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ABSTRACT

This thesis deals with the statistical modelling of in-game player behaviour.
More generally, it lies within the framework of building a scientific body of
knowledge around human affairs.

Video games allow for the display of many interesting traits concerning
human behaviour within a controlled setup. They are nowadays played
online, and each action of every player recorded, generating incredibly
rich and detailed datasets. Therefore, in-game player activity is an ideal
playground to put hypothesis concerning human behaviour at large to test.

Part of this work is concerned with the social character of games and
how this affects decisions players are constantly making as they play. Bor-
rowing methodology and tools from statistical physics, a formal theoretical
approach is proposed as a framework to qualitatively understand the pro-
cesses at play and provide insights into how player and choice interaction
affect the average outcome of decision-making processes.

A more significant part of this work follows a data-driven mindset,
covering several statistical and machine learning algorithms applied to
the predictive modelling of different quantities of interest in the game.
Player engagement and purchasing behaviour are the main focus, to which
player conversion (from non-paying user to paying user), player attrition
or churn, and purchase churn (when paying users cease to purchase) are
used as proxies. They are extensively studied at different scales (or levels
of aggregation) in the game. Results at different scales are relevant for
different purposes, and can be used to complement and enhance each
other, as will be discussed. Individual player behavioural predictions for
the phenomena of interest are generated using decision forests, survival
ensembles, and deep learning, and their performance compared. Several
time series models are explored to predict group behaviour. The use of these
predictions in player profiling is also discussed, as is a machine learning
item recommendation system.

The research presented here has immediate practical applications. Un-
derstanding how players behave and why allows studios to design more
engaging games and provides tools to optimise game planning. It opens the
door to personalisation, as games can be developed and planned to cater to
individual player tastes. From a more fundamental and ambitious perspec-
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tive, this work intends to be a small contribution to laying the foundations
of a mathematical understanding of human behaviour and societies.
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RESUMEN

El objeto de esta tesis es la modelacién estadistica del comportamiento de
los jugadores de videojuegos (dentro del juego). De manera mads general,
se inscribe en el marco de la construcciéon de un cuerpo cientifico de
conocimientos sobre la actividad humana.

En los videojuegos se dan muchos rasgos interesantes del comportamien-
to humano dentro de una configuracién controlada. Hoy en dia se juegan
en linea y se registra cada accién de cada jugador, lo que genera conjuntos
de datos increiblemente ricos y detallados. El estudio de la actividad de
los jugadores es, por lo tanto, una buena forma de poner a prueba algunas
hipétesis sobre el comportamiento humano en general.

Parte de este trabajo analiza como el caracter social de muchos juegos
afecta las decisiones que los jugadores toman constantemente mientras
juegan. Tomando prestada metodologia y herramientas de la fisica estadis-
tica, se propone un enfoque tedrico formal como marco para comprender
cualitativamente los procesos que intervenienen. Es posible asi proporcionar
informacién sobre como las interacciones, tanto entre jugadores como entre
distinas decisiones, afecta al resultado colectivo de estos procesos de toma
de decisiones.

Una parte mads significativa de este trabajo se centra en el andlisis y
modelacién a partir de datos. Se analiza la validez de distintos algoritmos
estadisticos y de aprendizaje automatico para predecir variables de interés
en el juego. El nivel de actividad e implicacién del jugador, asi como las
transacciones econémicas que realiza dentro del juego, son el centro de este
estudio. Este se lleva a cabo a través de la modelacién de la conversién (que
ocurre cuando usuarios deciden gastar dinero -real o virtual- dentro del jue-
go), el abandono del juego y el cese en el gasto. Estas cantidades se analizan
en todo detalle a diferentes escalas (o niveles de agregacién) en el juego. Los
resultados a diferentes escalas son relevantes para diferentes propésitos y
se complemetan y enriquecen entre si. Las predicciones de comportamiento
de los jugadores individuales para los fenémenos de interés se generan
utilizando bosques de decisién, colectividades de modelos de supervivencia
y aprendizaje profundo. Para predecir comportaminetos a nivel de grupo
se emplean distintos modelos de series temporales. También se analiza el
uso de estas predicciones en la creacién de perfiles de jugadores, al igual
que un sistema de recomendacién de objetos.
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Los resultados aqui descritos tienen una aplicacién practica directa, ya
que para los estudios de videojuegos es de gran utilidad comprender el
comportamiento y las motivaciones de sus jugadores. Esto les permite
disefar juegos mads atractivos y optimizar la planificacién de los juegos ya
comercializados. Sefiala ademads el camino hacia una mayor personalizacién
del contenido ofrecido, ya que distintos elementos del mismo juego se
pueden adaptar para satisfacer los gustos individuales de los jugadores.
Desde una perspectiva mds fundamental y ambiciosa, este trabajo preten-
de ser una pequeria contribucién al estudio ciéntifico y matematico del
comportamiento y las sociedades humanas.

Las principales contribuciones originales de esta tesis se resumen a
continuacién. En la lista de publicaciones 6 se pueden consultar los detalles
de dénde y cuando ha aparecido el contenido con anterioridad.

Contenido publicado previamente como primera autora:

1. En el capitulo 4 se describe un marco en el que modelos de espacio de
estados se usan para predecir conversion, abandono y cese de gasto
en el juego, y que permite cuantificar el efecto, tanto de elementos de
la planificacion del juego (eventos dentro del juego, promociones. ..),
como de otros externos (festivos, lanzamiento de nuevos juegos de la
competencia. .. ) [73].

2. El capitulo 7 hace uso de predicciones, para cada jugador, en dias,
horas de juego, progresién en el juego y gasto total hasta el abandono
para elaborar perfiles de jugadores y comprender mejor elementos de
la dindmica del juego [72].

3. El capitulo 9 es un estudio, mediante el uso de modelos y herra-
mientas de fisica estadistica, del comportamiento colectivo respecto a
procesos de toma de decisiones interdependientes en videojuegos con
interacciones sociales [74].

Contenido publicado previamente como segunda o tercera autora:

1. En el capitulo 6 (seccién 6.1) se predice el potencial de los jugadores
para convertirse en usuarios de pago, asi como los dias, el tiempo de
juego y el nivel en que la conversién tendré lugar, utilizando modelos
de supervivencia [133].

2. En los capitulos 5 (seccion 5.3) y 6 (seccién 6.4) se analiza el impacto
de diferentes perfiles de abandono y cese de gasto en el desempefio
de modelos de clasificacién binaria y modelos de supervivencia para
la prediccién de abandono y cese de gasto [132].



3. El capitulo 6 (seccién 6.5) evalda el uso de perceptrones multicapa
y de redes neuronales convolucionales para predecir el gasto total
esperado de cada jugador [51].

Trabajo no publicado con anterioridad al que la autora contribuyd:

1. En el capitulo 8 se describe un sistema de recomendacién de objetos
para videojuegos con una dimensionalidad elevada (gran ntimero de
objetos entre los que elegir). Dicho sistema utiliza una combinacién
de métodos de agrupacién, colectividades de arboles extremadamente
randomizados y filtrado colaborativo. Tan sélo se describe la meto-
dologia, no se presentan resultados concretos, ya que no es posible
publicar con los datos empleados en su desarrollo.

2. En el capitulo 9 seccién 9.5 se presenta el estudio de comportamiento
colectivo en procesos de toma de decisiones interdependientes para el
caso en que las poblaciones son heterogéneas en sus preferencias. Este
trabaj6 no se ha publicado con anterioridad pero si fue presentado en
dos congresos.
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game. Elaboration using data from Aol. The images
have previously appeared in [224]. 119
Kaplan-Meier estimates of the survival probability
as a function of time since first login (a) and game
level (b) for non-PUs (purple), PUs (pink) and VIP
players (green). Elaboration using data from Aol.The
images have previously appeared in [224]. 121
Kaplan—-Meier estimates of the survival probability
for VIP players as a function of time since first login
(a), game level (b) and playtime (c). Elaboration
using data from Aol. 122

Example of a possible conditional inference tree. The
four terminal nodes are shown together with their
corresponding Kaplan-Meier survival estimates for
each group of n players. Elaboration using data
from Aol. The images have previously appeared
in [224]. 123

Validation plots for the conditional inference sur-
vival model lifetime predictions for PUs. Plots show
predicted vs observed values (plot (a)) and mean-
difference plots (plot (b)). Elaboration using data
from Aol. The images have previously appeared
in [224]. 125

Validation plots for the conditional inference sur-
vival model level predictions for PUs. Plots show
predicted vs observed values (plots (a)) and mean-
difference plot (plot (b)). Elaboration using data
from Aol. The images have previously appeared
in [224]. 126
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Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Validation plots for the conditional inference sur-
vival model playtime predictions for PUs. Plots
show predicted vs observed values (plot (a)) and
mean-difference plot (plot (b)). Elaboration using
data from Aol. The images have previously appeared
in [224]. 127

Kaplan—-Meier estimates of the survival probabil-
ity as a function of time since first login (a), game
level (b) and cumulative playtime (c) for VIP play-
ers. Curves are stratified by churner type: normal,
zombie, resurrected and purchase resurrected players.
Shaded areas represent 95% confidence intervals.
Elaboration using data from Aol. The images have
previously appeared in [132]. 128

Prediction error curves for PU churn as a function
of lifetime. The different lines represent model runs
excluding zombies (red), resurrected (green) or pur-
chase resurrected (purple) players (plot (a)) and com-
binations thereof (plot (b)) from the training sample.
Combinations represented in plot (b) are: (i) resur-
rected and purchase resurrected (pink), (ii) zombies
and purchase resurrected (brown), (iii) zombies and
resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Elaboration using data
from Aol. The images have previously appeared
in[132]. 131

Prediction error curves for PU churn as a function
of level. The different lines represent model runs
excluding zombies (red), resurrected (green) or pur-
chase resurrected (purple) players (plot (a)) and com-
binations thereof (plot (b)) from the training sample.
Combinations represented in plot (b) are: (i) resur-
rected and purchase resurrected (pink), (ii) zombies
and purchase resurrected (brown), (iii) zombies and
resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Elaboration using data
from Aol. The images have previously appeared
in[132]. 132
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Prediction error curves for PU churn as a function of
playtime. The different lines represent model runs
excluding zombies (red), resurrected (green) or pur-
chase resurrected (purple) players (plot (a)) and com-
binations thereof (plot (b)) from the training sample.
Combinations represented in plot (b) are: (i) resur-
rected and purchase resurrected (pink), (ii) zombies
and purchase resurrected (brown), (iii) zombies and
resurrected (green), and zombies, resurrected and
purchase resurrected (blue). Own elaboration using
data from Aol. The images have previously appeared
in [132]. 133

Plot showing schematically how churn and becom-
ing PU can be considered competing risks. Ten play-
ers are tracked for 30 days of lifetime. Players may
become PUs (circles) or churn (triangles) at some
point. It is also possible that none of this events
is observed within the observation period (crosses).
They could however happen later on, so these are in
fact illustrating the censored character of the dataset.
The image has previously appeared in [133]. 137
Probability of being a PU as a function of lifetime (a),
in-game progression (b) and accumulated playtime
(c) for all players except one-time comers (as given
by the inverse of the Kaplan — Meier estimates). The
shaded area represents the 95% confidence interval.
Elaboration using data from Aol. The images have
previously appeared in [133]. 139

Probability of beeping a PU as a function of life-
time (a), in-game progression (b) and accumulated
playtime (c) for PUs (as given by the inverse of the
Kaplan — Meier estimates). The shaded area repre-
sents the 95% confidence interval. Own elaboration
using data from Aol. The images have previously
appeared in [133]. 140
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Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Validation plots for the conversion predictions of the
Cox regression. Plots show predicted vs observed
values for conversion times in lifetime (plot (a)),
game level (plot (b)) and playtime (plot (c)). Pre-
dictions correspond to the median survival values.
Elaboration using data from Aol. The images have
previously appeared in [133]. 141

Validation plots for the conversion predictions of
the random survival forest. Plots show predicted
vs observed values for conversion times in lifetime
(plot (a)), game level (plot (b)) and playtime (plot
(c)). Predictions correspond to the median survival
values. Elaboration using data from Aol. The images
have previously appeared in [133]. 142
Validation plots for the conversion predictions of the
conditional inference survival model. Plots show
predicted vs observed values for conversion times in
lifetime (plot (a)), game level (plot (b)) and playtime
(plot (c)). Predictions correspond to the median sur-
vival values. Elaboration using data from Aol. The
images have previously appeared in [133]. 143
Log-log scatter plots of predicted vs observed val-
ues for conversion times in lifetime (plot (a)), game
level (plots (b)) and playtime (plot (c)) using a Cox
regression. Predictions correspond to the median
survival values. The logarithm transformation pro-
vides a close-up look at the spread of the data points
(cf. Figure 6.4). Elaboration using data from Aol. The
images have previously appeared in [133]. 144
Log-log scatter plots of predicted vs observed values
for conversion times in lifetime (plot (a)), game level
(plot (b)) and playtime (plot (c)) using a random sur-
vival forest. Predictions correspond to the median
survival values. The logarithm transformation pro-
vides a close-up look at the spread of the data points
(cf. Figure 6.5). Elaboration using data from Aol. The
images have previously appeared in [133]. 146
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Log-log scatter plots of predicted vs observed values
for conversion times in lifetime (plot (a)), game level
(plot (b)) and playtime (plot (c)) using a conditional
inference survival model. Predictions correspond to
the median survival values. The logarithm trans-
formation provides a close-up look at the spread of
the data points (cf. Figure 6.6). Elaboration using
data from Aol. The images have previously appeared
in[133]. 147

Kaplan-Meier estimates of purchase survival prob-
ability as a function of time since first login (a),
game level (b) and accumulated playtime (c) for VIP
players. Shaded areas represent 95% confidence in-
tervals. Elaboration using data from Aol. 152
Kaplan-Meier estimates of purchase survival prob-
ability as a function of time since first login (a),
game level (b) and cumulative playtime (c) VIP play-
ers. Curves are stratified by churner type: normal
(blue), zombie (red), resurrected (green) and purchase
resurrected (purple) players. Shaded areas represent
95% confidence intervals. Elaboration using data
from Aol. The images have previously appeared
in [132]. 154

Prediction error curves for Aol purchase churn as
a function of lifetime. The different lines repre-
sent model runs excluding zombies (red), resur-
rected (green) or purchase resurrected (purple) play-
ers (plot (a)) and combinations thereof (plot (b))
from the training sample. Combinations represented
in plot (b) are: (i) resurrected and purchase res-
urrected (pink), (ii) zombies and purchase resur-
rected (brown), (iii) zombies and resurrected (green),
and zombies, resurrected and purchase resurrected
(blue). Elaboration using data from Aol. The images
have previously appeared in [132]. 156
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Figure 7.1

Prediction error curves purchase churn as a function
of game level. The different lines represent model
runs excluding zombies (red), resurrected (green)
or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the train-
ing sample. Combinations represented in plot (b)
are: (i) resurrected and purchase resurrected (pink),
(ii) zombies and purchase resurrected (brown), (iii)
zombies and resurrected (green), and zombies, resur-
rected and purchase resurrected (blue). Elaboration
using data from Aol. The images have previously
appeared in [132]. 157

Prediction error curves purchase churn as a function
of playtime. The different lines represent model
runs excluding zombies (red), resurrected (green)
or purchase resurrected (purple) players (plot (a))
and combinations thereof (plot (b)) from the train-
ing sample. Combinations represented in plot (b)
are: (i) resurrected and purchase resurrected (pink),
(ii) zombies and purchase resurrected (brown), (iii)
zombies and resurrected (green), and zombies, resur-
rected and purchase resurrected (blue). Elaboration
using data from Aol. The images have previously
appeared in [132]. 158

Purchasing patterns per player for a sample paying
users for the training period and the evaluation pe-
riod (test part). Elaboration using data from Aol
The image has previously appeared in [51]. 162
Box plot of the average purchase value per number
of repeated purchases per all paying users. Elabora-
tion using data from Aol. The image has previously
appeared in [51]. 163

Structure of the convolutional neural network used
to model LTV. The image has previously appeared
in [51]. 164

Schematic representation of the LSTM architecture
used to predict VIP player LTV and classify them
into low, medium or high expected LTV groups. 172
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Schematic representation of the classification fol-
lowed to assign each player and variable (i.e. each
survival curve) to one of the various lifespan groups
(short, medium, long and loyal). 173

Survival curves for VIP players in terms of life-
time (days since first login; (a)), in-game progression
(game level reached; (b)) and accumulated playtime
(hours played; (c)). Colours distinguish the various
lifespan groups (short, medium, long and loyal) for the
corresponding variable. Own elaboration using Aol
predictions. The images have previously appeared
in[72]. 174

Histograms of the predicted lifetime (days since first
login; (a)), in-game progression (game level reached;
(b)), playtime (hours played; (c)) and LTV (outlay
in local currency; (d)) for VIP players. Players are
classified as described in the text, with groups shown
in different colours. All players except those labelled
as loyal (for whom the median value of the survival
curve does not exist) are shown. Own elaboration
using Aol predictions. The images have previously
appeared in [72]. 175

Playtime (in hours) versus lifetime (in days) predic-
tions (median survival values) for all VIP players
non-loyal in both variables. Colour represents group-
ing in terms of predicted LTV (top) and game level
(bottom). The area of the circles is proportional in
both cases to the expected LTV. Own elaboration
using Aol predictions. The top image has previously
appeared in [72]. 177

Game progression (in level) versus playtime (in hours)
predictions (median survival values) for all VIP play-
ers non loyal in both variables. Colour represents
grouping in terms of predicted LTV (top) and life-
time (bottom). The area of the circles is proportional
to the expected LTV. Own elaboration using Aol pre-
dictions. The bottom image has previously appeared

in[72]. 179
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Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Game progression (in level) versus playtime (in hours)
predictions (median survival values) for all VIP play-
ers non loyal in all variables modelled using survival
models (lifetime, level and playtime). Colour repre-
sents grouping in terms of predicted lifetime. The
area of the circles is proportional to the expected life-
time. Own elaboration using Aol predictions. 180
Normalised game level versus playtime predictions
for all Aol VIP players non-loyal in level or lifetime.
Positive (negative) values therefore correspond to
players with predictions above (below) the average.
The normalised predicted lifetime is shown as a
colour scale, with larger than the mean values de-
picted in red shades, and smaller ones in blue. The
area of the circles is proportional to the expected
LTV. 182

Zoom into two areas of figure 7.8. Normalised game
level versus playtime predictions for all VIP players
non-loyal in level or lifetime, and with both predic-
tions below average (top), or above average (bot-
tom). The normalised predicted lifetime is shown as
a colour scale, and the area of the circles is propor-
tional to the expected LTV. Own elaboration using
Aol predictions. 184

