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1.  Introduction 

All models are wrong, but some are useful 

— George Box 

This thesis deals with the mathematical models used to forecast future asset prices. Estimating 
asset prices is arguably one of the most relevant problems for risk managers, central bankers, and 
investors. Traditional statistical methods rely on point estimates or confidence intervals to 
estimate future realizations. However, when it comes to analyzing asset prices at a future date, 
obtaining the full price distribution significantly improves the information available for decision-
making. This is particularly relevant in financial prices, which typically exhibit asymmetries, fat tails 
and other non-normal features. Consequently, estimation methods relying on mean-variance 
approximations do not appropriately reproduce the real-world characteristics of financial asset 
prices, leading to biased predictions and inappropriate model choices. 
 
However, while the rationale to move beyond a Gaussian framework is clear, there is a remarkable 
lack of consensus on which mathematical models are best suited to estimate future asset prices. 
The disagreement remains despite the continuous improvements and extensive use that price 
evolution models have experienced over the last decades. Although different approaches have 
been proposed to forecast future asset prices, the lack of consensus is driven by three main 
reasons: 
 
First, estimating and calibrating the mathematical models used to forecast future asset prices has 
become increasingly complex, posing technical challenges that often lead to mispricing. Biased 
prices can invalidate the outputs of asset pricing models, leading to probabilistic paths that are not 
representative of real-world dynamics. Given these challenges, an appropriate implementation of 
asset evolution models requires that all mathematical nuisances and limitations of each forecast 
scheme are properly understood and considered in the implementation process. Technical 
challenges are particularly relevant in the stochastic processes that have been developed in the 
last decades, where the new features included to better approximate the asset price dynamics 
complicate the estimation and calibration process.  
 
Second, within the mathematical finance community, most stakeholders already hold notably 
dogmatic views about the types of models that should or should not be used in asset price 
forecasting. However, these views are generally supported by subjective beliefs about the relative 
merits of each competing approach instead of proper empirical validation. In the academic 
literature, comprehensive analyses of alternative price forecast models are scarce and mainly 
devoted to return and variance comparisons. In contrast, much fewer analyses consider the full 
price distribution, and generalization to other datasets is hindered by small sample problems, 
limited model choices, or non-holistic evaluations.  
 
Third, beyond modelling aspects, there is also a need for an evaluation framework that 
consistently assesses the predictive power of probabilistic forecasts. Although different metrics 
have been proposed to evaluate specific angles of probabilistic forecasts, there is no framework 
that jointly considers such partial measures to obtain a global evaluation. The lack of a global 
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framework complicates the comparison of alternative modeling approaches, leading to 
contradictory results in different studies and preventing consistent answers on which type of 
models perform better. 
 
Consequently, to tackle the current challenges in estimating and evaluating density predictions for 
asset prices, our thesis considers three interrelated topics:  
 
1. Our first topic concerns the analysis of the numerical difficulties that characterize the 

estimation and calibration of complex stochastic price processes. Since the seminal papers of 
Black–Scholes and Merton1, processes where asset prices diffuse continuously have been 
extensively used in risk management and option pricing. However, to appropriately capture 
the asset price dynamics in the real-world, traditional diffusion models have been extended to 
encompass a variety of features including stochastic volatility, mean-reversion, or 
discontinuous jumps. 
 
While these refinements have increased the realism of stochastic asset processes, they also 
give rise to increasing complexity in the mathematical schemes that define future asset paths. 
In particular, evolution models which include stochastic volatility and/or jumps do not typically 
exhibit a tractable density that can be used to obtain the probability distribution at a future 
date T. Alternatively, the characteristic functions of complex stochastic processes are generally 
simpler and more tractable than their corresponding densities. Therefore, the use of Fourier 
transforms has rapidly gained traction and the pricing models developed in the last decades 
have mostly relied on characteristic functions to obtain option prices. 
 
However, the use of Fourier transforms also bring specific challenges due to discontinuities in 
the integrand functions, singularities at the lower or upper integration limits, or other 
mathematical nuisances. Furthermore, these challenges vary depending on the Fourier 
algorithm used to obtain option prices, the characteristic function employed to describe future 
asset prices, or even the parameter region considered in the calibration. As a result, specific 
integrals/summations routines can give rise to particular numerical problems, whereas 
instabilities can also arise under certain combinations of a Fourier-based method, 
characteristic function, and/or parameter region.  

 
Given these interdependencies, a better understanding of the different Fourier methods and 
their biases is paramount to avoid pricing errors and generate consistent price forecasts.   

 
2. Our second topic concerns the statistical comparison of the main probabilistic models used to 

forecast future asset prices. Among forecast models, the most commonly used schemes to 
estimate future asset prices are:  

 
▪ Historical-based predictions: Historical methods generate future predictions based on 

past prices. These models are easy to implement and extensively used in financial 
economics. However, it is well‐known that historical patterns do not repeat themselves, 
particularly in times of economic turmoil. Furthermore, historical models may yield 
different estimates depending on the length of the calibration window, introducing 
uncertainty and cherry‐picking concerns. 

 
1 See Black and Scholes (1973) and Merton (1973). 
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▪ Risk-neutral methods: Risk‐neutral estimates contain forward‐looking expectations and 

react immediately to changing market conditions, thus being conceptually better suited 
for forecasting purposes. However, risk‐neutral models do not consider investors’ risk 
preferences across different wealth states. 
 

▪ Risk-adjusted models: By incorporating how investors value monetary outcomes in 
different states, these models provide a more realistic description of how investors 
operate in the real-world. However, risk-adjusted models are bounded by the assumption 
that investors are perfectly rational and always act without bias in their investment 
decision.  

 
▪ Sentiment-adjusted forecasts: Since the pioneering work of Keynes (1936), increasing 

evidence shows that investors commit systematic behavioral mistakes that manifest in 
asset prices. If we accept that market prices can be affected by sentiment, it follows that 
market-implied forecasts should be appropriately adjusted to disentangle investor biases 
from fundamental expectations. 

 
Despite their differences, all these models are still extensively used for forecasting purposes. 
Historical models are mainly used by risk managers; risk-neutral models are used for asset 
pricing; risk-adjusted models are common in economics, and sentiment-based predictions are 
used in behavioral finance. The reason why all these models are still used is the disagreement 
across different stakeholders on the relative merits and drawbacks of each alternative 
approach.  

 
Conceptually, by including up-to-date expectations and higher realism in the processes used to 
describe market conditions and investors’ behavior, the forecasting ability should improve,   
leading to better predictions as we move from historical-based models to sentiment-adjusted 
predictions. However, comparisons across the different modelling approaches are scarce and 
when it comes to evaluating entire probability distributions there are no empirical analyses 
that comprehensively assess the information content of the competing schemes. 

 
3. Our third topic concerns the framework to evaluate probabilistic forecasts. Currently, there 

are several statistical tests and scoring rules that are designed to measure specific angles of 
forecast performance (e.g.: statistical consistency, local accuracy, global errors, etc.). 
However, since different metrics can lead to diverging model choices, there is a need for a 
comprehensive evaluation framework that jointly considers the different partial aspects of 
probabilistic forecasts. The lack of a common framework further complicates the evaluation of 
competing forecasts, as partial evaluations can give rise to contradictory results and model 
scores that have been obtained under incomplete information.   
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2.  Publications derived from this thesis   

This thesis is presented by a compendium of publications. The research articles included in this 

thesis are all published in academic journals that are indexed in the Journal Citation Report (JCR).  

The full references of the articles that have been derived from this thesis are the following:   

1. Crisóstomo, R. (2018). Speed and biases of Fourier-based pricing choices: a numerical 

analysis. International Journal of Computer Mathematics, 95:8, 1565-1582. 

https://doi.org/10.1080/00207160.2017.1322691 

2. Crisóstomo, R. and Couso, L. (2018). Financial density forecasts: A comprehensive 

comparison of risk‐neutral and historical schemes. Journal of Forecasting 37: 589-603. 

https://doi.org/10.1002/for.2521 

3. Crisóstomo, R. (2021). Estimating real-world probabilities: A forward-looking behavioral 
framework. Journal of Futures Markets, 41, 1797-1823.  
https://doi.org/10.1002/fut.22248 

A summary of each article is included in Chapter 5. In terms of quality indexes, the report showing 

the Journal Impact Factor (JIF), the JIF percentile, and the corresponding JCR quartile of each 

academic journal are presented in Chapter 7. 

