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Abstract

The current trend in computer graphics applications requiring landscape rendering, such
as flight simulators, computer games and educational software, is implementing realistic

outdoor scenarios with a smooth interactive experience. Achieving real-time performance
requires powerful hardware to render the details of the landscapes in execution time. One of
the features that contributes most to realism is a cloudy sky with credible lighting and the
possibility of approaching, moving around and traversing the clouds.

Since the upcoming of computer graphics in the early eighties, engineers, physicists and
mathematicians like James Blinn, James Kajiya and Geoffrey Gardner have tried to recreate
clouds analytically with both low and high rendering detail. The low-detail models were ren-
dered in real-time in low-resolution work-stations with straightforward geometry; whereas the
highly detailed ones required considerable rendering hours in those ages due to the physically
oriented models with all meteorological equations. Nowadays, engineers demand the second
type in real-time. Achieving this feat with those models requires massive multi-core graphics
hardware that is used in the animation industry but it is expensive.

The goal of the present research is achieving a similar cloud quality with high performance
using consumer-level hardware. The research follows the ontogenetic approach that performs
cloud rendering using a high-level description to avoid the heavy calculations of physical-
mathematical models.

In the implementation of the ontogenetic method, the first problem that this thesis resolves
is the static rendering of the gaseous mass and the cloud shapes. The key contribution of this
part is using modern techniques of noise sampling along with Gaussian-optimized primitives or
randomized fractal clouds described in a formal language. The use of these novel techniques to
reproduce the irregular nature of cumuliform clouds and the effect of light-scattering with low
computing cost was crucial to achieve a quality level similar to other high-computing methods.

The second problem that this thesis deals with is the dynamic behaviour of cloud masses
when they are affected by pressure and wind advection. A novel utilization of multi-core
hardware for the simulation of the atmospheric fluid together with simplified algorithms of
animation improve the realism in cloud deformation and translation.

In summary, this thesis demonstrates, from empiric and image quality benchmarks, that it is
possible to accomplish real-time cloud rendering without expensive hardware elements and with
an optimum balance between realism and performance. Besides, the actual implementation
provides a reusable framework for the graphics industry.
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Resumen

La tendencia actual en aplicaciones que requieren paisajes sintéticos, tales como simuladores
de vuelo, videojuegos y software educativo, es implementar escenarios realistas con una

fluida experiencia interactiva. La interacción en tiempo real requiere un equipamiento hardware
muy potente para recrear el paisaje detallista en tiempo de ejecución. Una de las características
que más contribuye al realismo es un cielo nuboso con una iluminación verosímil y con la
posibilidad de acercarse, girar y atravesar las nubes.

Desde el surgimiento de los gráficos por computador a comienzos de los años ochenta,
ingenieros, físicos y matemáticos como James Blinn, James Kajiya y Geoffrey Gardner han
conseguido recrear el efecto de las nubes de forma analítica con bajo y alto detalle. Los mod-
elos de bajo detalle funcionaban en tiempo-real en estaciones de trabajo con poca resolución
utilizando geometría básica; mientras que los modelos de alto detalle requerían un elevado
número de horas de cálculo en aquella época. Actualmente, los ingenieros precisan la segunda
opción en tiempo-real. Para alcanzar este requisito se precisan tarjetas gráficas multinúcleo
masivas que se usan en la industria de la animación pero es una solución cara.

El objetivo de esta investigación es conseguir una calidad de nubes parecida usando tarjetas
gráficas al alcance de cualquier usuario. La investigación utiliza una aproximación ontogenética
para la creación de las nubes usando un alto nivel de descripción para evitar los pesados cálculos
de los modelos físico-matemáticos.

A partir de la citada aproximación ontogenética, el primer problema que aborda la tesis es
la representación estática de las masas gaseosas y las formas de la nube. La contribución clave
de esta parte es usar técnicas modernas de muestreo de ruido junto con primitivas adaptadas
a las formas Gaussianas o de geometría fractal basada en lenguajes formales. La utilización
de esta novedosa técnica para representar la naturaleza asimétrica de los cúmulos y el efecto
de la dispersión de la luz con baja carga de cálculo ha sido crucial para alcanzar un nivel de
calidad similar al de otros métodos con gran carga de computación.

El segundo problema que se aborda es el comportamiento dinámico de las masas nubosas
cuando están afectadas por la presión y las corrientes de advección. La innovadora utilización
del hardware gráfico para la simulación de fluidos junto con un algoritmo de animación sim-
plificado permite mejorar el realismo de la deformación y la traslación de la nube.

Como conclusión, esta tesis demuestra, a partir de pruebas empíricas y de calidad de
imagen, que es posible realizar una generación de nubes de alta calidad en tiempo-real en
tarjetas gráficas convencionales con un óptimo balance entre realismo y rendimiento. Por otro
lado, la implementación realizada proporciona una plataforma reutilizable para la industria de
los gráficos por ordenador.
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CHAPTER 1
Introduction

1.1 Thesis overview

Realistic and dynamic rendering of clouds, as seen in Figure 1.1, has become very valuable
for applications such as computer games featuring outdoor scenarios, flight simulation

systems and virtual reality environments. However, physics-based models of clouds need to
solve the Navier-Stokes fluid dynamics equations and complex photorealistic radiometric func-
tion for lighting effects. This kind of model is usually employed in commercial films and are
not practical for real-time software applications using graphics processing units (GPUs).

