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Abstract

This thesis introduces two novel semantic representation spaces for text documents
and semantically annotated data, which are based in an intrinsic geometry approach,
as well as other results, among which we have: (1) a novel ontology-based semantic
distance, that we call weighted Jiang-Conrath, and (2) generalized normal distri-
bution on differential manifolds, called geodesic normal distribution, what lead us
to the definition of the geodesic Mahalanobis distance. By last, we prove that any
Bayes classifier on a manifold defines a dual Voronoi diagram on it.
The ontology-based IR model looks promising, but it has not been evaluated

experimentally yet. By other hand, the text document classifier yielded a first
discouraging result due to the diffi culties for the training of the model.
The common thread of our research is the use of notions of intrinsic differential

geometry and geometric invariance, as means to bridge some gaps in the literature.
The ontology-based IR model, as well as the text classifier proposed in this thesis, is
inspired by a geometric approach, whose core idea is the integration of the geometric
structures of the problem in the semantic representation spaces of the information.
In summary, our approach attempts to build better models of semantic spaces by
incorporating the properties and constraints of the mathematical objects involved
in its definition.
The first part of the thesis introduces a novel ontology-based IR model based in

a structure-preserving embedding of a populated ontology into a metric space that
we call Intrinsic Ontological Spaces. The second part of the thesis introduces a novel
text classifier, called Intrinsic Bayes-Voronoi, which is based in the representation of
the document vectors by a manifold-based generative model, where the distribution
function is defined on the unit hypersphere, instead of the euclidean ambient space.
The Intrinsic Ontological Spaces introduces a novel theoretical IR model that

looks promising, although it has not even been evaluated experimentally. The pro-
posed IR model is described in depth and validated with regard to our design axioms.
The motivation behind of our model is the finding of a set of geometric inconsist-

encies in some ontology-based IR models in the literature, which are derived from
certain overlooked properties in their adaptations of the Vector Space Model (VSM).
In essence, our model refutes the unreflective use of the VSM model in the fields of
natural language processing (NLP) and information retrieval (IR).
Despite that the theoretical approach is interesting by itself, our main hypothesis

is that the structure-preserving approach proposed by our model, should lead us to
improve the quality of the ranking, as well as the measures of precision and recall
in the semantic information retrieval systems.
The Intrinsic Ontological Spaces are, up to our knowledge, the first ontology-
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x ABSTRACT

based IR model to build a whole ontology-based structure-preserving representation
for any sort of semantically annotated data in a populated ontology. In our model,
every component has been designed with the aim to preserve the intrinsic geometry
of any base ontology. The intrinsic geometry of any ontology is defined by three
algebraic structures: (1) the order relation of the taxonomy, (2) the set inclusion
relation, and (3) its intrinsic semantic metric. In this way, the methods for the
representation of the queries, information units, weighting, ranking and retrieval,
have been designed from geometric principled-based axioms, with the aim to capture
all the semantic knowledge encoded in the base ontology. Using the language of the
theory of categories, our model builds a natural equivalence, or morphism, among the
input populated ontology and the representation space for the indexed information
units.
Finally, the classifier of Bayes-Voronoi, introduced in the second part of the

thesis, uses a manifold-based generative model to represent documents which is
defined by a vector normal distribution on the unit hypershere, and we have called
geodesic normal distribution. The distribution is defined on the unit hypershere,
considered as a manifold, instead of the ambient space. The core idea is the ob-
servation that the normalized vectors are defined on the unit hypersphere, instead
of the whole euclidean ambient space, and the proposed model explicitly integrates
this constraint. The model removes one dimension to the normalized vectors, which
corresponds to the projection of the data vectors on the unit hypershere (normaliza-
tion). The geodesic normal distribution lead us to the definition of the Mahalanobis
distance on a differential manifold, distance that we call geodesic Mahalanobis dis-
tance. We also prove that any Bayes classifier on a manifold defines a dual Voronoi
diagram on it.

Keywords: ontology-based IR models, ontology-based semantic distances, se-
mantic information retrieval, taxonomic semantic spaces, vector semantic spaces, se-
mantic distances, Jiang-Conrath distance, valuation metrics, geodesic Mahalanobis
distance, Hausdorff distance, semantic metric spaces, manifold-based distribution,
text classifier.



Resumen

Esta tésis presenta dos nuevos espacios de representación semántica para doc-
umentos de texto y datos anotados semánticamente, los cuales se basan en un en-
foque de geometría intrínseca, así como otros resultados, entre los cuales tenemos:
una nueva distancia semántica sobre ontologías denominada distancia ponderada de
Jiang-Conrath, una distribución normal generalizada sobre variades diferenciables
que denominamos distribución normal geodésica, la cual nos conduce a la definición
de la distancia geodésica de Mahalanobis. Por último, probamos que cualquier clasi-
ficador de Bayes sobre una variedad induce un diagrama de Voronoi dual sobre su
dominio.
El modelo de recuperación de la información (RI) basado en ontologías parece

prometedor, a pesar de aún no haber sido evaluado experimentalmente. Por otro
lado, el clasificador de texto ha arrojado un primer resultado desesperanzador debido
a ciertas dificultades en el entrenamiento del modelo.
El hilo conductor de nuestra investigación es el uso de nociones de geometría

diferencial e invarianza geométrica como medio para cubrir algunas oprtunidades
de mejora y problemas encontrados en los modelos actuales encontrados en la bib-
liografía. Tanto el modelo RI basado en ontologías, como el clasificador de texto
propuestos en esta tésis, son inspirados por un enfoque geométrico, cuya principal
idea es la integración de las estructuras geométricas del problema en los espacios
de representación semántica de la información. En suma, nuestro enfoque intenta
construir mejores modelos de espacios semánticos mediante la incorporación de las
propiedades y restricciones de los objetos matemáticos involucrados en su definición.
La primera parte de la tésis presenta un nuevo modelo RI basado en ontologías

que define una inmersión de una ontología poblada en un espacio métrico, la cual es
denominada Espacios Intrínsecos Ontológicos y tiene como principal propiedad la
preservación de las estructuras codificadas en las ontologías. En la segunda parte,
presentamos un nuevo clasificador de documentos de texto, denominado Clasificador
Intrínseco de Bayes-Voronoi, el cual se basa en la representación de los vectores de
documento mediante un modelo generativo expresado sobre una variedad diferen-
ciable, cuya función de distribución es definida sobre la hiperesfera unitaria, en vez
de sobre el espacio euclídeo ambiente.
Los Espacios Intrínsecos Ontológicos introducen un nuevo modelo téorico de

recuperación de la información que parece prometedor, si bien, como ya hemos
señalado, éste aún no ha sido evaluado experimentalmente. El modelo propuesto es
descrito en profundidad y validado con respecto a nuestros axiomas de diseño.
La motivación detrás de nuestro modelo es el descubrimiento de un conjunto de

inconsistencias geométricas en algunos modelos RI basados en ontologías, las cuales
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xii RESUMEN

se derivan de ciertas propiedades pasadas por alto en sus adaptaciones del modelo
de espacio vectorial (VSM). En esencia, nuestro modelo refuta el uso irreflexivo del
modelo VSM en toda clase de tareas semánticas en el ámbito del procesamiento
natural del lenguaje.
A pesar de que el enfoque teórico es intersante por sí mismo, nuestra principal

hipótesis es que el enfoque invariante que proponemos en el modelo, debería con-
ducirnos a mejorar la calidad de clasificación, así como las medidas de precisión y
cobertura en los sistemas de recuperación de información de tipo semántico.
Los Espacios Intrínsecos Ontológicos son, hasta donde alcanza nuestro conoci-

miento, el primer modelo de recuperación de la información basado en ontologías
donde cada componente del sistema ha sido diseñado basado en la ontología base
para preservar todas las estructuras intrínsecas presentes. La geometría intrínseca
de una ontología es definida por tres estructuras algebraicas: (1) la relación de orden
de la taxonomía, (2) la relación de inclusión de conjuntos, y (3) su métrica semántica
intrínseca. De esta forma, los métodos para la representación de las consultas, unid-
ades de información, funciones de pesado, clasificación por relevancia y recuperación,
han sido diseñados a partir de axiomas fundamentados en principios geométricos,
con el objetivo de capturar todo el conocimiento codificado en la ontología base.
Empleando el lenguaje de la teoría de categorías, nuestro modelo construye una
equivalencia natural, o morfismo, entre la ontología poblada de entrada y el espacio
de representación para las unidades de información indexadas.
Finally, ell clasificador de Bayes-Voronoi, introducido en la segunda parte de la

tésis, emplea un modelo generativo para representar documentos de texto, el cual es
definido por una distribución normal vectorial sobre la hiperesfera unitaria, la cual
denominamos distribución normal geodésica. Dicha distribución es definida sobre la
hiperesfera unitaria, vista como una variedad diferenciable, en vez de sobre el espacio
euclídeo ambiente. La idea clave es la observación de que los vectores normalizados
están contenidos en la hiperesfera unitaria, en de vez de sobre el espacio euclídeo am-
biente, y el modelo propuesto integra de forma explícita dicha propiedad. El modelo
reduce una unidad la dimensión de los vectores normalizados, la cual corresponde a
la proyección de los vectores de datos sobre la hiperesfera unitaria (normalización).
Asimismo, la distribución normal geodésica nos conduce a la definición de la dis-
tancia de Mahalanobis sobre una variedad diferenciable, distancia que denominamos
distancia geodésica de Mahalanobis. Por último, probamos que cualquier clasificador
de Bayes sobre una variedad induce un diagrama de Voronoi dual sobre su dominio.

Keywords: ontology-based IR models, ontology-based semantic distances, se-
mantic information retrieval, taxonomic semantic spaces, vector semantic spaces, se-
mantic distances, Jiang-Conrath distance, valuation metrics, geodesic Mahalanobis
distance, Hausdorff distance, semantic metric spaces, manifold-based distribution,
text classifier.
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Preface

“Three passions,
simple but overwhelmingly strong,

have governed my life: the longing for love,
the search for knowledge, and unbearable

pity for the suffering of mankind. ”
Bertrand Rusell

The main objects of research in this thesis are two problems in information
retrieval (IR). First, an ontology-based IR model for the indexing and retrieval
of semantically annotated data, and second, a text classifier. Both problems are
related by a common thread derived from a same geometric point of view, approach
that proved to be helpful to find some gaps in the literature, derived from certain
geometric inconsistencies in the current models. In both cases, the solution proposed
to bridge the gap was also inspired by a geometry-based approach. We used basic
results of well established geometric theories, such as differential geometry and the
metric spaces.
The thesis is divided in two parts, one per problem. Historically, the first problem

studied was the text classifier, called intrinsic Bayes-Voronoi, introduced in the
second part of the thesis. We found some gaps in the standard VSM model, or “bag
of words”, during the spring of 2012, and we developed the whole theoretical model
as an essay about text categorization for the subject about “Text mining”, while
the experiment validation was carried-out during the summer of this year, obtaining
some discouraging results. As final essay of the same subject, we also carried-out an
original survey on sentiment analysis in Twitter, which has been translated to the
English, and coauthored with Ana García, but unfortunately, it has not published
yet.
The conception of the idea about the ontology-based IR model, proposed in the

first part of the thesis, emerged as the final essay of the subject about “Intelligent
Information Retrieval”, being submitted in September of 2013. In this preliminary
essay we identified some gaps in the literature, which were derived from the geometric
inconsistencies in the adaptation of VSM in some ontology-based IR models in the
literature. Once the gap was identified, we proposed a novel IR model defined by a
set of principled-based axioms whose main idea was to build a structure-preserving
model, following the classical ideas about invariance, so popular in the field of applied
geometry. During the academic course 2013-2014, we developed our ideas up to be
able to propose an IR model that would fulfill these design axioms and could bridge
the gap, arriving to the model introduced in the first part of the thesis, called
Intrinsic Ontological Spaces.
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xvi PREFACE

The ideas about the preservation of geometric structures and transformation
groups, back to the pioneer work of Felix Klein [Klein, 1893], also known as the
Erlangen program. In his work, Klein introduces the concept of group of trans-
formations and he defines as primary object of research for the geometry: the
study of the invariant properties of the geometric objects under the action of the
groups of transformations. Klein opens a conceptual revolution and change of
paradigm in geometry, which affects the whole mathematics, whose more abstract
descendant is the theory of categories introduced by Eilenberg and McLane in
[Eilenberg & MacLane, 1945]. The last one is devoted to the study of the map-
pings of algebraic structures that preserve its intrinsic structures, also called natural
equivalences. The ontology-based IR model proposed here is only a humble inquiry
inspired by these theories.
By last, we expect to have introduced some novel ideas from a geometric point

of view in the information retrieval field, whose reading can result helpful and in-
teresting for any reader working in this exciting field.

Juan José Lastra Díaz
Madrid, 7th September 2014



Chapter 1

Introduction

The Vector Space Model (VSM) [Salton et al., 1975] is omnipresent in all sort of
information retrieval systems, such as the classical keyword-based search engines,
text categorization, question answering, and text summarization among others. In
this work, we propose a couple of original semantic space models for two problems
in information retrieval (IR): the development of a novel ontology-based IR model,
and a keyword-based text categorization method.
In keyword-based text categorization, the state of the art has been defined,

until recently, by the use of keyword-based systems based in the representation of
documents as vectors in a VSM model, together with the use of SVM classifiers
[Lewis et al., 2004]. The main drawback of the classical keyword-based IR models
is their lack of meaning, which limit its search capabilities to objects mentioned in
the text, without any possibility to infer any sort of relation between the concepts
and entities in a query, and the keywords in the vocabulary of the model. Such
as is noted in [Castells, 2008], the limitations of the meaningless VSM models have
motivated the advent of a novel generation of ontology-based IR models, such as the
pioneering works introduced in [Vallet et al., 2005] and [Fang et al., 2005].
Most of novel ontology-based IR models in the literature include any sort of

adaptation of the standard VSM model with the aim to represent concepts or indi-
viduals within a populated ontology, like vectors in a vector space as means to can
compare them. The novel models move from a keyword-based vector representation
to a concept-based vector representation, wherein the base vectors of the model can
be concepts or instances of concepts (entities, individuals).

1.1 Motivation

Our investigation is motivated by the identification of some geometric inconsistencies
in the adaptations of VSM in some ontology-based IR models in the literature, or
the classical keyword-based text classifiers as the described in [Lewis et al., 2004].
The ontology-based IR models use some adaptations of the VSM model to rep-

resent concepts, or instances of concepts, as base vectors in a VSM model, with
the aim to be able to use standard IR techniques as the weighting and cosine-based
ranking. However, these models overlook some important geometric properties and
constraints, as well as its consequences. Among these overlooked concepts, we can

1
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cite the orthogonality condition and the cardinality mismatch. In the case of clas-
sical keyword-based VSM models, we find a similar overlooked property that is the
fact that the normalized vectors are defined on the unit hypersphere, not in the
general Euclidean ambient space, thus the models should integrate this constraint
in its mathematical representation. Precisely, the aim of IR models proposed in this
thesis is to bridge this gap, as well as other drawbacks described throughout this
work.

First, the current ontology-based IR models implicitly assume that we call the
orthogonality condition, derived from the use of cosine function as similarity measure
among vectors. Two different concepts, or instances of them, that share a common
ancestor are represented by these models as independent base vectors, which are
mutually orthogonal. This orthogonality condition means that two related concepts
as bicycle and motorbike will have zero similarity, instead of a high value, such
as we will expected for two concepts derived from a common concept called two-
wheel vehicle. Other inconsistency is the cardinality mismatch, where objects with
different cardinality are mixed in the same model. It is the case for the references
to instances of concepts (individuals) or the mentions to whole classes (sets) which
denote a collection of subsumed classes and individuals. In the introduction of the
chapter 2 we provide an exhaustive description of many other drawbacks found in
the literature.

In the case of text classifier based in VSM, the vectors are normalized to have
unit norm. It means that all the vectors in a normalized VSM model are contained
in the positive unit hypersphere, instead of the whole euclidean space, therefore, the
normalized vectors have reduced their intrinsic dimension by 1. The text classifier
introduced in chapter 3 is motivated by this gap, and our aim is to define a features
space that represents the document vectors on the unit hypersphere, instead of the
euclidean ambient space, such as is made by previous models.

Although, we only provide here a brief description about the motivation for the
work carried-out, we explain our motivation with more detail in the introductory
sections of the chapters 2 and 3, wherein we introduce the proposed models.

1.2 Research problems

The main research problems studied in this thesis are two as follows. First, the
design of a novel ontology-based IR model (chapter 2) that bridges some gaps in
the geometric structures of the models in the literature. Second, the design of a
novel text classifier based in ideas from intrinsic geometry on differential manifolds
(chapter 3).

In addition, we study the ontology-based semantic distances, such as the Jiang-
Conrath distance [Jiang & Conrath, 1997], and we propose a novel generalization
of the last one to obtain a well defined metric on any sort of taxonomy, unlike the
standard JC distance, which is only a metric on tree-like taxonomies.
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1.3 Contributions

This thesis introduces some novel contributions to the body of knowledge in the
field of information retrieval (IR), such as follows:

1. A novel ontology-based IR model which preserves all the semantic structures
encoded in any base ontology, called Intrinsic Ontological Spaces, which is
pending to be validated experimentally.

2. A novel ontology-based semantic distance, called weighted Jiang-Conrath dis-
tance, which matches the standard definition of the Jiang-Conrath distance on
tree-like taxonomies, while it generalizes its definition to guarantee that the
novel distance is a well defined metric on any sort of taxonomy.

3. A novel ontology-based ranking based in the use of Hausdorff distance among
subsets of a metric space, defined by the space of subsets of weighted-mention
to instances and classes annotated within a populated ontology, which is used
to represent semantically annotated data in the Intrinsic Ontological Spaces.

4. The definition of a metric based in the novel weighted Jiang-Conrath distance,
which allows the integration of weighted-mentions to classes and individuals
in a same semantic space, while it mimics the Jiang-Conrath distance among
concepts on a tree-like taxonomy.

5. The definition of a family of novel semantic spaces, the Intrinsic Ontological
Spaces, based in a metric space defined by a whole set of ontology-based com-
ponents, such as the novel ontology-based semantic distance, a ontology-based
weighting and ranking methods, and the integration of the classes and indi-
viduals in a same space, while the model preserves all their intrinsic semantic
relations.

6. A novel text classifier, called Intrinsic Bayes-Voronoi, based in the use of a
vector-based generative model with a normal distribution defined on the unit
hypersphere.

7. The definition of a normal distribution on differential manifolds, called geodesic
Normal distribution, and the geodesic Mahalanobis distance associated to the
manifold-based distribution.

8. We also prove that any manifold-based normal distribution induces a Bayes
classifier which is defined by a Voronoi diagram on the manifold.

1.4 Structure of the thesis

The thesis is structured in two independent chapters, one for each studied problem.
The chapter 2 introduces a novel ontology-based IR model called Intrinsic Ontology
Spaces, and a novel ontology-based semantic distance called weighted Jiang-Conrath
distance. The chapter 3 introduces a novel text classifier called Intrinsic Bayes-
Voronoi, and it also defines some novel statistical objects on differential manifolds,
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such as the geodesic Normal distribution and the geodesic Mahalanobis distance.
moreover, we prove that the Bayes classifier for any geodesic Normal distribution
defines a Voronoi diagram on the manifold domain of the distribution. By last,
the chapter 4 introduces a summary of our main conclusions and contributions,
and in addition, it also introduces some research trends as future work, mainly the
experimental validation of the novel ontology-based IR model.
The chapters 2 and 3 are self-contained, wherein every one fulfills the expected

structure for any academic paper as follows: abstract, introduction, motivation,
related work, preliminary concepts, description of the proposed models, experiments
and results and by last, its conclusions and future work.

1.5 Publications

Our intention to apply for a patent has prevented any kind of dissemination of the
content of this thesis, before the submission of the offi cial patent application. For
this reason, this thesis was defended in a private session on September 29, and it
has not been disclosed for public dissemination until December 24, 2014.
The whole content of the chapter 2, composed by a novel ontology-based IR

model proposed called Intrinsic Ontological Spaces, as well as a novel ontology-
based semantic distance, called weighted Jiang-Conrath, has been submitted in the
form of the patent application below [Lastra Díaz & García Serrano, 2014]. This
publication also includes some novel edge-based intrinsic IC-computation methods
not included herein.
By other hand, the Intrinsic Bayes-Voronoi text classifier has yielded some pre-

liminary discouraging results, which has slowed our initial inclination to publish the
preliminary results of the model.
By last, we developed a novel and exhaustive survey about the problem on sen-

timent analysis in Twitter, coauthored with Ana García Serrano, but unfortunately,
it has not been published yet.

1. Lastra Díaz, J. J., & García Serrano, A. (2014). System and method for
the indexing and retrieval of semantically annotated data using an ontology-
based information retrieval model. United States Patent and Trademark Offi ce
(USPTO). US14/576,679. December, 19.



Chapter 2

A novel ontology-based IR model

This chapter introduces a novel ontology-based IR model called Intrinsic Ontological
Spaces, and a novel ontology-based semantic distance called weighted Jiang-Conrath
distance. The main idea of the model is to build an embedding of a populated
ontology into a metric space, while its intrinsic geometry is preserved. The proposed
model unifies the representation of the classes and individuals of the ontology in a
same semantic space, while their intrinsic semantic structure relations are preserved.
The documents, or any other sort of information units, are represented by sets of
weighted-mentions to individuals and classes within the ontology, while the queries
are represented as sets of mentions to individuals and whole classes, considering the
last ones as sets of subsumed concepts and individuals. The representation space
is defined by an extension of the weighted Jiang-Conrath distance among concepts,
whose purpose is defining the distance among individuals, and a weighting scheme to
represent documents and queries. The weighted Jiang-Conrath distance is defined as
the shortest weighted-path among concepts, according to a generalization of Jiang-
Conrath edge weights. Unlike the standard Jiang-Conrath distance, the weighted
Jiang-Conrath is a well defined metric on any sort of taxonomy. The ranking method
is based on a distance function among document and queries, which is defined by
the Hausdorff distance among subsets on a metric space, according to the metric
of the representation space. The proposed model is a well defined metric space on
any ontology with a general poset structure. In the case of a tree-like base ontology,
the representation space mimics exactly the Jiang-Conrath distance among concepts
and individuals and it also verifies the structure of a hierarchical Voronoi diagram.

2.1 Introduction

The Vector Space Model (VSM) [Salton et al., 1975] is known as "bag of words",
because every document is represented by a vector whose coordinates are defined as
a function of the term occurrence frequency within a document. The set of terms
used to represent every document is called the vocabulary of the model, and it
defines the base vectors of the vector space. In most of cases, the cosine function is
used as a similarity measure between a query vector and the vectors representing the
indexed documents. Due to its simplicity, and the success achieved, the VSM model
is the kernel for most of search engines, and it has been adopted in many tasks and
applications of natural language processing (NLP), such as: information retrieval

5
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(IR), document categorization (TC) and clustering, web mining and automatic text
summarization (TS) among others.
Recently, the vector space models has been extended to define word and phrase

spaces, such is reflected in [Erk, 2012], [Clark, 2012] and [Turney & Pantel, 2010]. A
word or phrase space is a vector space where the vectors represent these information
units instead of documents, and the space metric encodes the semantic similarity
between pairs of information units. The word spaces are based in the distributional
hypothesis [Basili & Pennacchiotti, 2010], which sets that words in similar contexts
have similar meanings. In these models, the vectors representing every word are built
as a function of the terms frequency in the context of one word within a document,
so that these models allow encoding some semantic relations and statistics, such as
the term cooccurrence, the synonymy and the meronymy among others.
Although the vector space models has been mainly used to represent text docu-

ments, such as we saw above, these models have been successfully applied to repres-
ent other types of information units, such as words, phrases and sentences. Following
the previous reasoning, we state that the ontology-based IR model proposed here,
works with any information unit that can be encoded in an ontology, according to
the definition below.
The information units are the objects indexed by the ontology-based IR model

proposed here, and it could be text documents, web pages, sentences, multimedia
objects, or any sort of data that admit a ontology-based representation.

Definition 1 (Information unit) An information unit is any sort of semantic-
ally annotated data that can be represented as a collection of concepts (classes) or
instance of them (individuals) within an ontology.

The main limitation of the VSM model is its lack of meaning. As is noted
in [Castells, 2008], most of the current web search systems use a standard VSM
model with meaningless terms, which make impossible to retrieve documents using
queries with non-explicitly mentioned terms in the corpus. By other hand, we can
appreciate the same situation in other related problems where the same meaning-
less version of the VSM model is used, such as in the text categorization problem
[Sebastiani, 2002a], [Lewis et al., 2004].
The advent of the semantic web has motivated a great change of paradigm in

the IR community. The IR models has moved from a model based in meaningless
terms to a model based on references to concepts or its instances, namely, there
has been a change from a keyword-based paradigm to another concept-based one.
The novel paradigm has converted the conceptual models and the knowledge bases
in its core components, and ontology languages, such as OWL, have become the
favorite representation to encode this knowledge and to store the references to the
indexed data. Nowadays, the use of ontologies is omnipresent in all sort of semantic
retrieval tasks in the context of semantic web [Ding et al., 2007], as well as in other
application fields like the bioinformatics [Pesquita et al., 2009].
Motivated by the lack of meaning in previous IR models, some novel conceptual

IR models have appeared during the last decade, whose main example is the family
of ontology-based IR models, whose abstract definition is given below.
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Definition 2 (Ontology-based IR model) An ontology-based IR model is any
sort of information retrieval model which uses an ontology-based conceptual repres-
entation for the content of any sort of information unit, whose main goal is the
indexing, retrieval and ranking regarding of these infomration units with regard to
any user’s query.

What is the main contribution provided by the use of ontologies in IR models
?. The essential contribution of the ontologies in IR is the capability to retrieve
documents semantically related to concepts or entities not mentioned in the query
or any document. From an abstract point of view, the ontology-based models make
a virtual expansion of the semantic objects (concepts/instances) in the queries and
the documents before to compare them. These models allow to retrieve documents
using concepts or entities not directly mentioned in these documents.
We subdivide this family of ontology-based IR models in two subfamilies: (1) the

vector ontology-based IR models, whose main feature is the use of some adaptation
of the standard VSM model to manage concepts instead of meaningless terms, and
(2) the ontology-based metric space IR models, whose unique examples, up to our
knowledge, are the pioneering work of [Rada et al., 1989] and this work. Among the
main works in the subfamily of vector ontology-based IR models we can cite the
pioneering works in [Vallet et al., 2005], [Fang et al., 2005], [Castells et al., 2007],
[Mustafa et al., 2008], [Dragoni et al., 2010] and [Egozi et al., 2011] among others.
By other hand, the unique ontology-based IR model based in a metric space that

we have found, up to our knowledge, is the model proposed in [Rada et al., 1989].
This work introduces some ideas that are closely related to the model proposed here,
although we can also find some important differences that will be explained in our
review of the state of the art.
To the best to our knowledge, the work in [Rada et al., 1989] can be considered

as the oldest reference within the ontology-based IR family. Surprisingly, this work
is not cited by others ontology-based IR models found in the literature, despite that
the Rada’s measure is highly cited and well known in the scope of the ontology-
based semantic distances. Roughly speaking, most of the ontology-based IR models
reported in the literature models, such as the cited in this work, do not have taken
advantage of the results in the field ontology-based semantic measures, precisely,
unlike our work.
From an abstract point of view, the main features of the family of vector ontology-

based IR models, also called adapted-VSM models, are as follows: (1) the use of
a conceptual representation for documents and queries based in an ontology, (2)
the retrieval of relevant documents through any ontology query language, (3) some
sort of vector space for the representation of references to concepts and instances,
based in a set of orthogonal base vectors defined by the classes and individuals of
the ontology, (4) some sort of adaptation of standard term-frequency weights for the
definition of coordinates, (5) the use of the cosine function as ranking method to sort
the relevant documents, and (6) a multivector representation and ranking combining
different types of features, such as concepts, keywords or ontological features.
This work introduces a novel structure-preserving ontology-based IR model,

called Intrinsic Ontological Spaces, for the indexing and retrieval of semantically
annotated data, such as text documents, web pages, or any sort of information that
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can be represented as a set of semantic annotations (individuals and classes) on
any sort of base ontology. The proposed model bridges the gap of geometric in-
consistencies in current methods, such as is explained below. The work includes a
detailed description and justification of the model, and a very simple example to
explain its operation. Nevertheless, it still be pending its experimental validation.
The main expected benefits of the proposed model are an improvement in terms of
the ranking quality, as well as in the precision and recall measures. Our hypothesis
is that our model should contribute to the joint improvement of these evaluation
measures, thus, it should contribute to improve the results expected by the users of
any information search system based in the proposed IR model.

2.1.1 Motivation

A vector space is a very rich and versatile algebraic structure that, precisely by its
versatility, has been used in an irreflexive manner in the field of information retrieval.
Formally, a vector space is an additive Abelian group with a scalar product that is
associative and distributive, it means that the space vector includes all the inverse
elements for each document, and every linear combination among them; nevertheless,
all these elements of the space are not used, or required, in any IR model. Maybe, the
main reason to use vector spaces in the current IR models is to rank the documents
using the cosine function as similarity measure, due to its simplicity, computational
effi ciency and the success achieved in many tasks in information retrieval.
The state of the art in ontology-based IR models has proven the potential be-

nefits derived from the use of conceptual models with regard to the meaningless
IR models. However, if we study carefully some overlooked assumptions in these
conceptual models, we find some important aspects that offer an important im-
provement opportunity in terms of ranking quality, as well as in the precision and
recall measures.
Main motivation behind most of the adapted-VSM models have been to build a

semantic weighting method to compare semantically annotated documents, however,
these models have been using the vector space model as a black-box without take
into account some important implicit assumptions of the model and its consequences.
Making a review of the current literature about the topic, we find the following gap
which motivates our work:

Orthogonality condition. The base vectors of any VSM model are mutually or-
thogonal, it means that similarity cosine function among different base vectors
is zero. One consequence of the orthogonality condition of the adapted VSM
models is that two vectors associated with two documents can get a zero,
or very low similarity value, when they do not share references to the same
concept instances, although these instances could share a common ancestor
concept in the taxonomy. By example, documents with references to bicycle
and motorbike models would not be related, although the instances are derived
from the two-wheel vehicle concept.

Cardinality mismatch. Some of these ontology-based models are not including
references to classes as sets of the objects, or they are mixing references to
classes and instances (individuals) at the same representation level. The main
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idea behind most adaptations of the VSM models to manage the ontology in-
formation is to make a mapping from individuals and/or classes to base vectors
of the representation vector space. In this way, the models are assigning two
different, and opposite meanings, to the same base vector. In one case, the
base vector represents the occurrence of one object (individual), otherwise, a
base vector is representing a collection of objects (classes). These inconsisten-
cies can be summarized as a cardinality mismatch in the adapted VSMmodels,
and the nature of the objects represented by the model.

