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ABSTRACT

Resumen:
En este trabajo se analiza el conjunto límite de los grupos Kleinianos. Asumiendo conocimien-

tos genericos, se describen las transformaciones de Möbius y los grupos Kleinianos y se enuncian
algunas de sus propiedades. Ulteriormente, se caracteriza el conjunto límite de los grupos Kleini-
anos examinando sus propiedades básicas y topológicas asi como su convergencia e invariancia.
Frecuentemente, el conjunto limite resulta ser un fractal cuyas principales propiedades son
analizadas haciendo enfasis en su estructura local.

Abstract:
In this work the limit set of Kleinian groups is analyzed. Assuming basic knowledge, the

Möbius transformations and the Kleinian groups are described outlining some of their properties.
Subsequently, the limit set of Kleinian groups is characterized considering its basic and topological
properties as well as its convergence and invariance. Frequently, the limit set results to be a
fractal whose main properties are analyzed stressing the investigation of its local structure.

Keywords: Grupos Kleinianos, Conjunto Límite, Fractales
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1
PREFACE

The Beauty of the Limit Set

In their excellent work Indra’s Pears(2002), the Field’s medalist D. Mumford together with his

co-authors, Series and Wright, have shown some fascinating images. Those correspond to limit

sets created by the recursive application of Möbius transformations to a set of circles located in

some particular positions.

The transformation that those authors utilized two disks, DA and Da, see Figure 1.1, in the

way indicated by the arrows of the figure. The transformation operates in the following way: i) the

disks Da and DA do not overlap; ii) the outside of the disk DA corresponds to the inside of Da;

iii) the inside of DA is mapped in the outside of Da; iv) the circles are mapped one in the other.

In the Figure, the successive application of the transformation, provides the images, circles,

marked in yellow and red.

We may slightly complicate the pattern above. The combination of two transformations can

be applied to a set of two pairs of circles as depicted in Figure 1.2. The combination of the

transformations occurs as shown by the arrows. The outside of disk DA is mapped inside circle

Da. The interior of DA is mapped outside of DA. The pairing procedure is analogous for both

circles DB and Db.

The combination of the two transformations results in an interesting pattern. In Figure 1.3,

four levels of circles and their transforms are represented. Each level is depicted in a different

color. Notably, the circles start to accumulate in some locations, whilst other regions of the figure

contain no images at all.

We may also consider the recursive and successive application of the transformations to the

set of four tangent circles. We assume now that a sufficiently large number of stages, N, were

calculated. The successive sets of circles obtained as images shrink to very small sizes. They

1



CHAPTER 1. PREFACE

Figure 1.1: Circle pairing

Figure 1.2: Circle pairing pairing when two pairs of disks are selected.

form a quasi one-dimensional line that can be interpreted as a limit set. The limit set is in this

case continuous. Its topology appears to be of a fractal nature, as can be seen in the Figure 1.4.

Notably, it contains some points in which the line suffers an abrupt change of direction in which

tangents cannot be defined. It also tends to repeat its structure in different scales.

The enormous aesthetic beauty and the irresistible fascinating power of these images amply

justify the fact D. Mumford has devoted them a monographic book, even if recreational.

The attractive power of the images obtained is not new. Surprisingly, the picture above was

2



Figure 1.3: Pattern obtained after applying the transformation four times. Image taken from
Mumford et al. (2002)

not originally obtained in the computer’s era, when images of fractals have become popular

between enthusiasts of mathematics.

In spite of its complexity, its original creation happened in the XIX century. Figure 1.5 is in

fact due to Fricke and Klein (1897), and can be found in one of the numerous reprints of their

seminal work, Fricke and Klein (1965).

It is the hope of the author, that previous paragraphs have attracted the curiosity of wise

readers raising some questions. For example: What is the nature of the limit set that appears in

such a simple but fascinating way in Figure 1.4? In addition to its absorbing beauty, what are its

characteristics and its dimensions?

The pages of this work are humbly devoted to a very limited and partial answer of these

questions.

3
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Figure 1.4: Limit set of the transformation. Image taken from Mumford et al. (2002)
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Figure 1.5: Limit set of the transformation as depicted by Fricke and Klein (1897)
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2
INTRODUCTION

In this chapter, we address some concepts of basic character. We will firstly introduce the Möbius

Transformations describing also their formulation as matrices. Afterwards we will consider the

classification of the Möbius Transformations. Also, we will briefly discuss some interesting topics

such as the fixed points and the system of generators of the Möbius Transformations. Those will

be necessary for the further comprehension of the topics analyzed in this work.

2.1 Möbius Transformations

2.1.1 General

We denote the extended complex plane C∪∞ by Ĉ. Naturally, Ĉ can also be regarded as a sphere

which we call the Riemann Sphere and denote by S2.

This equivalence can be reached very simply. A plane passing through the equator of the

sphere is stereographicaly projected into the sphere itself using a line traversing the north pole.

We will not further expound on this classic topic, referring the readers to the classic work of

Ahlfors (1953).

Definition 1. The transformations of Ĉ of the form

(2.1) T(z)= az+b
cz+d

,

and

(2.2) T(∞)= a
c

where a,b, c,d ∈C and ad−bc 6= 0 are called Möbius Transformations

7



CHAPTER 2. INTRODUCTION

It is a very well-known result, that

Theorem 1. Aut(Ĉ) are the Möbius Transformations, where Aut(Ĉ) stands for the groups of

conformal automorphism of Ĉ

The proof of this basic result is not included here. It can be found in classic texts on complex

functions, like Jones and Singerman (1987, page 17).

Analogously to the Möbius transformations, we define a very similar mapping.

Definition 2. The orientation reversing conformal homeomorphisms of Ĉ are the transformations

of the form,

(2.3) g(z)= az̄+b
cz̄+d

,

where ad−bc 6= 0. Such transformations are called Fractional reflections.

2.1.2 The Matrix Formulation of Möbius Transformations

We consider now GL(2,C), the General Lineal Group consisting of the 2x2 matrices

(2.4) M =
(
a b

c d

)

with coefficients in C and determinant different from zero.

We may simply see that map θ,

θ : GL(2,C)→ Aut(Ĉ)(
a b

c d

)
→ T(z)= az+b

cz+d
,(2.5)

is a homomorphism. If M, N ∈GL(2,C) and U ,T are Möbius transformations such that θ(N)=U

and θ(M)= T, then θ(NM)=U ◦T(z)= θ(N)θ(M), the definition of a homomorphism.

The kernel of θ can be also very simply determined. Taking into account the definition of the

kernel,

(2.6) ker(θ)=
{(

a b

c d

)
∈GL(2,C) : θ

((
a b

c d

))
= idĈ

}
.

idĈ is determined by T(z)= λz
λ

= z. Its matrix representation is of the form

(
λ 0

0 λ

)
, which fulfills

that the direction of the projection line is not altered.

By the First Isomorphism theorem of groups (e.g. Bujalance-Garcia et al. (2003)) because the

map θ, equation (2.5), is surjective, GL(2,C)/K er(θ)∼= Aut(S2). The last construction, GL(2,C)/K er(θ),

is exactly the definition of the Projective General Linear Group, PGL(2,C).

8



2.1. MÖBIUS TRANSFORMATIONS

For our purposes it is still more convenient to work with the normalized version of GL(2,C), the

special linear group SL(2,C), which is the group of all matrices with determinant 1. Applying an

analogous procedure to PGL(2,C), we may define the Projective Special Linear Group, PSL(2,C)

as a quotient set of SL(2,C)/Ker(SL(2,C)).

We may also study the relationship between the Projective Special Linear Group and the

Projective General Linear Group. Clearly, for all N ∈GL(2,C), there exists M ∈ SL(2,C) such that

N = det(N)M. But on the other side, θ(M) = θ(N). This means that every T ∈ Aut(S2) is such

that ad− bc = 1. This last statement implies that the matrix equivalent of T is in SL(2,C). So

that PSL(2,C)= PGL(2,C).

2.1.3 Classification of Möbius Transformations

Given two transformations, f and g, we say they are conjugated if there exists a third one, u,

such that it is verified that g = u ◦ f ◦u−1.

The Möbius transformations have been historically classified into three or four categories, see

Jones and Singerman (1987) or Marden (2007).

The classification followed relies on the trace of the associated matrices to the transforma-

tions. Also, it considers the standard forms to which Möbius transformations can be conjugated.

Following Beardon (1983), those standard forms are either the transformation

(2.7) T(z)= kz, k 6= 1,

or the transformation

(2.8) T(z)= z+1.

If A is a Möbius transformation, then A can be included in one of the following categories:

• Parabolic: A is conjugate to z → z+1, a translation. A 6= id. tr(A)=±2.

• Elliptic: A is conjugate to z → e2iθz, θ 6=π, a rotation. | A |= 1. tr(A) ∈ (−2,2).

• Loxodromic: A is conjugate to z →λ2z, where |λ |> 1. | A |= 1. tr(A) ∈C\ [−2,2].

A fourth category, usually appearing in the textbooks like Jones and Singerman (1987), is:

• Hyperbolic is a loxodromic transformation whose trace is real. A is conjugate to z →λ2z

and λ> 1.

Möbius transformations have a characteristic of the uttermost importance for our work.

Möbius transformations have the so-called fixed points. Those are the solution, or solutions, of

A(z)= z A 6= idĈ, that is, of cz2 + (d−a)z−b = 0.

For example, the transformation z → z+1 keeps one and only one point fixed, the ∞. This

notion can be extended to the rest of transformations associated to our classification. We find out

that for the categories described above we have:

9



CHAPTER 2. INTRODUCTION

• Parabolic: A has exactly one fixed point in S2.

• Elliptic: A has exactly two fixed point in S2.

• Loxodromic: A has exactly two fixed point in S2.

The intuitive meaning of the fixed points of a loxodromic transformation can be better

understood observing Figure 2.1. In this picture the successive images of the puppet obtained

by consecutive application of a loxodromic transformation are represented. The consecutive

transformations create a kind of stroll for the puppet. The fixed points of the transformation

appear to be as the apparent sinks and sources of the spirals bounding the paths of the puppet.

Figure 2.1: Successive transformations of a puppet obtained applying consecutive loxodromic
transformations. Taken from Mumford et al. (2002).

Figure 2.1 also helps to introduce a related topic. The fact that one of the fixed points is

repulsive and the other attractive. Clearly, in Figure 2.1 the puppet walks from the fixed point on

the left to the one on the right.

Let us characterize this intuitive concept more mathematically. Suppose that the fixed points

of a Möbius transformation f are distinct. f is then conjugated to a transformation of the type

represented by the dilation of equation (2.7). Let consider that the fixed points are located at x1, x2.

The map g(z)= (z− x1)/(z− x2) transforms x1, x2 into 0,∞. Thus, g ◦ f ◦ g−1(z)= kz. Operating we

obtain,

(2.9)
f (z)− x1

f (z)− x2
= k

z− x1

z− x2
.

Calculating the derivatives at x1, it is immediate to obtain that f ′(x1) = k. By an analogous

treatment substituting x1 by x2 in g we obtain f ′(x2)= 1/k.

10



2.1. MÖBIUS TRANSFORMATIONS

Assuming that |k| > 1, x1 is called the repulsive fixed point and x2 is the attractive fixed point.

By the use of the derivatives, the notions of approaching and distancing become explicit. The

attractive fixed point is usually denoted by Fix+A and the repulsive fixed point is denoted by

Fix−A.

Fixed points can also be understood in terms of limits. Taking x ∈ Ĉ, so that x 6= x1 or n 6= x2, we

have that limn→∞ f n(x)= x2 and limn→∞ f −n(x)= x1. The repelling fixed point can be understood

as the attractive fixed point of the inverse.

Fractional reflections also can have fixed points.

Proposition 1. The set of fixed points of a fractional reflection is either empty, or it contains one

point, two points, or a cycle in Ĉ.

Proof. We consider the transformation written in the form defined by equation 2.3.

The proof is divided into two parts, segregating the cases in which ∞ is either a fixed point or

not.

If ∞ is a fixed point, we have that c = 0. We also can assume that d = 1. Consequently, we need

to solve the equation z = az̄+b. We divide the equation into its real and complex parts considering

that z = x+ i y and utilizing sub-indexes 1 and 2 for real and complex parts respectively of the

rest of the variables. We obtain

(a1 −1)x+a2 y=−b1,(2.10)

a2x− (a1 +1)y=−b2.(2.11)

Two linear equations. The solution set of the previous equations is either empty, or a point or a

line depending on the value of the parameters. This solution must be combined with the known

fixed point at ∞. The fixed set is thus constituted by either a point, two points, or a circle.

We address the second case. If c 6= 0, we need to solve the equation

(2.12) |z|2 +dz−az̄−b = 0.

We decompose it into its real and imaginary parts. We obtain two equations,

x2 + y2 + (d1 −a1)x+ (a2 −d2)y−b1 = 0,(2.13)

(d2 −a2)x+ (d1 +a1)y−b2 = 0.(2.14)

Equation (2.13) is the equation of a circle. But its radius must not be positive. Equation (2.14) is

linear in two variables. Its solution is either empty, a line, or a plane.

In general, because of its analogy with normal life reflection in mirrors, etc., the Fractional

Reflections that have a circle of fixed points are simply referred to as reflections. Note that a

line is a also a circle, but with an infinite radius.

11



CHAPTER 2. INTRODUCTION

2.1.4 Commutators

Definition 3. Given two elements f and g of group G, the element,

(2.15) [ f , g]= f ◦ g ◦ f −1 ◦ g−1,

is called the commutator of f and g1.

In this section we are going to be concerned by the relationship of commutators and fixed

points. Concretely, we will be interested by the solutions of

(2.16) [ f , g]= 1,

namely, the cases in which f and g commute.

We may slightly alter the equation (2.16) to obtain

(2.17) f ◦ g ◦ f −1 = g.

From this last equation, it is evident that if f and g commute, f keeps the fixed points of g

invariant.

We may also investigate how the fixed points of g correlate with the fixed points of f .

If g is parabolic and has a fixed point in x, interchanging the roles of f and g, then f also has

a fixed point in x. This means that two parabolics with the same fixed points commute.

Now consider the case in which g has two fixed points. g can be normalized so that g(z)=λ2z.

This fixes both 0 and ∞. Then, either f also fixes these two points or interchanges them. If both

f and g fix the same points, then they commute. If f interchanges the fixed points of g then g

also interchanges the fixed points of f .

We will finalize this section providing a theorem whose results will be utilized later in this

document.

Theorem 2. If f has exactly two fixed points and f and g share exactly one fixed point, then the

commutator is parabolic.

Maskit (1988). Let us consider that the transformations have been normalized. Thus, f has fixed

points in 0 and ∞ and g in ∞. The associated matrices of f and g adopt the shapes,

(2.18) f =
(

t 0

0 t−1

)

and

(2.19) g =
(
a b

0 a−1

)
,

1Bujalance-Garcia et al. (2003) defines the commutator as [ f , g]= f −1 ◦ g−1 ◦ f ◦ g while Beardon (1983) utilizes
the definition given above.

12



2.1. MÖBIUS TRANSFORMATIONS

where a,b, c,d, t ∈C. Operating we find out that,

(2.20) [ f , g]=
(
1 −ab+ t2ab

0 1

)
.

But ab(t2 −1) 6= 0. [ f , g] adopts the shape z → z+k where k =−ab+ t2ab. [ f , g] is parabolic.

2.1.5 System of Generators

We continue our study considering some special cases of Möbius transformations. Because of

their significance, these cases should be studied particularly. They are:

i) z → eiθz, θ ∈R. These constitute the rotations of the Riemann sphere around the vertical

axis

ii) z → 1/z which represents two fractional reflections, an inversion (z → 1/z) and a reflection

on the real axis (z → z).

iii) z → rz, r ∈R, represents a similarity transformation implying an expansion, or a contraction,

by a factor r.

iv) z → z+1 which acts on the plane as a translation.

The significance of the transformations we have summarized above lie in a notable fact.

Theorem 3. Every Möbius transformation is a composition of finitely many transformations of

types i), ii), iii), iv).

Proof. Jones and Singerman, 1987. We consider the typical representation of the Möbius trans-

formations in the form T(z)= (az+b)/(cz+d) with ad−bc = 1.

1. If c = 0, T(z) = (az + b)/d with a,d 6= 0. We may write a/d = reiθ and b/d = t so that

T(z) = reiθ + t. We decompose T. We rewrite it as T(z) = Tt ◦Sr ◦Rθ with Rθ(z) = eiθz,

Sr(z)= rz and Tt(z)= z+ t. We finished for c = 0.

2. Now we study the case in which c 6= 0. Dividing, we obtain

(az+b)/(cz+d)= a/c+ (bc−ad)/(c[cz+d])=
= a/c−1/(c[cz+d]).(2.21)

We rewrite last expression as,

(2.22) (az+b)/(cz+d)= Tt ◦ J(−c2z− cd),

where J(z)= 1/z. And so,

(2.23) (az+b)/(cz+d)= Tt ◦ J ◦T−cd ◦S−c2 .
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3
KLEINIAN GROUPS

In this chapter, we define the Kleinian Groups and some other related fundamental concepts

necessary for the ulterior analysis of the limit set. With this goal, we characterize the Kleinian

Groups as discontinuous discrete groups. On this basis we study the convergence of a sequence of

distinct elements of a Kleinian group.

3.1 Discontinuous groups

3.1.1 General

Let X be a topological space and G a group of self-homeomorphisms acting on X .

Definition 4 (Freely discontinuous). The action of G on a point x ∈ X is freely discontinuous

(Maskit (1988)) if there is a neighborhood of x, U, so that g(U)∩U =; for all g ∈G non-trivial. If

the neighborhood U verifies the previous property it is called a nice neighborhood.

The freely discontinuous notion is simple. It establishes that all translations of U do not

overlap.

Definition 5 (Free regular set). The set of points in X at which the action of G is freely discontin-

uous is called the Free Regular Set. We denote it by Ωo(G) following the nomenclature of Maskit

(1988).

For simplicity, we will denote Ωo(G) simply as Ωo when no confusion can arise. Following

Series (2005), Ωo can receive several alternative denominations. It can be called Regular Set or

Domain of Discontinuity.
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CHAPTER 3. KLEINIAN GROUPS

Definition 6 (Kleinian Group). A subgroup G of Möbius transformations whose action is freely

discontinuous in some point x ∈ Ĉ is called Kleinian group.