Figure 1.1. Example of clouds that the method is intended to develop.
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For instance, the work of Kallwet et al. [Kal+17] at Disney Research provides a reference
for highly realistic cloud rendering with a considerable amount of physics and calculations
through the use of neural networks. On the other hand, particle-based systems (often used at
the beginning of this millennium) are helpful in attaining accurate meteorological simulation
systems, which implies many burdensome physical calculations as demonstrated in the works
of Harris [Har+05] and Huang et al. [Hua+08]. However these previously cited systems lack
the realism and animation effects of the research of sky domes by Mukina et al. [MB15].

As an alternative approach, this thesis proposes efficient methods for atmospheric cloud
shape generation using a deformable geometry, called pseudospheroid, which produce the
stochastic and irregular patterns of natural phenomena. Therefore, the utilization of a non-
quantitative amount of pseudospheroids will serve as a baseline for a novel and simple method
of primitive animation, resulting in effective realism.

One of the main features of this work is the possibility of approaching, manoeuvring around,
and passing through gaseous cumuliform clouds by the use of volumetric rendering, whereas
other implementations (see [MB15]) do not allow this characteristic; nevertheless, these kinds
of models are being used in commercial products such as Lumion 1.

The methods of this thesis are performed using the raytracing technique, based on the
work of Arthur Appel [App68] and Turner Whitted [Whi79] that has become useful in volu-
metric rendering. Raytracing requires many hours of primary and recursive calculations, which
is a drawback for real-time process. For this reason, the investigation makes use of a multi-
core processing approach that has arisen in recent years and the possibility of optimizing the
complexity of the algorithm related to lighting and dynamic rendering with GPU and central
processing unit (CPU) programming techniques.

The advantage of implementing raytracing based on a GPU multicore is the fast generation
of a frame in which hundreds or thousands of threads process the rays departing from each
pixel of the screen 2D matrix. This method constitutes a new paradigm of computer graphics
drawing that differs from the classic "putpixel". Thus, this original method is applied to
generate volume rendering of clouds with sufficient realism.

In addition, both CPU and GPU multicores are used to create and implement a reductive
version of a fluid mechanic system for cloud movement with very good performance and
realistic results.

Though the GPU provides volumetric rendering calculations, it faces the problem of gen-
erating the smooth, fuzzy and frayed texture of clouds. Hence, the density of water vapour
inside a cloud is simulated by applying a base algorithm to generate a gaseous body inside
implicit surfaces.

To maximize the performance of the precomputing phase, an original algorithm is used to
prevent duplicate raytracing inside overlapping volumes, which is called no duplicate tracing

1https://lumion.com/
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(NDT). This approach achieves fewer loop iterations by discarding the overlapping parts of
spheres and reduces the computing times by half, so it is used in the light precomputation
phase (shadowing).

Regarding cloud radiometry research, the methods developed by distinguished authors are
abstracted to generate a new and simplified but fast model of cloud lighting and scattering to
be applied in this volumetric system.

The use of boundary representations based on Smits’ algorithm [Smi02] for the raymarched
volume, along with Euclidean equations for ray-spheroid collision detection, allows for minimal
linear complexity when searching for primitives, therefore avoiding the use of hard-to-code
space partitioning algorithms.

An improved cumulus cloud generation algorithm based on the Gaussian distribution sim-
ulates the stochastic nature of clouds with a new method for flattening the bottom side. To
facilitate landscape designers’ tasks, the method makes use of L-system fractal grammars, in-
vented by Aristid Lindenmayer [PL96], to generate a great variety of cloud shapes according to
the formal language random parameters in a creative fashion. Additionally, an innovative so-
lution is provided to wrap mesh triangles in an smooth way by triangulating three-dimensional
models, obtained from standard editors, to produce cloud shapes with recognizable features
of entities.

Complexity analysis of the different algorithms is performed in the results and benchmarks
sections of this thesis, which demonstrate that there are more benefits than disadvantages in
comparison to other particle-based and slow, hyperrealistic implementations. As a result, the
algorithms of this thesis are suitable for application in the graphics industry.

Finally, there are several commercial libraries and frameworks to include cloud rendering
in custom projects. Two of the most powerful (but expensive) solutions are Silverlining 2 and
TrueSky 3, which provide a complete and flexible software development kit (SDK) for OpenGL
and DirectX with rain, snow and all kinds of cloud rendering. As a counterpart, my cloud
framework is released as Creative Commons Attribution Share-Alike (CC-BY-SA) and General
Public License (GPL) open and free software.

2https://sundog-soft.com/
3http://www.simul.co.uk/truesky/
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1.2 Research objectives

The present thesis contributes to the computer graphics research field, especially in the
volumetric rendering of atmospheric clouds by the use of specialized multicore graphics
hardware. As a consequence, the hypothesis of this thesis is that it is possible to generate
new algorithmic models for cloud rendering with an optimum balance between realism and
performance to be applied in the entry level graphics industry. For this purpose, a higher
level of abstraction of physics (radiometry and fluids) and maths (geometry, statistics, and
fractals) is used to achieve higher performance in custom hardware equipment.

The following specific objectives detail the scope of the present research for the work
described in this thesis:

• Analysing the state of the art of offline and online cloud rendering systems from a critical
point of view.

• Studying all the maths and physics involved in natural cloud phenomena and generating
models of representation.

• Increasing the level of abstraction in a spiral lifecycle until reaching an optimum balance
between realism and performance.

• Providing a reliable solution to be deployed algorithmically in commercial software and
hardware.

• Designing new features at the algorithmic level.

• Meeting the requirements of the static and dynamic rendering of clouds.

• Incorporating a C++ and GLSL (OpenGL Shading Language) shader application into
the previous models.

• Debugging and optimizing the algorithms to speed up the application.

• Creating a user-friendly object oriented framework for advanced C++ users.

