45.6% success rate; being the accuracy of 

both ResNet50 and NASNet-Large below 35% accuracy. Thus, we observe that the 

models with similar architecture (Jason2 is a simplified version of VGG-19), succeed 

DenseNet 201 model as the best ones for classifying BSM with our image dataset 

(Abellán et al. 2021).  

In the classification matrix (Table 3), we notice that Jason2 and VGG-19 

produce the same results, being the ones of the DenseNet 201 also fairly similar, 

although it shows different misclassification values. A priori, the moderate rate of 

success of these tree models indicates that the tooth marks of the carnivores, when 

compared mixed together, are broadly similar. However, they are distinctive enough to 

be well-classified at least half of the times. 

Table 2: Classification markers for the multi-carnivore tooth mark sample, Models DenseNet 201, Jason 

2, VGG19 and ensemble learning models. 

DenseNet 201     

 Precision Recall F1-score Support 

Crocodiles 0.00 0.00 0.00 13 

Hyena 0.86 0.30 0.44 20 

Jaguar 0.00 0.00 0.00 10 
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Wolf 0.47 0.85 0.60 47 

Lion 0.66 0.56 0.61 48 

Micro avg 0.53 0.53 0.53 138 

Macro avg 0.40 0.34 0.33 138 

Weighted avg 0.51 0.53 0.48 138 

VGG19-Jason2 

 Precision Recall F1-score Support 

Crocodiles 0.00 0.00 0.00 13 

Hyena 0.73 0.55 0.63 20 

Jaguar 0.00 0.00 0.00 10 

Wolf 0.55 0.66 0.60 47 

Lion 0.54 0.71 0.61 48 

Micro avg 0.55 0.55 0.55 138 

Macro avg 0.37 0.38 0.37 138 

Weighted avg 0.48 0.55 0.51 138 

Ensemble learning model (with random forest) 

 Precision Recall F1-score Support 

Crocodiles 0.20 0.08 0.11 13 

Hyena 0.82 0.70 0.76 20 

Jaguar 0.25 0.10 0.14 10 

Wolf 0.75 0.70 0.73 47 

Lion 0.60 0.85 0.71 48 

Micro avg 0.65 0.65 0.65 138 

Macro avg 0.53 0.49 0.49 138 

Weighted avg 0.62 0.65 0.62 138 

 

Nevertheless, even though we observe this moderate accuracy, that alone cannot 

be followed. Due to the different sized of the samples, it is important to analyze the 

precision, recall and F1 score, since they will show us if our classification is balance or 

unbalance. Looking at Table 2, we would have to say that our classification is 

unbalanced: VGG-19 and Jason2 present a global macro-average of 0.37, indicating 

that there is a high degree of bias when classifying all five carnivores. Surprisingly, 
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DenseNet 201 shows even greater imbalance in the classification (macro-average F1 of 

0.33), despite having a higher overall accuracy (Table 1). As for the taxa, hyenas, 

wolves and lions present a high accuracy in classification, with a F1 score above 0.6 in 

models Jason2 and VGG19. In DenseNet, the hyena’s image collection generated more 

misclassification. In the case of the crocodiles and the jaguars, we have very poor 

results: they were widely misclassified in all the models (Table 2). This is very likely 

related to the size of their samples, since they were significantly smaller compared with 

the rest of the carnivores. Therefore, we can conclude that hyenas, wolves and lions are 

the carnivores best classified. When using the more balance models, BSM of lions were 

classified in the testing dataset with a 70% success rate, the ones made by wolves with 

66% and the tooth scores inflicted by hyenas with 55% accuracy. In contrast with 

crocodiles and jaguars, this moderate accuracy is a victory. 

 

Figure 9: accuracy and loss values for three of the models classifying tooth marks from the five 

carnivores.  
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In fact, none of the tooth scores made by lions and wolves, aside from 2% of the 

wolf marks that were misclassified as hyena’s, were classified as any of the other 

carnivores. In contrast, up to 46% of the crocodile scores were classified as lion marks 

and around 29% of the lion tooth scores were misclassified as wolf’s. Nevertheless, 

only 5% of the hyena marks were classified as lion tooth scores, but 70% of the jaguar 

BSM were completely misclassified as lion scores (Table 3). 