  

https://doi.org/10.1080/00207160.2017.1322691
https://doi.org/10.1002/for.2521
https://doi.org/10.1002/fut.22248
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3. Hypothesis and objectives   

To address the challenges stated in Chapter 1, we formulate the following research objectives and 
hypotheses. The academic paper/s in which each objective is addressed, and the corresponding 
hypothesis is rejected or validated are detailed after each objective: 
 
Objective 1  
 

To analyze the pricing biases and computational efficiency of the most commonly used 
Fourier-based methods for option pricing.  
 

Hypothesis 1  
 

Different Fourier-based techniques exhibit different truncation, discretization, and 
interpolation errors. The pricing biases vary not only across alternative Fourier methods 
but also depend on the functional form of the characteristic function used to describe the 
asset evolution or even the parameter region. Beyond computational efficiency, these 
biases can lead to some methods failing to provide feasible option prices for specific 
stochastic models and/or parameter regions. 
 

This objective is addressed in our paper Crisóstomo, R (2018): Speed and biases of Fourier-based 
pricing choices: a numerical analysis, International Journal of Computer Mathematics, 95:8, 1565-
1582, DOI: 10.1080/00207160.2017.1322691 
 
Crisóstomo (2018) analyzes the truncation, discretization, and interpolation errors of seven 
Fourier methods for option pricing. We find that both truncation and discretization errors increase 
as we move from the classic Black-Scholes-Merton (BSM) model to more complex stochastic 
processes. Overall, we find that the COS method developed by Fang and Oosterlee (2009) is the 
fastest and most accurate across a range of underlying stochastic processes, strike regions, and 
the number of options priced. We also find that for the Variance Gamma process, most Fourier 
methods fail to provide feasible option prices under a challenging parameter region. 
 
Objective 2 
 

To develop a pricing algorithm that improves the traditional FFT, increasing both its 
accuracy and computational time 

 
Hypothesis 2 
 

The FFT was a notable improvement in computational option pricing in 1999, but new 
algorithms can be used to improve the FFT performance in terms of both speed and 
accuracy.  

 
This objective is addressed in Crisóstomo (2018): Speed and biases of Fourier-based pricing 
choices: a numerical analysis. This paper shows that the Carr-Madan formula, which is the 
precursor of the FFT, can be optimized through strike vectorizations in a simple way which 
simultaneously improves the speed and the accuracy of the traditional FFT. Compared to the FFT, 

https://www.tandfonline.com/doi/full/10.1080/00207160.2017.1322691
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the flexibility of the strike-optimized Carr-Madan formula (CM-OPT) allows: (i) pricing any required 
strikes; (ii) choosing any integration size and technique; and (iii) avoiding interpolation biases. As a 
result, the CM-OPT is both faster and more accurate than the traditional FFT, rendering this 
method inefficient. 
 
Objective 3  
 

To analyze the forecasting ability of the most commonly used historical and risk-neutral 
methods to obtain probabilistic predictions for future asset prices. 

 
Hypothesis 3 
 

Risk-neutral forecasts obtained from option prices, given their forward-looking nature, 
outperform historical-based predictions in information content.  

 
This objective is addressed in our paper Crisóstomo, R and Couso, L (2018): Financial density 
forecasts: A comprehensive comparison of risk‐neutral and historical schemes. Journal of 
Forecasting 37: 589-603. https://doi.org/10.1002/for.2521 
 
Despite its extensive use in quantitative finance, there are no comprehensive analyses of the 
relative merits and drawbacks of risk-neutral versus historical-based predictions in probabilistic 
forecasting. Using a data sample of over 21 years, Crisóstomo and Couso (2018) assess the 
statistical consistency, local accuracy, and forecasting errors of a wide range of forecast models, 
showing that risk-neutral methods outperform historical‐based predictions in terms of information 
content.  
 
Objective 4 
 

To develop an evaluation framework that generates a consistent ranking of probabilistic 
predictions on a common scale.  

 
Hypothesis 4 
 

Different angles of probabilistic forecasting can be summarized in a comprehensive 
measure that aggregates the local accuracy, global errors, and statistical consistency of 
forecast schemes in a standardized score.  

 
This objective is addressed in our published paper Crisóstomo and Couso (2018): Financial density 
forecasts: A comprehensive comparison of risk‐neutral and historical schemes. Journal of 
Forecasting 37: 589-603. https://doi.org/10.1002/for.2521  
 
Our paper develops a new scoring system that integrates the results from the statistical 
consistency, local accuracy, and forecasting error analyses in a single ranking. To aggregate the 
partial measures, we first normalize the outcomes obtained in the three partial categories into 
standardized scales. Next, the Integrated Forecast Score (IFS) is constructed by aggregating the 
normalized statistical consistency, local accuracy, and forecasting errors scores in a joint [0, 1] 
scale. 
 

https://doi.org/10.1002/for.2521
https://doi.org/10.1002/for.2521
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Objective 5 
 

To develop a quantitative framework to measure investor sentiment and quantify its 
effects on probabilistic forecasts.  

 
Hypothesis 5 
 

Investor sentiment is strongly time-variant and manifests separately in different areas of 
the return distribution. Sentiment-based biases affect the mean, the dispersion, and the 
weights that investors assign to the tails of the distribution. 

 
This objective is addressed in our paper Crisóstomo, R. (2021). Estimating real-world probabilities: 
A forward-looking behavioral framework. Journal of Futures Markets 41, 1797–1823. 
https://doi.org/10.1002/fut.22248 
 
 
Crisóstomo (2021) develops a novel framework to measure investor sentiment and quantify its 
effects. Our framework considers the joint effect of three investor biases: excessive optimism, 
which generates biases on average returns; overconfidence, which impacts volatility predictions, 
and tail sentiment, which is related to non-rational tail expectations. All investor biases are then 
aggregated into an ex-ante behavioral stochastic discount factor (SDF) which is used to transform 
classical forecasts into real-world predictions.  
 
Our results show that, for a wide sample of stochastic models and risk-preference combinations, a 
simple behavioral correction generates substantial forecast gains. The information improvement is 
robust across all evaluation methods, risk preferences, and sentiment calibration.  
 
Objective 6 
 

To develop a trading strategy that exploits behavioral biases to generate market profits. 
 
Hypothesis 6 
 

The statistical improvement of our behavioral framework can be exploited in practice 
through an options trading strategy that generates trading profits in the stock market.  

 
This objective is addressed in our paper Crisóstomo (2021): Estimating real-world probabilities: A 
forward-looking behavioral framework. Journal of Futures Markets 41, 1797–1823. 
https://doi.org/10.1002/fut.22248 
 
Crisóstomo (2021) develops a trading strategy that exploits the misspecifications of traditional 
densities. Our strategy is designed to benefit from sentiment-induced biases by going long states 
with too-low probability and short states with too-high probability. Using an option-based 
strategy, we show that excessive sentiment can be exploited to generate market-based returns 
that are almost twice the expected return under the utility-adjusted benchmark, and 28 times 
higher than the return of a risk-free investment. Remarkably, all our sentiment strategies (i.e., 
those concerning optimism, overconfidence, and tail sentiment) contribute to trading gains. 
 

https://doi.org/10.1002/fut.22248
https://doi.org/10.1002/fut.22248
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Objective 7  
 

To test the improvements of our forward-looking sentiment framework against a statistical 
recalibration that corrects density predictions in light of past mistakes.  

 
Hypothesis 7 
 

A forward-looking sentiment framework achieves better results than using backward-
looking biases to correct density predictions. 

 
This objective is addressed in our paper Crisóstomo (2021). Estimating real-world probabilities: A 
forward-looking behavioral framework. Journal of Futures Markets 41, 1797–1823. 
https://doi.org/10.1002/fut.22248 
 
The average biases observed in past predictions can be corrected through a recalibration of the 
current density forecast in light of past mistakes. By construction, the recalibrated density corrects 
all the forecast biases observed in past predictions, hence including both risk preferences and 
sentiment-induced mitakes. Through a comparison of our sentiment framework with a standard 
method to correct past mistakes, we show that our forward-looking framework outperforms the 
use of historical information to adjust probabilistic forecasts. 
 
 

 
  

https://doi.org/10.1002/fut.22248
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4 Theoretical framework and methodology   

This thesis analyzes the different alternatives used to forecast future asset prices. In terms of 
methodological tools, we employ the following quantitative methods:  
 

4.1 Fourier transforms for option pricing 
 

Under the no-arbitrage paradigm, option prices are calculated as the present value of the 

expected option payoff under the risk-neutral measure  

  0
( )

rT

Q t
V e E H S

−
=  (1) 

where 0V is the option value at time t  = 0, tS  the underlying price, r  the risk-free rate, T  the 

time to maturity, ( )tH S  is the option payoff and [ ]QE •  denotes the expectation operator under 

the risk-neutral measure. When the underlying asset’s density function is available, the present 

value of a European call with strike K  and expiration T  is given by ( ) ( )t TH S S K += − . Thus, its 

present value at time t  = 0 can be obtained as 

 
0

( , ) ( ) ( )
rT

T T T
C T K e S K q S dS


− +

= −   (2) 

Where ( )Tq S  is the risk-neutral density of the underlying asset tS  at the terminal date T . 