• Benchmarking the algorithms and the applications to confirm the initial hypothesis.
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1.3 Thesis synopsis

This document is intended to demonstrate that the work is correct from the initial hypoth-
esis to the satisfactory conclusions to state the thesis, since the scientific method has been
applied along the research. This work is divided into four main parts as seen in Figure 1.2:
The first part is an overview of basic theory and a review of the state of the art. The second
part focuses on cloud rendering and radiometry implementation, and the third part provides
a complete study of atmospheric fluids for the cloud animation. The final part deals with the
results and benchmarks.

Thesis document



Part I



Chapter 2



- Raytracing technique
- GPU programming technology
- Parallel programming basics
- Cloud theory
- Cloud physics
- Fluid dynamics

Chapter 3

 - History of cloud rendering
- State of the art
- Main contributions

Part II



Chapter 4


- Noise generation
- Basic algorithm
- Pseudospheres
- Bounding-box improvement

Chapter 5


- Radiometry reference models
- Lighting model
- Scattering

Chapter 6

 - Gaussian cumulus
- Fractals
- Clouds from 3D meshes

Part III


Chapter 7



- Fluids reference model
- CPU implementation
- CUDA implementation
- Guide points
- Deformation
- Morphing

Part IV



Chapter 8
{
- Complexity analysis
- Benchmark tests

Chapter 9

 - Discussion
- Conclusions
- Future work

Figure 1.2. PhD thesis schema
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• PART I (Basic theory and state-of-the-art techniques)

– Chapter 2: This chapter introduces the basic theoretical background related to
computer graphics techniques, volumetric rendering and GPGPU parallel program-
ming. It also explains the basics of cloud theory and atmospheric physics.

– Chapter 3: In this chapter is provided a summarized list and explanation of the
main contributions of the work, the history of clouds in computer graphics and the
current state of the art of cloud rendering.

• PART II (Cloud static rendering, texture generation and radiometry)

– Chapter 4: This chapter provides the basic concepts, the approach for cloud texture
generation and the basic algorithm to render clouds using a GPU. This chapter also
explains the equations of pseudospheres and the improvement with Smits’ algorithm.

– Chapter 5: This chapter details all the concepts and contributions for cloud lighting
and scattering and the work performed for speeding up implementation.

– Chapter 6: The second part finalizes describing the cloud shape generation ap-
proach with the use of statistics, fractals and 3D-model-based clouds.

• PART III (Cloud dynamics)

– Chapter 7: This part is dedicated entirely to cloud dynamics and the contribution
to speed up fluid dynamics in cloud rendering with multicore GPUs by using new
animation techniques.

• PART IV (Results, discussions, conclusions and future work)

– Chapter 8: This chapter reports the results of empirical and theoretical studies to
evaluate the proposed algorithms by providing benchmarks and complexity analysis
of the heuristics.

– Chapter 9: This chapter synthesizes all the previous content and metrics, com-
paring the results to those of previous work, providing objective and enlightening
conclusions and proposing future lines of investigation.
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1.4 Research contributions

This section exposes the main contributions to the scientific field, the software developed
for other users, the published papers and other research activities.

1.4.1 Main contributions

The following are the contributions of the present work to the state-of-the-art in the
generation of naturally-looking clouds. The ideas below have not been used in any prior work:

• New method to generate the geometry of the cloud based on a minimal primitive known
as pseudosphere that is replicated following different algorithms depending on the desired
shape.

• Lightweight pre-computing of shape and lighting in the CPU and GPU to minimize
the load on processors with efficient volumetric rendering for light transmission and
scattering.

• Filtering algorithms to remove unnecessary computation caused by duplicate or void
ray tracing outside camera frustum, excessive level of detail and superfluous volumetric
rendering that has no contribution to realism.

• Three innovative methods to generate the geometry of the cloud: Gaussian generator
for cumulus, L-system generator for formal description of artistic cloud shapes and novel
equations to produce clouds resembling known shapes described by 3D meshes.

• Minimal data transfer from CPU to GPU, limited to a single 643 single-precision floats
hypertexture post-processed in the GPU to produce more realistic Fractional Brownian
Motion (fBm) noise.

• A new approach of cumuliform cloud dynamics based on the GPU and CPU load distri-
bution to solve the Navier-Stokes fluid dynamics equations with high performance and
reliable results.

7
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1.4.2 Publications

The research achievements were published in two journals as the following papers:

• Efficient Algorithms for Real-Time GPU Volumetric Cloud Rendering with Enhanced
Geometry. Carlos Jiménez de Parga and Sebastián Rubén Gómez Palomo. Symmetry.
2018, Volume 10, Issue 4, Pages 1-25. JCR-Q2.
doi:10.3390/sym10040125

• Parallel Algorithms for Real-Time GPGPU Volumetric Cloud Dynamics and Morphing.
Carlos Jiménez de Parga and Sebastián Rubén Gómez Palomo. Journal of Applied
Computer Science & Mathematics. Issue 1/2019, Pages 25-30, ISSN: 2066-4273, The
journal is ranked as B+ by the Romanian Council for Academic Research (CNCSIS).
doi:10.4316/JACSM.201901004

1.4.3 Nimbus framework and other software tools

All the software developed throughout the thesis is published at http://www.
isometrica.net/thesis/ in a dedicated web page that includes the following:

• The Visual C++ and GLSL implementations of the algorithms and models for real-time
cloud rendering with GPU as the Nimbus framework within executable demonstrations.

• MATLAB code of prototypes and complexity analysis.

• Decimated 3D meshes of the Blender editor.