Additionally, DenseNet 201 model showed moderately low loss and the greatest 

accuracy percentage, but unfortunately, we observed a elevated level of instability and 

increasing loss values, identified as a clear sign of overfitting (Fig. 9). On the contrary, 

VGG-19 presented better stability and increasing accuracy through the training of the 

network (Fig. 9). In comparison, Jason2, even though it yielded the same accuracy as 

VGG-19 (a little lower loss), displayed wide fluctuation in accuracy and loss, while 

VGG-19 presented consistency and limited fluctuation. These three models were also 

applied to the pairwise comparison among the different African carnivores selected for 

this study.  

Table 3: Confusion matrix for DenseNet 201, Jason 2 and VGG19 models, showing percentages (without 

decimals) (n=138) of correct (diagonal) and incorrect classification of images from the testing set 

according to carnivore type. Numbers in parentheses are for raw data of the testing sets for each 

carnivore. Predicted follows horizontal. 

DenseNet 201 Crocodile Hyena Jaguar Wolf Lion 

Crocodile 0 (0) 0 (0) 8 (1) 69 (9) 23 (3) 

Hyena 0 (0) 30 (6) 0 (0) 65 (13) 5 (1) 

Jaguar 0 (0) 0 (0) 0 (0) 30 (3) 70 (7) 

Wolf 0 (0) 2 (1) 6 (3) 85 (40) 6 (3) 

Lion 0 (0) 0 (0) 0 (0) 44 (21) 56 (27) 

VGG19-Jason2 Crocodile Hyena Jaguar Wolf Lion 

Crocodile 0 (0) 15 (2) 0 (0) 38 (5) 46 (6) 

Hyena 20 (4) 55 (11) 0 (0) 20 (4) 5 (1) 

Jaguar 0 (0) 10 (1) 0 (0) 20 (2) 70 (7) 

Wolf 0 (0) 2 (1) 0 (0) 66 (31) 32 (15) 

Lion 0 (0) 0 (0) 0 (0) 29 (14) 70 (34) 
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Multiple-carnivore comparisons: stacking ensemble learning models 

Examining the results of the single models, the SEL models were generated 

combining DenseNet, Jason2, VGG-19 and InceptionResNetV2 as base learners 

(Abellán et al. 2021). The results and probabilities of their classification were jointly 

used for the upper level meta-learner, in three architectures involving a random forest, 

extra-randomized tree and gradient boosting tree. The Table 4 presents the results for 

the three models, while Table 5 presents the confusion matrix of the most successful 

model (random forest). As the tables show, every SEL model generated greater 

accuracy percentage than any of the single models tested before, when comparing the 

five carnivores all together. Only the extra-randomized tree produced a slightly below 

accuracy than DenseNet 201 (56.5%): with the other two models we observe a 

important improvement in the balance score and classification accuracy (Table 4). This 

way, the model that uses a random forest as a meta-learner, reached an accuracy of 

65.3% with a F1 score of 0.49. This value in accuracy is more than 3.5 times the 

expected from random classification. As for the classification of the specific carnivores, 

we can observe the same as with the rest of the models: the taxa with larger samples 

have better classification (hyenas, wolves and lions have an accuracy over 70% in the 

testing dataset (Table 2 and Table 5);  in the case of lions, the tooth scores of the testing 

dataset are correctly classified in more than 70% of the cases. This gives us even more 

confidence in the plausible differentiation of tooth marks inflicted by hyenas and lions.  

 

Table 4: SEL análisis with different combinations of base meta-learners and accuracy, loss and balanced 

(F1-score) classification results. 

Base learners Meta-Learner Accuracy Loss F1-score 

DenseNet 201 Random Forest 65.3 0.51 0.49 

VGG19 Extra-randomized trees 56.5 0.89 0.41 

Jason2 Gradient boosting trees 62.5 0.59 0.47 

InceptionResNetV2  
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Table 5: Confusion matrix (from the SEL model using the random forest as the meta-learner) displaying 

percentages of correct (diagonal) and incorrect classification of images from the testing set according to 

carnivore type. Numbers in parentheses are for raw data of the testing sets for each carnivore. Predicted 

follows horizontal. 