With its simplicity, this definition is key for this work and will be utilized extensively. It is

therefore advisable to have it very well present.

3.1.2 A Small Digression on the Introductory Bibliography on Kleinian
Groups

Kleinian groups have received considerable attention since the seminal work of Fricke and Klein

(1897).

At this moment, it is pertinent to comment superficially on the introductory literature

available on the topic of Kleinian Groups.

After having carried out a review of the literature, the author considers the basic introductory

works due to Marden (1974) and Series (2005) as an excellent first step for any newcomer in the

topic. Both works provide a very concise global overview on the topic.

As a second step, the newcomer may consider the work of Mumford et al. (2002). This

constitutes a recreational fresh publication, that in spite of its simplicity may help to fix some

concepts and generate enthusiasm.

Further insight on the topic can be achieved through the superb works of Maskit (1988) and

Marden (2007). The targeted audience of the two previous books is postgraduates. Therefore,

they contain many concepts of some advanced level that are considered to be known. Thus, the

works of Ahlfors (1953) and Beardon (1983) are a great complement to the texts of Maskit (1988)

and Marden (2007).

3.2 Discrete Groups

3.2.1 General

We start this section making a small digression into Topology. As such we will restate a couple

of definitions without intending to be extensive. More details on the topic can be found in

Arregui Fernandez (1998).

A cover of a particular set is a collection of sets whose union contains the set as a subset. An

open cover is a cover in which all sets are open. A discrete subgroup, H ⊂G, is one such that

there exists an open cover of H in which every open subset contains exactly one element of H.

With these considerations, a discrete topology can be defined creating an open subset for

all members of the topological space. Inside of the discrete topology, the members of the set form

a discontinuous sequence in which they are virtually isolated from each other. This is the notion

of discreteness in which we are interested.
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3.2. DISCRETE GROUPS

The Möbius transformations inside of the Kleinian groups are an example of a discrete

subgroup. We will prove this statement in Proposition 3. We may define its natural topology

considering the matrices equivalent to the members to the Möbius transformations.

Definition 7 (Convergence of Möbius transformations). We may say that a certain sequence {gm}

of members of group G converges to a certain transformation g ∈G if each entry of the equivalent

matrix of gm converges, as a complex number, to the corresponding entry of g.

We give now two important properties of convergence. They also illustrate how discreteness

and convergence are related.

Proposition 2. If G is a non-discrete sub-group of the Möbius transformations. There is a

sub-sequence of distinct elements of G converging to the identity.

Proof. If G is non-discrete, there is a sequence {gm} of elements of G converging to some Möbius

transformation g. We may consider that the sub-group G has been normalized. Therefore we

may express any g either as g(z)= z+1 or g(z)= K2z for some K . The composition of gm+1 ◦ g−1
m

converges to the identity.

Proposition 3. A Kleinian group is a discrete subgroup of the Möbius transformations.

Proof. We utilize Proposition 2, supposing that the Kleinian group is not discrete. Thus, there is a

sequence of {gm} such that gm → 1 and therefore, gm(z)→ z. This means that in any neighborhood

of z there are infinitely many translations of z. Thus z 6∈Ω0(G).

3.2.2 Normalization, Cross Ratio

It is possible–this we will see immediately–to have the images of up to three points conveniently

located through a transformation.

Concretely, G is a Kleinian Group, g a transformation in G and h is a Möbius transformation.

The points, z1, z2, z3 ∈ Ĉ can be mapped into x1, x2, x3 ∈ Ĉ through h. Obviously, this is of interest

due to the conjugation h◦ g ◦h−1. If we apply the transformation h to all members of G, carrying

out the conjugation of the whole group, hGh−1, we say that group G has been normalized. The

convenient locations of the points x1, x2, x3 are usually 0, 1 and ∞.

A simple way to make the normalization is by the use of the cross ratio.

Definition 8 (Cross ratio). The cross ratio is the transformation,

z → (z− p3)(p2 − p4)
(z− p4)(p2 − p3)

,

which has the property of being the unique Möbius transformation which transforms p2 to 1, p3

to 0 and p4 to ∞. The cross ratio is expressed with the tuple (z, p2, p3, p4).
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CHAPTER 3. KLEINIAN GROUPS

3.2.3 Jorgensen Inequality

Based on the previous results, we may endeavor to approach to an important result for discrete

sub-groups, the Jorgensen Inequality, Theorem 5.

Firstly, we carry out the proof of theorem 4. We will utilize this result in the proof of the

Jorgensen Inequality and in other sections inside of this document.

Theorem 4. Let f and g be non-trivial Möbius transformations. f is loxodromic and f and g

have exactly one fixed point in common. The group generated by f and g, < f , g > is not discrete.

Proof. We can assume that < f , g > is normalized. Thus, we consider the common fixed point

located at ∞. Also, that f has its second fixed point (repulsive) in 0. We may need to utilize f −1

instead of f to flip the attractive and repulsive fixed points if necessary.

Further, based in Theorem 2, we can assume that g is parabolic. The pertinence of this

assumption can be easily confirmed later observing the form of equation (3.1) and comparing it

with Theorem 2.

We take the matrix forms of the transforms, f =
(
k 0

0 k−1

)
with |k| > 1, and g =

(
1 b

0 1

)
.

Computing,

(3.1) f −m ◦ g ◦ f m =
(
1 bk−2m

0 1

)
.

This tends to I. Applying proposition 2, this means that < f , g > is not discrete.

Theorem 5 (Jorgensen Inequality). The Jorgensen Inequality establishes that if: i) the Möbius

transformations f and g generate a discrete subgroup (like a Kleinian one), ii) f is loxodromic ,

iii) f and g do not share a common fixed point iv) g does not keep the fixed point of f invariant;

then it is verified that

(3.2) |tr2( f )−4|+ |tr([ f , g])−2| ≥ 1.

The clause ii) is not strictly imperative. Jorgensen Inequality can be extended to the cases in

which f is parabolic or elliptic. Nevertheless, last cases result in a more complex proof. Therefore,

we just discuss loxodromic case here.

Proof. We consider the normalized forms of f and g,

(3.3) f =
(
k 0

0 k−1

)
, |k| > 1, g =

(
a b

c d

)
.

We start justifying that a, b, c and d are non-zero.

• If a = 0, g(∞)= 0. The conjugate, g ◦ f ◦ g−1, and f have the same fixed points. This means

that g(0)=∞ implying that also d = 0. But this is in contradiction to the hypothesis. The

same argument applies to the hypothesis d = 0.
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• b = 0, or c = 0, implies that f and g share a common fixed point. This is also in disagreement

with the hypothesis of the theorem.

We will now recursively define the sequence {gn}. As initial value we set g0 = g. We define

recursively,

(3.4) gm+1 = gm ◦ f ◦ g−1
m .

We will write down gm as,

(3.5) gm =
(
am bm

cm dm

)
.

Expanding and operating equation (3.4), it is found out that,

am+1 = amdmk−bmcmk−1,(3.6)

bm+1 = ambm(k−1 −k),(3.7)

cm+1 = cmdm(k−k−1),(3.8)

dm+1 = amdmk−1 −bmcmk.(3.9)

At this stage, we calculate a couple of intermediary results. These correspond to the expansion

of the terms of the Jorgensen Inequality, equation (3.2) in terms of the variables defined above.

Thus,

(3.10)
∣∣tr2( f )−4

∣∣= ∣∣(k+k−1)2 −4
∣∣= ∣∣k+k−1∣∣2 ,

and

|tr[ f , g]−2| = ∣∣2ad− (k2 +k−2)bc−2
∣∣=

= ∣∣2+2bc− (k2 +k−2)bc−2
∣∣= |bc| ∣∣k−k−1∣∣ .(3.11)

We combine them and set the variable α

(3.12) α= ∣∣tr2( f )−4
∣∣+|tr[ f , g]−2| = (1+|bc|) ∣∣k−k−1∣∣2 .

We formulate the assumption of the theorem. We set that

(3.13) α< 1,

that is, the inverse of the Jorgensen Inequality is verified. We will continue our rationale

considering the assumption to find a contradiction and prove the theorem.

We will devote the rest of this proof to the study of the behavior of the variables am, bm, cm

and dm. If they all converge, group G will stop being discrete and we would have arrived at a

contradiction.
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Let us prove that am, bm, cm and dm are all different from 0.

The case m = 0 has already been treated in the rationale above.

Let us consider the case in which m > 0.

Below equation (3.3) we have shown that a = 0 ⇔ d = 0. By the same rationale, also must

happen that am+1 = 0⇔ dm+1 = 0.

am+1 = 0 and dm+1 = 0 imply that k2 = (bmcm)/(amdm) and k2 = (amdm)/(bmcm). Thus, k4 = 1.

But f is loxodromic, so that this is excluded.

From equation (3.7), due to the induction hypothesis we see that if am 6= 0 then also bm+1 6= 0.

Analogously for cm+1.

We have managed to prove that am, bm, cm and dm are all different from 0.

Let us study the convergence of am, bm, cm and dm. We rewrite equations (3.6) and (3.9) to

obtain,

am+1 = (1+bmcm)k−bmcmk−1 = k+bmcm(k−k−1)(3.14)

dm+1 = (1+bmcm)k−1 −bmcmk = k−1 +bmcm(−k+k−1)(3.15)

We have written am+1 and dm+1 as a function of bmcm. Thus, we need to study the behavior

of bmcm. Let us analyze it,

|bm+1cm+1| = |ambmcmdm| ∣∣k−k−1∣∣2 =
= |bmcm| |1+bmcm| ∣∣k−k−1∣∣2 ≤
≤ |bmcm| (1+|bmcm|)

∣∣k−k−1∣∣2(3.16)

For m = 0,

(3.17) |b1c1| ≤ (1+|bc|)|bc| ∣∣k−k−1∣∣2 =α|bc|.

For m = 1,

|b2c2| ≤ (1+|b1c1|)|b1c1|
∣∣k−k−1∣∣2 ≤(3.18)

≤ (1+α|bc|)α|bc| ∣∣k−k−1∣∣2 =α2|bc|(3.19)

We come back now to equation (3.16) with |bm+1cm+1| ≤αm |bc|. We obtain

|bmcm| (1+|bmcm|)
∣∣k−k−1∣∣2 ≤αm |bc|(1+αm|bc|)∣∣k−k−1∣∣2 ≤

≤αm |bc| (1+|bc|)
∣∣k−k−1∣∣2 ≤

≤αm+1 |bc| .(3.20)

Thus,

(3.21) |bm+1cm+1| ≤αm+1 |bc| .
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α is always larger than 0. Due to the fact that α< 1, we see that |bmcm|→ 0. This means also

that,

am+1 → k,(3.22)

dm+1 → k−1.(3.23)

We have finished the analysis of am and dm. We now need to study the convergence of bm

and cm. This will be achieved utilizing the following lemma.

Lemma 1. Suppose that f and g are elements of G. Consider these terms to be written in the

notation of equation (3.3). a, b, c and d are all different than zero. It is also verified that |bc| ≤ |k|2.

Under these circumstances, there is an integer m so that

(3.24) g′ = f m ◦ g ◦ f −m =
(
a′ b′

c′ d

)
,

where a′ = a, |b′| ≤ |k|2, |c′| ≤ |k|2 and d′ = d.

Proof. We operate f m ◦ g ◦ f −m to obtain

a′ = a,(3.25)

b′ = bk2m,(3.26)

c′ = ck−2m,(3.27)

d′ = d.(3.28)

We firstly assume that |c| > |k|2. In these circumstances, we choose m ∈Z that verifies |k|2m ≤ |c| ≤
|k|2m+2. Then |c′| = |ck−2m| ≤ |k|2 and |b′| = |bk2m| ≤ |k|2m+2/|c| ≤ |k|2. An analogous treatment is

carried out in the case in which |b| > |k|2 which, due to |bc| ≤ |k|2, also corresponds to |c| < |k|2.

We finish now the proof of the Jorgensen theorem. Firstly, observing equation (3.14), we can

establish that there is a sequence of {gm} where all {am} are different. We may now select m

large enough so that it is verified that |bmcm| < |k|2. We consider the element g′
m = f m ◦ gm ◦ f −m

obtained from the application of equation (3.14). It is verified that a′
m = am, d′

m = dm. Also

that b′
m = bmk2m and c′m = cmk−2m which together with equations (3.7) and (3.8) imply that all

members of g′
m are distinct.

We remind now that a family of functions hi from an arbitrary set X in C is uniformly

bounded if there exists a real number M such that |hi(x)| ≤ M for all indexes i and for all points

x in X .

The entries of matrix g′
m are uniformly bounded, what means that a convergent sub-sequence

can be selected. This is the contradiction we were seeking for, that allows us to prove the

theorem.
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3.3 Convergence

We start this section making a small digression. In this document, we will in general be studying

properties of the Kleinian groups that do not change with conjugation (in this sense see also

section 2.1.4).

3.3.1 Isometric Circle

We may turn our attention to the kernel of this section, the convergence. With this goal we will

utilize here the definition of convergence given in section 3.2.1. In spite of the fact that we treat

convergence more extensively here, it was necessary to advance the definition because of the

strong connections between convergence and discreteness a topic that was analyzed in sections

3.2.1 and 3.2.3.

We begin with the definition of some properties of the Möbius transformations. For our next

definition, we assume that g(∞) 6=∞ or equivalently that c 6= 0.

Definition 9 (Isometric Circle). The isometric circle of a Möbius transformation T(z) is the set

I(T)= {
z ∈C :| T ′(z) |= 1

}
.

Because

T ′(z)= 1
(cz+d)2 ,

it happens that,

| T ′(z) |= 1⇒| cz+d |−2= 1, c 6= 0

The center of the isometric circle, I, coincides with the point −d/c, which corresponds to T−1(∞)

and its radius is | 1/c |. For simplicity, we denote the center of I by α= T−1(∞).

Similarly, we denote with α′ = T(∞)= a/c the center of the isometric circle, I ′, of the inverse

transformation T−1. The radius of the isometric circles of both T and T−1 coincide.

We can give a simple, yet interesting, geometrical interpretation of the previous paragraphs.

The family of circles passing through ∞ and α is mapped by T onto the family of circles passing

through ∞ and α′. The orthogonal trajectories to the first family are mapped by g to the orthogonal

trajectories of the second. Therefore, the family of circles centered at α are mapped onto the

family of circles centered at α′. A unique circle I of the first family is mapped onto a circle of the

same size. Its image is I ′.

3.3.2 Decomposition in reflections

Based on our discussion on isometric circles we will attempt to analyze an argument that

appears quite often in the analysis of Kleinian groups. That is the decomposition of any Möbius
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transformation g into three maps: a reflection in its isometric circle, p, a reflection in the bisector

of the segment α to α′, q, and a turning with vertical axis passing through α′. Namely,

(3.29) g = r ◦ q ◦ p

see Figure 3.1.

Fixing p and q as reflections in a circle and a line as described above, and establishing the

decomposition of equation (3.29), we need to investigate the nature of r. That is, we assume the

decomposition of equation (3.29) fixing p and q for a known g to investigate r.

We will write down r = g ◦ (q ◦ p)−1 and explore its behavior. It is significant to note that,

(3.30) r−1(∞)= q ◦ p ◦ g−1(∞)= q ◦ p(α)= q(∞)=∞.

The second equality comes from the definition of α. The third corresponds to the circle reflection

of the center of the circle. Last equality, q(∞)=∞, represents a reflection in a straight line of a

point in ∞.

We also must note that,

(3.31) r−1(α′)= q ◦ p ◦ g−1(α′)= q ◦ p ◦ g−1(g(∞))= q ◦ p(∞)= q(α)=α′.

Those equations are pretty similar to the last ones. p(∞)=α is the circle reflection utilizing the

isometric circle of a point in ∞. Clearly it corresponds to the center. Last equality, the reflection

in the straight line simply flip α onto α′.

r preserves the points ∞ and α′, the center of I ′. This indicates that we look for a transfor-

mation of the form k2(z−α′)+α′ or k2(z̄− ᾱ′)+α′. Both verify previous conditions. We may now

study how r transforms the circle I ′.

(3.32) r−1(I ′)= q ◦ p ◦ g−1(I ′)= q ◦ p(I)= q(I)= I ′.

Thus r also preserves I ′. Therefore, we conclude that r may adopt the two previously mentioned

shapes,

(3.33) r(z)= k2(z−α′)+α′,

or

(3.34) r(z)= k2(z̄− ᾱ′)+α′,

with |k| = 1. It will adopt one form or the other, depending on whether r preserves or reverses the

orientation. In the decomposition we are considering, it is also important to realize that r and q

are isometries in the euclidean plane but p is not.
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Figure 3.1: Isometric circles and sketch of the transformations p and q.

3.3.3 Convergence of the Radius of the Isometric Circles

At this stage, we may consider a distance in the sphere. It does not matter whether we are

taking into account the chordal distance or the distance over the surface. Based on this chosen

distance, we may define the spherical diameter of a set, as the maximum of the distances

between its distinct points. We denote this spherical diameter of a set X by dia(X ). Based on

the diameter, we may consider the area of the set making an analogy with the surface of the

circle. We denote this area with meas(X ). Note that the spherical metric and the euclidean are

equivalent. Stereographic projection, but near ∞, has a bounded distorsion of distances. Thus,

given a bounded set there is a constant K > 0 so that for all x, y ∈U ,

(3.35) K−1 |x− y| ≤ d(x, y)≤ K |x− y| ,

where d(·, ·) represents the spherical distance.

We will study the evolution of the radius of the isometric circles of successive transformations.

Note that the radius of isometric circles is ρ = 1/|c|. In order to obtain some conclusions, we will

consider a sequence of transformations. Then, we will study the sum of the radius of the isometric

circles. We will see that:

Theorem 6. If ∞ is in Ω0 then,

(3.36)
′∑ |c|−4 <∞,

where
∑′ denotes summation over all non-trivial elements of G.
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Proof. We consider a nice neighborhood, U , of ∞. U has the form of {z : |z| > ρ}∪∞. Let α be the

center of the isometric circle I of a non-trivial element g of G. U is nice, which means that the

center of the isometric circle α= g−1(∞) 6∈U . Let δ be the euclidean distance from α to U . Clearly

δ≤ ρ.