Game progression (in level) versus LTV (in local
currency) predictions for all VIP players non-loyal
in level or lifetime. Colour represents grouping in
terms of predicted playtime. The area of the cir-
cles is proportional to the expected lifetime. Own
elaboration using Aol predictions. The image has
previously appeared in [72]. 185

Histograms of predicted lifetime (days since first
login (a)), playtime (hours played; (b)) and LTV
(outlay in local currency; (c)) for VIP players loyal
with respect to level and non-loyal in terms of play-
time. Colours represent different groups for the
corresponding variable. Own elaboration using Aol
predictions. The images have previously appeared
in [72]. 187
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Playtime (in hours) versus lifetime (in days) pre-
dicted values for all VIP players non-loyal in both
variables and loyal in terms of level. Colour repre-
sents grouping in terms of expected LTV and the
area of the circles is also proportional to LTV. Own
elaboration using Aol predictions. The image has
previously appeared in [72]. 188

Dependence on temperature of the numerically cal-
culated average magnetisation in the strong coupling
regime: [ =1, J; = 0.6 , k = £0.8 (KgT, = 1.62).
Different solutions are plotted for temperatures be-
tween 0.01 and 2 every o0.01 (KgT). Magnetisation is
plotted in light green for s and light blue for t using
asps (x) for saddle point solutions and crosses (+)
for maxima of f. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 213
Dependence on temperature of the numerically cal-
culated average magnetisation for the weak coupling
regime: J; =1, J; = 0.6 , k = £0.15 (KgT, = 0.55,
KpT. = 1.05). Different solutions are plotted for
temperatures between 0.01 and 1.5 every o.01 (KgT).
Magnetisation is plotted in green for s and blue for
t. Dark points are used for stable solutions and
lighter asp (X, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equa-
tions of state. The image has previously appeared

in [71]. 215
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Figure 9.3

Figure 9.4

Figure 9.5

Dependence on inter-coupling of the numerically
calculated average magnetisation for J; = 1, J; = 0.6
, KT = 1.2 (k. = £0.35). Degenerate case (limit-
ing value between both coupling regimes) for |k| =
VJsJt = 0.77. Different solutions are plotted for k
between -1.2 and 1.2 every o0.01. Magnetisation is
plotted in green for s and blue for . Dark points
are used for stable solutions and lighter asp (X, for
saddle points) or cross (+, for maxima) for non sta-
ble solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 216

Dependence on inter-coupling of the numerically
calculated average magnetisation for J; =1, J; = 0.6
, KgT = 0.4 (k. = £0.35). Degenerate case (limit-
ing value between both coupling regimes) for |k| =
VJsJt = 0.77. Different solutions are plotted for k
between -0.9 and 0.9 every o0.01. Magnetisation is
plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (x, for
saddle points) or cross (+, for maxima) for non sta-
ble solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 218

Dependence on the intra-coupling J; of the numeri-
cally calculated average magnetisation at low tem-
perature (Js = 1, k = £0.3, KgT = 1.5, J{ = 1.32).
Degenerate case (limiting value between both cou-
pling regimes) for J; = 7}—2 = 0.09. Different solutions

are plotted for J; between 0 and 3 every 0.01. Mag-
netisation is plotted in green for s and blue for ¢.
Dark points are used for stable solutions and lighter
asps (x) for saddle points, non stable solutions. Own
elaboration using numerically computed solutions
to the equations of state. The image has previously

appeared in [71]. 220
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Dependence on the intra-coupling J; of the numeri-
cally calculated average magnetisation at low tem-
perature (Js = 1, k = 0.3, KgT = 0.4, J; = 0.55).
Degenerate case (limiting value between both cou-
pling regimes) for J; = 7}—? = 0.09. Different so-
lutions are plotted for J; between o and 1.5 every
0.01. Magnetisation is plotted in green for s and blue
for t. Dark points are used for stable solutions and
lighter asp (X, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equa-
tions of state. The image has previously appeared
in[71]. 221

Plots of the function [(KgT) = JsJ¢ (1 - tanhz(ﬁ))

(Js + ]t)ﬁ + 1 against temperature (KgT). Js =1,
J+ = 0.6 and different values of inter-coupling are
considered. In (a) k = 0.8 and ! has one root. In (b)
k = 0.15 and ! has two roots. In (c) k = 0.05 and !
has three roots. Own elaboration. The image has
previously appeared in [71]. 225

Dependence on temperature of the numerically cal-
culated average magnetisation for J; = 1, [; = 0.6
& = +0.8 (KgT, = 1.28). Different solutions are
plotted for temperatures between 0.01 and 1.8 every
o.01 (KpT). Magnetisation is plotted in green for s
and blue for t. Dark points are used for stable so-
lutions and lighter asps (x) for saddle point, non
stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 228

XXXV



XXXVi

LIST OF FIGURES

Figure 9.9

Figure 9.10

Figure 9.11

Dependence on temperature of the numerically cal-
culated average magnetisation for J; = 1, J; = 0.6
k = +0.15 (KT, = 1.03, KgT;, = 0.50 and KgT} =
0.13). Different solutions are plotted for tempera-
tures between o0.01 and 1.5 every o.01 (KgT). Mag-
netisation is plotted in green for s and blue for
t. Dark points are used for stable solutions and
lighter asp (X, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equa-
tions of state. The image has previously appeared
in [71]. 230

Dependence on the inter-coupling k of the numeri-
cally calculated average magnetisation at high tem-
perature for J; = 1, J; = 0.6 and KgT = 1.2 (k, =
+0.58). Different solutions are plotted for k between
-2 and 2 every 0.01. Magnetisation is plotted in green
for s and blue for t. Dark points are used for stable
solutions and lighter asps (x) for saddle point, non
stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image has previously appeared in [71]. 231
Dependence on the inter-coupling k of the numeri-
cally calculated average magnetisation at low tem-
perature [ = 1, J; = 0.6 and KgT = 04 (k. =
£0.19). Different solutions are plotted for k between
-0.8 and 0.8 every 0.01. Magnetisation is plotted in
green for s and blue for t. Dark points are used
for stable solutions and lighter asp (X, for saddle
points) or cross (+, for maxima) for non stable solu-
tions. Own elaboration using numerically computed
solutions to the equations of state. The image has
previously appeared in [71]. 232
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Dependence on the intra-coupling J; of the numer-
ically calculated average magnetisation for | = 1,
k=03, KgT = 1.5 (Jf = 1.39). Different solutions
are plotted for J; between o and 3 every o.01. Mag-
netisation is plotted in green for s and blue for t.
Dark points are used for stable solutions and lighter
asps (x) for saddle point, non stable solutions. Own
elaboration using numerically computed solutions
to the equations of state. The image has previously
appeared in [71]. 233

Dependence on the intra-coupling J; of the numer-
ically calculated average magnetisation for J; = 1,
k = 03 and KgT = 04 (J; = 1.22). Different so-
lutions are plotted for J; between o and 1.5 every
0.01. Magnetisation is plotted in green for s and blue
for t. Dark points are used for stable solutions and
lighter asp (X, for saddle points) or cross (+, for
maxima) for non stable solutions. Own elaboration
using numerically computed solutions to the equa-
tions of state. The image has previously appeared
in[71]. 234

Ji — B! cross-section for the non-local (a) and local
(b) models for J; =1 and k = 0.3. Own elaboration
using numerically computed solutions to the equa-
tions of state. The images have previously appeared
in [71, 74]. 240

k — B! cross-section for the non-local (a) and local
(b) models for J; =1 and [; = 0.6. Own elaboration
using numerically computed solutions to the equa-
tions of state. The images have previously appeared
in [71,74]. 242

J+ — k cross-section for the non-local (a) and local (b)
models at high temperature for J; = 1 and 7! =
1.5. Own elaboration using numerically computed
solutions to the equations of state. The images have
previously appeared in [71, 74]. 244
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Figure 9.17

Figure 9.18

Figure 9.19

Figure 9.20

Ji — k cross-section for the non-local (a) and local (b)
models at low temperature for J; = 1 and 7! =
0.4. Own elaboration using numerically computed
solutions to the equations of state. The images have
previously appeared in [71, 74]. 245

Phase diagram /iy, — pyw Vs jw section for low uncou-
pled constant surplus S,. Dark green is used for
the region where i, > 0.5 (high demand), and dark
yellow for those where py, < 0.5 (low demand), with
the segment dividing both where it is exactly 0.5
plotted as a dashed-dotted line. The blue region cor-
responds to a region where two possible solutions
exist, one of each. A phase transition between both
regimes takes place at the dashed lines dy,; and dy, .
For all regions y;, = 0. Own elaboration. 253
Phase diagram hy — py Vs ju section for high un-
coupled constant surplus S, for positive interdepen-
dence K = 0.5. Dark green is used for the region
where i, > 0.5 (high demand), and dark yellow for
those where i, < 0.5 (low demand), with the seg-
ment dividing both where it is exactly 0.5 plotted as
a dashed-dotted line. The blue region corresponds
to a region where two possible solutions exist, one
of each. A phase transition between both regimes
takes place at the dashed lines &, and &, . For all
regions y; = 1. Own elaboration. 255

Phase diagram hy, — pw Vs ju section for high uncou-
pled constant surplus S, for negative interdepen-
dence K = —0.5. Dark green is used for the region
where i, > 0.5 (high demand), and dark yellow for
those where py, < 0.5 (low demand), with the seg-
ment dividing both where it is exactly o.5 plotted as
a dashed-dotted line. The blue region corresponds
to a region where two possible solutions exist, one
of each. A phase transition between both regimes
takes place at the dashed lines é;,, and &, . For all
regions y; = 1. Own elaboration. 256
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Numerically computed phase diagram hy — py Vs
jw section for intermediate uncoupled constant sur-
plus S, and positive interdependence K = 2.5. Dark
green asps (x) are used to represent yi;, > 0.5 (high
demand), and dark yellow stars (*) for u, < 0.5 (low
demand), and blue crosses (+) to two solutions, one
of each. For all regions y, = pyw. Own elabora-
tion. 258

Numerically computed phase diagram /iy, — py VS ju
section for intermediate uncoupled constant surplus
S, and negative interdependence K = —2.5. Dark
green asps (x) are used to represent i, > 0.5 (high
demand), and dark yellow stars (*) for y,, < 0.5 (low
demand), and blue crosses (+) to two solutions, one
of each. Behaviour of y, is not contemplated in this
plot. Own elaboration. 259

Phase diagram hy, — py Vs ju section: multiple so-
lution region for different values of K for interme-
diate uncoupled constant surplus. Own elabora-
tion. 260

Phase diagram H, — P, vs J, section for positive
interdependence K = 2.5. Dark green is used for
the region where y;, = 1 (full demand, correspond-
ing to large uncoupled constant surplus), and dark
yellow for those where p;, = 0 (no demand, corre-
sponding to low uncoupled constant surplus). The
white region corresponds to the intermediate un-
coupled constant surplus region, where p, = pyy.
Behaviour of py is not contemplated in this plot.
Own elaboration. 261

Schematic representation on how conversion and
churn can (and should) be studied at different scales
in the game. 268

Schematic representation on how the study of con-
version and churn at one scale can be used to com-
plement and enrich the others. 269
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Figure A.1

Figure A.2

Dependence on temperature of the numerically cal-
culated average magnetization’s (s,t) for different
values of the inter-coupling k for the non-local model.
Js = 1 and J; = 0.6 for all plots. (a) k = 0.05, (b)
k=01 (c) k=02 (d) k =05, (e) k = 06, (f
k=10.75(g) k=08, (h) k=09 and (i) k = 1. In all
cases, different solutions are plotted for temperatures
between 0.01 and 2 every o.05 (KgT). Magnetization
are plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (X, for
saddle points) or cross (+, for maxima) for non sta-
ble solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image had already appeared in [71]. 274
Dependence on temperature of the numerically cal-
culated average magnetization (s, t) for different val-
ues of the inter-coupling J; for the non-local model.
Js = 1 and k = £0.3 for all plots. (a) J; = 0.05, (b)
Jt =01, (c) Jt = 02, (d) Jt = 05, (e) ]t = 0.6, (f)
J; =08,(g) Jr=09,(h) Jy=12and (i) J; =15. In
all cases, different solutions are plotted for tempera-
tures between 0.01 and 2 every 0.05 (KgT). Magneti-
zation are plotted in green for s and blue for t. Dark
points are used for stable solutions and lighter asp
(%, for saddle points) or cross (+, for maxima) for
non stable solutions. Own elaboration using numer-
ically computed solutions to the equations of state.
The image had already appeared in [71]. 275
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Dependence on inter-coupling of the numerically
calculated average magnetization (s, t) for different
values of the temperature for the non-local model.
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solutions are plotted for k between -1.2 and 1.2 every
0.05 (KgT). Magnetization are plotted in green for
s and blue for ¢t. Dark points are used for stable
solutions and lighter asp (X, for saddle points) or
cross (4, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions
to the equations of state. The image had already
appeared in [71]. 276

Dependence on inter-coupling of the numerically
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model. J; =1 and KgT = 1.5 for all plots. (a) J; =
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) Jr =14, (g) Jt = 1.6, (h) J = 2and (i) J; = 3. In
all cases, different solutions are plotted for k between
-1.5 and 1.5 every 0.05 (KgT). Magnetization are
plotted in green for s and blue for f. Dark points
are used for stable solutions and lighter asp (X,
for saddle points) or cross (+, for maxima) for non
stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The
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Dependence on inter-coupling of the numerically
calculated average magnetization (s, t) for different
values of the J; at low temperature for the non-local
model. J; =1 and KgT = 0.4 for all plots. (a) J; =
0.05,(b) Jt =0.2,(c) Js =0.3,(d) J: = 0.5, (e) J: = 0.7,
) Jr =09, (g) Jy =11, (h) ] = 2and (i) J; = 3. In
all cases, different solutions are plotted for k between
-1.5 and 1.5 every 0.05 (KgT). Magnetization are
plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (X,
for saddle points) or cross (+, for maxima) for non
stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image had already appeared in [71]. 278
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Dependence on intra-coupling J; of the numerically
calculated average magnetization (s, t) for different
values of the inter-coupling k at high temperatures
for the non-local model. J; = 1 and KgT = 1.5 for
all plots. (a) k = 0.05, (b) k = 0.1, (c) k = 0.2, (d)
k=103 () k=04 (f) k =06, (g k = 08, (h)
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elaboration using numerically computed solutions
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Dependence on temperature of the numerically cal-
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values of the inter-coupling k for the local model.
Js = 1and J; = 0.6 for all plots. (a) k = £0.05, (b)
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(KpT). Magnetisations are plotted in green for s and
blue for t. Dark points are used for stable solutions
and lighter asp (X, for saddle points) or cross (+,
for maxima) for non stable solutions. Own elabo-
ration using numerically computed solutions to the
equations of state. The image had already appeared
in [71]. 283
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plots. (a) Jt = 0.05, (b) J; = 0.2, (¢) J+ = 0.3, (d)
Jt =05, (e) 1 =07, (f) ]t =09, (g) ]t = 1.1, (h)
J: = 2 and (i) J; = 4. In all cases, different solutions
are plotted for inter-coupling k between -1.5 and 1.5
every 0.05. Magnetisations are plotted in green for
s and blue for ¢t. Dark points are used for stable
solutions and lighter asp (x, for saddle points) or
cross (4, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions
to the equations of state. The image had already
appeared in [71]. 287

Dependence on intra-coupling J; of the numerically
calculated average magnetisations (s, f) for different
values of the temperature KgT for the local model.
Js = 1 and k = 0.15 for all plots. (a) KpT = 1.71,
(b) KgT = 1.11, (c) KgT = 091, (d) KgT = 0.61,
(e) KgT = 041, (f) KgT = 0.31, (g) KgT = 0.21,
(h) KgT = 0.11 and (i) KgT = 0.01. In all cases,
different solutions are plotted for intra-coupling J;
between 0.01 and 3 every 0.05. Magnetisations are
plotted in green for s and blue for t. Dark points
are used for stable solutions and lighter asp (X,
for saddle points) or cross (+, for maxima) for non
stable solutions. Own elaboration using numerically
computed solutions to the equations of state. The
image had already appeared in [71]. 288



Figure A.15

Figure A.16

Dependence on intra-coupling J; of the numerically
calculated average magnetisations (s, t) for different
values of the inter-coupling k at high temperatures
for the local model. J; = 1 and KgT = 1.5 for all
plots. (a) k = 0.05, (b) k = 0.1, (c) k=02, (d) k = 0.3,
(e k=05 (k=07 (k=09 k=11
and (i) k = 1.5. In all cases, different solutions
are plotted for intra-coupling [; between o0.01 and
5 every 0.05. Magnetisations are plotted in green
for s and blue for t. Dark points are used for stable
solutions and lighter asp (X, for saddle points) or
cross (4, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions
to the equations of state. The image had already
appeared in [71]. 289

Dependence on intra-coupling J; of the numerically
calculated average magnetisations (s, t) for different
values of the inter-coupling k at low temperatures for
the local model. Js = 1 and KgT = 0.4 for all plots.
(@ k =005 (b) k =01, (c) k =02, (d) k =03,
() k =035 (f) k =04, (g k =05, (h) k = 0.6
and (i) k = 0.8. In all cases, different solutions
are plotted for intra-coupling J; between o0.01 and
5 every 0.05. Magnetisations are plotted in green
for s and blue for ¢. Dark points are used for stable
solutions and lighter asp (X, for saddle points) or
cross (4, for maxima) for non stable solutions. Own
elaboration using numerically computed solutions
to the equations of state. The image had already
appeared in [71]. 290

LIST OF TABLES

xlvii



xlviii

LIST OF TABLES

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Summary of the models selected for each time series.
The start date is the first date from which all his-
toric data available is used for the model parameter
estimation. The regualr and sesonal ARIMA poly-
nomials are listed for the ARIMA model, and the
type of trend, the seasonality, and whether a cycle
term was included for the unobserved components
model. 102

ARIMA estimates for a selection of parameters for
the different series. Parameter signs and values are
an indication of the type and strength (respectively)
of the effect the modelled event is estimated to have
had. For the new users series (log-transformed) they
can be understood as elasticities, for the other time
series, additive effects to the transition probabilities.
A - indicates the covariate was not found to have a
significant effect on that time series. 103

Local level estimates for a selection of parameters for
the different series. Parameter signs and values are
an indication of the type and strength (respectively)
of the effect the modelled event is estimated to have
had. For the new users series (log-transformed) they
can be understood as elasticities, for the other time
series, additive effects to the transition probabilities.
A - indicates the covariate was not found to have a
significant effect on that time series. 104
Monthly forecast MAE: mean and standard devi-
ation (SD) for the ARIMA and local level models.
Note new users measures number of users, while
the rest probabilities. 108

Monthly forecast RMSE: mean and standard devi-
ation (SD) for the ARIMA and local level models.
Note new users measures number of users, while
the rest probabilities. 108