SEL (random forest) Crocodile Hyena Jaguar Wolf Lion 

Crocodile 7.6 (1) 0 (0) 0 (0) 30.7 (4) 61.5 (8) 

Hyena 15 (3) 70 (14) 0 (0) 5 (1) 10 (2) 

Jaguar 0 (0) 0 (0) 10 (1) 20 (2) 70 (7) 

Wolf 2.1 (1) 2.1 (1) 4.2 (2) 71 (33) 21 (10) 

Lion 0 (0) 4 (2) 2 (1) 8 (4) 85.5 (41) 

 

Pairwise comparisons 

On the pairwise analyses, the ensemble models showed lower accuracies than 

the best single models. This is why, we decided not to include them here. These results 

uphold Domínguez-Rodrigo et al. (2020) modeling, that presented some single models 

performing more efficiently than the ensemble ones when classifying cut, tooth and 

trampling marks. However, with the pairwise comparisons, model VGG-19 showed 

more efficiency than DenseNet 201 and Jason2 (Table 4). All three models convene in 

presenting better results with hyenas and lions, reinforcing their easier differentiation, in 

comparison with crocodiles or jaguars (Fig. 8). In contrast with the efficiency shown by 

the models when comparing the five carnivores, when performing pairwise 

comparisons, the VGG19 model exhibited a better performance compared to DenseNet 

and Jason2 (Table 4). The three models converged in showing that hyenas and lions 

were easier to differentiate than any of them compared to crocodiles. 

We also experimented with augmentation to try and reduce the bias introduced 

by the crocodiles and jaguar samples, as explained before. Nonetheless, with the non-

augmented samples we observed better classification percentage than with the 

augmented ones (Table 6). 

In the comparisons by pairs in the testing set we noticed the following: Jason2 

yielded an accuracy of 91% when differentiating lion inflicted marks from hyenas’ 

marks, with a loss value of 0.43 and a F1 macro-average score of 0.85 (Table 6; Fig. 

10); the VGG-19 model becomes the best performing one with an accuracy of 92,5% in 

the same comparison (loss of 0.004 and F1 macro-average of 0.91). When comparing 
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lion and crocodile tooth scores with VGG-19 we also obtained a moderate accuracy of 

77.1% (loss of 0.66 and F1 macro-average of 0.62).  

On the other hand, the comparison between crocodile and hyena tooth scores 

showed very poorly results with all the models tried out. The highest accuracy value 

was achieved by VGG-19 model with 66.67% of correct classification (loss of 0.27 and 

F1 macro-average of 0.55). Thus, it is crucial to compare different models and 

architectures to obtain better resolution in BSM classification. In the models tried with 

augmented data we observed low F1 score, which indicates unbalances classification: 

all lions tooth scores were correctly classified over the ones of hyena and crocodile, but 

there is an important proportion of the hyena and crocodile marks that were 

misclassified as lion BSM. Specifically in this case, the sample without augmentation 

shows greater accuracy than the augmented one and also a higher degree of balance 

(Table 6). Nevertheless, most of the pairwise analyses show F1 score values too low in 

relation to their accuracy, which means imbalance, only with the exception of the lion-

hyena comparison, where the score for the degree of balance and the accuracy is quite 

high, showing more balance classifications (Table 6). 

 

Figure 10: Accuracy and loss values for the VGG19 and Jason2 models comparing lion and spotted 

hyena tooth scores. 
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Table 6: Accuracy and los of the VGG19 and Jason2 models when comparing tooth marks made by lions, 

crocodiles and hyenas. Only models in each pairwise category with the highest accuracy and high F1 

values are highlighted. Bold numbers indicate the most successful models.  