However, numerous asset processes do not exhibit a tractable density. Alternatively, by expanding 

(2), it is straightforward to show that the price of a European call can be expressed as  

 
0 1 2
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rT

C T K S e K
−

=  −   (3) 

where 1 and 2  are two probability-related quantities. Specifically, 1  is the option delta while 

2  is the risk-neutral probability of exercise P( )TS K . For processes that do not exhibit a 

tractable density, Bakshi and Madan (2000) show that these probabilities can be computed as 
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Where ln TS  is the characteristic function of the log-asset price2 and Re[ ]•  denotes the real 

operator. To increase the computational efficiency of the delta-probability decomposition (DPD), 

Zhu (2010) proposes to introduce a vector of strikes K  in the calculation of (4) and (5). The 

probability vectors 1Π and 2Π  are hence given by  

 
2 The characteristic function is the Fourier transform of the probability density function.  
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And, thus, the vector of call prices can be computed as  

 0( , )   rTT S e−= −1 2C K Π K Π   (8) 

Similarly, to improve computational efficiency, Attari (2004) proposes a DPD reformulation that 

merges integrands (4) and (5) into a single pricing expression of the form 
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Alternatively, to harness the power of the fast Fourier transform (FFT) in option pricing, Carr and 

Madan (1999) developed an algorithm that exploits periodicities and symmetries in the 

characteristic function. Since the FFT can only be used in square-integrable functions, Carr-

Madan’s approach considers a modified call price where a dampening factor ln( )Ke  is introduced 

to avoid the divergence at w = 0 

 
ln( )
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( , ) ( , )

K
C T K e C T K
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=  (11) 

Using Fourier inversions, Carr-Madan’s paper shows that the original call price can be recovered 

as:  
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Although (12) can be directly used to compute call prices, it is common to evaluate it through the 

FFT. Specifically, by setting the grid points as ( 1)nw n w= −   and using the trapezoidal rule, the 

price of N  European call options can be computed as 
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More recently, Fang and Oosterlee (2009) introduced a pricing method that relies on Fourier-

cosine expansions and offers an efficient way to recover the density of the underlying from the 

characteristic function. Specifically, by: i) expressing Equation (2) in terms of ln(St/K) in the 

truncated interval [a,b]; ii) replacing the density and option payoff by the first N terms of their 

Fourier-cosine expansion; and iii) approximating the density-related coefficients using their 

characteristic function representation, the price of a European call can be obtained as: 
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 ( )
2

( , ) cos
b
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−
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where ( , )v y T is the option payoff, 0ln( / )x S K= , ln( / )Ty S K=  and 


  indicates that the 

first summation term is weighted by one-half.  
 
Following these methods, Crisóstomo (2018) investigates the pricing biases and computational 
speed of seven Fourier-based pricing choices: 
 

▪ DPD: Delta-probability decomposition. Call values are individually computed through Equations 
(3)–(5) 

▪ DPD-OPT: Optimized DPD. Strike vector computations are used to simultaneously compute call 
values for a variety of strikes. Equations (6)–(8) are used. 

▪ AT-OPT: Optimized Attari approach. Call values are computed with Equations (9) and (10). The 
CPU burden is optimized through strike vectorizations. 

▪ COS-OPT: Optimized COS method. A multi-strike version of Equations (15) and (16) is used to 
calculate option prices. Following Fang and Oosterlee, the truncation range is obtained through 
the first four cumulants of ln(ST/K) and a scale parameter L = 3 is employed. 

▪ FFT: Standard FFT. Vector operations (instead of loops) are used to improve the performance. 

After experimenting with different values, we settle for an   = 1.75, which delivers a 10−10 
accuracy for all the models tested. Options that do not exactly fall in the FFT strike grid are 
exponentially interpolated. 
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▪ FFT-SA: Strike-adjusted FFT. Call values are determined by successive FFT runs. Strike grids are 
adjusted to match all the required options in at least one FFT run, thus avoiding interpolation. 

▪ CM-OPT: Optimized Carr–Madan formula. Call values are computed using Equation (12) and 
strike vector computations. 

 

4.2 Forecasting methods to obtain asset price densities  

Our thesis makes extensive use of the mathematical methods employed to forecast future asset 
prices. In particular, the most commonly used benchmarks to obtain density forecasts are 
historical-based methods and risk-neutral predictions.  
 

4.2.1 Historical-based predictions 

Regarding historical methods, our thesis considers five benchmark specifications. The first 

assumes that future prices follow a geometric Brownian motion and thus the corresponding price 

density is lognormally distributed. Our second specification generates future price paths by a 

bootstrapping of past returns. For each observation date t , the one-day-ahead return is given by:  

  1 1 1, h

t t tr z z r+ + += +    (17) 

where   1( ,..., )hh h
tr r r=  denotes the set of historical returns and   is the daily average return. 

Next, we consider two standard GARCH(1,1) models, where returns are given by 

 

1 1

1 1 1 1

2 2 2

1

, (0,1)

t t

t t t t p

t t t

r e

e z z f

e





   

+ +

+ + + +

+

= +

= 

= + +

  (18) 

and the standardized residuals 
t

z  are obtained from either a Gaussian (GARCH-N) or a Student’s t  

distribution (GARCH-t).  

In addition, we evaluate the filtered historical simulation (FHS) approach introduced in Barone-

Adesi, Engle, and Mancini (2008), which combines an asymmetric GJR-GARCH model of Glosten, 

Jagannathan, and Runkle (1993) with empirical innovations. Specifically, future returns in the GJR-

FHS(1,1) model are computed as  

 

1 1

1 1 1 1

2 2 2 2

1

, (0,1)

t t

t t t t np

t t t t t

r e

e z z f

e I e





    

+ +

+ + + +

+

= +

= 

= + + +

  (19) 

Where tI = 1 when te < 0 and 0 otherwise, introducing a leverage effect.  
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4.2.2 Risk-neutral methods 

Regarding risk-neutral specifications, we employ five benchmark density models. Our simplest 

model is again a lognormal specification but calibrated to match option prices at time t . We next 

consider the Heston (1993) model, which employs mean-reverting stochastic volatility with risk-

neutral dynamics given by 

 ,1t t t t
dF V FdW=   (20) 

                        ,2
( )

t t t t
dV a V V dt V dW= − +   (21) 

where ,1tdW  and ,2tdW  are two correlated Wiener processes. Following Bates (1996), we also 

complement the Heston volatility in (17) with a lognormal price jump, thus obtaining the 

dynamics:   

 ,1t t t t t t t J t
dF V FdW J FdN Fdt= + −   (22) 

where tN  is a Poisson process with intensity   and tJ  are the jumps sizes, which are lognormally 

distributed with an average size J  and standard deviation Jv .  

Leaving diffusion, we also evaluate the purely discontinuous Variance Gamma (VG) model (Madan, 

Carr, and Chang, 1998), which combines frequent small moves with rare big jumps. The VG 

dynamics are: 

 

( ; , , )
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F Fe

v
v

v
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   


 

      

+
=

= − −

= +

  (23) 

where ( ; )G v  is a Gamma distribution and the parameters  , v  and   jointly control the 

volatility, asymmetry, and kurtosis. 

Finally, Breeden and Litzenberger (1978) show that given a continuous of non-arbitrable call 

prices, it is possible to obtain a unique risk-neutral distribution that replicates exactly such option 

prices. Specifically, we employ the Malz (2014) implementation. For each expiry *t , the 

interpolated volatility function is used to compute the continuous call pricing function ( , *)C x t , 

and these prices are then numerically differentiated to obtain the CDF for all the strikes x  as:  

 *

1
( ) 1 ( , *) ( , *)

2 2

r

t
CDF x e C x t C x t

  
 + − − +



 
  

  (24) 

where   denotes the step size used in the finite differentiation. 
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4.3 Density forecasts verification 

Evaluating financial densities is not straightforward, as only one realization is available to evaluate 

each entire density prediction. This issue can be tackled by working with ensemble predictions, 

thus jointly assessing a sequence of predictive densities and the corresponding sequence of 

realizations. Diebold, Gunther, and Tay (1998) show that the statistical consistency between a 

sequence of probabilistic forecasts and the corresponding realizations can be assessed through PIT 

analyses. For a given date t , the PIT represents the quantile of the ex-ante distribution at which 

the ex-post realization is observed. Thus, 

 
*

( )
tx

t t
PIT f x dx

−
=    (25) 

In a well-specified model, the observed realizations should be indistinguishable from random 

draws from the predictive distributions, and therefore the sequence of PIT values should be 

uniformly distributed in the (0, 1) range. Given the low power of uniformly distributed tests, 

Berkowitz (2001) proposes a reformulation of the PIT values into a transformed sequence (T-PIT) 

that should be formed by i.i.d. (0,1)N  variables in a correctly specified density model3. The 

Berkowitz test first computes the T-PIT values as 
1

- ( )
t t

T PIT PIT
−

=   , and next the AR(1) model  

 
1

- ( - )
t t t

T PIT T PIT   
−

− = − +   (26) 

is estimated to assess the mean, variance, and serial correlation through the likelihood ratio test 

LR3 = 
2

2( (0,1,0) ) –  ( ,  , )L L   − .  