Table 5.1

Table 6.1

Table 6.2
Table 6.3

Table 6.4

Table 6.5
Table 6.6
Table 6.7

LIST OF TABLES

Area under the curve (AUC) for binary model and
the integrated Brier score (IBS) for survival model
(in terms of lifetime, level and cumulative playtime)
for the different situations with regard to the train-
ing sample: including all users (none) vs. excluding
zombie, resurrected or purchase resurrected players
(or combinations of them). The best results for each
model and variable are highlighted in bold. 130
Root mean square logarithmic error (RMSLE) for
time to conversion predictions of all survival models
and variables considered. 145

False negatives for all survival models and variables
considered for PU detection. 145

False positives for all survival models and variables
considered for PU detection. 145

Area under the curve (AUC) for binary model and
the integrated Brier score (IBS) for survival model
(in terms of lifetime, level and cumulative playtime)
for the different situations with regard to the train-
ing sample: including all users (none) vs. excluding
zombie, resurrected or purchase resurrected players
(or combinations of them). The best results for each
model and variable are highlighted in bold. 155
Error measures for the LTV training 166

Error measures for the LTV prediction 166
Prediction error compared for all PUs vs top spenders
only 167

xlix



NOTATION

FREQUENTLY USED ACRONYMS

Al
ANN
Aol
AUC
CDF
CF
CNN
DAU
DL
DMLP
DNN
ERT
IBS
IID
IWA
IWP
LSTM
LTV
ML
non — PU
PDF
PU
RFIM
RNN
RSF

Artificial intelligence

Artificial neural network

Age of Ishtaria

Area under the curve
Cumulative distribution function
Collaborative filtering
Convolutional neural network
Daily active users

Deep learning

Deep multilayer perceptron
Deep neural network

Extremely randomized trees
Integrated Brier score

Identically independently distributed
Idiosyncratic willingness to adopt
Idiosyncratic willingness to pay
Long short-term memory
Lifetime value

Machine learning

Non paying user

Probability distribution function
paying user

Random Field Ising Model
Recurrent neural network

Random Survival Forest



NOTATION

FREQUENTLY USED SYMBOLS

F

f
H

h{ or

Ja

Free energy
Free energy density
Hamiltonian

H}  Opinion field or IWA in choice a

Social coupling strength in choice a

kor K Choice coupling

Si b
wi, Uj
Z

Ha

Spin/choice variables that can take values -1 or 1
Spin/choice variables that can take values o or 1
Partition function

Fraction of adopters in choice a

PHYSICAL CONSTANTS

Kp

Boltzmann’s constant, Kz = 1.380649] K1

li






INTRODUCTION

If you can’t give me poetry, can’t you give me poetical
science?
— Ada Lovelace

This thesis deals with player activity in video games. The context is that
of understanding human behaviour and social dynamics with a scientific
approach, in what is sometimes referred to as sociophysics. Player behaviour
is indeed human behaviour, and a particularly useful and interesting ex-
ample to study, as will be discussed. Besides, the sort of analysis presented
here have immediate practical applications: the statistical modelling results
that will be described can be used to develop more engaging games, in the
interest of both studios and players.

The content of this thesis can be broadly divided into two categories.
Most of its chapters dwell on analysing and predicting player behaviour
quantitatively. That is, within a data driven mindset, the results of applying
different statistical and machine learning (ML) models to video game datasets
are described, and their possible uses discussed in detail.

The last part of this thesis however, has a fundamentally different ap-
proach. Instead of data, simplified models of reality and the processes at
play are the starting point. The tools of statistical mechanics are then put
to use, with the goal of qualitatively (rather than quantitatively) under-
standing the mechanisms giving rise to interesting collective properties. It
focuses on the role of player and choice interactions in decision making
processes, and could therefore fit into what can be labelled statistical physics
of choice or opinion dynamics.

Statistical mechanics is not only a theory of matter, but also a framework
and a set of tools that can be used to study the aggregate characteristics
of systems made up of many smaller constituents. It is particularly useful
to study properties emerging through interaction. After it was developed
and successfully used to understand the microscopic origins of the thermo-
dynamic theory, and to bring further insights into the behaviour of gases,
liquids and solids, it has found applications in diverse foreign fields, ranging
from biophysics to neuroscience. This is now a field of research on its own,
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the study of complex systems. It provides too, as will be discussed, a very
useful framework in which to study human groups.

The quest to build a more scientific body of knowledge for the social
sciences -albeit not new- is increasingly popular in the literature, and
has gained a lot of momentum in the last couple of decades, with the
surge of increasingly rich datasets and computational capacity. This has
enabled the development, on the one hand, of ever more sophisticated
and effective ML algorithms to extract the relevant information from the
available data; and on the other, the possibility to run complex simulations
in an attempt to understand the essential characteristics giving rise to the
observed properties.

This chapter briefly introduces the general themes running through this
work. In section 1.1 the case for a more physics like body of knowledge for
the social sciences is made, and its history and state of the art succinctly
presented. The specific dataset that will be used repeatedly throughout
this thesis presented in section 1.2. This introductory chapter finishes with
an outline of the thesis content, highlighting which parts are original
contributions, in section 1.3.

1.1 STATISTICAL MODELLING OF HUMAN BEHAVIOUR

This work intends to make the case for, and take another step towards,
what can be denominated as physics of society or socioeconomic physics, in
particular in regards to human behavioural science.

From an epistemological point of view, this is mainly a matter of method-
ology and approach, being tantamount to using the scientific method. This
entails building a formalised body of knowledge about reality, and most
critically, its empirical nature, in that any theory developed should be able
to make predictions that can to be confronted with the observed reality, in
order to either verify or falsify its hypotheses.

The scientific method is the backbone of all scientific disciplines, including
many approaches (particularly quantitative) within the social sciences. The
use of the word physics does by no mean intend to discredit these, or claim
any exclusive ownership over the methodology. It rather refers to the more
or less direct application of models and tools from statistical mechanics and
condensed matter physics to understand human systems.

The key lies in the paradigmatic revolution underwent by physics from a
deterministic and mechanistic view to an statistical mechanical one during the
first half of the 20" century. Uncertainty has a central place in statistical
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mechanical theories, and the tools and methods developed by physicists to
study matter within this approach are specifically designed to deal with
systems about which there is incomplete knowledge.

After succeeding in providing first principle explanations of the laws of
thermodynamics for idealised systems, the statistical mechanical framework
was then used to further delve into the nature of matter. Effective models
for different phenomena of interest were built, in an attempt to understand
non-ideal systems and explain their properties. The mathematical tools
available were refined, polished and expanded, as the theoretical under-
standing underpinning them grew. The study of phase transitions and
critical phenomena became a subject of its own. Applications and interrela-
tions with other theoretical disciplines were found, and are being explored
to this day, ranging from information theory, game theory, and nonlinear
dynamics and chaos, to graph theory and geometry and topology.

In parallel, the development and widespread use of computers, the contin-
ued increase in cheap computing power, and the consequent improvement
of algorithms (in particular of Monte Carlo methods), made available a
different set of tools to study the same type of problems: computer simu-
lations. Hypotheses in the model’s definitions could be relaxed, and their
properties still studied methodically and precisely, even for systems that
had previously been intractable.

It was soon obvious that the tools and methodologies developed could
be used to study problems not pertaining matter. By the beginning of this
century, the study of complex systems was a well established discipline,
outreaching non physical fields such as graph theory, behavioural and
evolutionary biology, neuroscience, genetics, and, in precisely what concerns
this work, social sciences and human behaviour.

In short, statistical physics therefore provides the tools that allow for
a mathematical characterisation and exploration of human systems, with
properties that can then be rigorously deducted, and the level of abstraction
necessary to build a consistent body of knowledge around these systems.
It provides a way of building theoretical models of human behaviour, from
something resembling first principles (or basic assumptions on how the
system under study operates). As with all physical models of reality, these
will involve hypotheses, idealisations and simplifications depending on the
intended use of the model. As with all physical theories of reality, their
validity will lie ultimately in how accurately they are able to describe and
predict observations of the phenomenon modelled.
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The analysis of the available observations regarding human and social
behaviour is therefore the other critical part to this approach. Carrying out
actual experiments to put the hypotheses of social dynamics models to test
is normally very difficult or outright impossible, both due to practical via-
bility issues and ethical concerns. The study of collected data consequently
plays the role of the experimental counterpart of the statistical mechanical
theoretical models in sociophysics. Note that building models using data
has been a traditional approach in the quantitative social sciences.

This area of research has also undergone an explosive growth, both
in the literature and its practical applications. The digital transformation
human life has undergone is responsible for the production of enormous
amounts of data pertaining virtually all aspects of the human experience.
The computer revolution already described, not only provides the means to
store, process and analyse this data, it also promotes the appearance of
new and increasingly rich datasets to study, as smaller and more powerful
devices acquire a role in an increasing number of human activities. From
our training progress, to with whom, how often and in what language and
register we communicate, to how we choose to present ourselves (or not) in
personal and professional networks, to how we go about our (online) dating
lives, our shopping lists, or our mobility patterns, digital datasets contain a
wealth of information about human behaviour that can be unlocked with
the correct tools.

Statistical and machine learning, and their brighter cousin artificial in-
telligence (Al), constitute arguably the field that has experienced a more
drastic growth during the 218t century, both in terms of research produced,
and its impact in everyday life applications. They provide ways to uncover
patterns, trends and correlations in the datasets, beyond the descriptive
analysis and hypothesis testing afforded by classical statistics. As in the
case of the statistical mechanical tools, ML has also been used with a lot
of success in fields unrelated to human behaviour and organisation. From
image recognition and neuroscience, to weather prediction, and even the-
oretical physics, ML is being of extraordinary help in solving problems
formerly inaccessible through classical numerical methods, even with the
most powerful computers available.

Data science can be defined as the quest to extract knowledge from the
data, be that through the use of frequentist or bayesian statistics, or of
statistical machine learning algorithms. It can be used in a utilitarian and
functional manner, to describe, predict or classify for particular datasets in
practical setups. It can also contribute to conceptually better understand
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basic general properties of the systems under study, which should match
the basic assumptions for the theoretical models described above. In this
sense, it can be rightfully considered the empirical branch of sociophysics when
applied to human related datasets.

The borders between the theoretical and empirical arms of any discipline
are typically rather diffuse, as they share the end goal of describing the
observed reality as accurately as possible, and should feedback into each
other. Good empirical science makes use of all the theoretical knowledge
available. Good theoretical science looks for models having the latest ex-
perimental results on mind. This is also the case with the formal and data
driven approaches to modelling human behaviour that have been described.
Data models can not only get inspired by statistical mechanical methods
-such as the use of mean field theory, for example-, some allow for or
require assumptions about the underlying dynamics of the system under
study. Theoretical models should try to reproduce meaningful correlations
discovered through data science, and help shed light on the causation lying
at their origin. In other words, data science uncovers what is happening,
while the statistical mechanical formal approach is more interested in the
why.

The idea is to find interesting properties in the data, to then build models
of reality that will recreate some of the characteristics observed, to then
check their predictions against real data again. Then go back from data
to models, modifying the initial hypotheses to make their predictions
increasingly close to reality. The mathematical characterisation of the system
gives the formalised body of knowledge, while the data driven approach
the empirical nature, that are the pillars of the scientific method.

In fact, the close links between machine learning, information theory
and statistical mechanics have been clear for decades. Statistical physics
can be used to theoretically analyse the performance of machine learning
algorithms. As has been described above, ML is already being used to solve
problems in theoretical physics, including statistical physics, such as the
automatic detection of phases of matter. A paradigmatic example can be
found in neural networks (NNs). Statistical physics provides very apt tools
for the formal study of artificial neural networks (ANNs). These can in turn be
used to solve ML problems, and are able to learn very non linear relations
in datasets. Particularly so when considering many layers, referred to as
deep learning (DL), which has been critical to the success of ML methods
in areas such as natural language processing or computer vision (among
many others). Not only can ANNSs be studied using statistical mechanical
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tools, Boltzmann machines (a type of stochastic recurrent neural network)
for example, are a direct application to ML of a Sherrington-Kirkpatrick
model (a stochastic Ising model first formulated to describe spin glasses).

Without leaving the realm of statistical physics, the combined data science-
statistical mechanical approach proposed can be illustrated using black
body as an analogy to any particular human behavioural process. Thermal
radiation was first described by Wien’s distribution law for short wave-
lengths (large frequencies) and by Rayleigh-Jeans law for long wavelengths
(small frequencies). Although they both involve certain classical physics
and thermodynamic principles in their deduction, they can be rightfully
said to be empirical laws, in that they were found in an attempt to describe
experimental results. They both failed to be universal enough as to work
for all the spectrum, but provided accurate predictions for a large range of
frequencies. These would be equivalent to some data science based results,
which could be using some assumption on the governing dynamics of the
system, and which would be producing relatively accurate predictions at
least under certain conditions. The black body problem was finally solved
by Planck’s law in 1900, which was derived heuristically by assuming the
oscillations were quantified, in what can be considered the kick-off of both
statistical mechanics and quantum physics. This would be equivalent to
finding which key mechanism(s) in the theoretical modelling is giving rise
to the data driven results obtained.

Of course, the talk here about first principles in relation to human be-
haviour, does not intend to convey that someone’s actions can be predicted
exactly, or that people inexorably follow some rules, as is the case of thermal
radiation in the example given above. Humans are not atoms or photons.
What is argued here, is that it is sometimes useful to approach the study
of their behaviour as if, in some sense, they behaved as such. Specially in
what concerns aggregated or averaged properties, many of the complicated
details are irrelevant to some processes. As in the ideal gas, where the shape
of its molecules might be irrelevant, and the velocity at which each one is
moving impossible to determine. Their temperature will still be related to
their average speed, and the temperature to the pressure, volume and the
number of molecules, following the same relation for all gases.

The black body example intends only to illustrate the methodology fol-
lowed. This includes idealised models of a real phenomenon (the theoretical
black body is a a perfect absorber and emitter and is in perfect thermody-
namic equilibrium). Experimental efforts in order to observe data in real
systems close enough to the theoretical assumptions (experiments measur-
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ing thermal radiation), and in finding equations that could reproduce the
results (leading to Wien’s and Rayleigh-Jeans laws before the phenomenon
was correctly understood), are also key. Finally, theoretical efforts in arriving
at this empirical equations from the physical knowledge readily available,
with some additional hypotheses, closes the loop (in this example, Planck’s
law).

The study of problems concerning human behaviour using the scientific
method will involve far cruder idealisations (such as humans as rational
agents making choices to maximise some abstraction). The experimental
efforts in this case can correspond to actual experiments (as carried out
with small groups in certain behavioural science labs), or more frequently
the careful curation and analysis of data related to the problem under study
(for example, measures of the actual choices humans are making). Statistical
or machine learning models can in some sense play the role of the empirical
laws. Ideally, there will be constant feedback loops between the data-driven
and conceptual approaches which would refine the understanding of the
phenomenon under study, even if it remains imperfect.

All this will be applied in this work in the context of video games, with
the data-driven results for a particular title (Age of Ishtaria, described in sec-
tion 1.2) used to illustrate the quantitative approach. Video games present
a particularly good example to study for three reasons. First, most video
games are nowadays played online. Every action every player makes is
recorded, generating extremely rich high quality datasets that constitute an
ideal playground to analyse human behaviour from a data driven point of
view. Second, games can in many aspects mimic life, and they definitely en-
gage different human features concerning skills, psyche, thinking processes
and decision making. In this sense, they can also be used to shed light on
general human behavioural problems, and to study human traits of interest
such as strategic thinking, association, competition or confrontation. Last
but not least, understanding how players behave and why, can be used to
develop better games, which is in the interest of both video game studios
and users.

Section 1.1.1 gives a brief historical perspective of scientific approaches
to the understanding of human affairs. Section 1.1.2 gives an overview of
some theoretical approaches to problems of the social sciences, while 1.1.3
gives a similar survey for data driven studies. Note that in some (the best)
cases works comprise (at least partially) both theoretical and data oriented
elements, and thus the assigning to one or the other sections is sometimes
somewhat artificial. In both cases they intend to be illustrative of interesting
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ongoing research, but they are by no means comprehensive or thorough
accounts.

1.1.1  Brief historical perspective

The enterprise of building a scientific body of knowledge concerned with
human matters is everything but new. The purpose of this section is to
illustrate (rather than to give a detailed account) this long lived ongoing
pursuit through some interesting examples, as well as to highlight the
interrelation between the development of social and natural sciences that
existed, and is rarely acknowledged. More comprehensive pictures can be
found in [12, 13, 112], on which what follows is largely based.

Note that, throughout this thesis, the word science is used as synonym of
modern western science, as it emerged from what is sometimes referred to
as the scientific revolution during the European enlightenment. The history
narrated here is thus focused in what happened in the western world. This
does not necessarily mean that a shared approach towards knowledge about
human affairs and the natural world did not exist too in other cultures,
and of course a lot could be learned from analysing these too. These have
regrettably disappeared, or are understudied and accounts on them not
easily accessible.

As when discussing natural sciences, much can be said about a rigorous
approach to the study of human society by the classical Greek. As the
knowledge they gathered was then lost and obscured for many centuries to
come, the starting point of this narrative will be the 17" century and the
beginning of the Age of Enlightenment.

Thomas Hobbes (1588-1679) can be credited for the conceptual origin of
a physics of society. He was the first to talk about something like natural
first principles for the individuals composing society, and attempted to
deduce the best form of government using these in De cive (On the citizen,
1642) and Leviathan (1651). It comes as no surprise that Hobbes had close
links to Francis Bacon (he served as his secretary), and to the circle of
French mechanistic philosophers -included Marin Mersenne (1558-1655) and
Pierre Gassendi (1592-1655), colleagues of Descartes-, or that he travelled to
Florence to meet Galileo.

The data driven approach origin was contemporary to the conceptual one
and can be attributed to one of Hobbes disciples: William Petty (1623-1687).
This founding member of the Royal Society was probably the first to suggest
that the study of the fundamental laws (in a physical Newtonian sense)
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that govern human systems (and which he named political arithmetic) had
necessarily to entail quantitative measures. This led to the first collections
of demographic data (births and deaths). By the end of the 18" century,
it had become very popular to look for trends in these type of datasets,
activity that by then already received the name of statistics. This new field
was however not considered to have any connections to mathematics.

The first mathematical characterisations of human problems also had
to wait until the 18 century, that saw the birth of the theoretical approach
described in this work. Under D’ Alambert’s influence, the French mathe-
matician Marie Jean Antoine Nicolas de Caritat de Condorcet (1743-1794)
started to apply probability theory to voting. He arrived at interesting
results, still relevant today. Condorcet’s jury theorem states that the prob-
ability that the majority votes the correct decision will improve with the
voting group’s size, whenever each of its members are more likely than
not to make the correct choice. In Condorcet’s paradox, he showed that
majority preference becomes intransitive with three or more options. Both
results were collected in his Essai sur l"application de l’analyse a la probabilité
des décisions rendues a la pluralité des voix (Essay on the Application of Analysis
to the Probability of Majority Decisions, 1785). Other known thinkers of the
18th century which showed interest in a scientific approach to the study of
human affairs were Baron de Montesquieu, David Hume, Francois Quesnay
and Adam Smith.