Statistical fingerprint vs. semantic distances. The metric used to compare doc-
uments by most of published ontology-based models is based in the Euclidean
angle among normalized vectors (cosine score). The vectors encode the stat-
istical fingerprint of the indexed documents, it means, the statistical cooccur-
rence relations among different concepts in a document, but this metric lacks
of a meaning in the sense that they are not encoding any semantic distance
among concepts, such as it is made by very well established ontology-based
distances, such as the Jiang-Conrath measure [Jiang & Conrath, 1997]. The
only exception to the problem described here is the IR model proposed in
[Rada et al., 1989], which defines a Boolean semantic model, where the doc-
uments are represented by sets of concepts, although the concepts are annot-
ated in binary form without using any semantic weighting method, such as is
provided by our method. The last model is closely related to our work and we
consider this model, up to our knowledge, the first published ontology-based
IR model.

Populated ontology are not directly indexed. Many of the ontology-based IR
VSM models need to retrieve the related documents with the instances and
concepts in the query before to rank them. The populated ontology is not
indexed directly, by this reason, it needs to be searched using any ontology-
based query language, such as SPARQL or any other. By contrast, our model
builds a direct geometric representation of the data in the populated ontology,
integrating retrieval and ranking in a same step. Despite this approach could
produce bottlenecks for large scale ontologies, we expect that the integration
of geometrical search structures in the model allows to speed-up the queries.

Lack of a semantic weighting. The weights in adapted VSM models are statist-
ical values, not related to the real semantic weight of the concept/instances
within the document.

Continuity problems on metrics on sets. In [Rada et al., 1989], the authors in-
troduce an ontology-based IR model which defines a metric space using a
shortest path metric on the taxonomy, and the average distance among sets
of concepts as distance function among documents. The authors report some
continuity problems around close documents, The source of the problem is
that their distance function among documents does not fulfill the coincidence
axiom of a metric (see definition 6), thus it is not a well defined metric on sets,
unlike the Hausdorff distance used in our model.
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The Jiang-Conrath distance is not well defined. Some recent research has un-
veiled that the Jiang-Conrath distance only satisfies the metric axioms for
tree-like ontologies [Orum & Joslyn, 2009]. This fact contradicts the original
statement of the authors in [Jiang & Conrath, 1997]. The Jiang-Conrath dis-
tance depends on the lowest common ancestor between two concepts, which
is only uniquely defined for lattices, not for general posets. Despite of the
JC distance is well defined on lattices, in [Orum & Joslyn, 2009] the authors
provide some counterexamples to demonstrate that neither in this case the
JC distance is a metric. We also provide a counterexample to enlighten the
problem in figure 2.11. In section 2.4.4, we introduce a generalization of this
measure to fulfil the metric axioms on any sort of taxonomy.

2.1.2 Research problem and main hypothesis

The main goal of the work in this chapter is to propose a novel structure-preserving
ontology-based IR model to bridge the gap described above. Our work follows a
geometric approach in the definition of the gap to be filled, as well as in the proposed
solution. We propose as solution to bridge the gap, a novel ontology-based IR model
called Intrinsic Ontological Spaces, which is based in the integration of the intrinsic
structure of the base ontology in the definition of the representation space itself, our
approach can be interpreted as a semantic metrization of the populated ontologies.
The main hypothesis behind our IR model is that the integration of the structures

encoded within the base ontology of the IR model in the representation space must
contribute to the improvement of the ranking quality, and the precision and recall
measures expected of the proposed model, with regard to prior models.

2.1.3 Summary of the chapter

This chapter introduces a novel ontology-based IR model called Intrinsic Ontological
Spaces, as well as a novel ontology-based semantic distance called weighted Jiang-
Conrath distance. The purpose of the method is to provide an ontology-based IR
model for the indexing and retrieval of semantically annotated data, such as text
documents, web pages, or any other sort of information units that can be represented
by semantic annotations within a base ontology.
The main idea of our model is to build a structure-preserving embedding of a

populated ontology into a metric space, while its intrinsic geometry is preserved.
The proposed approach fills a gap of modelling inconsistencies in current methods,
whose consequence is a best ranking, precision and recall measures. The proposed
IR model unifies the representation of the classes and individuals of the ontology
in a same semantic space, while their intrinsic semantic structure relations are pre-
served. The text documents, or any other sort of semantically annotated units, are
represented by sets of weighted-mentions to individuals and classes in the ontology,
while the queries are represented as sets of mentions to individuals and classes con-
sidered as sets of subsumed concepts and individuals. The representation space is a
metric space defined by an extension of our novel weighted Jiang-Conrath distance
among concepts, whose purpose is defining the distance among weighted mentions to
individuals and classes, and a weighting scheme to represent documents and queries.
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The intrinsic geometry of any ontology is defined by three algebraic structures:
(1) the order relation of the taxonomy, (2) the intrinsic semantic distance among the
classes and individuals, and (3) the set inclusion for the individuals and subsumed
classes of the ontology.
The model proposed in this work comprises the following elements: (1) the defin-

ition of the semantic representation space as the universal set of weighted-mentions
to individuals and classes within the populated base ontology, that we call Intrinsic
Ontology Spaces; (2) an embedding method to injects semantically annotated data,
or information units, in the representation space of the model; (3) an embedding
method to injects semantically annotated queries in the semantic representation
space of the model; (4) a semantic weighting method that combines statistical and se-
mantic information to represent the semantic annotations associated to the indexed
information units in the semantic representation space; (5) a novel ontology-based
semantic distance among concepts (classes) and instances of concepts (individuals)
within a populated base ontology, that we call weighted Jiang-Conrath distance; (6)
a novel ontology-based ranking method for the retrieval and sorting of the indexed
units retrieved by the system, and (7) a pre-processing step whose purpose is com-
puting all the parameters and data structures to enable the indexing and searching
operations of the search engine of the system.
The representation space is a metric space defined by a generalization of the

Jiang-Conrath distance among concepts [Jiang & Conrath, 1997], which we call
weighted Jiang-Conrath distance. The purpose of this novel ontology-based dis-
tance is integrating the individuals in the representation, defining a metric on any
sort of ontology, and allowing the definition of a semantic weighting scheme to rep-
resent documents and queries, while it overcomes the drawbacks of the standard
Jiang-Conrath distance.
The weighted Jiang-Conrath distance is defined as the shortest weighted-path

metric among concepts and individuals within the base ontology, according to the
generalized Jiang-Conrath edge weights (IC difference). The weighted Jiang-Conrath
distance is a well defined metric on any sort of taxonomy. By contrast, the Jiang-
Conrath distance only is a metric on tree-like ontologies [Orum & Joslyn, 2009].
The proposed model could use any known intrinsic IC-based method to compute
the IC-values for every concept in the base ontology, although our preferred ap-
proach is the method proposed in [Pirró & Seco, 2008]. The IC-values depends
only on the structure of the ontology, thus, these can be computed a priori during
the set up process of the search engine. By other hand, the computation of the
shortest weighted-path among concepts needs to be done through any Djikstra-type
algorithm [Ahuja et al., 1990], with the inconvenient that it could be very expensive
for large base ontologies. By this reason, we define a pre-processing step to compute
a priori the IC-values and all the pairwise distances among concepts of the base
ontology, such as is shown in figure 2.13.
The ontology-based ranking method proposed in this work is based on a distance

function among document and queries, which is defined by the Hausdorff distance
among subsets of a metric space, according to the semantic metric of the repres-
entation space. The use of the Hausdorff distance and the weighted Jiang-Conrath
distance guarantee that the model is a well defined metric space on the space of all
annotated information units (documents) on any sort of base ontology.
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Up to our knowledge, the IR model proposed in this work is the first one to
use an ontology-based semantic distance and the Hausdorff distance as ranking
method, unifying the representation of weighted-mentions to classes and individu-
als in a same metric space. Moreover, in the case of a tree-like base ontology, the
representation space also verifies the structure of a hierarchical Voronoi diagram
[Gold & Angel, 2006], where every parent concept geometrically subsumes its des-
cendant concepts. We could say that the logic hierarchy of the base ontology is
transformed in a geometric hierarchy according to the semantic metric of the model.
The proposed model unifies the representation of the classes and individuals of

the ontology in a same semantic metric space, while their intrinsic semantic relations
are preserved. The documents, or other information units, are represented by sets
of weighted-mentions to individuals and classes in the ontology, while the queries
are represented as sets of mentions to individuals and classes considered as sets of
subsumed concepts and individuals.
Our model avoids the use of vector spaces to rank documents, instead, a doc-

ument (information unit) is defined as a collection of weighted mentions to classes
and individuals, and the ranking method for documents is built using the metric
of the space and the Hausdorff distance among subsets. The mentions to classes
(concepts) within a user query are mapped to subsets of the representation space,
while the mentions to classes in the documents are managed as weighted mentions
to distinguished individuals of the parent class.
Structure-preserving ontology embedding. The main feature of the proposed

model is that the embedding of the information units in the semantic represent-
ation space preserves the three main structure relations of the ontology defined as
follows: (1) the intrinsic semantic distance (metric structure) among classes, (2)
the taxonomic relations (topological/order structure), and (3) the set inclusion rela-
tions (set structure). We call these three structure relations as the ontology intrinsic
structure.
We can say that the proposed model builds a natural equivalence between the

information units and its embedding in the representation space, following the notion
of natural morphism in the theory of categories [Eilenberg & MacLane, 1945]. The
proposed model tries to capture and to save all the semantic information provided
by the ontology, avoiding any information lost in the embedding process. The input
for our ontological space is a populated ontology with semantic annotations of any
sort of information units. It means that the model assumes the existence of a
complementary semantic annotation module whose aim is to search the references
to classes and entities of the ontology.
The Intrinsic Ontological Spaces model allows ranking documents, or any other

semantically annotated data, using a semantic distance function derived from the
ontology model. We expect that our model allows to improve the ranking quality
and the precision and recall measures of the current methods, while it solves the
inconsistencies in the current models.
The proposed solution has some theoretical and practical advantages over current

methods:

1. The proposed IR model removes some inconsistencies in previous models, such
as the: orthogonality property and the cardinality mismatch already explained
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above; the lack of a ranking method based in an intrinsic semantic; the lack of
a semantic weighting method. The removal of these inconsistencies contributes
to get an improved semantic representation model, whose main consequence
is the improvement of the ranking quality and the precision and measures for
any application based on the novel IR model.

2. All the logic components of the IR model are ontology-based. It includes the
retrieval process, the weighting schema, the ranking and the definition of the
representation space itself. Every element of the IR model is directly derived
from the structure relations encoded by the base ontology used for the indexing
of the data.

3. The proposed IR model allows integrating many geometry-based algorithms
and theoretical results with potential benefits for the model. For example,
we can integrate well known geometry-based space search methods to find
nearby documents [Brin, 1995], enabling the extension of the model to large
scale document collections as the web, or large text repositories in government
agencies and private companies.

4. The ranking and weighting computation model that is proposed can be es-
timated on-the-fly without any training phase, because our weighting method
does not use an inverse frequency table.

5. The factorization of the weights for the mentions in static (normalized fre-
quency of the mentions) and dynamic (IC-value per concept) factors, allow
updating the input parameters of the model (IC-values) while the index form
of the indexed units is preserved. It means that the ontology could be dynam-
ically updated in different ways (merge, concept insertion, etc.), without to
make changes to the indexed units, while the parent classes for the weighted-
mentions still are in the ontology. By example, if a set of new classes is added
to the base ontology, the system only needs to run the pre-processing step to
get the new set of distances among concepts (classes), then, any new query
answer will be computed using the novel semantic relations in the base onto-
logy.

6. Like other known methods, our model also merges the retrieval and ranking of
documents in a same step, removing in this way the necessity to use SPARQL
or any other query language to retrieve the documents to be ranked, as well as
any other semantic retrieval method as is proposed in [Mustafa et al., 2008].
The query is represented as any another document, and it is used to search
the full set of indexed documents, eliminating the first retrieval step of the
current models.

Throughout our discussion, we use a language inspired in geometric notions
whose purpose is to enlighten some analogies and relations between the conceptual
spaces and its geometric images, expecting it allows us to use all these well estab-
lished and powerful theories. Our work is related to some results in a novel research
trend called geometry-based semantic models, whose first reference is defined by
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some preliminary ideas discussed by Widdows [Widdows, 2004] and partially de-
veloped by Clarke in his thesis [Clarke, 2007].
As we discussed above, our own work is a novel contribution to the family of

ontology-based IR models, and to the family of ontology-based semantic distances.
By last, the Intrinsic Ontological Spaces can also be interpreted as a extreme way
of ontology-based query expansion, problem recently revised in [Wu et al., 2011],
where all the admissible query expansions are already integrated in the represent-
ation space itself, avoiding the query expansion problem. In this last direction, in
[Saruladha et al., 2012] the authors studied how the semantic similarity/distance
measures could be used to expand the user’s query through the use of semantically
related words in an ontology, problem that is avoided by our model.

2.1.4 Potential applications

As we said above, we already mentioned that the use of any sort of vector space
models is omnipresent in all sort of natural language applications, specially as IR
models for all sort of web and data search engines. The ontology-based IR model
proposed in this work defines a new paradigm for the semantic indexing of all sort
of semantically annotated data, whose main goal is transforming the search pro-
cesses made by the users from a keyword-based search to a concept-based search.
Therefore, our IR model can be considered as a complement and a new generation
of IR models destined to substitute the current generation of keyword-based search
engines, including also the recent ontology-based IR models based in adaptations of
the VSM model.
The proposed model is framed in the family of ontology-based IR models, and

it shares a common goal with other previous methods: be the cornerstone of a new
generation of semantic search systems.
As the VSM models, the proposed model can be applied in the context of any

NLP application where any sort of semantic space is used, among we can cite: web
search system, any sort of IR system for text indexing and retrieval, cross-language
information retrieval (CLIR) systems, automatic text summarization systems, text
categorization and clustering, question answering systems, and word disambiguation
among others. Moreover, the proposed model also can be applied in bioengineering
applications where the data and the domain knowledge are represented within a
domain-oriented ontology.
The ontology-based IR model proposed in this work is able to update any sort

of application based in semantic vector spaces, or ontology-based adapted VSM
models. By example, the VSM model has been extensively used in the context of
cross-language IR systems (CLIR), such as the model shown in figure 2.1.
Other problem where some adaptations of VSM have been proven its utility, and

our model could be applied, is in automatic text summarization (TS). In the scope of
extractive TS methods we can find some conceptual models based in adaptations of
the VSMmodel to represent the semantic similarity relations among sentences. This
is the followed approach in [Meng et al., 2005] where the authors define the concep-
tual vector space model (CVSM), whose ideas are very close to the ontology-based IR
model approach. Other TS methods are based in the clustering of sentences, origin-
ating the notion of centrality, whose core idea is that any document can be represen-
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Figure 2.1: Basic architecture of a MLIR/CLIR system

ted by the more significative (central) sentence. These clustering methods use a VSM
model to represent the sentences in any document, where each vector encodes a set
of features of the sentence, and the model can use different functions to establish the
similarity among sentences. Among these clustering TS methods we find the pion-
eering works of [McKeown et al., 1999] and [Hatzivassiloglou et al., 2001], as well as
the works in [Siddharthan et al., 2004] and [García-Hernández & Ledeneva, 2009].
Finally, the most recent text summarization (TS) methods are based in graph-
ranking algorithms derived from PageRank and HITS, whose main references are the
works of [Erkan & Radev, 2004], [Mihalcea & Tarau, 2004], [Wolf & Gibson, 2004]
and [Vanderwende et al., 2004]. If the sentences within a document are considered
as information units, these graph-based methods could benefit from the proposed
model in this work, because the graphs are derived from the semantic similarity
among sentences obtained through adaptations of a vector space model and a set of
semantic features.
In the scope of the Q&A systems, the vector space models have been used

to represent sentences within a document, and to retrieve text fragments with
potential answers to a question. These approaches are inspired in IR models,
and jointly with other techniques, they have been successfully proven in DeepQA
[Chu-Carroll et al., 2012] to retrieve relevant text fragments for a user query.
Finally, other potential application of the Intrinsic Ontological Spaces is the word

disambiguation problem, where have been proposed methods based in the vector
representation of the context of a word [Navigli, 2009], following the distributional
hypothesis. Due to the omnipresence of the vector space models in NLP, it is very
clear that the proposed model has many potential applications in the scope of NLP
and IR applications.

2.1.5 Structure of the chapter

The remainder of the chapter is structured as follows. In section 2.2 we make a survey
of the state of the art in ontology-based IR models and geometry-based ontology
embeddings. Due to its extension, we divide the state of the art in three parts:
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(1) ontology-based IR models, (2) geometric representations for ontologies, and (3)
ontology-based semantic distances. In section 2.2.3, we make an introduction and
review of the semantic distances and similarity functions defined among concepts in
an ontology, ideas that are a core element in the definition of our model. For sake
of completeness, the section 2.3 makes an introduction of the basic concepts used
in our discussion, such as ontologies, lattices, metric spaces, metrics on lattices and
the Hausdorff distance, although any reader familiar with these concepts can skip
the section. In section 2.2.3.2 we summarize some facts about the Jiang-Conrath
distance in the context of our investigation. The section 2.4 introduces our IR
model, there, we make a detailed description of the main components of the Intrinsic
Ontological Space model: the indexation, retrieval and ranking methods. In section
2.5, we introduce a toy example to show the proposed model, and we briefly discuss
the future experiments that should be carried-out for the validation of the model.
By last, we elaborate and describe our conclusions and future work.

2.2 Related work

Our model is mainly related with three categories of works in the literature: (1) the
ontology-based IR models, (2) the geometric representations for taxonomies, and
(3) the ontology-based semantic distances.
According to the research problem studied, our work is framed in the family

of ontology-based IR models, while that according to the approach followed in the
proposed solution, our work is strongly related with the family of ontology-based
semantic distance and similarity measures. In fact, our model includes a novel
ontology-based semantic distance called weighted Jiang-Conrath distance. By other
hand, the geometric approach adopted in our work is inspired by the same geometric
spirit in the pioneering works about geometry and meaning of [Widdows, 2004] and
[Clarke, 2007].
The remainder of the section is structured as follows. First, we review the state

of the art about the ontology-based IR models. Second, we review some methods
and ideas for the geometric representation of taxonomies that are related to the
core ideas of the IR model proposed in this work. By last, we introduce and review
the state of the art about ontology-based semantic distances, and we enumerate the
known facts and drawbacks about the Jiang-Conrath distance, which have motivated
the development of the novel semantic distance that we call weighted Jiang-Conrath
distance.

2.2.1 Ontology-based IR models

Browsing the literature, we find some previous surveys about the family of ontology-
based IR models. By example, we can cite the reviews made in [Castells, 2008] and
[Fernández et al., 2011], as well as the survey in the context of multimedia retrieval
made in [Kannan et al., 2012]. In other work [Wu et al., 2011], the authors survey
the query expansion problem in IR and others ontology-based IR models, such as the
analyzed ones in this section. Although our analysis of the state of art is exhaustive,
the surveys cited can be useful to the reader to follow our analysis of the state of
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the art about the main research problem studied here.
Ontology-based IR models and query expansion. Having cited the query

expansion problem, reviewed in [Wu et al., 2011], we would like to express our view
about the relation between this approach and the ontology-based IR models that
we studied here. We could consider the query expansion approach the dual of the
ontology-based models: the first one expands the query, while the last one expands
the conceptual representation of the document. In the query expansion approach,
the terms in the query are expanded with synonyms, related concepts or semantic
annotations, and the expanded vector of terms is used to interrogate an unstructured
semantic representation space. By other hand, in the ontology-based approach, the
representation space is structured, and the semantic relations are already implicit
in the indexation model, therefore the semantic representation of the documents is
already expanded to match the queries in its base form.
In [Castells, 2008], the author makes a literature survey about the use of ontolo-

gies in IR and web mining, approach commonly known as semantic web, while he de-
scribes his experience in the development of an ontology-based IR system introduced
in [Castells et al., 2007]. In other recent work [Fernández et al., 2011], the same
group of authors introduce some extensions to the model in [Castells et al., 2007],
in order to operate at web scale, while they also extend their previous literature
survey. In [Kannan et al., 2012], the authors survey the ontology-based IR models
in the context of the multimedia IR field.
For sake of understanding of the literature about the topic, the reader can see,

in the tables 2.1 and 2.2, a summary of the main features of the ontology-based IR
models analyzed in this section. The ontology-based IR models have been categor-
ized in two subfamilies according to the structure of its representation space: (1)
metric-space models, like ours, and (2) adapted VSM models.

Ontology-based metric space models
IR Model Doc. Rep. Doc. Space Retrieval Weighting Ranking

Rada et

al., 1989

Set of

boolean

concepts

Ontology-based

metric space

(shortest path)

Integrated in

ranking

Boolean Average distance

among sets of

concepts

This

work,

2014

Set of

weigthed

instances

and concepts

Intrinsic

ontology-based

metric space

(extension of JC

distance)

Integrated in

ranking

IC-based

TF

weights

Haussdorff

distance among

sets of weighted

concepts and

instances

Table 2.1: Ontology-based IR models based in semantic metric spaces

2.2.1.1 Metric space models

As we mentioned in the introduction, and to the best of our knowledge, the first
published ontology-based IR model is proposed in [Rada et al., 1989]. The main
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motivation of this work is the development of a IR model for biomedical applications,
where the documents are represented as sets of concepts within a common ontology.
In [Rada et al., 1989], the authors propose to use the shortest path between con-

cepts on an ontology as a measure of its semantic distance, and they call this measure
Distance. The proposed IR model represents the documents and the queries by the
set of concepts referenced in these information sources, nevertheless, the proposed
IR model lacks of any weighting method, being a Boolean model. The documents
are represented by the concepts associated to the instances in the document, but
unlike our model, the instances are not represented in the model. To rank the docu-
ments according to a user query, they extend the Distance function among concepts
to sets of concepts to define in this way a distance measure among documents. The
Distance between sets of concepts (documents) is defined as follows: given two doc-
uments or queries, its ranking distance is defined as the average distance among all
the pairwise combinations of concepts in the two sets.
Following the review of the model in [Rada et al., 1989], we find other drawback

related to the continuity of their distance function. They define the distance among
documents like the average pairwise distance among concepts in opposite sets. The
authors reports an undesired continuity problem near the zero distance value. The
source of the problem is that their distance function among documents does not
fulfill the coincidence axiom of a metric (see definition 6), thus it is not a well
defined metric on sets, such as the Hausdorff distance used in our model. With the
aim that the distance function on sets of concepts can satisfy all the axioms for a
metric, the distance function among sets of concepts is artificially forced to be zero
when the two input sets of concepts are equal. A closer look to their formula in
[Rada et al., 1989, def. 2, pp. 22] unveils an important underlying difference with
the classical Hausdorff distance: while the Hausdorff distance uses the minimum-
based point-set distance (definition 8), the implicit point-set distance in the Rada’s
model is the average distance among every point and all the elements in the set.
This difference prevents that their distance function be a well defined metric.
The IR model proposed in [Rada et al., 1989] is very close in spirit to the IR

model proposed in this work. We can find some similarities and differences among
both models in some aspects.
First, we find that both models share some features: (1) both models use some

sort of ontology-based semantic distance, (2) they representate the documents by
sets (not vectors) of concepts, and (3) both share the definition of a rank function
among sets of concepts.
By other hand, we find some differences as follows. First, both models repres-

ent documents by sets of concepts, although the Intrinsic Ontological Spaces also
includes instances of concepts (individuals). Second, both models use a semantic dis-
tance defined on the ontology, but while Rada et al. use the shortest path length, we
use a generalization of the Jiang-Conrath distance [Jiang & Conrath, 1997], which
was designed to remove some known drawbacks in the edge-counting family of se-
mantic distances and the standard Jiang-Conrath distance, such as we explain in
depth in section 2.2.3.1. Third, the Rada’s model use the average distance among
all cross-pairs of elements to define a metric among sets of concepts, while we use
the standard Hausdorff distance as metric with the advantage that the Hausdorff
distance is well founded from a mathematical point of view. The Hausdorff distance
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is the a metric on subsets of a metric space which is derived an extension of the
metric of the space to sets. The Hausdorff distance is always continuous according
to the topology induced by the metric of the space, removing the drawback related
to the continuity around zero that Rada et al. report for their ranking function.
It is interesting note that the ranking function proposed in [Rada et al., 1989] is
very close to the definition of the Hausdorff distance, with the difference that the
Hausdorff distance selects the maximum distance among all the point-set distance
values, instead of the average value proposed by their model.

2.2.1.2 Adapted and enriched VSM models

The more recent family of ontology-based IR models start with the pioneering works
in [Vallet et al., 2005] and [Fang et al., 2005]. Both works were independently pub-
lished in very close dates, without any cross citation between them, or in others
subsequent works as [Castells et al., 2007] and [Fernández Sánchez, 2009]. The IR
model proposed in [Vallet et al., 2005] was continued in [Castells et al., 2007], being
this research trend the core of the thesis of Fernández [Fernández Sánchez, 2009].
In [Vallet et al., 2005] and [Castells et al., 2007], the authors propose an ontology-

based IR model based in one adaptation of VSM to represent concepts and indi-
viduals instead of meaningless terms. This model includes most part of the features
exhibited by the models in the ontology-based IR family, and it could be considered
as its canonical representative.
The main idea in [Castells et al., 2007] is to substitute the keywords vocabulary

of a classic VSM, which defines the base vector set, by a vocabulary of concepts and
instances within the base ontology of the KB, instead of a collection of meaningless
terms. The documents are represented (indexed) by a vector of adapted TFIDF
weights, where each weight is defined according to the saliency of a concept or
instance of a concept within a document, and its semantic discrimination capacity.
Each document is represented by a set of concepts and concept instances, instead of
keywords, in this way, the system index the documents using concepts and instances
as base vectors of its VSM model. To index the documents, the system associates a
set of semantic annotations for the found references to concepts in the KB, which
define the collection of concepts instantiated within each document.
The automatic semantic annotation is a very complex task which still be a very

active research field in the information extraction (IE) community, by this reason,
we consider the automatic semantic annotation problem out of the scope of our
investigation, such as is made in [Castells et al., 2007], and we assume that the IR
model proposed here need to be integrated with additional IE components for this
task.
The operation of the IR model proposed in [Castells et al., 2007] is as follows.