1.4.4 Conferences

The aim of the investigation is to translate the results and experiences to the scientific
community. With this reason in mind, I attended the Congreso Español de Informática Gráfica
2019 (CEIG 2019) to present a poster about the investigations described in this thesis.
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1.5 Research quality

One of the problems in checking the accuracy of the produced model is the quality. The di-
mensions of the quality are enumerated in the work of Sebastián, Bargueño and Novo [SBN94]
as follows: features, differentiation, reliability, compliance, lifespan, technical assistance, and
aesthetic. Each of these dimensions is detailed in the thesis as follows:

• Features: The aim is to achieve the maximum numbers of characteristics and benefits
by considering efficiency, user friendliness and frames per second (FPS).

• Differentiation: This aspect comprises the secondary features of the product. In this
case, the aim is to develop an object-oriented (OO) framework, a rotation axes, an
L-system interpreter and a debug information log screen.

• Reliability: The code (white-box testing) is revised, and the application is debugged
by searching for memory leaks and removing C++ warnings at level three. In addition,
the framework is checked against different graphics hardware by performing stress tests
(black-box testing).

• Compliance: The source code satisfies ISO C++11 compliance, and the programming
guide style conforms to Java Sun/Oracle standards.

• Lifespan: According to thesis design precepts, the application and the framework are
intended for a long lifespan.

• Technical Assistance: The technical assistance is managed by the author via the web
page at http://www.isometrica.net/thesis/. This website provides email feedback
and numerous details about the Nimbus framework to users.

• Aesthetic: Although this dimension is relatively subjective, it is very important in this
thesis. For this reason, the aim is to achieve the maximum degree of cloud rendering
realism while not overloading the system. To satisfy this dimension, morning/afternoon,
sunset/dusk, starry night, and daytime landscapes are also implemented.

9
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1.6 Summary

This chapter is a brief introduction to the forthcoming sections that will be presented in
this document. Thus, in Section 1.1 a basic overview of the research is provided, presenting
all the facets related to the problem of cloud rendering in offline and real-time systems and
the purpose of the present investigation. In Section 1.2, the main research objectives and the
hypothesis to verify them are enumerated, whereas Section 1.3 schematizes all the contents
that will be explained in this thesis document. In Section 1.4, the main contributions to the
computer graphics field and all the publications written during this thesis along with other
activities are listed. Finally, in Section 1.5, the research quality taken into account to evaluate
a work of this magnitude is discussed.

10
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Theoretical background

This chapter briefly explains the theoretical aspects related to the required technology for
cloud rendering. Thus, in Section 2.1 the main concepts to understand the raytracing

technique are introduced in addition to the two derived variants based on the reference algo-
rithm. Section 2.2 is an overview of the basic technique used in this thesis to generate the
three-dimensional volume with the application of raycasting and its optimization strategies
used in this thesis.

Section 2.3 explains the basic components of a GPU graphics rendering pipeline (fixed
and programmable) and the hardware background of graphics devices from the first emerging
systems to the most recent ones. Section 2.4 is an overview of parallel architectures and the
essential parallel programming metrics.

In Section 2.5, the Compute Unified Device Architecture (CUDA) is explained in all its
essential parts. Section 2.6 is a brief reference about CUDA parallel programming used in the
present work.

This chapter also reviews the main concepts and formulas about cloud and atmospheric
physics. In Section 2.7, a brief introduction to cloud formation is explained, and in Section
2.8, a classification of cloud types is presented. Then, in Section 2.9, a concise explanation
of the main meteorological equations of cloud generation is introduced to provide a basic
understanding of the subject matter treated in this thesis. The main concepts related to
radiometry and cloud lighting theory applied to cloud rendering that have been used in this
thesis are clarified and introduced in Section 2.10. Finally, an overview of the Navier-Stokes
and momentum equations for compressible fluid flow is introduced as a base for illustrating
the cloud dynamics.

11
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2.1 Raytracing introduction

The fundamentals of raytracing were stated by Arthur Appel [App68] and Turner Whitted
[Whi79] in the last part of the twentieth century. Understanding their techniques is a starting
point to formulate an efficient algorithmic model. As seen in Figure 2.1, the essential concept
consists of tracing rays from each pixel in the frame buffer located at the camera position to
the target objects.

Light

Targets

Pixel

Euclidean ray

Figure 2.1. Raytracing basic layout with the main elements involved: view point (camera),
Euclidean rays, light source and two solids to render.

The straight lines in red exiting from the camera are called primary rays, whereas the yellow
ones are called secondary rays and are used to calculate shadows; for a mirror rendering, these
rays are used to calculate reflections. The implementations of these rays are usually recursive.
The raytracing results are returned in a frame buffer that is displayed in 2D on the screen.

Subsequently, the Euclidean parametric equation of a straight line [Gil88] is used in R3

as defined in Equation 2.1 for substitution into implicit functions of basic surfaces to obtain
collisions and proceed to calculate shading and lighting, according to the material sampling.
Although this method is easy to understand, the current commercial implementations use
accurate ray-collision methods with thousand of threads and the implementation of complex
physics theory in multicore processors. The visual results produce very high realism, albeit
incurring a high computational cost. Currently, raytracing can be implemented efficiently as a
result of modern GPUs and the following variants: raycasting and raymarching.

R≡


x = x0 +λ~vx

y = y0 +λ~vy

z = z0 +λ~vz

(2.1)

12
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Although raycasting, raytracing and raymarching are used interchangeably in the common
technical argot, their subtle differences are detailed as follows.

2.1.1 Raycasting

In raycasting, the point of intersection with a straight line is computed analytically by
using geometrical calculus. This approach is normally used along with other structures such as
voxel grids and space partitioning algorithms. The method is usually applied in direct volume
rendering for scientific and medical visualization to obtain a set of 2D slice images in magnetic
resonance imaging (MRI) and computed tomography (CT).