The story became particularly exciting in the 19 century, when data and
maths were put together to analyse human systems, yielding what can be
described as the first physical (or physics like) theories of human behaviour. The
French mathematician and astronomer Pierre-Simon Laplace (1749-1827)
and his pupil Siméon Denis Poisson (1781-1840), had used the Gaussian
curve to fit astronomical measurement errors, in connection to probability
theory. It was then found that it could fit social and demographic data
too, both by Laplace himself, and by the also French mathematician Joseph
Fourier (1768-1830), who was at the time director of the Bureau de Statistique
of the Département de la Seine. The Belgian astronomer Adolphe Quetelet
(1796-1874) was then to develop his social mechanics framework, after visiting
the Royal Observatory, and becoming greatly impressed by Laplace’s work.
It consisted of an statistics based approach to analyse social processes that
had an impact, among others, in Jeremy Bentham, John Stuart Mill or Karl
Marx.

Auguste Comte (1798-1857), considered by many the father of sociology,
was the first to coin the term social physics. He begun by applying his
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epistemological perspective of positivism to mathematics and the natural
sciences (physics, chemistry and biology). He then moved to the social
sciences, and used the social physics label (which was later also used by
Quetelet) for what was after to become known as sociology. His follower
Henry Thomas Buckle (1821-1862), who was a great admirer of Quetelet’s
work, was the first to make the case for a science of history in History of
Civilisation in England, where a large number of regularities in demographic
data are compiled.

An unexpected twist in the plot came when the influence between the
study of humans and the physical world was reversed. The work on de-
mographic data by Laplace, Quetelet, Buckle an others was to inspire
physicists such as James Clerk Maxwell (1831—1879) and Ludwig Boltz-
mann (1844—1906), two of the fathers of statistical physics. They were
studying the new field of thermodynamics, which appeared after the in-
dustrial revolution, with the goal of increasing engine efficiency. They both
explicitly mentioned the analogy between molecules in a gas and groups
of humans. Laplace eloquently acknowledged this when he wrote ”those
uniformities which we observe in our experiments with quantities of matter con-
taining millions of millions of molecules are uniformities of the same kind as those
explained by Laplace and wondered at by Buckle arising from the slumping together
of multitudes of causes each of which is by no means uniform with the others”.
He was the first to use the same Gaussian curve for the velocities of the
molecules in a gas, developing the kinetic theory of gases, which began the
statistical mechanical revolution in physics.

During most of the 20" century, the social and the natural sciences
developed independently. Physics was transformed by statistical mechanics,
quantum mechanics, and the theories of special and general relativity. This
brought about a unified quantum theory for all forces except gravity, an
explanation of chemistry out of physical first principles, and an incredibly
detailed picture of the constituents of matter down to subatomic (and
subnuclear) level.

There were meanwhile also interesting things going on in the social
sciences. The sociologist Vilfredo Pareto (1848-1923) introduced power laws
to explain wealth distribution in 1897. George Kingsley Zipf (1902—-1950) was
a Northamerican linguist and philologist who studied statistical regularities
in different languages. He later went on to collect data of diverse origins
(demographic datasets, travel statistics, marriage date, war casualties. . .),
and to show how power laws could also be used to explain them. By the
middle of the century, there was also already a well formulated neoclassical
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microeconomic theory in terms of rational agents maximising their expected
utility.

In the last decades of the 20" century, as has already been discussed,
statistical mechanics started being used more and more frequently to study
problems in foreign fields, giving rise to the study of complex systems as
a discipline. Basic learning neural networks and other machine learning
algorithms had been around for the whole of the second half of the century,
with the psychologist Frank Rosenblatt’s (1928-1971) introduction of the
perceptron in 1957. The 1980s saw the birth of what can be called statistical
physics of machine learning, with the pioneering work of John Hopfield (born
1933) -who introduced the Hopfield network-, Leslie Gabriel Valiant (born
1949) -and his theory of the learnable-, and Elizabeth Jane Gardner (1957-
1988) -shifting the focus to the dynamics of the connections rather than the
units themselves. Simultaneously, quantitative social science researchers
were finding analogies between some of their problem formulations and
statistical mechanics. Meanwhile some physicists such as Serge Galam were
beginning to use statistical mechanical frameworks to study some social
systems.

The 21% century has seen an explosion of both machine learning ap-
plications, and of physics like research about social systems, as access
to computational capacity and interesting datasets continues to grow. By
2010, with the arrival of deep learning, the huge potential of ANNs was
out of question, and began to be routinely exploited. Sections 1.1.2 and
1.1.3 present a collection of current lines of research (more theoretical and
more data driven respectively) that can fall under the umbrella term of
sociophysics, to illustrate the state of the art.

1.1.2  Theoretical approaches: related works

This section gives an overview of some related active areas of research
analysing human affairs from a complex systems point of view, in what
can be referred to as statistical physics of human behaviour. It deals with
works in which the focus is in building theoretical models of the system
under study, rather than in their quantitative predictive modelling. For a
similar overview of data driven approaches see section 1.1.3. The distinction
is of course sometimes artificial, as many could fit both categories. Discrete
choice theory will not be considered in this section, as it will be discussed
in much more detail in chapter 2 section 2.10. The collection of references is
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by no means extensive, and it intends only to illustrate interesting research
going on.

General overviews of statistical physics like approaches to the modelling
of human behaviour are given in [14, 266]. Surveys on different social dy-
namics models can be found in [46] and [188]. A review of the application of
concepts and tools from statistical physics to social and political behaviour
can be found in [112], and an exploration of various agent simulation mod-
els of political landscapes and election results is presented in [175]. The use
of evolutionary game theory to model human behaviour is described in
detail in [118]. In [13], Ball gives a detailed non technical account of what
was the state of the art in 2004.

Within the social sciences, economics is the discipline where formal
and quantitative approaches encountered less suspicion, and more rapidly
became a respected mainstream branch of research. From Adam Smith’s
market theory in the 18! century to our days, classical economic theory
has remained captive of the idea of a market in equilibrium and Gaussian
statistics. Interestingly, the known discrepancies with observed data (in par-
ticular in regards to the fat tails of many relevant fluctuation distributions),
have meant no obstacle for the widespread belief in its postulates, or their
role in supporting certain policies in the real world. The introduction of
statistical mechanical frameworks has enriched classical microeconomic
theory, particularly through the introduction of interactions. Although still
far from providing a complete a well rounded understanding of economic
processes, it has definitely shed light on the origin of some of the discrep-
ancies between real data and predictions of the conventional approaches.
Surveys in econophysics, as this approach is sometimes referred to, can be
found in [41, 94, 185, 186, 262, 264].

Opinion dynamics is the study of how opinions spread, and is intimately
related to discrete choice theory. The object under study is the same, but
the spotlight here is on the dynamic evolution of the system (rather than its
states of statistical equilibrium). A comprehensive review of basic opinion
dynamic models can be found in [46], while [260] is a relatively recent
survey. The simplest possible model is probably the voter model, which
is equivalent to zero temperature Glauber dynamics in one dimensional
lattices, or to random walkers that coalesce upon encounter.The majority rule
model is another popular simple approach introduced by Galam. Together
with threshold dynamics, it has been used to explain the Trump phenomenon
in [113]. Galam models of opinion dynamics [111] are studied in the case of
asymmetric contrarians (agents that tend to contradict rather than follow
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the prevalent choice in the discussion group) in [114]. Social impact theory
refers to another collection of opinion dynamic models [146].

Continuous bounded confidence models [182], introduced simultaneously
by Deffuant [70] and by Krause and Hegselman [140], are used in [289] to
understand the emergence and development of normalised (i.e., adopted by
a relatively large part of the population) extremist views. The use of CODA
(continuous opinions and observed discrete actions) models to understand
the emergence of extremist individuals in networks of different topologies
is addressed in [189], finding the presence of these will be pretty ubiquitous,
although it can be controlled in certain types of networks, in particular by
allowing individuals to change their position in the network.

Echo chambers, fake news spread, and polarisation, are analysed using a
mean field approach in [190], and in complex networks in [18] (which repro-
duces qualitatively empirical observations of debates observed in Twitter).
A model of information diffusion in social media taking with a compet-
ing large number of items of varying quality is presented in [214]. In [45]
a continuous-time Markov process is used to model collective decision-
making, when individuals can change their opinions to increase their own
fitness value, but also due to social interactions. This is (as will be clear in
chapter 2 section 2.10), a very close framework to the one that will be used
in chapter 9 to study interdependent choices in video games, within the
context of discrete choice theory.

Axelrod’s model vector version of opinion dynamics type models that can
be used to explain dissemination, acquisition and disappearance of cultural
traits in different communities [7, 47]. Other models of social diffusion are
based on epidemic dynamics. Examples range from the turn of the century
works by Campbell and Ormerod with regards to the spread of crime [43]
or the prevalence of marriage [218], to the more recent [115] which models
the emergence of radicalisation, highlighting the role of social integration
in preventing it.

Cooperation and group growth have also been subject to a lot of interest.
An already classical paper is [9], in which cooperation is explained in terms
of evolutionary game theory. The interaction of cooperators and free-riders,
and their impact in the growth of the communities they belong to, was
studied in [184]. In [187], social systems are a living evolutionary ensemble,
with individuals that have different strategies and can choose to cooperate
with others and form groups based on common interests. The mathematical
framework employed to study such systems borrows tools from game and
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kinetic theory. Urban gentrification is studied using the Schelling model
in [219, 220].

A modelling framework in which the power laws (Zipf’s, Heaps” and
Taylor’s laws), ubiquitous in many human related datasets, emerge natu-
rally, is described in [277]. Power accretion in social systems was studied
in [240] using agent simulations, showing that taxation can be used to
prevent the naturally appearing growing inequality, and that the roughness
and Shannon entropy of the power distributions can be used as useful
complements to more traditional measures of inequality such as the Gini
index or the Lorenz curve.

Other interesting works regarding human activities are concerned with
crowd and traffic dynamics [141, 142], in which a very similar picture as
the van der Waals theory of solids appear, with different phases depending
on the mobility or flow of the agents.

1.1.3 Data driven approaches: related works

Along the lines of section 1.1.2, with the focus now on data driven research,
this section outlines some current hot topics under exploration. This section
covers the use of statistical and machine learning models that systematically
look for correlations in the data (excluding the methodologies that will be
used in this thesis, including deep learning, as these will be described in
more detail in chapter 2 and are therefore not covered here). It covers, too,
the use of models that could have very well been included in the previous
section (section 1.1.2). As was discussed there, the distinction can be rather
artificial (particularly for well rounded research). The criterion used to
include works here has been simply to have a strong focus in explaining
readily available or collected data).

Again here, the works cited are chosen with the intention of giving an
idea of interesting interfaces between the qualitative approaches described
in 1.1.2 and real data, and is by no means complete. A general overview
of statistical learning theory discussing generalisation in the context of
algorithmic approaches to function estimation can be found in [282]. A
detailed discussion on data preparation is [231].

An interesting early example is [11], and agent modelling approach to
business growth, which is used to correctly fit the data of both company
size and growth rate of about twenty million US firms in 1997. This scal-
ing behaviour in the growth of companies had been previously observed
in [263]. Also remarkable in its simplicity while accurately explaining ob-
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served results is [26], in which a simple Sznajd model (in which opinion is
modelled as a spin chain) is used to explain voting outcome regularities.
Another interesting example from last century is the landscape model de-
vised by Axelrod and Bennet to explain alliance formation as an energy
minimisation problem [8, 10]. They used it to (almost) accurately predict
company alliances in regards to Unix standardisation in the 1980s, and
political alliances in Europe prior to the Second World War.

The analysis of social network data has been the protagonist of very
diverse analysis. In [162] data from three billion Facebook users and their
opinions on vaccines considered. Mass-action modelling was used to suc-
cessfully reproduce the evolution of pro- and anti-vaccination clusters. In [5]
twitter messages are used to evaluate the appeal of extremism in the US,
finding that text-based psychological indicators support the existence of
psychological differences between left- and right-wing activists (moral foun-
dation hypothesis), and extremist users distinguishing themselves from the
rest in four of the five big personality traits (openness, conscientiousness,
extraversion, agreeableness and neuroticism).

In [122] the propagation of conspiracy theories is considered, using the
9/11 terrorist attack as an example. Their spread evolution is modelled
using information theory and entropy, analysing online comments to related
news or blog posts, and showing that the evolution of entropy measures
too the degree of penetration of the conspiracy theory.

The understanding of urbanism has also received a lot of interest, with [205]
being a very recent example, which proposes a maximum entropy, non-
linear, generative model of cities, and uses it to predict the evolution of
French towns. Gentrification during the last decades is studied for New
York, London and Tokyo in [281]

Remarkably, [280] presents a first principles approach to understand
the birth and evolution of social networks, and is then used to account
for the structure of mentions between Twitter users, co-authorship of the
American Physical Society and mobile-phone-call network (see [212, 213]
for introductory reviews on complex network theory and applications).

1.2 AGE OF ISHTARIA

Data analysed throughout this thesis comes from the game Age of Ishtaria
(Aol), which is a Japanese mobile role-playing card freemium game de-
veloped by Silicon Studio and available worldwide. This game’s data is
explored in the papers with original work contributing to this thesis [51,
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72,73, 132, 133, 224], as well as in previous work [28, 52, 131, 167, 224, 225,
239].

The game was launched on September 25, 2014. It is still currently avail-
able for download, but data only until May 9, 2017 was available, i.e.,
nearly the first two years of the game’s life can be studied with the dataset
available. Only data for Japanese players was considered.

As will be clear from chapter 3 onward, most of the work in this thesis
bases in characterising players by when and how long they play, how
they progress (level-up) throughout the game, and when and how much
they spend, which can be further summarised into giving, for each player
at any given moment in time, how many days have gone by since their
first login into the game (lifetime days), how long they have played in
total since (accumulated playtime), total in-game progression since (level)
and total expenditure since. The possibility of missing or noisy values in
these variables in basically negligible: even if there was some technical
problem preventing the recording of some of the actions, any single action
recorded is enough to know the player has connected. Players will typically
complain if level-ups or purchases are not recorded (and thus not effective),
so these are reduced to the minimum too. Playtime variable allows for
more noise than the others, but is still kept to the minimum. Session length
is computed ideally as the difference between login and logoff time. It
happens often however, that users do not bother to log off. Therefore, if
after any action there is a period of more than 5 minutes of inactivity, the
session is considered to have finished after that action. Similarly, if there is
no session active through a log in, but the player logs any action, then that
action marks too the beginning of a new session.

In the period available for study there were a total of 2107166 players,
with 33194 still considered active at the end of period (more details on
what is meant bu active player can be found in chapter 3 section 3.2).
Of those 33194 did at least one in-app purchase. While there are peaks
of nearly fifty thousand Daily active users (DAU), i.e., of different users
playing on a given day, typical values are normally in the range of ten to
twenty thousand. Periods with higher values are believed to have been
do to aggressive new user acquisition campaigns. Although it is known
that there were both marketing or new user acquisition campaigns (i.e.,
outside the game to get people to try it and hopefully continue playing)
and promotion campaigns (discounts or the like offered to players inside
the game to promote spending) often throughout the period considered, no
additional information (dates, duration, details ...) is available. In chapter
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4 time series modelling techniques are applied to try and discover when
these campaigns were taking place.

Information about in-game events that took place during the period under
study is available. For each event, the start and end date, together with the
event type and a measure of the impact (in playtime and/or purchases)
that particular event was expected to have are available. The latter is an
integer between o and 4 (both included), with o representing no noticeable
impact expected and 4 the highest possible effect. Though numerical, this
characteristic is better understood as a categorical qualitative measure of
the expected outcome. Every event falls into one of the following categories
or event types: Adveniment, Battle Arena, Battle Event, Call to Arms, Duel
Arena, Gacha, Gift Event, Giant Break, Item Collection, Mission Event,
Mission Bingo, Poll Event, Raid Battle, Raid Boss and Raid Event. Gacha is
a type of game monetization strategy very popular in Asia, in which the
player pays a fixed amount of money for an item that is different every time
an assigned by chance. Being in fact more of a gamble than a purchase,
they are very strongly regulated. The equivalent in Europe and America
are loot boxes, that started being introduced and becoming popular much
later than in Asia, and where regulations are also starting to pick on.

Plots of the daily time series of non-PUs, PUs and churned players can
be found in figure 4.1, and of the transitions between these groups in 4.2.
See chapter 4 for more details.

All quantitative plots of chapters 3 to 7 use the Aol dataset.

1.3 CONTRIBUTION AND OUTLINE OF THIS THESIS

This thesis deals with in-game player behaviour, with the dataset for Aol
described in 1.2 as experimental observations. Most of it is concerned with a
practical understanding of what is going on from the studios point of view,
i.e., in exploiting the data collected from players to make predictions on
how relevant quantities in the game are going to evolve, or how individual
players are going to behave.

Although other problems such as that of item recommendation (see
chapter 8) will be tackled , most content revolves around two key features,
particularly in free2play games: whether users are playing or not, and
whether they are spending or not. These are investigated through what is
referred to throughout the text as churn (associated to active users that quit
the game), player conversion (meaning players that are not spending begin
doing so), and purchase churn (when the opposite happens, and purchasing
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players stop spending). These can be studied at individual or aggregated
level, and determine the degree of success in freemium games.

The last chapter before the conclusions (chapter 9) describes a theoretical
framework in which to study the qualitative collective outcome of, either
players of two types making choices under social influence (which has
different intensity within than without the group), or a single group of
players simultaneously deciding on two related matters, also with certain
pressure to conform to their peers. The focus is in investigating a formal
setup that can be applied to many different problems concerning video
games (particularly very social ones), and different examples will be given.
It will be stressed however, that the case of two simultaneous interrelated
choices can be used to qualitatively understand precisely the active/non-
active and paying/non-paying nature of the user which is thoroughly
investigated quantitatively for Aol throughout the first part of the thesis.

The thesis is organised as follows. All models and methodologies to be
used will be briefly presented in chapter 2 for later reference. Chapter 3
introduces some basic definitions and methods to divide players into active
or not, and active spenders or not, which will be used throughout the thesis.
Chapter 4 then analyses conversion, churn and purchase churn at very
aggregated levels using a time series approach. The interest then turns to
individual player churn in chapter 5, and to individual conversion and pur-
chase churn in chapter 6, which also introduces methods to predict the total
expenditure in the game players will have. The use of the predictions from
the previous chapters to group players in meaningful ways is presented in
chapter 7, and an item recommendation system in chapter 8. The use of
statistical physics to draw qualitative conclusions on collective outcomes of
interdependent decision processes (of particular interest to study playing
or not, and purchasing or not) is then discussed in chapter 9. The thesis
closes with some general conclusions in chapter 10.