Now, let us consider the reflection p(z) in the circle |z| = ρ. The reflection has the form

p(z) = ρ2/z̄ = ρ2z/|z|2. z and p(z) lie in the same radius from the origin. The locations of the

original z and the image p(z) are related as |p(z)| = ρ2/|z|. If we consider the reflection in the

isometric circle, I, whose center is α, z and p(z) lie in the same radius emanating from α. The

relative locations of the point and its image is |p(z)−α| = ρ2/|z−α|.
We consider now the point x of U which is closer to α. Then δ= |x−α|. p(U) lies inside of the

circle of radius ρ2/δ. But α= g−1(∞) lies inside of p(U). Thus,

(3.37)
ρ2

δ
≤ dia(g(U))

We taking into account the decomposition (3.29). r and q are isometries. p is the only member

of the decomposition that is not an isometry. This means that

(3.38) dia(g(U))≥ |c|−2δ−1.

Because g(U) is a circular disc contained in the complement of U, it is bounded. There is a

constant K > 0 such that,

(3.39) meas(g(U))≥ K−1dia2(g(U)).

Operating equations (3.38) and (3.39), we obtain,

(3.40)
′∑ |c|−4 ≤

′∑
δ2dia2(g(U))≤ Kρ2

′∑
meas(g(U)).

Now we consider the last sum. For simplicity, we examine the projections of g(U) into the

Riemann Sphere. The distortion of the stereographic projection is bounded except near ∞. The

g(U) are disjoint. Thus, the sum of their areas must be finite. Thus,

(3.41)
′∑ |c|−4 ≤∞.

We may summarize the previous results in the following corollary.

Corollary 1 (Convergenece of the radius of the isometric circles). Let us consider a sequence {gm}

of distinct elements of the Kleinian group G. ∞∈Ω0 and take ρm as the radius of the isometric

circle of the transformation gm. Then, ρm → 0.
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3.3.4 Convergence of Möbius Transformation

We may now address the main result of this section related to the convergence of Möbius

transformations. To do it, we need some definitions.

Definition 10. A sequence of functions { fν}, fν : X → C, converges uniformly to a limiting

function f on an arbitrary non-empty subset X ⊂C if, given any positive number ε ∈R, there exists

a value n ∈N such that for all m > n each function fm differs from f no more than ε for all points

x ∈ X.

We follow now Freitag and Busam (2006) in the following definitions.

Definition 11. A sequence of functions { fν} converges locally uniformly to f if for every point

x ∈ X there is a neighborhood U of x in C such that fν|U∩X is uniformly convergent.

Definition 12. A sequence of functions is called compactly convergent (also uniformly con-
vergent on compact sets) if it converges uniformly in any compact K ⊂ X.

The Heine-Borel theorem establishes that a set X ∈C is compact if and only if it is bounded and

closed. Therefore, a locally uniformly convergent sequence of functions is compactly convergent. 1

Theorem 7 (Convergence of Möbius Transformation). Suppose {Tn} is an infinite sequence of

distinct Möbius transformations such that the corresponding fixed points pn, qn converge to p, q

∈S2.

Either pn = qn (implying a sequence of parabolic transformations), or Tn is elliptic, or pn is

the repelling fixed point and qn is the attracting fixed point of Tn (when Tn is loxodromic).

There is a sub-sequence {Tn} with one of the following properties:

• There exists a Möbius transformation T such that limTk(z)= T(z) converging uniformly in

H3 ∪S2.

1 Remmert (2013) provide an alternative and interesting definition for products (or sums) of functions.

Definition 13. Let X be a locally compact metric space. fν is a continuous function on X with values in C. For a
sequence fν, the product Π fν is called compactly convergent or uniformly convergent on compact sets in X if for
every compact set K in X there is an index m = m(K), dependent on K, such that the sequence pm,n = fm fm+1 fm+2 . . . fn
with n ≥ m converges uniformly on K to a non-vanishing (nullstellenfrei without zeros) function f̂m.

For each point x ∈ X ,

(3.42) f (x)=∏
fν(x) ∈C

We call f the limit of the product, we write f =∏
fν, and on K we have f |K = f0|K · . . . · fm−1|K · f̂m.

In this document we will make extensive use of the interpretation of a member Tm of a sequence {Tn} of distinct
Möbius transformations as the composition of other Möbius transformations, τ j , for example as Tm = τ1 ◦ . . .◦τm. In
matrix formulation this translates into a product. Therefore, this second definition of compactly convergent maybe of
interest in view of the decomposition of each of the members of the sequence. See example 2 for more clarification in
this sense.
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3.3. CONVERGENCE

• limTk(z) = q for all z 6= p converging uniformly on compact sub-sets H3 ∪ (S2 \ {p}). Also

limT−1
k (z)= p for all z 6= q converging uniformly in compact sub-sets of H3 ∪ (S2 \{q})

In the previous theorem, H3 represents the hyperbolic space. Due to extension matters we

cannot give here more details in this topic and refer the readers to specialized literature such as

the monograph work of Matsuzaki and Taniguchi (1998) for extensive details in the topic.

Proof. The cases of one or two fixed points are studied separately, namely p 6= q and p = q.

• Case p 6= q.

We consider a point ζ ∈C distinct from p, q, pn, qn for all indexes n. The cross ratio Rn(z)=
(z,ζ, pn, qn) converges to R(z)= (z,ζ, p, q) uniformly in the hypothesis of theorem 7 on S2.

Sn(z)= RnTnR−1
n (z) fixes 0,∞ and has the same convergence properties of {Tn}. We study

this Sn(z). For large indexes, Sn(z)= anz, with |an| ≥ 1. |an| can be bounded or unbounded:

i) If it is bounded, then Sn converges uniformly to a Möbius Transformation; ii) If it is

not, there exists a sub-sequence for which limam =∞ which means that the subsequence

converges uniformly to S(z)=∞ for any given (compact) neighborhood of z = 0.

• Case p = q.

Let ζ1,ζ2 be two points in C and ζ1,ζ2 6= qn or q. We consider the cross ratio Rn(z) =
(z,ζ1,ζ2, qn) and the conjugation, Sn(z) = RnTnR−1

n (z), which fixes ∞ and has the same

convergence properties of {Tn}. For enough large indexes, Sn(z)= anz+bn. The other fixed

point of Sn is −bn/(an −1). Let us consider now a subsequence of {bm}, whose limit can

be bounded or unbounded: i) If it is bounded, limbm = b 6=∞. Sn and {Tn} have the same

convergence properties. Then considering the second fixed point, limam = 1. This means

that limSm = z+b; ii) If it is unbounded, limbm =∞. Sm is rewritten like

Sm(z)= bm

(
(am −1)z

bm
+1

)
+ z.

Since Sn and {Tn} have the same convergence properties and the second fixed point is

−bn/(an −1), lim(an −1)/bn = 0. We obtain limSm(z)=∞. Its inverse is

S−1
m (z)= bm

am

(
z

bm
−1

)
.

But,

(3.43) 0= lim
am −1

bm
= lim

(
am

bm
− 1

bm

)
.

Also limbm = 0 and therefore lim
am

bm
= 0. Thus, limS−1

m (z)=∞ for all z.
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CHAPTER 3. KLEINIAN GROUPS

Example 1. We may now revisit our introduction to bring a little bit of light to the initial

photographs 1.3 to 1.5 in pages 3 to 5.

Definition 14. Let C1, C′
1, C2, C′

2, . . ., Cn, C′
n be a set of disjoint circles in Ĉ. We also take into

account the group G =< g1, g2, . . . , gn >, with n ≥ 1, which members g i verify that g i(Ci) = C′
i.

Each of the transformations g i has also the peculiarity that the interior of Ci is mapped in the

exterior of C′
i. The groups verifying such conditions are called Schottky groups.

We remind that a group G is free if there is a set S ⊂G such that every member of G can be

expressed in an unique form as a product of members of S and their inverses.

A classic result of Maskit (1967) states that:

Theorem 8. A finitely generated Kleinian group G is a Schottky group if and only if G is free,

and every element of G other than the identity is loxodromic

Because of the necessary mathematical apparatus, the proof of this result exceeds the frames of

this work and we do not include it here.

Nevertheless, we need to add that the definition of Schottky groups given and the result of

Maskit above are too strict. As can be seen in Maskit (1988, page 82) it is also possible to consider

parabolic generators for the cases in which the circles considered are tangent. If the tangent point

is a fixed point, then the generator is parabolic. We will come back to this topic in our examples.

The Schottky groups are one of the most common examples utilized in the literature to illustrate

Keinian groups (Mumford et al. (2002), Marden (2007), Maskit (1988). . . ).

Let us consider that the initial circle has a radius r and a center P. Following Definition 14,

we want to transform this circle to another one located at Q and with a radius s. We can carry out

this transformation in three simple successive steps,

(3.44) z1 = z−P,

(3.45) z2 = rs/z1,

(3.46) w = z2 +Q.

Second step corresponds to four simultaneous operations. It can be divided into three steps. The

first is a re-scaling of the circle of radius r to unit radius, z → z/r. The second contains the

fractional reflection in a unit circle centered in the origin plus a reflection in the horizontal axis

,z → 1/z (see also page 13). The third is a re-scaling on the unit circle to a circle of radius s, z → sz.

A group generated in this way, as show by theorem 8, is freely discontinuous and thus a

Kleinian group. Clearly, the transformation is not unique. We may divide the second step into

z21 = r/z1 plus z2 = sz21, and apply for example, a turn z = eiθz21 in between. Actually, any

transformation of the form w = (uz+v)/(v̄z+ ū) with |u|2 −|v|2 = 1 (Mumford et al., 2002) brings a

circle to itself. We may apply any transformation of this type and obtain an arbitrary location of a

point of our choice.
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LIMIT SET

After the considerations of the previous sections, we conduct now the analysis of the limit set

of Kleinian groups from a basic and topological point of view. We start defining the concept of

limit set providing some examples for an enhanced comprehension. Thereafter, we characterize

the limit set showing some of its basic properties. Our analysis is completed with a very basic

investigation of the complementary of the limit set.

4.1 General

Let us now endeavor to give a definition of the Limit Set.

Definition 15 (Limit Point). A point x is a limit point for the Kleinian group G, if there exists a

point x0 ∈Ωo(G) , and there is a sequence {gm} fo distinct elements of G such that gm(x0) converge

to x.

Definition 16 (Limit Set). The set of all limit points is called Limit Set and it is denoted by Λ (G).

The Limit Set also receives alternative denominations. Following Series (2005), it is also

known as the Chaotic Set.

Example 2. We may continue Example 1 calculating the limit set of a particular set of Schottky

circles.

We select tangent circles of diameter 1 with centers in positions
p

2i,−p2i,
p

2, −p2. This

constitutes the simplest possible tangent set in the most common locations.

We carry out the transformations utilizing equations (3.44) to (3.46). We may apply turns if

necessary to the transformations so that the tangent points of the circles remain in place and

unchanged. With the previous explanations in Example 1 this should not have any difficulty.
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CHAPTER 4. LIMIT SET

We denote the paired circles with Ca, CA, and Cb, CB. We denote with a the transformation

that brings Ca into CA . We denote with the capital letter A = a−1 its inverse. We do this analogously

for B circles.

Henceforth, we calculate the so-called words, transformations of the type abbabAba . . . with

all possible non-canceling combinations. Of course, words are formed by collections of letters. We

obtain a set of 4 ·3n transformations where n is the number of letters of the words.

Once this last task is accomplished, we may apply the transformations to the circles. We profit

from the fact that Möbius transformations map circles to circles to obtain the solutions. This is the

classic procedure proposed by Fricke and Klein (1897). Like many of the classical methodologies of

its time, the procedure has a straightforward graphical interpretation that underlines its elegance.

The operations described in the paragraphs above have been carried out with the help of

the numerical code written by the author and shown in Appendix C. We refer the reader to the

brief description of this appendix for further details. Either way the code has an unambiguous

interpretation.

The result obtained is depicted in Figure 4.1. In the figure, eight levels of transformations,

namely words with up to eight letters, have been represented with different colors.

We may note several issues arising from the observation of this picture. Clearly, the limit set is

a circle. Also, it is a Jordan curve.

Definition 17. A Jordan curve is a non-self-intersecting continuous loop on the plane.

The Regular Set and the Set of Discontinuity1 appear as completely separated. The regular set

has two separate components.

The ratio of convergence–namely to a point–of the different circles is very different. This is

represented by the disparity of the size of the transformed circles. Close to the tangency fixed points,

the rate of decrease of the diameters of the circles is much smaller than in most of the other points

of the limit set. These tangency points have been identified by Mumford et al. (2002) as parabolic,

whilst the other points where the ratio of convergence is much faster are of conical type. We refer

the readers to Nicholls (1989) for the meaning and a detailed description of parabolic and conical

points.

We may now introduce some changes in the generators to complicate the problem slightly.

We recall that the generators were created by the simple transformations z1 = z−P, z2 = rs/z1,

w = z2 +Q applied successively, where P and Q are the centers of the original and objective circles,

and r and s their respective radii. We will now introduce a turn between them. The transformation

can be thus expressed in a very simple manner into five steps, z1 = z−P, z2 = r/z1, z3 = eπi z2,

z4 = sz3, w = z5 +Q.

Figure 4.2 is obtained. The picture is similar to that of Figure 4.1. The major difference lies in

the limit set. The latter has been plotted separately in Figure 4.3. The circles plotted are obtained

1We will treat this concept in section 4.4
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4.1. GENERAL

Figure 4.1: Circles obtained after calculations of eight levels of transformations. Words with the
same number of letters are depicted with the same color.

after applying eight transformations. They are located in a circle. Nevertheless, they are not tangent

to the each other and generate a limit set which is not continuous. By observation of Figure 4.3 it

can be stated that the limit set may form a dots and dashes pattern.

We may carry out an additional modification of this example. We may change the original

plot of Figure 4.1 avoiding tangency between the circles utilized to calculate the generators. We

may also provide initial circles with different radii and avoid symmetry in the figure performing

different translations for each circle. The result is the circles depicted in Figure 4.4. Its limit set

is sketched separately in Figure 4.5. Clearly the points are no longer located in a circular shape.
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CHAPTER 4. LIMIT SET

Figure 4.2: Circles obtained after the calculation of eight levels of transformations. The
generators were turned (third trasnformation) π rad compared with the ones of Figure 4.1.

Words with the same number of letters are depicted with the same color.

They also look more isolated.
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4.1. GENERAL

Figure 4.3: Circles obtained after calculation of eight levels of transformations. Only last level is
depicted. The generators were turned (third trasnformation) π rad compared with the ones of

Figure 4.1.
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CHAPTER 4. LIMIT SET

Figure 4.4: Circles obtained after calculations of eight levels of transformations. The generators,
through the circles utilized for their calculation, were modified avoiding tangency and symmetry.

Words with the same number of letters are depicted with the same color.
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Figure 4.5: Circles obtained after calculations of eight levels of transformations in Figure 4.4.
Only last level is depicted.
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4.2 Basic Properties, Convergence and Invariance

Let us study forthwith some properties of the limit set. We start with the relationship between

the Regular Set and the Limit Set.

Theorem 9. The intersection of the Free Regular Set and the Limit Set is empty.

Proof. U is a neighborhood of a x ∈Ω0. Thus, it happens that g(U)∩U =;. Nevertheless, for any

neighborhood, L , of l ∈Λ there exists a point l0 and there are infinitely many transforms gm ∈G

so that the infinitely many translates gm(l0) ∈L . This implies that Λ∩Ω0 =;.

Theorem 10. Let x be a limit point of the Kleinian Group G, x ∈Λ(G). There is a second limit

point y of Λ(G), not necessary distinct of x, and a sequence {gm} of distinct elements of G so that

gm(z)→ x converges uniformly on compact subsets of Ĉ\{y}.

Proof. Because x is a limit point, there is a point z0 in Ω0 and there is a sequence {gm} of distinct

elements of G so that gm(z0)→ x.

If required, to fulfill the previous statement we may normalize the functional series to a

convenient conjugate.

We may consider that z0 =∞. We choose a sub-sequence of gm so that g−1
m (∞)→ y. y is thus

a limit point.

We intend to make the decomposition of the map gm following the format represented by

equation (3.29). To accomplish this task, we follow the same procedure and logic of the explanation

there, see page 23. Check that section for the definition of isometric circles as well as the logic of

this proof.

The center of the isometric circle of gm, actually the succession of the centers of isometric

circles, tends to y (see Figure 4.6).

Let pm denote the reflection in the isometric circle of gm. Let q be the reflection in the

perpendicular bisector of the line segment between α = g−1
m (∞) and α′ = gm(∞). We remind

that α and α′ are the centers of the isometric circles of the transformation gm and its inverse.

As explained in page 23, if c 6= 0 all gm can be decomposed in terms gm = r ◦ q ◦ p. q and r

are isometries. As it is explained in the rationale devoted to equation (3.29), we take r to be

r(z)= k2(z−α′)+α′, or r(z)= k2(z̄− ᾱ′)+α′, equations (3.33) or (3.34).

gm maps the outside of its isometric circle into the inside of the isometric circle of its inverse.

It is easy to check this, as gm(∞) is the center of I(g−1
m ) and the image of the center of the

isometric circle of gm, g−1
m (∞), is ∞. By Corollary 1 the radius of the isometric circles tends to 0.

Because gm(∞)→ x the center of the isometric circle of g−1
m tends to x.

36



4.2. BASIC PROPERTIES, CONVERGENCE AND INVARIANCE

Figure 4.6: Isometric circles of a transformation gm and its inverse.

By the convergence of gm(∞)→ x the uniform convergence of gm gets proved, as the respective

decomposition also converges.

From the previous theorem, a significant conclusion can be drawn about the nature of the

limit set of a Kleinian group: The definition of the limit point depends only on the sequence of the

elements of the group and not on the point selected in Ω0. If z0 ∈Ω0, so that {gm(z0)}→ x then

∀z ∈Ω0 there is a sub-sequence of gm which verifies that {gm(z)}→ x.

We turn now our attention to study the invariance of the set.

Definition 18. A subset Y is G-invariant or invariant under G, if g(Y )=Y , for all g ∈G.

Theorem 11. Λ is G-Invariant.

Proof. Let us consider x ∈Λ(G) and g ∈G. Because x ∈Λ(G), there is a sequence {gm} of distinct

elements of G and there is a point z in Ω0 so that gm(z) → x. Thus, g ◦ gm(z) → g(x). This is

exactly the definition of the limit point: there is a sequence {hm}, which is actually hm = g ◦ gm,

that converges to g(x). Therefore, g(x) is in the limit set.