 Accuracy Loss F1 macro avg 

Jason2 (lion-hyena) no augmentation 91.04 0.43 0.85 

VGG19 (lion-hyena) no augmentation 92.54 0.004 0.91 

DenseNet (lion-hyena) no augmentation 77.61 0.002 0.63 

Jason2 (lion-hyena) with augmentation 70.15 0.58 0.41 

VGG19 (lion-hyena) with augmentation 70.15 0.60 0.41 

DenseNet (lion-hyena) with augmentation 70.15 0.56 0.41 

Jason2 (lion-crocodile) no augmentation 73.00 0.74 0.43 

VGG19 (lion-crocodile) no augmentation 77.1 0.06 0.62 

DenseNet (lion-crocodile) no augmentation 74.0 0.003 0.43 

Jason2 (lion-crocodile) with augmentation 51.52 1.71 0.43 

VGG19 (lion-crocodile) with augmentation 76.67 0.50 0.54 

DenseNet (lion-crocodile) with augmentation 74.47 0.41 0.58 

Jason2 (hyena-crocodile) no augmentation 56.62 2.17 0.53 

VGG19 (hyena-crocodile) no augmentation 66.67 0.27 0.55 

DenseNet (hyena-crocodile) no augmentation 60.61 0.014 0.38 

Jason2 (hyena-crocodile) with augmentation 51.52 1.7 0.47 

VGG19 (hyena-crocodile) with augmentation 45 1.7 0.42 

DenseNet (hyena-crocodile) with augmentation 66.67 0.004 0.53 

 

Applaying the models to the ThI94-UA28-7 hominin fossil 

As explained in the methodology, we applied the VGG19 and Jason2 models to 

interpret the carnivore modification on the femur fossil from Thomas Quarry I site 

(Morocco), attributed to Homo heidelbergensis (ThI94-UA28-7). The results showed 

greater probability that the specimen was modified by hyenas (Table 7; Fig. 11). 

Table 7: Probability distribution for the attribution of the tooth score form the hominin femur (ThI94-

UA28-7) to carnivore agent. Tabulation is made comparing the two most successful models with all the 

carnivores and pairwise between lions and hyenas. Numbers in bold indicate the probability of the 

selected agent.  

 Crocodile Hyena Jaguar Wolf Lion 

VGG19 all 0.078 0.601 0.003 0.071 0.23 

Jason2 all 0.039 0.936 0.001 0.019 0.002 

VGG19 lion-hyena - 0.981 - - 0.018 

Jason2 lion-hyena - 0.963 - - 0.037 

 

With VGG-19 model, the probability of the mark being inflected by hyena was 

98.11% and 1.89% for lion. We observe similar results with Jason2 model: 96.3% for 
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hyena and 3.7% for lion. In both cases, we used the non-augmented samples, since from 

the results already presented, it was clear that in pairwise comparison, they performed 

better this way (Table 7). When comparing all the carnivores’ samples, the augmented 

sample showed a 60% probability for hyena with VGG-19 and a 93% probability of 

hyena with Jason2 model (Table 7). Considering everything we just presented and since 

the hyena tooth marks tended to be misclassified more than the lion ones, the high 

probability percentages we obtained for the fossil points to hyena as the perpetrator and 

reinforces its attribution.  
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5. Discussion 

With the present study we clarified many questions we had. Firstly, we realized 

that not always the single models with the greatest performance are the best, because 

some of them can generate quite unbalanced classifications. Consequently, we have 

considered VGG-19 and Jason2 networks as the best models for our goal of classifying 

carnivore tooth marks, even though DenseNet 201 showed a slightly better accuracy 

(57%).  

The moderate success in classifying the tooth scores (around 50-57%) indicates 

that not all the tooth marks inflected by the different carnivores are the same. However, 

they still present a large overlap among them, supporting the results obtained by the 

geometric morphometric analyses carried out on the same bone assemblages by 

Yravedra et al. 2017, where they reached an accuracy scarcely below 50%. Nonetheless, 

we also learned that the ensemble learning models introduce a great improvement over 

the single ones and the geometric analyses previously addressed, since with those we 

obtained a 65.3% of correct classification of all five carnivores’ tooth scores. Some 

geometric morphometric methos reached higher accuracy in agent classification 

(Yravedra et al. 2019; Courtney et al. 2019), but we observed some problems.  

Firstly, the sample. The sample per agent/taxa is around 30 cases each, which we 

consider insufficient for the analyses to have statistical significance, more so if they had 

to split it intro training and testing sets. The samples were bootstrapped before the 

splitting and this generated that some testing samples were already included during the 

learning process (training), thus the higher accuracy would not be real. It is necessary, 

for those results to be believable, that the samples are enlarged, being the testing set 

completely independent from the training one.  

As for the comparison among all the carnivores, it could be argued that all of 

them can never be found in the same ecosystems, but this analysis is still important an 

relevant since it can be extended to similar carnivores (wolves for wild dogs, for 

example) in extant biomes. 