Chapters 4 to 9 contain original content and are designed to be somewhat
self contained. They all begin with some introductory paragraphs describing
the problem to be addressed, the organisation of the chapter, and how
much of it and to what extent is an original contribution of this thesis.
They all finish with a summary of the more relevant results presented and
concluding remarks when pertinent.
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Meine Methoden sind wirklich Methoden des
Arbeitens und Denkens; deshalb haben sie sich iiberall
anonym eingeschlichen.

— Emmy Noether

This section will provide a review of the different models and tools
used in this work to understand and predict player behaviour. Only the
fundamental aspects required for a correct understanding of the following
chapters will be presented, together with references in which the interested
reader can find more details.

2.1 STATE SPACE MODELS

State Space Models (SSM) refers to a broad category of time series models
in which an stochastic dynamic process is characterised by two equations:
the state transition equation that describes the evolution of the so called
latent state (unobservable directly), and the observation model, which is also
probabilistic in nature, and establishes the relation between the observations
and the latent state [33, 39, 136, 255]. One of the earliest examples studied
in depth, and still in wide use today in numerous fields is the Kalman Filter
(KF) [164].

Every SSM is therefore determined by the equations p(l¢|l;_1) (state
transition) and p(z|l;) (observation model), where I; € RE is the latent
state at time t and z; € IR the observed state at time ¢. In particular, any
linear SSM can be expressed as:

i = Tili_1+ct+ Ry (2.1)
zt = Dii+dite (2.2)
where T; is the transition matrix, c; the latent state intercept, Ry the selection
matrix, D; the design matrix and d; the observation intercept. The terms 1;

and €; represent random innovations that are typically considered to be
normally distributed, i.e,
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mo= N(OZ) (2:3)
e = N(0,%7) (2.4)
where ¥ is the state covariance matrix and ¥ is the observation covariance

matrix.
When two latent states /1 ; and I ; satisfy:

zt = Dilis+ Dalyy (2.5)
Ly = Tilii—1+my (2.6)
Ly = Thlyi—1+1n2; (2.7)

their governing equations 2.5 can be rewritten as:

zt = (DiDy) (ll’t> + €t (2.8)

Ly

l 7 0 21—
(u) _ ( 1 > ( 1t 1) + (771,1‘) (2.9)
by 0 T/ \zt— N2t

Le., when the time series of observations can be related to a linear
combination of two latent states with linear states transition equations,
the resulting model is also a linear SSM. Hence, any two linear SSMs can
be combined to form a new one. This will be relevant in our case, as in
chapter 4, the performance of two classical time series models (that can be
expressed as SSMs as will be seen in the next subsections) will be compared.
In both cases, the stochastic time series modelling is combined with a linear
regression to explanatory variables (which can also be expressed as an SSM
as will be soon described).

A lot of different filters and smoothers can be formulated as linear
SSMs [33, 39, 136, 255]. The next three subsections describe how this is
the case for the three instances of big model families that will be used in
this thesis (in chapter 4 to be specific): linear regression, autoregressive
integrated moving average and structural time series models.

2.1.1 Linear regression

A regression to time varying exogenous explanatory variables z; = Y; f;x!
is a simple way to try an model the deterministic behaviour of a time series
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z;, with xi fori =1,...,n the n explanatory variables (sometimes referred
to as covariates or regressors), and p; their corresponding parameters to be
estimated. This simple model can also be expressed as an SSM by setting
Ti=di=R=0and¢; =Y ,Bix;' in equations 2.1. See chapter 3 in [159] for
a detailed explanation and discussion of applications of linear regression in
statistical learning.

To perform forecasts, besides the parameters estimated using the historic
values available (trainig dataset), the projected values of the explanatory
values x! into the future are needed. Predictions can then be carried out
by simply multiplying each covariate times its associated paramter and
summing the result.

2.1.2 Autoregressive integrated moving average (ARIMA)

The best known expression for an Autoregressive Moving Average (ARMA)
process is [33]:

zt = at+Prziat Pzt FPpzp+ (2.10)
Oher1 + €2+ ...+ 046t + € (2.11)
e = N(0,0%) (2.12)

where ¢, ... ¢, the autoregressive parameters, 61, . .. 0, the moving average
parameters and « the model’s intercept. This is an stochastic time series
model in which each observation has a weighted dependence on the pre-
vious p observations (and the process is said to have autoregressive (AR)
polynomial of order p) and on the previous g noise realisations (moving
average (MA) polynomial of order g). The parsimonious nature of these
models arises because even with a relatively small number of parameters
(low p and g), each time step can be made to depend on a large (virtually
infinite) number of the previous values of the observation time series.

An ARMA model can be expressed in SSM formulation (equation 2.1)

yielding [39]:

e = (1,0,...,0) (2.13)
¢ 1 0 ... 0 1
o1 0 ... 0

b = (P,z . _ o+ | (2.14)
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where r = max(p,q+1),0; =0forqg <i<rand ¢; =0for p <i <r,and
=y, Yip)-

ARMA models are easily extended into Autoregressive Integrated Moving
Average (ARIMA) models by allowing the observation time series z; to be
differenced (i.e., subtracting to each observation the value of the previous
time step). An ARIMA model of order (p, d, q) is thus one with AR
polynomial of order p, MA polynomial of order q, and d differences taken
in the original series, typically in order to make it stationary and/or reduce
its variance. This concept can be extended to differences and polynomials
of lag different than one, yielding seasonal ARIMAs or SARIMA.

Once the parameters of the ARIMA have been estimated using the train-
ing dataset, forecasting can be performed recursively for consecutive times
into the future by applying equation 2.10, first to the last real observed
values, then to the previously predicted ones.

The combination with a linear regression to covariates to account for
some deterministic behaviour is sometimes referred to as SARIMAX mod-
elling. If the series modelled is not transformed, the resulting model in the
explanatory variables is additive, in that the parameter estimated for each
covariate can be understood as the increase (or decrease if negative) in the
modelled time series for each unit of increment in the covariate. If the series
is log-transformed, the model is then multiplicative, and the parameters
are better understood as elasticities, i.e., proportionality constants between
relative increments in the explained and explanatory series. Residuals is the
name given to the unexplained part of the time series after adjusting the
model corresponding to the random noise in the equations, i.e., they should
be normally distributed with mean zero.

2.1.3 Unobserved components or structural time series

Unobserved Components (UC) or Structural Time Series models are SSMs where
the observation is explicitly expressed in terms of a trend, cycle and/or
seasonal dependency (each of which can be stochastic or deterministic in
nature) [138, 139]:

Zt = Ut + Yt + Ct + € (2.15)

where i is the trend component, ; is the seasonal component, c; the cyclic
component and €; a random shock e; ~ N (0, (72).
The trend component is given by:



2.1 STATE SPACE MODELS

Pet1 = Mt + Vet (2.16)
Vil = Vet G (2.17)

where 7; and {; represent white noise (normally distributed with zero
mean) with variances parameters to be estimated. Depending on which
elements of these equations are zero, the trend term is referred to as
local linear (stochastic) trend (no null terms), smooth trend (7; = 0), local
(stochastic) level and deterministic trend (¢ = 0), deterministic trend
(mt = ¢ = 0), local (stochastic) level (1 = {; = 0) or constant term
(vt = ¢ = n+ = 0). Note the local level model is simply a random walk. It
will appear repeatedly in chapter 4.
The seasonal part (or parts) can be expressed as:

s—1
Y==Y. Y—j+w (2.18)
j=1

where w; is random noise with zero mean and variance estimated as an
additional parameter. It captures a fixed seasonality of the time series (for
example s = 7 for behaviour repeating itself each week for a daily time
series).

The cyclic term captures repeated behaviour over longer unspecified
periods of time:

Cir1 = CrCOSA¢ + cfsinAc + uy (2.19)

cfr1 = —csinAe 4 cfcosAe + ujf (2.20)

where u; is also normally distributed with mean zero and estimated vari-
ance. The cyclic frequency A is also estimated as a parameter.

As for the ARIMA models, once all parameters have been estimated,
forecasts can be performed recursively into the future.

ARIMA and UC models are closely related and equivalencies can be
found among them. UC models allow for more randomness (through the
possibility of including more than one noise term), hence normally both
parameter spaces are not identical even for equivalent models (in that for
example some only versions with constraints between the noise terms of
the UC side will be able to be expressed as an ARIMA). This is normally
expressed using the term reduced, and the ARIMA of order (o, 1, 1) is, for
example, the reduced model of a local level UC model.
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2.2 STATISTICAL TESTS AND ESTIMATORS

This section compiles the different classical statistical tests and estimators
used in chapter 4 of this thesis.

2.2.1  Augmented Dickey-Fuller test

The augmented Dickey-Fuller (ADF) test is a hypothesis testing used to eval-
uate stationarity of a time series after removing autocorrelation, and is
described in [56]. The null hypothesis is here that the series is correctly
characterised by a unit root, i.e., that v = 0 for:

Ayr=a+Bt+ Y1+ 08Y1+ ...+ 18Y1—p-1 + € (2.21)

with &, B, v and J; constants, and p the lag of the AR process. The alternative
hypothesis states that v < 0. The critical values are found using a Dickey-
Fuller distribution, to which the relevant statistic, computed as the average
7 divided by its standard deviation, can be compared.

2.2.2  Ljung-Box test

The Ljung-Box test is a hypothesis testing used to evaluate independence
of a time series, and is described in [181]. The null hypothesis is here that
any observed correlations are as result of sampling. If the null hypothesis
holds, the statistic Q needs to be greater than the chi-squared distribution
with h degrees of freedom, where # is the lag under test, Q is given by the
expression

n(n+2) Z (2.22)

and n is the sample size.

2.2.3 Jarque-Bera test

The Jarque-Bera test is a hypothesis testing used to evaluate normality of a
time series, and is described in [160]. The null hypothesis is here that the
skewness and kurtosis of the sample matches, i.e. zero skewness and zero
excess kurtosis. In this case, the statistic /B is close to zero and follows a
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chi-squared distribution with two degrees of freedom asymptotically, with
JB given by
1

JB = 2(52 + E(K —-3)%) (2.23)

n the sample size, and S and K its skewness and kurtosis, i.e. its third and
fourth order central moments, respectively.

2.2.4 Akaike information criterion

The Akaike information criterion (AIC) is an estimator of in-sample prediction
error and is described in [3]. It is given by

AIC = 2k — 2In(max{L}) (2.24)

where k is the number of estimated parameters, L is the likelihood function
of the model, and max{L} denotes its maximum value. This estimator is
linked to goodness of fit but also to the number of degrees of freedom,
penalising the introduction of additional parameters. It gives no information
in absolute terms, but can be very useful for model selection, favouring
those model definitions with lower AIC values.

2.2.5 Bayesian information criterion

The bayesian information criterion (BIC) is described in [249], and is another
estimator of goodness of fit, very closely related to the AIC described
in section 2.2.4. AS the AIC, it also discourages overfitting by penalising
additional parameters. It is given by the expression

BIC = kIn(n) — 2In(max{L}) (2.25)

where n is the sample size, k the number of estimated parameters, L is
the likelihood function of the model, and max{L} denotes its maximum
value. As was the case for the AIC, lower values are linked to better model
definitions in terms of information theory.

2.2.6 Hannan-Quinn information criterion

The Hannan-Quinn information criterion (HQIC) is an additional model se-
lection index in the lines of the AIC (see section 2.2.4) and BIC (see section
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2.2.5), and is described in [137]. Lower values are more desirable, and it is
computes as

HQC = —2max{In(L)} + 2kIn(In(n)) (2.26)

where n is the sample size, k the number of estimated parameters, L is the
likelihood function of the model, and max{In(L)} denotes maximum value
of the log-likelihood.

2.2.7 Parameter significance and z-scores

Standard scores or z-scores describe where a given score is in relation to
the mean, measured in standard deviations, i.e. z = %, where p is the
mean of the population and ¢ its standard deviation. Standardising the
estimated parameters for a model can be an aid in the interpretation of the
relative contribution of each of them. The significance of each z — score can
be evaluated through hypothesis testing, with the null hypothesis being
that there is no correlation between the covariate and the variable being
modelled. Z-test is the analogue of the Student’s t-test when using z-scores,
and the associated p-values give the probabilities of the observed data being
compatible with the null hypothesis. This means the lower the p-value, the
less likely it is that the modelled variable would be as observed, if it was
uncorrelated to the regressor. Hence, it can be used to assess parameter
significance. More details can be found in [172].

2.3 DECISION TREES AND FORESTS

Classification and regression trees (CART) were introduced in [36]. They are
predictive modelling technique in which the labelled training dataset is
recursively split in two at the tree’s nodes. Each node uses the values of one
of the features for the partitioning, and the idea is to automatically find
patterns of differences in the modelled variable that are explained in terms
of differences in the features. The final nodes are populated by individuals
with the same value of the target variable (in classification, or very close in
regression). This makes possible to give a probabilistic prediction outside
of the training set, depending on the values of the features. See for example
chapter 8 in [159] for a general discussion of tree-based methods in statistical
learning.

Ensemble learning refers to the use of a collection of learning algorithms
(as opposed to a single one) to tackle a classification or regression problem.
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Typically different instances of the same model are used, involving differ-
ent parameters or selections of the training dataset. They usually improve
model performance by removing biases, and provide generally more robust
solutions. Additionally, they are trivially parallelizable, so while they do re-
quire additional computation capacity, they can be efficiently implemented
(or as efficiently as the original algorithm). An ensemble of decision trees is
sometimes referred to as forest.

When they are used for binary classification, a good verification metric is
given by the area under the receiver operating characteristic curve (AUC) which
is briefly described in section 2.9.

2.3.1 Random forest

Random forests were first introduced by Breiman in [35] and are probably
the better known and more widely used ensemble tree technique. Each
tree is trained using a bootstrap sample of the total set. Selection of the
split variable and point are done in the same step. The selection of splitting
variable at each node is done at random (hence the name). The split point is
then chosen as that maximising the Gini impurity measure [36] (or a similar
splitting criteria) which can be expressed as

J ]
Io(p) Yo(pi Y p) =1-} pi (227)

i=1 ki i=1
for ] the number of classes and p; the fraction of entities belonging to class i.
These models tend to be biased as they favour variables with many possible
splitting points. They have been extensively used for virtually all types of
classifications and regressions, with some uncommon examples ranging

from remote sensing [23] to gene expression [75].

2.3.2  Conditional inference forests

Conditional inference trees are described in [147], which describes how the
use of conditional inference procedures in the recursive partitioning can
solve the selection bias (towards covariates with many split points) problem,
without negatively impacting overall model performance. The significance
of the association between target variable and features is assessed using a
chi-squared distribution, and a criterion is given to stop the process also
based in sound hypothesis testing.
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2.3.3 Extremely randomised trees

A extremely randomised tree (ERT) is another variation of a decision tree
introduced in [117], featuring strong randomisation in the choice of both
the covariate to use for the partitioning, and the split point, at each node.
With appropriate parameter tuning, ensembles of ERTs do not degrade
performance, while being significantly more efficient computationally. This
makes them particularly useful for very large datasets.

2.3.4 Gradient boosting

Gradient boosting, of which XGboost [55] is a particular implementation, is a
technique that can be used with decision trees. It was first introduced by
Friedman [101, 102] and in Mason et al. [191, 192], and combines boosting (a
bias and variance reduction meta-algorithm) and gradient descent (method
to iteratively compute the local minimum of a function). The idea is to find
a function of the covariates F(x) as close to the target variable y as possible,
i.e., of finding the minimum of a loss function L(y, F(x)) using gradient
descent. Decision trees (or other weak learners) are used at each iteration to
fit the pseudo-residuals (partial derivatives of the loss function with respect
to the covariate function).

2.4 SURVIVAL ANALYSIS

Survival Analysis [58] is a general framework to study time-to-event regres-
sion problems. These methodologies were originally devised within the
medical and biological fields, where the event of interest was death or organ
failure [150], hence the name. These kind of problems are characteristically
censored, i.e., data is incomplete or partially labelled. Some survival models
are also able to handle competing risks [230], i.e., situations where there are
other events which could impede the observation, or alter the probability
of the event of interest under study.

Survival models yield a survival probability curve for each individual, i.e.,
the probability at each time point (past and future), of the individual still
being alive (probability of the event of interest not having taken place). From
these, a single time prediction can be computed if it is needed. Typically,
the prediction of survival time is given by the median of the survival
probability curve, i.e., the event of interest or death is considered to happen
when survival probability drops below o,5.
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The hazard function h(t) is defined as the ratio between the probability
density function P(t) to the survival function S(f)

h(t) = ISJE:; (2.28)
with different survival models accounting for different ways of defining
and/or computing the survival function S(t).

Survival model validation is often performed through error curves that
highlight the dependence of the error with the value itself of the variable,
and taking into account the probabilistic nature of the predictions. The
integrated Brier score (IBS), briefly described in section 2.9, summarises the
information of the whole curve in a single score ans is thus a convenient
metric.

2.4.1 Cox regression

The Cox proportional hazards model or Cox regression [63, 64] is a semi para-
metric survival approach that assumes the relationship between covariates
and hazard to be multiplicative

h(t|X;) = ho(t)ePXil®) (2.29)

with the survival function then expressed as:

S(|X;) = e Mo (2.30)

where X; is the matrix with all the covariates corresponding to individual i.
The likelihood function can be expressed in terms of the conditional
hazards in equation 2.29, and its maximum computed numerically using
the Newton-Raphson algorithm. The hazard function is not assumed to
follow any particular distribution, but there is still a fixed relationship
between the target variable and the covariates. Another inconvenient is that
this method does not scale well to be very large datasets, although this is at
least partially fixed by the regularised Cox regression [202]. Cox regression is
typically used as a baseline for any survival methodology proposed.

2.4.2  Random survival forest

Random survival forests are the survival extension of the random forest algo-
rithm defined in section 2.3.1, and is described in detail in [157]. It is a fully
non-parametric approach that uses tree-based Nelson-Aalen estimators:
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t T}’l (dt/ XZ)
— 2.31
0 Qn (t/ XZ) ( 3 )
where X; is the matrix with all the covariates corresponding to individual

i. Ty, gives the number of uncensored events, and Q; the total number of
individuals at risk. The survival function can then be expressed as

Hau(t, Xi) =

S(tX;) = e~ N Lo Hu(£X0) (2.32)

where N is the number of ensemble members.