Example 3. The results above have a significant importance for the obtaining and plotting of

limit sets of Kleinian groups.

The independence of the limit set on the point or points selected in Ω0 for its calculation imply

that only the computation of the words is significant to determine the limit set.

We may, maybe naively, take a single point, P, and a set of transformations containing as

many different words as we may be able to calculate. The points resulting from the application
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of the transformations to P should be located at the limit set (actually very close to it). This is

also sustained by the fact that Λ is G invariant. Thus, if we obtain a point of the limit set, and we

transform it, it will remain in the limit set, contributing to its representation.

We try now to apply our rationale to a concrete example in order to perform the calculation

of a limit set. To be sure that we have a Kleinian group, we will utilize the same procedure as in

Example 1 and 2 for the creation of the generators.

In order to obtain a differentiate plot, we will locate the centers of the circles C1, C′
1, C2, C′

2 in

i, −i, 1/2, −1/2. The corresponding radii are
p

3/2,
p

3/2,
p

2/2,
p

2/2 to make them tangent.

The transformation of C1 into C′
1 and of C2 into C′

2 utilizing the equations (3.44) to (3.46)

immediately provide the generators of the group. As before we denote them as a and b and its

inverses as A and B.

Contrary to Example 2, this time there is no need to trace and store the circles. We carry out the

calculations in a more abstract way disregarding any graphical interpretation of the algorithm.

We simply take the set {a(P),b(P), A(P),B(P)} and systematically apply the set of generators to each

of the members of the set. To avoid spurious results, a indication of the inverse of the last applied

generator is kept. By this simple procedure we avoid considering canceling transformations. For

example, taking into account three levels of transformations the procedure results in the set

{aaa(P),baa(P), . . . ,BBB(P)} .

We have automatized all these considerations in the code shown in Annex D. The code was

written by own the author in Python language, utilizing Cython (Behnel et al., 2011) to increase

numerical efficiency.

Cython allows obtaining a numerically efficient library (a shared object see Hook (2005))

through the pre-compilation of the desired parts of a pseudo-Python code. As its name suggests, it

constitutes an intermediate stage between pure Python and C/C++ languages.

To obtain an efficient code, we have written all numerically intensive routines under this

modified language. See Annex D for further details of the code.

To obtain the results, we have taken point P located at the origin of coordinates. We have

calculated words with ten letters. The results of the calculation are shown in Figure 4.7.

The results converge very fast to the limit set. Actually, very similar results to the ones shown in

Figure 4.7 would have been obtained after only five iterations of our procedure, Figure 4.8 (b). Three

iterations result nevertheless in insufficient convergence to constitute a significant representation

of the limit, Figure 4.8 (a).

We may repeat the procedure carried out in the Experiment 2 in order to see a different

convergence behavior.

We introduce therefore a turn between the transformations to obtain one of the generators. We

apply this turn only to the generator transforming the horizontal circles in order to seek continuity

of the limit set on the points of tangency of the circles utilized for the generators. As explained

before in example 1, the transformation is expressed in five steps, z1 = z−P, z2 = r/z1, z3 = eπi z2,
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Figure 4.7: Limit set obtained transforming the origin of coordinates.

(a) After five iterations (b) After five iterations

Figure 4.8: Limit set after a different number of iterations.

z4 = sz3, w = z5 +Q. The slow convergence into the limit set can be visualized in Figure 4.9. With

the numerical resources available to the author convergence was unfortunately not achieved.
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(a) Three iterations (b) Five iterations

(c) Eight iterations (d) Eleven iterations

(e) Thirteen iterations (f) Fifteen iterations

Figure 4.9: Limit Set obtained after applying set of words of different size to the origin of
coordinates.
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4.3 Some Topological Properties

We remind herein a couple of topology concepts: (i) The set A ⊂ X is dense in X if every point x in

X either belongs to A or is a limit point of A. Equivalently, being dense implies that the closure

of A, Ā, coincides with X . (ii) Similarly, a nowhere dense set is one whose closure has an empty

interior.

Let us see how these concepts apply to the Limit Set.

Theorem 12. Λ is nowhere dense in Ĉ.

Proof. By the definition of the Limit Set, there are points of Ω0 in every neighborhood of x ∈Λ.

But Ω0 and Λ are separate, Ω0 ∩Λ=;, and thus the interior of Λ is empty.

As a consequence of the previous theorem we have:

Theorem 13. Either Λ(G) is S2 or its interior is empty.

Proof. This is a direct consequence of the proof of Theorem 12. There, it was substantiated that

if there is a point z ∈Ω0 then the interior of Λ(G) is empty. If Ω0 6= ; then Λ(G)=S2.

Theorem 14. Λ is closed.

Proof. The proof relies upon the fact that a closed set contains all its limit points.

Let {xm} be a sequence of points in Λ, which converges to x. By the same arguments of the

proof of Theorem 10, there is a single point z ∈Ω0 and a sequence {gm,k} of distinct gm,k so that

gm,k(z)→ xm.

Let δm be the minimal distance between xm and any other x j ∈ {xm}. We now make the

sub-index k of gm,k dependent on m, k(m). The k(m) are chosen so that the set of {gm,k(m)} is

such that d(gm,k(m)(z), xm) < δm/2. Therefore, {gm,k(m)} is a sequence of distinct elements of G,

and because the xm → x then gm,k(m)(z) → x. The last statement constitutes exactly the clause

that we needed to prove.

An isolated point of a set is one for which there exists a neighborhood which does not contain

any other point of the set. A perfect set is a closed set with no isolated points. Every point can be

approximated arbitrarily well by other points. That is, given any point and any neighborhood of

the point, there is another point of the set within the neighborhood. This results in the fact that

every point of the set is a point of accumulation of other points of the set.

Theorem 15. If Λ contains more than two points, then it is perfect.

Proof. Let us suppose that Λ contains at least three points. Let the district points be x, y, z ∈Λ.

For any limit point, x, there is a succession {gm} of distinct elements of G so that gm(z)→ x. Note

that y 6= z. Thus, by theorem 10, there are two district limit points, x1 and x2, not necessarily

different from x, so that gm(x1) → x and gm(x2) → x. For a particular m either gm(x1) 6= x or

gm(x2) 6= x. Therefore, there is sequence of limit points converging to any arbitrary point x.
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Definition 19 (Elementary Group). A Kleinian group whose limit set consists of at most two

points is called an Elementary group. Groups with Limits Sets containing more elements are

called non-elementary.

Theorem 16. The G-orbit of any point in Λ(G) is dense in Λ(G).

Proof. The proof is based on Montel’s Theorem (Remmert, 2013), (Wikipedia, 2016). See Annex A

for the theorem itself and some additional definitions.

Let us suppose that a point, ζ, is in Λ(G) and let us denote with D an open disk centered at ζ.

Supposing the sequence of distinct elements {An} ∈G has been normalized, for a ω ∈S2, we have

ζ= lim An(ω).

We now take two ζ1 6= ζ2 in Λ(G). We state that the family {G} of Möbius transformation

acting in D cannot omit the two values ζ1,ζ2.

Let us assume otherwise, supposing therefore that the third statement of Montrel’s Theorem,

Theorem 33 on page 77 is fulfilled2. Under this hypothesis, {G} must be normal. We look for a

contradiction in the next few paragraphs to carry out the proof.

Let us reconsider the sequence {An}.For some index N ∈ N we have that An(ω) ∈ D for

all n ≥ N. Let us denote ω′ = AN (ω) and set Bn = An A−1
N . limBn(ω′) = ζ. We must also have

convergence. Thus, limBn(z)= ζ, converging uniformly for z in compact subsets of D. Particularly,

the image Bn(D′), of a sub-disk D′ which verifies that ζ ∈ D′ ⊂ D̄′ ⊂ D, for large indexes n, is

a proper subset of D′. Therefore, for all k,n, we have that Bk
n(D′) ⊂ Bk−1

n (D′) ⊂ . . . ⊂ D′ which

implies that Bn is loxodromic (for large n) with an attracting fixed point in D′. But for a fixed

large n, the sequence {B−k
n } does not converge uniformly in compact sub-sets of D because it

contains the repelling fixed points, a fact that implies a contradiction as sought.

We may now proceed to finish the proof. Let us consider now that for some ξ ∈Λ(G), ζ is not a

limit point of the G-orbit G(ξ). Then, there is a disk D centered at ζ that does not contain points

of G(ξ). The G-orbit does not meet either ξ or any other point on its orbit. Nevertheless, it has

been proven immediately above that this was impossible. This means that Λ(G) is dense3.

Theorem 17. Λ(G) is the closure of the set of loxodromic fixed points, and if there are parabolic

fixed points, it is the closure of the set of parabolic fixed points as well.

Proof. G is non-elementary. Therefore, there are infinitely many distinct loxodromic transforma-

tions in G. If ξ is a fixed point of the loxodromic T, any point A(ξ) on its G-Orbit is a fixed point

of a loxodromic AT A−1. The same happens if ξ is a parabolic fixed point.

2This third argument states that: A family of holomorphic functions, all of which omit the same two values a,b ∈C,
is normal. A family F of holomorphic functions is called normal in a region D of C if every sequence of functions in F
has a subsequence that converges compactly in D.

3In order to facilitate the reading: a subset A ⊂ X is called dense in X if every point x in X either belongs to A or
is a limit point of A.
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Because Λ is closed and dense Theorems 14 and 16 Λ is equal to its closure. Let qn be the

attracting fixed point of the loxodromic Tm, see Theorem 16. ζ = lim qn is the limit of a sub

sequence of positive powers {Tk
n(ω)} for any ω different from repulsive point p = lim pn.

Example 4. In our examples, we have seen that the limit set forms different kinds of patters

depending on the generators utilized.

In Figure 4.1 a Jordan curve has been shown. Figures 4.3 and 4.5 showed a limit set which

consisted of isolated points. In this case, the isolation of the points was due to the fact that the

circles utilized to obtain the generators were not tangent.

An even more curious result was obtained in Figure 4.9. For its generation, we tried to repeat

the same procedure utilized for Figure 4.1, but we did not obtain a nice simple limit set in the form

of a Jordan curve. We did find a scallop worthy of Hieronymus Bosch.

We will see now how parabolic fixed points and commutators combine together to deduce some

conditions that must be fulfilled to obtain a Jordan curve as a limit set.

We will deduce them observing Figure 4.10. In the Figure it is depicted the usual pattern we

utilize for circle pairing. Let us define that the circles C1 and C′
1 are paired by the transformation

a. We also set that C2 and C′
2 are paired by transformation b. We also marked with P, Q, R and S

the respective points of tangency of the circles.

Let us try to study the conditions that must be fulfilled to obtain a Limit Set of the type of the

black line in the picture. To do this we follow Mumford et al. (2002).

1. We utilize the rules of paring described in the Schottky group description, Definition 14 in

Example 1 of page 28.

2. The circles must be tangent. Otherwise, the limit cannot be continuous.

3. To keep a continuous nice limit set the tangent points should be mapped following the rules

a(R)=Q,(4.1)

a(S)= P,(4.2)

b(R)= S,(4.3)

b(Q)= P.(4.4)

These rules have a very interesting consequence.

(4.5) aba−1b−1(P)= aba−1(Q)= ab(R)= a(S)= P.

That is, [a,b]= 1. Clearly, all cyclic combinations of aba−1b−1 also commute. Thus, the other

tangent points, Q, R, S, are also kept constant. We may check this utilizing b−1a−1ba(R)=
b−1a−1b(Q)= b−1a−1(P)= b−1(S)= R.
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Figure 4.10: Sketch of the circle pairing for a two generator Schottky Group

4. The Schottky circles in Figure 4.1 shrink down to a single point in all tangent points. This

can be better observed in the detailed cut of Figure 4.11.

They actually nest down from both sides to a single point, being tangent to each other into

the tangent point. Following Mumford et al. (2002), this means that the tangent points are

parabolic. This can be characterized explicitly through

(4.6) tr(aba−1b−1)=±2.

Now consider the normalized flavor of a and b. We rewrite these generators as

(4.7) a(z)= kz,

and

(4.8) b(z)= az+b
cz+d

.

We calculate the commutator and find that

(4.9) tr(aba−1b−1)=−bc(k−1)2

k
+2
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Figure 4.11: Circles nesting down.

We assume that tr(aba−1b−1)= 2. We have

(4.10)
bc(k−1)2

k
= 0,

which is only verified if b = 0, c = 0 or k = 1. In either case the transformations have a

common fixed point. For b = 0 the 0, for c = 0 the ∞ and for k = 1 the fixed points of b.

This is nevertheless impossible with the pattern of circles depicted in Figure 4.10. Therefore,

tr(aba−1b−1)=−2.

Following Mumford et al. (2002), groups in which its verified that tr(aba−1b−1) =−2 are

called Parabolic Commutator Groups.
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Let continue now our analysis of the limit set.

Theorem 18. If D1,D2 ∈ S2 are two open disks with disjoint closures and each of them meets

Λ(G), there exists a loxodromic element in G with a fixed point in D1 and in D2.

Proof. We take two loxodromic transformations A1, A2 ∈ G. These transformations have their

corresponding attracting points in the open disks D1,D2 respectively.

We now consider the repelling point of A2. Two possibilities should be taken into account:

whether its repelling point is located in D1 or not.

1. If the repelling point is in D1 the proof is finished.

2. In the second case, we take another loxodromic transformation, h ∈G, with fixed points

q1, q2 which are not equal to the corresponding ones of A1, A2.

The rest of the proof is mainly based on the fact that the successive application of lox-

odromic transformations make points approach the attracting point of the loxodromic

transformation. This fact is also applies to the inverse transformation. In this case the roles

of the repelling and attracting point are simply inverted.

The conjugate of h, B1 = Am
1 hA−m

1 , with m > 0 has fixed points Am
1 (q1), Am

1 (q2), see Figure

4.12. For sufficiently large m these fixed points both lie in D1.

We consider now a second disk D′
1 located inside of D1 which only contains the repelling

point, p, but not the attracting point, q, of B1. For a sufficiently large n, the transformation

An
2 sends q inside of D2, see the diagram of Figure 4.12.

At this stage, we need to prove that for a sufficiently large r, An
2 Br

1 verifies that,

An
2 Br

1(D2)⊂ D2,(4.11)

B−r
1 A−n

2 (D′
1)⊂ D′

1.(4.12)

We undertake this without further delay.

(i) For a large enough r, Br
1(D2) is as closed to q as desired. Therefore, An

2 sends the

image Br
1(D2) into D2. Relationship 4.11 is proved.

(ii) An
2 (q) ∉ D′

1. This means that q ∉ A−n
2 (D′

1). This implies that r can be increased as

much as necessary until it is verified that B−r
1 A−n

2 (D′
1) is included into D′

1, as close

as needed to the repelling point of B1. This constitutes the proof of the relationship

(4.12).

The transformation B−r
1 A−n

2 has two fixed points located as we needed, maps the disk as

required and is clearly loxodromic. We have thus finished our proof.
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Figure 4.12: Sketch for the proof of Theorem 18

Theorem 19. If G0 has finite index in G then Λ(G0)=Λ(G).

Proof. We consider a transformation A ∈G which is loxodromic. If G0 has finite index in G, there

is a k ∈ N, k > 0, so that Ak ∈ G0. Thus, Λ(G0) has the same set of loxodromic fixed points of

Λ(G). The closure of them is Λ(G), see Theorem 17. As the closure of both is equal, then also

Λ(G0)=Λ(G).

Theorem 20. If G0 is a normal subgroup of G, then Λ(G0)=Λ(G).

Proof. If G0 is a normal subgroup of G, it is verified that gG0 g−1 = G0, ∀g ∈ G. The image by

g of the fixed points of a h ∈ G0 are the fixed points of ghg−1 ∈ G0, see also Section 2.1.4 and

Theorem 17. Thus, gΛ(G0)=Λ(G0) for all g ∈G. But Λ(G0)⊂Λ(G). Considering that the G-orbit

of the fixed points of a loxodromic transform h ∈G0 is, by theorem 16, dense in Λ(G), this means

that the Limit Sets are identical.

4.4 The Complementary of the Limit Set

After the investigation of the Limit Set carried out in earlier sections of this chapter, it is somehow

natural to extend our analysis to the complementary of the Limit Set.
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In Definition 4 we have provided a strict concept of discreteness. We will consider a more

gentle criterion here in order to study the complementary of the Limit Set.

Definition 20 (Discontinuity). A group G acts discontinuously at an x ∈ X if there is a neighbor-

hood U of x, so that g(U)∩U =; for all but finitely many g ∈G.

Definition 21 (Set of Discontinuity). The set of all points of X at which a group G acts discontin-

uously is called the set of discontinuity and is denoted by Ω(G).

For completion, we provide now the reminder:

Definition 22. The stabilizer of Y in G is the set,

(4.13) StabG(Y )= {g ∈G : g(Y )=Y }.

Definition 23 (Precisely invariant). The set Y is precisely invariant under the subgroup H in G

if,

• H =StabG(Y ).

• g(Y )∩Y =;, ∀g ∈ (G−H).

Theorem 21. Let G be Kleinian. A point x is in Ω(G), if and only if,

1. Stab(x) if finite

2. There is a neighborhood U of x such that it is precisely invariant under Stab(x).

Proof. Let us prove firstly the sufficient condition. If x ∈Ω(G), by Definition 20, StabG(x) is finite.

If x ∈Ω(G), g(U)∩U 6= ; for a finite number of transformations g. Let us take an V ⊂U so that

g(V )∩V 6= ; only for g ∈ StabG(x). The intersection ∩g∈StabG (x) g(V ) is a neighborhood which is

precisely invariant under H.

We attempt the necessary condition. If StabG(x) is finite and U is precisely invariant under

Stab(x), then g(U)∩U 6= ; for the finite number of elements of Stab(x).

Theorem 22. For any Kleinian group G, Ĉ is the disjoint union of Λ(G) and Ω(G).

Proof. We will firstly prove that the intersection between Λ(G) and Ω(G) is empty. Subsequently,

we will prove that Λ(G) and Ω(G) make a partition of Ĉ.