For the crocodile tooth marks, it has been argued that is one of the very few 

examples of bone surface modifications that are specific for this agent through their 

attributes: bisected marks and scores with parallel microstriations (Njau and 

Blumenchine 2006; Baquedano et al. 2012). Even so, these specific marks are only a 
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small proportion of the whole BSM inflected by this carnivore: many of other crocodile 

tooth scores resemble ones inflected by other mammals predators, as we have proved in 

this study, observing the very low accuracy yielded by any model on crocodile tooth 

marks and their misclassification with marks inflected by durophagous carnivores (bone 

eating carnivores, like hyena). 

In any case, as showed in Jiménez-García et al. (2020a), there are significant 

differences between specific carnivores, like lion and jaguar or, as shown in the present 

study, between lions and spotted hyenas. It may be because lions are flesh-eating 

carnivores, while hyenas and jaguars (far less than hyenas) are more durophagous in 

their behavior (they also consume part of the bone) (Domínguez-Rodrigo et al. 2015). 

Thus, their tooth marks are different: ones are inflected with more force on the bones, 

which generate a bigger range of shape and size, whereas the others are cause of an 

accident during the defleshing process. This would be why scores made by jaguars, 

hyenas and wolves showed an intense overlapping in the results presented here. 

Nonetheless, for the jaguar sample, here the results were surprising, given the great 

results obtained in Jiménez-García et al. 2020a), with jaguar tooth scores correctly 

classified above 80% of the times when compared with lion ones. Our explanation in 

the present work is that the values here are due to the already mentioned overlapping 

between jaguars, wolves and lions: jaguar tooth scores were misclassified as lions’ 70% 

of the times in the testing set. Since jaguar and lions are both feline, they have similar 

tooth morphology, hence the overlapping, even though their carcass consumption 

behavior is different.  

There may be another reason why the jaguar tooth scores were misclassified. In 

Jiménez-García et al. (2020a), they created a balanced subsample formed by 42 images 

of marks made by jaguars and 42 marks made by lions, as a way to compensate the 

unbalance between both. The original image dataset was shuffled and randomly 

sampled 42 images of each agent. There was a decrease in the accuracy due to the 

smaller sample, but the classification of both agents’ tooth marks was balanced., 

reaching with VGG-19 model an accuracy of 75.6% with a F1 score of 0.71. More 

recently, with the same model and a new shuffled and randomly selected sample the 

model obtained 83% accuracy with a F1 score of 83 (for lions it was 82 and for jaguars 

85). However, in Jiménez-García et al. (2020a) there was a huge difference between 

precision and recall, having well classified mostly of the lion marks but systematically 
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misclassifying an important proportion of the jaguar sample. This happened because 

when using the small subsample of images, the probability of including the minor part 

of the lion sample is small and, thus, they obtained similar values in accuracy and F1 

score. Nevertheless, when they used the larger lion sample, the “jaguar-looking” portion 

of the lion tooth scores was enough to create a low precision-recall for the testing 

sample of the jaguar, because the model saw those tooth scores similar to the ones 

documented in lions. This could mean that the sample of jaguar tooth scores is too small 

to be statistically meaningful, even though they reached high accuracy in Juménez-

García et al. (2020a). However, by using this dataset differently, there may be different 

results, since there might be a problem, both methodological and biological. Ensemble 

learning was also used in Jiménez-García et al. (2020b), managing to surpass the 

imbalance accuracy and reaching over 82% accuracy in the classification of jaguar 

marks and more than 92% when classifying lion tooth scores. In consequence, we could 

affirm that those two tooth marks are potentially differentiable, even though they are 

both felids and hence, have similar dental morphologies. 

The present work also 

shows that the scores 

inflected by hyenas and 

lions can be greatly 

differentiated, with 

accuracies over 90% with 

some models. This is, 

indeed, very relevant for 

assessing and interpreting 

agency in the formation of 

some African Plio-

Pleistocene archaeological 

and paleontological 

assemblages.  