Random survival forests allow for the introduction of competing risks [156],
i.e., of events (different form the event of interest) that can affect the proba-
bility of observing the outcome. For example, when survival analysis is used
to predict time to PU conversion (chapter 6 section 6.1), churn can be added
as a competing factor (to lack of interest in purchasing). This amounts to
understanding a non occurring phenomenon (a player not becoming PU) as
being due to either not having interest or means to purchase or to having
already quitted the game. Each node then becomes event specific, and for
each event:

't Toj(dt, Xi) " dy(hy, Xi) (2.33)
JO Qi’l(t/ Xz’) k=1 Qn(tk/ Xi) '

where m(t) = maxk : t; <t and d,;(t)0 Zf\il I(T; = t,0,0f) is the number
of type-j events at time #; for all individuals i, with I being the correspond-
ing event indicator, and d, = }_; 6j,(t) the total number of events taking
place at t;.

Hy (t/ XI) =

2.4.3 Conditional inference survival ensembles

Conditional inference survival ensembles are the survival extension of condi-
tional inference forests introduced in section 2.3.2. They have many similar-
ities to the random survival forest described in 2.4.2, but use conditional
inference trees [147] as base learners. The splitting is performed in two
steps. First the variable more correlated with the output is chosen as split
variable, then the optimal splitting point is computed based on two-sample
linear statistics. They use weighted Kaplan-Meier estimates [149], and have
survival function of the form
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YN To(dt, X;) )
S(HX;) = 1 2=l T E 20 .
X)) =1] ( TN 06X (2.34)

where X; is the matrix with all the covariates corresponding to individual i,

T, the number of uncensored events, and Q;, the total number of individuals
at risk.

2.5 LIFETIME VALUE PROBABILISTIC MODELS

Lifetime customer value (LTV) (also referred to sometimes as customer lifetime
value, CLV) can be defined as the estimation of the total amount of revenue
that will be generated by a customer or user. It is of particular interest
in non-contractual, continuous (in that purchases can be made at any
time) business relations, where there is typically a very large variability
between the income generated by different users. This is exactly the setting
of free-to-play games, where players do not need to pay to play, but are
free to purchase for in-game items or privileges (such as playing ad free),
generating in many cases most of the game’s revenue.

Traditional models aimed at giving LTV predictions basically assume that
each customer (player in this case) will continue with identical purchasing
patterns as have been displayed in the past (until they churn), in what
are sometimes called "buy till you die" or "buy till you defect" (BTYD)
models [247]. The more widespread probabilistic models used to this effect
fall into the RFM category [89], acronym for recency, frequency and mone-
tary value, as predictions for each individual are based only on when the
last time they purchased was, how often they have purchased in the past,
and how large their purchases have been. They operate under the general
assumption that an individual is more likely to purchase again, the more
recently, frequently and with larger value they have purchased in the past.

2.5.1 Pareto/NBD

The most popular of these models, often used as benchmark for any LTV
estimation method proposed, is the so called Pareto/NBD model. The name
refers to the two parametric distributions combined in generating the
predictions. The Pareto distribution models the drop-out or churn process,
and is used to classify customers into those that are still active and those
that are not. NBD stands for Negative Binomial Distribution, which is how
the purchasing frequency is parameterised [88, 89]. These models can also

31



32

MODELS AND TOOLS

include an additional submodel (parametric distribution) to predict the
amount that will be spent per transaction, with a gamma-gamma model
being a typical choice [89]. A simpler approach such as simply taking the
average past value can also be used. Other possibilities that have been
explored in the literature include the use of cohorts [174] or of logistic
regressions [193].

Using a Pareto distribution for the drop-out rate is equivalent to con-
sidering that player lifetimes are exponentially distributes, with each user
having their own churn or dropout rate. These dropout rates should vary
independently across the total player population following a Gamma dis-
tribution. The continuous mixture of the exponential distributions of all
players generates the Pareto one.

The use of NBD as an stochastic model for repeated purchases was first
introduced in [82] in the context of consumer good purchases (in which
the drop-out models in this case the possibility of brand switching). It rests
under the assumption that purchases for each customer are independent
and Poisson distributed with constant mean, and that this individual mean
purchasing rate across the customer population follows, as was the case for
the individual dropout rates, a Gamma distribution [83]. In this case, the
NBD results from the continuous mixture of Poisson distributions for all
customers.

The Gamma distribution (that models both player churn rate and pur-
chasing frequency heterogeneity) in its shape and scale parameter parame-
terisation has probability density function:

xk—le=%

f(x;k,0) = (k) (2.35)
where k is the shape parameter, 6 the scale parameter, and I'(K) the
gamma function evaluated at k. The maximum likelihood function of the
Pareto/NBD model can therefore be written in terms of the four parameters
(two scale and two shape) of the two gamma functions characterising both
processes (churn and purchase frequency) across the population. These pa-
rameters will be estimated using the RFM data available: only three pieces
of information from each player are needed: the length of the observed
period, the number of transactions in that period, and the time of their
last purchase. Once the parameters have been estimated (maximising the
maximum likelihood function), LTV predictions for each player (conditional
on their transaction history) can be produced.
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2.5.2  Other parametric models

Other parametric models use the same approach as the Pareto/NBD model,
i.e., parameterising both the drop out probability and the number of pur-
chases and combining both distributions, substituting the Pareto and neg-
ative binomial distributions by others, in an attempt to either make the
estimation of parameters more efficient, and/or to improve accuracy.

Replacing the Pareto distribution by a beta-geometric (BG) one, for ex-
ample, simplifies dramatically the computations needed, while typically
displaying similar performance to the Pareto benchmark [90]. It does not
only improve computation efficiency, but is also much simpler to imple-
ment and makes the parameter search more robust. The only conceptual
difference with respect to using the Pareto distribution is in that players
are assumed to churn immediately after their last purchase (the Pareto
allows for this to happen at any moment between the last purchase and the
observation time). It does however rely partially in flawed logic, as players
who only have purchased once will always be considered as active. This
is solved using Markov-Bernouilli Geometric (MBG) distribution, which
allows for zero repeat purchasers [16].

Not long after the NBD was first proposed to describe repeat purchase
behaviour, and even if it was shown to successfully represent purchasing
histograms in many empirical cases studied, observations appeared where
the interpurchasing times appeared to be more regular than those Poisson
distributed [134, 143, 176]. One alternative is replacing the Poisson’s expo-
nential on the individual interpurchasing times by a Gamma distribution
with parameter a positive integer, the so called Erlang distribution [49,
143]. This is normally referred to in the marketing literature as the CNBD
(condensed negative binomial distribution) purchasing model. Its dynamics
are explored from a theoretical point of view in [248]. The varying degrees
of regularity across costumers can be accounted for by using a mixture
of Gamma distributions instead of the NBD, in what is normally referred
to as Pareto/GGG models [228]. Another alternative explored has been
the log-normal [176]. See [290] for a statistic on purchase regularity across
consumers, that can be computed with only two interpurchase times per
user.
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2.6 DEEP LEARNING

Deep learning [178] refers to the family of ML models that make use of
deep neural networks (DNN) and representation learning. Artificial Neural
Networks (ANN) are systems inspired in biological neural networks, made
up by connected artificial neurons that can process and transmit signals
downstream (input(s) to output(s)). Neurons can have a state and an associ-
ated weight that is updated during the learning process. The particularity
of ANNSs is that they learn from examples without instructions on how to
do this. In this sense, they are black box devices: they predict the output
given the inputs, without any detail on how they have arrived to that result.
The deep in the DNN simply refers to architectures where there have many
layers of neurons between the input and output layers. Representation
learning refers to systems that do not require manual feature engineering,
as they are themselves capable of detecting or selecting the information
needed from the raw data.

The concept of ANNs goes back to the seminal work of McCulloch
and Pitts in 1943 [194], with multilayer perceptron being introduced by
Ivakhnenko and Lapa in 1967 [158]. After several spikes of popularity, the
deep learning revolution started at the beginning of the 2010s, when the
computational capacity, data availability, and sophistication of the archi-
tectures and learning algorithms (backpropagation, ...) allowed for one
breakthrough after the other. DNNs can currently match and outperform
human experts in many tasks in which this was unimaginable a decade ago
(image classification, board and video game playing, ...), and are known
to provide the best ML solutions (in terms of accuracy, albeit not of explain-
ability), with extraordinary performance, to a huge range of problems, from
speech [130] and image recognition [87], to natural language processing,
drug design, fraud detection and even classification of particle physics
experiment results [57], genomics [297] or electronic health records [232].

In predictive analytics for video games, deep learning has been used
successfully to tackle a variety of problems. See for example Kim et al. [168]
for a churn prediction example, or Guitart et al. for in-game event simula-
tion for Aol [131]. In Sifa et al. [257] deep multilayer perceptron (DMLP)
networks were used to predict expenditure in the game within the next
year.
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2.6.1  Multilayer perceptron

The deep multilayer perceptron (DMLP) is a class of feedforward network
with layers made up of neurons with nonlinear activation functions. It is
perhaps the simpler of DNNs. All neurons in each layer are connected to
all neurons in the previous and next layer, starting with the input layer,
going through several hidden layers, and resulting in the output layer, as
is shown schematically in figure 2.1. The learning process is carried out in
multiple iterations that receive the name of epochs, in which the gradient
descent algorithm is used to update the weights between nodes in order to
minimise the cost function (for example, the root mean square error). See
for example [24] or [246] for more details.

hidden layers

output layer

input layer

FIGURE 2.1: The structure of the multilayer perceptron network. Source: comput-
ersciencewiki.org

2.6.2  Convolutional neural network

A convolutional neural network (CNN) is a DNN architecture based on the
animal visual cortex, and is a regularised version of the DMLP. they are
typically formed by several convolutional layers, followed by pooling [245]
and several fully connected layers, as shown schematically in figure 2.2. In
the convolutional layers, filters or kernels are applied locally (to several ad-
joining inputs), generating successive abstracted feature maps. This means
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that each neuron is connected only to a local region of the previous layer
(instead of all neurons in the previous layer as is the case of the DMLP).
This is what makes them particularly well suited to learn from inputs where
this local connectivity is crucial, such as in image processing or time series
data. They also need substantially less (or none at all) feature engineering

See for example [177, 179, 269, 279] for more details. Examples of their
application to time series problems [177] include, for example, human
activity identification from sensor data [299], system components useful
remaining useful life estimation [241], or stock price prediction [278] or
energy consumption [268, 304].
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FIGURE 2.2: The structure of the convolutional neural network.

2.6.3 Long-short term memory

A Long-short term memory (LSTM) network is a DNN-like architecture par-
ticularly well suited to deal with sequential data, and was introduced by
Hochreiter and Schmidhuber in [144] (which has become the most cited
DL research paper of the 20" century with over 26k citations). They are
a type of recurrent neural network (RNN) designed to deal with long range
dependencies in time series data. The information flow in the LSTM is
controlled by its three gates. The input gate controls the new information
getting it, the output gate the output activation, while the forget gate reg-
ulates which new information arriving is kept and which is discarded.
This fixes, or at least minimises, the problem with exploding or vanishing
gradients that can easily appear in simple RNN through backpropagation.
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LSTMs are the cornerstone of natural language processing (NLP) [300], and
everything language related. They have been successfully used for language
translation and transcription [15, 173, 180, 296]. They can also be used to
tackle basically any problem traditionally approached with classical time
series forecasting, from traffic flow [298] or human trajectories [4], to stock
prices [234]. See [254] for a detailed and pedagogical presentation of its
fundamentals.

2.6.4 Weight initialisation

An adequate weight initialisation of weights is key to effective learning
with NNs. Zero initial weights (no initialisation) can lead to very large or
small loss gradients that could hinder convergence. Random initialisation
can present similar problems, as too large or too small weights will prevent
the NN from learning well. A method widely used today, which is also
the method of choice in this thesis, was introduced in [120] by Glorot and
Bengio. It is typically referred to as Xavier initialisation, and basically con-
sists in sampling the initial weights from a uniform distribution bounded
between +./(6)/+/(n; + n;; 1), with n; and n;,; the incoming and outgo-
ing connections to the layer respectively. This choice makes the variance
relatively stable across all layers and through the successive activation and
backpropagation.

2.6.5 Training algorithms

There are many approaches to learning the optimal weights for the NN,
most of them based in gradient descent [237]. The method used both in
chapter 6 section 6.5 and in chapter 7 is adaptive stochastic gradient descent
optimisation (Adam), as described in [169]. This method works well with
large datasets and parameter spaces, is computationally efficient, with
relatively low memory requirements, and its readily available for used in
the deep learning framework used (see section 2.11).

2.7 CLUSTERING METHODS

Clustering algorithms aim at grouping objects according to their similarity.
To decide on the similarity of the objects or items considered, they need
to be defined using a set of properties or characteristics, that can be both
numerical and categorical. These span the dimension space in which the
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items live, and where a distance measure can be defined and used to look
which objects are closer and which ones lay far apart. Clustering methods
are an example of unsupervised learning, as there is no labelled data, and
the algorithms used need to look for the structures in the data that make
more sense.

Common distance measures used include the Euclidean distance, the
Manhattan distance, the Hamming distance or the Levenshtein distance. The
distance used in all cases throughout this work was Gower’s distance [126],
as it allows to use dichotomous (or binary), qualitative and quantitative (in
the terminology used in the original paper, the three types are encompassed
by numerical or categorical). It is defined as:

Y1 ik
Y Yk Sijkwox
where S;; is the similarity coefficient between items i and j, s;j a score that
quantifies the similarity of items i and j with regards to characteristic k
(of which there are 7), ;i is either 1 (when items i and j can be compared
using characteristic k) or o (otherwise), and wy > 0 the weight given to the
k characteristic (which is zero if and only if the the k property can not be
compared for items i and j).

The following subsections briefly describe four algorithms that are used
in this thesis: k-means, k-medoids, DBSCAN and HDBSCAN. The first two
are centroid base methods, in that items are associated to cluster depending
of their distance to a point of the dimension space that is the centre of that
cluster. The last two methods are density based, in that clusters are defined
depending on the local density of items in the dimension space. Each type
of algorithm comes with its set of advantages and disadvantages that will
be briefly discussed below, and the best choice is normally very problem
dependent. A general detailed introduction to the subject of clustering
can be found in [165], which also presents the centroid based methods.
Clustering methodologies are also discussed in chapter 10 of [159].

S (2.36)

2.7.1  K-means

The centroid around items or elements are clustered is the mean of the
cluster. K-means proceeds by minimising the total squared error. Some of
its weakness are that the it is unable to identify clusters of different shapes
(it uses only the distance to a fixed point), and that the number of clusters
needs to be identified beforehand. The latter can be of critical importance in
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that, as all items are assigned to one of the clusters, it is unable to identify
outliers, and can sometime detect spurious (unstable) clusters.

2.7.2  K-medoids

K-medoids works in a very similar way to K-means, but instead of clustering
around the cluster average, it uses as centroid the element belonging to the
cluster that is closest to the average. While more robust that k-means to
outliers and noise, it still suffers from most of the same weakness. namely,
it can not detect clusters with shapes not tending to be spherical, and the
number of cluster needs to be predetermined (or the algorithm ran for
many different number of clusters and then the optimal according to some
validation metric selected).

2.7.3 DBSCAN

Density based spatial clustering of applications with noise (DBSCAN) [86] is a
density based algorithm, which means that it scans the dimension space to
look for areas where the density of items is greater, instead of looking only
to the distance of items to a centroid. It can thus detect clusters of any shape
and identify outliers, and the optimal number of clusters is found in the
process instead of having to be given beforehand. It does however need two
parameters to be manually fixed to run the algorithm: the neighbourhood
radius (in which to look for items close enough to be considered as belonging
to the same cluster), and the minimum number of items to be considered
as defining a cluster.

2.7.4 HDBSCAN

HDBSCAN [44] is the hierarchical version of DBSCAN (the H stands for
hierarchical), and has all of its advantages and in addition only one param-
eter needs to be fixed before running the algorithm: the minimum number
of items in a cluster.

2.8 COLLABORATIVE FILTERING

Collaborative filtering (CF) is a broad term referring to a collection of recom-
mendation algorithms. It was designed for systems were users can give
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feedback on which content they like and which they do not (i.e., ratings),
and then generate recommendations using only this user-rating matrix.
This avoids then the need of building user or content features, which makes
the method particularly well suited for cases with a lot of users and or
possible recommendations. They can also be adapted to be used with im-
plicit feedback, i.e., when there are no explicit ratings, some characteristic
relating users and content (e.g. number of purchases, views, clicks...) can
be used to define some implicit rating to build the user-rating matrix. CF
algorithms basically aim at filling the blanks in the user-rating matrix, thus
predicting how much each user would like items they have not rated/for
which there is no implicit metric defined. See [267] for a classical review,
and [54] for a more recent one.

The following subsections describe three of the most widely used CF
algorithms: item-item nearest neighbour models, latent factor models and
bayesian personalised ranking.

2.8.1 ltem-item nearest neighbour models

In the spirit of clustering methods, an item-item similarity matrix is com-
puted, where each item is represented by the collection (vector) of ratings
from the different users. For this, a distance metric in the item space needs
to be defined in terms of the (implicit or explicit) ratings, with cosine (co-
sine of the angle between the two item vectors), term frequency-inverse
document frequency (TF-IDF, the frequency of occurrence of a rating scaled
using how often it appears across users) or BM25 (another ranking method
that uses the scaled occurrence rate, also taking into account the number of
ratings associated to each user) being typical choices. This matrix is then
used to both find items close to each given item, and find players with
similar responses to the similar items, and then use this information to
predict user’s missing responses using weighted computations. Nearest
neighbour methods make it very easy to give the reasoning under every rec-
ommendation, but have no flexibility to introduce a measure of confidence
of implicit preferences assumed.

2.8.2 Latent factors models (matrix factorisation)

This algorithm performs matrix factorisation to express the response matrix
as a product of a user and item matrix. If there are n users and m items,
the response or rating matrix is nxm. The user matrix will then be nxk
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and the item kxm, with k the number of latent (unobserved) factors that
are assumed to govern the preference of users for items. This number is a
modelling choice and breaks the original space of the problem into two of
much smaller dimension that can be used to compute missing scores. Matrix
factorisation is often carried out using the singular value decomposition
(SVD) or the alternating least squares (ALS) methods. See [151, 272] for
more details.

Matrix factorisation approaches have many advantages and they can be
used directly over implicit feedback data. Overfitting is easy to avoid by
selecting an adequate regularisation model, in which parameters are often
learn by stochastic gradient descent. Compared to nearest neighbouring
methods, the impact of missing data is smaller and they produce better
results. It is on top of all that very fast, as it does not require estimating
many parameters and does not involve lengthy computations, rendering it
practical for many large scale applications. Its main disadvantage is that
optimisation is carried out regarding only one item.