First, the system only accepts user queries in SPARQL format and it assumes that
the documents have already been semantically annotated. Second, each document
is represented by a set of semantic annotations in an ontology, which are defined by
the references to concepts found in the documents. Third, the SPARQL query is
used to interrogate the ontology and to retrieve all the documents with annotations
derived from the concepts and instances included in the query. Fourth, all the
documents retrieved are represented by vectors before to be ranked, while the base
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of the vector space is defined by all the concepts and instances (individuals) included
in the ontology, and an adaptation of TFIDF weighting scheme is used to convert
the set of annotations of each document in a normalized vector expressed in the base
of the concept vector space. By last, the retrieved documents are ranked using the
cosine function.
The system, such as is expressed by the title of the work, is a direct and nat-

ural adaptation of the classic VSM model to manage concepts. The proposal in
[Castells et al., 2007] agrees with other cited authors in that the proposed semantic
IR model needs to be combined with standard keywords-based VSM models, due to
the impossibility to have wide covering ontologies in a near future, by this reason,
their system builds two independent VSM models (keywords + concepts) that are
combined in the last retrieval stage.
The semantic retrieval capability of the Castells-Fernández-Vallet model is de-

rived from the semantic retrieval of annotated document in the ontology, which is
able to retrieve documents with references to concepts not included in the query or
the document, starting from more abstract concepts defined in the base ontology.
This capability is the essential contribution provided by the use of ontologies in IR,
as well as the main reason for its broad acceptation in all sort of semantic search
applications.
The documents retrieved by the Castells-Fernández-Vallet model are the doc-

uments annotated with entities found in the document collection retrieved by the
SPARQL query [Castells, 2013], but the work do not clarify how it manages, if it
does, the references to classes of concepts, it means when any document cites a set
of objects using the name of the class, not a specific instance.
The model in [Castells et al., 2007] was extended in [Fernández Sánchez, 2009]

and [Fernández et al., 2011] for broadening its application to a large scale and het-
erogeneous context as the web. Meanwhile, in [Bratsas et al., 2007], the authors
introduce an application of the model in [Castells et al., 2007] to the problem of
information retrieval in biomedicine, using a domain specific ontology and a fuzzy
query expansion.
In [Fang et al., 2005], the authors propose an ontology-based IR model almost

identical to the model in [Castells et al., 2007]. The model of Fang et al. has the
same functional structure that the Castells-Fernández-Vallet model. The system
admits queries defined by keywords or complex expressions which are transformed
to queries in format OWL-DL. The OWL queries retrieve the related RDF triplets
contained in the KB with references to the concepts and instances included in the
user query. From the concepts and instances in the RDF triplets, the system retrieves
the associated documents, and by last, the documents are ranked according to the
user query. Such as in [Vallet et al., 2005], the model in [Fang et al., 2005] builds an
adapted VSM representation trough a TDIDF weighting scheme using the instances-
document frequency matrix, but unlike [Vallet et al., 2005], the final weights include
a saliency factor whose purpose is to take into account the semantic differences
among concepts and instances.
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Concept-based adapted VSM models
IR Model Doc. Rep. Doc. Space Retrieval Weighting Ranking

Fang et al.,
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Weighted bi-

vector of in-
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keywords
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keyword based
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Vallet et
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al., 2007

Weighted bi-

vector of in-
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keywords

Instance—

keyword based

bivector VSM

SPARQL
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TFIDF Bivector cosine
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Mustafa et

al., 2008
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based
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vector

Concept-based

single vector

VSM
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semantic distance)
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Egozi et al.,
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Vector of
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2012

Multi-

vectors of

weighted

keywords +

ontological

features

enriched

concept-based

multi-vector

VSM

Integrated in
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concepts
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VSM

Integrated in
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TFIDF Cosine score

Table 2.2: Ontology-based IR models based in some adaptation of the VSM model
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We could say that the work of [Fang et al., 2005] is a first try to include a se-
mantic distance measure in an ontology-based IR model, although it be a coarse ap-
proximation, because the theory about ontology-based semantic distances described
in section 2.2.3, offers a well founded and precise solution to this problem. Precisely,
the Intrinsic Ontological Spaces model builds on previous results on this theory for
providing a unified representation that integrates the intrinsic structures of the on-
tology in the model, providing many potential benefits to the common drawbacks
of the family of ontology-based IR models revised throughout this section.
In [Mustafa et al., 2008], the authors propose a semantic IR model based in the

use of RDF triplets and a thematic similarity function. The thematic similarity func-
tion associates concepts according to its membership in a common semantic field or
theme. The user queries are encoded as RDF triplets, which are expanded to include
synonyms and other semantically related concepts. The query expansion with re-
lated concepts uses a neighborhood notion based in a measure of semantic distance
among concepts on the ontology. To establish the semantic similarity among the
queries and the documents, the system uses the RDF triplets in the query and the
RDF annotations associated to the documents. The documents with RDF triplets
matching the terms in the expanded query are extracted from the collection, and
are ranked according to their saliency. To select the documents that match the
query terms, the authors use a set of semantic distance functions on the ontology to
compute the closeness among the concepts in the query and the concepts annotated
by the document, in other words, the retrieval of documents is driven by a ontology-
based semantic distance function instead of a formal Boolean SPARQL query. To
rank the retrieved documents, the documents are represented into a vector space of
RDF concepts using a TFIDF weighting scheme, then, the documents are ranked
using a combination of the cosine function and the same semantic distance function
that was previously used. The semantic distance function used in the IR model is a
novel edge-counting measure proposed in the same work, which includes a exponen-
tially decreasing factor according to the depth of the nodes. The methodology can
be summarized in four steps: (1) query expansion of the RDF triplets, (2) retrieval
of related documents based in a novel edge-counting semantic distance, (3) mapping
of the documents to a concept-based vector space using a TFIDF weighting, and (4)
document ranking using the standard cosine function. The main drawback of the
model of Mustafa et al. is that it retains the same geometric inconsistencies that
previous ontology-based IR models, despite its smart integration of the semantic dis-
tances in the retrieval process. Although the model retrieves the documents using
a ontology-based semantic distance, notion that we share as support in our model,
in [Mustafa et al., 2008] the documents are ranked in a concept-based vector space
where the semantic metric is missing. A second drawback of the model is the use of
a edge-counting distance, which have been refuted by the research community, such
as we discuss in section 2.2.3. Today, the most broadly accepted semantic distance
is the Jiang-Conrath and its intrinsic variants. By last, other drawback of the IR
model in [Mustafa et al., 2008] is that it does not consider instances of concepts,
or named entities, in its representation, in contrast with the Intrinsic Ontological
Spaces model proposed in section 2.4.
In [Dragoni et al., 2010], the authors propose a concept-based vector space model

which usesWordNet leaf concepts as base vectors for the representation of documents
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and queries. The proposed IR model is an adapted concept-based VSM model
with an adapted TDIDF weighting method, and the standard cosine function as
method for the ranking of saliency documents. The paper does not give details
about the process to convert terms in WN concepts. Because the model does not
include abstract concepts in its vocabulary, all the explicit references in the texts
to abstract concepts not included in the vocabulary are discarded by the system.
Also, the model does not include named entities recognizer (NER). Like the other
concept-based adapted VSM models already described, the model of Dragoni et al.
falls in the same modelling inconsistencies reported in section 2.1.1.
In [Egozi et al., 2011], the authors introduce a novel conceptual IR model based

in the extension of a keywords-based VSM model with concepts defined in an on-
tological KB. Both, documents and queries are represented by a vector of weighted
terms enriched with weighted concepts obtained through the use of an automatic an-
notation method, which extracts the underlying concepts within both text sources.
The automatic semantic annotation method used is called Explicit Semantic Ana-
lysis (ESA) [Gabrilovich & Markovitch, 2006], and it is used to expand the standard
terms-based VSM representation. The concepts used in the model are extracted from
a hand-coded ontology. The authors use a feature selection method to choose the
subset of concepts that best represents the corpus, and the selected concepts are
used to expand the keywords-based VSM representation. The model proposed im-
proves the results of previous methods when it is evaluated over some TREC corpus.
By other hand, this model joins keywords and abstracts concepts in a same VSM
model, thus, the authors follows the idea mentioned in [Castells et al., 2007] about
the use of the ontology-based models as a complement to standard keywords-based
models. The ESA model does not use a formal ontology to describe the structure
relations of the concepts, although it could be easily extended to do it, such as is
made by the authors in their proposal.
Moreover the common drawbacks of the family of ontology-based IR models, the

main drawback of the model in [Egozi et al., 2011] is that it only includes refer-
ences to abstract concepts (classes), not to entities (instances). From an abstract
point of view, the model of Egozi et al. uses the same strategies that the mod-
els in [Castells et al., 2007], [Fang et al., 2005] and [Mustafa et al., 2008]. These
strategies can be summarized as follows: (1) use a concept-based representation for
documents and queries, (2) the use of ontologies, and (3) indexing and retrieval of
documents based in a concept-based adaptation of the VSM model.
Unlike the model in [Castells et al., 2007], which builds two independent vec-

tor representations (keywords-based and concepts-based) that are combined later in
the retrieval stage, the model in [Egozi et al., 2011] mixes concepts and meaningless
terms in the same VSM representation, thus, the last one is an example of the car-
dinality mismatch problem described in the introduction of this chapter . Precisely,
the core idea of the work in [Egozi et al., 2011] is to enrich the vocabulary based in
keywords with concepts. The references to entities are captured by the meaningless
keywords or terms, while the references to abstract concepts are captured through
the ESA annotation method.
In [Cao & Ngo, 2012], the authors propose an extension of the keywords-based

VSM model with ontological features associated to the named entities. The basic
hypothesis is that the named entities are the more discriminative terms in most of
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the user queries, therefore, the enrichment of the VSM model with information not
explicitly represented in the documents should lead to improvements in the precision
and recall measures. The main idea is to merge in a same vector representation the
TFIDF weights derived from independent vocabularies with features from different
nature. The model uses a multivector representation for each document, where each
document is defined by a vector of TFIDF weights defined on multiples vocabularies
associated to the different types of features, such as: keywords, the alias, the asso-
ciated class to the named entity, and entity identifiers among others. By last, the
model uses a barycentric combination1 of the cosine function for each independent
vector, such that the similarity between a document and a query is a weighted func-
tion of the individual similarities among pairs of independent feature vectors. The
weight factors used to merge the independent similarity measures are left as free
parameters to be tuned by each application. Other time, this adapted VSM model
falls in the same modelling inconsistencies already reported.
In [Machhour & Kassou, 2013], the authors introduce a method to integrate the

use of ontologies in VSM-based systems for text categorization (TC) already exist-
ent. The core idea of the method is to map the original term-based vectors, whose
coordinates represent meaningless terms, to concept-based vectors whose coordin-
ates represent concepts within ontology. The authors evaluate the proposed model
with the known RCV1 corpus [Lewis et al., 2004], reporting only small improve-
ments in performance, which they attribute to the strong pre-processing of these
systems (stemming without disambiguation). Despite these discouraging results,
the work studies a practical open problem with a clear application in TC.

2.2.2 Geometric representations for taxonomies

Our work is related in spirit with one distance-preserving ontology embedding pro-
posed by Clarke in his thesis [Clarke, 2007], whose main ideas has been also pub-
lished in [Clarke, 2009] and [Clarke, 2012]. Following some geometric ideas intro-
duced by Widdows in [Widdows, 2004], Clarke proposes a distance-preserving em-
bedding method for the concepts within a taxonomy, which is called vector lattice
completion, whose main idea is to use the natural morphism between the taxonomies
and the vector lattices.
Clarke’s ideas are based in the very close relation between taxonomies and lat-

tices, derived from the fact that many human-made taxonomies are join-semilattices,
although in the more general case, we could also find examples of taxonomies with
multiple inheritance, where a pair of concepts do not have a supremum.
The vector completion builds an order preserving homomorphism which maps

each concept to a linear subspace in the vector lattice, with the property that the
Jiang-Conrath distance among concepts [Jiang & Conrath, 1997] is preserved as the
euclidean distance between vectors, when the taxonomy is a tree. The leaf concepts
are mapped to base vectors of the space, while any non-leaf concept is mapped to
the linear subspace spanned by its children concepts. We note that the ontology em-
bedding of Clarke is an implicit application of the theory of categories [Pierce, 1991],

1A barycentric combination is a linear combination of variables defined by a set of weights, one
per variable, whose sum is always one.
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where his completion is a natural structure-preserving mapping among different, but
intrinsically identical, algebraic structures.
Although the embedding proposed by Clarke represents a very important mile-

stone in the search of a semantic distance-preserving representation for ontologies,
and its application to the development of good ontology-based IR models, the work
of Clarke has two important drawbacks in the context of an ontology-based IR model
that differentiate it with the model proposed here: (1) the lack of the integration
of individuals (instances of concepts) in the model, and (2) the lack of a method
to represent information units composed by a collection of concepts or references
to them, such as documents. Unlike our model, the Clarke’s embedding does not
consider populated ontologies, thus, the vector lattice completion only works for
concepts, not for individuals (instances). Moreover, the model of Clarke cannot be
used to represent information units defined by a collection of concepts, or refer-
ences to concepts (instances), it means that we do not know how to use the vector
lattice completion for representing and comparing documents. Precisely, Clarke
surveys the compositionality vector-based representation problem in a recent work
[Clarke, 2012].

The Jiang-Conrath distance and the valuation metrics. Clarke notes
in [Clarke, 2007, pp.92] some relation between the Jiang-Conrath distance and one
metric function on lattices, but he does not reach to unveil the key relation between
the Jiang-Conrath measure and the definition of metrics on lattices. Clarke ask
himself in [Clarke, 2007, pp.91] by the existence of other semantic distances as the
Jiang-Conrath which allow to build other distance-preserving embedding using the
vector completion approach. Now, we know that this property of the Jiang-Conrath
is consequence of its relation with some sort of valuations on lattices, such as it
has been investigated in [Orum & Joslyn, 2009]. The Jiang-Conrath is the metric
associated to an antitone sort of valuation on a lattice.
Open questions about metrics and lattices. It is a known fact in lattice the-

ory that any valuation function on a lattice induces a metric on it [Monjardet, 1981],
by this reason, one possible research trend is to try to find a more general valuation
definition which could subsumes any other ontology-based metrics. Other interest-
ing question is to know if every metric on a lattice is a valuation metric, or there is
other types of structures for them. In the hypothetical case that every metric on a
lattice be a valuation metric, we could search an abstract valuation generalizing all
the possible distance-preserving measures on a vector lattice completion.

2.2.3 Ontology-based distances

The necessity to compare semantic concepts has motivated the development of many
semantic distances and similarity measures on ontologies. The distance and similar-
ity functions are complementary functions with opposite meanings, in the sense that
they produce an antitone, or inverse, ordering, it means that for a greater similarity
decreases the distance and vice versa. By example, in the VSM model, most of
models use the cosine function on the unit hypersphere (normalized vectors) which
is exactly the inverse function of the geodesic distance among points on the features
space, thus, despite of the cosine function or the geodesic distance produce an in-
verse ordering, they produce exactly the same ranking result for any input query.
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Any similarity function can be converted in a distance function, and vice versa, thus,
we focus here in the study of semantic distances on ontologies.
An ontology-based semantic distance dO is a metric defined on the classes of any

ontology, which verifies the definition 6. The ontology-based semantic distances can
be categorized in three broad classes:

(1) Edge-counting based distances, such as [Rada et al., 1989], [Lee et al., 1993],
[Wu & Palmer, 1994] and [Hirst & St-Onge, 1998].

(2) Vector-based distances, such as the measure in [Frakes & Baeza-Yates, 1992].

(3) IC-based distances. The family of distances based in the Information Content
(IC) measure is the most broadly accepted one, whose main references are
the works in [Resnik, 1995], [Jiang & Conrath, 1997] and [Lin, 1998]. The
IC-based family is subdivided in two subgroups: (a) corpus-based measures
which use corpus statistics to compute the occurrence probabilities and the
IC values for each concept, and the (b) intrinsic methods which only use
the information encoded in the structure of the ontology, in whose family
we can cite the pioneering works of [Seco et al., 2004], [Zhou et al., 2008] and
[Pirró & Seco, 2008].

The state of the art in semantic distances is defined by the IC-based measures
[Meng et al., 2012]. The main research trend in the area is the development of
intrinsic IC methods which use the intrinsic knowledge encoded in the ontology as
means to avoid the computation of any corpus-based statistics. The research activity
in intrinsic IC-based methods has increased very recently, such as is witnessed by a
dozen of recently published papers.
According to some relevant benchmarks driven in the literature, we can con-

clude that the Jiang-Conrath semantic distance offers the best results for most of
the applications, in special, whether its IC values are estimated by any intrinsic
method. In [Budanitsky & Hirst, 2001], the authors carry-out some benchmarks to
compare the IC-based measures of Resnik, Jiang-Conrath, Leacock-Chodorow, Lin
and Hirst-St-Onge, concluding that the Jiang-Conrath distance offers the best res-
ults. In a later work [Budanitsky & Hirst, 2006], the same authors arrive to the
same conclusion, and the work includes cites to other reports with similar conclu-
sions about the JC distance. Finally, in [Sánchez et al., 2011] the authors carry-out
a benchmark among IC-based measures comparing corpus-based methods and the
more recent methods based in the computation of the IC values through intrinsic
method. This last report concludes that all the measures work better using intrinsic
IC computation, while the intrinsic JC distance get the second best global results
for their tests.
Here, we only survey the most representative measures in the cited categor-

ies. For a broader revision of the literature, we refer to the reader to some re-
cent surveys, some of them are focused in biomedicine, such as [Lord et al., 2003],
[Lee et al., 2008], [Pesquita et al., 2009], [Hsieh et al., 2013], [Cross et al., 2013], and
[Harispe et al., 2013], while others do not assume any specific domain, such is the
case in [Saruladha et al., 2010], [Sánchez et al., 2012], [Xu & Shi, 2012], and
[Gan et al., 2013]. The book by Deza and Deza also includes a short, but very
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useful section about network-based semantic distances on ontologies as the Wordnet
[Deza & Deza, 2009, §22.2].

2.2.3.1 Some history

The first ontology-based semantic distances to appear were the edge-counting based
measures, whose main representative is the Rada’s measure [Rada et al., 1989]. All
these measures are characterized by the use of the shortest path length among
concepts measured on the ontology graph. The key idea behind these methods is
that the higher up you need climb to find a common ancestor to both concepts, the
greater should be the distance between concepts, and vice versa.
In [Rada et al., 1989], the authors propose to use the shortest path length among

concepts of an ontology as distance measurement among them, measure that they
call Distance. Their work sets, up to our knowledge, the first known ontology-based
semantic distance, and it also introduces the main hypothesis underlying all the
subsequent ontology-based semantic distances: the conceptual distance as metrics
hypothesis. This hypothesis states, following previous psychological studies, that
the conceptual distance, or similarity, among concepts in a semantic network, is
proportional to the path length that joins them. The shortest path length, also
called geodesic distance, is a metric in the formal sense, by this reason, the authors
in [Rada et al., 1989] prove that these measures are metrics on ontologies.

Hypothesis 1 (Conceptual distance as metrics) The conceptual distance, or
similarity, among concepts in a semantic network, is proportional to the path length
that joins them [Rada et al., 1989].

In table 2.3 we make a summary of the formulas used by some known measures
to compute the semantic similarity, or distance, between a pair of concepts within
an ontology, as well as the novel distance proposed in this work. The similarities
appear as sim (c1, c2), while the distance functions appear as d (c1, c2). The function
de (ci) returns the depth of any concept in the DAG of the ontology, it means the
length from the concept to the root node. By other hand, function L (c1, c2) denotes
the shortest path length among two concepts.
The main drawback of the measures based in edge-counting is that they implicitly

assume that every edge has the same relevance in the computation of the global
path length, without to take into account its depth level or occurrence probability.
This drawback can be called the uniform weighting premise. In [Resnik, 1995],
the authors propose a new semantic distance based in a Information Content (IC)
measure whose main motivation is to remove the uniform weighting premise of the
edge-counting measures. The IC measure for every concept is only the negative
logarithm2 of the occurrence probability of the concept, such as is shown in (2.1).
The probability function on the taxonomy defines a probability space, whose integral
value on the taxonomy is 1. Resnik et al. define the similarity measure that is shown

2Throughout this work, the logarithm function included in the IC function is the binary log-
arithm log2(x), although it had been ommitted in the notation, such as is made in the rest of
literature. In this case, the information content is measured in bits, like is usual for the entropy
value.
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Measure Semantic similarity or distance measure
Rada dRada (c1, c2) = min

all paths
{L (c1, c2)}

Wu-Palmer sim (c1, c2) = 2de(LCA(c1,c2))
de(c1)+de(c2)

Hirst-St-Onge dHS (c1, c2) = L(c1,c2)
k

Leacock-Chodorow dLC (c1, c2) = L(c1,c2)
max
ci∈C

{de(ci)}

Resnik sim (c1, c2) = max
ci∈sup(c1,c2)

{IC (ci)}

Jiang-Conrath dJC (c1, c2) = IC (c1) + IC (c2)− 2IC (LCA (c1, c2))

Lin sim (c1, c2) = 2ln(p(LCA(c1,c2)))
ln(p(c1))+ln(p(c2))

weighted Jiang-Conrath
(this work)

dwJC (c1, c2) = min
x∈Paths(c1,c2)

{ ∑
eij∈x

w (eij)

}
w (eij) = IC (P (vi|vj))

Table 2.3: Examples of semantic distance and similarities

in table 2.3, which is equivalent to assign a weight with the value of the probability
difference between the adjacent concepts of each edge.
Browsing the table 2.3, you can appreciate that other measures in the edge-

counting family also are based in some combination of the shortest path value as
was introduced by Rada et al, and all of them share the same drawbacks associ-
ated to the edge-counting family. It is the case for the works in [Lee et al., 1993],
[Wu & Palmer, 1994], [Leacock & Chodorow, 1998] and [Hirst & St-Onge, 1998].

The key idea behind the IC-based distances is as follows. The probability func-
tion p : C → [0, 1] ⊂ R is growing monotone while the ontology is bottom-up,
thus, while we climb on the ontology, the observation probability of any abstract
concept increase. As higher is the occurrence probability of one concept, lower is its
information content and vice versa.

IC (ci) = −log (p (ci)) (2.1)

In [Jiang & Conrath, 1997], the authors propose a set of IC-based semantic dis-
tances encoding a set of semantics notions that fill some gaps in [Resnik, 1995]. Jiang
and Conrath follow the IC approach of Resnik, but they note that previous meas-
ures not consider some important semantic notions encoded by an ontology, which
affects the semantic similarity appreciated by the human beings. They consider the
following issues: the number of descendants, the global depth of the concepts, the
type of semantic relation (hyper/hypo/meronymy), and the strength degree of a link
between a parent concept and its children concepts. From the different measures
proposed in [Jiang & Conrath, 1997], the wider accepted one is the Jiang-Conrath
distance shown in table 2.3.
In [Lin, 1998], the author refutes the vector-based distances, such as the proposed

in [Frakes & Baeza-Yates, 1992], by the necessity to use vectors, moreover, Lin also
notes that the edge counting methods only works on taxonomies, not admitting
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other ways of knowledge representation, such as first order logic. Lin propose a
novel definition of semantic similarity based in a probabilistic model and the IC
value.

2.2.3.2 Some facts about the Jiang-Conrath distance

The semantic distance proposed in [Jiang & Conrath, 1997] has two drawbacks that
are solved by the novel ontology-based semantic distance proposed here, these draw-
backs are as follows: (1) the Jiang-Conrath distance only is a metric in a strict sense
when the ontology is tree-like, therefore the Jiang-Conrath does not satisfy the met-
ric axioms on ontologies with lattice or general poset structure [Orum & Joslyn, 2009];
(2) the Jiang-Conrath distance is only uniquely defined for ontologies with lattice
structure, not for those with a general poset structure, and (3) it is only defined
on taxonomies of concepts, not weighted concepts (classes) or instances of concepts
(individuals).
The standard formula of the Jiang-Conrath distance on taxonomies is given by

the expression (2.2), where the term LCA (c1, c2)means the lowest common ancestor
node between the concepts c1 and c2. It can be written as c1∨c2 when the taxonomy
is a join semilattice, because in this case every pair of concepts holds a supremum
element.

dJC (c1, c2) = IC (c1) + IC (c2)− 2IC (LCA (c1, c2)) (2.2)

The formula (2.2) is uniquely defined for lattices, because in this case, we find
that any pair of concepts shares a unique common ancestor, named supremum, and
the third term is well defined. By contrast, for general taxonomies that not fulfill
the lattice axioms, we find pairs of concepts with more than one lowest common
ancestor, thus, the expression (2.2) admits more than a single value.
For the analysis in the next lines, we classify the taxonomies in three classes

according to its structure as follows: (1) tree-like taxonomies (see fig. 2.2), (2) upper
semilattices taxonomies (see fig. 2.3), and (3) general posets (DAGS) taxonomies
(see fig. 2.4). Starting from the observations above, we summarize some of the main
proven facts about the Jiang-Conrath distance as follows:

• Up to date, the Jiang-Conrath distance has proved to offer likely the best results
for a semantic similarity/distance measure. This conclusion rises from many
benchmarks carried-out in the literature, among we can cite the works in
[Budanitsky & Hirst, 2006] and [Sánchez et al., 2012]. Today, the state of the
art is based in intrinsic IC-based measures, in special, some intrinsic variants
of the Jiang-Conrath measure, such as is reported in [Sánchez et al., 2012].

• The Jiang-Conrath distance is a type of valuation metric on lattices. A first
glance to the formula in (2.3), found in [Deza & Deza, 2009, §22], induced us to
think that the Jiang-Conrath distance is some sort of metric on a lattice, and
the IC-values are some sort of valuation on it. We found that our first intuition
was right. While we thought about it, we discovered that this way has been
already walked by Orum and Joslyn [Orum & Joslyn, 2009]. The information
content function defines an antitone valuation when the underlying taxonomy
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is an upper-semilattice, and Orum and Joslyn prove that the IC function is a
type of valuation on join-semilattices 3. Precisely, the same authors explore
the connection among semantic distances on ontologies and metric on lat-
tices, proving useful theorems in the context of our work. For a survey about
valuation metrics on lattices we refer to the reader to [Monjardet, 1981] and
[Deza & Deza, 2009, §22].

v (x ∨ y)− v (x ∧ y) = v (x) + v (y)− 2v (x ∧ y) (2.3)

• The Jiang-Conrath distance is uniquely defined only for taxonomies that verify
the upper-semilattice structure, such as the tree-like ones. Such as we ex-
plained above, this property is a consequence of the definition of the term
IC (LCA (c1, c2)) as a function of the lowest common ancestor.

• The Jiang-Conrath distance only is a metric on tree-like ontologies, not on
semilattices or general posets. The Jiang-Conrath is only uniquely defined
on semilattices where every pair of nodes has a supremum, or unique Low-
est Common Ancestor (LCA), however, in [Orum & Joslyn, 2009], Orum and
Joslyn have proven that this condition is not enough to verify the axioms
for a metric, because for some lattices or general rooted-posets (taxonomies)
can happen that the triangle inequality not be satisfied. This theoretical res-
ult contradicts the claim made by Jiang and Conrath in their original paper
[Jiang & Conrath, 1997], where they claim that their distance is a metric on
any sort of taxonomy, without to include any exhaustive formal proof with
regard it. This contradiction in absolute detracts anything to their work, and
the deep impact that it has left in subsequent research.

• The Jiang-Conrath distance is not uniquely defined on general taxonomies.
For the case of general posets, the Jiang-Conrath distance not only is not a
metric, not even is well defined. The reason is that in this general case, it is
possible the existence of pairs of concepts with more than one LCA concept.
In a practical application, we can always select the first LCA concept found
in a LCA search, but we conjecture that it can introduce discontinuities of
distance function near of these elements, such as the discontinuity problems
reported by Rada et al. in [Rada et al., 1989] as consequence of the constraint
imposed in their distance function among sets of concepts.

• The theoretical limitations of the Jiang-Conrath prevent to get a well foun-
ded metric space on general taxonomies. One possible solution for the non
uniqueness condition would be to compute all the LCA values for each pair
of concepts [Baumgart et al., 2006], then, we could select the ancestral path
with the minimum distance value as the Jiang-Conrath distance. This idea
allows to define uniquely the Jiang-Conrath distance on any taxonomy, nev-
ertheless, it is not enough to verify the metric axioms, because, such as was

3About this fact, we would like to clarify that there are some minor formal differences among
the definitions given to the concepts “valuation” and “valuation metric”, in [Monjardet, 1981],
[Orum & Joslyn, 2009] and [Deza & Deza, 2009]. Thus, we think that would be needed a review
of the definitions and results in [Orum & Joslyn, 2009] in light of the gaps in the literature.
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proven in [Orum & Joslyn, 2009], it is not even possible in the simpler case of
semilattices, where the uniqueness condition is already guaranteed.

• The JC distance between one concept and its parent is equal to the difference
of their information content values. It means that any tree-like taxonomy
endowed with the Jiang-Conrath distance can be interpreted as a weighted-
graph where each edge is weighted by the IC difference between its adjacent
concepts.

• The JC distance between one concept and its parent is proportional to their
join probability. This fact is proven in [Jiang & Conrath, 1997], and it can be
easily deduced, such as is shown in figure 2.5. Precisely, we use this fact to
generalize the JC distance.

a

b

d

h

IC(h)IC(d)

IC(d)IC(b)

IC(b)IC(a)

c

g

p

IC(p)IC(g)

IC(g)IC(c)

IC(c)IC(a)

Figure 2.2: A taxonomy with tree structure
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d e f g

h i j k l m n p

Figure 2.3: A taxonomy with upper semi-lattice structure

First, being as c2 ⇒ c1, and recalling the definition of joint probability, we get
the expression in (2.4).

P (c2|c1) =
P (c2 ∩ c1)

P (c1)
=
P (c2)

P (c1)
(2.4)
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a
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d e f g

h i j k l m n p

Figure 2.4: A taxonomy with general poset structure

Now, if we develop the JC distance among a parent concept c1 and any child
concept c2, and we recall that LCA (c1, c2) = c1, we get the expression in (2.5).

dJC (c1, c2) = IC (c1) + IC (c2)− 2IC (LCA (c1, c2))

= IC (c1) + IC (c2)− 2IC (c1)

= IC (c2)− IC (c1)

= −log (P (c2)) + log (P (c1))

= −log
(
P (c2)

P (c1)

)
dJC (c1, c2) = IC (P (c2|c1)) (2.5)

Because P (c2|c1) is always less or equal to 1, the edge distances dJC (c1, c2)
in (2.5) always take positive values, thus, we can define a weighted-graph on the
taxonomy using these values as edge weights.
A lowest ancestral path is any path within the DAG (taxonomy) among two

nodes which includes one, and only one common ancestor. Precisely, the Jiang-
Conrath distance is defined by the three corners of any lowest ancestral path: the two
extreme concepts and their lowest common ancestor. In this way, the JC distance
can also interpreted as a IC-weighted shortest ancestral path, because if we add all
the weights along one ancestral path we always get the value defined by the Jiang-
Conrath distance, such as is expressed by (2.6). The weighted distance interpretation
was already introduced in [Jiang & Conrath, 1997], and it can be appreciated in
figure 2.5.

dJC (c1, c2) =
∑

ij∈ancestral(c1,c2)

∆ci,cj (2.6)

=
∑

ij∈ancestral(c1,c2)

[IC (ci)− IC (cj)]

= IC (c1) + IC (c2)− 2IC (LCA (c1, c2))
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d(h,p)= IC(h)+IC(p)2*IC(a)

Figure 2.5: The JC distance interpreted as the length of the ancestral path defined
by the weigthed edges.

The drawbacks of the Jiang-Conrath reported above motivate the development
of the novel weighted Jiang-Conrath distance introduced in this work. Two inter-
esting questions still are open: (1) why the JC distance is not a metric on a upper
semilattice in spite of it is uniquely defined on it ?, and (2) is it possible to make
some modifications to the basic JC formula to fulfill the metric axioms on any gen-
eral taxonomy ?. In section 2.4.4, we answer the first question with an explanation,
while we introduce a novel distance based in a generalization of the Jiang-Conrath
distance as an answer to the second one.

2.2.3.3 Intrinsic IC-based distances

Today, it is well accepted by the research community that the IC-based semantic
distance and similarities offer the best expected results in most of semantic evalu-
ation tasks, however, the traditional IC-based family of methods has an important
drawback from a practical point of view. The standard IC-based measures need to
compute corpus-based statistics to evaluate the IC values for every concept within
the ontology. The common method is to count every reference to a child concept as a
reference to all its ancestors, and then using this frequency information to compute
the occurrence probability for each concept on the ontology. The main problem with
these corpus-based statistics is the diffi culty to get well balanced corpus covering
every concept in the ontology.
Motivated by the previous limitation, many authors have proposed novel meth-

ods, called intrinsic IC-based measures, whose main idea is to compute the IC values
using only the information encoded in the same ontology, such as the density of the
descendant nodes or its depth level respect to the root node. As pioneering works
of this family, we can cite the works in [Seco et al., 2004], [Pirró & Seco, 2008] and
[Zhou et al., 2008].
The number of intrinsic IC-based measures proposed has grown rapidly during

the last five years, converting the area in the main research trend in semantic dis-
tance and similarity measures. Among the collection of novel proposals, we can cite
the works in [Pirró & Euzenat, 2010], [KhounSiavash & Baraani-Dastjerdi, 2010],
[Saruladha et al., 2011], [Sánchez et al., 2011] and [Sánchez & Batet, 2012], as well
as the works in [Taieb et al., 2012], [Lingling & Junzhong, 2012], [Cross et al., 2013],
[Harispe et al., 2013] and [Gupta & Gautam, 2014].
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In spite of the huge research activity on the topic, the only available survey is
the work in [Meng et al., 2012], although it is already out of date.
For the ontology-based IR model proposed in this work, we admit the use of any

intrinsic IC-based method to compute the IC values, although our preferred method
for this task is the proposed one in [Pirró & Seco, 2008].