1. If z ∈ Λ, its orbit is dense (Theorem 16) in Λ. Thus, there are infinitely many distinct

elements of g ∈G so that for any neighborhood, U, of z, g(U)∩U 6= ; . Therefore, Λ(G)∩
Ω(G)=;. We have proven that the intersection is empty as required.
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2. Let us consider a point x 6∈Ω(G). For every neighborhood U of x there are infinitely many

translations of U, gm(U) with m ∈ N and gm ∈ G, that intersect U. Between them we

consider a sequence of elements {gm} ∈G and a sequence of points {zm} such that zm → x

and gm(zm) → x. By Theorem 10 there exists a subsequence of {gm} and there are two

points w and y such that gm(z)→ w converges uniformly in compact sub-sets for z in Ĉ− y.

w and y are both limit points. We have two possibilities to discuss: i) x = y; ii) x 6= y. If

x = y then, x = y ∈Λ(G). Otherwise, if x 6= y, then the points do not accumulate at y. We

have proven the partition, because if x ∉Ω(G) we may take x = w and it happens that them

x ∈Λ(G).

Further interesting information relevant to the Set of Discontinuity can be found in Annex B.

The contents outlined there sadly fit neither the narrative of this chapter nor the extent of this

work. It contains some results for which extensive knowledge of Manifolds and their Covering,

Riemann surfaces and some notions about the Fundamental Group are necessary.
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THE FRACTAL NATURE OF THE LIMIT SET

In previous sections we have characterized the limit set from the point of view of the Kleinian’s

group theory. In this chapter we shall mix our previous approach with some theory of fractals in

order to describe the limit set from a complementary perspective. With this goal, we introduce

some topics on measure and fractal dimension. After that, we turn our attention to the limit sets

of Kleinian groups in order to study in which conditions can they be considered as fractals. We

try to address this topic by investigating the local structure of the limit set and particularly the

existence of tangents.

5.1 General

We may quote Mandelbrot (1982) in his famous essay The Fractal Geometry of Nature, to define

that a fractal is a a rough or fragmented geometric shape that can be split into parts, each of

which is (at least approximately) a reduced-size copy of the whole. This is the famous notion of self

similarity, see also Vicsek (1992).

To complete our definition we may continue with another quotation from Mandelbrot (1982).

A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the

topological dimension.

This last definition puts an emphasis on dimension when treating fractals.
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CHAPTER 5. THE FRACTAL NATURE OF THE LIMIT SET

5.2 Measure and Dimension

5.2.1 General

We can address the concept of dimension based on an intermediate concept. Such is the concept

of measure.

Definition 24 (Borel Set). A Borel set is a set, generated in terms of a topological space, such

that can be created from open sets or, equivalently, from closed sets through countable union,

intersection and relative complement.

Definition 25. µ is a measure in Rn if µ assigns a non-negative number, including ∞, to each

subset of Rn and also verifies the following three properties:

1. µ(;)= 0.

2. If A ⊂ B then µ(A)≤µ(B).

3. If A1, A2, . . . is a countable sequence of sets then

(5.1) µ
(∪∞

i=1 A i
)≤ ∞∑

i=1
µ (A i)

A significant property of the measure that we will utilize in later sections is enunciated by

the Egoroff ’s theorem.

Theorem 23 (Egoroff ’s theorem). We consider that:

• D is a Borel sub-set of Rn.

• µ is a measure that accomplishes µ(D)<∞.

• f1, f2, . . . and f are functions from D to R, verifying that for all x ∈ D , fk(x)→ f (x).

In such conditions for every δ> 0 there is a Borel sub-set E ⊂ D such that µ(D \ E)< δ. Also, the

sequence of { fk} converges uniformly to f on E.

The proof of this theorem can be found in detail in Sun (2016).

5.2.2 Topological dimension

Let us try to introduce the concept of dimension, providing a formal definition of the intuitive

approach of considering a body d-dimensional if it resembles a patch of Rd.

This we may reach following Engelking (1995), Arkhangel’Skii and Fedorchuk (2012) and

Kohavi and Davdovich (2006), considering three definitions of the concept of dimension: the

so called Small inductive dimension, the Large inductive dimension and the Lebesgue covering
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dimension. Among them, the latter is also known as topological dimension and it is the concept

we will introduce.

We remind that a cover of a set X is a collection of sets whose union contains X as a subset.

Also, that a refinement of a cover is a new cover such that every set in the refinement is contained

in some set of the original cover.

Definition 26. Lebesgue covering dimension also called generically, topological dimension,

is the minimum value n, such that any open cover has a refinement in which no point is included

in more than n+1 elements of the refinement.

If no minimal exists then the dimension is infinite. A set is zero-dimensional if every open

cover of the space has a refinement consisting of disjoint open sets. All points are contained in

only one element of the refinement.

A convenient refinement for R2 is given in Figure 5.1 illustrating the concept and showing

that each point is included in at most three elements of the refinement.

We do not extend further in this topic of Topological dimension and refer for further details to

e.g. the monograph work of Engelking (1995).

Figure 5.1: Lebesgue covering refinement

5.2.3 Hausdorff dimension

We address now the definition of the α-dimensional Hausdorff measure. To do this we firstly

define the set,

Λε
α (X )=

(
inf

∑
k

rαk : rk < ε; X ⊂∪Dk(xk, rk)

)
,(5.2)

where α is a non-negative number, the infimum is taken over all covers {Dk} of X and Dk(xk, rk)

is a disk of center xk and radius rk of at most a size ε.

Definition 27 (α-dimensional Hausdorff measure). The α-dimensional Hausdorff measure, Λα,

of a set X ⊂C, is defined in terms of the set Λε
α (X ) as

Λα (X )= lim
ε→0

Λε
α (X ) .(5.3)
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CHAPTER 5. THE FRACTAL NATURE OF THE LIMIT SET

If the diameter of each member of a cover is smaller than a certain value, that we denote by

δ, we call this cover a δ-cover.

The literature consulted provides small variations in the definition of α-dimensional Hausdorff

measure given here. Concretely, different sources consider X a closed or plain set or a sub-set of

Rn. Also, {Dk} can be seen as a plain or an open cover.

The Hausdorff Dimension can be defined in terms on the α-dimensional Hausdorff measure.

Definition 28 (Hausdorff or Hausdorff-Besicovitch Dimension). The Hausdorff Dimension is

defined as,

dim X = inf {α :Λα (X )= 0}.

The role of the infimum in the previous definition is not evident. One should realize that for

smaller values of α, Λα(X )=∞. Actually,

(5.4) Λα (X )=
{

∞ i f α< dimX

0 i f α> dimX

As such, we can define the Hausdorff-Besicovitch Dimension alternatively as dim X = sup {α :Λα (X )=∞}.

We now consider the inverse path and suppose we know that the Hausdorff-Besicovitch

dimension of a certain set, X , is α. We can thus define a related concept:

Definition 29. Let X be a Borel set and dimX =α. X is an α-set if it is verified that 0<Λα(X )<
∞.

The definition above excludes the cases in which dimX =α but eitherΛα(X )= 0 orΛα(X )=∞.

Very often an alternative definition of Hausdorff dimension is given:

Definition 30 (Box-dimension). Given an ε> 0 we take N(ε) as the number of balls of diameter ε

that completely cover a set X. The box dimension of X is,

(5.5) dimB(X )= lim
ε→0

log N(ε)
log(1/ε)

.

The logarithm simply defines the power law at which the amount of balls grows with the

descent of the diameter. This power law represents actually the value we were looking for.

Other alternative definitions of dimensions exist, see e.g. Falconer (2004, chapter 3).

Example 5. The Cantor Set. Let’s look now at a well known example to illustrate previous

concepts.

The Cantor set consists of the closed points in the unit interval whose triadic expansion does

not contain any occurrences of the the digit 1, i.e.,

(5.6) X =
{ ∞∑

k=1

ik

3k : ik = {0,2},k ≥ 1

}
.

54



5.3. HAUSDORFF DIMENSION PROPERTIES

The Cantor set is represented in Figure 5.2.

Figure 5.2: Several stages of the Cantor set. Picture obtained from Mandelbrot (1982)

We now look for an adequate cover in order to calculate the box dimension. We may consider a

certain value εn = 1/3n. We may cover the set X by the union of 2n intervals,

(5.7) Xn =
{

n∑
k=1

ik

3n + t
3n : ik = {0,2},k ≥ 1,0≤ t ≤ 1

}

of extension 1/3n. This implies that N(εn)≤ 2n.

Note that any interval of length 2n intersecting the set X can touch at most two intervals from

Xn. This means that N(εn)≥ 2n−1.

Let us now take another value ε, of a magnitude such that it verifies that εn+1 ≤ ε ≤ εn.

Therefore, N(εn)≤ N(ε)≤ N(εn+1). Thus,

(5.8)
n−1
n+1

log2
log3

≤ log(N(εn))
log(1/εn+1)

≤ log(N(ε))
log(1/ε)

≤ log(N(εn+1))
log(1/εn)

≤ n+1
n

log2
log3

.

Making n →∞, the box dimension results in log2/log3.

We may also note that the analogy between the Cantor Set of Figure 5.2 and the limit set

obtained in Figure 4.3 and 4.5 is significant.

5.3 Hausdorff Dimension Properties

We provide in this section several properties of the Hausdorff dimension that we shall utilize

later. We start by restating two definitions.

Definition 31. L : X1 → X2 is a Lipschitz map if there exists C > 0 such that |L(x)−L(y)| ≤ C|x−y|.

Definition 32. L : X1 → X2 is a Bi-Lipschitz map if there exists C > 0 such that (1/C)|x− y| ≤
|L(x)−L(y)| ≤ C|x− y|.
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Based on these definitions, we may see that:

Theorem 24. If L : X1 → X2 is a surjective Lipschitz map, then dim(X1)≤ dim(X2).

Theorem 25. If L : X1 → X2 is a bijective Bi-Lipschitz map, then dim(X1)= dim(X2).

Proofs of Theorems 24 and 25. For the Theorem 24, consider an open cover U , one that has all its

subsets open, for X1 with diam(Ui)≤ ε for all subsets Ui ∈U . Then the images U ′ = L(Ui) : Ui ∈U

are a cover for X2 with diam(L(Ui))≤ Cε for all Ui ∈U ′ and a C > 0. Thus, from the definitions,

Λε
α (X2) ≥ Λε

α (X1). In particular, letting ε→ 0 we see that Λα (X2) ≥ Λα (X1). Finally, from the

definitions dim(X1)≤ dim(X2). For the proof of theorem 25, we can apply the first part a second

time with L replaced by L−1.

We now study the dimension of an ensemble of sets.

Theorem 26. Let Λ1,Λ2 ⊂ R and let Λ1 +Λ2 = {λ1 +λ2 : λ1 ∈ Λ1,λ2 ∈ Λ2} then dim(Λ1 +Λ2) ≤
dim(Λ1)+dim(Λ2).

Proof. It is immediate that dim(Λ1 ×Λ2)= dim(Λ1)+dim(Λ2). We may combine this with the

map L(x, y)= x+ y which is Lipschitz to obtain the result.

Based in the definitions above we can now derive an important clause: the so called Hölder

condition.

Proposition 4. Let X ⊂Rn and f : X →Rm. Let f verify,

(5.9) | f (x)− f (y)| ≤ c |x− y|β

for the points x, y ∈ X and let c and β be constants such that c > 0 and β> 0. For each α we have

(5.10) Λα/β ( f (X ))≤ cα/βΛα (X ) .

Proof. Let {Ui} be a δ-cover of X . diam(| f (X ∩Ui)) ≤ cdiam(|Ui)β. Take ε = cδβ. { f (X ∩Ui)} is

a ε-cover of F(X ). Therefore,
∑

i diam( f (X ∩Ui))α/β ≤ cα/β∑
i diam(Ui)α, so that Λε

α/β( f (X )) ≤
cα/βΛδ

α(X ). Taking δ→ 0, also ε→ 0 which gives the desired result.

Of a particular importance is the result in which f is a Lipschitz mapping and β= 1. We have,

(5.11) Λα( f (X ))≤ cαΛα(X ).
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5.4 The Fractal Nature of the Limit Set

Our interest focuses now on the fascinating picture of Felix Klein, Figure 1.5. In this illustration,

a limit set with a singular topology is shown.

It would be interesting to analyze whether this singular topology was serendipity or if it is

a fundamental characteristic of the limit set. In this section we strive to uncover this, at least

partially.

Example 6. We may indeed give a further indication that the limit set is a fractal taking into

account the definitions of previous sections. This we can do with a couple of interesting examples.

Maybe one of the better-known fractals that can be constructed utilizing the methodology

described in the examples 1, 2, 3 and 4 is the so called Apollonian Gasket. The Apollonian Gasket

is a very notable figure of great beauty that has been studied among others by Bourke (2006),

Mandelbrot (1982) and Mumford et al. (2002) and that is also relevant for problems of circle

packing, see Graham et al. (2005).

For the construction of this limit set we utilize the set of circles shown in Figure 5.3. This

corresponds to a circle C1 of infinite radius, two of radius one, C2 and C′
2, tangent to each other

and to the fourth circle C1. C′
1 is located in between the others, and is tangent to each of them as

appears in the Figure 5.3.

Figure 5.3: Schema of the circles utilized to obtain of the generators of the Apollonial Gasket.

The generators of the Apollonian Gasket are well known, see Mumford et al. (2002). The

application of the methodology of example 4 for the calculation of the generators yields the values

of

(5.12) a =
(

1 0

−2i 1

)

and

(5.13) b =
(
1− i 1

1 1+ i

)
.
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The code of example 3 with these new generators immediately provides Figure 5.4. Note the

distinctive convergence of the points in different locations of its limit set. Notably, close to the

points of tangency of the generators (parabolic, near the horizontal axis of the figure) and their

images, the limit set appears quite void.

Figure 5.4: The Apollonial Gasket.

An interesting variation of the last figure happens when the point of tangency between the

circles C2 and C′
2 is located at ∞. The arrangement of the circles becomes as it appears in Figure

5.5. In this case, the limit set adopts an interesting configuration in form of a stripe, see Figure 5.6.

To obtain the figure, we have utilized the same code used to calculate Figure 5.4 but with different

generators, obtained again from Mumford et al. (2002),

(5.14) a =
(

2 −i

−i 0

)
,

and

(5.15) b =
(
1 2

0 1

)
.
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Figure 5.5: Schema of the circles utilized for obtaining the generators of the Apollonial Gasket in
stripe form.

Figure 5.6: The Apollonial Gasket in form of a stripe.
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At this moment it would be appropriate to summarize some points about the kind of sets we

are dealing with and about the pertinence of calling them fractals. To do so–and for the sake of a

general overview–we will advance some results that will be adequately proven later on.

Thus: (i) We are investigating limit sets that have been obtained by recursion. (ii) The limit

set of elementary groups consists of two points by definition. For all others cases not involving

elementary groups: (iii) We will see in Theorem 32 on page 67 that there are no smooth limit sets

except circles. Euclidean lines, conceived as circles with infinite radii, are a particular case of

smooth limit sets. In these cases, we would be dealing with Fuchsian groups. (iv) We will also

prove in the same theorem that each component of Λ(G) which is neither a point, nor a circle, nor

a line has nowhere a tangent.

We are considering complex sets with intricate topologies. Regarding the pertinence of calling

them fractals, we may recall the definition given by Marden (2007):

Definition 33. A connected closed set without an interior which has a Hausdorff dimension

larger than one is called a fractal.

This of course constitutes an ad hoc definition for fractals appearing in the specific kind of

problems we are treating.

For elementary groups, we may find the following theorem to be interesting.

Theorem 27. For any countable set X, dim(X )= 0.

Proof. We start enumerating the countable set X = {xn : n ≥ 1}. Given any α > 0 and ε > 0, for

each n ≥ 1, we can choose ε> εn > 0 sufficiently small that
∑
εδn = ε. We can consider the cover

U for X by balls B(xn,εn/2) centered at xn and of different diameters εn. From the definitions,

Λε
α (X ) ≤ ε, for any ε and so Λα (X ) = 0. As α > 0 was arbitrarily chosen, from the definition of

Hausdorff dimension, it is verified that dim(X )= 0.

And thus the Hausdorff dimension for the elementary group is zero. The dimension of a line

is one. Thus the Hausdorff dimension of the limit set of Fuchsian group is one. For the rest of

the cases, we may advance that the Hausdorff-Besikovich dimension coincides with the so called

Poincare or Critical exponent and refer for more details to the specific literature on the topic,

Nicholls (1989), Bishop and Jones (1997) and Canary et al. (1994). We can treat it therefore as a

α-set with this dimension.

5.5 The Local Structure of the Limit Set

Making an analogy with the structure of usual curves, we may want to study the approximation

of our limit set through tangent lines. Nevertheless, is some cases the limit set exhibits a complex

structure and the mere existence of a tangent is not evident. We have already seen some of those

intricate structures in previous examples.
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Therefore, one may try to qualify the structure of the limit set through two characteristics:

(i) The first could be to study its local density. That is, how the limit set is concentrated around

some locations. This is of particular significance for the cases in which the limit set is formed

by a set of points, for example in Figure 4.5. (ii) The second is the directional distribution of the

limit set. This specially refers to the existence or non-existence of a tangent.

5.6 Densities

Definition 34. The density of a subset, X, of the plane in a point x ∈ X is

(5.16) lim
r→0

area (X ∩Br(x))
area (Br(x))

,

where Br(x) is the closed disk of radius r and center x.

Definition 35. A coordinate parallelepiped in Rn is the set

(5.17) A = {
(xi, . . . , xn) ∈Rn : ai ≤ xi ≤ bi

}
,

where a = (a1, . . . ,an) and b = (b1, . . . ,bn) are two points of Rn.

Definition 36. The n-dimensional volume of the coordinate parallelepiped A is given by

(5.18) voln(A)= (b1 −a1) · . . . · (bn −an)

Definition 37. The n-dimensional Lebesgue measure of the subset X of Rn is given by

(5.19) Ln(X )= inf

{ ∞∑
i=1

voln(A i) : X ⊂∪∞
i=1 A i

}
.

The infimum is taken over all covering of X by coordinate parallelepipeds A i.

Note that Ln(A)= voln(A) if A is a usual set, that is, a coordinate parallelepiped.

The Lebesgue Density theorem, see Mattila (1999), establishes that the density of any

Lebesgue measurable Borel set X–a Borel set where a Lebesgue measure has been stablished–

is 1 when x ∈ X and 0 when x 6∈ X , except for a set around x of area 0. This has a simple

interpretation. For a point x ∈ X , small balls arround x are almost filled by X and vice versa for

those cases in which x 6∈ X . Similarly,

(5.20) lim
r→0

Length (X ∩Br(x))
2r

= 1

if x ∈ X and 0 if x 6∈ X .