2.8.3 Bayesian personalised ranking

This method focuses on item-item ranking to output a personalised item
ranking for each user. Optimisation is done for each user, and it can also
deal adequately with missing values. It however always assume that a user
will always prefer an item for which there already is a (positive) response
than all those with no previous history (non-observed items), which is

a very strong limitation depending on the intended use of the system.

See [233] for details.

2.9 VALIDATION METRICS

Different metrics can be more or less useful depending on the context
when trying to assess goodness of fit for estimations and predictions. For
regression problems, given N entities of interest (players in all cases in this
thesis), each with predicted or estimated value p;, and observed or real
value o;:

* Mentions to percentage error in this work refer to the group deviation
defined as:

Y (pi — o))

Yoerror =
Noyax

(237)

41



42 MODELS AND TOOLS

e The mean absolute error (MAE) is defined as:

N 1y — o
N
Le., it is the average value of all absolute errors.
* The root mean squared error (RMSE) is defined as:
N 0
RMSE = w (239)

It does thus give an idea of the spread of the errors and is scale-
dependent.

e The root mean squared logarithmic error (RMSLE) is

N . _ .
RMSLE:\/zizlaog(le) gl +1))

N

It is also scale-dependent, but does not over penalise large differences
when both observation and prediction are huge. It also penalises
more under predicted values than over predicted ones (in that for
y = log(x) there are larger Ays corresponding to the same Ays for
smaller x value)

* The normalised root mean squared error (MRMSE) is

RMSE
NRMSE = —"MSE (2.41)

Omax — Omin

It is more appropriate than RMSE to compare datasets at difference
scales.

* The symmetric mean absolute percentage error (SMAPE) is

100% Y4 |pi — ol

SMAPE =
N ([pil + loi]) /2

(2.42)

This accuracy measure is based on relative errors. It is invariant under
linear rescaling and is not sensitive to outliers.
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See [154] for an interesting discussion on some of these metrics.

For binary classification problems, the receiver operating characteristic curve
(ROC) area under the curve (AUC) is a good metric to compare model
performance [34]. The ROC curve is a plot of the true positive rate against
the false positive rate for different thresholds. It thus contains information
about both sensitivity and specificity. It can be used to decide upon the best
threshold, and to compare performance of different models with respect to
the aforementioned thresholds. To summarise goodness of classification in
a single statistic, the area is generally a good option. See for example [34,
93] for more details.

The Brier score (BS) [37] is used in probabilistic forecasting to measure
accuracy, and is normally defined as:

N
_ o)
BS = 5 ). (pi—oi) (243)

where p; is here the probability predicted for the entity (player) i, and o;
the observed binary value (o if the event does not happen, 1 if it does).
As in the metrics described above, N is the number of entities of interest
(players in this case). In the case of survival models, one can define a BS at
each time step. The integrated Brier score (IBS) will then give an summary
statistic reflecting the overall accuracy in the probabilistic predictions across
all times and can be written as

1 max{t;}
BS = /O BS(t)dt (2.44)

where BS(t) is the (time dependent) Brier score, and max{t;} the final time
step considered. See for example [128, 203] for more details.

2.10 DISCRETE CHOICES AND THE ISING MODEL

The name of discrete choice theory, and the rigorous and systematic devel-
opment of a consistent framework for its study, can probably be rightly
attributed to economists such as Blume, Brock and Durlauf in the last
decade of the 20" century, who already noted its links to some statistical
physics models when taking social interactions into account [31, 38, 79].
The choice making process is described by agents or individuals whose
decision making process is aimed at maximising their payoffs, as charac-
terised by a certain utility function. Similar setups as those used in this
work however had already been introduced earlier on by Follmer [97] and
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Granovetter [129], and the Ising model had also already been explicitly pro-
posed in similar contexts by some physicists [42, 107, 109]. Work previous
to the aforementioned, such as that of the pioneer in statistical modelling
and Nobel prize award winner McFadden [195, 196], typically did not take
social interactions into consideration. There are some remarkable excep-
tions, such as the seminal paper by the too Nobel Laureate Schelling on
racial segregation [242] (analysed from a statistical physics point of view
in [67, 116, 170]) among other of his work [243, 244]. Worth noting are
also Becker’s contributions [21, 22] as one of the first authors to explicitly
introduce these concepts to the study of sociology.

Although these approaches have been explored earlier and more ex-
tensively in the field of economics, it was in the context of the study of
some sociological problems that the effect of these interactions was first
introduced. This basically amounts to considering a social term in each
individual’s utility, by which it is also dependent on the perceived choices
from other individuals. This is sometimes referred to in the literature as
social utility with externalities or interdependence. Both terms are used dif-
ferently in this section and in chapter 9, where the term interdependence
makes reference to relations between different choices for each individual,
or between the same choice in different groups, and externalities to factors
unrelated to social or choice interaction.

The deep relation between some models of condensed matter and some
formulations of discrete choice theory with social interactions is hardly sur-
prising upon some reflection. It were actually the social scientists building
the framework that first noted these similarities and exploited the tools of
statistical physics to study their problems of interest [31, 38, 79], as will
be outlined in next section 2.10.1. But it is in any case straight forward to
use models of ferromagnetism to mimic individuals with a tendency to
align their opinions (spins), with some of the earliest works in this sense
having been contributed by the physical community [42, 107, 109]. Not only
is it interesting to think what the social sciences models associated to well
known models of condensed matter could be (and the wealth of knowledge
ready available about them put to use immediately). The tools of statistical
physics, designed to understand how the macroscopic (or collective in the
socioeconomic context) characteristics emerge from the interactions of the
micro constituents of the system (individual players in our particular case),
can be applied to choice theory problems with no equivalence to a con-
densed matter model. An example of many such applications can be found
in [208], where the maximum entropy principle is invoked in the discussion
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of which functions are well suited to formally study market organisation in
a non interaction framework, and arguing in favour of the logistic one.

The direct relation with Ising type models, and the discrete choice frame-
work discussed in this section, is specifically designed to deal with binary
choices, i.e., decisions for which there are only two possibilities. A lot of in-
teresting problems obviously do not fall into this category, both in the realm
of general social sciences (which party to vote, which brand of a particular
product to buy, which degree to study at university, what type of transport
to use, how many children to have, in which city or neighbourhood to
live...), and in that of video games that is our specific object of interest (in
which of the events that is going on to take part, which item to purchase,
which of several actions to take, which of several opponents to face ...). The
tools of statistical mechanics are suitable too to study these problems, and
there are in fact models form condensed matter physics which could mimic
several discrete choices (such as the Heisenberg [199] or Potts model [294]).
They are however technically much more convoluted. As will be described
with more detail in chapter 9, the aim of using these models in this thesis is
that of acquiring qualitative insights about choice making in social video
games (or social contexts generally speaking), so focusing on binary choices
seems a good place to start. Further more, many interesting problems are
indeed binary in nature, and many of the non binary can be reframed as
such and still provide many interesting insights about the original problem.
Again, examples abound in the social sciences: whether to vote or abstain,
what to vote for in a no/yes referendum, whether to buy a certain product
or not, whether to go to university or not, whether to use public transport
or not, whether to have children or not, whether to live in urban or rural
areas. .., and more generally speaking, whether to believe or not in any
particular precept, or to adopt or not any particular lifestyle trait. In the
video game realm there are also countless examples of great interest, from
whether to purchase any particular item, take part in any particular event,
face any particular opponent, take any particular action..., to the even
more basic choices, decisive for the success of any game, and that will
be studied quantitatively in detail throughout this thesis, of whether to
continue playing or not, and whether to purchase in a free2play game or
not.

Indeed, the discrete choice theory framework has been used to study a
wide variety of problems in the social and economic sciences, such as that
of demand [124, 125, 188, 201, 287, 288], election results [26, 98], crime [119],
fashion [209], musical choices [32], rumours [105] or political opinions [107,
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201, 271]. It basically consists in treating individuals as agents whose
decision making process is always aimed at maximising and individual
utility function, that can have both a deterministic and an stochastic part.
Although they do typically assume rational behaviour (which has proofed
to be questionable when trying to understand certain human behavioural
patterns), in that all agents are making choices in their best interest, there is
room in both the utility definition and possible stochastic (uncertain) nature
of the model to capture at least some of this apparent irrationality. Outside
the realm of decision theory in a strict sense, similar setups have been used
to study other socioeconomic questions which could also be relevant in the
study of in-game behaviour. These include social learning, public goods
games and resource allocation, and hierarchical structures and coalition
formation among others [31, 46, 97, 111, 123, 170, 184, 188, 208, 217, 287].
Another particularly interesting related approach is the use of a diluted
Blume-Capel model of 3-state sites, defined on different complex network
topologies, to understand cooperation and organisation [95].

In this section the relationship between socioeconomic utility scenarios
and statistical mechanical formulations as they were first discovered in the
discrete choice theory framework are outlined in subsection 2.10.1. The very
well known behaviour of the simplest model to be used when considering
social interactions, the Ising model, is summarised and formulated in terms
of choices in video games in subsection 2.10.2. Similarly, the consequences
of using an extension of the Ising model that includes randomness in
the individual preferences, the random field Ising model (RFIM) is briefly
described in subsection 2.10.3.

2.10.1 The socioeconomic utility scenario and statistical mechanics

Consider a group of N individuals or agents, and let us consider the binary
choice s; = £1 they need to make, where i denotes the individual making
the choice. The binary choice problem then consists in defining a utility
function V}, that each individual will attempt to minimise through their
decision making. Very generally, this could be any function depending on
the choice of the given individual s;, its belief or knowledge of the rest of
the group’s choices §: E;(5), their personal preferences, characteristics or
circumstances /;, and a random shock ¢;(s;) that can depend both on the
individual and the particular choice they make. Considering this random
noise to be additive yields an individual utility that can be expressed as:
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V(si, hi, Ei(5),€i(s:)) = U(si, i, Ei(5)) + €i(si) (2.45)

where U will be denoted the deterministic utility and €;(s;) as the random
utility.

Following Durlauf, Brock and Blume [31, 38, 79], further additive assump-
tions allow to rewrite as the utility as:

V(si, hi, Ei(5),€i(si)) = u(si, hi) + S(s, Ei(3)) + €i(si) (2.46)

Here u is the so called private deterministic utility, which will be considered
in what follows to be given by u(s;, h;) = h;s;, and €;(s;) is the private random
utility. The individual preference h; gives the deterministic difference in
payoffs in absence of social interactions, and is sometimes referred to
as idiosyncratic willingness to adopt (IWA)*. The social deterministic utility S
considered in [31, 38, 79] can be expressed as:

) Ji
S(si, Ei(3)) = E; <Z %(Si —s)? (2.47)
j#i
where J;; > 0 is the strength of the coupling to individual j choice, i.e., the
desire of the agent i to align its opinion to that of j.
The problem to be solved can be thus expressed as:

maxg.eq 11y hisi + E; (Z %(Si - Sj)2> + €i(si) (2.48)
j#i
As will be soon discussed, this can be interpreted as a ferromagnetism
model where the first term is equivalent to an external field, the second to
spin interactions, and the last one is random noise.
Now, assuming a logistic distribution for the difference of the random
payoff terms €;(—1) —€;(1)

_ 1
14 b

where B; > 0, and taking into account that s? = 1 the social utility term can
be rewritten:

Pei(=1) —ei(1) <2) (2.49)

In demand contexts, it is sometimes useful to express the IWA as h; = b; — p, where p is the
price of the item or product, and b; the idiosyncratic willingness to pay (IWP) of individual i. This
allows for the study of the demand curves or dependence of the demand with the price [124,
125, 251, 287].
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S(Si, ]ijr Ei(Sj)) = Z]ij(SiEi(Sj) - 1) (2.50)
j#i
the probability of each individual’s choice conditioned to its own prefer-
ences and its perceptions of the rest can be expressed as

P(si|hi, Ei(s;) Vj #1) = P(V(si =1) > P(V(s; = —1))) (2.51)

— (Bilisi+Yjzi BilijsiEi(s))) (2.52)

The expectation value of the choice of the system s = % Y;si can be

computed as the possible values 1 and -1 multiplied by their respective

probabilities, which can be computed using equation 2.51. The expected
value of each individual’s choice is thus

< s; >= tanh (ﬁi (hisi + Z]ijSiEi(Sj)>> (2.53)
j#i

yielding a set of N equations that characterise the system. This is equivalent

to the Curie-Weiss model’s equation of state

s = tanh(B(h + Jos)) (2.54)

after setting B to be constant over all agents by redefining the rest of the
parameters, whenever Ei(s]-) =s, Jij = ]NO and h; = h for all agents. That
is, the system of N individuals making a binary choice, when each of
them is equally influenced by all other members of the group, and where
all members of the group have identical preferences, and their subjective
expectations for the rest match the mathematical expectation (what is
sometimes referred to as rational expectations in the social sciences literature),
is completely equivalent to the mean field Ising model of ferromagnetism.
The spin is then analogous to the binary choice, ] their total interaction,
the identical preference or deterministic private utility is an external field
h (which will be referred to as IWA or opinion field), and the expected
choice is equivalent to the physical system’s magnetisation. In this setting,
maximising total utility is equivalent to minimising free energy, and the
individual utility V is analogous to each particle’s energy with changed
sign. Private random utility is deeply related to the temperature. Using a
constant f = ﬁ is equivalent to studying the Ising model in statistical
equilibrium, i.e., to using the canonical ensemble. The use of this approach
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is thus not really intended to study the dynamics of any such system
(unless this is varying slowly from a state of thermodynamical equilibrium
to another). Dynamical approaches to discrete choice making, sometimes
referred to as opinion dynamics, exist and are of a lot of interest (see for
example [26, 98, 105, 184, 209, 251, 265, 270, 271, 274, 287, 288, 295], or [46,
111] for reviews).

The system is represented by the mean field model because of the de-
scribed rational expectations assumption and because there is identical
interaction with all other members. As in the study of magnetisation, this
is equivalent to making each individual interact with the average choice,
i.e., with their accurate perception of how the group is divided between
both options. This is certainly the case for many problems concerning video
games in which players virtually interact and are thus exposed to the pur-
chasing and playing decisions of their peers. The mean field approximation
is well suited for the study of many interesting discrete choice theory prob-
lems where a tendency to mimic a general trend wants to be modelled,
with the advantage of been analytically tractable.It has thus been profusely
used in this context [32, 38, 79, 80, 104, 107, 109, 111, 124, 125, 208, 209,
217, 251]. There are many interesting works exploring what happens when
these conditions are relaxed, be that in regards to the rational expectations
themselves [60, 119, 217, 251], the use of non identical couplings [79, 85,
287], or through interaction with some local neighbourhood [26, 38, 79, 97,
98, 119, 123, 201, 265, 270, 271, 288], the use of dynamic ones [111, 274], or
of interactions in a complex network [26, 123, 295]. This work is limited
to the mean choice approximation only. It should however, as shown by
ferromagnetism models, give a reasonable approximation in many cases
where this does not hold (at least far enough from critical regions).

The less realistic approximation certainly appears to be that of constant
IWA or constant external field, as it allows no room to encode the preference
heterogeneity present in any group. Examples of non constant IWAs can
be found in [38, 60, 104, 111, 124, 251]. While some randomness will be
introduced in section 9.5 of chapter g (as an extension to interdependent
choices of [124]), most of the discrete choice related results in this thesis
refer to the homogeneous population case described by constant /, and a
lot of it to the i = 0 case. It is an interesting starting point, particularly
when studying two interdependent choices, as it allows to identify the
regions of the parameter space where social and/or choice interaction can
make a difference. In regards to the zero field case, this describes the case
where individuals do not have any particular preference, and any payoff
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is related to social gains. They could be loosely understood as describing
fashions or traditions. In video game contexts, they can however be useful
to understand situations in which the number of players opting for one
particular option (taking part or not in an event for example), is indeed
what provides most (if not all) of the attractiveness to other players. This
situation can be described as corresponding to homogeneous (all agents have
equal IWA and social utility term) unbiased (in that they do not have a
favourite option outside what social interaction dictates) populations.

It is worth mentioning that the reasoning above holds for populations of
any size. It is indeed an statistical model, so computed expectation values
will be more accurate the larger the population is, but in no moment did
the thermodynamic limit play a role in the deductions of this section. In the
study that will follow for interdependent choices in chapter 9, however, the
large population limit will be used, and thus finite size effects not consider
(see [104, 109, 111] for a study of finite size effects in similar setups).

2.10.2 The Ising model

This section compiles well known results of the Ising model in mean field
approximation, solved exactly in the 1930s, and discusses its implications
when used to study binary choices. Results presented in this section were
published during the first half of the 20" century and can be found in many
statistical physics textbooks. More details can be found, for example, in [19],
while [40] provides a historical review. Work pointing out its implications
when used to study problems in the social sciences context, which will also
be summarised in this section, include [38, 79, 80, 104, 107, 109, 209].

The Hamiltonian of a single infinite range Ising model with constant
external field for N particles with s; +1 is

1

1
H = _N Z ]ijsisj — Zhisi = _W (]0 Zsisj> — thi (2.55)
(i.f) i i#] i

where the sums on i are over all N agents, sums on (i, ) over all possible
N(NTA) different pairs of agents (1 < i < j < N) and sums on i # j over
all pairs (1 <i < N,1 <j < N,i # j). The spin s; represent agent i choice
(si = +1, decide in favour; s; = —1, decide against), J;; is the spin coupling
(or that between agent i’s decision and agent j’s decision), and h; = h a
constant external field. We will be considering identical coupling between
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all individuals (J;; = Jo for all ;, j). Note that this Hamiltonian is extensive
(both terms scale as ~ N).

As has been discussed in the previous section 2.10, this is equivalent to
considering homogeneous populations, in that all individuals are therefore
subject to identical opinion fields, and are subject to social interactions of
the same sign and strength with the same agents (all the rest). Heterogeneity
can be introduced in both the coupling and/or the field through the use of
random fields and/or spin glass models, that have also been extensively
studied in the physical literature [29, 59, 121, 200, 222, 301].

In the mean field approximation equation 2.55 takes the form:

ol (1 .
H= EIS (N]s —|—h> Zi:s, (2.56)

where s = %ZZI\L 18i is the average magnetisation or choice, and | =
Yi(i) Jij = (N —1)Jo. In the thermodynamic limit this yields

N
~ 51052 — (Jos +h) Zsi (2.57)

To compute the model’s partition function in the canonical ensemble,
the 2N possible spin configurations is weighted with the corresponding
Boltzmann distribution

N
Z = Tre PH = ¢~ 2% (Zcosh (‘B(Z{]s + h))) (2.58)
The free energy can therefore be written as
L2 /
F= EIS — NBIn ( 2cosh ﬁ(ﬁs+h) (2.59)
and the free energy density of the system
_ e 1 I
f= 2N]s 3 In (2 cosh (,B( N° + h)) (2.60)
which in the thermodynamic limit can be expressed as
1., 1
f= EIOS — Bln(Zcosh(lB (Jos +h))) (2.61)

The order parameter of this system is the average choice (or magnetisa-
tion) s. In the paramagnetic or unpolarized phase s = 0 and there is no order
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or choice alignment in the group. Note that we are discussing statistical
equilibrium, so individuals can change their opinions, but on average half
of the population will be deciding against and half in favour. In the only
other possible phase, the ferromagnetic or polarised phase*, s = +m with
0 < m < 1. In this case the individuals to align their choices, and order
emerges.