2.2.4 Summary of the state of the art

All the ontology-based IR models revised fall in the category of concept-based adap-
ted VSM models, with the exception of the model proposed in [Rada et al., 1989],
which is based in the use of semantic metric spaces defined by one ontology-based
semantic distances. The model of Rada et al. is very close in spirit and meth-
odology to the Intrinsic Ontological Spaces model that we propose here, and we
consider our model as a direct descendant of the pioneer work in [Rada et al., 1989].
Despite the great advances and results obtained by the family of ontology-based ad-
apted VSMmodels, whose main representatives are the models of [Fang et al., 2005],
[Castells et al., 2007] and [Mustafa et al., 2008], we think that the ontology-based
IR models can be improved if the modelling inconsistencies shared by these models
are solved, such as is proposed in this work.
Such as we saw in section 2.2.3, despite there are many semantic measures in

the literature, it is broadly accepted that the Jiang-Conrath semantic distance
offers the best results for most of the evaluated applications. The state of the
art is to use the Jiang-Conrath measurement with some sort of intrinsic IC es-
timation, such as the methods proposed in [Seco et al., 2004], [Pirró & Seco, 2008]
and [Zhou et al., 2008]. The current research trend about semantic distances is
to develop novel intrinsic IC-based estimation methods and measurements. The
Jiang-Conrath is very well founded thanks to its connection with the lattice the-
ory, but it only defines a metric on tree-like ontologies, fact that is proven in
[Orum & Joslyn, 2009].
In his thesis [Clarke, 2007], Clarke proposes a distance-preserving embedding

method for the concepts within a taxonomy, which is called vector lattice comple-
tion, whose main idea is to use the natural morphism between the taxonomies and
the vector lattices. Because most of taxonomies fulfill the join-semilattice axioms,
the ideal completion builds an order-preserving homomorphism which maps each
concept to a linear subspace in the vector lattice, with the property that the Jiang-
Conrath distance among concept is preserved as the euclidean distance between
vectors when the taxonomy is tree-like. The leaf concepts are mapped to the base
vectors of the space, while any non-leaf concept is mapped to the linear subspace
spanned by its children concepts. We note that the ontology embedding of Clarke is
an implicit application of the theory of categories [Pierce, 1991], where his ideal com-
pletion is a natural structure-preserving mapping among different, but intrinsically
identical, algebraic structures.
Despite the Clarke’s model is not defined for individuals and it does not support

the representation of set of concepts, his results are very important for our investig-
ation, and his work has been a primary source of inspiration for us. In this regard,
Clarke establishes an important theoretical result: he proves that a taxonomy can
be embedded in a vector lattice, in such way that its topological structure (order)
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and metric structure (semantic distance) be preserved.

2.2.5 Main differences with prior models

Next, we provide a summary of the differences between our ontology-based IR model,
and the models reported in the literature.

• Unlike of the most of previous methods, our method represents the information
units by sets of weighted-mentions to concepts (classes) or instances of con-
cepts (individuals) within a metric space, instead of vectors whose coordinates
represent weighted mentions on a set of mutually orthogonal vectors defined
by the a set of concepts (classes) and/or instances of concepts (individuals).

• In our method, the mentions to concepts (ontological classes) are represented
by sets with the following structure. Every image set in the representation
space, associated to any class in the ontology, verifies the next property: the
set subsumes all the subsets associated to the descendant classes (concept) and
individuals (instance of concept) within the populated ontology, according to
the metric space. By first time, a concept in the query is equivalent to the
selection of a geometric subset of the representation space, that is, any logic
query is converted in the selection of the geometric region containing all the
concepts (classes9 and instances (individuals) subsumed by the concept cited
in the query.

• Unlike other known methods, our method integrates in the same semantic rep-
resentation space the mentions to concepts (classes) and instances of concepts
(individuals) in a consistent way, through the preservation of the structures
defined by the intrinsic geometry of the base ontology.

• Our method explicitly integrates and preserves the intrinsic geometry of the
ontologies in the representation space, given by the next structure relations:
(1) the order relation of the taxonomy, (2) its intrinsic semantic distance, and
(3) the set inclusion for the individuals and subsumed concepts of the ontology.

• The weighted-mentions to concepts or instances of concepts are represented in
a metric space based in a novel ontology-based semantic distance, in contrast
with most of methods that uses a vector space model (VSM) and the cosine
function as similarity measure. Our approach removes the implicit orthogon-
ality condition associated to every VSM model, which is a source of semantic
inconsistency in the previous representations.

• Unlike of previous methods, our method uses the Hausdorff distance as a met-
ric on subsets of a metric space to compare and to rank information units
(documents), instead of the cosine score. This feature also contributes to re-
move the implicit orthogonality condition of the VSM models. By other hand,
the Hausdorff distance is a well defined metric on subsets of a metric space,
which allows to remove the continuity problems reported in [Rada et al., 1989],
and to build a semantic ranking function supported by a meaningful ontology-
based distance, such as the novel distance introduced in our method.
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• The proposed weighting method is defined as a statistical fingerprint, but it has
a semantic meaning. The weight factor is a statistical and static derived from
the frequency of every mention to a concept or instance within an information
unit, equivalent to the standard TF weights used in all known IR models.
However, the weight defines the ontology-based edge weight for each weighted-
mention in the model, and it is a semantic weight defined by the IC-value of the
mentioned ontological object. The weighting method proposed in this work
combines, by first time, a statistical and static weight with an ontology-based
semantic distance.

• The only known method that also uses a metric space for the representation
of the information units is the model introduced in [Rada et al., 1989], but it
presents some important differences respect to our method. First, the model
of Rada et al. represents every document as a set of Boolean mentions to
concepts, while our method includes a weighting method to represent the in-
formation units (documents) as a set of weighted-mentions to concepts and
instances of concepts. Second, the model of Rada et al. uses the average
ontology-based distance among concepts as a distance function among sets,
while we use the Hausdorff distance, which is a strict metric among subsets
and it allows the removal of some continuity problems reported by the au-
thors in [Rada et al., 1989]. The ontology-based distance of Rada et al. does
not include the distance among instances of concepts in its model, and it is
based in the shortest path distance among concepts, while our method use
the shortest weighted path distance among concepts with weights defined by
a generalization of the Jiang-Conrath edge weights.

• Our method proposes a novel ontology-based semantic distance based in the
shortest weighted path on the populated ontology, using the Jiang-Conrath
edge weights, it means that every edge is weighted by the difference of IC-
values in its extreme nodes. Our novel semantic distance is a generalization
of the Jiang-Conrath distance, whose purpose is to remove the drawbacks
described above. Unlike the standard Jiang-Conrath distance, our method is
a well defined metric on any sort of ontology, while the first one is only a well
defined metric on tree-like ontologies.

• Unlike of previous methods, our method defines a novel IR model where each
one of its components is ontology-based, avoiding the loss of any semantic
information derived from the base ontology of the indexing model. First,
the representation space is defined by a metric space of weighted-mentions to
concepts and instances, whose metric is ontology-based. Second, the weighting
method, in spite to be a classical TF scheme, has a semantic contribution to
the distance among items in the populated ontology, because the weigths define
the joint probability for the weighted elements, whose IC-value is the length
of edge joining any weighted-item to its parent concept/individual, thus, the
weighting method is also ontology-based. Third, the ranking method is also
ontology-based because it is based in the Hausdorff metric on subsets of the
representing space, which derives directly from the ontology-based metric of
the space. Fourth, the retrieval method is driven by the ranking method, this,
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the retrieval operation is also ontology-based, Fifth, the information units are
represented by a set of weighted-mentions to individuals and classes within
ontology, therefore, the representation is directly defined on the underlying
populated ontology space plus a metric derived from its structure. Sixth, the
retrieval and ranking process is directly carried-out using the representation
of information units, which avoids the necessity to interrogate the populated
ontology through any formal query in SPARQL, or other equivalent language.

2.3 Preliminary concepts

The investigation carried-out in this work is inspired by a geometric point of view,
and as consequence of this approach, we can appreciate the emergence of some
geometric and algebraic structures, such as: metric spaces, differential manifolds,
lattices, categories, topological spaces and so on. The readers familiar with this
material can skip most of this section, nevertheless, for sake of completeness, we
include it here to make easier the reading.
The topological spaces and the concepts of general topology are essential in every

mathematical development on any kind of space, and they are usually included in
most of undergraduate courses, by this reason, we refer the reader to the classic
books of [Munkres, 2000] and [Arregui Fernández, 1988].
The motivation for the use of lattices and metric spaces in our discussion is

their matching capacity to represent the intrinsic structure of the spaces studied
and developed in this work. The main two types of spaces and models developed in
this work are: (1) the taxonomic ontologies which integrate classes and individuals
in a same metric space, and (2) a probabilistic model associated to each concept of
a taxonomy, which allows us to use the semantic distances on ontologies based in
the Information Content (IC) measure, such as the semantic distances introduced
in [Resnik, 1995], [Jiang & Conrath, 1997] and [Lin, 1998].

2.3.1 Ontologies

The Intrinsic Ontology Spaces model only considers the is-a relations in an ontology,
thus, we get a taxonomy of concepts, possibly with multiple inheritance, whose
resulting model is a direct acyclic graph (DAG) with a root concept.
An ontology of taxonomic type, denoted by O = (C,E) , is a direct acyclic

graph (DAG) with a unique root node, where every element in the set C represents
a concept and is named node, while the elements in the set E are named oriented
edges (arcs). The edges in E encode the “is-A”semantic relations, known as hyp-
eronymy and hyponymy. Our model is restricted to taxonomies, thus, we discard
other semantic relations as the antonymy (opposite concepts) and meronymy (part-
of), although the synonymy can be well integrated in the model if the ontology
defines synsets as is made in Wordnet.
In spite of the limitations in this first version of our model, the structure of the

taxonomies is enough to represent complex semantic relations, such as the multiple
inheritance, thus its application scope is not excessively limited. The DAG structure
of the ontologies define a partial ordered set, abbreviated by poset. The predecessors
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of every node in the graph are named ancestors, and they represent concepts which
subsume its descendant concepts, where these last ones represent more specific con-
cepts of the first ones. We reserve the term “parents” for the first-degree ancestors
of any node.
As example of an ontology, the figure 2.6 shows a small subset of semantic rela-

tions around the “armchair”concept in WordNet [Miller, 1995]. Wordnet is a very
well known linguistic resource with ontological structure. Moreover the taxonomic
type relations, Wordnet also includes other semantic relations among concepts, such
as the synonymy and meronymy. As is shown in figure 2.6, the concept “seat”
exhibits a large number of descendant concepts.

chair

armchair

seat

furniture

furnishing

instrumentality

artifact

whole

concept

idea

mental object

knowledge

abstraction

entity

captain's
chair

easy
chair
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barber
chair

chaise Eames
chair

fighting
chair

folding
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high
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ladderback
chair

swivel
chair

Figure 2.6: Partial sub-graph of WordNet around the “armchair”concept

As we said above, any ontology O = (C,E) is also a poset if we use the natural
order relation on the DAG, which is denoted by ≤O, and its definition is given by
(2.7). The acyclic condition of the DAG implies the antisymmetric property of the
order relation ≤O, which is expressed as: if (a, b) ∈ E ⇒ (b, a) /∈ E. For the
definition of ≤O, we adopted the convention that the edges in the graph O = (C,E)
are defined as (parent, child) .

b ≤O a when (a, b) ∈ E (2.7)

2.3.2 Lattices

Most of taxonomies, but not all, are tree-like, thus, they fulfill the axioms of a type
of lattices named upper-semilattices, or join-semilattices. The upper-semilattices
also allow to represent multiple inheritance taxonomies, but with a constrained
structure: every two concepts must have a supremum. In algebra, the lattices rise
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as a generalization of the partial ordered sets to other algebraic structures with some
order intrinsic relation, in this sense, the lattices capture the common order relations
among these structures.
The lattices allow to represent a great diversity of structures which share a

common order structure. By example, the next structures are lattices: the family
of linear subspaces of any vector space, partitions of subsets, the power set, Boole
algebras, linear ordered sets, trees and directed graphs, integers ordered by the g.c.d
and m.c.m. relations, and other cited in classical algebra books [Lidl & Pilz, 1998].
As a visual example, the figure 2.7 shows the lattice representation for the family of
subsets of the finite set {1, 2, 3}.
A partial ordered set (X,≤), abbreviated as poset, is a non-empty set X where

has been defined an partial order denoted by ≤, which is a binary relation that
is reflexive, antisymmetric and transitive. The order relation is partial when not
every pair of elements in the set is comparable. The ordered sets are well known
structures whose properties can be consulted in any basic text about set theory,
such as [Fernández Laguna, 2003].
Formally, the algebraic lattices, or simply lattices, are an algebraic structure that

generalizes a type of ordered set named ordered lattice, whose definition is given
below.

Definition 3 (Ordered lattice) A poset (L,≤) is named ordered lattice if the su-
premum and infimum is defined for every pair of elements x, y ∈ L.

 {1,2}  {1,3}  {2,3}

  {1,2,3}

 {1}  {2}  {3}

 { }

Figure 2.7: Lattice for the power set of {1,2,3}

The prior definition is generalized to other structures through the introduction of
the abstract concept named algebraic lattice, or simply, a lattice. The generalization
is made through the introduction of the generalized operators for the supremum and
infimum, named as join (∨) and meet (∧). In this way, we arrive to the abstract
definition below [Lidl & Pilz, 1998]. For a broader study about lattices, we refer the
reader to the classical book of Birkhoff [Birkhoff, 1967].
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Definition 4 (Algebraic lattice) An algebraic lattice, or simply, a lattice, is a
tuple (L,∧,∨) with two binary operations denoted by ∧ (meet) and ∨ (join), which
verify the properties below for every set of elements x, y, z ∈ L :

1. Commutativity: x ∧ y = y ∧ x, x ∨ y = y ∨ x

2. Associativity:x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z

3. Absorption: x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x

4. Idempotency: x ∧ x = x, x ∨ x = x

When only the supremum (join), or infimum (meet) is defined for every pair of
elements in a poset, we have a upper or lower semilattice structure, such as is defined
below. The trees are examples of semilattices.

Definition 5 (Semilattice) A upper-semilattice (L,∨) or lower-semilattice (L,∧),
is a tuple which verify the properties (1,2 and 4) above for every set of elements
x, y, z ∈ L.

Every algebraic lattice is isomorphic to any ordered lattice if the meet and join
operators are defined, respectively, as the infimum and supremum on the associated
poset, and turn, the supremum and infimum of the set can be recovered from the
operators ∧ and ∨. This important result is a basic theorem in lattice theory
[Lidl & Pilz, 1998]. The lattice theory is very rich, and it has found application in
many fields, thus, we refer to the reader to any classic book on the topic, such as
[Birkhoff, 1963] or [Lidl & Pilz, 1998].
As a final remark about lattices, we would like to stress the generalization power

of these structures. The lattices allow to build natural morphisms among different
types of categories [Pierce, 1991], such as the examples cited above. Precisely, Wid-
dows [Widdows, 2004] and Clarke [Clarke, 2007] base its geometric representations
for taxonomies, in the fact that these semantic structures are upper semilattices and
its elements can be represented as linear subspaces of a vector space. In summary,
Widdows and Clarke build a mapping from the category of taxonomies to the cat-
egory of vector spaces, thanks to the high level of abstraction in the relation encoded
by the lattices.

2.3.3 Distances and metric spaces

The metric spaces are a type of topological space where a distance notion has been
introduced, without to include any reference to a coordinate’s system or any embed-
ding space. The metric spaces are a generalization about the idea of distance among
elements of the same set, which is omnipresent in geometry and many application
fields, from there, its huge flexibility to model a great diversity of problems. Form-
ally, a metric space is a set where a function distance, also called metric, has been
defined for every pair of elements.

Definition 6 (Distance function or metric) Given any non-empty set X and
a binary function d : X × X → R. The function d is named distance function,
or metric, if for every set of elements {a, b, c} ∈ X, the function verifies the next
axioms
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1. Positiveness: d (a, b) ≥ 0

2. Coincidence or zero property: d (a, b) = 0⇔ a = b

3. Symmetry: d (a, b) = d (b, a)

4. Triangle inequality: d (a, c) ≤ d (a, b) + d (b, c)

Definition 7 (Metric space) A metric space is an ordered pair X = (X, d) where
X is any non-empty set and d : X ×X → R is a metric or distance function.

A fast reading of the “Encyclopedia of Distances”[Deza & Deza, 2009], unveils
us the huge richness and applicability of the distance functions and the metric spaces.
Reading the book, we can appreciate that practically every algebraic structure,
space, or structured set, admit some sort of distance function, allowing the definition
of a metric space on them, and the use of all the properties derived from this powerful
structure. By example, we can find distance functions defined over text strings,
vector spaces, groups, lattices, or any sort of geometric objects as surfaces, curves
or n-manifolds. The recent book by Deza and Deza is the main reference about the
topic, being an invaluable resource in the study and modeling of any sort of metric
space, thus, we encourage the reader to discover it.

2.3.4 Distances among sets

The distance functions allow to evaluate the dissimilarity among elements of a same
set, but there are many situations where we need to measure the distance or dis-
similarity among set of elements. It is the case in our work, where we are interested
in the comparison among different information units which are defined by a set of
semantic annotations.
The necessity to measure the distance among sets motivated the definition of the

metric known as Hausdorff distance. The Hausdorff distance is a distance function
according to the definition 6, but, instead of to be a binary function over elements
of a set, it is a binary function among subsets of a metric space.
Given any metric space (U, dU), we can define its associated Hausdorff distance,

denoted by dH (x, y) in the following manner. First, we need to introduce the point-
set distance concept. Next, the Hausdorff distance is defined as the supremum
among all the point-set distances between elements of one set and the opposite one.
The distance between one element x of a set X and another set Y , called point-

set distance, is defined as the minimum distance among x and all the elements in
Y , using the metric on the universal set U , given by dU .

Definition 8 (Point-set distance) Be the pair (U, dU) a metric space and X ⊂ U
any non-empty set in U . The distance from any element a ∈ U to the set (subspace)
X is denoted by dU (a,X) and defined by (2.8).

dU (a,X) = inf
x∈X
{dU (a, x)} (2.8)
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Figure 2.8: Hausdorff distance between subsets of a metric space

Finally, we arrive to the formal definition of the Hausdorff distance as is shown
below. Note that the definition and evaluation of dH depends on the original metric
dU associated to the metric space U . The Hausdorff distance defined by dH is a
metric with the usual meaning given by the definition 6, but it is defined on the
space of nonempty closed bounded subsets of a metric space [Henrikson, 1999]. In
this way, the Hausdorff distance extends the metric dU to enable the comparison
among any pair of sets on a metric space. The Hausdorff distance is the maximum
distance for each point-set distance value between the input sets. You can appreciate
its geometric meaning in figure 2.8.

Definition 9 (Haussdorff distance) Be the pair (U, dU) a metric space andX, Y ⊂
U two any non-empty closed bounded subsets in U . The Hausdorff distance between
both sets is denoted by dH (X, Y ) and defined by (2.9).

dH (X, Y ) = max

{
sup
x∈X
{dU (x, Y )} , sup

y∈Y
{dU (y,X)}

}
(2.9)

2.3.5 Voronoi Diagrams

A Voronoi diagram is a partition of any metric space in subsets called Voronoi cells,
which are defined as the set of closest elements to a distinguished element inside each
cell. The distinguished elements are called sites or centroids. The Voronoi diagrams
have many applications in fields where a space partition is useful for clustering or
effi cient retrieval, such as computational geometry, image processing or information
retrieval. The Voronoi diagrams are formally defined below.

Definition 10 (Voronoi diagram) Be (X, dX) any metric space and P = (pk)k∈K
a tuple of elements of X called sites. A Voronoi diagram is the tuple of subsets
R = (Rk), called cells, where each cell Rk is defined as the subset of elements in X,
whose distance to its associated pk is not greater than their distance to other site in
P , such as is expressed by (2.10).

Rk = {x ∈ X | dX (x, pk) ≤ dX (x, pj) ∀j 6= i} (2.10)
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2.4 Intrinsic Ontological Spaces

The Intrinsic Ontological Spaces are a sort of semantic representation spaces for
populated ontologies, which are based in a metric space derived from an extension of
the weighted Jiang-Conrath distance introduced in this work. These spaces represent
semantically annotated information units, such as text documents, in a metric space
composed by weighted-elements. The semantic annotations encode mentions to
individuals or classes within a base ontology provided by the user. The base ontology
is populated with new added data through an indexing and storing process.

The representation space is a metric space endowed with a hierarchical structure,
which represents the classes (concepts) and individuals (instances) in a base ontology
within the same space, while their intrinsic structure relations are preserved.

The intrinsic geometry of the ontology is defined by three structures: (1) the
semantic distance (metric structure) among classes, (2) the taxonomic relations
(graph/order structure), and (3) the set inclusion relations (set structure).

Our main goal is to design a semantic representation of the ontology that pre-
serves these structures. The representation of the ontology is defined by a consistent
metrization of the ontological space, integrating classes and individuals in a same
representation, while their intrinsic structure relations are preserved. By consistent
metrization, we refer to the definition of a metric that be used to compute any sort
of distance among elements or subsets of the representation space, but it mimics the
expected values of the original ontology-based semantic distance when its domain is
constrained to the space of concepts on the base ontology.

The indexing method and IR model proposed in this work comprise the following
components: (1) the definition of the semantic representation space as the univer-
sal set of weighted-mentions to individuals and classes within the populated base
ontology, space that we call Intrinsic Ontology Spaces; (2) an embedding method
to embed semantically annotated data, or information units, into the representa-
tion space; (3) an embedding method to embed semantically annotated queries into
the semantic representation space; (4) a novel ontology-based semantic distance
among concepts that we call weighted Jiang-Conrath distance, (5) a ontology-based
distance among weighted elements (individuals and classes) of a populated base
ontology, which defines the metric of the representacion space, and it is an exten-
sion of the weighted Jiang-Conrath ditance among concepts; (6) a ontology-based
weighting method that combines statistical and semantic information to represent
the semantic annotations associated to the indexed information units in the semantic
representation space; (7) a novel ontology-based ranking method for the retrieval
and sorting of the indexed units retrieved by the system; (8) a pre-processing step
whose purpose is computing all the parameters and data structures to enable the
indexing and searching operations of the search engine of the system; (9) an indexing
and storing method to insert new data into the search and indexing system; and (9)
a retrieval method to get a ranked collection of indexed units related to an input
query;

In the remainder of the section, we describe the components of the model, as
are enumerated above. We close the section with a summary of the objects and
formulas defined by our model (see tables 2.4 and 2.5).
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2.4.1 Notation and definitions

Throughout this section, we always use uppercase letters to denote sets, and lower-
case letters for elements of a set. We start defining a taxonomy like a partially
ordered set with a root node, and we continue adding structure to this poset.

Definition 1 (Taxonomy) A taxonomy is a partial ordered set with a root node,
denoted by the pair T = (C,≤C), where C = {Ci} is a non-empty finite set of
concepts (classes) and ≤C denotes the order relation on the set C, and there is
always a maximum element ρ ∈ C, called root, such that ci ≤ ρ, ∀ci ∈ C. The set C
is called set of concepts.

If we endow the set of concepts C with any ontology-based metric dC : C×C →
R, we get the metric space (C, dC), structure that we call a conceptual metric space.

Definition 11 (Conceptual metric space) A conceptual metric space C is the
tuple (C,≤C , dC) where (C,≤C) is a taxonomy and the binary function dC : C×C →
R is a metric on the set of concepts C.

We can extend the taxonomy T = (C,≤C) with a family of sets IC = {ICi} of
instances (individuals) to concepts in C, to obtain the pair (C ∪ IC ,≤C), called a
populated ontology.

Definition 12 (Populated ontology) A populated ontology O is a tuple of type
(C ∪ IC ,≤C) , where the pair (C,≤C) is a taxonomy and IC = {ICi} is a family
of sets of instances to the concepts in C. The family of sets of instances verifies
the set inclusion relation with regard to its associated concepts, such that ∀Ci ∈ C
→ ICi ⊂ Ci.

By last, endowing the populated ontology with any ontology-based metric dC ,
we get the tuple O = (C ∪ IC ,≤C , dC) , structure that we call a metric ontology.

Definition 13 (Metric ontology) Ametric ontology O is a tuple (C ∪ IC ,≤C , dC),
where the pair (C ∪ IC ,≤C) is a populated ontology and the binary function dC :
C × C → R is a metric, such that the tuple (C,≤C , dC) is also a conceptual space.

The goal of the IR model proposed in this work is to build a semantic represent-
ation for any corpus whose semantic annotation is based in a populated ontology
(C ∪ IC ,≤C). We only consider the is-a relations within the ontology, discarding
other sort of relations. The input to our IR model is a populated taxonomic onto-
logy.
We note that the concepts Ci denote a set of elements with some common fea-

tures, thus, every class associated to a concept defines a set by itself. The individuals
of a class represent elements of the set denoted by its associated concept, and they
satisfies the natural set inclusion relation, it means that every individuals set ICi sat-
isfies the set inclusion relation, such that ∀ICi ∈ IC and ∀Ci ∈ C, it holds ICi ⊂ Ci.
We define the ontological representation space as the pair X = (X, dX) , withX =

C ∪ IC × [0, 1] ⊂ R, where dX : X × X → R is a metric on the space of weighted-
individuals. The elements of the representation space are weighted references to
instances of classes (individuals), or weighted references to concepts (classes).
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Definition 14 (Ontological representation space) An ontological representa-
tion space X is a pair (X, dX) , where X = C∪IC×[0, 1] ⊂ R is a space of weighted-
mentions to individuals and classes within a populated ontology (C ∪ IC ,≤C), and
dX : X ×X → R is a metric on it.

In our model, any information unit is represented as a set of weighted references
to classes or individuals. The inputs to the model are a collection of information units
annotated with classes and individuals in the populated ontology (C ∪ IC ,≤C). The
information units could be documents, or other information source that admits the
same representation. The information units must have been semantically annotated
with the frequency of typed entities (individuals) or classes within the base ontology.
The weighting method used in the model consists in the unit normalization of the
frequencies of every typed reference in the document (TF-weighting).

Definition 15 (Input information unit) Any annotated information unit δk is
a set of tuples δk =

{(
τ j, f

k
j

)
∈ C ∪ IC × N | j ∈ J (k)

}
where τ j denotes the j-th

reference to a class or typed individual within a populated ontology (C ∪ IC ,≤C), fkj
the frequency of the concept or instance τ j in the document δk, and J (k) is a set of
indexes of the individuals or classes cited in the information unit.

Definition 16 (Space of frequency-based annotations) The universal setD =
C ∪ IC ×N of frequency-based mentions to individuals or classes within a populated
ontology (C ∪ IC ,≤C) is called the space of frequency-based annotations on the base
ontology (C,≤C).

Definition 17 (Space of annotated information units) The tuple
D = {δk | δk ⊂ D} defines the space of semantically annotated information units.
Note that D is the space of subsets onD, it means its power set, such that D = P (D).

2.4.2 Design axioms

Once we have introduced the main elements of our IR model, we define the first
principles, or axioms, that it should fulfill to bridge the gap identified as motivation
of the present work. The intrinsic ontology embedding and Intrinsic Ontology Spaces
are defined below, and they are also included in table 2.5.

Definition 18 (Intrinsic ontological embedding) Given an ontology (C ∪ IC ,≤C),
its associated metric ontology O = (C ∪ IC ,≤C , dC), a space of frequency-based an-
notations D = C ∪ IC × N , and a metric space (X, dX). A functions pair (ϕI , ϕC)
ϕI : D → X and ϕC : C → X is called an intrinsic ontological embedding, and the
metric space X = (X, dX) an Intrinsic Ontology Space, if the following axioms are
satisfied. The function dH is the Hausdorff distance among subsets on (X, dX).

1. Order (subsumption) invariance:

(a) C1 ≤C C2 ⇒ ϕC (C1) ⊂ ϕC (C2), ∀ (C1, C2) ∈ C × C

2. Metric invariance:
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(a) dC (C1, C2) = dH (ϕI (C1) , ϕI (C2)) = dX ((C1, 1) , (C2, 1)) , ∀ (C1, C2) ∈
C × C

3. Inclusion invariance:

(a) ϕI (τ) ⊂ ϕC (Ci) , ∀τ ∈ ICi
(b) ϕI (τ) ⊂ ϕC (Cj) , ∀τ ∈ ICi ,∀Cj | Ci ≤C Cj

In this way, the Intrinsic Ontology Spaces are defined as an ontology represent-
ation space which verifies the structure-preserving axioms enumerated above. Note
that in the proposed model, every individual is considered as a child node of its
parent concept, with its own IC-value. By other hand, every whole class within the
ontology is mapped as a set to the representation space through the function ϕC .
The definitions above are purely abstract, because they only defines the proper-

ties that the embedding functions and the Ontology Space must fulfill. The realiz-
ation of the Intrinsic Ontological Spaces consists in the definition of these mathem-
atical objects, task that is carried-out throughout this section.
Meaning of the axioms. The first axiom simply says that the mapping ϕC

preserves the subset (order) relation among concepts in the representation space,
while the taxonomy order is transformed in a space subset relation according to the
metric dX . The second axiom states the natural equivalence (morphism) among the
input ontology-based metric dC and the metric of representation space dX , through
the Hausdorff distance dH on the space of subsets of X. Note that it simply means
that the distance among concepts in the ontology is equal to the distance among
its images, defined by the distance among its whole weighted-mentions (C1, 1) and
(C2, 1). Finally, the third axiom states that the image of every individual (instance)
of class in the representation space, must be included in the image set of its parent
class and all the ancestor classes within the ontology. The last axiom (3.b) can be
deduced from the axioms (1.a) and (3.a).

Why do we define these axioms as design principles ?. In prior paragraphs, we
have defined our representation space in an abstract way. For sake of understanding,
the reader can see the figure 2.9. The representation model that we propose is a
mapping of a poset structure (taxonomy) into a hierarchical structure of metric
subsets, which is topologically (order) and metrically equivalent (distance) to the
original poset, plus the individuals annotated on it. The subsets in the taxonomy
are defined by order relation, while the subsets in the intrinsic ontology space are
defined by the metric of the space. We are converting an order relation (taxonomy)
in a geometric relation (metric space).

2.4.3 Embedding for individuals, classes and info units

Embedding for individuals. Be D = C∪IC×N the space of frequency-annotated
information units, then the embedding function for individuals, denoted by ϕI , is
given by (2.13). The function ϕI defines the embedding for isolated mentions to
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Figure 2.9: Intrinsic representation of any ontology

individuals or classes within the populated ontology in the metric space (X, dX).
For each class Ci ∈ C exists a distinguished subset (xCi , w) ⊂ X, such that (xCi , 1)
is the image in X of a whole mention to the class Ci in any information unit. The
element xCi is named the site of the class Ci.

ϕI : D → X (2.11)

ϕI
(
τ j, f

k
j

)
=

{
(τ j, 1) , ∀τ j ∈ IC
(xCi , 1) ∀τ j ∈ C

(2.12)

If one information unit contains only one mention to an individual or class within
the populated ontology, the individuals get the static weight 1, without taking into
account its frequency inside the indexed unit. Whether one information unit contains
mentions to different individuals or classes, the function ϕD maps the information
unit to a subset of the metric space (X, dX), assigning a normalized TF weight based
in the frequency of each item.