Additionally, to complement PIT-based tests, the accuracy of different forecasting schemes can be 

compared through the likelihood of the ex-post realizations evaluated with the ex-ante 

distribution as  

 1 *
log( ( ))N

t t t
L f x==    (27) 

where  tf  denotes the ex-ante density computed at observation date t  and *tx  denotes the ex-

post realization at time *t . See Liu et al. (2007). 

Although the logarithmic score considers the likelihood of the ex-post realizations, thus measuring 

the local accuracy of a forecasting scheme, it ignores any other probability masses. In contrast, the 

CRPS weights the entire ex-ante distribution, measuring the statistical distance between the actual 

realization and all other probabilistic outcomes (Matheson and Winkler (1976)). Denoting by 
mCDF and rCDF  the cumulative distributions of the forecasting model and the realization, the 

CRPS is given by:  

 ( )
2

( ) ( )
m r

t
CRPS CDF x CDF x dx



−
= −   (28) 

 
3 This reformulation brings about the more powerful tests associated with Gaussian variables. 
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where: 

 *

*

0
( )

1

tr

t

for x x
CDF x

for x x


=







  (29) 

Consequently, the CRPS analyzes the global errors of a forecasting scheme, thus 

complementing the local accuracy metric obtained from the log score. 

4.4 Risk preferences, sentiment, and the stochastic discount factor  

Our thesis uses the Stochastic Discount Factor (SDF) framework to analyze and incorporate the 

impact of risk preferences and sentiment in density predictions. Following Cochrane (2005), the 

present value of any asset tP  can be computed as the expectation of future cash flows, discounted 

by the SDF.   

 
t t T T

P E m z=      (30) 

where tE  is the expectation under the representative investor measure, Tz  are the state-

dependent payoffs, and Tm  is the pricing kernel or SDF, which summarizes investors’ preferences 

and beliefs. Expressed in integral form, the pricing equation becomes: 

 ( ) ( ) ( )
t t T T T t T T

P m x z x f x dx=     (31) 

where ( )t Tf x  represents the probability density function of future asset prices Tx . In a risk-

neutral world, investors’ preferences reflect time-discount only. Therefore, the pricing kernel is 

simply 
r

Tm e −= , and by substituting in (31), the value of any asset becomes: 

 ( ) ( )r

t T T t T TP e z x f x dx−=    (32) 

where ( )t Tf x  represents the risk-neutral density function calculated at t  and with forecast 

horizon T .   

4.4.1 Risk-adjusted densities 

Regarding risk preferences, rational investors exhibit risk aversion, attaching a decreasing marginal 

utility to payoffs received in states of higher wealth. Liu et al. (2007) show that the pricing kernel 

for risk-averse investors is proportional to its marginal utility and given by 

 '( ) ( )RW r

T T Tm e u x x−=    (33) 

Therefore, the pricing equation becomes:   

 ( ) ( ) '( )
r RA

t T T t T T T
P e z x f x u x dx

−
=    (34) 
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Comparing (32) and (34), it follows that for the risk-neutral and risk-adjusted economies to 

generate the same market price, the risk-adjusted density 
RA

tf  should be equal to tf / 'u . 

However, Bliss and Panigirtzoglou (2004) note that the transformation from risk-neutral to risk-

adjusted probabilities exhibits non-linearities, and hence the scaling factor ( ) / '( )to
f y u y dy


  

should be employed to ensure integration to unity. Consequently, starting from any RND, the risk-

adjusted probabilities can be obtained as:    

 
( ) / '( )

( )
( ) / '( )

RA t T T
t T

to

f x u x
f x

f y u y dy


=


 (35) 

For example, for investors featuring a power utility with constant relative risk aversion (CRRA), 
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ln 1
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u x
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


 



−

−
  

= 
=

  (36) 

where   denotes the coefficient of relative risk aversion. The marginal CRRA utility is then 

' Tu x −= , and the pricing kernel becomes 
CRRA r

T Tm e x − −= . Therefore, the risk-adjusted density 
CRRA

tf  is:  

 
( )

( )
( )

CRRA T t T
t T

to

x f x
f x

y f y dy




=


 (37) 

4.4.2 Sentiment-based predictions 

The effect of investor sentiment in density predictions can be also expressed through the SDF. To 

examine how behavioral effects impact different areas of the return distribution, we aggregate 

three sentiment-induced mistakes: excessive optimism, which relates to biases in average returns; 

overconfidence, which leads to errors in volatility predictions, and tail sentiment, which is linked 

to non-rational tail expectations.  

The sentiment function ( )
T

x  summarizes the behavioral corrections required to transform risk-

adjusted forecasts into real-world densities. In terms of the SDF, the aggregate effect of investor 

optimism, investor overconfidence, and tail sentiment is obtained as:  

 ( )
mv ts

T T T
x m m =   (38) 

Where 
mv

Tm  is the mean-variance pricing kernel and 
ts

Tm  is the tail-shift pricing kernel. 

Consequently, the real-world pricing kernel 
RW

T
m , which reflects the cumulative impact of investor 

sentiment and investor risk preferences is given by: 

 '( ) ( )RW r

T T Tm e u x x−=    (39) 
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Following equations (31) to (35), the real-world density can be obtained from an initial RND tf , 

marginal utility 'u , and sentiment function   as: 

 
( ) / '( ) ( )

( )
( ) / '( ) ( )

RW t T T T
t T

to

f x u x x
f x

f y u y y dy



=


  (40) 

More specifically, our framework obtains density predictions in terms of the behavioral tuple 

 1 2 3, ,   . For any density forecast ( )t Tf x  the correction transformation due to investor 

optimism and overconfidence can be obtained through a linear mapping of the original values Tx  

into the adjusted values Tx    

 1, 2, 2,(1 )
TT t T t t Xx x   = + + −   (41) 

where 1  and 2  denote the location and scale shift parameters, respectively. This transformation 

shifts the mean and standard deviation of the traditional forecast into the adjusted values 

1  = +  and 2̂  = . After the behavioral transformation, the mean-variance pricing kernel 
mv

Tm  is obtained as: 

 
( )

( )

RA
mv t T
T mv

t T

f x
m

f x
=   (42) 

where ( )RA

t Tf x  represents the risk-adjusted density and ( )mv

t Tf x  is the behavioral distribution 

obtained through the mean-variance shift.   

To account for biases in tail expectations, we employ an adjustment that progressively shifts 

probability mass from the left to the right tail or vice versa. Denoting by ( )q   and (1 )q −  the 

quantiles which define the left and right tails respectively, we obtain the tail-shift pricing kernel 
ts

Tm  as  
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T
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T
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

−
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  −


=  −


 − 

  (43) 

where 3  controls the direction and intensity of the tail-shifting. The log-linearity of 
ts

Tm  ensures 

that all tail-adjusted probabilities remain positive even for extreme values of the density domain. 
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5 Summary of the published papers 

 

5.1 Article 1: Crisóstomo, R. (2018). Speed and biases of Fourier-based pricing choices: a 

numerical analysis. International Journal of Computer Mathematics, 95:8, 1565-1582. 

https://doi.org/10.1080/00207160.2017.1322691 

 

ABSTRACT 

We compare the CPU effort and pricing biases of seven Fourier-based implementations. Our 

analyses show that truncation and discretization errors significantly increase as we move away 

from the Black–Scholes–Merton framework. We rank the speed and accuracy of the competing 

choices, showing which methods require smaller truncation ranges and which are the most 

efficient in terms of sampling densities. While all implementations converge well in the Bates 

jump-diffusion model, Attari’s formula is the only Fourier-based method that does not blow up for 

any Variance Gamma parameter values. In terms of speed, the use of strike vector computations 

significantly improves the computational burden, rendering both fast Fourier transforms (FFT) and 

plain delta-probability decompositions inefficient. We conclude that the multi-strike version of the 

COS method is notably faster than any other implementation, whereas the strike-optimized Carr 

Madan’s formula is simultaneously faster and more accurate than the FFT, thus questioning its 

use. 