Here we achieved a 

high level of accuracy, 

followed by a great degree of 

balance and therefore, our 

Figure 11: Distal femoral shaft (ThI94-UA28-7) showing 

carnivore damage and tooth marking (modified from Daujeard et 

al. 2016). The best-preserved tooth score analyzed is shown and 

highlighted. The heat map over-lying the tooth scores indicates 

that the CNN model is confident considering the shape and 

internal features of the groove as indicators of agency. This heat 

map was made with the Grad-CAM algorithm. For a detailed 

explanation of its structure and application, see Cifuentes-

Alcobendas and Domínguez-Rodrigo (2019) and Jiménez-

García et al.2020a. 
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results with some of the model should be enough for it to be reliable. This way, we 

could apply it to archaeological BSM to try and she more light on whether the tooth 

scores on some mid-shaft broken bones are the result of post-depositional hyenas 

consume (supporting the idea of hominin primary access to the carcass) or lion initially 

defleshing the carcasses (Abellán et al. 2021). This could give us a better glimpse into 

the lives of the early hominins and how they were taphonomically modified (prayed or 

not by other carnivores). 

6. Conclusion 

The present work over tooth marks classifications has shown that 

micromorphological features of tooth scores are very similar among different 

carnivores, as previously stated by the morphometric analysis carried out on the same 

dataset (Yravedra et al. 2017). Nevertheless, there are enough differences to distinguish 

between flesh-eating and more durophagous carnivores, especially when compared 

pairwise. This fact has important implications for the inference of agency in bone 

modifications, particularly when considering different agent modifying hominin bones 

or in sites with equifinality situations (more than one agent can produce similar 

modifications in bones surfaces, confusing interpretations) (Abellán et al. 2021).  

On the other hand, the high probability (over 96%) of the tooth score on the 

hominin bone as result of the action of a hyena, supports the original hypothesis of it 

being modified by hyenas (Daujeard et al. 2016). Furthermore, it proves that the CNN 

model is extremely reliable when its confidence (probability estimates) is high. The 

paucity of carnivore-impacted hominin remains could be interpreted as resulting from 

the control of hominins of the competitive arena with other predators, at least during the 

middle and upper Pleistocene. Here and thanks to the reassurance over the hyena 

inflicted mark on the hominin fossil, we also reinforce the interpretation that hominin 

were on the dominant side of the balance of power during this time, around 500.000 ka., 

if the pattern documented in this fossils specimen is representative of the general 

hominin interaction at the time.  

Nonetheless, a larger sample of bones modified by carnivores is needed to 

confirm or reject this preliminary hypothesis. Also, for reaching better results in the 

multi-carnivore classifications it is undoubtedly essential to extend the dataset. 
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With the present work, we would like to highlight the urgency to analyze 

hominin remains from a taphonomic point of view, something that has not been 

systematically done until present (Abellán et al. 2021). 

On the side of artificial intelligence, it is also an achievement. In a sphere so 

close and so interdisciplinary at the same time as Archaeology, it is encouraging that 

some of these methods are becoming of high relevance, as a way to improve our science 

and objectivity.  

The main issue that has to be addressed is the bias and subjectivity present in 

any archaeological assemblage. This is introduced mainly by the investigator and the 

team that studies the remains, those who just by being taphonomist have the authority to 

say “this is a cut mark” and it has to be believed by the rest, just because.  

Of course, knowledge is always necessary and we don’t pretend to turn 

completely to machines or to let them do all the work for us, but if we can reduce the 

bias, we surely should try. With the present work, the bias introduced by us was very 

much reduced, just to the election of the marks that had to be photographed. The 

remains came from controlled experiments with carnivores (enclosed or semi-free), so 

that all the marks present in the bones belonged doubtlessly to that specific carnivore.  

In this way, there was no much room for error or subjectivity from the 

investigator’s part and that’s what we wanted the most. In addition, the methodology 

used and developed is rather simple, as a way for it to expand as further in the academic 

world as possible. By creating this database of tooth marks, cut marks, trampling marks, 

etc. and uploading it to a program like R in form of a library, anybody who was 

studying any archaeological assemblage can have access to it, hence all the 

interpretations will be achieved through the same method, creating a uniformity inside 

the academia that is still completely inexistent.  

As future projects, the first thing to do is to expand the sample of all carnivores 

present in this study, especially those of jaguar and crocodile, to create more balance 

classification. Moreover, it would be also interesting to add some other carnivores to the 

sample and combine different deep learning algorithms for differentiating the marks, as 

well as introducing other BSM as percussion marks, biochemical or diagenetic marks. 
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