Embedding for documents. We recall that any information unit δk is a subset
of the frequency-based mentions space D, such as is shown in the definition 15. The
function ϕD maps a document δk, defined by a set of tuples of mentions to classes and
individuals within the ontology, to a set of weighted mentions in the representation
space. Such as you can appreciate in (2.16), the weights assigned to each mention
are simply the normalized frequencies.
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Figure 2.10: Document embedded in the ontological space.

ϕD : D → X (2.13)

ϕD (δk) 7→
{(
τ j, w

k
j

)
∈ X

}
(2.14)

ϕD
((
Ci, f

k
j

))
7→

(
xCi , w

k
j

)
∈ X, ∀Ci ∈ C (2.15)

wkj =
fkj∑

j∈J(k)

fkj
(2.16)

The function ϕD defines the embedding and static weighting method used to
represent the information units (documents) in the representation space of the pro-
posed IR model. The input to the function is a set of frequency-based weighted
mentions to individuals and classes inside the information units to be indexed. The
function ϕD computes a set of static weights for each mention through the normal-
ization of the frequencies in the unit to be indexed, or represented, in the space
(X, dX) of the model. The function ϕD generates a set of tuples representing the
weighted-mentions as indexing representation for the unit, such as is described in
figure 2.10. Note that the ranking using these static weights combined with the
semantic weights (normalized IC-values) to compute the distance between a query
and the indexed documents.
We note a trivial fact, if any document δ = {(τ j, fj)} contains a unique mention

to one individual or class, then, ϕD (δ) = ϕI (δ) = (τ j, 1). The element (τ j, 1) is the
canonical whole mention to the individual or class τ j.
Embedding for whole classes. In the case of queries, we consider that any

mention to a class (concept) within the populated ontology is a reference to the
whole class, it means that the query selects all the classes (concepts) and individuals
(instances) subsumed by the mentioned class. Precisely, it is the meaning of the
embedding function ϕC given in (2.17). The image of any class Ci is simply the
image in the representation space X of every subsumed class or individuals within
the ontology.

ϕC : C → X

ϕC (Ci) = {x ∈ X | πO (x) ≤C Ci} (2.17)



2.4. INTRINSIC ONTOLOGICAL SPACES 49

The function πO is a projection operator that takes a weighted-mention an-
notation x ∈ X, and returns the individual or class associated within a populated
ontology O = C ∪ IC , such as is shown in (2.18).

πO : X → C ∪ IC (2.18)

πO (τ j, wj) = τ j

2.4.4 A novel ontology-based semantic distance

As we saw in section 2.2.3.2, the Jiang-Conrath is only a metric on tree-like onto-
logies. In the last paragraph of this section we introduced two questions that we
answer below.

1. Why the Jiang-Conrath distance is not metric on a upper semilattice in spite of
it is uniquely defined on it ?. First, we recall that the Jiang-Conrath distance
is a weighted path metric associated to a selected ancestral path among two
concepts on a tree-like ontology. Precisely, the reason because the Jiang-
Conrath distance is not a metric on a lattice, or general poset, is that the JC
distance is always selecting one lowest ancestral path, while it discard other
alternative paths which could have a shortest weighted distance. In figure
2.11, we provide one example to illustrate this situation.

2. Is it possible to modify in some way the Jiang-Conrath to get a metric on
any sort of taxonomy ? Yes, it is. Here, we introduce a novel generalization
of the Jiang-Conrath distance that we call weighted Jiang-Conrath distance,
which is defined as the shortest path on the weighted-graph associated to the
taxonomy, using a generalization of the edge weights derived from the standard
Jiang-Conrath distance on a tree-like taxonomy.

In figure 2.11, we show a taxonomy with lattice structure for which the distance
dJC , despite being uniquely defined, fails to be a metric. The weights on each edge
correspond to the information content of the conditional probabilities, according to
the standard Jiang-Conrath distance, such as was proven in the expression (2.5)
above. Using the formula (2.2) with the binary logarithm for the IC value, we
get the following distance values: dJC (c5, c4) = 8.016, dJC (c5, Object) = 2 and
dJC (c4, Object) = 1.016. We note that the function dJC does not fulfill the triangle’s
inequality, because dJC (c5, c4) is greater than dJC (c5, Object) + dJC (c4, Object).
The drawback of the distance function dJC is the underlying selection of the

lowest ancestral. The shortest path between the concepts 5 and 4 is defined by
[c5, c1, object, c2, c4], and this path induces an associated distance value dwJC (c5, c4) =
1+1+1+0.016 = 3.016, in contrast with the prior value dJC (c5, c4) = 8.016. Unlike
the standard Jiang-Conrath distance, the novel generalized distance dwJC always ful-
fills the metric axioms because it selects the shortest path on the weighted-graph.
By other hand, the novel distance dwJC matches the distance function dJC when the
taxonomy is tree-like.
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Figure 2.11: Taxonomy with lattice structure wherein the Jiang-Conrath fails to be
a metric

2.4.4.1 Definition of the novel conceptual distance

The weighted JC distance is simply the shortest weighted path associated to the
Jiang-Conrath edge weights, such as is shown by the expression (2.20). The shortest
weighted-path distance is a metric on any sort of weighted-graph, and this measure
allows to select any alternative path between two concept nodes to minimize its
distance, not only the lowest ancestral paths. The novel distance transforms any
taxonomy in a weighted-graph wherein the edge weights are the IC-values for the
joint probability among the adjacent nodes to each edge. The distance is defined as
the shortest path on the weighted-graph, and it can be computed using any known
method to do it, such as any variant of the Djikstra’s algorithm [Dijkstra, 1959] like
[Ahuja et al., 1990], or many others available in the literature.
If the taxonomy is tree-like then the resulting distance function matches the

standard Jiang-Conrath distance, otherwise, the weighted Jiang-Conrath distance
always selects the shortest path according to the accumulated IC value throughout
the edge path.

Definition 19 (Lowest common ancestor) Given a partially ordered set (C,≤C),
the lowest common ancestor between two elements a, b ∈ C , denoted by LCA (a, b) ,
is defined by any common ancestor x ∈ C, such that does not exist other different
element that also be an ancestor of the elements a, b. It is formally expressed by
(2.19).

LCA (a, b) = {x ∈ C, a ≤ x and b ≤ x | @y 6= x ∈ C, a ≤ y and b ≤ y } (2.19)

The LCA among concepts is unique for lattices, being called supremum, but it is
not for general posets.
We define the undirected graph G = (V,E) associated to the general poset

(C,≤C), where every vertex v ∈ V represents an element in the set C, and one
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edge eij = (vi, vj) ∈ E exists if vj is a lowest ancestor of vi. A path between two
different vertexes a, b ∈ C is an ordered sequence of connected edges in the graph G,
whose extremes match the vertexes a, b. We define the set of all the paths joining
the elements a, b ∈ C by P (a, b) .
The Jiang-Conrath distance, such as is defined in (2.2), has two drawbacks: (1)

it is not uniquely defined for general posets, and (2) it is only a metric on tree-like
taxonomies. To overcome these two limitations, we introduce a generalized version
of the Jiang-Conrath distance that we call weighted Jiang-Conrath distance.

Definition 20 (weighted JC distance) Given any base taxonomy T = (C,≤C),
we define a weighted graph G = (V,E,w), with a positive real-valued function on
each edge w : E → R+. Every vertex v ∈ V represents a element in the set C, and
the edges are defined by E = {(vi, vj) ∈ C × C | vi ≤ vj and vj = LCA (vi)}. The
weighting function is defined by (2.21), and the weighted Jiang-Conrath distance is
defined as the shortest weighted-path among two taxonomy nodes a, b ∈ C, such as
is shown in (2.20).

dwJC : C × C → R

dwJC (a, b) = min
x∈P (a,b)

∑
eij∈x

w (eij)

 (2.20)

w : E → R+

w (eij) = IC (P (vi|vj)) = −log2P (vi|vj) (2.21)

P (vi|vj) ∈ [0, 1]→ w (eij) ≥ 0,∀eij ∈ E (2.22)

Despite the proposed generalization of the Jiang-Conrath distance looks obvious,
it solves the problem, and up to our knowledge, it has not been introduced before.
Our distance allows to define uniquely the value of Jiang-Conrath distance for gen-
eral taxonomies, and getting a metric in strict sense, while it exactly matches its
original definition for tree-like taxonomies, because in this case every pair of nodes
only has a plausible path.
The definition of the weights w (eij) in (2.21) as a function of the joint prob-

ability P (vi|vj) among one child concept and its parent guarantees that the values
w (eij) are always positive. Note, that we have used IC (P (vi|vj)) instead of the
difference of the IC values ICvi − ICvj, because this difference can be negative for
some probability distributions on non tree-like taxonomies. We also note that the
weights in (2.21) only match the IC difference, as is proven in (2.5), when the onto-
logy is tree-like, because otherwise, the occurrence probability for nodes with more
that one ancestor induces a IC-value that does not match this IC difference.
The evaluation of the function dwJC requires the implementation of any shortest

path algorithm, which could be time-consuming for large taxonomies. Due the
probabilities of the concepts are known a priori (intrinsic IC), and the individuals
are inserted in the taxonomy as children of its parent concepts, it is possible to
compute a priori all pairwise distances in a pre-processing step, such as is shown in
figure 2.13.
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2.4.4.2 Extension to the whole representation space

Our model integrates individuals and classes in the same representation space.
Moreover, the individuals are represented in the space as weighted-mentions instead
of whole mentions (boolean) to entities. All the known ontology-based distances,
such as dweightedJC , are only defined for the concepts within the taxonomy, however,
we need to extend this distance to the space of weighted-mentions. First, we must
to define how the individuals are represented in the model, and how is extended
the distance to include them in its domain. Second, we need to extend the distance
dwJC to the space of weighted-mentions, while we guarantee that the distance value
among concepts (classes) mimics the function dwJC |C constrained to the space of
concepts C.

The Intrinsic Ontology Spaces defines a metric space of weighted-individuals as
representation space for the semantically annotated data, and it considers four types
of weighted-mentions: (1) mentions to whole classes (set of subsumed concepts and
individuals), (2) mentions to whole individuals (whole or boolean instances), (3)
weighted-mentions to individuals (partial instances), and (4) weighted-mentions to
classes (partial concepts).

Our aim in this section is to extend the novel distance dwJC in (2.20) to the
elements of our representation space. The key idea to achieve the proposed goal is
to build a consistent extension of the function dwJC , in such way, that the resulting
function dX can measure the distance among the four types of elements cited above,
while it matches the function dwJC constrained to the space of concepts C. Because
the distance dwJC is strongly coupled to the structure of the taxonomy, the natural
solution, and almost obvious, is to represent all sort of elements in the representation
space ia an extension of the base taxonomy, such as is shown in figure 2.12.

The figure 2.12 offers a visual representation of the meaning of the metric dX
which defines the metric space (X, dX) that constitutes the core of our IRmodel. The
instance 1 represents a whole instance of the concept 3, which is considered as a child
node of its parent concepts. Any weighted-individuals (inst, winst) is considered as
a child node of the whole individual, and the same holds for the weighted-mentions
to classes (xci , wci). Our model admits that any individual belongs to more than
one class, such as is shown in figure 2.12.

Extending the conceptual distance to individuals. In our model, every in-
dividual is considered as a child node of its parent concept, such as is shown in figure
2.12. The distance between two individuals is always the sum of the distance among
its parent concepts plus the distances from each individual to its parent. There-
fore, the distances among concepts (classes) do not change once the base ontology
is defined, allowing the use of the precomputed concept-concept distances, such as
is shown in figure 2.13. In this way, the distance dX among weighted-mentions in X
is defined by (2.24) and (2.26).
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Figure 2.12: Unified representation of weighted and whole mentions to individuals
and classes in a same taxonomy.

LA : C ∪ IC → P (C) (2.23)

LA (x) =

{
x, if x ∈ C

{ci ∈ C | x ≤ ci,@cj 6= ci y x ≤ cj ≤ ci}
(2.24)

dX : X ×X → R (2.25)

dX ((x,wx) , (y, wy)) =


min

LA(x)×LA(y)



−log (wx · P (x|LA (x)))︸ ︷︷ ︸
(1)

−log (wy · P (y|LA (y)))︸ ︷︷ ︸
(2)

+dwJC (LA (x) , LA (y))︸ ︷︷ ︸
(3)


, if x 6= y

∣∣∣log (wxwy)∣∣∣ , x = y

(2.26)

The terms (1) and (2) in the formula (2.26) are defining the edge weights and
semantic distance among every whole instance (individual) and its parent concept
(class), denoted by LA (x), where LA means lowest ancestor concept. These terms
also correspond to the information content of the conditional probabilities in (2.27),
wherein x ∈ ICLA(x) is an individual belonging to the class LA (x) ∈ C.

IC (x)− IC (LA (x)) = −log (P (x|LA (x))) (2.27)

The weights wx, wy ∈ [0, 1] in the terms (1) and (2) of the expression (2.26) cor-
respond to the static frequency-based weights associated to the weighted-mentions
(x,wx) and (y, wy), such as are given by (2.32).
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The binary function dX is also a shortest path metric on the extended ontology.
It is inmmediate to prove that if dwJC : C×C → R is a metric, then dX : X×X → R
is a metric on the representation space X.
Extending the conceptual distances to weighted-mentions to individu-

als or classes. In formula (2.26), the terms (1) and (3) are measuring the distances
from the weighted-mentions to its whole instances nodes, denoted by x ∈ ICLA(x)
and y ∈ ICLA(y) . We are interpreting the weighted-mentions (x,wx) and (y, wy) as
two virtual subsumed instances x′ ⊂ x and y′ ⊂ y of the parent concepts x and y, it
means that we consider a partial (weighted) mention to an instance as a subsumed
concept of the whole instance. This interpretation allows to integrated all sort of
partial (weighted) or whole mentions to individuals and classes in a same repres-
entation space, while the metric of the space is a consistent distance function with
regard to the base ontology-based distance dwJC , and the different types of elements
of the space, such as: the weighted-mentions (mention to a partial object), the whole
instances of concepts and the parent concepts subsuming them. By last, the weights
wxand wy assigned to the mentions to the instances x, y, can be interpreted as the
conditional probabilities in (2.28).

wx = P (x′|x) (2.28)

wy = P (y′|y)

Precisely, because the edge weights in the weighted-graph associated to the Jiang-
Conrath distance are the information content of the conditional probability, such as
was shown in (2.5), the edge weights corresponding to the edges joining a weighted-
individual (x,wx) to its referenced whole individual (x, 1) can be defined as the
information content of this conditional probability, such as is shown in (2.29).

dwJC ((x,wx) , (x, 1)) = IC (P ((x,wx) | (x, 1))) (2.29)

= −log (wx)

2.4.5 Ontology-based weighting

The documents and queries are defined as sets of weighted mentions to individuals
and classes, but with one difference, any mention to a class in a query is considered
as a reference to all the classes and individuals subsumed by this class. The weight-
ing scheme is simply the unit normalization of the frequencies associated to every
semantic annotation of the documents, such as is explained below.
For each document, a semantic annotation method is used to automatically

identifying the mention to typed individuals and concepts in the ontology. The
semantic annotations are inserted as individuals in the ontology, jointly with one
weight and cross-reference for the container document.
Given a document δk =

{(
τ j, f

k
j

)}
, and assuming a i.i.p. model, we note that

the probability P (δk) is given by the expression (2.30) ,where nkj is the number of
occurrences of the individual or concept τ j in the document δk.

P (δk) =
∏
j∈J(k)

P nkj (τ j) (2.30)
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Doing some algebra from (2.30), we arrive to the expression (2.31) for the infor-
mation content of the document δk. The meaning of (2.31) is that the information
content of any document is equal to t he sum of the information contents of the
semantic annotations, weighted by the frequency of each annotation.

IC (δk) = −logP (δk) = −log
∏
j∈J(k)

P nkj (τ j)

IC (δk) =
∑
j∈J(k)

nkj IC (τ j) (2.31)

A basic requirement of any IR model is to be able to compare documents with
different lengths, but equivalent semantic fingerprints. Therefore, we normalize the
value of IC (δk) to get the normalized information content, denoted by ÎC (δk) in
(2.32).

ÎC (δk) =
∑
j∈J(k)

wkj IC (τ j) , wkj =
nkj∑

j∈J(k)

nkj
(2.32)

The expression (2.32) supports the definition of our TF weighting scheme for
documents in (2.33). A document δk =

{(
τ j, f

k
j

)}
is embedded in the representa-

tion space as a set of weighted mentions to typed individuals or classes within the
ontology, while in the case of the queries, all the weights for individuals or classes
take the value 1, and the mentions to classes are mapped to full classes through the
mapping ϕC .

ϕ (δk) =
{(
τ j, w

k
j

)
| j ∈ J (k)

}
(2.33)

The mapping ϕ (δk) for any document defines it as a barycentric combination of
its semantic annotations. The weights wkj define a set of static values used to build
the index form of ontology-based annotated data. These weights are defining an
ontology-based semantic distance according to the metric of the space, given by the
expression (2.26).

2.4.6 Ontology-based ranking

Given two indexed documents δk, δm ∈ D, or information units, the distance in the
input space D is denoted by dD in (2.34), and it is simply the Hausdorff distance
among subsets in the representation space (X, dX), such as is shown in (2.35).

dD : D ×D → R (2.34)

dD(δk, δm) = dH (ϕD (δk) , ϕD (δm)) (2.35)

Given any query q ∈ D, the ranking method is reduced to the computation and
sorting of all pairwise distances dD(q, δ) among the query and every indexed unit δ.
It means to compute the Hausdorff distances among the image of the query and the
image of every indexed document.
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The ranking method is a search and sorting process for the nearest neighbors in
the representation space. For large collections, this process can be optimized using
some sort of geometric partition on the representation space, such as the method
proposed by Brin in [Brin, 1995], or other known methods. The optimization of the
geometric search is a known problem in the literature, which is out of the scope of
our research, however, because our model is a well defined metric space, there are
many known methods that could be directly integrated in our model.

Open problem 1 (Ontology-based space partition) Following our structure-
preserving approach, we wonder if would be possible to develop some novel space
partition and search structure based in the hierarchical structure of our representa-
tion space, approach that we could call as ontology-based space partition. Note that
the weighted-mentions included in our space are already partitioned according to the
ontology structure. Here, the question is if we can define some kind of partition for
subsets which takes advantage of this property, instead of use a partition for general
metric spaces, such as is proposed in [Brin, 1995].

For the evaluation of dD(q, δ), we must aware that any mention to a whole class
Ci ∈ C in the input query q, has ϕC (Ci) as its image in the representation space,
such as is given by (2.17). The image of any whole class defines a subset (region) of
the representation space, and we can use its definition to simplify the computation of
dH (ϕ (q) , ϕ (δ)) when it is necessary to compute the distance between any weighted-
mention to class or individual in ϕD (δ), and the image of any whole class ϕC (Ci) ⊂
ϕ (q) in the query. In this case, the distance among any weighted-mention and a
whole class Ci is given by dICi in (2.36).

dICi : X × ϕC (Ci) ⊂ X → R (2.36)

dICi
((
τ j, ω

k
j

)
, ϕC (Ci)

)
=

{
0 , if τ j ≤C Ci
dX
((
τ j, ω

k
j

)
, (xci , 1)

)
, otherwise

2.4.7 Pre-processing step

In figure 2.13, the reader can see a flowchart of the pre-processing step of the pro-
posed IR model, whose main goal is computing all the static parameters required
for the operation of the proposed IR model. These parameters are as follows: (1)
the Information Content (IC) values for each ontology node, (2) the weights for the
ontology edges, and (3) all pairwise semantic distances among the classes of the on-
tology. The all pairwise semantic distances correspond to the values of the function
dweightedJC in (2.20).
The input data to build the IR model is a base ontology in any valid file format,

such as an OWL file in XML format. The IC values could be obtained through
corpus statistics, or using any of the intrinsic methods cited in section 2.2.3.3. Our
favorite approach is to use an intrinsic method, such as [Pirró & Seco, 2008], because
it only depends on the topology of the ontology, although we should never lose of
sight that all these methods is trying to infer the joint probabilities among concepts
through the logic building process of the taxonomy, therefore, there will be always
different plausible and valid methods to do it, and we define our IR model as agnostic
regard to them.
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2.4.8 Indexing process

In figure 2.14, we introduce a flowchart for describing the indexing method for any
novel information unit to store in the system ontology-based repository. First, any
user provides an information unit, such as a text document (box 1). Second, the
same automatic semantic annotator of the query process (box 2) is used to identify
the mentions to individuals and classes which are present, or able to be represented,
in the base ontology. The semantic annotation step produces a set of semantic
annotations plus its frequency within input document. Third, the document is
embedded (represented) in the Intrinsic Ontological Spaces as a set of normalized
weighted-mentions to classes and individuals in the base ontology. Fourth, the
indexing step is split in two steps: (1) the first step in box 5 has as main aim
the storing of the index form, defined by a set of static semantic weights, into the
repository for the indexed information units (box 7); (2) the second step (box 6.1)
has as main goal the storing of the semantic annotations of the input document into
the populated base ontology (box 8), then, the new annotations are extended to
keep the back reference (inverse map) to the indexed units where it appears (box
6.2); and the IC-values for the registered individuals are updated (box 6.3).

2.4.9 Retrieval process

In figure 2.15, we introduce a flowchart for describing the method to compute a set
of ranked information unit as answer to an input query provided by any user. First,
the user provides an input query in text format, or other symbolic representation
(box 1). Second, the system uses any automatic semantic annotator (box 2), out of
the scope of this work, to convert the input query in a set of semantic annotations
to individuals or classes within the populated base ontology of the system (box 3).
Third, the ontology-based representation of the query is embedded in the Intrinsic
Ontological space (box 4) as set of weighted-mentions to individuals or classes within
the base ontology. Fourth, in the box 5 we can appreciate the process to retrieve
and ranking the indexed information units (documents) respect to the input query.
The retrieval and ranking is based in the Hausdorffdistance dH among the query

and the indexed units, such as is defined by the function dD in (2.34). By other
hand, the distance dH is defined by (2.9), being derived from the metric dX of the
representation space (X, dX) defined by the formula (2.26).
By last, the system sorts the indexed documents according to the semantic dis-

tance to the input query, and it returns a set of ranked information units.

2.4.10 Hierarchical Voronoi diagram

It is easy to prove that if the ontology is tree-like, then the ontology embedding
defined in (2.13) is a hierarchical Voronoi diagram (HVD) on the classes of the
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Figure 2.13: Pre-processing step for the computation of all pairwise distances among
concepts, and the concept IC-values
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Figure 2.14: Indexing process for a novel information unit
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Figure 2.15: Retrieval and ranking process of indexed information units
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ontology. The prior statement is not true when the ontology is a general poset
encoding any multiple inheritance relation.
A hierarchical Voronoi diagram is a tree-like spatial partition where each node

represent a subset of the global space, and its children define a Voronoi partition.
Each node of the HVD graph defines a site for the local Voronoi diagram associated
to its parent node in the tree. In most of the applications, the Voronoi cells are
compact subsets of the global, by contrast, in our representation space, these cells
will be open subsets.
The HVD structure is very useful for any task requiring a spatial partition,

such as the search of near neighbors in clustering, classification or information re-
trieval. This structure has been used in image retrieval [Swets & Weng, 1999] and
geographic information systems [Gold & Angel, 2006].

2.4.11 Summary and proof of the model

The Intrinsic Ontological Spaces are defined by the metric space (X, dX), where X is
the space of weighted-mentions to individuals and classes within a populated onto-
logy (C ∪ IC , ≤C) . The underlying representation space for annotated information
units is defined by the metric space (D, dD), where dD is given by (2.34).
Note that D is the space for the frequency-based annotated input units (docu-

ments) and the distance dD is the ontology-based metric induced by our model over
the space of input information units. In the tables below we offer a summary with
the definitions of the mathematical objects and functions included in the definition
of the IR model proposed in this work.
Next, we prove that space (X, dX) and the embedding functions for documents,

individuals and whole classes, denoted by ϕ, ϕI and ϕC , fulfill the design axioms pro-
posed in section 2.4.2, thus, the proposed ontology-based IR model is a structure-
preserving representation space for any sort of semantically annotated data, that
mimics the Jiang-Conrath distance for tree-like populated ontologies, including
classes and individuals. Moreover, the distance among subsets of the representation,
given by the metric dD, is a consistent extension of the ontology-based semantic dit-
stance for classes to individuals and collection of classes or individuals. In summary,
we prove that the model is well defined from an algebraic point of view.

Theorem 1 (structure-preserving representation) Given an ontology
(C ∪ IC ,≤C), its associated metric ontology O = (C ∪ IC ,≤C , dwJC), and a space of
frequency-based annotations D = C∪IC×N. The functions pair (ϕI , ϕC) defined be-
low is an Intrinsic Ontology Embedding, as well as the metric space (X, dX) defined
below is an Intrinsic Ontological Space, wherein X = C ∪ IC × [0, 1] ⊂ R.


ϕI : D → X

ϕI
(
τ j, f

k
j

)
=

{
(τ j, 1) , ∀τ j ∈ IC
(xCi , 1) ∀τ j ∈ C

ϕC : C → X
ϕC (Ci) = {x ∈ X | πO (x) ≤C Ci}
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LA : C ∪ IC → P (C)

LA (x) =

{
x, if x ∈ C

{ci ∈ C | x ≤ ci,@cj 6= ci y x ≤ cj ≤ ci}
dX : X ×X → R

dX ((x,wx) , (y, wy)) =


min

LA(x)×LA(y)


−log (wx · P (x|LA (x)))
−log (wy · P (y|LA (y)))
+dwJC (LA (x) , LA (y))

 , if x 6= y∣∣∣log (wxwy)∣∣∣ , x = y

Proof:

Axiom 1. The proof of the order invariance (axiom 1) is trivial and it follows
directly from the definition of the mapping ϕC in (2.17).

1: given two concepts C1, C2 ∈ C, such that C1 ≤C C2.
2: from the definition of ϕC above, we get:

ϕC (C1) = {x ∈ X | πO (x) ≤C C1} and

ϕC (C2) = {x ∈ X | πO (x) ≤C C2} .
3: from 2: we get that ∀x ∈ ϕC (C1)⇒ πO (x) ≤C C1

4: but using the 3: plus the premise 1: and the transitivity
∀x ∈ ϕC (C1)⇒ πO (x) ≤C C1 ≤C C2 ⇒ πO (x) ≤C C2

5: finally from 4: and the definition of ϕC (C2) in 2: we prove the axiom 1.
∀x ∈ ϕC (C1)⇒ πO (x) ≤C C2 ⇒ ϕC (C1) ⊂ ϕC (C2)

Axiom 2. The proof of the metric invariance (axiom 2) follows from the definition
of the distance dX .

1: given any two concepts C1, C2 ∈ C.
2: their whole image in the representation space is (C1, 1) and (C2, 1).
3: replacing in dx ((C1, 1) , (C2, 1)) we get
4: dX ((C1, 1) , (C2, 1)) = −log (1) − log (1) + IC (C1) − IC (LA (C1)) +

IC (C2)− IC (LA (C2)) + dwJC (LA (C1) , LA (C2))
5: but LA (C1) = C1 and LA (C2) = C2

6: thus from 5: and 4: we prove the axiom 2 → dX ((C1, 1) , (C2, 1)) =
dwJC (C1, C2)

Axiom 3. The inclusion invariance (axiom 3) follows from the definition of the
mapping ϕC . According to the definition (2.17), the image ϕC (Ci) of any
class Ci subsumes the image ϕI (τ) of any individual τ ∈ Ci, thus the axiom
3.a is verified. Moreover, by induction, the verification of the axiom 1 also
implies the verification of the axiom 3.b, because the image ϕC (Cj) of any
class Cj also subsumes the image ϕC (Ci) of any descendant class Ci ≤ Cj,
thus,ϕC (Cj) also subsumes the images of any individual τ ∈ Ci.�
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Id Element of the model Definition and notation
1 Input base ontology (tax-

onomy)
T = (C,≤C)

2 Instances of any class IC = {ICi}
3 Populated base ontology O = (C ∪ IC ,≤C)
4 Metric ontology O = (C ∪ IC ,≤C , dC)
5 Frequency weighted-set

space D of input informa-
tion units

D = C ∪ IC × N

6 Input information unit δk ⊂
D

δk =
{(
τ j, f

k
j

)
∈ C ∪ IC × N | j ∈ J (k)

}
7 Ontology representation

space

(X, dX) ,where X = C ∪ IC × [0, 1] ⊂ R
and dX : X ×X → R is a metric on X

8 Intrinsic ontology embed-
ding (structure-preserving)

A function pair Φ = (ϕI , ϕC) that
verifies the axioms below:
(1) C1 ≤C C2 ⇒ ϕC (C1) ⊂ ϕC (C2) ,
∀ (C1, C2) ∈ C × C

(2) dC (C1, C2) = dH (ϕC (C1) , ϕC (C2)) ,
∀ (C1, C2) ∈ C × C

(3) ϕI (τ) ⊂ ϕC (Ci) ,∀τ ∈ ICi
ϕI (τ) ⊂ ϕC (Cj) ,∀τ ∈ ICi ,∀Cj|Ci ≤C Cj

9 Intrinsic embedding ϕI for
individuals

ϕI : D → X

ϕI
(
τ j, f

k
j

)
=

{
(τ j, 1) , ∀τ j ∈ IC
(xCi , 1) ∀τ j ∈ C

10 Whole class embedding ϕC
(classes in queries)

ϕC : C → X
ϕC (Ci) = {x ∈ X | πO (x) ≤C Ci}

11 Info units embedding ϕ and
static weigths ωkj (indexes)

ϕD : D → X
ϕD (δk) =

{(
τ j, ω

k
j

)
∈ X | j ∈ J (k)

}
ωkj =

fkj∑
j∈J(k)

fkj

Table 2.4: Summary of the objects defined in the Intrinsic Ontology Spaces model
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Id Elements of the model Definition and notation
12 Semantic weighting ÎC

(normalized IC values)
ÎC : δ ⊂ D → R
ÎC (δk) =

∑
j∈J(k)

ωkj︸︷︷︸
static weight

· IC (τ j)︸ ︷︷ ︸
dynamic & semantic

,

13 Weighted Jiang-Conrath
distance dwJC .

dwJC : O ×O → R

dwJC (a, b) = min
x∈P (a,b)

{ ∑
eij∈x

w (eij)

}
w : E → R

w (eij) = IC (P (vi|vj)) = −log2P (vi|vj)
14 Metric of the IOS represent-

ation space
dX : X ×X → R

dX ((x,wx) , (y, wy)) =
min

LA(x)×LA(y)



−log (wx · P (x|LA (x)))︸ ︷︷ ︸
(1)

−log (wy · P (y|LA (y)))︸ ︷︷ ︸
(2)

+dwJC (LA (x) , LA (y))︸ ︷︷ ︸
(3)


, if x 6= y

∣∣∣log (wxwy)∣∣∣ , x = y

15 Intrinsic Ontology Spaces (X, dX), with dX defined in (14) above
16 Hausdorff distance dH : A ∈ P (X)×B ∈ P (X)

dH (a, b) = max

{
sup
a∈A
{dX (a,B)} , sup

b∈B
{dX (b, A)}

}
17 Ontology-based ranking dD dD : D ×D → R

dD(δk, δm) = dH (ϕ (δk) , ϕ (δm))
18 Distance in the represent-

ation space between any
weighted-mention and the
image of a whole class
(query mention), denoted
by dIC .

dICi : X × ϕC(Ci)
⊂ X → R

dICi
((
τ j, ω

k
j

)
, ϕC (Ci)

)
=

=

{
0, if τ j ≤C Ci
dX
((
τ j, ω

k
j

)
, (xci , 1)

)
, other case

Table 2.5: Summary of the objects defined in the Intrinsic Ontology Spaces model
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Pathology Document

Root concept

Brain Cardiac Cancer Research
paper

Clinical
essays Patent

Entity

Legal entity Person

Pharma Lab Government
agency Researcher

Agent

Drug

Antitumor Diuretic drugAntimicrotubuleBotanical Others drugs

University

Agent
Reaction

Figure 2.16: A small ontology for the indexing of bioengineering documents

2.5 Example of use

In this section, we provide one toy example to show the operation of the proposed
model, however, we are plenty aware that it is necessary to carry-out in a near future
an exhaustive set of experiments to compare our model with other ontology-based
and classic IR models.
Nowadays, the evaluation of ontology-based IR models is an open problem due

to the lack of standard benchmark corpus specifically developed for this task. A first
try in this trend is the work described in [Fernández et al., 2009]. In this work, the
authors introduce a benchmark based in TREC data which comprises: (1) a corpus
of text document, (2) a set of queries with their corresponding document relevance
judgments, and (3) a set of ontologies covering the query topics.
Although the corpus developed by the Fernández et al. could be a good starting

point for a large scale evaluation of our model, a serious drawback in our case is
the lack of the semantic annotation data. The cornerstone of our model is the
metrization of the representation space using an ontology-based semantic distance,
by this reason, the right approach to compare our model with other ontology-based
IR models would be to start from the same semantic annotation data, with the
aim of removing this variable from the experiments. If the semantic annotation
data is not fixed in the benchmarks, the results will depend on the performance of
the automatic semantic annotation components used by each IR system. Such as
you can appreciate, the search and selection of an proper corpus to carried-out the
validation experiments of the proposed IR model is not an easy task, and it is our
next priority task in the short term.
Next, we show a toy example to explain the operation of the proposed IR model.