 

INTRODUCTION 

Since the seminal papers of Black–Scholes and Merton, processes where asset prices 

diffusecontinuously have been extensively used in risk management and option pricing. Diffusion 

models exhibit a variety of forms, including stochastic volatility, mean-reversion or seasonality, 

and their widespread use highlights the success that these models have achieved in financial 

modelling. Yet casual observation reveals that the prices of traded assets routinely undergo jumps. 

Discontinuities can occur, for instance, due to unexpected news, due to trading restrictions or 

simply because there is a substantial imbalance between buy and sell orders. 

The importance of jump modelling becomes evident if we analyze the prices of short-dated out-of-

the-money (OTM) options. The value of these contracts critically stems from an expectation of 

large underlying movements. However, empirical studies have shown that diffusion-only models 

cannot consistently generate the asymmetry and fat-tails that are routinely implied by short-term 

OTM options. 

 

https://doi.org/10.1080/00207160.2017.1322691
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This paper contributes to the option pricing literature by benchmarking the speed and accuracy of 

seven Fourier-based pricing choices. Specifically, our analyses focus on two jump models that have 

been proposed as a framework to price options with different strikes and maturities. First, the 

Bates jump-diffusion model, which blends the Heston dynamics with lognormally distributed price 

jumps. Second, the asymmetric variance gamma (VG), a purely discontinuous process where the 

underlying assets evolve through a combination of many small jumps and rare big moves. 

Both models are implemented by means of characteristic functions. Fourier transforms are rapidly 

gaining traction in finance and most of the option pricing models developed in the last decade 

have relied on characteristic functions to obtain option prices. Thus, a better understanding of the 

different implementations is paramount to avoid pricing errors. We investigate the speed and 

biases of a wide range of Fourier pricing choices, including Delta-probability decompositions, the 

Carr–Madan and Attari formulae, the COS method, and fast Fourier transforms. 

The novelty of our paper lies in: 

1. We are the first to consider the strike-optimized version of the Carr–Madan and Attari 

formulas, and one of the first to benchmark the multi-strike version of the COS method. 

We show that all these alternatives significantly outperform the FFT. 

2. We compare the numerical efficiency of seven Fourier-based alternatives, showing which 

methods require the highest/lowest integration range and the highest/lowest sampling 

densities. 

3. We find that Attari’s formula is the only method that does not blow up in any problematic 

region of the AVG model. 

4. We show that the strike-optimized version of Carr–Madan’s formula is simultaneously 

faster and more accurate than the FFT, questioning its widespread use. 

An important reference in this respect is the BENCHOP competition. This project compares the 

accuracy and speed of several Fouriermethods, finding that the COS formula is the overall fastest 

alternative. To benchmark our results to this project, we employ the BENCHOP implementation for 

the COS method developed by Ruijter and Oosterlee, which we have adapted to simultaneously 

calculate option prices for different strikes. 

 

CONCLUSIONS 

Our paper analyses the speed and accuracy of seven Fourier-based pricing choices. We show that 

truncation errors increase as we move from the BSM to the Bates model and further intensify 

under the AVG dynamics. Discretization errors also increase when discontinuous jumps are 

considered, but the rise is modest and remains similar for both jump models. 
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Our analyses demonstrate the higher efficiency of strike vector computations compared to other 

traditional choices. In our tests, computing option prices through the AT-OPT, CM-OPT, DPD-OPT 

and COS-OPT is, on average, 54, 67, 165 and over 1500 times faster than in the FFT. We show that 

the multi-strike version of the COS formula is the overall fastest alternative, a result that stems 

from the lower truncation range required in the COS method and the rapid decay of the cosine 

series coefficients. 

We find that among quadrature-based methods: (i) the DPD-OPT exhibits the highest sampling 

efficiency but also the slowest decay rate, (ii) the CM-OPT stands out for minimizing truncation 

errors in the Fourier space and (iii) the AT-OPT suffers the largest discretization errors, requiring 

higher values of N to achieve the same level of accuracy. As a result, the DPD-OPT performs best 

when pricing a high number of options, the CM-OPT is more efficient when only a few prices are 

required, while the AT-OPT typically ranks as the slowest strike-optimized alternative. 

We show that obtaining accurate option values can be particularly challenging in the AVG model. 

While all methods converge well under the BSM and Bates dynamics, large truncation errors 

significantly complicate the practical AVG implementation. Moreover, depending on the AVG 

parameters, specific Fourier implementations may completely fail to provide reasonable option 

prices: both the FFT and the CM-OPT can blow up in regions where inequality (30) is respected, 

whereas the DPD-OPT and COS-OPT also fail when (30) is not obeyed. In contrast, the AT-OPT 

seems to work fine for any AVG parameter values. 

Finally, the comparison between the FFT and the CM-OPT deserves a special mention. While both 

are based on the same pricing approach, the CM-OPT’s flexibility allows (i) pricing any required 

strikes, (ii) choosing any integration grid and (iii) avoiding interpolation biases. As a result, the CM-

OPT is both faster and more accurate than the FFT, thus rendering this method inefficient. Based 

on our results, we see no reason to employ the FFT over the CM-OPT, but further analysis may be 

needed in order to confirm this hypothesis. 
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5.2 Article 2: Crisóstomo, R. and Couso, L. (2018). Financial density forecasts: A comprehensive 
comparison of risk‐neutral and historical schemes. Journal of Forecasting 37: 589-603. 
https://doi.org/10.1002/for.2521 

 

ABSTRACT 

We investigate the forecasting ability of the most commonly used benchmarks in financial 

economics. We approach the usual caveats of probabilistic forecasts studies —small samples, 

limited models, and nonholistic validations— by performing a comprehensive comparison of 15 

predictive schemes during a time period of over 21 years. All densities are evaluated in terms of 

their statistical consistency, local accuracy and forecasting errors. Using a new composite 

indicator, the integrated forecast score, we show that risk-neutral densities outperform historical-

based predictions in terms of information content. We find that the variance gamma model 

generates the highest out-of-sample likelihood of observed prices and the lowest predictive 

errors, whereas the GARCH-based GJR-FHS delivers the most consistent forecasts across the entire 

density range. In contrast, lognormal densities, the Heston model, or the nonparametric Breeden-

Litzenberger formula yield biased predictions and are rejected in statistical tests. 

 

INTRODUCTION 

Forecasting future asset prices is arguably one of the most relevant problems for risk managers, 

central bankers, and investors. Historical and risk‐neutral methods are the most widely used 

techniques in financial forecasting. Yet, when it comes to evaluate predictions across the entire 

density range, comprehensive comparisons are scarce and there is no consensus on which models 

provide better forecasts. 

Historical methods generate future predictions based on past prices. These models are easy to 

implement and extensively used in risk management and stress testing. However, it is well-known 

that historical patterns do not repeat themselves, particularly in times of economic turmoil. 

Furthermore, historical models may yield different estimates depending on the length of the 

calibration window, introducing uncertainty and possible cherry-picking concerns. 

Risk-neutral estimates, on the other hand, contain forward-looking expectations and react 

immediately to changing market conditions, thus being conceptually better suited for forecasting 

purposes. However, risk-neutral models do not explicitly consider the investors’risk 

preferencesacross different future states. Consequently, some agents rapidly dismiss risk-neutral 

models as the basis for financial predictions. 

The previous literature on financial forecasts has been mainly devoted to volatility predictions. 

Much fewer studies consider entire density forecasts. While empirical analyses tend to find that 

risk-neutral densities (RNDs) outperform historical-based estimates, generalizations to other 

https://doi.org/10.1002/for.2521
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markets or time periods are typically limited by three methodological reasons. First, data 

availability issues have led most researchers to work with relatively small option samples. Limited 

samples can significantly impact the evaluation of predictive densities, as the inability to reject a 

particular model can be due to the low statistical power of the testing procedures. 

Second, comparing density estimates from a wide range of schemes requires working with 

markedly different models and mathematical routines. As a result, most studies have contributed 

through vis-à-vis comparisons across particular model choices or by surveying specific asset 

dynamics. However, empirical analyses covering a comprehensive range of risk-neutral and 

historical densities are scarce. 

Third, the validation of financial density forecasts is typically performed through the so-called 

probability integral transforms (PIT), which assess the statistical consistency between the ex ante 

densities and the ex post realizations. However, several papers have shown that PIT-based 

analyses do not consider the forecasting accuracy of the competing methods or the magnitude of 

its errors, advocating for targeted scoring rules to supplement the PIT assessments. 