We are now going to extend the concept of density to an α-set. We consider firstly a function

f :R+ →R. We intend to characterize this function for small positive numbers. At the same time,

we suspect that f may fluctuate wildly close to zero and that the limit will not necessarily exist.

To characterize such variations we provide two definitions:
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Definition 38. The lower limit of f (x) is

(5.21) limx→0 f (x)= lim
r→0

(inf { f (x) : 0< x < r}) .

Definition 39. The upper limit is given by

(5.22) limx→0 f (x)= lim
r→0

(sup { f (x) : 0< x < r}) .

If both upper and lower limits coincide the conventional limit exists and equals its value.

We are now in a position to extend the concept of density to α-sets through the concept of

upper and lower densities.

Definition 40. The lower and upper densities of a α-set X at a point x ∈ Rn are given by the

equations

(5.23) Dα(X , x)= limr→0
Λα (X ∩Br(x))

(2r)α
,

(5.24) D
α

(X , x)= limr→0
Λα (X ∩Br(x))

(2r)α
.

Lower and upper densities allow for a classification of the points and α-sets. If Dα(X , x) =
D
α

(X , x)= 1 the point is called regular, or irregular otherwise. We denote the common value by

Dα(X , x)= D
α

(X , x)= Dα(X , x).

We say that an α-set is Λα-almost if all of its points, except for a set of measure 0, verify a

property.

We classify now sets analogously to points. We say that a α-set X is called regular if is

Λα-almost regular or irregular otherwise.

The classification above not only provides a taxonomy of points and α-sets. It has also

implications, that we will study later, which concern the existence of a tangent.

We provide a couple of properties of the densities.

Theorem 28. X is a α-set. Then, it is verified that:

1. Dα(X , x)= D
α

(X , x)= 0 for Λα-almost all x 6∈ X.

2. 2−α ≤ D
α

(X , x)≤ 1 for Λα-almost all x ∈ X.

The proof of these properties exceeds the scope of this document, and consequently readers

are referred to Falconer (2004).

Definition 41. A cluster point, y in a subset E, is one for which there exist other points of the

subset as close as desired (arbitrarily).

For α-sets in which 0<α< 1 the following theorem is worth noting.
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Theorem 29. If X is an α-set in R2 then X is irregular unless α is an integer.

Partial proof. We suppose that the density D(X , x) exist everywhere in X and look for a contra-

diction to this fact.

We continue our rationale based on this assumption. There is a set X1 ⊂ X of positive measure

where the density exits and where, following Theorem 28, it is verified that 1/2< 2−α ≤ Dα(X , x).

By the Egoroff Theorem (Th. 23 in page 52) exists an r0 > 0 and a Borel set E ⊂ X1 ⊂ X with

Λα > 0 such that

(5.25) Λα (X ∩Br(x))> (2r)α/2

for all x ∈ E and r < r0.

We now take y ∈ E, a cluster point. Let η be a number with 0< η< 1. We consider the annulus

Ar,η = Br(1+η)(y)\ Br(1−η)(y). Then we have

(5.26)
Λα(X ∩ Ar,η)

(2r)α
= Λα(X ∩Br(1+η))

(2r)α
− Λα(X ∩Br(1−η))

(2r)α
.

By the definition of density, Definition 40, the RHS of previous equation converges to

(5.27) Dα(X , y)
(
(1+η)α− (1−η)α

)
as r → 0.

Now we consider a sequence of values of r which tends to 0. We may find a point x in E such

that it is verified that |x− y| = r. Therefore, Brη/2 ⊂ Ar,η. Taking into account equation (5.25), we

obtain

(5.28)
1
2

rαηα <Λα(X ∩Brη/2)≤Λα(X ∩ Ar,η).

Considering equation (5.27) we get

2−α−1ηα ≤Dα(X , y)
(
(1+η)α− (1−η)α

)
=Dα(X , y)

(
2αη+ o(η2)

)
.(5.29)

Making η→ 0, last statement becomes impossible when α< 1. We have obtained the contradiction

we were looking for.

5.7 Tangents to the Limit Set

We turn our attention now to a particular local property of the limit set. We may try to study the

nature of the tangents of the limit sets of Kleinian Groups. For this section we utilize specific

literature on the limit sets of Kleinian Groups, like Marden (2007) or Lehto (1987), complementing

the sources on fractals.

We start analyzing an interesting particular case: the limit set of Fuchsian group.
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5.7.1 The Limit Set of Fuchsian Groups

We provide an apparently ad hoc definition of Fuchsian Group.

Definition 42. A Kleinian group is Fuchsian if it keeps invariant some circular disk, D.

The pertinence of the example in Figure 4.1 is now underlined by the statement above.

There are certainly different approaches that can be followed for the definition of Fuchsian

groups.

We emulate e.g. Beardon (1983), Lehto (1987), Marden (2007) and Maskit (1988) defining the

Fuchsian groups as subgroups of the Kleinians.

A distinct approach can be prosecuted by defining Fuchsian groups directly as a discrete

subgroup of PSL(2R). This last possibility is followed by other authors like e.g. Jones and

Singerman (1987). In this latter reference contains an introductory but complete review of the

properties of Fuchsian groups.

The next property is a surprising characteristic of the limit set that will allow us to classify

Fuchsian groups.

Theorem 30. For any non-elementary group G, the limit set Λ is the smallest non-empty G-

Invariant subset of Ĉ.

Proof. Let E be any non-empty, closed G-invariant subset of Ĉ. If G is non-elementary, every orbit

is infinite, so that E is infinite. Let v be any point fixed by a loxodromic element g ∈G. Therefore,

there is some w in E, not fixed by g and the set {gn(w)} with n ∈N, that accumulate at v. v ∈ E

because E is closed. Thus, the set of points fixed by loxodromic elements in G is contained in E.

The limit set is the closure of the former set. As E is closed is also included in E. Thus, Λ⊆ E, for

all possible E. We have concluded our proof.

The direct application of Theorem 30 to the definition of Fuchsian groups implies that their

limit set is contained in the circle ∂D. This is the result that we wanted to prove and that

motivates the formulation of Theorem 30. By Definition 42 we have described a group by stating

the shape of its limit set.

We may actually classify the Fuchsian groups based on this result.

Definition 43. Let G be a Fuchsian group with an invariant disk D. G is said to be of the first
kind if Λ= ∂D strictly and of the second kind if Λ⊂ ∂D properly.

Related to Fuchsian groups, we may define a akin concept, in which the limit set is not a

circle but a Jordan Curve.

Definition 44. A Quasi-Fuchsian group is a Kleinian group whose limit set is a Jordan Curve.

Please recall that Jordan Curves were already defined in page 30.
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Example 7. We may now continue the rationale of Example 4. Our objective is to obtain a Jordan

curve as a limit set.

With this goal in mind, we will prove a property of the trace of the commutator that we will

utilize immediately in this example.

Theorem 31. The trace of the commutator is,

(5.30) Tr(aba−1b−1)= (Tr(a))2 + (Tr(b))2 + (Tr(ab))2 −Tr(a)Tr(b)Tr(ab)−2

where a and b are the Matrix equivalent of two Möbius transformations,

(5.31)

(
a1 b1

c1 d1

)

and

(5.32)

(
a2 b2

c2 d2

)
.

Proof. We prove this equality following the methodology outlined by Fricke and Klein (1897).

We obtain the products of the elements of equations (5.31) and (5.32) in equation (5.30). For

this tedious task, we utilize the mathematical symbolic computation program Mathematica by

Wolfram Research, Inc. (2010). We obtain,

Tr(aba−1b−1)− [(Tr(a))2 + (Tr(b))2 + (Tr(ab))2 −Tr(a)Tr(b)Tr(ab)−2]=
2−a2

1 −a2
2 −a2

2b1c1 −a2
1b2c2 −2b1b2c1c2 −2a1d1+

a1a2
2d1 −d2

1 −b2c2d2
1 −2a2d2 +a2

1a2d2 +2a1a2d1d2 +a2d2
1d2

−d2
2 −b1c1d2

2 +a1d1d2
2.(5.33)

We may regroup the terms on the right hand side to obtain,

RHS =a2
1(−1−b2c2 +a2b2)+a2

2(−1−b1c1 +a1d1)

+d2
1(−1−b2c2 +a2d2)+d2

2(−1−b1c1 +a1d1)

2−2b1b2c1c2 −2a1d1 −2a2d2 +2a1a2d1d2(5.34)

The terms of the last equation inside of the brackets cancel out, as our matrices a and b have

a determinant equal to one. For the rest of the terms, we apply again that a1d1 −1= c1b1. We

expand b1b2c1c2 = a1d1a2d2 −a1d1 −a2d2 +1. Substituting the last equation in equation (5.34)

we see immediately that it cancels out.

We are now prepared to study the generic problem of the generation of a limit set in the form of

a Jordan curve based on generators in the form of equations (5.31) and (5.32).
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Because det(a)= det(b)= 1, this is a six parametric problem. We may still reduce the number

of parameters by means of normalization. We consider that a, a−1 and b have attracting fixed

points in 0,1,∞ respectively. This reduces the number of parameters to three.

We now bring in an additional consideration. We have seen in example 4 that tr(aba−1b−1)=
−2. Therefore, equation (5.30) simplifies to

(5.35) (Tr(a))2 + (Tr(b))2 + (Tr(ab))2 = Tr(a)Tr(b)Tr(ab).

This corresponds to an additional constraint that reduces the number of parameters to two. In fact,

considering the format of the last equation, it appears conceivable to utilize Tr(a) and Tr(b) as

the two parameters of the system, and resolve generators a and b as a function of Tr(a) and Tr(b).

This was the strategy followed by Mumford et al. (2002). Utilizing equation (5.35) as a second

order equation in variable Tr(ab), this last magnitude is obtained. Once Tr(ab) is known, the

generators adopt a very elegant formulation. For simplicity we denote Tr(a)= ta, Tr(b)= tb and

Tr(ab)= tab. The generators become, following Mumford et al. (2002),

(5.36) a =

 ta/2
(tatab −2tb +4i)(tb tab −2ta +2itab)

(2tab +4)(tab −2)tb
(tatab −2tb +4i)(tab −2)tb

(2tab +4)(tb tab −2ta +2itab)
ta/2

 ,

and

(5.37) b =

 tb −2i
2

tb/2

ta/2
tb +2i

2

 .

We are now in a position to calculate a limit set that will be a Jordan Curve different from the

circle of Figure 4.1.

For the completion of this task we take the program already utilized in example 4. We carry

out a run with a set of generators calculated with equations (5.36) and (5.37). For this example,

the values ta = tb = 2.7 are considered. The Figure 5.7 is obtained.

5.7.2 Tangents to the Limit Set of a Generic Kleinian group

We consider here the classical definition of the tangent as the line through a pair of infinitely

close points on a curve or set. More concretely, if we consider a curve y= f (x) and a point x = c

on the curve we are interested in the line passing through the point (c, f (c)) which has a slope

f ′(c) where f ′ is the derivative of f . As usual, we are thus defining the tangent in terms of the

derivative, that is the limit limh→0( f (c+h)− f (c))/h. It is well known that in many cases such

limit does not exist.

We will obtain now a very important result for our analysis and the characterization of the

limit set.
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Figure 5.7: Limit set in form of Jordan curve.

Theorem 32. A limit set Λ(G) cannot have a tangent line at a a fixed point of a loxodromic

transformation g ∈G unless Λ(G) is Möbius equivalent to a circle.

This theorem is attributed to Lehto (1987), although the formulation we are following comes

from Marden (2007).

Lehto was investigating Quasi-Fuchsian groups–like the one in Example 7–and the formula-

tion he utilizes was more adapted to the goals he was pursuing. We give the original formulation

(Lehto, 1987) for completion:

Let G be a Kleinian group such that its Set of Discontinuity has an invariant component A

which is a Jordan domain–the one circumvented by a Jordan curve–different from a disk. Then,

the border of the Jordan domain, ∂A, does not have a tangent at a fixed point of a loxodromic

element of G.

Proof of Theorem 32. Let us assume that the tangent exists at a fixed point of a loxodromic

element g ∈G. We may look for a contradiction of this hypothesis.

We suppose, without any kind of loss of generality, that the fixed point z, lies in z = 0. To

achieve this condition, we may normalize if needed. Also because of normalization, it can be

supposed that the tangent at z is the real axis, and that the repulsive fixed point lies at ∞.

We write down g in its generic form, g(z)= keiϕz, so that 0< k < 1 and 0≤ϕ< 2π.

We divide the proof into two cases, ϕ 6= 0,π and ϕ= 0,π.
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(i) Let us start with the former case, ϕ 6= 0 or ϕ 6=π. The angle φ is set as,

(5.38) φ=min{ϕ, |π−ϕ|,2π−ϕ}.

We may construct the symmetric wedges of angle φ centered in z and along R, see Figure 5.8.

Those wedges are V = {reiθ : θ ∈ (−φ/2,φ/2)} and V ′ = {reiθ : θ ∈ (π−φ/2,π+φ/2)}. Certainly,

0<φ≤π/2.

Let us now take a disk D, centered in z and with a sufficiently small radio. We have,

Λ∩D ⊂ (V ∪V ′)∩D.

Now, let us take a point x ∈Λ∩D. Because of theorem 11, and considering z as the attractive

fixed point of g, it happens that g(x) ∈Λ∩D. On the other side, due to the definition of g,

the argument of g(x) is too large and it is not in (V ∪V ′). We have arrived to a contradiction

which proves the theorem for this case (i).

Figure 5.8: Schema of the domains and position of the points selected for the proof of the theorem.

(ii) Let us now turn our attention to the latter case, ϕ= 0. We have g(x)= kx. Take a point x in

Λ so that ℑx 6= 0. Thus ∀n ∈N, arg gn(x) = arg x. We have obtained another contradiction.

It comes from the fact that gn(x) ∈Λ is as close as desired from z. But then again, a line

joining gn(x) and z never approximates the real axis. If ϕ=π, the argument is the same,

but operating in terms of g2.
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5.7.3 Tangents to α-sets

The concept of tangent provides information on how a curve, or a set, is concentrated into two

diametrically opposed directions.

We have already considered in previous sections the classical definition of the tangent as the

line through a pair of infinitely close points on a curve or set. We found out that with the sets of

the complexity we are treating, there is no hope of providing positive results able to characterize

the orientation of the limit set involving all points in a certain vicinity.

This directional characterization can nevertheless be reached considering α-sets. With this

aim, we will generalize the concept of tangent.

Definition 45 (Tangent of α-sets). The α-set X ∈R has a tangent at x in direction~θ if

(5.39) D
α

(X , x)> 0,

and for every angle φ> 0,

(5.40) lim
r→0

Λα

(
X ∩

(
Br(x)\ S(x,~θ,φ)

))
rα

= 0

where S(x,~θ,φ) is the double sector with vertex x consisting of points y such that the segment [x, y]

makes an angle at most φ with~θ or −~θ.

S(x,~θ,φ) constitutes a generalization of the wedges V and V ′ of the proof of Theorem 32, see

also Figure 5.8.

This definition of tangent implies that the most of the α-set is oriented in ±~θ direction while

a negligible part is allowed to lie in other directions even in the near vicinity of point x.

5.7.4 Tangents to 1-sets

We consider the length L of a curve C given by a polygonal approximation L (C)= sup
∑m

i=1 |xi − xi−1|.
The supremum is taken on all divisions of C by points x0, . . . , xm in that order.

Definition 46. C is called rectifiable if L (C) is finite.

L (C) equals its 1-dimensional Hausdorff measure:

Lemma 2. If C is a rectifiable curve then Λ1(C)=L (C)

Proof. We consider points x, y ∈ C. By Cx,y we denote the part of C between x and y. Orthogonal

projection onto lines passing through x and y do not increase distances. We also consider the

result of equation (5.11). Therefore,

(5.41) Λ1(Cx,y)≥Λ1([x, y])= |x− y|,
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with [x, y] the straight line joining x to y. For any division in points x0, x1, . . . , , xm of C,

(5.42)
m∑

i=1
|xi − xi−1| ≤

m∑
i=1
Λ1

(
Cxi ,xi−1

)≤Λ1(C).

Thus, L (C)≤Λ1(C).

Now, we define a mapping f : [0,L (C)]→ C that takes a certain t in the interval [0,L (C)] to

the point on C at a distance t along the curve from one of its ends. We have | f (t)− f (u)| ≤ |t−u|
for 0≤ t, u ≤L (C) and we have, by equation (5.11), that Λ1(C)≤L (C).

Lemma 3. A rectifiable curve is a regular 1-set.

Proof. C is rectificable. This means that L (C)<∞. Let us consider that C has endpoints p and

q. We have L (C)≥ |p− q|. By Lemma 2, we have 0<Λ1(C)<∞. Thus C is a 1-set.

We consider now a point x ∈ Cp,q not coinciding with p or q. It divides C into two parts, Cp,x

and Cx,q. We take another point y ∈ Cx,q and a number r such that |x− y| = r. For r sufficiently

small it is verified that Cx,y ⊂ Br(x) and

(5.43) r = |x− y| ≤L (Cx,y)=Λ1(Cx,y)≤Λ1(Cx,q ∩Br(x)).

By the same rationale,

(5.44) r ≤Λ1(Cp,x ∩Br(x)).

Adding both equations, for small enough r we obtain

(5.45) 2r ≤Λ1(C∩Br(x)).

This yields,

(5.46) D1(C, x)= limr→0
Λ1 (C∪Br(x))

2r
≥ 1.

On the other hand, by Theorem 28,

(5.47) D1(C, x)≤ D
1
(C, x)≤ 1.

D1(C, x) exists and equals 1 for all x ∈ C other than the endpoints. C is thus regular.

Proposition 5. A rectifiable curve C has a tangent at almost all of its points.

Proof. We start this proof establishing that due to Lemma 3, for almost all x ∈ C, D
1
(C, x)= 1.