2.1.2 Raymarching

This method is a lightweight version of raycasting in which samples are taken down a line
in a discrete way to detect intersections with a 3D volume (Figure 2.2). The method is easy to
implement and allows adjusting the number of samples to speed up the application; however,
it lacks accurate precision rendering.

Figure 2.2. A raymarching example. The lines in green are the distance estimations between
the sampling points.

In this approach is used a mixture of raycasting and raymarching for the optimization of
resources as will be seen in later sections.

13
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2.1.3 Collision detection in raytracing

The analytical part of the cloud rendering model is based in the resolution of the intersection
between the ray defined in Equation 2.1 and the implicit equation of a sphere as described in
Shirley’s book [SK03]. Let

(x− cx)
2 +(y− cy)

2 +(z− cz)
2 = R2 (2.2)

be the implicit equation of a sphere. We can rewrite this same equation in vector form as:

(p− c) · (p− c) = R2 (2.3)

If we assume the vector form of Equation 2.1 as p(t) = o+ λ~v and substitute it into
Equation 2.3, we obtain:

(o+λ~v− c) · (o+λ~v− c) = R2 (2.4)

Moving the terms around yields

(~v ·~v)λ 2 +2~v · (o− c)λ +(o− c) · (o− c)−R2 = 0 (2.5)

Equation 2.5 constitutes a classic quadratic equation in λ :

Aλ
2 +Bλ +C = 0; (2.6)

It is known that this equation has two solutions:

λ =
−B±

√
B2−4AC

2A
(2.7)

where the discriminant is:

∆ = (2~v · (o− c))2−4(~v ·~v)((o− c) · (o− c)−R2) (2.8)

Finally, Equation 2.8 is used to detect the collision as the next entry details:

14
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1 Vector3 dir(0, 0, -1); // Ray direction vector
2 Image image(1200, 600); // Target image

// Iterate over the pixels of the discrete surface
3 for i← 0 to image.width do
4 for j← 0 to image.height do
5 λmax← 99999
6 isCollision← f alse
7 Ray ray(Vector3(i, j, 0), dir) // Ray

// Iterate over the object list
8 for k← 0 to objects.size() do
9 if (objects[k].detectHit(ray, .00001f, λmax, hit)) then
10 λmax← hitλ
11 isCollision← true
12 end
13 if (isCollision) then
14 image.setpixel(i, j, hit.colour); // Object colour
15 end
16 else
17 image.setpixel(i, j, RGB(0,0,0)); // Background colour
18 end
19 end
20 end
21 end
22 image.writeImage()

Algorithm 2.1: Basic algorithm to implement raytracing.

2.2 Volumetric rendering

Many visual effects are volumetric in nature and are difficult to model with geometric
primitives, including fluids, clouds, fire, smoke, fog and dust. Volume rendering is essential for
medical and engineering applications that require visualization of three-dimensional data sets
[Iki+04]. There are two methods for volumetric rendering:

• Texture-based techniques

• Raycasting-based techniques

The texture-based techniques are easily combined with polygonal algorithms, require only
a few rendering passes, and offer great efficiency and quality. The second type of technique is
based on simplified and optimized raytracing and is the method used in this thesis.

2.2.1 Texture-based volume rendering

Texture-based volume rendering techniques perform the sampling and compositing steps
by rendering a set of 2D geometric primitives inside the volume, as shown in Figure 2.3. Each
primitive is assigned texture coordinates for sampling the volume texture. The proxy geometry
is rasterized and blended into the frame buffer in back-to-front or front-to-back order. In
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the fragment shading stage, the interpolated texture coordinates are used for a data texture
lookup step. Next, the interpolated data values act as texture coordinates for a dependent
lookup into the transfer function textures. Illumination techniques may modify the resulting
colour before it is sent to the compositing stage of the pipeline [Iki+04].

Bounding-box

SAMPLING PLANES

Figure 2.3. View-aligned slicing with three sampling planes.

2.2.2 Volume visualization with raycasting

As cited by Pawasauskas [Paw97], «raycasting is a method used to render high-quality
images of solid objects which allows visualizing sampled functions of three dimensional spatial
data. It does not attempt to impose any geometric structure on it. It solves one of the most
important limitations of surface extraction techniques, namely the way in which they display
a projection of a thin shell in the acquisition space. Surface extraction techniques fail to take
into account that, particularly in medical imaging, data may originate from fluid and other
materials which may be partially transparent and should be modelled as such. Raycasting
doesn’t suffer from this limitation».

Most raycasting methods are based on Blinn/Kajiya models as illustrated in Figure 2.4.
Each point along the ray calculates the illumination I(t) from the light source. Let P be a
phase function to compute the scattered light along the ray and D(t) be the local density of
the volume. The illumination scattered along R from a distance t is:

I(t)D(t)P(cosθ) (2.9)

where θ is the angle between the view point and the light source.

The inclusion of the line integral from point (x,y,z) to the light source may be useful in
applications where internal shadows are desired.

The attenuation due to the density function along a ray can be calculated as Equation
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L

t
(x,y,z)

t1

t2

R

Figure 2.4. A ray cast into a scalar function of a 3D volume.