We approach these methodological caveats —small samples, limited models and nonholistic 

validations— by performing a comprehensive analysis of 15 forecasting schemes during a period of 

over 21 years. Historical densities are generated using a wide range of models, spanning from 

returns bootstrapping or standard GARCH dynamics to asymmetric models with filtered historical 

simulation. Similarly, we estimate RNDs using the most common benchmarks in financial 

economics, including lognormal densities, stochastic volatility, jump processes, and nonparametric 

distributions. 

All density forecasts are evaluated through a threetiered criterion. First, we consider a multi-factor 

goodness-of-fit analysis, assessing each PIT sequence by means of the Berkowitz, Kolmogorov–

Smirnov, and Jarque-Bera distributional tests. Second, we employ the logarithmic scoring rule, 

which evaluates the accuracy of each method in predicting the ex post realizations. Third, we are 

the first to apply, to our knowledge, a return-based continuous ranked probability score (CRPS) to 

financial forecasts. The CRPS compares the realizations to the entire ex ante densities, ranking all 

methods in terms of their prediction errors. Finally, we develop a new indicator, the integrated 

forecast score (IFS), which aggregates the results from the statistical consistency, local accuracy, 

and forecasting errors analyses into a single composite measure. 

We calibrate our RNDs using market-derived option prices only. This approach contrasts with the 

use of exchange-reported settlement prices, which in many cases are theoretically estimated and 

already reflect specific modeling choices. Finally, we do not consider in this paper combinations of 

risk-neutral and historical methods; while this approach seems promising, our aim is to shed light 

on the predictive ability of the most commonly used models in financial economics, thus leaving 

mixed densities for future research. 
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CONCLUSIONS 

Our paper presents a comprehensive analysis of the most commonly used density schemes in 

financial economics. Through the development of a novel IFS, we show that RNDs outperform 

historical-based predictions in terms of information content. The IFS is constructed by aggregating 

the statistical consistency, local accuracy, and forecasting errors results into a single normalized 

measure. Using an option dataset covering from 1995 to 2016, we find that the variance gamma 

model simultaneously delivers the largest out-of-sample log-likelihood and the lowest forecasting 

errors, thus ranking first in the IFS. 

In contrast, the ARCH-based GJR-FHS achieves the best score in statistical consistency, generating 

the most reliable forecasts across the entire density range. We also find two strong patterns 

regarding historical models. First, in all density schemes the use of 5-year calibration periods 

outperforms the forecasting ability of 6-month calibration windows. Second, densities obtained 

from ARCH-type models are more informative than those generated with lognormal methods or a 

bootstrapping of historical returns. Conversely, frequently used benchmarks like the Heston model 

or the nonparametric Breeden-Litzenberger formula yield biased predictions and are rejected in 

statistical tests. 

Looking forward, optimally mixing the information content of risk-neutral and historical schemes, 

and exploring the use of machine learning algorithms to calibrate such models is worthy of 

research. Moreover, while the IFS provides a simple solution to a complex verification problem, 

applying the IFS in other datasets or testing its performance in real trading strategies could help to 

validatethe usefulness of this measure as a new tool in financial forecasting. These items remain in 

our agenda for future research. 
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5.3 Article 3: Crisóstomo, R. (2021). Estimating real-world probabilities: A forward-looking 
behavioral framework. Journal of Futures Markets, 41, 1797-1823.  
https://doi.org/10.1002/fut.22248 

 

ABSTRACT 

We show that disentangling sentiment-induced biases from fundamental expectations significantly 

improves the accuracy and consistency of probabilistic forecasts. Using data from 1994 to 2017, 

we analyze 15 stochastic models and risk-preference combinations and in all possible cases a 

simple behavioral transformation delivers substantial forecast gains. Our results are robust across 

different evaluation methods, risk-preference hypotheses, and sentiment calibrations, 

demonstrating that behavioral effects can be effectively used to forecast asset prices. We also 

implement a trading strategy that shows how behavioral biases can be exploited to generate 

trading profits. Further analyses confirm that our real-world densities outperform forecasts 

recalibrated to avoid past mistakes and improve predictive models where risk aversion is 

dynamically estimated from option prices. 

 

INTRODUCTION 

Asset pricing models have evolved under the paradigms of market efficiency and rational 

expectations. Yet, since the pioneering work of Keynes, increasing evidence shows that investors 

commit systematicbehavioral errors that manifest through asset prices 

We contribute to the literature by developing a forward-looking framework to measure investor 

sentiment andquantify its effects. Methodologically, we start with the risk-neutral distributions 

obtained from the most common benchmarks in financial economics, including stochastic volatility 

models, discontinuous jumps, and nonparametric densities. All risk-neutral predictions are 

adjusted to incorporate investor's risk preferences through several utility formulations. 

We next estimate the sentiment function which summarizes investor biases in specific areas of the 

return distribution. Following Cochrane and Shefrin, we analyze the impact of behavioral biases 

through the stochastic discount factor (SDF). The SDF or pricing kernel is the cornerstone of asset 

pricing, embodying investor preferences and beliefs about future returns. In traditional finance, 

the SDF must be monotonically decreasing, reflecting a diminishing marginal utility in terms of 

wealth. However, empirical analyses show that the SDF exhibits a counterintuitive upward-sloping 

portion, giving rise to the pricing kernel puzzle  

When the SDF is expanded to incorporate sentiment effects, the pricing kernel collectively 

embodies time-discount, risk preferences, and behavioral biases. While the first two are well-

known in finance, the behavioral component of the SDF represents the change of measure 

required to incorporate investor sentiment in different areas of the probabilistic forecast. We 

https://doi.org/10.1002/fut.22248
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consider three sentiment-induced mistakes: Excessive optimism, which generates biases on 

average returns; overconfidence, which impacts volatility predictions, and tail sentiment, which is 

related to nonrational tail expectations. 

We calibrate our sentiment function using simple market-based inputs. Investor optimism is 

derived from changes in implied volatilities; overconfidence is proxied by changes in trading 

volumes, and tail sentiment is obtained from the skewness of the risk-neutral distribution. All 

investor biases are then aggregated into an ex ante sentiment function that is used to transform 

risk-adjusted forecasts into real-world densities. To gauge the impact of sentiment effects, 

weconsider two alternative calibrations: a low impact and a high impact specification. 

We then examine the out-of-sample performance of all density forecasts. The accuracy of each 

model is assessed through the log-likelihood score; forecast errors are evaluated in terms of the 

continuous ranked probability score (CRPS), and statistical consistency is measured with the 

Berkowitz, Jarque–Bera (JB), and Kolmogorov–Smirnov (KS) tests. Finally, we summarize all 

forecast metrics in a single ranking using the integrated forecast score (IFS). 

Our results are striking. We analyze 15 stochastic models and risk-preference combinations and in 

all possible cases a simple behavioral correction generates substantial forecast gains. Remarkably, 

the improvement delivered by our real-world transformation is robust across all evaluation 

methods, risk-preference hypotheses, and sentiment calibrations, demonstrating that sentiment 

effects can be effectively used to forecast future prices. Furthermore, we implement a trading 

strategy which shows how behavioral trading can be used to generate substantial trading profits 

and excess returns. 

We also perform two additional tests. First, we show that our real-world densities outperform 

nonparametric forecasts that have been recalibrated to avoid past mistakes. Second, we show that 

behavioral corrections also improve the explanatory power of density predictions where risk 

aversion is dynamically estimated from option prices. 

 

CONCLUSIONS 

This paper examines whether investor sentiment can be used to improve the forecasting ability of 

density predictions obtained from option prices. Increasing evidence shows that real-world 

investors commit systematic behavioral errors that manifest in asset prices. Consequently, it 

follows that market-implied forecasts should be appropriately corrected to disentangle the impact 

of behavioral biases from fundamental expectations.  

To quantify sentiment effects, we develop a forward-looking framework that generates the 

behavioral correction required to adjust traditional forecasts in specific areas of the return 

distribution. For 15 underlying models and riskpreference combinations, we show that a simple 
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behavioral transformation in the mean, variance, and tail estimates of traditional predictions 

significantly improve their accuracy and statistical consistency. 

Information gains are robust across all forecast metrics and sentiment calibrations, demonstrating 

that behavioral effects can be effectively used to predict asset prices. To quantify the benefits of 

behavioral trading, we implement a trading strategy that achieves substantial trading profits and 

excess returns. Our results also show that real-world densities outperform non-parametric 

corrections derived  
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6 Conclusions 

This thesis studies the mathematical methods used to forecast future asset prices.  