We parametrize C by arc-length through a function ϕ. Therefore, ϕ : [0,L (C)] → R2 al-

lows to calculate the coordinates of a point of C, ϕ(t), as a function of the distance from the

endpoint ϕ(0). L (C) < ∞ means that ϕ has a bounded variation. But functions of bounded

variation are differentiable almost everywhere. This result can be found e.g. in Hewitt and

Stromberg (1975, Chapter 17). ϕ′(t) exists as a vector for almost all t. Even more, because of the
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parametrization
∣∣ϕ′(t)

∣∣= 1 for such t. At almost all points of ϕ(t) on C there exists a vector~θ that

verifies that limu→t
(
ϕ(u)−ϕ(t)

)
/ (u− t)=~θ.

Considering an arbitrary angle φ> 0, there is a number ε> 0 such that, whenever |u− t| < ε,
ϕ(u) ∈ S(ϕ(t),~θ,φ). C has no double points . Thus, we may find a number r such that ϕ(u) 6∈ Br(ϕ(t))

if |u− t| ≥ ε, so that C∩
(
Br(ϕ(t))\ S(ϕ(t),~θ,φ)

)
is empty. By the definition of tangent to an α-set,

Definition 45, the curve C has a tangent at Br(ϕ(t)). Those points are almost all the points on

C.

We prove now that regular 1-sets are analogous to classical curves and support tangents.

Proposition 6. A regular 1-set X in R2 has a tangent at almost all of its points.

Proof. If X is regular, D
1
(X , x)= 1 at almost all x ∈ X . We keep in mind our new definition of tan-

gent, Definition 45, and specially formula (5.40), establishing that limr→0

(
Λα

(
X ∩

(
Br(x)\ S(x,~θ,φ)

)))
/rα =

0

Let us take C as a rectifiable curve. As given by Proposition 5, for almost all x ∈ C there exists
~θ such that for ϕ> 0,

(5.48) lim
r→0

Λ1

(
(X ∩C)∩

(
Br(x)\ S(x,~θ,φ)

))
r

≤ lim
r→0

Λ1

(
C∩

(
Br(x)\ S(x,~θ,φ)

))
r

= 0.

By Theorem 28, for almost all x ∈ C,

(5.49) lim
r→0

Λ1

(
(X \ C)∩

(
Br(x)\ S(x,~θ,φ)

))
r

≤ lim
r→0

Λ1 ((X \ C)∩Br(x))
r

= 0

Adding inequalities (5.48) and (5.49), for almost all x ∈ C and for almost all x ∈ X ∩C.

(5.50) lim
r→0

Λ1

(
X ∩

(
Br(x)\ S(x,~θ,φ)

))
r

= 0.

A countable collection of C covers almost all X . Thus, we have finished our proof.

On the other side, irregular 1-sets do not generally allow for tangents.

Proposition 7. At almost all points of an irregular 1-set no tangets exist.

The proof applying to this Proposition is too complex to be covered here. It can be followed in

Besicovitch (1938, theorem 9, page 331 and discusions before)1.

1Available online the Springer site of Mathematische Annalen.
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5.7.5 Tangents α-sets

We consider now α-sets on the plane with α non-integer. First of all, we need to realize that by

Theorem 29 we are considering exclusively irregular sets. On the plane, we consider two cases:

(i) 0<α< 1 (ii) 1<α< 2.

For the first case, Falconer (2004) reports examples of α-sets supporting or not supporting

tangents. Particularly, he underlines that a set with 0<α< 1 contained in a smooth curve will

automatically satisfy equation (5.40). It supports thus a tangent in most of its points.

For the second case an interesting–and general–result is available.

Proposition 8. If X is an α-set in R2 with 1<α< 2, then at almost all points of F, no tangent

exists.

Proof. Taken from Falconer (2004), which refers to and takes the proof from Marstrand (1954)2.

As in previous results, e.g. the proof of Proposition 6, we need to keep in mind the form of our

definition of tangent. The notation in this proof is slightly more complex than in the previous

results although the same in nature.

We take a number r0 > 0 and create a set,

(5.51) E = {
y ∈ X :Λα(X ∩Br(y))< 2(2r)α ∀r < r0

}
.

We intend now to make an estimation of the amount of E that lies in Br(x)∩S(x,~θ,φ) with

x ∈ X and 0<φ<π/2.

We consider a r < r0/20, the intersection A i of an annulus Birφ\B(i−1)rφ and the double sector

S(x,~θ,φ),

(5.52) A i =
(
Birφ \ B(i−1)rφ

)∩S(x,~θ,φ),

with i = 1,2, . . .. Thus, there is an integer m < 2/φ such that

(5.53) Br(x)∩S(x,~θ,φ)⊂∪m
i=1 A i ∪ {x}.

A i has two separate parts with diameter of at most 10rφ< r0. Applying equation (5.51) to

the parts that contain points of E and summing,

(5.54) Λα

(
E∩Br(x)∩S(x,~θ,φ)

)
≤ (4φ−1)2(20rφ)α.

If r < r0/20 we obtain,

(5.55) (2r)−αΛα

(
E∩Br(x)∩S(x,~θ,φ)

)
≤ 8 ·10αφα−1

2Reference available online in spite of its publication date.
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For almost all x ∈ E, it is verified that D
α

(X \E, x)= 0. We now split X ∩Br(x) into three parts,

to obtain

Λα (X ∩Br(x))=Λα ((X \ E)∩Br(x))+Λα

(
E∩Br(x)∩S(x,~θ,φ)

)
+Λα

(
E∩

(
Br(x)\ S(x,~θ,φ)

))
.(5.56)

Dividing by (2r)α, operating, taking upper limits as r → 0 for almost all x ∈ E

(5.57) D
α

(X , x)≤ 0+8 ·10αφα−1+ limr→0(2r)−αΛα

(
X ∩

(
Br(x)\ S(x,~θ,φ)

))
.

If we consider a small enough φ, neither (5.39) nor (5.40) hold for any~θ. Therefore, no tangent

exists at x. We only need now to generalize the result to the whole set. By Theorem 28, for a

r0 > 0 almost all x ∈ X belongs to E. We have finished our proof.

Therefore, we can state that our nice Apollonial gasket has not tangents even with the

extended concept of tangents of Definition 45.
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CONCLUSIONS

We start underlining a surprising fact. Although a priori it can be considered as a niche thematic,

the limit sets of Kleinian groups can be studied from a broad spectrum of approaches. An extensive

overview of the matter requires, between others, a study from the point of view of the Riemann

Surfaces, Hyperbolic Geometry, Covering Spaces and Group Theory. Although those matters are

an integrating part of the corpus of this Master, the inclusion of all approaches inside of the

frames of a single work is impossible. In the opinion of the author, this extends to the specialized

literature on the topic. Not a single work among the available sources reviewed covers all these

possible approaches exhaustively.

Therefore, we have concentrated in few topics. Firstly we have carried out the study of the

limit set from a topological point of view. In this sense we may summarize the results that were

found out:

(i) The intersection of the Free Regular Set and the Limit Set, Λ is empty. (ii) Let x be a limit

point of a Kleinian Group G. There is a (second) limit point y, not necessary distinct to x, and

a sequence of {gm} of distinct elements of G so that gm(z)→ x converges uniformly on compact

subsets of Ĉ\ {y}. (iii) Λ is G-Invariant. (iv) Λ is nowhere dense in Ĉ. (v) Either Λ(G) is S2 or

its interior is empty. (vi) Λ is closed. (vii) If Λ contains more than two points then it is perfect.

(viii) The G-orbit of any point in Λ(G) is dense in Λ(G). (ix) Λ(G) is the closure of the set of

loxodromic fixed points, and if there are parabolic fixed points, Λ(G) is the closure of the set of

parabolic fixed points as well. (x) If D1,D2 ∈S2 are two open disks with disjoint closures, each

of which meets Λ(G), there exists a loxodromic element in G with a fixed point in D1 and in

D2. (xi) If G0 has finite index in G, then Λ(G0)=Λ(G). (xii) If G0 is normal subgroup of G, then

Λ(G0)=Λ(G). (xiii) Λ is the smallest non-empty G-Invariant subset of Ĉ.

Secondly, we have studied the local properties of the limit set of the Kleinian groups. We have
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striven to determine under what circumstances the limit set can be considered a fractal. It was

found out that Kleinian groups that are neither elementary nor Fuchsian have a limit set that is

not smooth. By smooth we understand that the limit set does not have a tangent at any of its

limit points. Fuchsian groups have a limit let that is Möbius equivalent to a circle to a circle.

Elementary groups have two points as limits. Equivalently, we may reformulate this using the

words of Marden (2007) stating that each component of the limit set which is not a circle or a

point is a fractal set.

The fractal limit sets can be characterized directionally utilizing an extended definition

of tangent adequate for these sets. Some significant results on this alternative approach are

contained in Chapter 5. As a major conclusion, it can be summarized that for sets with a

Hausdorff-Besicovitch dimension larger than one and smaller than two for almost all points of

the limit set no tangents exists–even considering the extended definition of tangent–. Those sets

do not have a preferred directional orientation.

The properties summarized above have allowed us to implement an efficient and simple

code with which we were able to calculate and generate limit sets. This was utilized to gain an

increased comprehension on the formation of limit set: it has allowed us to clarify the results we

were investigating by means of convenient examples. The examples cover the formation of limit

sets illustrating the diversity of topologies that limit sets of Kleinian groups can reach.

Probably, the most interesting future work that can be carried out in order to improve the

understanding of the limit sets of Kleinian groups is the study and characterization of their most

defining property: the Hausdorff-Besicovitch dimension. The Hausdorff-Besikovich dimension

coincides with the Critical exponent see Marden (2007), Nicholls (1989), Bishop and Jones (1997)

and Canary et al. (1994). This analysis requires the extension of this work to the hyperbolic

space where an enhanced comprehension of the convergence can be simply gained. Pitifully, a full

comprehensive study of this notable property and the apparatus necessary for its deployment

exceeds the frames of this document.
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MONTEL’S THEOREM

In this Annex, we make a small digression concerning Montel’s Theorem which was a necessary

part of the proof of Theorem 16 in page 42.

In order to come closer to the topic, we need to introduce some concepts in the form of

definitions. In this sense, we remind the reader that the definitions of Locally Compact Space

and Compact Convergence have been already given on page 26.

Definition 47 (Bounded family). A family, F, of holomorphic functions in the domain D ⊂C is

bounded in a subset A ∈ D if there exists a real number, M > 0, such that | f |A < M for all f ∈ F.

Definition 48 (Locally bounded). A family, F, of holomorphic functions in a region D ⊂ C is

locally bounded in D if for every point z of D there is a neighborhood U inside of D such that F is

bounded in U.

Definition 49 (Normal family). (Remmert, 2013, page 152) A family F of holomorphic functions

is called normal in a region D of C if every sequence of functions in F has a subsequence that

converges compactly in D.

After these definitions, we are in a position to be able to enunciate Montel’s theorem.

Theorem 33. Montel’s Theorem (Remmert, 2013) (Wikipedia, 2016) states:

• A locally bounded family of holomorphic functions defined in an open subset of the complex

numbers is normal.

• F is a family of meromorphic functions in an open set D. If z0 ∈ D is such that F is not

normal at z0, and U ⊂ D is a neighborhood of z0, then
⋃

f ∈F f (U) is dense on the complex

plane.
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APPENDIX A. MONTEL’S THEOREM

• A family of holomorphic functions, in which all members omit the same two values a,b ∈C,

is normal.

The proof of this theorem which exceeds the frames of this work can be found in Remmert

(2013), or in Markushevich and Silverman (2005).
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THE SET OF DISCONTINUITY REVISITED

We introduce in this annex some interesting results regarding the set of discontinuity that do not

properly fit in the dedicated Section 4.4.

An enhanced analysis of the Ω(G) set requires one to delve into new subjects. Concretely, we

will need an intermediary result. This is the so called Ahlfors Finiteness theorem.

This theorem and its proof require several concepts that have not been treated in this

document. This is due to the necessary extension required for a serious treatment of the topics

which is not possible considering the context in which this document has been written.

Those mainly are: Manifolds and their Covering; Riemann Surfaces; and some notions

about the Fundamental Group. These issues have been treated among the different subjects

in this Master of Advanced Mathematics. In any case, we allow ourselves to mention that a

very interesting insight into these thematics can be gained by consulting Perez-Alvarez (2013),

Bujalance-Garcia et al. (2003) and Hatcher (2002). We also mention that we will utilize concepts

like quotient spaces and punctures, which we consider to be part of the previous subjects. An

exception will be the concept of conical point for which we refer readers to Nicholls (1989).

Let us address without further ado the Ahlfors Finiteness theorem.

Theorem 34. If G is a finitely generated Kleinian group, δM(G)=Ω(G)/G is the union of a finite

number of (Riemann) surfaces. Each of them is a closed surface with at most a finite number of

punctures and elliptic conical points.

The proof of this interesting theorem is credited to Ahlfors (1964). More modern proofs of the

theorem exist, like the one due to Marden (2006). As can be inferred from the rationale above, we

do not attempt the proof of this theorem in this document, which is fundamentally oriented to

the Limit Set. 1

1At the moment of editing this work, the author realizes that this theorem has a difficult position in most
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The Ahlfors Finiteness theorem allows addressing the following noteworthy results.

Theorem 35. Suppose G is finitely generated and not elementary, and Ω(G) 6= ;. Then, each

component of Ω(G) is either simply or infinitely connected.

Proof. To make the proof let us assume that Ω(G) is finitely–but not simply–connected, and look

for a contradiction.

In this proof we utilize results appearing in Marden (2006) and Marden (2007). Those results

are a consequence of the Ahlfors’ Finiteness theorem (Th. 34). The utilized result is that Ω(G) is

preserved by an element g of infinite order.

Once origin and pertinence of this result is clarified, we may proceed immediately to carry

out the proof.

Choose a loop σ that separates the boundary components. The sequence of loops {gk(σ)}

converges to the fixed points of g. On one side, the loops gk(σ) separate the boundary components

of Ω(G). On the other, they converge to fixed points. Thus, the fixed points are limits of infinitely

many boundary components ofΩ(G). We have reached a contradiction, which proves the statement

in question.

Theorem 36. Suppose G is finitely generated and not elementary, and Ω(G) 6= ;. Ω(g) has one,

two or infinitely many components.

Proof. Ω(G) 6= ; implies that there is at least one component in the discontinuity set.

Suppose there are finitely many components, Ω1, Ω2, . . . , Ωm. We arbitrarily set that the

component in which ∞ is located is the Ωm. By the same arguments utilized in the proof of the

Theorem 35, there is a subgroup G0 of finite index that preserves each of them.

Let now take a loxodromic transformation g ∈G0. g preserves Ω1 and Ω2. If p and q are the

fixed points of g we may find arcs σ1 ∈Ω1 and σ2 ∈Ω1 such that
(∪∞

k=∞gk(σ1)
)∪ (∪∞

k=1 gk(σ2)
)∪

{p, q} is a closed loop that passes through p and q, and that only traverses the limit set at this

point. This curve divides Ω into two sets, U and U ′, where ∞ is located in U. Let us consider

another loxodromic element, h, of G0 that will have an attracting point inside of U. The arc, τ,

between ∞ and h(∞) must be in Ωm because of the conservation of the components. But the arc

∪∞
k=1hk(∞) connects ∞ to the fixed point of h ∈Ω1 ∪Ω2: a contradiction.

Example 8. We may check the previous theorem observing Figures 4.4, 5.7 and 5.6. The limit set

of Figure 4.4 has one component, and resembles Cantor’s Set. Figure 5.7 shows a Quasi-Fuchsian

limit set with two components. The Apolonian Gasket of Figure 5.6 divides Ω into infinitely many

components.

common references. Beardon (1983), maybe because of the orientation of his book, does not mention it. Marden (2007)
formulates it but does not give a proof. Maskit (1988) mention it but does not outline it. Matsuzaki and Taniguchi
1998 certainly provide good frames for this theorem, but devote a significant part of their book, sections 4.1 and 4.2, to
the introduction and the corresponding proof of the theorem.
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We conclude this small digression outlining two theorems that appear in Marden (2007), and

that we do not endeavor to prove.

Theorem 37. If each of two components Ω1,Ω2 ∈Ω(G) is preserved by G then each one is simply

connected and Ω(G)=Ω1 ∪Ω2.

Theorem 38. If one component of Ω of Ω(G) is preserved by G, all the others are simply connected.

Those two last results are of significant importance and interest for the study of Quasi-

Fuchsian groups.

We may also try to interpret some of our examples with them.

Figure 5.7 shows a limit set forming a Jordan curve dividing Ω(G) into two components

Ω1,Ω2. Theorem 37 implies that if a group G is such that G(Ω1)=Ω1 and G(Ω2)=Ω2, those are

the unique simply connected components.

The application of theorem 38 to the Apollonian Gasket of Figure 5.6 is of greater interest. In

the case that one of the circles, free of limit points, could be conserved (hypothetically), all the

other infinite circles that form the reticle of the Gasket would be also simply connected.
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PYTHON CODE GENERATED FOR THE CALCULATION OF SCHOTTKY

GROUP TRANSFORMATIONS. CIRCLE’S METHOD

This annex contains and describes the numerical code utilized for the generation of Example 2.

Explanation of the Structure of the Code

The code is written in the computer language Python (Rossum, 1995) utilizing the numerical

module Numpy (Walt et al., 2011) for the computationally demanding parts. The results obtained

are plotted utilizing Matplotlib library (Hunter, 2007), that allows for polygraphic quality output

while keeping high simplicity for the programming.

The code is based on the fact that the Möbius transformation of a circle is indeed another

circle.

The main structure of the code is as follows:

1. The circles utilized to calculate the generators of the group are given in the form of

coordinates of the centers and radius.

2. The code calculates the generators of each transformation based on the circle’s pairing

algorithm as explained in example 2.

3. These circles and the generators are provided to the function that will create the transfor-

mations.

4. The transformations will be applied utilizing the following infrastructure:

a) A routine that calculates the transformation: mobius_on_circle.
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b) The circulo class, which contains the description of the circle to which the transforma-

tion with be applied.

c) A collection of circles in the form of the circulos class. The circulos class also contains

the methods to manipulate the circles. Namely, to make a transformation and to store

the transformations in a collection.

5. The transformations and collection of circles are carried out and stored in terms of level. By

levels we understand the amount of letters that the words of the transformations contain.

6. The results are plotted utilizing matplotlib library.

The different sections of the code contain comments allowing an easy inspection of the

different components program. The different sections are mostly self-explanatory.