In figure 2.16, we introduce an ontology example in the bioengineering domain which
is used as base ontology in the figures 2.14 and 2.15. The ontology defines some types
of documents to be indexed, as well as some types of entities, pathologies and sort
of agents to be recognized within the indexed papers. The aim of the ontology is to
organize the content of the indexed documents and for supporting the search and
retrieval process. The application is an indexing system for research papers, clinical
essays and patents in the bioengineering field.
In figure 2.14 and 2.15 we can appreciate, respectively, the indexing and retrieval

processes based in the proposed IR model. Some user provides a research paper
as input document, and an automatic semantic annotator identifies the mentions
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to individuals and classes defined within the base ontology above. The semantic
annotations are used to compute the static representation of the document, as a
set of tuples of weighted-mentions to ontology objects. The tuples define the index
form for the information units, which is stored in the indexes repository. By last,
the weighted annotations are inserted within the populated base ontology, including
the cross-references to the source indexed units.

2.6 Expected problems

Up to now, we have introduced a novel ontology-based IR model, and we have
proven that our model fulfills a set of principle-based axioms to preserve the intrinsic
geometry of the base ontology, and that the model is well founded. Nevertheless,
the model has not even evaluated experimentally, thus, it is likely that the model
could need to be modified in some way while the structure-preserving approach is
maintained.
By example, one possible problem that we could find is that the Hausdorff dis-

tance among documents and queries is dominated by the farthest elements among
subsets, according to the semantic distance. As consequence, one document that
semantically matches the query could be moved to distant positions in the ranking
if it contains some annotation far away from the concepts or entities in the query
or vice versa. This drawback, as well as others unknown now, will be studied and
managed during the next experimental stage.

2.7 Conclusions

In this work, we have introduced a novel ontology-based IR model based in a
structure-preserving approach, inspired by a geometric point of view. Moreover,
we have also introduced a novel ontology-based semantic distance, called weighted
Jiang-Conrath distance, which is based in a generalization of the standard Jiang-
Conrath distance to any sort of taxonomy.
The weighted Jiang-Conrath distance is defined as the shortest path on the

weighted-graph associated to the base ontology, whose edge weights matches the
Jiang-Conrath distance for tree-like taxonomies. The novel distance solves the two
main drawbacks of the standard Jiang-Conrath distance as follows: first, the novel
distance is uniquely defined on any general taxonomy, and second, it is a metric on
any sort of taxonomy.
The main idea of the novel IR model is to build an embedding of any populated

ontology into a metric space of weighted-mentions, while the intrinsic geometry of the
ontology is preserved. The model has been described and justified from a theoretical
point of view, but, it still being necessary to evaluate it experimentally, to prove our
main hypothesis about the expected improvements in the ranking quality, and the
precision and recall measures, as main result of the structure-preserving approach
of the model.
The proposed model integrates in a natural way the intrinsic geometry of the

any ontology, which is defined by three algebraic structures: (1) its poset structure,
(2) its metric structure derived from any ontology-based semantic distance, such
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as the Jiang-Conrath distance used in our model, and (3) the set and subsumption
relations among the classes and individuals of a populated ontology. We have proved
that the Intrinsic Ontological Spaces are well defined metric spaces on any sort of
ontology with general poset structure.
Up to our knowledge, the proposed model is the first one to be completely

ontology-based and structure-preserving, in the sense that all their components are
ontology-based, such as the embedding, ranking. weighting, indexing, retrieval and
storing processes. Some features of the model make possible to remove the neces-
sity to invoke any SPARQL engine to retrieve the related documents by integrating
retrieval, ranking and weighting of the populated ontology in the same model, al-
though it is not an exclusive feature of the model.
The proposed model solves the modeling gaps identified in prior ontology-based

IR models reported in the literature. First, the orthogonality constraint imposed
by all the vector space models is removed through the integration of a real intrinsic
semantic distance derived from the ontology. Second, the cardinality mismatch
induced by mixing sets and elements at the same representation level is removed
through the specific integration of these relations in the model. Third, the ranking
methods defined by the cosine function among vectors whose spatial relations are
statistical, not semantic, are substituted by the Hausdorff distance among sets of
classes and individuals according to the intrinsic semantic distance on the ontology.
Moreover, the use of the Hausdorffdistance solves some continuity problems reported
in the pioneer work of [Rada et al., 1989].
The representation space for the documents, or information units, is a metric

space whose structure and distance function mimics the ontology-based semantic
distance among the concepts of the ontology, therefore, the model integrates all the
semantic knowledge encoded in the taxonomic structure of the ontology.
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Chapter 3

A novel manifold-based text
classifier

This chapter introduces a novel method for text categorization, problem known as
TC by its acronym in English language. The novel method can be categorized as a
manifold-Bayes hybrid model, and we call it Intrinsic Bayes-Voronoi classifier. The
core of the method is the building of a geometric representation of the classes which
uses the intrinsic geometry of the features space, wherein the features space is defined
by the positive unit hypersphere. The geometry of the classes is represented by the
normal distribution of a random vector on the hypersphere. For this, we introduce
the concept called geodesic normal distribution Ng (µ,Σg) as a generalization of the
Gaussian normal distribution to domains defined by differential manifolds. The
geodesic normal distribution is built as a function of the geodesic distances and
the tangent space of the underlying features space, and it induces the definition
of geodesic Mahalanobis distance. This intrinsic distribution allows us to build an
optimal Bayes classifier based on the intrinsic geometry of the data and the features
space. Also, we introduce a distance function on the features space that we call
Bayes distance, which allows us to demonstrate that the intrinsic Bayes classifier
defines an intrinsic Voronoi diagram on the features space, relationship that gives
name to the method.

3.1 Introduction

The growth of the Web and the proliferation of large collections of documents in
companies and government agencies, has motivated the development of document
classification algorithms for their indexing, storing and retrieval. The importance
of this research topic is highlighted in the review in [Sebastiani, 2002b], where the
author notes that TC techniques are being used in many applications, such as docu-
ment indexing based on a vocabulary, spam filtering, sense disambiguation, and the
automatic classification of web pages, among others.
The single-label document classification involves assigning each unseen document

to a subject category, while the multi-label document classification admits to assign
one document to more than one class. According to the definition of the classifier, the
problem reduces to find an approximation function ϕ̃ to the unknown classification

69
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function ϕ, such that the error probability be minimized.

Definition 21 (Classifier) Given a set of classes C and a set of documents D,
where the documents are defined by vectors according to the VSM model, a classifier
ϕ is a binary function ϕ : D × C → {T, F}.

Most of document classification methods are based on the VSM model, known
as "bag of words", whose main properties are described in section 3.3.1.
The TC problem has been broadly investigated during the last two decades, such

as is witnessed by the revisions of Yang and Liu [Yang & Liu, 1999], and Sebastiani
[Sebastiani, 2002b] [Sebastiani, 2005]. Throughout this period, all sort of machine
learning algorithms have been proposed for its solution, such as:

• Information retrieval methods [Rocchio, 1971].

• Regression models [Yang & Chute, 1994], [Fuhr et al., 1991].

• Nearest neighbors classification (kNN) [Masand et al., 1992], [Yang, 1994],
[Yang, 1999] and [Lam & Ho, 1998].

• Bayesian methods [Tzeras & Hartmann, 1993], [Lewis & Ringuette, 1994],
[Moulinier, 1997], [Koller & Sahami, 1997], [McCallum & Nigam, 1998],
[Baker & McCallum, 1998] and [Chai et al., 2002].

• Decision trees: [Fuhr et al., 1991], [Lewis & Ringuette, 1994] and
[Moulinier, 1997].

• Rule-based learning [Apté et al., 1998], [Cohen, 1995], [Cohen & Singer, 1999]
and [Moulinier et al., 1996].

• Neural networks [Wiener et al., 1995] and [Ng et al., 1997].

• Support Vector Machines (SVM) [Joachims, 1998], [Kwok, 1998].

Recently, a novel family of TC methods called manifold-based has emerged in
the literature, whose main feature is the encoding of the geometry of the prob-
lem in the model. Among these pioneering works, we can cite the contributions
in [Zhang et al., 2005] and [Cai & He, 2012]. Our research in this chapter, as well
as the classification method proposed, are framed in this family of manifold-based
methods, but its approach can be best categorized as an hybrid method of type
manifold-Bayes, because it implements a Bayesian inference on a differential mani-
fold.
According to different reports in the literature, such as [Sebastiani, 2005] and

[Lewis et al., 2004], the keyword-based TC method with best results and wider
acceptance is the SVM-based method [Joachims, 1998], which is introduced by
Joachims in one of the most cited works in the field.
Due to the maturity of the current TC methods, and the broadly acceptance

of SVM [Joachims, 1998], most of the research effort has focused in the solution of
other related problems, such as: (1) the selection of features before the application
of any machine learning algorithm [Dasgupta et al., 2007]; (2) the use of semantic



3.1. INTRODUCTION 71

features [Chua & Kulathuramaiyer, 2004] [Khan et al., 2010]; (3) the active learn-
ing for the selection of the most discriminant features [Esuli & Sebastiani, 2009];
(4) unsupervised learning methods (clustering) [Sandler, 2005]; and (5) hierarchical
classification [Esuli et al., 2008]. Despite of this shift in the research trends, we con-
tinue in this work with the exploration of novel classification and machine learning
methods for text categorization, following a geometry-based approach.
Browsing the literature, we can identify the following list of problems and limit-

ations related with the text categorization problem:

(p1) Corpus dimensionality. The size of private document collections and the Web
has grown exponentially, with a range from 103 to 1010 indexed documents,
which sets a huge challenge for any classification method.

(p2) Dimensionality of the features space. Due to the size of the corpus and the
number of classes, it is common that the vocabulary size is in the range from
104 to 106 terms. Citing an old example, the RCV2 corpus [Lewis et al., 2004]
uses vectors with a dimension close to 50000.

(p3) Feature selection. The methods for feature selection have become a necessity,
as well as an active research line in the field of text categorization, such as
is noted in [Dasgupta et al., 2007]. The aim of these methods is to allow a
better discriminative ability while the computational cost of the classifiers is
reduced as consequence of the reduction of the dimensionality of the features
space. The feature selection is a hard problem and it is independent of the
used features, by this reason, the classification methods that do not require to
use feature selection, such as VSM, have become very popular.

(p4) Black-box use of machine learning methods. Most of the proposed meth-
ods have been adaptations, or reuses of general-purpose machine learning al-
gorithms, mostly using libraries as black-box components, such as LibSVM1

[Chang & Lin, 2011]. This statement is true, including in the case of well
established methods as SVM [Joachims, 1998].

(p5) Non-linear methods. The classification methods that define non-linear decision
boundaries have some drawbacks derived from the high dimensionality of the
features spaces, and they use often some sort of data transformation, such as
the kernel trick, with the aim to reduce the classification to a linear model in
the space of transformed features. The definition of these transformations and
their effect on the classification results is not very clear in most of cases.

(p6) Geometric representation of the problem. Most of methods, including SVM,
are working on the Euclidean space in an explicit or implicit way, although
there are some exceptions in the family of manifold-based methods. The lack
of a precise representation of the intrinsic geometry of the features space and
the classes, introduces some alterations in the model, which are often unseen,
since most of time the models are using a projection of the real data model.

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(p7) Probability model of the data. The Bayesian methods have been very popular
by its simplicity and easily to get acceptable results, however, these models ex-
hibit some drawbacks due to their implicit assumptions. Usually, the Bayesian
methods represent the data as a mixture of Gaussian or multinomial distribu-
tions in the Euclidean space, assuming in most of cases that the coordinates
of the vectors are independent random variables, and that all the classes share
the same distribution. These hypothesis are far to be realistic. In this work,
we represent the classes as a mixture of random vectors with different Gaussian
distributions, which are defined on the geometry of the features space. The
proposed distributions use the full model of dependencies among vector co-
ordinates, thus they model better the nature of the data that other simplified
models.

(p8) Optimal solution characterization and features space partition. About this
point, we will study the conditions on the existence and unicity of the proposed
model, and the geometric structure induced by the solution on the features
space.

(p9) Scalability of the number of classes. Any industrial automatic classifier of doc-
uments should be able to support the progressive addition of novel document
categories without affecting the operation of the system, neither obligate to
any subsequent configuration, training, or additional development.

3.1.1 Our method

The proposed method is called Intrinsic Bayes-Voronoi Classifier, whose acronym is
IntBayesVor. The main novelty of the method is the definition of an optimal Bayes
classifier that represents the geometry of the classes of documents by a geodesic
normal distribution on the features space defined by the positive unit hypersphere.
Because the document vectors are normalized to have unit norm, the vectors are
contained in a subset of the Euclidean space, defined by the unit hypersphere.
For the definition of the normal distribution for the classes, we generalize the

standard multivariate normal distribution defined on the Euclidean space, to a nor-
mal distribution on a differential manifold. We extract the normal distribution on
a unit hypersphere as a particular case with a closed formula. In this way, we are
modeling the classes as a mixture of normal distributions on the features space,
which we denote by 2 Ng (µ,Σg). In this generalization, we also identify and define
the geodesic Mahalanobis distance, which is a generalization to differential manifolds
of the measure with the same name.
Using the geodesic normal distribution, we define a distance function that we call

intrinsic Bayes distance, which induces a partition on the features space that we call
Intrinsic Bayes-Voronoi diagram. This diagram allows us to derive our multiclass
classification method called IntBayesVor. This classifier is simply an optimal Bayes
classifier on the features space considered as a differential manifold. The resulting

2We will use the letter “g”as subindex, or function name, in reference to “geodesic”, to denote
mathematical objects that are defined by the intrinsic geometry of the features space, considered
as a differential manifold.
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Voronoi diagram is an abstract generalization of the classic Voronoi diagrams for
differential manifolds, through the definition of a particular local distance function
on the manifold.
Following the analysis, we introduce a theorem to prove that under the hypothesis

of a geodesic normal distribution Ng for the classes, the optimal Bayes classifier
defines an Intrinsic Bayes-Voronoi diagram.
Once the intrinsic Voronoi diagrams are built, a relationship is established between

the distance functions derived from the distributions, and the geometry of the de-
cision boundaries, what characterizes the geometry of the decision regions.
The Bayes distance unifies in a same mathematical object the geometry of the

features space and the geometry of the data defined on it, while it also defines
a mapping from the set of geodesic normal distributions in the space of Voronoi
diagrams, by selecting the diagram which maximizes the probability a posteriori
that the document seen belongs to a given class.
The method introduces a framework where other distributions, different from the

normal, could be defined as intrinsic distributions on a differential manifold, leading
to the possibility to use other probability models.
Once the method IntBayesVor has been introduced, we show that its compu-

tation is not possible due to the high dimensionality of the features space. By
this reason, we introduce a practical method to approximate the optimal solution
through the use of the χ2 feature selection method, and PCA [Zu et al., 2003] for
the approximation of the covariance matrix. Here it should be noted that we use
PCA to approximate the covariance matrix of the data for each class, not to build
a LSI representation with the more representative terms for all the classes at the
same time. The features filtering is made by the χ2 method before the PCA de-
composition, task that could be unnecesary if the set of non-null components of the
features vector does not exceed a predefined threshold of maximum dimension.
The described novelties allow us to make some contributions in some points

described in the previous section as follows:

(p4) Unlike other methods based in general-purpose algorithms, our method makes
an exhaustive use of the specific properties of the TC problem with the aim
to improve the performance of the system.

(p5) Our method is intrinsically non-linear, because the decision boundaries can
have any arbitrary shape according to the distribution of the data vectors on
the geometry of the features space.

(p6) The proper geometric representation of the features space and the data are
the core idea of our method. Our main hope is to get a better representation
for the data, and as consequence, a classifier with better performance.

(p7) Like generative model for the data, we propose a Gaussian mixture with inde-
pendent distributions for each class, where each distribution is defined on the
geometry of the tangent space to the features space. In spite that the multino-
mial distribution has got a broadly acceptance, we expect that the proposed
model can improve the representation of the data as a consequence of the use
of the geometry of the features space.
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(p2, p3) To provide a practical method that can work on any high dimensionality
features space, we introduce an approximated solution to the proposed model,
which uses a feature selection method (χ2) and other one of dimensionality
reduction (PCA). These methods allow us to define the intrinsic normal models
on specific subspaces for each class. Like natural evolution of the proposed
model, we could evaluate other feature selection methods without to affect the
general framework of the classification method.

(p9) The definition of generative models on subspaces for each class also allows
to provide a practical solution with regard to the scalability in the number of
classes, because the set of classes can be extended in a simple way, through the
computation and storing of the model for each new class, without the need to
modify the existent vocabulary, or the generative models of the known classes.

3.1.2 Structure of the chapter

In section 3.2, we review the related work with our investigation. In section 3.3, we
introduce some preliminary concepts to make easier the reading of the work, and we
describe the intrinsic geometry of the features space for the TC problem. The section
3.4 constitutes the core of this chapter, and it is the place where our method for
document classification is introduced. In section 3.5, we describe the experiments
carried-out and the results obtained. By last, we summarize our conclusions in
section 3.6.

3.2 Related work

Our work is related with the Bayesian-type and manifold-based text classification
(TC) methods. Due to the large number of revised works, we have divided the
section in two parts, one for each family. We have also included a brief introduction
about the most used probability models to enlighten some of the main features
exhibited by both families of methods.

3.2.1 Bayesian methods

Despite of their drawbacks, the Bayes classifiers have enjoyed wide acceptance in
various fields. This fact is largely due to its simplicity, effi ciency, and good theoretical
foundation.
The Bayesian methods use a probability distribution model for each class, whose

parameters are estimated through a training dataset. Later, the classification of a
new document is made through the application of the Bayes rule: the document
gets the label of the class which maximizes the a posteriori probability. Most of
these Bayesian methods have used binomial or multinomial distributions, and only
in some cases, the Gaussian normal distribution has been used.
In [McCallum & Nigam, 1998], the authors make a survey of the text categoriza-

tion methods of type “Naive Bayes”. The methods are subdivided in two categories
according to the probability model used: binomial or multinomial. The binomial
model only assigns binary values for each component (feature) of the document
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vectors, thus these methods do not consider the frequency of the features within
a document. The binomial models represent every document by a binary vector,
and its occurrence probability is the product of the occurrence probabilities for each
feature, given the specific distribution of each feature according to the class. In
contrast, the multinomial model considers the frequency for the features within a
document, thus, each document is represented by a vector of whole numbers. Like
the binomial case, the document probability is the product of the probabilities for
each feature (coordinate). The authors conclude that the multinomial model offers
better results that the binomial one.
In [Koller & Sahami, 1997], the authors introduce a document classifier based in

a Bayesian network. The network represents the computation of the a posteriori
probability for a class, given a features vector. To narrow the network complexity,
they propose as first step the use a feature selection method to reduce the dimen-
sionality of the problem. Later, a Bayesian network is defined where each variable
(node) has, at most, one or two parent nodes (dependencies). The classifiers for
each class are defined in such way that every classifier only uses a set of relevant
features per class. The method does not consider the geometry of the features space,
and it uses a general-purpose classification method, the KDB [Sahami, 1996]. The
Bayesian networks are too restrictive because they limit the number of possible de-
pendencies among variables, with independence of the dimension of the features
space.
In [Lewis, 1998], the author makes a survey about the application of the Naive

Bayes classifier to the TC problem, and analyzes the different vector models used in
the literature: binomial, multinomial and normalized. The method represents the
classes by a probability distribution, assuming that the components of the document
vector are independent variables (Naive Bayes hypothesis). The classification is
made using the Bayes rule.
In [Stamatatos et al., 2000], the authors propose a method for the classification

of documents according to their genre and author, which is based in the use of a
Gaussian normal mixture and the Mahalanobis distance in the Euclidean space. The
work reports comparable results to other methods reported in the literature, while
it also endorses the use of a Gaussian distribution to represent documents.
Torkkola [Torkkola, 2004] proposes a method for document classification that

uses three steps: a dimensionality reduction based in LSI, a data transformation
through the linear discriminant analysis technique (LDA), and by last, a linear SVM
classifier. The proposed classifier assigns a single category per document. LDA is a
dimensionality reduction method 3 which builds a transformation matrix to project
the data on a space with lower dimension. The transformation matrix is defined as
a function of two covariance matrixes which measure the intra-class cohesion and the
inter-class separation 4. The LDA method assumes that the classes are generated
by a mixture of normal distributions in the Euclidean space, where all the classes
share the same distribution, implying that the decision boundaries are linear. Due
to the computational complexity for the whole LDA method, Torkkola proposes a

3LDA also refers to the linear discriminants of Fisher for Gaussian mixtures with the same
variance.

4This statistical concepts are equivalent to the optimization measures used by the clustering
methods.
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practical method which uses as first step a dimensionality reduction through the
known LSI method, therefore, the method works in three steps: LSI-LDA-SVM.
In [Schneider, 2005], the author introduces some proposals to improve the per-

formance of the methods for document classification through the use of basic Bayes
classifiers. The classifiers of type “naive”Bayes assume that the document vector
is composed by a set of independent variables, and it implies that the covariance
matrix is diagonal. Schneider propose a multinomial model to represent the data
distribution in the Euclidean space. Some of the proposed improvements are as
follows: (1) to apply a logarithm transformation to the vector components to reduce
the dominant effect of the large values; (2) to use a feature selection method, such as
the one described in [McCallum & Nigam, 1998], which use the mutual information
index, or the method proposed by Schneider in his work, called Cluster Represent-
ation Quality; (3) to assume that all the a priori probabilities are equal to remove
their dominant effect in some cases.
In [Genkin et al., 2007], the authors introduce a method for document classific-

ation of Bayesian type, which is based in the known statistical technique, called
logistic regression (LR). The novelties of their work are focused in the adaptation of
the standard LR method to the TC problem, solving the underlying dimensionality
problem for the text categorization problem. The core idea of their method is to
use a probability model which induces sparse matrixes in the resulting model. The
sparsity of the matrixes is exploited by the method to reduce the computational
cost of the whole system. The LR model defines the a posteriori probability of the
classes as a radial basis function (logistic function (3.2) for a linear combination β
(3.1) of the components in a data vector on the Euclidean space, in this last feature,
the method is similar to the perceptron.

p (cx | β, xi) = ψ
(
βTxi

)
= ψ

(∑
j

βjx
j
i

)
(3.1)

ψ (r) =
er

1 + er
(3.2)

The linear combination βTxi represents a linear decision boundary on the Euc-
lidean space, defined by the vector β, while the logistic function ψ acts as a smooth
decision threshold which adds a non-linear component to the model. The training
of the LR model assumes the estimation of the decision boundary β for the distribu-
tion of each class. In [Genkin et al., 2007], the authors assume an equal univariate
normal distribution for all the components βj of the parameters vector, a hypothesis
not very plausible. Unlike our approach, the LR distribution does not represent the
random behavior of the vectors using the geometry of the features space, in contrast,
they represent the vector components β that define the decision boundary. LR can
also be interpreted like a feature selection method of probabilistic type, because the
parameters β are weighting the contribution from each feature to the a posteriori
probability p (ck|x). The proposed method improves the results provided by other
methods, such as the linear SVM model and the Ridge Logistic Regression model.
In [Mouratis & Kotsiantis, 2009], Mouratis and Kotsiantis propose an improve-

ment in a TC method based in the Bayesian discriminant DFE. The DFE model is
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a general-purpose classifier developed by Su et al. [Su et al., 2008]. The proposed
improvement consists in the use of feature selection method based in the known
chi-square function χ2 plus the representation of the data by a multinomial distri-
bution. Using these simple improvements, the authors achieve to improve the results
of the linear SVM method when the method is evaluated on the corpus RCV1-v2
[Lewis et al., 2004].
In [Feng et al., 2012], the authors investigate the TC problem for documents in

Chinese language. Feng et al. propose a feature selection method specific for each
class, based in the use of a different generative probabilistic model for each one.
Given an initial number of features d, matching the cardinal of the vocabulary of the
VSM model, they build a real-valued function on the space of admissible selections
(feature subsets) with signature fci : 2d → R+, where fci (∆) is the conditional
probability to watch the whole collection of documents assigned to the class ci, for
each admissible selection∆. In this way, the feature selection problem is transformed
in one optimization problem: the search of the optimal selection ∆∗, problem that
is solved using a stochastic search algorithm. The categories are represented by a
mixture of binomial distributions, under the hypothesis that the components of the
document vectors are independent (Naive Bayes hypothesis).

3.2.2 Manifold-based methods

The manifold-based methods are characterized by trying to integrate in its model
the intrinsic geometry of the data or the associated distribution. We consider that
this novel family of classification methods represents the most innovative methods
recently published about the TC problem.
Many of the manifold-based ideas are emerging in different application fields. For

example, in the field of image processing we can cite the works in [Yan et al., 2007],
[Arandjelovic et al., 2005], [Wang & Chen, 2009] and [Song & Tao, 2010].
Here, we make a survey of the methods for document classification and image

classification that are related with our research. We have divided the manifold-
based methods in two subcategories: (1) the methods that represent the geometry
of the data using the distributions space, called statistics-manifold methods, and (2)
those that use the features space to represent the geometry of the data, called data-
manifold methods, among which is included the method proposed in this chapter.