2.10:

e
−τ

∫ t2

t1
D(s)ds

(2.10)

where τ is a constant that converts density to attenuation.
Finally, the intensity of the light arriving at the eye along direction R due to all the elements

along the ray is defined in Equation 2.11:

B =
∫ t2

t1
e
−τ

∫ t

t1
D(s)ds

(I(t)D(t)P(cosθ))dt (2.11)

Since raycasting is implemented as a raytracing variation, involving an extremely compu-
tationally intensive process, one or more of the following optimization processes are usually
incorporated:

• Bounding boxes

• Hierarchical spatial enumeration

• Adaptive termination

Since bounding boxes will be explained in Chapter 4, we limit the discussion here to a brief
explanation of the last two optimization methods.

In hierarchical spatial enumeration, the volume is recursively subdivided in the tree nodes in
a method called Octree as seen in Figure 2.5. The identification of visible surfaces is performed
by exploring the tree from front to back. Each node contains 8 child subnodes. The objective
of this data structure is to search for objects in 2D/3D space in logarithmic time. The use
of octrees in computer graphics, which has been applied worldwide, was invented by Donald
Meagher at Rensselaer Polytechnic Institute [Mea80].
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Figure 2.5. Octree subdivision.

In the adaptive termination method, the goal is to quickly identify the last sample along
the ray that changes the colour of the ray significantly. This colour is usually one in which
Cout−Cin > ε for some small ε > 0. Therefore, when α exceeds 1-ε , the colour does not vary
significantly. «Higher values of ε reduce rendering time, while lower values of ε reduce image
artifacts producing a higher quality image» [Paw97].

2.3 GPU rendering pipeline

Since the emergence of computers, it has been useful to display data results on a visual
device. The display hardware was integrated in the motherboard in the first systems and
essentially consisted of a single chip that transformed data bytes to pixels on the screen. This
step was performed by a random-access memory digital-to-analogue converter (RAMDAC) that
converted a digital data to an electronic signal. The pioneer systems were monochromatic or
green-phosphor based; later there emerged new external hardware in the form of graphic cards
that connected to the motherboards via bus slots. Figure 2.6 illustrates the basic graphics card
with its components: the video graphics array (VGA) graphics controller with all the digital
logic to govern the data processing; the basic input output system (BIOS) with basic software
for system handling; the video random access memory (VRAM) with the image data in octets;
the RAMDAC and the external connectors to the screen display monitor. This first graphics
devices worked only with a 2D matrix array, which received the data coming from the CPU
for every frame. This simple pipeline is illustrated in Figure 2.6.

In recent years, a new type of graphics card has been developed in the industry. Recent
GPUs contain advanced chips to perform fast geometry and vectorial calculations (Figure 2.7)
per vertex in addition to the inclusion of a programmable pipeline, as we will see in Section
2.3.1.
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Figure 2.6. A VGA card basic block diagram (1989-2002).
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Figure 2.7. A GPU-based graphics card block diagram (2002 to present).

The basic graphics pipeline is divided in three differentiated parts as seen in Figure 2.8.

Figure 2.8. General pipeline layout.

The application part is associated with the graphics algorithms executed in the CPU,
whereas the geometry part deals with vertices and transformations and, finally, the rasterization
process fills in and filters the polygon textures. Section 2.3.3 details these parts.
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2.3.1 Fixed pipeline

Essentially, the pipeline consists of a pipe into which some data are inserted into one
end (vertices, textures, shaders) to travel through processors that perform very precise and
concrete operations to produce the final render.

In the early OpenGL/DirectX years, the graphics pipeline was completely fixed, meaning
that the data always went through the same process, in the same order in a deterministic
mode.

The following is a simplified representation of the fixed pipeline, showing the data flow
through the diagram block in Figure 2.9 [Rod13].

VERTEX DATA

Transform and Ligh�ng

Model Space

World Space

Clip Space

Clipping

Perspec�ve division

Viewport transform

Geometry stage
(Per vertex)

R
A
S
T
E
R
I
Z
E
R

Fixed Texture Stage Textures

FRAMEBUFFER

Per fragment processing

Stencil test

Alpha test

Scissor test

Depth test

Blending

Figure 2.9. Fixed graphics pipeline (2002 and earlier).

This kind of pipeline was very popular in 2002 and earlier with the OpenGL 1.x and
DirectX/Direct3D 9 previous versions.

2.3.2 Programmable pipeline

«Between the years 2002 and 2004, some kind of programmability inside the GPU was
made available, replacing some of the stages seen in Figure 2.9. The first shaders programs
consisted in a specific pseudoassembler language for each graphics vendor. Some of these
primitive languages were Cg (from nVidia) or HLSL (from Microsoft), but they were platform
specific.

During the year 2004, some companies realized the need for a high-level multi-platform
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shader language. Once of the solutions was the OpenGL Shading Language (GLSL) which
replaced two pieces of the fixed pipeline: the vertex processing unit, which took care of
transform and lighting, and the fragment processing unit which was responsible for assigning
colors to pixels. Those new programmable units were called vertex shaders and fragment
shaders respectively» (Figure 2.10) [Rod13].

VERTEX DATA

Vertex Shader

Clipping

Perspec�ve division

Viewport transform

Geometry stage
(Per vertex)

R
A
S
T
E
R
I
Z
E
R

Fragment Shader Textures

FRAMEBUFFER

Per fragment processing

Stencil test

Alpha test

Scissor test

Depth test

Blending

Textures

Geometry Shader

Compute Shader

Fragment  Stage
(Per fragment)

Figure 2.10. Programmable graphics pipeline (2004 to present).

2.3.3 The graphics rendering pipeline

Next, the programmable pipeline modules are explained in a summarized way.

2.3.3.1 Geometry stages

This discussion focuses on the transformation of the vertex data from the model coordinate
systems to the viewport coordinate systems.

• Vertex Data: This is the input data of the geometry to render: vertices, normals,
indices, tangents, binormals, texture coordinates, and so on.