We first consider the numerical challenges that complicate the estimation of density predictions 

through Fourier-based methods. Crisóstomo (2018) shows that different Fourier methods exhibit 

notably different biases. We find that among quadrature-based methods: (i) the CM-OPT stands 

out for minimizing truncation errors in the Fourier space; (ii) the DPD-OPT exhibits the highest 

sampling efficiency but also the slowest decay rate; and (iii) the AT-OPT suffer the largest 

discretization errors, requiring higher values of N  to achieve comparable accuracy levels. Overall, 

the DPD-OPT performs best when pricing a high number of options, the CM-OPT is more efficient 

when only a few prices are required, while the AT-OPT typically ranks as the slowest strike-

optimized alternative. 

Compared to traditional Fourier methods, our analyses demonstrate the efficiency of strike vector 

computations. In our tests, computing option prices through the AT-OPT, CM-OPT, DPD-OPT, and 

COS-OPT is, on average, 54, 67, 165, and over 1500 times faster than in the FFT. Across all 

methods, the multi-strike version of the COS formula is the overall fastest alternative, a result that 

stems from the lower truncation range required in the COS method and rapid decay of the cosine 

series coefficients.  

In terms of new pricing algorithms, in Crisóstomo (2018) we are the first to propose and evaluate a 

strike-optimized version of the Carr-Madan formula, showing that the CM-OPT significantly 

improves the speed and accuracy of the FFT. While both are based on the same pricing approach, 

the CM-OPT's flexibility allows: (i) pricing any required strikes; (ii) choosing any integration grid 

and technique; and (iii) avoiding interpolation biases. As a result, the CM-OPT is both faster and 

more accurate than the FFT, thus rendering this method inefficient.  

We also show that obtaining accurate option values can be particularly challenging in the VG 

model. While all methods converge under jump-diffusion dynamics, large truncation errors 

significantly complicate the practical VG implementation. Moreover, depending on the VG 

parameters, specific Fourier implementations may completely fail to provide reasonable option 

prices. 

Next, we perform a comprehensive analysis of the most commonly used density models to 

forecast asset prices. Through a unique dataset of option prices covering from 1995 to 2016, 

Crisóstomo and Couso (2018) show that risk-neutral methods outperform historical-based 

densities in terms of information content. Among the specific choice, we find that the Variance 

Gamma model delivers the largest out-of-sample log-likelihood and the lowest forecasting errors. 

In contrast, the ARCH-based GJR-FHS achieves the best score in statistical consistency, generating 

the most reliable forecasts across the entire density range.  
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Contributing to the probabilistic forecast literature, Crisóstomo and Couso (2018) develops a novel 

Integrated Forecasting Score (IFS) which aggregates in a standardized [0-1] scale the results from 

statistical consistency, local accuracy, and forecasting errors analyses. Using the IFS, we find two 

strong patterns regarding historical models. First, in all density schemes, the use of 5-year 

calibration periods outperforms the forecasting ability of 6-month calibration windows. Second, 

densities obtained from ARCH-type models are more informative than those generated with 

lognormal methods or a bootstrapping of historical returns. Conversely, frequently used risk-

neutral benchmarks like the Heston model or the non-parametric Breeden-Litzenberger formula 

yield biased predictions and are rejected in statistical tests.  

Once historical and risk-neutral models have been assessed, we examine whether investor risk 

preferences and investor sentiment can be used to improve the forecasting ability of density 

predictions obtained from option prices. In terms of investors’ preferences, our results show that 

including a moderate amount of risk aversion improves the accuracy and statistical consistency of 

probabilistic forecast, a finding that is in line with the literature. 

In contrast, there are much fewer analyses that consider how to incorporate sentiment-induced 

biases in density predictions. Given the increasing evidence showing that real-world investors 

commit systematic behavioral errors that manifest in asset prices, market-implied forecasts should 

be appropriately corrected to disentangle behavioral biases from fundamental expectations.  

In Crisóstomo (2021), we propose a novel forward-looking framework to quantify the impact of 

sentiment in different areas of the return distribution. We develop a time-variant adjustment that 

considers three sentiment-induced mistakes: Excessive optimism, which generates biases on 

average returns; overconfidence, which impacts volatility predictions, and tail sentiment, which is 

related to non-rational tail expectations- 

For a wide range of underlying models and risk-preference combinations, we show that 

disentangling sentiment‐induced biases from fundamental expectations significantly improves the 

accuracy and consistency of probabilistic forecasts. Specifically, a simple behavioral 

transformation in the mean, variance, and tail estimates of traditional predictions delivers 

information gains across all forecast metrics and sentiment calibrations, demonstrating that 

behavioral effects can be effectively used to predict asset prices.  

To complement the forecast gains in statistical terms, we quantify the practical benefits of our 

sentiment framework with a market trading strategy. In particular, we implement a behavioral 

strategy designed to exploit the misspecification of traditional densities by going long states with 

too-low probability and short states with too-high probability. Through option positions that are 

initiated when excessive optimism, confidence, or tail biases are embedded in market prices, we 

show that behavioral trading can achieve notable profits and excess returns. Overall, the return of 

our sentiment-based strategy is almost twice the expected return under the utility-adjusted CRRA 

benchmark, and 28 times higher than the return of a risk-free investment. 
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We also perform two additional robustness tests. First, we compare the forecasting ability of our 

behavioral adjustment with a standard method to correct density predictions in light of past 

mistakes. Our analyses show that forward-looking sentiment adjustments outperform statistical 

recalibrations in terms of information content. Second, we explore the performance of our 

behavioral transformation when applied to traditional densities where an implied risk aversion is 

estimated from option prices, demonstrating that behavioral adjustments improve neoclassical 

densities with a time-varying risk aversion.   

Regarding future research, the results of our sentiment-based framework could be extended to 

other markets. While the focus of our thesis is the Spanish equity benchmark, the IBEX 35 Index, 

our sentiment framework could be easily replicable in other markets with liquid financial 

derivatives. For instance, it would be interesting to see forecast improvements and trading gains in 

the EURO STOXX 50 index or the S&P 500. Similarly, the improved results as we move from 

historical to risk-neutral, risk-adjusted, and behavioral-adjusted densities, while theoretically 

consistent, could be contrasted in other markets. 

In terms of modelling techniques, it is also worth exploring whether mixing the information from 

historical and option-implied markets can improve the forecasting power of density predictions for 

asset prices. Although we follow a compartmental approach to model categories, the 

development of new calibration and forecasting algorithms based on machine learning can 

provide alternative ways to optimally mix the inputs from different markets and model categories. 

The potential gains of such mixed models should be weighed, however, against the potential loss 

of explainability and model transparency. 

Next, in terms of the evaluation measures, the IFS provides a simple and easily understandable 

framework to aggregate partial evaluation metrics and assess the global accuracy of a forecasting 

scheme. However, further analyses could explore the interrelation between the partial measures. 

For example, while measuring different aspects of forecast accuracy, the log sore and the CRPS are 

typically correlated; hence further optimizing the IFS weights could potentially improve its 

discrimination power. Similarly, instead of using fixed   significance levels for the goodness-of-fit 

tests, an approach based on the  -values could avoid jumps in the ranking measures, as two 

models with marginally better/worse p -values should not be ranked too distantly. 

In terms of Fourier-based algorithms, the higher CM-OPT efficiency compared with the FFT should 

be expected in any underlying model by construction. In contrast, the improvement delivered by 

the COS method could be tested in the stochastic processes that have been gaining traction in 

recent years. In addition, it would be interesting to analyze the pricing biases and computational 

efficiency of the new generation of rough volatility models4, which promise modeling notable 

advantages over traditional stochastic models (e.g.: being able to appropriately represent the 

long-dated dynamics of the volatility smile).  

 
444 See, Gatheral, Jaisson, and Rosenbaum (2018) and Bayer, Friz, and Gatheral (2016). 
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Finally, since the comparison in Crisóstomo (2018), new pricing schemes which rely on local 

wavelet bases, like the WA of Ortiz-Gracia and Oosterlee (2013) and the PROJ method of Kirkby 

(2015) (both based on B-spline wavelets) or the SWIFT5 method of Ortiz-Gracia and Oosterlee 

(2016) (which employs Shannon Wavelets), have emerged as efficient pricing alternatives. These 

methods, however, require a more involved computation which leads to specific implementation 

challenges. Consequently, it would also be interesting to benchmark how these models perform 

compared to quadrature schemes or the COS method, and analyze the pricing biases that arise 

when local wavelet bases are employed to evaluate options under different stochastic price 

processes. 

All these topics remain in our agenda for further research.  