Python code

1 # ! / usr / bin / python

2

3 import numpy as np

4 import matplotl ib . pyplot as p l t

5 import matplotl ib .cm as cm

6

7 c lass c i r c u l o :

8

9 ### This c lass contains the center and radius of the c i r c l e and performs

10 ### a Moebius trasnformation on i t

11 def __ in i t__ ( se l f , centro , radio ) :

12 s e l f . centro=centro

13 s e l f . radio=radio

14

15 def rad ( s e l f ) :

16 return s e l f . radio

17

18 def cen ( s e l f ) :

19 return s e l f . centro

20

21 #### Moebius transformation fo l lowing Indra ’ s Pearls , Mumford et al . ( see

re f s )

22 def mobius_on_circle ( se l f , matrix ) :

23 s e l f . aux=matrix [ 1 , 1 ] / matrix [1 ,0]+ s e l f . centro
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24 s e l f . z= s e l f . centro−s e l f . radio * s e l f . radio / s e l f . aux . conj ( )

25 s e l f . centro_new =( matrix [0 ,0 ]* s e l f . z+matrix [ 0 , 1 ] ) / ( matrix [1 ,0 ]*
s e l f . z+matrix [ 1 , 1 ] )

26 s e l f . rr= s e l f . radio+0 j

27 s e l f . aux2= s e l f . centro_new−(matrix [ 0 , 0 ] * ( s e l f . centro+ s e l f . rr )+

matrix [ 0 , 1 ] ) / ( matrix [ 1 , 0 ] * ( s e l f . centro+ s e l f . rr )+matrix [ 1 , 1 ] )

28 s e l f . radio_new=np . abs ( s e l f . aux2 )

29 return ( s e l f . centro_new , s e l f . radio_new )

30

31 c lass c i r c u l o s :

32 #### This c las i s a c o l l e c t i o n of c i r c l e s

33 #### Also when the c i r c l e s and the transformations

34 #### are given , i t ca l cu lates the l eve l s requested

35 #### and c o l l e c t e d the trasnformed c i r c l e s

36

37 #### Constructor i n i t i a l i z e the c lass

38

39 def __ in i t__ ( se l f , c i r , trans_i , tags_i ) :

40 s e l f . c i r _ i n i = c i r

41 s e l f . trans_ini=trans_i

42 s e l f . tags_ ini=tags_i

43 s e l f . trans =[ ]

44 s e l f . tags = [ ]

45 s e l f . c i r c s = [ ]

46 s e l f . tags . append ( s e l f . tags_ in i )

47 s e l f . trans . append ( s e l f . t rans_ini )

48 s e l f . c i r c s . append ( s e l f . c i r _ i n i )

49

50 #### Calculates one l eve l o f transformations

51 def calc_trans ( se l f , l eve l ) :

52 s e l f . trans_lev =[ ]

53 s e l f . tags_lev =[ ]

54 f o r j in range ( len ( s e l f . t rans_ini ) ) :

55 f o r i in range ( len ( s e l f . trans [ level −1]) ) :

56 i f s e l f . tags [ level −1][ i ] ! = j :

57 s e l f . trans_lev . append ( s e l f . trans [ level −1][ i ]* s e l f .

t rans_ini [ j ] )

58 s e l f . tags_lev . append ( s e l f . tags_ in i [ j ] )
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59 s e l f . trans . append ( s e l f . trans_lev )

60 s e l f . tags . append ( s e l f . tags_lev )

61

62 #### Calculates a l l l eve l s o f transformations

63 def ca l c_ leve l s_ trans ( se l f , lev ) :

64 f o r i in range ( lev ) :

65 s e l f . calc_trans ( i +1)

66

67 #### Calculates the c i r c l e s and append them

68 def c a l c _ c i r c l e s _ l e v e l ( se l f , lev ) :

69 s e l f . c i r _ l o c = [ ]

70 f o r j in range ( len ( s e l f . c i r _ i n i ) ) :

71 f o r i in range ( len ( s e l f . trans [ lev ] ) ) :

72 i f s e l f . tags [ lev ] [ i ] ! = j :

73 ( s e l f . cen_t , s e l f . r_t )= s e l f . c i r _ i n i [ j ] .

mobius_on_circle ( s e l f . trans [ lev ] [ i ] )

74 s e l f . c i r _ l o c . append ( c i r c u l o ( s e l f . cen_t , s e l f . r_t ) )

75

76 s e l f . c i r c s . append ( s e l f . c i r _ l o c )

77

78 #### Calculates a l l l eve l s o f c i r c l e s

79 def c a l c _ l e v e l s _ c i r s ( se l f , lev ) :

80 f o r i in range ( lev ) :

81 s e l f . c a l c _ c i r c l e s _ l e v e l ( i +1)

82

83 #### Number of l eve l s to be calculated

84 l eve l s =8

85

86 #### Auxil iary variables for centers and radius

87 k=1

88 x=np . sqrt ( 2 )

89 u=x

90 v=1

91 y=v

92

93 ### I n i t i a l c i r c l e s given

94 Ca=c i r c u l o ( 0+k*u / v*1 j , k / v )

95 CA=c i r c u l o ( 0−k*u / v*1 j , k / v )
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96 Cb=c i r c u l o ( x / y+0j , 1 / y )

97 CB=c i r c u l o (−x / y−0j , 1 / y )

98

99 ### One transformation and i t s inverse

100 a1=np . matrix ( [ [1+0 j ,−Ca. cen ( ) ] , [0+0 j ,1+0 j ] ] )

101 a2=np . matrix ( [ [0+0 j ,Ca . rad ( ) *CA. rad ( ) +0 j ] , [1+0 j ,0+0 j ] ] )

102 a3=np . matrix ( [ [1+0 j ,CA. cen ( ) ] , [0+0 j ,1+0 j ] ] )

103

104 aa=a3*a2*a1

105 AA=aa**(−1)

106

107 ### Second transformation

108 b1=np . matrix ( [ [1+0 j ,−Cb. cen ( ) ] , [0+0 j ,1+0 j ] ] )

109 b2=np . matrix ( [ [0+0 j ,Cb . rad ( ) *CB. rad ( ) +0 j ] , [1+0 j ,0+0 j ] ] )

110 b21=np . matrix ( [ [0+0 j ,Cb . rad ( ) +0 j ] , [1+0 j ,0+0 j ] ] )

111 b22=np . matrix ([[−1+0 j ,0+0 j ] , [0+0 j ,1+0 j ] ] )

112 b23=np . matrix ( [ [CB. rad ( ) +0j ,0+0 j ] , [0+0 j ,1+0 j ] ] )

113 b3=np . matrix ( [ [1+0 j ,CB. cen ( ) ] , [0+0 j ,1+0 j ] ] )

114

115 bb=b3*b2*b1

116 bb=b3*b23*b22*b21*b1

117 BB=bb**(−1)

118

119 #### i n i t i a l i z e the c lass

120 #### Circles , transformations , tags

121 #### tags are an index that each c i r c l e keeps to ovoid to

122 #### apply to i t s e l f i t s own transformation

123 #### aa transform Ca into CA . . .

124 c i r c s =c i r c u l o s ( [ Ca, Cb, CA, CB] , [ aa , bb ,AA,BB] , [ 2 , 3 , 0 , 1 ] )

125

126 #### Calculation of transformations and c i r c l e s

127 c i r c s . ca l c_ leve l s_ trans ( l eve l s )

128 c i r c s . c a l c _ l e v e l s _ c i r s ( l eve l s )

129

130

131 #### Plott ing the output

132 co lores =[ ’ b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m ’ , ’ y ’ , ’ f i r e b r i c k ’ , ’ gold ’ , ’ pink ’ , ’ orange ’

, ’ tan ’ ]
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133

134 c i r c l e 1 =[ ]

135 f o r l in range ( len ( c i r c s . c i r c s ) ) :

136 f o r n in range ( len ( c i r c s . c i r c s [ l ] ) ) :

137 c i r c l e 1 . append ( p l t . Circ le ( ( c i r c s . c i r c s [ l ] [ n ] . cen ( ) . real , c i r c s .

c i r c s [ l ] [ n ] . cen ( ) . imag ) , c i r c s . c i r c s [ l ] [ n ] . rad ( ) , co l o r=co lores [ l ] ) )

138

139 f i g = p l t . gc f ( )

140

141 ax = pl t . gca ( )

142 pl t . axis ( ’ o f f ’ )

143

144 ax . set_xlim (( −3 ,3) )

145 ax . set_ylim (( −3 ,3) )

146 f o r n in range ( len ( c i r c l e 1 ) ) :

147 f i g . gca ( ) . add_artist ( c i r c l e 1 [n ] )

148

149 f i g . savef ig ( ’ p l o t c i r c l e s . pdf ’ , format= ’ pdf ’ )
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PYTHON/CYTHON CODE DEVELOPED TO CALCULATE

TRANSFORMATIONS OF A SET OF POINTS

This annex contains the Python (Rossum, 1995) and Cython (Behnel et al., 2011) codes generated

for the creation of Example 3.

The structure of a mixed Cython/Python code is simple. The Cython module is compiled

utilizing a setup file in order to generate a shared object. The shared object is then called by

the pure Python module. The code generated gains very significantly in efficiency, allowing for

higher performance and increased control of the memory. At the same time, the productivity of

the code development, typical of Python language, is almost kept. A much deeper insight into the

procedure of writing a Cython code can be gained by consulting Behnel (2017).

We may now proceed to explain the structure of our particular development.

1. The Python routine has the following structure:

a) The base circles are given in form of coordinates of the centers and radii. This way of

proceeding is inherited from our previous program. It is kept exclusively in order to

ensure that we are dealing with Kleinian groups, fulfilling all necessary properties.

The code calculates the generators of the transformation based on the circle’s pairing

algorithm as explained in Example 3.

b) A set of four transformations of the origin, the single base-point we utilize, is obtained

and provided to the Cython module. Those constitute the initial seed of the program.

The cancellation of a transformation and its inverse, that may provide spurious limit

points, is avoided by keeping track of the inverse of the last transformation applied.

The Cython module will calculate all the transforms of the set of points given.

c) Once the whole set of the images of the base-point are available, they are plotted.
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2. The Cython routine is a collection of independent functions. Those are:

a) A function, transform, to carry out the Möbius transformation of a single point.

b) A function, apply_trans_comp, that performs the Möbius transformation of the whole

set of given points utilizing the function transform.

c) A function, obtain_points, that orchestrates the successive application of the ap-

ply_trans_comp function in order to obtain all possible transforms considering words

of a certain number of letters.

D.1 Python routine

1

2 # ! / usr / bin / python

3

4 import numpy as np

5 import matplotl ib . pyplot as p l t

6 import matplotl ib .cm as cm

7 import generador_fast

8 import time

9

10 # center and radius

11 # of i n i t i a l c i r c l e s

12 # for the generation of transformation

13

14 #c1 : i , srqt ( 3 ) /2

15 #c1 ’ : −i , srqt ( 3 ) /2

16 #c2 : 1 /2 , sqrt ( 2 ) /2

17 #c2 ’ : −1/2 , sqrt ( 2 ) /2

18

19 # routine for the Moebius transformation

20 # given point ans transform output resul t

21

22 def transform ( point , matrix ) :

23 return ( matrix [0 ,0 ]* point+matrix [ 0 , 1 ] ) / ( matrix [1 ,0 ]* point+matrix [ 1 , 1 ] )

24

25 # track time of execution

26 start_time = time . time ( )

27
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28 # ca lcu late generators o f transformation

29

30 a1=np . matrix ( [ [1+0 j ,0−1 j ] , [0+0 j ,1+0 j ] ] )

31 a2=np . matrix ( [ [0+0 j , np . sqrt ( 3 ) /2*np . sqrt ( 3 ) /2+0 j ] , [1+0 j ,0+0 j ] ] )

32 a21=np . matrix ( [ [0+0 j , np . sqrt ( 3 ) /2+0 j ] , [1+0 j ,0+0 j ] ] )

33 a22=np . matrix ([[−1+0 j ,0+0 j ] , [0+0 j ,1+0 j ] ] )

34 a23=np . matrix ( [ [ np . sqrt ( 3 ) /2+0 j ,0+0 j ] , [0+0 j ,1+0 j ] ] )

35 a3=np . matrix ( [ [1+0 j ,0−1 j ] , [0+0 j ,1+0 j ] ] )

36

37 b1=np . matrix ( [ [1+0 j ,−1/2+0 j ] , [0+0 j ,1+0 j ] ] )

38 b2=np . matrix ( [ [0+0 j , np . sqrt ( 2 ) /2*np . sqrt ( 2 ) /2+0 j ] , [1+0 j ,0+0 j ] ] )

39 b21=np . matrix ( [ [0+0 j , np . sqrt ( 2 ) /2+0 j ] , [1+0 j ,0+0 j ] ] )

40 b22=np . matrix ([[−1+0 j ,0+0 j ] , [0+0 j ,1+0 j ] ] )

41 b23=np . matrix ( [ [ np . sqrt ( 2 ) /2+0 j ,0+0 j ] , [0+0 j ,1+0 j ] ] )

42 b3=np . matrix ( [ [1+0 j ,−1/2+0 j ] , [0+0 j ,1+0 j ] ] )

43

44 # generators are

45

46 a=a3*a2*a1

47 #a=a3*a23*a22*a21*a1

48 b=b3*b2*b1

49 #b=b3*b23*b22*b21*b1

50

51

52 # Calculation of transformations inverses

53

54 A=a**(−1)

55 B=b**(−1)

56

57 # array of transformations ( generators )

58

59 trans=np . complex128 (np . array ( [ a ,A, b ,B] ) )

60

61 # array of logs of generators

62 # to avoid applying an inverse to a

63 # transformation ( canceling )

64 # wrong inverse

65
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66 logs=np . int32 (np . array ( [ 1 , 0 , 3 , 2 ] ) )

67

68 # number of l eve l s ( s i ze o f words )

69

70 l eve l s=np . int32 (10)

71

72 P=np . complex (0 ,0 )

73

74 # i n i t i a l transforms

75

76 p0=transform (P, a )

77 p1=transform (P, A)

78 p2=transform (P, b )

79 p3=transform (P, B)

80

81 # i n i t i a l set o f points and logs

82 points=np . complex128 (np . array ( [ p0 , p1 , p2 , p3 ] ) )

83 points_log=np . int32 (np . array ( [ 1 , 0 , 3 , 2 ] ) )

84

85 # obtain points so lut ions of the transformations

86

87 ( points , points_log ) = generador_fast . obtain_points ( points , points_log ,

trans , logs , l eve l s )

88

89 # ca lcu lat ion i s f in ished

90 # print s tarts

91 print "CALCULATION ENDED"

92 f i g = p l t . gc f ( )

93

94 # generate canvas for the plot ing

95 ax = pl t . gca ( )

96 pl t . axis ( ’ o f f ’ )

97

98 #ax . set_xlim (( −1.00 ,1 .00) )

99 #ax . set_ylim (( −1.00 ,1 .00) )

100

101 # non deformation inc canvas

102 pl t . gca ( ) . set_aspect ( ’ equal ’ , adjustable= ’ box ’ )
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103

104 # separate real and imaginary parts

105 X = [ x . real f or x in points ]

106 Y = [ x . imag for x in points ]

107

108 # plot and save

109 pl t . scat ter (X,Y, s =0.01 , co lor= ’ black ’ )

110 f i g . savef ig ( ’ p lotpo ints . pdf ’ , format= ’ pdf ’ )

111

112 # execution time

113 print ( "−−− %s seconds −−−" % ( time . time ( ) − start_time ) )

D.2 Cython module

1 # ! / usr / bin / python

2

3 import numpy as np

4 import time

5

6 cimport numpy as np

7

8 # cython module

9 # containing

10 # several functions

11

12 # routine for the Moebius transformation

13 # given point ans transform output resul t

14

15 cdef np . complex128_t transform (np . complex128_t point , np . ndarray [np .

complex128_t , ndim=2] matrix ) :

16 return ( matrix [0 ,0 ]* point+matrix [ 0 , 1 ] ) / ( matrix [1 ,0 ]* point+matrix [ 1 , 1 ] )

17

18 # routine that apply transformations to the points given

19 # track i s kept in " log " array of inverse of las t transformation

20 # to avoid appliying canceling transformations

21

22 # given a set o f points and logs output the transfomred points

23 # and their logs

24
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25 cdef apply_trans_comp (np . ndarray [np . complex128_t , ndim=1] points , np .

ndarray [np . int32_t , ndim=1] points_log , np . ndarray [np . complex128_t ,

ndim=3] trans , np . ndarray [np . int32_t , ndim=1] logs ) :

26

27 l o ca l_po ints =(1+0 j ) *np . zeros ( points . s i ze * ( logs . size −1) , dtype=np .

complex128 )

28 l o c a l _ l o g=np . zeros ( points . s i ze * ( logs . size −1) , dtype=np . int32 )

29

30 cdef int count = 0

31

32 f o r i in range ( points . s i ze ) :

33 f o r j in range ( logs . s i ze ) :

34 i f points_log [ i ] != j :

35 l o ca l_po ints [ count ]= transform ( points [ i ] , trans [ j ] )

36 l o c a l _ l o g [ count ]= logs [ j ]

37 count=count+1

38

39 return ( loca l_points , l o c a l _ l o g )

40

41

42 # given a set o f i n i t i a l points and logs ( i n i t i a l seed )

43 # given i n t i a l transfomations and their logs

44 # and given number of l eve l s

45 # outputs the set o f points a f ter

46 # number of l eve l s i t e ra t i ons

47

48 def obtain_points (np . ndarray [np . complex128_t , ndim=1] points , np . ndarray [

np . int32_t , ndim=1] points_log , np . ndarray [np . complex128_t , ndim=3]

trans , np . ndarray [np . int32_t , ndim=1] logs , np . int32_t l eve l s ) :

49

50 f o r i in range ( l eve l s ) :

51 l o ca l_po ints =(1+0 j ) *np . zeros (0 , dtype=np . complex128 )

52 l o c a l _ l o g=np . zeros (0 , dtype=np . int32 )

53

54 ( loca l_points , l o c a l _ l o g )=apply_trans_comp ( points , points_log , trans ,

logs )

55

56 points=np . array ( loca l_points , copy=True )
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57 points_log=np . array ( loca l_ log , copy=True )

58

59 return ( points , points_log )

D.3 Setup file

1 from d i s t u t i l s . core import setup

2 from Cython . Build import cythonize

3

4 setup (

5 ext_modules = cythonize ( " generador_fast . pyx " )

6 )
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