• Textures: This input is usually either 2D or 3D textures to fill in or receive some other
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processing step.

• Vertex shader: This system is responsible for the transformation of the vertices from
their local coordinate system to the clip space, applying transformation matrices.

• Geometry shader: Using vertex shaders as inputs, this component generates new
composite geometries.

• Clipping: This part discards the outer geometry outside the clipping space that does
not fall in the view range.

• Perspective division: This operation converts the frustum (a truncated pyramid) into
a regular and normalized cube.

• Viewport transform: The near plane of the normalized cube is translated and scaled
to the viewport coordinates (screen).

• Rasterizer: This stage transforms vectorial data to a discrete representation to be
processed in the next phase.

2.3.3.2 Fragment stages

This stage is responsible for rasterizing the transformed geometry for presentation on the
screen.

• Fragment shader: In this module, textures, colours, and lights are calculated. This
module is relied on intensively in this thesis.

• Post-fragment processing: This part calculates basic image operations such as blend-
ing, the depth test, the scissor test, and the alpha test. Finally, the results are written
to the framebuffer.

2.3.3.3 External stages

Outside of the previous large blocks lies the compute shader stage. This stage can be used
to control other programmable parts of the pipeline.

2.3.4 Use of the different shaders

Shaders are the programmable units used to control rendering. They act as rendering
routines ready to respond to a frame iteration call. In GLSL, the shaders are written in a
C-based programming language and are classified into the following types [Rod13]:
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• Vertex shaders: With this kind of shader, we can transform the geometry by applying
the model, view, and projection matrices to each vertex. In addition, the shader can be
applied to evaluate noise, calculate normals, and evaluate texture coordinates. It is one
of the most important shader types.

• Fragment shaders: This shader fills in each part of the primitive area according to a
red-green-blue (RGB) colour and transparency. This shader is the most important piece
in this thesis since processing a quad of 1200× 600 pixels implies a total retrace and
calculation of 720.000 calls to this shader. In reality, a fragment shader is executed
millions of times, so the optimization process in a fragment shader is critical. Appendix
A and Appendix B provide examples of GLSL fragment shaders.

• Geometry shaders: This shader builds new basic rendering primitives starting from the
output of the vertex shaders.

• Compute shaders: This shader can be written to augment the vertex, fragment, or
geometry shaders. It controls the programmable pipeline as seen before.

This thesis makes use of vertex shaders and fragment shaders exclusively.

2.4 GPGPU parallel programming

In addition to the programmable graphics rendering capability of a GPU, one of the most
significant applications of this technology regards multicore parallel programming with the aim
to solve complex problems that are difficult to accommodate with a single CPU computer.
Currently, the scope of general-purpose computing on graphics processing units (GPGPU)
reaches as far as the fields of big data, fluid simulation, pharmaceuticals, medicine (genome,
image diagnosis), engineering, seismology, climate change, financial and economic modelling,
etc.

2.4.1 Introduction

Several decades ago, software was always written in a serial manner, according to structured
programming paradigms. The objective of the serial code was execution in a computer with
a single CPU, where the problem was divided in discrete parts of instructions executed one
by one. In contrast, in parallel programming, the problem is divided into computational parts
with the aim of being executed in several CPUs. This discrete parts are solved concurrently,
and each part is divided into a set of instructions ready to be executed simultaneously in
different processing units. Thus, the computing time is much shorter because the problem is
separated into individual parts. Each of these parts can be considered program units executing
themselves in parallel.
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2.4.2 Parallel computing metrics

One of the most studied parameters in parallel programming is the concept of speedup.
If we consider ts as the time to execute an algorithm sequentially and tp as the time of the
parallel version, the speedup is defined as the ratio Sup =

ts
tp
. In theory, the speedup is less or

equal to p; in other cases, these constraints contradict the previous definition. Sometimes the
speedup is greater than p, which is called superlinear speedup.

Another important parameter is efficiency, which measures the useful time of the processing
time and is defined as:

E =
Sup

p
=

Ts

pTp
(2.12)

where p is the number of processors.
However, according to Amdahl’s law, in most systems the speedup does not grow linearly

but tends to saturate. As a consequence, the system efficiency decreases when the number
of processors is high, as shown in Figure 2.11. Another consequence is that the speedup and
efficiency increase as long as the size of the problem grows [Dor+03].
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Figure 2.11. A graphical representation of the consequences of Amdahl’s law.
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2.4.3 Brief history of parallel computing

The history of parallel computing is interleaved with general computing history. It is certain
that the origin of computing dates from the use of abacus 5000 years ago. Parallel computing
in particular may be established in the middle of the twentieth century with the development
of the first second-generation transistor-based computer.

In 1958, Gill stated the bases of parallel programming, and one year later, Holland proposed
the possibility of executing a set of programs simultaneously. In 1963, Conway described a
parallel computer design and its programming.

It was in 1981 that the first commercial parallel system appeared, the Butterfly, distributed
by BBN Computers Advanced. This system was capable of dividing the workload across 256
Motorola 68000 processors interconnected through a multistage network of 500 kB of memory.
Thirty-five machines were sold, mostly to universities and research centres [Dor+03].

In the 1980s and early 1990s the golden age of parallel programming began, specifically
data level parallel programming. Among the most prominent architectures the Connection
Machine, MasPar and Cray can be listed, as well as very expensive and powerful mainframes.
This environment led to a dark age of parallel computing since this powerful equipment was
very difficult to sell. The solution was to replace these expensive machines with massive parallel
clusters and grids.

In recent years, the performance of parallel computing has significantly increased according
to Moore’s law. The most recent worldwide phenomenon is the democratization of parallel
programming as a result of multicore GPUs.