  

 
55 Shannon Wavelets Inverse Fourier Technique. 
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7 Abstract  

This thesis deals with the mathematical methods used to forecast future asset prices. First, we 

analyze the numerical challenges that complicate obtaining density predictions through Fourier-

based methods. We find that different Fourier implementations lead to notable different 

truncation, discretization, and interpolation biases. Among the different methods, we find that the 

COS method is the fastest overall alternative. Furthermore, we develop a strike-optimized version 

of the Car-Madan formula, which is simultaneously faster and more accurate than the FFT, thus 

rendering this method inefficient. 

Next, we explore the forecasting power of the most common used benchmark in quantitative 

finance. Overall, we find that risk neutral methods outperform historical-based predictions in 

terms of information content, with the Variance Gamma being the most accurate stochastic 

process across a range of forecast criteria. Since current metrics to assess probabilistic predictions 

analyze partial aspects of forecast performance, we develop a comprehensive methodology, called 

Integrated Forecast Score, which aggregates in a standardized [0,1] scale the local accuracy, global 

errors, and statistical consistency of different predictive schemes.  

We also analyze how density predictions obtained from option prices can be improved by 

incorporating investors’ risk preferences and sentiment effects. In terms of risk preferences, we 

find a clear improvement when a moderate amount of risk aversion is considered. Regarding 

sentiment, we develop a novel method based on the stochastic discount factor framework to 

quantify the impact of investor biases in different areas of the return distribution. Specifically, we 

consider three sentiment-induced biases: excessive optimism, which generates biases on average 

returns; overconfidence, which impacts volatility predictions, and tail sentiment, which is related 

to non-rational tail expectations. Through a simple behavioral transformation in the mean, 

variance, and tail estimates of traditional predictions, we show that disentangling 

sentiment‐induced biases from fundamental expectations delivers information gains across all 

forecast metrics and sentiment calibrations. 

Finally, we develop a trading strategy that exploits the misspecification of traditional densities by 

going long states with too-low probability and short states with too-high probability. Using option-

based positions that are initiated when excessive optimism, confidence, or tail biases are 

embedded in market prices, we show that the return of behavioral trading is almost twice the 

expected return under the utility-adjusted CRRA benchmark, and 28 times higher than the return 

of a risk-free investment. 
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Resumen 

Esta tesis trata sobre los métodos matemáticos utilizados para estimar el precio futuro de los 

activos financieros. En primer lugar, se analizan los desafíos numéricos que complican la obtención 

de predicciones de funciones de densidad a través de métodos basados en transformadas de 

Fourier. Nuestros análisis muestran que diferentes implementaciones basadas en transformadas 

de Fourier generan sesos de truncamiento, discretización e interpolación sustancialmente 

diferentes. A nivel global, el método COS resulta el más rápido computacionalmente de todos los 

algoritmos. Además, se prone una versión con vectorización de strikes que la fórmula de Carr-

Madan que es simultáneamente más rápida y precisa que la transformada rápida de Fourier (FFT), 

haciendo que este método no resulte eficiente. 

A continuación se contrasta el poder predictivo de los modelos de evolución de activos más 

utilizado en finanzas cuantitativas. En general, encontramos que las modelos riesgo-neutro 

superan a las estimaciones basadas en datos históricos en términos de contenido de información, 

siendo el método Variance Gamma el proceso estocástico más predictivo conforme a diferentes 

criterios de medición. Puesto que actualmente las métricas para medir la capacidad predictiva de 

funciones de densidad actualmente analizan aspectos parciales de cada estimación, se propone 

una metodología global, denominada Integrated Forecast Score, que agrega en una única escala 

estandarizada la precisión local, los errores globales y la consistencia estadística de los métodos 

predictivos. 

Posteriormente se analiza cómo mejorar las predicciones de densidad obtenidas a partir de 

precios de opciones incorporando las preferencias de riesgo de los inversores y los efectos del 

sentimiento. En términos de preferencias de riesgo, encontramos que la estimación mejora de 

forma notable cuando se considera una aversión al riesgo moderada. En cuanto al sentimiento, se 

desarrolla un nuevo método basado en el factor de descuento estocástico para cuantificar el 

impacto de los sesgos conductuales de los inversores en diferentes áreas de la distribución de la 

rentabilidad. En particular, nuestro análisis considera tres sesgos inducidos por el sentimiento: 

Optimismo excesivo, que genera sesgos en el rendimiento medio esperado; exceso de confianza, 

que afecta las predicciones de volatilidad, y sentimiento de cola, que está relacionado con 

expectativas no racionales en las colas de la distribución. Mediante una transformación de en la 

media, la varianza y las colas de la distribución, nuestro análisis muestra que corregir los sesgos de 

sentimiento mejora consistentemente la capacidad predictiva de las estimaciones realizadas con 

modelos de racionalidad perfecta.  

Finalmente, desarrollamos una estrategia de negociación que explota los sesgos de las funciones 

de densidad tradicionales tomando posiciones largas en las áreas de la distribución con una 

probabilidad excesivamente baja y posiciones cortas en las áreas con una probabilidad 

excesivamente alta. Mediante posiciones en opciones que se inician cuando el mercado muestra 

un exceso de optimismo, confianza o sesgos de cola, encontramos que el rendimiento de nuestra 
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estrategia en función del sentimiento es casi dos veces el retorno esperado conforme a la función 

de utilidad más predictiva y 28 veces mayor que el rendimiento de una inversión libre de riesgo.  
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8 Impact factor and quartile of the academic journals  

This Chapter contains the Journal Impact Factor (JIF), the JIF percentile and the associated quartile 

of the journals in which the publications derived from this thesis have been published. These 

figures are obtained directly from Web of Science (WoS), which is the official provider of the 

Journal Citation Reports (JCR).  

 

Article 1: Crisóstomo, R. (2018): Speed and biases of Fourier-based pricing choices: a numerical 

analysis. International Journal of Computer Mathematics, 95:8, 1565-1582. 

https://doi.org/10.1080/00207160.2017.1322691 

 

 

The International Journal of Computer Mathematics has a 2020 JCR impact factor of 1.931, and it is 

located in the 70th JIF percentile, which corresponds to the second quartile (Q2) of the JCR 

category Applied Mathematics (SCIE). 

The impact factor of the International Journal of Computer Mathematics has increased steadily 

since the publications of Crisóstomo, R. (2018), starting at 1.196 in 2018 and reaching 1.931 in the 

last JCR report. This article has received 9 citations (Google Scholar) up to March 2022. 

 

  

https://doi.org/10.1080/00207160.2017.1322691
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Article 2: Crisóstomo, R. and Couso, L. (2018), Financial density forecasts: A comprehensive 

comparison of risk‐neutral and historical schemes. Journal of Forecasting 37: 589-603. 

https://doi.org/10.1002/for.2521 

 

 

 

The Journal of Forecasting has a 2020 JCR impact factor of 2.306, and it is located in the 62th JIF 

percentile, which corresponds to the second quartile (Q2) of the JCR category Economics (SSCI). 

The impact factor of the Journal of Forecasting has increased steadily since the publications of 

Crisóstomo, R. and Couso, L. (2018), starting at 0.816 in 2018 and reaching 2.306 in the last JCR 

report. This article has received 4 citations (Google Scholar) up to March 2022. 

 

  

https://doi.org/10.1002/for.2521
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Article 3: Crisóstomo, R. (2021). Estimating real-world probabilities: A forward-looking behavioral 
framework. Journal of Futures Markets, 41, 1797– 1823.  
https://doi.org/10.1002/fut.22248 

 

 

 

The Journal of Futures Markets has a 2020 JCR impact factor of 2.013, and it is situated in the 41th 

JIF percentile, which corresponds to the second quartile (Q3) of the JCR category Business, Finance 

(SSCI). 

The impact factor of the Journal of Futures Markets has increased in the last years, rising from 

1.291 in 2016 to 2.013 in the last JCR report. This article was published in July 2021 and has 

received 1 citation (Semantic Scholar) up to March 2022.  

  

 

 

 

 

  

https://doi.org/10.1002/fut.22248
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9 Other scientific contributions derived from this thesis  

In addition to the JCR publications included in Chapter 5, the article entitled “An Analysis of 

the Heston Stochastic Volatility Model: Implementation and Calibration using Matlab” was 

published during the formative period of this thesis. This article analyzes the implementation of 

the Heston model, tests different calibration routines, and provides an analytic description of how 

characteristic functions can be used to obtain option prices. The scientific contribution of this 

paper has been widely recognized in the academic community, and this article has received 38 

citations (Google Scholar) up to March 2022.  

The full reference of this article is the following: 

▪ Crisóstomo, R (2014): An Analysis of the Heston Stochastic Volatility Model: 

Implementation and Calibration using Matlab. CNMV Working Paper 58: 1-46. 

http://dx.doi.org/10.2139/ssrn.2527818 

  

https://dx.doi.org/10.2139/ssrn.2527818
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