Minimising the free energy yields the equation of state (first arrived at by
Bragg and William in 1934):

s = tanh[B(Jos + h)] (2.62)

for Jo # 0. At high temperatures (8 — 0) the system will be in paramagnetic
(no prevalence of a particular option) even in the presence of large fields or
preferences h. For T = 0 however, B — co and the whole population will
align their choices (s = £1). For all other temperatures the system can only
be in paramagnetic state if 1 = 0.

There is a continuous second order phase transition that can be studied
by linearized the equation of state 2.62 for h = 0 and s << 1

s = BJos + O(s%) (2.63)

yielding therefore T, = ]{—g (for constant Jy) or Jo. = % (for constant T) as
critical values for h = 0. For Jo8 < 1 the only stable state is paramagnetic,
which becomes unstable (a local maximum of the free energy) for Jo < 1,
where two physically equivalent (equally probable) with finite spontaneous
magnetisation or choice alignment (of same absolute value and opposing
sign) are the equilibrium states. Magnetisation is plotted Jo in black for
the h = 0 case in figure 2.3 (both plots).

Now let us consider the h # 0 case. For Jo < 1 the minimum of the
free energy 2.60 moves from s = 0 to a finite value of absolute value
0 < m <1 with sign that of the & (ferromagnetic phase). Here there is no
phase transition in strict sense, but rather a continuous change through the
values of the average choice when varying , with s = 0 corresponding to
h = 0. Figure 2.4 plot (a) shows how the magnetisation or average choice
varies with h for Jo < 1.

For JoB < 1 but low enough absolute values of h, the equation of state
2.62 has now three critical points, two of them local minima of the free
energy with a local maximum in between. The multiple equilibria regime

2 For the case of negative coupling ], which will not be considered here, it would be anti-

ferromagnetic phase.
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FIGURE 2.3: Average magnetisation is plotted against 8], for (a) Different negative
values of h (b) Different positive values of h. Black line h = 0, yellow
h =0.01, orange i = 0.1 and red /1 = 1. Dashed lines represent non
stable critical points. Own elaboration. The image has previously
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FIGURE 2.4: Average magnetisation is drawn against h for (a) Jo < kgT and (b)
Jo > kpT at a fixed finite temperature and coupling. (c) Shows (b)
removing metastable or spurious solutions. Own elaboration. The
image has previously appeared in [71].
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is not broken (for weak IWA) but rather shifted, and while both local
minima have still opposing s signs, they are now not symmetric and have
different absolute values. Unlike in the 1 = 0 case however, these states
are not physically equivalent. Only one of them is the absolute minimum
of the free energy 2.60 (that with s aligned with /) and thus the actual
ground state of the system, while the other is a so called metastable state.
This means that a system at finite temperature (that allows for fluctuations)
will always eventually end up in the ground state, which is the attractor
for a larger region of the s — h plane. Depending however, on where the
system was prior to the onset of the field, and the relative magnitude of
this and the temperature, the system could end up in a metastable state
for a relatively long time, so their existence can actually be very relevant.
The dependence of a system’s state on its previous history is known as
hysteresis. This implies that, in this situation, changing in the system can
not be undone by reversing the process. For large enough values of the
field h however, there is only one possible state, always ferromagnetic, with
magnetisation of the same sign as the field, and higher absolute value than
that of the i = 0 case. This situation is depicted in figure 2.4 plot (b), while
plot (c) shows the same relation removing spurious solutions (metastable
states that will eventually decay to the ground state depicted).

Bellow the critical temperature, the average magnetisation or choice can
be considered to made up by some due to the action of the field or IWA
h, and some spontaneous magnetisation (spontaneous choice alignment in the
decision context) emerging from the interactions

S0 = hlir& s(h, T) = tanh(BJomp) (2.64)

which behaves identically as the total magnetisation when & = 0 and
becomes negligible at high enough temperatures (statistical fluctuations are
too large for significant alignment to occur) or fields (that then dominate
the choice alignment).

Figure 2.3 shows the dependence of the magnetisation s with Jyf for
different values of positive (a) and negative (b) fields, and illustrates the
previous discussion. For i = 0 the system is either in paramagnetic state or
in one of the two equally probable ferromagnetic states. For large enough
fields there is only one solution, with magnetisation of the same sign as the
field, an absolute value larger the lower the temperature is. For low enough
values of & there are tow possible states, but in this case one of them is
metastable.
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The phase diagram of the mean field Ising model is therefore as follows.
The parameter space is three dimensional £, Jy, KgT. For h = 0, the (Jo, KgT)
cross section has a second order phase transition across the line Jo = KpT.
For KgT > ]y the system is in paramagnetic state, and for KgT < Jp in
ferromagnetic states with two physically equivalent possible states with
different sign and same absolute value of the average magnetisation. Moving
to the I # 0 sections, the system is always in ferromagnetic state with a
single magnetisation ground state of the same sign as the field, although
for sections of low enough / there is an additional metastable state. When
looking at the other two sections i — KgT and h — Jy are also ferromagnetic
except for a paramagnetic segment for 1 = 0 delimited by the critical point
Jo = KpT. Across this segment, there is a first order phase transition in
h as the magnetisation changes abruptly. Above the critical temperature
however, the change is smooth and there is no phase transition.

The key features of the Ising model from an statistical physics point of
view, i.e., those emerging from the interactions between the constituents, are
the existence of both first and second order transitions, and of metastability
and hysteresis. These have profound implications when discussing the
binary choices under social influence equivalent:

* Microeconomic specification of the model that may not uniquely determine
its macroeconomic properties, as there is more than one possible collec-
tive state for weak enough private deterministic utilities (although
only equally probable and thus stable for zero private deterministic
utilities). If using this approach to study demand, this means that
there can be both a high and low demand possible states associated
to the same price.

® Regions where social utility counts and regions where it does not. There
are distinct phases depending on the parameter values. In some only
private deterministic utility rules the outcome, while in others social
influence (spontaneous magnetisation) can have a decisive impact the
decision making process.

It is also worth stressing the role played by the g = 1/KgT as some sort
of social permeability [107], in that it is the inverse socioeconomic temperature
T. The latter accounts for the possibility of statistical fluctuations, hence
codifying the uncertainty about individual choices. It is a measure of
how likely it is for an individual to make a choice in contradiction to
what their deterministic utility is dictating as providing a better payoff.
Depending on the intended use of the model and/or the system it is meant
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to represent, it can have several interpretations. It could simply reflect
the lack of knowledge about all details affecting the individual’s decision
process. It could have however a more transcendental meaning in terms of
free will or a fundamental impossibility in predicting individual choices. If
we consider all rational elements are included in the utility, then it measures,
in a very literal sense, the probability individuals have of making irrational
choices. It introduces randomness in the system (varying with time or
annealed disorder in condensed matter phrasing) even when couplings an
IWAs are constant. As the introduction of more and more randomness
tends to make the problems more difficult to formally understand, many of
the works considering heterogeneous private deterministic utilities (fixed in
time or quenched disorder in statistical physics language), do so fixing T = 0,
i.e., in the deterministic or purely rational case. These correspond to Nash
equilibria [210, 211] when describing socieconomic phenomena 3. This will
also be the case of section 9.5 chapter 9 in this thesis.

Note that while the Kp will be explicitly written when it appears, the use
of dimensionless spin or decision variables s; is equivalent to the natural
units choice i = Kp = 1 in the ferromagnetic counterpart. As a result, in
the discrete choice model utility, the utility, social coupling and opinion
fields are expressed in the same units. For many problems of interest these
will be dimensionless, and the payoffs can be thought of as representing
abstract qualities such as happiness, well being, satisfaction or reputation.
For other problems, they will represent concrete surpluses or deficits, for
example in many in practically all systems studying demand. In the case
of video games, depending on the specific use, units such as experience
points, in-game lives, playtime, in-game (as well as real) currency.. . could
be of interest depending on the decision under study.

The metastable states have an interesting interpretation in binary choice
contexts. It represents a collective state that can persist (at least for a while)
in time due to individuals picking a choice that is actually not in their best
interest, and this due to social interactions with their peers and a previous
history where that choice was in fact the best option. Durlauf and Brock
used this to reconcile both typical explanations of social pathologies (say,
crime or school dropout prevalence), that of economic fundamentals (i.e.,
people for which crime is indeed the best option from a utility point of
view) and social norms (i.e., where the situation is so pervasive in their

The Nash equilibrium of a non-cooperative game (concept stemming from game theory) is the
solution in (static) equilibrium where all players are aware of the choice of strategy of the rest,
and no player has anything to gain from changing their own strategy
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environment that they continue to pick this option by imitation even if they
would be better off deciding against) [79].

In the context of video games it can similarly be used to understand
player behaviour. Imagine there are is an event in which players can decide
take part and face other players, and that in doing so they can in principle
earn higher rewards or progress more rapidly in the game than by not
taking part in it. In this situation, it is to be expected than more than
half of the players will be taking part in the event (and a larger fraction
the smaller the statistical fluctuations considered). Imagine this situation
changes slowly over the time, and the rewards associated tot taking part in
the event (be that in terms of in-game currency, experience points or other)
diminish until they are below than the payoff associated to playing without
participating in the event. While the difference is still not too large (i.e., for
weak IWA), it is possible that a large part of the players will still decide
to join the event and perpetuate this collectively reinforced option that is
now no longer in their best interest. Note that this social utility term can
mimic the tendency to imitate (a player decides if most people are choosing
this it must be better without analysing it properly), or can be due to a real
payoff (players need to face other players to earn rewards anyway, and so

participating may mean a greater variety of players of which to obtain these).

Even in the latter case (and even more so in the former) are the players
not choosing wisely. Even if due to the amount of players in the event the
rewards are higher for each individual than if they do not take part, if most
of them decided against (and thus socially reinforcing the option of not
participating), the rewards would be even higher. Note however that the
metastable character of this state anticipates that, eventually, enough players
will change their mind to make the situation collapse and the collective
outcome change drastically (first order phase transition).

2.10.3 The random field Ising model

As has been already noted, the introduction of randomness in the external
field (affecting the private utility term) or coupling (affecting the social
utility term), can be used to model the varying individual preferences and
interactions across the population. Models of ferromagnetism including
this type of randomness or quenched disorder have already been extensively
studied in physics [59, 121, 200, 222, 301].

In this section, the implications of using a Random Field Ising Model (RFIM)
instead of the conventional Ising model to study a choice making problem
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are outlined. It makes use explicitly of the socioeconomic rather than
the statistical physics formulation used in the previous section, following
Gordon et al. [124].

Consider the system made up by N individuals making a binary choice.
If agent i’s choice w; can take values 1 (codifying adoption) and o (non
adoption), and depends on their individual preference given by their INA
H;, and their propensity to imitate agent j J;;, their utility can be expressed
as:

u; = (Hi -P+) ]ijEi(wj>> w; + €i(w;) (2.65)
jen;

where n; is the individual’s neighbourhood (made up by the agents with
whom they are prone to align their choice), E;(w;) represents their ex-
pectation on agent j’s choice, and €;(w;) is a random shock allowing for
uncertainty in the individual decision making process 4. The price P is
included in case the decision under study concerns a purchase (in which
case H; is the IWP). If this is not the case it can be simply set to o. If the dif-
ference of random shocks for the two options follow a logistic distribution
across the population:

B 1
Cl+te e
the resulting system is equivalent to considering a RFIM.

Considering that the all individuals have rational expectations E;(w;) =
wj, and that all players interact with all others with the same strength, is
equivalent to studying the RFIM in mean field approximation. INAs are
considered to be independent identically distributed (iid) variables charac-
terising the population towards the decision making process. What follows
considers the zero temperature case only, i.e., the system is deterministic
and all agents completely rational. In this case, the utility of equation 2.65
can be written as

Plei(w; =0) —ei(w; =1) < z) (2.66)

U; = Sjw; (2.67)

Note the use of a different notation from the previous section for the binary choice, that will be
maintained throughout this thesis, indicating the options here are codified as o or 1 (instead of
-1 and 1). This can be convenient as it very easily codifies non-adoption/adoption, making the
average choice identical to the fraction of adopters. Both notations are used in this sections to
facilitate comparisons to different previous works of which some of the content of this thesis
is an extension.
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where S; is the surplus individual i will gain from adopting, and S; =
H; — P+ Ju for y =  ¥; w; the fraction of adopters and expected choice.
To maximise their utility, players will decide depending on the sign of their
surplus, and in the thermodynamic limit

]/l:,P<Hl—P+],u>0):'P(H,—H>S) (2.68)

where H is the average opinion field or IWB, and S = H — P + Ju the
average surplus.

A useful normalisation of the parameters is given by dividing all of
them by the IWB’s standard deviation¢: j = /o, h = H/c and p = P/0,
which allow for the expression of all relevant population’s characteristics
(or the exogenous price) to be measured in terms of the typical scale of the
preference distribution.

As is discussed in detail in [124], based only on properties probability
distributions, it can be inferred that the demand is a decreasing function
with the prices. For smooth unimodal IWB distributions, there will be a
region (for large enough j) of the h — p-j phase diagram where a low and
high demand solution exist (these are in fact multiple Nash equilibria), i.e.,
demand curves can be multiple valued and non-monotonic. Outside this
region, there is a single well defined equilibrium, and a phase transition
takes place at its borders. For multimodal distributions, there will be several
multiple equilibria regions, with the possibility of more than two of these
to simultaneously exist.

2.11 SOFTWARE USED

Analysis and predictions carried out with SSMs (chapter 4) were done with
the datetime, numpy [216], pandas [198] and statsmodels [250] libraries for
Python.

All survival analysis (used throughout chapters 5 and 6) predictions were
carried out using the pysurvival [99] and lifelines [69] python libraries.

Conditional inference ensembles were used for binary classification (chap-
ter 5 section 5.3 and chapter 6 section 6.4) using the cforest implementation
of the partykit R package [148].

LTV computations (chapter 6 section 6.5) using parametric models were
performed using the BTYDplus package for R [227], and with TensorFlow [1]
for Python when using deep neural network architectures.

Clustering (chapter 8) was performed using the pyclustering (for k-means
and k-medoids) [215] and hdbscan (for the HDBSCAN algorithm) [197].
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Gower’s distance used in the clustering was computed using the cluster
package in R. The CF was performed using the implicit python library [100].
The ERT ensembles and and XGBoost used in the same chapter were
used as implemented in the R packages extraTrees [258] and xgboost [55]
respectively.

Python libraries used to carry out the numerical analysis using the
Newton-Raphson algorithm in chapter 9 sections 9.2.3 and 9.3.3 can be
found in https:/ /github.com/anafrio/matmetpy/rootAlgo.py.

All plots were produced using the matplotlib [152] library with python,
the ggplot2 [291] package for R, or gnuplot [292].



BASIC PLAYER PROFILING

Always remember that you are absolutely unique. Just
like everyone else.
— Margaret Mead

A common approach to the study of human behaviour in different con-
texts includes their grouping in a meaningful way, such that it facilitates
the understanding of the behaviour under study. It can be done in terms of
a single characteristic or combining multiple (with the help, for example,
of the clustering methods described in chapter 2 section 2.7), and using
demographic, geographic, behavioural and social variables, among others.
This process is sometimes referred to as profiling or segmentation. The termi-
nology comes from marketing studies, with mentions of the term market
segmentation appearing in the literature as early as 1956 [261], and where it
has continued to be an object of extensive study (see for example [20] for
an earlier review, or [127] for a more recent one). The definition of certain
groups of interest to better understand a particular problem is however
obviously ubiquitous in the social sciences as an approach.

In video games, the term usually used is that of player profiling or player
clustering. Note this generally refers to groups defined in terms of the in-
game player behaviour or characteristics, rather than those of the actual
physical player (although for some characteristics this is indistinguishable,
and for others there will obviously be interesting correlations between
both). In this chapter, a very basic segmentation is defined, that allows
for the classification of players depending on whether they are active or
not, and whether they are purchasing or not. It is in some sense more of
a compilation of basic terminology than an actual profiling, but as will be
seen, it is not as straight forward or exempt of subtleties as it may seem at
first. It can also be the starting point, in a top bottom approach, to building
a structure with different levels of segmentation complexity, by further
subdividing and combining the groups described in what follows.

Other interesting attempts at player profiling can be found in [17, 62,
77, 78, 239]. In chapter 7 the use of engagement predictions to generate
meaningful groupings is discussed, as was first proposed in [72]. The
concepts and categorizations described in this chapter are outlined in [132].
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Most of them, however, were more or less explicitly being used in previously
published work, so should not be considered as original contributions of
this thesis.

3.1 PURCHASING BEHAVIOUR

The video game business model has changed very much in the last years,
with most titles being online and free-to-play, and most of the revenue
coming from in-app purchases. Typically, in these games, less than 5% of
the players will ever make a purchase (around 1,5% for Aol, see chapter 1
section 1.2 for more details). This makes one very important distinction that
will be made between players be that of whether they are paying users (PUs,
those that have made at least one purchase), or non paying users (non-PUs,
those that have never purchased in the game).

This of course does not mean that PUs are frequently purchasing. To
distinguish those that are actively spending the concept of purchase churn
will be introduced in section 3.4.

While in regards to Aol throughout this thesis, anything referring to
spending should be understood as actual purchases (in real money), the
same logic can be applied to virtual purchases (in virtual in-game currency).
Depending on the game, virtual currency can be purchased and/or earned
in the game. In some titles it will be essential for in-game progression, in
others it will only allow for certain customisation and quirks. In some role
type games, it very also be of utmost importance to understanding game
dynamics and player behaviour for many such games. There are however
no virtual sales in Aol, so no data on in-game virtual spending will be
analysed or modelled. Much to most of what will be mentioned throughout
this thesis in regards to purchasing engagement and behaviour, however,
can be directly applied to its virtual counterpart in games where such data
is relevant and available.

3.1.1  VIP players or whales

It is also interesting in many exercises to focus on the top spenders, which
receive the name of VIP players or whales. Not only are these of obvious
interest to studios, they literally are the group of players more invested
in the game, and thus can shed light on the behaviour of very engaged
players.
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In this work, a player becomes VIP after their accumulated expenditure
reaches a certain amount, that will be referred to as whale or VIP threshold.
This threshold will vary from game to game, and is computed using the
first two months of data, so that whales provide at least 50% of the revenue
in that period. This means there are approximately 6000 VIP players in the
studied dat