3.2.2.1 Geometry of the distributions space: statistics manifolds

In [Lebanon, 2005], Lebanon notes that the classical text classification methods
represent the documents as vectors in the Euclidean space, because most of them
use general-purpose machine learning algorithms, such as we note in the introduc-
tion (see p4) to this chapter. His method uses the differential manifold structure
[do Carmo, 1992] on a distributions space P, defined by a set of parameters Θ, which
defines an object called statistical differential manifold. The pair (Θ, g) represents
a Riemannian manifold (smooth metric space), where Θ is the parametrization of
the distributions space P, and g is a Riemannian metric called Fisher information
metric [Amari et al., 1987]. The work also introduces an embedding method of the
data into the multinomial distributions space, what is equivalent to map every doc-
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ument vector to the estimated distribution that explains better the seen data. The
embedding function is defined for the multinomial distribution by exploiting the
fact that the VSM model with a normalized TF-L1 type, can be directly used to
estimate the multinomial distribution, but unfortunately, this approach can not be
extended to their distributions like the Gaussian one. Finally, the distance among
points (x, x′) in the features space is transformed to the geodesic distance among

distributions
(
θ̂, θ̂
′)
on the statistical manifold. Lebanon uses his novel distance like

a kernel for some standard methods which are modified to include the new metric,
such as kNN, SVM y LR. Most of ideas in this work already appear in a previous
work of the same authors [Lebanon & Lafferty, 2004], although in [Lebanon, 2005],
the model is explained better as well as its integration with the methods already
cited. The experimental results are included in Lebanon’s thesis [Lebanon, 2006b].
In [Lebanon, 2006a], the author propose to learn a Riemannian metric on the

distributions space considered like a differential manifold. The metric is selected
from a parametric family subject to the criterion of maximizing the inverse volume
data set, measured on the statistical manifold. Once the metric is applied to the TC
problem, the resulting geodesic distance is similar, but with better results, to the
cosine similarity function, suggesting its use as a distance measure for TC algorithms.
In [Zhang et al., 2005], the authors introduce a method calledMultinomial Man-

ifold, which represents the intrinsic geometric structure of the data associated to a
given class, and is defined on the multinomial distributions space P. The main
contributions are a theoretical proof about the plausibility of the geodesic distance
on the distributions space like kernel for the SVM method, and the experimental
results of these ideas on some corpus. The proposed method derives from results
prior published by Lebanon. The distributions space is endowed with a differential
structure through the parametrization Θ : P n+1 → P, where the function’s domain
is P n+1 =

{
θ ∈ Rn+1 :

n+1∑
i

θi = 1;∀θi ≥ 0

}
5. Each multinomial distribution Pθ is

described by a parameters vector θ = (θ1, . . . , θn+1), such that Θ (θ) = Pθ, where
each element of the domain Θ selects a specific distribution. For the multinomial
distributions, the values θi designates the occurrence probability for a number of
instances of a feature wi included in the vocabulary of the associated VSM model.
The authors use a result in statistical differential geometry [Kass, 1989] which sets
that the space of parameters P n+1 is isometric to the positive hypersphere Sn+1

+

with radius equal to 2. Using this property, they build an embedding function
ϕ : P n+1 → Sn+1

+ [Kass, 1989] which maps every distribution Pθ to a point on the
hypersphere. The authors develop a kernel-type metric k (θ, θ′) where the distance
is measured on the space of distributions on the hypersphere, using the geodesic
arc-length among distributions. In this way, each document d is mapped to a dis-
tribution Pθ̂d on the multinomial distributions space, while the kernel k

(
θ̂j, θ̂d

)
computes all the geodesic distances among pairs of documents. The estimation of
θ̂d is obtained from the feature frequencies encoded by each document vector. Fi-
nally, the integration of the kernel function in the binary SVM classifier allows to
define decision boundaries which maximize the margins derived from the geodesic

5Throughout this chapter, n+1 denotes the dimension of the ambient space where is immersed
the features space. This dimension is given by the cardinal of the vocabulary of the VSM model.
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distances.
As can be seen, the methods Multinomial Manifold proposed in [Lebanon, 2005]

and [Zhang et al., 2005] are using the intrinsic geometry of the distributions space,
instead of the geometry of the data on the features space. Curiously, in the features
space we have random vectors for each class, and these same vectors have been as-
sociated to random vectors of distributions, but without to consider that the classes
are generated by a probability distribution. They have transformed a classification
problem of features vector into one about the classification of distributions, it means,
they have converted the parameters of the distributions in a new set of features.
From a geometric point of view, a thoughtful reading of the ideas above turns very

interesting. We appreciate some way of duality among the features space and the
distributions spaces that is not trivial at first glance. In our method, we represent the
classes by geometric distributions on the features space, the ideas above suggest that
one interesting variant would be to represent the classes as a random vector on the
multinomial distributions, following the ideas provided by Lebanon [Lebanon, 2005]
and Zhang et al [Zhang et al., 2005]. If we try this approach, we can transform our
intrinsic Bayes classifier on the features space in an intrinsic Bayes classifier on the
multinomial distributions space, defining a future trend to be explored.
By analyzing the geodesic equations on the distributions space and the normal-

izations of the vectors in the Multinomial Manifold method, we appreciate a clear
parallelism with some ideas expressed in our method, regardless of differences in
space and representation of classes. Our intuition is that we should expect similar
results.
Although the idea about the use of a kernel function with the SVM method

in [Lebanon, 2005] and [Zhang et al., 2005] is not new [Hofmann et al., 2008], the
approach is good because it allows a smooth integration of novel methods with well
accepted methods and libraries.
Using the kernel’s theory [Hofmann et al., 2008], it is possible to prove that

the geodesic Mahalanobis distance, introduced in this thesis, also defines a strictly
positive kernel. In this way, this result links with the kernels, what allows to use
the theorems and results from functional analysis about the subject. The use of the
geodesic Mahalanobis distance as distance measure among vectors on the features
space implies to assume that all the a priori probabilities of the classes are equal,
thus, in this case, we would be using only the geometry of the distribution.

3.2.2.2 Geometry of the features space: kNN-data-manifolds

The methods in this section are characterized by trying to represent the geometry of
the classes on the features space, and they have been called data-manifolds methods.
By other hand, most of them try to integrate in their models some invariant local
property, whose aim is to preserve the geometric relations in the local neighborhood
of the data. To capture these local properties, the methods use typically some sort
of kNN-based neighborhood structure, therefore we have added the prefix kNN to
the name of this family of methods. Some of the features share by the methods in
this family are as follows:

1. The geometric structure of the data is represented by a neighborhood graph
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of kNN type. The points are identified like adjacent ones according to its
Euclidean distance on the features space.

2. The local structure is approximated by the initial kNN graph, while the final
classification uses any variant of the kNN method with some sort of geodesic
distance, measured on the adjacency graph, like distance for the classification.
The core idea of the work in [Boczko & Young, 2005] is to measure the
distance among sets is also similar to the kNN methods, but this method is
far from the first ones in some aspects.

As example of the methods in the kNN-data-manifold family, we can cite: MKNN
[Wen et al., 2006], MFA [Yan et al., 2007], LLE [He et al., 2008], KDGPP
[Wang & Chen, 2009], MDA [Wang & Chen, 2009] and MAED [Cai & He, 2012].
Bockzo et al [Boczko & Young, 2005] [Boczko et al., 2009] introduce a general-

purpose classification method, not used before in the TC problem, which tries to
represent the geometry of the data on the ambient space. The proposed method
represents the decision boundaries through a signed distance function (SDF), which
can be interpolated by radial basis functions (RBF) [Buhmann, 2003] on the fea-
tures space. The distance among the data points and the decision boundaries is
approximated through a distance function among any point and its complementary
set (positive/negative), thus, the decision boundaries are implicitly defined by the
zero level set of the interpolant RBF function [Buhmann, 2003]. The classifier is of
binary type, and the distance d

(
x,C

)
from a positive point x ∈ C+, or negative

point x ∈ C−, is approximated by the half value of the minimum distance from the
point to its complementary set C, such as is shown in (3.3).

d
(
x,C

)
= min

j

{
1

2
‖x− xj‖ , ∀xj ∈ C

}
(3.3)

The method of Bockzo et al. [Boczko et al., 2009] is defined on the Euclidean
space, but it could be adapted to the TC problem whether the document vectors
are represented on the unit hypersphere and the geodesic distance is used to ap-
proximate the signed distance function. Unlike our method, this method has not
been applied before to the TC problem, therefore, it does not consider the structure
of the features space in this case, and its geometric model for the data does not
represent the data by a distribution on the features space, such as we do in our
model. In [Boczko et al., 2009], the authors propose like future work to improve the
computation of the distance among subsets and the geometric model for the classes.
Precisely, the possibilities and research lines introduced in [Boczko & Young, 2005]
[Boczko et al., 2009] us to start the research carried-out in this chapter.
In [Wen et al., 2006], Wen et al. introduce a TC method based in a vari-

ant of the kNN algorithm, which is called MKNN. The variant consists in the
definition of a geodesic distance on the dataset, which tries to capture the in-
trinsic geometry of the whole set. For this, they build a distance matrix encod-
ing the distance among each pair of documents (x, y), where the geodesic distance
dg (x, y) is approximated by the shortest path with degree 2 (2 edges) over the
set, measured by the Euclidean metric (chord in the ambient space), such that
d̂g (x, y) = min

z
{de (x, y) , de (x, z) + de (z, y)}. The core idea of the method is to
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capture the geometry of the dataset through the shortest path on the initial adja-
cency graph of the data. The proposed solution is simple, but limited. Formally,
the approximation for the geodesic distance should analyze all the possible paths
on the graph of the set, what would be intractable for large datasets, because it is
equivalent to the computation of the Dijkstra algorithm among all pairs of points.
Moreover, they do not consider the intrinsic geometry of the features space, but
approaching the geodesic arcs by the distance in Euclidean ambient space. Their
geometric representation either considers that the data could be generated by a dis-
tribution, therefore, the shape of the dataset is defined by a discrete set of random
samples which does not match the intrinsic geometry of the distribution. The last
problem is shared by all the kNN algorithms.
One important feature of the kNN classifiers is that they converge to the optimum

Bayes classifier when the dataset is suffi ciently dense, what occurs when every cell on
the features space contains a sample set that matches the proportional distribution
among classes. The MKNNmethod improves the results of an standard kNNmethod
that uses the cosine function like similarity measure. As we will see in section 3.3,
the cosine function matches the inverse of the geodesic distance on the hypersphere,
and it induces the same ranking order on the data. The improvement introduced by
MKNN suggests that any way of encoding of the geometry of the data in the models
can improve the performance of the resulting classifier, although this improvement
could look simple.
In [Yan et al., 2007], Yan et al. introduce a method for the dimensionality re-

duction of the features space in image classification, calledMarginal Fisher Analysis
(MFA), which is based in the definition of a representation of the geometry of the
dataset for a same class. The method builds a structure called Graph Embedding,
which represents the geometry of the data through kNN clusters of near points. The
authors consider their method like a variant of the LDA method.
He et al. [He et al., 2008] introduce a dimensionality reduction method for the

TC problem which is based in the Linear Local Embedding (LLE) method developed
in the context of data mining [Roweis & Saul, 2000]. In the LLE model, every point
is represented as a barycentric combination of its k-neighbors. The k-nearest neigh-
bors are defined using a metric on the Euclidean ambient space, then, the adjacency
relations allow to build a graph that tries to approximate the shape of the data. The
idea behind LLE is to approximate the local neighborhood of every data point by a
flat Euclidean subspace with lower dimension while the adjacency relationships are
preserved in the deformed representation. LLE tries to represent the geometry of
the data using local approximations without to make any assumption about the data
distribution, thus, in this sense, LLE is a local manifold method. Finally, the clas-
sification is carried-out over the transformed data obtained through LLE, through
a kNN algorithm that uses the Euclidean distance on the lower dimension space as
metric for the classification. In [He et al., 2008], the authors make a comparative
analysis between LLE and LSI, and they admit that the dimensionality reduction
produced by LSI (derived from a SVD decomposition) is higher that LLE, although
LLE allows a better representation of the geometry of the data. This method does
not consider the geometry of the features space where the data are embedded, and
it does not represent the geometry of the data by an intrinsic distribution like we
propose in our method. By last, the method does not consider that the data are
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already embedded in a differential manifold (the features space) that is a subset of
the Euclidean ambient space.
In [Cai & He, 2012], Cai and He introduce an active learning method for TC

called MAED, which is based in the representation of the geometric structure of the
data. The active learning methods (1) have as main goal the selection of the best
samples for the training of any classifier, and in most of cases, they are independent
of the chosen classifier. In statistics, the sampling problem is known like optimal
experimental design. The local geometry of the data is captured through a neigh-
borhood graph that is computed using the Euclidean distance in the features space.
Later, the method builds a kernel function based in a Laplacian matrix of the graph
6, which represents the distance relations and adjacency among the data. By last,
the authors evaluate experimentally their ideas with some variants of SVM method,
proving that the samples selection improves the classifier results.

Problem 1 (Active learning) Given a dataset X represented by vectors in an
Euclidean space X = {x1, x2, . . . , xn} ∈ Rm, find the Z = {z1, z2, . . . , zk} ⊂ X with
the most informative elements.

In [Wang & Chen, 2009], Wang and Chen introduce a method for image classi-
fication calledManifold Discrimant Analysis (MDA). The method is similar to other
methods like LLE [He et al., 2008] and LDA [Torkkola, 2004], and it also computes
distance among local datasets. The method transforms the local neighborhoods to
a lower dimension space, then, it defines the decision boundaries that maximize
the margin among classes. This approach is similar to the distance function pro-
posed by Boczko et al. [Boczko & Young, 2005], and to the margin concept in SVM
[Cortes & Vapnik, 1995]. The MDA method builds a class hierarchy using a kNN-
type graph based that combines Euclidean distances de and geodesic distances dg,
such as the graph proposed by MFA [Yan et al., 2007] , and how is made by most of
the manifold-based methods. Once the Euclidean and geodesic distance matrixes for
the data have been built, a novel matrix is computed whose entries are the factors
dg
de
. The aim of this novel matrix is to measure the non-linearity (curvature) of the

dataset in the features space. The non-linearity measure is used to split the dataset
in clusters of uniform curvature. Using image processing terminology, the method
segmentates the images using an approximation for the curvature of the geometric
set derived from the data values. Each image class is represented by a collection of
clusters resulting from the segmentation, then, the distance among different images
is defined by the pairwise distance among the clusters of each one.
In [Wang et al., 2012], Wang et al. introduce a novel extension to a dimen-

sionality reduction method, called DGPP [Song & Tao, 2009], which is proposed in
image processing. The proposed method is called KDGPP, and it is based in the
representation of the intra-class geometry and the discriminant information among
different classes. DGPP uses a dimensionality reduction technique similar to LLE
[He et al., 2008]. Like the LLE method, DGPP also builds a weighted adjacency
graph to represent the local invariance, but surprisingly, no work cites the other

6The Laplacian matrix of a graph is a well known structure in the scope of the geometric mod-
eling, where it is used to represent deformation and smoothing functions on meshes. This matrix
is equivalent to a diffusion process (filtering) driven by a Laplace equation in partial derivatives.
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one, maybe because they have been developed in different fields. The main nov-
elty introduced in [Wang & Chen, 2009] is the reformulation of the DGPP method
through a radial basis kernel function (RBF) to estimate the weights for the adja-
cency graph, using the Euclidean distance among vectors like proximity measure to
build the kNN neighborhoods. Once the data are embedded in the lower dimension
space, the classification is made using the kNN algorithm and the Euclidean distance
among the transformed data, such as is made by the LLE-based method proposed
in [He et al., 2008].
The main drawback of the models described in this section is that they use

non-smooth discrete approximations to represent the local geometry of the classes.
Although these approximations produce some improvements in the precision of the
classifiers, they restrict the generalization of the classifiers to unseen samples, or
regions not densely sampled. Moreover, they share some known problem with the
classical kNN classifiers, such as the sampling uniformity and density, and the lack of
smoothing. Curiously, these methods build the adjacency graphs using the Euclidean
distance in the ambient space, instead of the intrinsic distance of the true features
space.
Our method represents the geometry of the classes like an intrinsic distribu-

tion on the geometry of the features space, where it is defined by the positive unit
hypersphere. In our method, the geometry of the dataset of a class is represen-
ted by a smooth generative model given by the multivariate Gaussian distribution.
This approximation is equivalent to represent the geometry (shape) of the data-
set by a quadric hypersurface embedded in the features space, what counteracts
the overfitting effect of the discrete models. The Gaussian distribution acts like a
smoothing filter on the geometry of the dataset. Our representation with intrinsic
Gauss functions induces a smooth model, continuous and differentiable on the fea-
tures space, which allows a better generalization capability, in special in regions with
low sampling density. Moreover, the use of intrinsic Gaussian functions is endorsed
by the Central Limit’s theorem, because the Gaussian mixture is the limit for the
kNN classifiers when the training set is dense, precisely, this property suggests to
use this limit distribution instead of a discrete version to approximate the geometry
of the data.
On the other hand, our hypothesis respect to the representation of the data by

an intrinsic normal mixture also captures the geometry of the features space, what
has not been considered before by other methods. Conversely, the rest of manifold-
based methods make use of the Euclidean distance in the ambient space to build
the adjacency graphs that later are used to approximate the local geometry of the
classes.

3.3 Preliminaries

In this section, we make a detailed review of some aspects of the vector space model
that will be of interest in the development of work. Moreover, we also introduce
the geometry of the features space, including the notation and definitions needed to
follow the exposition of our model.
Throughout our exposition, we always use lowercase letters to denote vectors,
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and uppercase letters for sets. The notation aT denotes the transpose of any vector
a, while that the notation aT b, or aT · b denotes the usual scalar product among
vectors.

3.3.1 Vector Space Model (VSM)

As first step for the classification of text documents, the documents are represented
using the known vector space model (VSM). A vector space model is defined by the
tuple V SM = (DT , V, λ) as follows: (1) D denotes the documents space and DT the
set of documents used for the training of the model; (2) V denotes the vocabulary
of keywords, which can be composed by stemmed words obtained by any stemming
method like the proposed one in [Porter, 1980], or features with a higher lexical-
semantics meaning [Chua & Kulathuramaiyer, 2004] [Khan et al., 2010], such as
phrases, root words, semantic classes and synonyms obtained from ontologies and
thesaurus; and (3) a mapping function λ which embeds the documents in the vector
space.

λ : D →M ⊂ Rn+1 (3.4)

The function λ maps every document d ∈ D to a vector x defined on a subset
of the vector space Rn+1, what we call features space and denote by the letter M .
The mapping λ is not injective, because two documents can be mapped to the same
vector. The features space M is embedded in the Euclidean ambient space Rn+1,
whose dimension is defined by the cardinal of the vocabulary V , being n+ 1 = |V |.
Every document di ∈ D is transformed by λ in a vector xi =

(
x1
i , . . . , x

n+1
i

)
∈M ,

whose components xji are called weights. The weights are computed through a
weighting function of the occurrence frequency of the elements in V within the
document di and the training corpus DT . The most popular weighting function is
the TFIDF, although there are many other variants, such as the described ones in
the thesis of Fresno [Fresno, 2006].
The document vectors have some properties that we summarize as follows:

1. All the components xji are positive real values, because these values correspond
to the frequency values of the vocabulary terms, therefore xji ≥ 0,∀j ∈ J ,
where J is the coordinates index set J = {1, . . . , n+ 1} for each dimension of
the ambient space.

2. The vectors are normalized to make them invariant with regard to the docu-
ment length, such that ‖xi‖ = 1,∀di ∈ D. As consequence of the normaliza-
tion, the features space is reduced to the positive part of the unit hypersphere
in Rn+1, denoted by Sn. Specifically, the features space M is defined by
Sn+ =

{
x ∈ Rn+1 : xT · x = 1, xj ≥ 0, ∀j ∈ J

}
.

3. The structure of the vectors is sparse what means that most of the coordinates
are zero. This is a consequence of the non-occurrence of every vocabulary term
within a document, which follows from the use of features selection method to
increase the discriminant capability among classes. By example, the vectors
in the corpus RCV2 [Lewis et al., 2004] have a dimension of 47236, however,
the average number of non-zero coordinates in the training set is 61 and the
maximum 164.
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4. The vectors of a same class are randomly distributed on the features space Sn+.
The selection of discriminant terms for the global vocabulary and the sparse
structure of the vectors contributes to the observation of outliers.

5. The number of features |V | of the VSMmodel is proportional to the number of
classes. It follows from the necessity to include features to separate different
classes and to keep close the documents in a same class, what requires to
increase the vocabulary whenever the number of classes is increased.

One of the main problems of the keyword-based VSM models, like the studied
in this chapter, is the diffi culty to build vocabularies with wide coverage of the
corpus, and good generalization and discriminant capabilities. The definition of the
vocabularies for the VSM models is a problem of features selection, and it is the
main source for the sparsity and the null similarity among most of vector pairs.
Other known drawback of the keyword-based VSM models is the lack of meaning

for the terms in its vocabulary, which decreases its generalization capability. This
problem manifests in the diffi culty to retrieve documents using terms not mentioned
in the vocabulary or the corpus.
Precisely, these problems are solved by the recent family of ontology-based IR

models, such as the model called Intrinsic Ontology Spaces that we introduce in the
chapter 2.
Most of TC methods are based in supervised machine learning algorithms. For

this, the training corpus D is divided in two subsets D = DE +DT . The set DE for
training and the set DT for tests.

3.3.2 Geometry of the features space

The features space M in the VSM model used for text categorization is defined by
the positive part of the unit hypersphere Sn, being denoted by Sn+ in (3.5).

Sn+ =
{
x ∈ Rn : xTx = 1, xi ≥ 0

}
(3.5)

Throughout the chapter, we use the concept of differential manifold for the fea-
tures space Sn+. For sake of completeness, we have included here some basic defini-
tions that the reader could also find in some introductory texts as [do Carmo, 1992]
and [Gamboa & Ruiz, 2006].

Definition 22 (Differential manifold) A differential manifold of dimension n is
a set M and a family of injective mappings {xα : Uα ⊂ Rn →M} of open subsets
Uα of Rn into M , such that:

(1) Covering: ∪αxα (Uα) = M

(2) Differentiable change of coordinates: for any pair α, β, with xα (Uα)∩xβ (Uβ) =
W 6= ∅, the sets x−1

α (W ) and x−1
β (W ) are open sets in Rn, and the mappings

x−1
β ◦ xα are differentiable.
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(3) Atlas maximal7: the family of sets {(Uα, xα)} is maximal with regard to the
conditions (1) and (2).

A differential manifold is a structure that defines a set of local parameterizations
xα over a set M , called charts, with the property that the changes of coordinates
among overlapping charts are differentiable. If the differentiability degree is not said,
it will be assumed of class C∞. The family of charts X is called atlas and when it
verifies the conditions (1) and (2) is called differentiable structure. The differential
manifolds are locally diffeomorphic spaces 8 to subsets of the affi ne space Rn, which
allow to apply the notions of differential and integral calculus on the underlying set
M . The dimension of a manifold is defined by the dimension of its charts.

3.3.2.1 Unit hypersphere parametrization

The features space Sn+ can be parameterized using a unique chart X in polar co-
ordinates (3.6), by removing the pole (1, . . . , 0n+1) ∈ Rn+1. The removal of the pole
guarantees that the chart is an injective mapping and it verifies the axioms described
above. In figure 3.1, we show a diagram of the construction.

X : Ω→ Sn+ (3.6)

X (u) 7−→


x1 (u)
x2 (u)
...

xn+1 (u)


(n+1)×1

u = (u1, . . . , un) ∈ Ω

The domain of Sn+ is defined by Ω = (0, 1)n, while that the formula (3.7) defines
the coordinate functions xi (u).

x1 (u) = cos
(π

2
u1

)
(3.7)

x2 (u) = sen
(π

2
u1

)
cos
(π

2
u2

)
x3 (u) = sen

(π
2
u1

)
sen

(π
2
u2

)
cos
(π

2
u3

)
...

xn (u) = sen
(π

2
u1

)
· · · sen

(π
2
un−1

)
cos
(π

2
un

)
xn+1 (u) = sen

(π
2
u1

)
· · · sen

(π
2
un−1

)
sen

(π
2
un

)
7A maximal atlas is an equivalence class for all the possible combinations of charts that cover

the same base space, formalizing the fact that a manifold is the same with regard to any valid
parameterization.

8A diffeomorphism is a bijective mapping among topological spaces such that the direct mapping
and its inverse are continous and differentiable.
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Figure 3.1: Parametrization X , tangent space TaM and differential map daX for the
unit hypersphere Sn+.

The inverse parameterization X−1 : Sn+ → Ω is defined by (3.8).

u1 = arccot
x1√

x2
2 + · · ·+ x2

n + x2
n+1

(3.8)

u2 = arccot
x2√

x2
3 + · · ·+ x2

n + x2
n+1

...

un−1 = arccot
xn−1√
x2
n + x2

n+1

un = 2 · arccot
xn +

√
x2
n + x2

n+1

xn+1

3.3.2.2 Geodesics on the hypersphere

The geodesics on the unit hypersphere match the maximal circles, therefore the
geodesic distance dg is the arc-length of the shortest geodesic arc among two points,
whose value is given by (3.9). Note that this formula is the same for a circle (S1),
a sphere (S2), or any n-sphere (Sn).

dg : Sn × Sn → R+ ∪ {0} (3.9)

dg (a, b) = arccos
(
aT · b

)
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3.3.2.3 Tangent space of the features space

Being M a differential manifold, its tangent space in a point a ∈ M is denoted by
TaM , being an affi ne space with dimension n. The tangent space TaM is tangent to
the manifold on the base point a ∈M , such as is shown in figure 3.1.
The tangent space in a point a ∈M is generated by a set of base vectors

{
∂X
∂ui

}
,

which are defined by the images of the vectors in the canonical base of Rn through
the linear mapping daX (3.10). The mapping daX is called the differential of
the manifold. The canonical base vectors are ei = (0, . . . , 1, . . . , 0), where each 1
is defined in the i-th position. The linear mapping daX (3.10) is defined by the
Jacobian (3.12) of the parametrization X .

daX : Rn → TaM ⊂ Rn+1 (3.10)

daX (u′) 7−→ J · u′

The set of vectors
{
∂X
∂ui

}
define a base for the tangent space TaM , whose defini-

tion is given by (3.11)

∂X
∂ui

=


∂x1
∂ui
...

∂xn+1
∂ui


(n+1)×1

(3.11)

The differential daX defines a parametrization of the tangent space TaM , map-
ping the tangent directions in the domain, denoted by u′ ∈ Rn, to the tangent space
TaM . The vector u′ is interpreted like the tangent to any curve α (t) ∈ Ω in the
point X−1 (a), such as is shown in figure 3.1.

J =
[

∂X
∂u1

· · · ∂X
∂un

]
(n+1)×n (3.12)

J =


∂x1
∂ui

· · · ∂x1
∂ui

...
. . .

...
∂xn+1
∂ui

· · · ∂xn+1
∂ui


(n+1)×n

3.3.3 Bayes classifier

Given a set of document classes C = {ck}k∈K we can represent every class ck by an
intrinsic normal distribution Ng (µ,Σg) on the features space, whose d.p.f. is the
function fg,k (x : µk,Σg,k) in (3.13), defining the conditional probability p (x | ck),
whose meaning is the observation probability for x ∈ Sn+ when it has been generated
by the class ck (hypothesis).

p (x | ck) = fg,k (x, µk,Σg,k) (3.13)

p (x | ck) = (2π)−
n+1
2 |Σg,k|−

1
2 e−

1
2
r2g,k

The total probability that the whole set of classes C could generate a vector
x ∈ Sn+ is given by the formula (3.14), where p (ck) denotes the a priori probability
for the class ck.

p (x) =
∑
k∈K

p (x | ck) p (ck) (3.14)
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Given an observed vector x ∈ Sn+, we can use the Bayes’s theorem to compute
the a posteriori probability p (ck | x) that a given class ck would have generated it,
such as is given by (3.15).

p (ck | x) =
p (x | ck) · p (ck)

p (x)
(3.15)

The function p (ck | x) defines a ranking value, or “score”for the observation x,
and according to the theory of Bayes, the decision that maximizes the probability
to observe x is the selection of the class that maximizes p (ck | x), also know as
maximum a posteriori (MAP). It leads us to the optimal Bayesian classifier in (3.16).

c∗ = argmax
ck∈C

{p (ck | x)} (3.16)

As we will see in next section, the proposed method defines a Bayesian classifier
using a normal distribution to represent the data constrained by the geometry of the
features space. In this sense, the proposed method is an optimal Bayes’s classifier
on a differential manifold.

3.4 Intrinsic Bayes-Voronoi classifier

In this section we introduce a document classification method that is called Intrinsic
Bayes-Voronoi classifier (IntBayesVor). The chosen name refers the fact that the
method selects the optimal Bayes solution for a probability distribution defined on
the features space, which induces an intrinsic Voronoi diagram. The definition of
the model integrates the intrinsic geometry of the TC problem as is defined by the
VSM model, namely: (1) the geometry of the features space given by the positive
unit hypersphere, and (2) the geometric representation, or approximation, for the
classes.
The geometry of every class is defined by a geodesic normal distributionNg (µ,Σg),

which expresses the geometry of the regions of a class using the geodesic distance
on the feature space, resulting in a function that we call geodesic Mahalanobis’s
distance rg.
The concepts Ng and rg are derived in section 3.4.1 as a generalization of the

normal distribution on a differential manifold. Although we are not aware of the
definition of these objects in statistics, is quite likely to have been previously defined,
so that it is necessary a deeper review of the literature to trace their origins, ap-
plications and properties. In any case, although these concepts would have been
previously defined, they have never been used to model the intrinsic geometry of the
TC problem and to obtain the optimal classifier introduced in this work, so it does
not detract merit the novelty presented here.
Starting from the geodesic normal distribution Ng, we define the geodesic log-

linear likelihood function Lg (x : µ,Σg), function that allows us to define the local
distance9 denoted by Bkg (x : µ,Σg), that we call Bayes’s distance. The Bayes’s

9As we will see in its definition, this is not a traditional metric that applies for every pair of
elements in the space, but for each element of the space respect to a set of distinguished elements.
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distance defines the probabilistic distance among every point on the features space
and the centroid µk of each class ck.
We introduce some theorems to prove that the function Bkg (x : µ,Σ) defines the

optimal solution for the intrinsic classification according to the Bayes’s criterion,
and it induces a Voronoi diagram on the features space, denoted by VC .
One theorem proves that the intrinsic Bayes solution always induces a Voronoi

diagram on the features space as differential manifold, whose boundaries are defined
by the intrinsic geometry of the features space, the data distribution and the a priori
probabilities of the classes.
We also note that the definition of VC applies to any features space M which

is defined as a differential manifold, although here we only focus in the specific
case for the hypersphere Sn+ with an intrinsic normal distribution. The use of the
hypersphere Sn+ and the normal distribution Ng leads us to get closed formulas for
all the involved objects.
The intrinsic Voronoi diagram VC is expressed implicitly by the set of functions

Bkg
(
x : µk,Σ

k
g

)
, which means that we do not need explicitly calculating its represent-

ation what would imply computing and storing an explicit representation of the de-
cision boundary, being an intractable [Dwyer, 1989] [Boissonnat & Karavelas, 2002]
and unnecessary problem in our case.
Once the structure of our classifier is defined, we present in the section 3.4.5

the numerical methods and algorithms needed to compute it. The training process
model consists in the estimation of the a priori probability p (ck) for each class ck
and its intrinsic distributions Ng, what allows to define the functions Bkg

(
x : µk,Σ

k
g

)
.

For the training of the classifier we introduce a method and algorithms which
could be improved in the future, but they will continue using the main result of this
chapter: the fact that the solution to the TC problem can be defined as an optimal
Bayes classifier on the geometry of the features space, under the hypothesis that the
classes match the geodesic normal distribution.
Finally, the proposed method is a simple Bayes’s classifier, such that for a

novel unseen document vector x ∈ Sn+, the selection of the optimal class c
∗ ∈

C is only a search process to find the argument that minimizes the functions{
Bkg
(
x : µ,Σk

g

)}
k∈K .

The remainder of the section is structured as follows. In section 3.4.1, we in-
troduce a detailed description of the representation model for the geometry of the
classes. The section 3.4.2 introduces the definition of the intrinsic Bayes’s distance.
In section 3.4.3, we show how to classify an unseen document. The section 3.4.4
introduces the our definition for the intrinsic Voronoi diagram and its relation with
the optimal Bayes solution. By last, in section 3.4.5 we propose some algorithms to
implement the proposed classifier.

3.4.1 Representation of the classes

In this section, we introduce a geometric model for the representation of the subsets
(regions) of the features space Rk ⊂ M = Sn+, where the data generated by a given
class ck ∈ C are contained with some probability. We will assume that the vectors
generated by every class can be represented by an intrinsic normal distribution
N k
g (µk,Σk) on the features space manifold M . The figure 3.2 shows some samples
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distribution for a group of classes on the unit hypersphere (features space).

Figure 3.2: Clases sobre el espacio de rasgos Sn+

The normal distribution for a random vector x ∈ Rn+1 is given by (3.17), where
µ ∈ Rn+1 is the mean vector and Σ ∈ Rn+1×n+1 the covariance matrix for the normal
distribution associated to a class.

f (x, µ,Σ) = (2π)−
n+1
2 |Σ|−

1
2 e−

1
2

(x−µ)TΣ−1(x−µ)

p (x | c) = f (x, µ,Σ) (3.17)

The function f (x, µ,Σ) represents the p.d.f.10 for a random vector x on the
Euclidean space Rn+1, corresponding to a normal distribution denoted by N (µ,Σ).
This function defines the conditional probability p (x | c) to get the vector x gen-
erated by class c ∈ C. The term in the exponent place in (3.17) is a quadratic
form that allows to define a space of n-dimensional quadrics parametrized by (µ,Σ),
and described by (3.18). The r value in (3.18) is the well known Mahalanobis dis-
tance. Because all the components of any VSM document vector x are positive,
the covariance matrix Σ is symmetric, positive defined, and real-valued, thus, its
inverse always exist. The last condition guarantees that it is always possible to fit
the normal distribution N (µ,Σ) to the vectors generated by any class in a VSM
model, whenever an suitable dataset be available for its estimation.

(x− µ)T Σ−1 (x− µ) = r2 (3.18)

The formula (3.18) defines level set surfaces for each r value, namely, the subset
of the features space with the same occurrence probability value for the distribution
of a given class.
The quadrics defined by (3.18) are sized and oriented according to the distribu-

tion of the data, property that we use to represent the geometry of the data on the
features space.

10Probability density function.
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Rewriting (3.17) as a function of the Mahalanobis distance, we get the simpler
formula (3.19).

f (x : µ,Σ) = (2π)−
n+1
2 |Σ|−

1
2 e−

1
2
r2 (3.19)

Up to now, we are only using the standard multivariate normal distribution.
Now, we make a simple but key observation: in the VSM model used in the scope
of the TC problem, the vectors are contained in the features space Sn+, not in the
whole Euclidean ambient space.
Starting from the observation above, we can define a novel intrinsic normal dis-

tribution that is denoted by fg. The function fg will be directly defined on the
hypersphere, instead of the Euclidean ambient space Rn+1 such as is defined in
(3.19). The novel function fg will represent the geometric distribution of the normal
model associated to each class, through the use of the tangent space TµM to the
features space Sn+. The representation of the geometric distribution for the vectors
generated by a class will be defined using the geodesic distance among points on the
features space, and it will be defined on the tangent space of the hypersphere. The
definition of the function fg allows to join the intrinsic geometric of the data and
the features space in a same mathematical object.
Now, observe the structure of the covariance matrix Σ for the Euclidean case.

Every cell of the covariance matrix is defined by (3.20), where the factor σ is the
joint standard deviation among the components of the vectors, and its square is the
variance.

Σij = cov
(
xi, xj

)
= σ2

ij

= E
[(
xi − µi

) (
xj − µj

)]
(3.20)

If we look closely at the term on right in (3.20), we find out other key fact in
this study. The factors (xi − µi) are encoding the expected value for the product
of distances on each tangent direction in the base space (domain) of the p.d.f., in
this case, the Euclidean space. Every factor (xi − µi) measures the deviation in the
direction of every canonical coordinate axis ei.
Now, we are going to generalize the expression (3.20) to get a distribution whose

domain is a differential manifold M , what for VSM reduces to Sn+.
Given a vector x ∈ M , and being the features space M a differential manifold

with parametrization X, the geodesic distance dg (x, µ) is the measured distance on
the manifold according to a geodesic outgoing from the point µ and passing through
the point x, such as is shown in figure 3.3.

Fortunately, the geodesic on the unit hypersphere match the maximal circles,
and we can compute its direction and length through a closed formula. We define
the unit vector a ∈ Rn+1 (3.21) on the chord that joins the points {µ, x}.

a =
1

‖x− µ‖ (x− µ) (3.21)

Then, we define the function gµ (3.22) which assigns a vector in the tangent
space TµM on any point x ∈ X by the expression in (3.23). The vector gµ (x) has
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Figure 3.3: Distancia geodésica entre puntos

Figure 3.4: Representación del vector gµ (x)

the same direction than the outgoing geodesic from µ to x, and its Euclidean norm
is dg (µ, x). The definition of the function gµ depends on the tangent space TµM
and the family of outgoing geodesics at the point µ, such as is shown in figure 3.4.

The vector gµ (x) is defined by (3.23), whose meaning is simply the projection
of the vector (3.21) on the tangent space TµM , taking advantage of that the unit
normal in µ is equal to µ.

gµ : X → TµM (3.22)

gµ (x) =
dg (µ, x)

‖a− (aTµ)µ‖
(
a−

(
aTµ

)
µ
)

(3.23)

The method of construction of the formula (3.23) could be generalized for any
differential manifoldM , however it is only valid for the hypersphere, because we are
using the definition of the geodesic chord given by the vector a ∈ Rn+1. For a general
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manifold, the geodesic distance dg (µ, x) should be obtained by the integration of one
vector differential equation defined on any hypersurface with arbitrary dimension,
problem that is extremely diffi cult in some scenarios as follows: non-convex surfaces,
high-dimensional manifolds, multiple-chart manifolds, and any general surface with
dimension greater than 2. In our case, we are lucky because the hypersphere offers
the closed formula (3.24) for dg, and substituting this value in (3.23) we get the
closed formula for gµ (x) in (3.25).

dg (µ, x) = arccos
(
xTµ

)
(3.24)

gµ (x) =
arccos

(
xTµ

)
‖a− (aTµ)µ‖

(
a−

(
aTµ

)
µ
)

(3.25)

Then, to get the standard deviations of gµ (x) along each canonical direction in
the tangent space TµM , we just need to project gµ (x) on each canonical base vector
∂X
∂ui

de TµM and replacing in (3.20) to get the novel geodesic covariance matrix Σij
g

given by (3.26).

Σij
g = E

gTµ (x) · 1∥∥∥ ∂X∂ui∥∥∥
∂X
∂ui

gTµ (x) · 1∥∥∥ ∂X∂uj ∥∥∥
∂X
∂uj

 (3.26)

The matrix Σg defines the geodesic covariance in the tangent space TµM , what
in our case encodes the variation of size and orientation of the data, measured on
the unit hypersphere Sn+.
Now, we are ready to define the novel geodesic density probability function fg

in (3.27). This function defines the intrinsic normal distribution of the data on the
features space that we call geodesic normal distribution and is denoted byNg (µ,Σg).
Similarly, the value of the quadratic form rg in (3.28) is called geodesic Mahalanobis
distance.

fg (x : µ,Σg) = (2π)−
n+1
2 |Σg|−

1
2 e−

1
2
r2g (3.27)

r2
g = gµ (x)T

[
Ĵ · Σ−1

g · ĴT
]
gµ (x) (3.28)

Ĵi =
1∥∥∥ ∂X∂ui∥∥∥

∂X
∂ui
∈ Rn (3.29)

The consequence of the expressions above is that the isoprobability regions (level
sets) become a (n-1)-dimensional quadric defined on the features space Sn+. In
figure 3.5, we show the isoprobability curves for S2

+ which define concentric ellipses
embedded in the surface.

3.4.2 Intrinsic Bayes distance

Once the expressions (3.27) and (3.28) have been defined for the p.d.f. of the geodesic
normal distribution, we will define the intrinsic Bayes distance, which allows us to
define the optimal classifier in the next section. The Bayes distance characterizes
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Figure 3.5: Regiones de iso-probabilidad de fg

the geometry of the classification like a partition of the features space, thus finding
a relationship between the optimal Bayes solution and the Voronoi diagrams on
manifolds.

As we saw in section 3.3.3, according to the Bayes criterion, given any probabil-
istic distribution for the space of classes C = {ck}k∈K and a document vector x, the
optimal classification denoted by c∗ is given by (3.30).

c∗ = argmax
ck∈C

{p (ck | x)} (3.30)

p (ck | x) =
p (x | ck) · p (ck)

p (x)
(3.31)

For each class ck we have the function p (x | ck) = fkg
(
x : µk,Σ

k
g

)
. Looking at

the denominator in (3.31), we aware that p (x) is constant for all the evaluations of
p (ck | x), thus we can write the optimal solution as (3.32), what for the distribution
N k
g

(
µk,Σ

k
g

)
reduces to the expression (3.33).

c∗ = argmax
ck∈C

{p (x | ck) p (ck)} (3.32)

c∗ = argmax
ck∈C

{
p (ck) fkg

(
x : µk,Σ

k
g

)}
(3.33)

Finally, taking logarithms on both sides and doing some algebra on (3.27), we
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get the likelihood geodesic log-linear function Lg (3.34), simplified in (3.35).

Lg : Sn+ → (−∞,−δ] ⊂ R (3.34)

Lg (x) = log
(
fkg
(
x : µk,Σ

k
g

))
Lg (x) = −1

2
[(n+ 1) log (2π)

+ log (|Σg|) + r2
g

]
Lg (x) = −δ − 1

2
r2
g (3.35)

δ =
1

2
[(n+ 1) log (2π)

+log (|Σg|)]

Using the definition of Lg, we can rewrite again the optimal solution by the
expression (3.36).

c∗ = argmax
ck∈C

{
log (p (ck)) + Lkg (x)

}
(3.36)

As can be seen in (3.34),the function Lg (x) is monotonically increasing in the
parameter x, but to define a distance function we need a monotonically decreasing
function, thus, we will define the intrinsic Bayes distance for a class ck, like the
symmetric argument of (3.36), such as is shown in (3.37).

Bkg : Sn+ → [δ − log (p (ck)) ,∞) ⊂ R
Bkg (x) = −log (p (ck))− Lkg (x) (3.37)

Because p (ck) is a probability value, the next condition is verified: p (ck) ∈
[0, 1]→ log (p (ck)) ∈ (−∞, 0].
By last, the optimal solution c∗ is defined in (3.38) like a function of the novel

intrinsic Bayes distance.

c∗ = argmin
ck∈C

{
Bkg (x)

}
(3.38)

3.4.3 Classification of a document

The classification of an unseen document p ∈ Sn+, reduces to the selection of the
optimal class c∗ according to the criterion (3.38), which we call intrinsic Bayes rule.
We prove below that this solution always exists and its value is optimal and unique.

Theorem 2 (Intrinsic Bayes rule) BeD a set of documents represented by points
on a differential manifold M , and C = {ck}ck∈C a set of classes with geodesic nor-
mal distribution Ng

(
µg,Σg

)
onM , and be Bg =

{
Bkg (x)

}
a family of Bayes distance

functions associated to the classes, then the classifier c∗ = arg min
ck∈C

{
Bkg (x)

}
always

exists and its solution is the unique value that maximizes the posteriori probability
p (ck | x) .

Proof :



3.4. INTRINSIC BAYES-VORONOI CLASSIFIER 97

1. Existence. The existence of the classifier is consequence of that the covariance
matrix is real-valued, symmetric and positive defined, thus the inverse matrix
Σ−1
g always exists and it is unique.

2. Uniqueness and optimal value. Because Bg is a finite set, the set of real values{
Bkg (x)

}
is a finite subset of R with its usual order relation (R,≤), thus, if

exists a minimum, it must be unique. Moreover the value e
−Bkg (x)

p(x)
matches the

maximum argument in the Bayes’s theorem, thus the value c∗ is optimal.�

The intrinsic optimal classifier (3.38) is optimal in the sense of Bayes, but it
depends on the data fits to the distribution used as hypothesis, that in our case
is the manifold-based Gaussian on the features space. Our hypothesis is endorsed
by central limit theorem, despite that other distributions on the Euclidean space
have been proposed in the literature. However, the fitting quality of the model to
represent the data, as well as its estimation, will be always the main error sources,
or deviations from the optimal solution.

3.4.4 Intrinsic Voronoi diagrams

The Voronoi diagrams are omnipresent structures in the scope of all sort of ap-
plications that require space partitions, such as: computational geometry, CAD,
differential equations solving, etc. In [Aurenhammer, 1991], the author makes an
excellent survey about the topic and its applications.
Next, we introduces an abstract definition of a Voronoi diagram that fits the

context of our problem.

Definition 23 (Local distance) Be X any non-empty set and an element pk ∈ X
called site, and be dk : X × pk → R+ ∪ {0} a function defined on the neighborhoods
Bpkof pk, such that ∀b ∈ Bpk → b ⊂ X and pk ∈ b. We said that dk is a local
distance function if it verifies the axioms below:

1. Non-negativity: 0 ≤ εk ≤ dk (x, pk) , ∀x ∈ X

2. Coincidence: dk (x, pk) = εk → x = pk

3. Symmetry: dk (x, pk) = dk (pk, x) , ∀x ∈ X

As we can see, the functions dk are only defined respect to the site pk and they
are bounded below by a positive value εk. Moreover, the function does not support
the triangle inequality, because it is only able to compute distances from any point
to its site. Therefore, the functions dk are not metrics, and they do not allows us
to define families of open neighborhood [Arregui Fernández, 1988] to endow X with
a structure of topological space, however, these functions are enough to define any
Voronoi diagram as follows.

Definition 24 (Space with local distances) Be X any non-empty set and P =
(pk)k∈K a set of elements in X called sites, and S = (d1, . . . , dk)k∈K an ordered tuple
of local distances associated to the elements in P by the indexes in K, then the tuple
(X,P, S) is called a space with local distances.
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Definition 25 (Voronoi diagram) Be the tuple (X,P, S) a space with local dis-
tances, then we call Voronoi diagram on X to every set V = (Rk)k∈K that verifies
the next axioms:

1. V is a finite covering of the space X, induced by the set of sites P , such that
X = ∪

k
Rk and pk ∈ Rk, ∀k ∈ K.

2. Each set Rk ⊂ X is called Voronoi cell and it is defined by the set of points in
X whose distance to pk is less than the distance to any other cell in V, such
as is expressed by (3.39).

Rk = {x ∈ X : dk (x, pk) ≤ dj (x, pj) ,∀j 6= k} (3.39)

3.4.4.1 Intrinsic Bayes solution and the Voronoi diagrams

In this section we prove that the Bayes distance defined by (3.37) induces a Voronoi
diagram VC on the features space, and as consequence, the selection of the optimal
class c∗ according to the Bayes criterion reduces to find the Voronoi cell for the
object to be classified.
Moreover, because the definition of the Bayes distance is independent of the

probability function of the data, it is proven that any Bayes’s classifier induces a
Voronoi diagram on the features space, and the decision boundaries are the bound-
aries of the Voronoi diagram. Given a training dataset DT defined according to the
VSM model in section 3.3.1, we ask the following question:

¿What is the geometric structure for the partition of a document set
induced by the classifier in (3.38) ?.

Without more information, our intuition is that the best classification of the data
should be one that selects as decision criterion the equidistant boundaries among
classes, which are precisely those that define an intrinsic Voronoi diagram on the
features space, following the definitions given in the last section.
This geometric intuition matches the Fisher’s discriminants theory, where for

each pair of different distributions, the optimal decision threshold is precisely the
place in the domain where the distributions get the same probability value. Following
the reasoning, we can state now the relation among the intrinsic Bayes classifier and
the Voronoi diagrams in the next theorem.

Theorem 3 (Bayes-Voronoi diagram) BeM a differential manifold, C {ck}k∈K
a set of classes with a distribution defined on M , PC = {µk}k∈K a set of sites on
M associated to each class, and Bg =

{
Bkg (x)

}
a family of Bayes distance functions

associated to the classes. The, the tuple (M,PC ,Bg) defines a Voronoi diagram VC
(3.40), that we call Intrinsic Bayes-Voronoi diagram.

VC = (Rk)k∈K (3.40)

Rk =
{
x ∈M : Bkg (x) ≤ Bjg (x) ,∀j 6= k

}
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The proof is trivial and it follows from the definition, because the functions
Bg are local distances measured on the manifold M , and they are induced by the
distributions for each class.
As future work, it would interesting to study the properties of the Voronoi dia-

grams to know if they can be helpful for the solution of our main problem.

3.4.5 Training of the model

The training of the model reduces to the estimation of the distributionN k
g

(
µk,Σ

k
g

)
for each class, problem that implies the estimation of the intrinsic covariance matrix
Σk
g and its inverse. The covariance matrix is real-valued, symmetric and positive
defined, and for the general case is not sparse. It implies that the computation of the
inverse matrix has a O (n2) storing complexity and O (n3) computation complexity,
therefore, the estimation is intractable for the common n values in the context of
the document classification.
To overcome the described drawback, we propose as training method to find the

distribution for each class on a specific subspace, what means to find the features that
best describe the classes and project them on this subspace. Basically, we propose to
use some features selection method. Using this approach we are approximating the
covariance matrix Σk

g according to the number of selected features. The important
issue is that we know where the solution “lives”and any better estimation of the
distributions N k

g move us toward it.

3.4.5.1 Model estimation

Starting from the training corpus DT , we get the documents for a class ck, denoted
by Dk = {d ∈ DT : ϕ (d) = ck}. The training consists in the estimation of the priori
probability p (ck) and the parameters of N k

g

(
µk,Σ

k
g

)
for each class ck.

For this, we use the MLE method, which reduces to the expression (3.41) for
the mean and (3.42) for the variances. As estimated p̂ (ck) of the priori probability
p (ck) we can use the distribution for the classes in the corpus.
Each document is represented by a vector xr ∈ Sn+.

µ̂k =
1

|Dk|
∑

xr
r∈Dk

(3.41)

Σ̂k,ij
g = E

[(
gTµ (x) · ∂X

∂ui

)(
gTµ (x) · ∂X

∂uj

)]
(3.42)

=
1

|Dk|
∑
r∈Dk

(
gTµ (xr) ·

∂X
∂ui

)(
gTµ (xr) ·

∂X
∂uj

)
For the parameters estimation, we can use all the vectors assigned to a same

class, or we can use any other method to filter “outliers”, such as the known random
sampling (RANSAC).

3.4.5.2 Feature selection by class

As we mention, the computation of the inverse of the covariance matrix Σk
g is an

intractable problem for the dimensions managed in the TC problem. In fact, the
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estimation of the coeffi cients Σ̂k,ij
g is also hard, because it requires a storing in

memory with quadratic complexity O (n2), preventing the possibility to represent
the matrix in the main memory for any features space with large dimensions.
By other hand, we mentioned in the introduction about the VSM model that

all the vectors use to be sparse. It is true in the Euclidean space, but due to the
transformation of the problem to the tangent space, which depends on the position
of the mean vector µ for each class, this property is not true for the general case.
A practical solution to estimate the model consists in the projection of the data

on a lower dimensional space, using a combination of well established methods
for features selection (χ2) and dimensionality reduction (PCA [Zu et al., 2003]). If
it would be desired, the first features selection method can be replaced by other
alternative. However, for the second step, PCA is our favorite option because it is a
closed and well founded algorithm, where the unique free parameter is the number
of selected eigenvectors to define the final dimension of the transformed data.
If we select a set of representative coordinates (features) by class, we can define

lower dimension unit hyperspheres Snk+ , with nk � n. Using any features selection
method, we can build the family of projections per class π = {πk}k∈K in (3.43)

πk : Sn+ → Snk+ (3.43)

As first step to classify any document, it is projected by the functions πk on the
subspaces Snk+ associated to each class, then, the Bayes distance is computed on Snk+ .
The optimal solution follows verifying the Bayes’s criterion, but now, there are not
a whole Voronoi diagram covering the whole features space, because the features
spaces are individuals patches for each class.
The simplified optimal solution c∗ is given by (3.44), where the distance functions

B̂kg are computed using the normal distribution on the subspaces S
nk
+ .

c∗ = argmin
ck∈C

{
B̂kg ◦ πk (x)

}
(3.44)

The definition of specific subspaces per class, denoted by Snk+ , allows the scalab-
ility of the method respect to the increasing of the classes, because each model
for an individual class can be defined without impacts the rest of the classes. The
subspaces for each class can be independently defined with its optimal number of fea-
tures, without to need any trade-off about the total number of features of the VSM
model, thing would happen if a global features space is defined, whose dimension
needs to be increased every time a new class is added to the model.
The insertion of a novel class to the model only requires the selection of the set

of descriptive features for the class and the estimation of its normal distribution.
The only global parameter that is affected is the a priori probability for each class,
which needs to be recomputed. This is a simple task if the system registers the
number of documents classified for each class.
The proposed method to reduce the dimensionality per class is PCA, also known

as Karhunen-Loeve transformation in signal processing, and Latent Semantic Index
(LSI) in NLP.
Starting from the documents set for each class, denoted by Dk, we get the non-

zero coordinates for all the vectors in the set, and we build a mapping function
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for the coordinate indexes, to define the new vector x̃. The number of non-null
coordinates in Dk is denoted by nrk what defines the first projection (3.45) for the
data of the class ck. In this first step, we can also use any features selection method
as the known chi-square χ2.

πrk : Sn+ → Rrk (3.45)

Then, we define the covariance matrix Σk,r (3.46) in the space Rrk , which has a
dimension rk × rk.

Σij
k,r = E

[(
x̃i − µ̃ik

) (
x̃j − µ̃jk

)]
, x̃, µ̃ ∈ Rrk (3.46)

We get the SVD decomposition of the matrix Σk,r (3.47) and we select the
greater s singular values, getting an approximation of order s for the covariance
matrix.

Σk,r = UΛUT (3.47)

The covariance matrix is a normal matrix because it is square and verifies the
condition Σk,r · (Σk,r)

T = (Σk,r)
T ·Σk,r. Like consequence, the singular value decom-

position (SVD) of the matrix matches the eigenvectors decomposition. The matrix
Λ is diagonal and it contains the eigenvalues of Σk,r, while that the matrix U is
orthogonal and it contains the eigenvectors of the covariance matrix. The matrices
U and Λ has dimension r × r.
Now, we can select the sk greater eigenvalues and their associated eigenvectors,

we get the sought transformation matrix πs (3.48). This matrix defines the pro-
jection of a vector on the subspace spanned by the subset of eigenvectors of the
covariance matrix, which are the directions in the Euclidean space that best repres-
ent the data for the approximation order sk.

πsk : Rrk → S
(sk−1)
+ (3.48)

πsk (x) =
1∥∥UT
sk
· x
∥∥UT

sk
· x

Finally, we can define the whole projection associated to a class ck by (3.49),
which is composed by a features selection step πrk, followed by a dimensionality
reduction transformation πsk based in PCA.

πk : Sn+ → Snk+ , nk = sk − 1 (3.49)

πk = πsk ◦ πrk

The training process requires the computation and storing of the projections πsk
and πrk for each class, and the parameters for the intrinsic normal distribution N k

g

on the features subspace for each class. The training is summarized in the next
steps:

1. Computation and storing of the terms and indexes for the r nonzero coordin-
ates that define each projection πrk.
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2. Computation and storing of the eigenvectors matrix UT
sk
what defines πsk.

3. Computation and storing of the parameters of N k
g

(
µk,Σ

k
g

)
on the features

subspace Snk+ .

3.5 Experiments and discussion

To perform the validation of the proposed model, we repeated the experiments of
text classification made by Lewis with the corpus RCV2 [Lewis et al., 2004]. We
use the same weight vectors used in the benchmarks reported in this paper, with
the aim to verify the model regardless of other factors, such as: the definition of the
vocabulary, the feature selection method and the stemming method.
We use the weight vectors defined for the documents in the corpus, which had a

size close to 50,000 and were organized into a hierarchy of 360 classes. We carried-
out two different experiments: (1) n-single class binary classifiers (one per class →
not global features space), and (2) a whole multiclass classifer on the same features
space. Both experiments were implemented in C# .NET on a laptop with an Intel
Pentium B950 @ 2.1 Ghz with 4 Gb RAM.

3.5.1 First experiment

Due to the large dimensionality of the problem, which impacts on the estimation
of the covariance matrix, we implemented N independent binary classifiers, one per
class, defined on the subspace of the features space containing all vectors of the same
class. The classifiers worked in two stages: features selection (projection) + binary
classification.
Simple features selection. To perform the classification of a vector, the fea-

ture vectors were projected onto the subspaces of each individual class. This pro-
jection process is equivalent to a features selection on the input vectors according to
the particular features of each evaluated class, what basically produces a truncation
of the components of input vectors that are not part of the subspace of each class, or
in other words, the keywords that do not appear in the evaluated class are removed
from the input vector.
During the implementation of the first experiments, we got the problems de-

scribed below:

1. The number of training vectors per class was low and not evenly distributed,
which led to singular covariance matrices and numerical diffi culties for the
model estimation. These problems prevented the estimation of the parameters
of the model, such as it had been designed.

2. Most of similarity values (cosine function) between vectors was zero as a result
of the huge spread of values and the sparse structure of the vectors, even within
the same class, a condition that also greatly complicates the ability to adjust
the parameters model.

3. The features selection per class, induced by the projection of the input vectors
onto the subspace of each class, resulted in low rates of classification accuracy.
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Conclusion. The above problems are summarized in that the structure of the
feature vectors makes it impossible to adjust the proposed model, or what is the
same, the proposed full model is not able to represent the observed data.

3.5.2 Second experiment

To solve the problems described above, we decided to make some changes in the
model, trying to preserve the original spirit, in the hope to get better results. Fol-
lowing this idea, the following changes were made to the basic model:

1. Independent components. We assumed a model of independent compon-
ents. This simplification of the model means that we only consider the vari-
ances of each individual feature, eliminating the cross covariance entries, what
leading us therefore to a diagonal matrix with a trivial inverse. The resulting
geometry for the distributions are quadrics aligned with the coordinate axes in
the canonical Euclidean ambient space. We decided to assign a small random
value (epsilon) to the off-diagonal values.

2. Removal of the features selection. To avoid the features selection induced
by the projection on the subspace of each class, we decided to remove the first
step of features selection, following the spirit of SVM, which is able to operate
on vectors of large dimension without to use any dimensionality reduction
technique. This led us to the following problems:

(a) High numerical and memory complexity. Operate with vectors
without reducing its dimension, leads to a huge increase in the computa-
tional complexity, as well as a runtime memory problem, as each vector
is of order 5× 104 components, what means around 4× 105 bytes/vector.
For a large training set, it is not possible to hold in the main memory the
data in any standard computer.

(b) Impossibility to represent all tangent vectors in memory. The
computation of the geodesic vector involves the projection of each vec-
tor associated to a document (dim ∼ 5 × 104) on the tangent space to
the unit hypersphere, which involves the dot product of this vector with
approximately 5 × 104 vectors de dimension O (5× 104). The problem
is that the 5 × 104 vectors defining the tangent space at the centroid of
each class can not be represented in memory, because their storage would
require ∼ 2× 1010 bytes.

3. Solution with a high computational cost. One possible solution to the
problems (2.a) and (2.b), which was implemented at the expense of a high
computational cost, is the computation at fly of the tangent vectors as they
become necessary for their scalar product with the features vector to be classi-
fied. The sparse structure of the tangent vectors and the input vector allow the
optimization of the computation of their scalar product, since it is only neces-
sary to compute the product of the nonzero coordinates between the two vec-
tors. Finally, this solution yielded poor precission results with ill-conditioned
numerical stability.
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Numerical ill-conditioning problem. Despite our effort to solve the practical
problems of implementation of the proposed model in the second experiment, the
last detected problem was the numerical instability of the parametrization of the
unit hypersphere for dimensions as high as 5× 104. The direct parameterization of
the hypersphere requires the computation of a nested product of up to 5×104 values
of the cosine function, while that the inverse function requires the computation of
the square root for a sum of squares of the same order, which produced a huge
numerical instability.
The model is not able to fit a typical keyword-based TC dataset, it is ill-

conditioned numerically, and with a high computational cost if we discard the initial
features selection (projections) step.

3.6 Conclusions

We have introduced a novel method for document classification based on the con-
struction of a Bayes classifier on the feature space considered like a differential
manifold. The classifier is optimal according to the geometry of the feature space
and the normal distribution of the data.
We found a relationship between the optimal Bayes classifier and the geometric

structure (decision boundaries) generated on the feature space, proving that said
structure is an intrinsic Voronoi diagram which we call Bayes-Voronoi diagram.
We have also generalized some statistical objects on differentiable manifolds, such

as the normal distribution and the Mahalanobis distance, and we have presented the
Bayes distance. These objects are called respectively, geodesic Mahalanobis distance
and Bayes distance.
Unfortunately, the proposed classifier model, although it was interesting from

a theoretical point of view, the first experimental results indicate that it has an
enormous diffi culty of practical implementation. We attribute this problem to two
possible causes: (1) the structure of the training data makes very diffi cult adjusting
our generative model, and (2) the numerical complexity of the model itself, derived
from the equations of the unit hypersphere, produces numerical instability for high-
dimensional space features. Therefore, it is necessary to conduct a further review of
the proposed model or leaving this research line.
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Final conclusions and future work

This thesis has introduced two novel semantic representation spaces for text docu-
ments and semantically annotated data, based in an intrinsic geometry approach,
as well as other results, among which we have: a novel ontology-based semantic
distance called weighted Jiang-Conrath, a generalized normal distribution on dif-
ferential manifolds that we call geodesic normal distribution, which lead us to the
definition of the geodesic Mahalanobis distance. By last, we prove that any Bayes
classifier on a manifold defines a dual Voronoi diagram on its domain.
The ontology-based IR model looks promising, but it has not been evaluated

experimentally yet, while that, the text classifier yielded some discouraging results.
Respect to the Intrinsic Bayes-Voronoi classifier, the model has yielded discour-

aging results as consequence of the diffi culties for the training of the model, and
the numerical instability derived from the numerical complexity of the hypersphere
equations. By this reason, we have decided to suspend our research in this direc-
tion to focus in the more promising research trend about ontology-based IR models
and semantic distances. Despite of these discouraging results, we could study the
possibility to publish some partial results related with the Intrinsic Bayes-Voronoi
classifier.
As next steps in our research, we can cite some different trends as follows. First,

the development of some basic validation experiments for the Intrinsic Ontological
Spaces model. Second, the extension of the experiments to large scale collections like
the Web, and different domains. Third, the evaluation of the Intrinsic Ontological
Spaces model in other NLP and IR tasks, such as the ontology-based clustering,
word disambiguation, text summarization, automatic semantic annotation and Q&A
among others. Fourth, the investigation of novel geometric search structures on
semantic metric spaces based in the integration of the ontology in the search model.
The inquiry about ontology-based geometric search structures could open a new

research trend that we would call ontology-based space partitions for semantically
annotated data, which could play an important role for the semantic indexing of
large data collections like the Web. This research trend would have as main objective
the inquiry about the existence of ontology-based geometric search algorithms and
structures, which could be used for very large scale semantic indexing and retrieval.
Like continuation of the work about manifold-based distributions, it would be in-

teresting to browse of the literature about statistics differential geometry, field known
as directional statistics [Mardia & Jupp, 2000], to study the definition of other dis-
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tributions on manifolds, distinct from the geodesic normal distribution proposed
here.
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