2.4.4 Flynn taxonomy

There are several types of parallel architecture classification models; one of the most used
was defined by the engineer Michael J. Flynn in 1966 and it is known as the Flynn taxonomy.

This classification distinguishes multiprocessor architectures according to two different di-
mensions: data and instructions, where each dimension has only two possible states: single
and multiple.

Here, each of these architectures is briefly explained based as discussed by Dormido, S. et
al.[Dor+03].

2.4.5 Single instruction, simple data (SISD)

In this classification falls most sequential computers used nowadays such as PCs and work-
stations. Instructions are executed sequentially, but they can rely on segmentation and more
than one calculation unit. This approach makes use of only one control unit that governs all
the instructions (Figure 2.12).
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Figure 2.12. (a) SISD.

2.4.6 Single instruction, multiple data (SIMD)

In this kind of parallel architecture, all units execute the same instruction per clock cycle,
and each one operates over a different part of the data. This architecture is suitable for image
and graphics processing. Included in this classification are matrix processors in which more
than one processing unit works over different data flows in vector form (Figure 2.13).
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Figure 2.13. (b) SIMD.

2.4.7 Multiple instruction, single data (MISD)

In this architecture, several processing units operate over the same data flow (Figure 2.14).
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Figure 2.14. (c) MISD.
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2.4.8 Multiple instruction, multiple data (MIMD)

Into this category fall most multiprocessor and multicomputer systems, in which each
program is executed in a different processing unit. This state implies an interprocessor coor-
dination since all the data flows are obtained from a shared memory space. Each processor
works independently. The great advantage of SISD versus MIMD is that SISD requires less
hardware since it needs only one control unit. In an MIMD model, each unit executes a copy
of the program in an operating system. One advantage of MIMD is that it is compatible with
conventional PCs (Figure 2.15).
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Figure 2.15. (d) MIMD.

The specific multiprocessor is built with a shared memory system and has access to the
same physical directions. Each memory modification is visible to other processors through
a interconnection network in a bus configuration. On the other hand, multicomputers use
distributed memory configuration and communicate each other via messages passing through
a fast Ethernet LAN network with switches. This system is typically implemented in hetero-
geneous PC or workstation networks called clusters.

2.5 CUDA architecture

In November 2006, nVidia introduces the Compute Unified Device Architecture (CUDA)
with the presentation of the GeForce 8800 model. Since then, many models have arisen in the
market, such as Tesla and Quadro. These models are very similar but contain different bus
bandwidths, memory, cores and registers.

The new nVidia GPUs were built from a basic constructive block replication. The main
advantage of the new multicore GPUs is based on a hardware mapped thread hierarchy with
an efficient and transparent parallelism. Beside this aspect, this framework allows the creation,
planning and transparent execution of thousands of threads concurrently.

Once of the advantages of the multicore GPUs is the reduction of workload in the CPU
since this workload is sent to the previous one. Currently, the use of CUDA is in great demand
in computer graphics and videogames and—more broadly—has been applied in the scientific

27



CUDA architecture Chapter 2

and engineering areas as a form of general purpose processing.

2.5.1 Entering the GPGPU

The current nVidia GPUs are characterized in their massive multicore-multithread archi-
tecture. CUDA scientists and engineers have been able to increase the calculation power by a
factor of 100 in recent years.

Once of the main features of CUDA programming is the combination of host serial code
implementation along with device1 parallel code in the same program.

The execution on the device side is performed on a finite parallel thread set that acts over
a different part of the data (see Section 2.4.6). Thus, the kernel concept can be defined as a
set of multiple concurrent threads, where only one kernel is executed at a time in the device
and many threads cooperate in the kernel execution. Each thread has its own identifier to
ensure transparent parallelism over the data. There are two types of threads in CUDA:

• Physical threads: The nVidia GPU threads, where the thread creation and context in-
terchange are essentially free.

• Virtual threads: A GPU core executing multiple CUDA threads.

0 1 2 3 4 5 6 7

output[threadID] = processing 
x 8 = input[threadID]

Thread ID

Parallel 
execu�on

Figure 2.16. Parallel execution of an 8-thread group.

As seen in Figure 2.16, the eight threads perform data processing over the respective array
zone according their thread identifier.

output[threadID] = input[threadID];
syncthreads();
float xscale = output[threadID]*α 

12

3

Figure 2.17. Parallel execution of an 8-thread group with sample code.

The threads involved in part (1) of Figure 2.17 must await the other threads in the group
after their processing due to the syncthreads() primitive, part (2). Once they have been
synchronized, they operate over the output, part (3).

1From now on, we will refer to the CPU system as the host and the nVidia GPU as the device.
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Another useful term in CUDA is the concept of the block (Figure 2.18). Each block is a
group of n threads that perform a portion of the problem task. It must be considered that
the inner threads of a block can be synchronized between them, whereas the threads of the
outer blocks cannot 2. Therefore, it is considered that an implicit synchronization barrier exists
among two starting consecutive kernels. As a consequence, this independence provides great
scalability, where grids are scaled according the number of parallel cores (Figure 2.19).

Regarding the memory hierarchy, there are three types of memories in CUDA. The first one
is the local memory dedicated for each thread. This kind of memory is thread specific and lies
within the scope of a kernel function. It is the memory for the local data and is exclusively
used for operations implemented in the cited function. Second, it is the shared memory for the
threads. This memory type allows per-thread data interchange when they are executing in the
same kernel, enabling performance optimization. Finally, the global memory is room reserved
for input data storage and kernel results as explained by Sanders and Kandrot [SK10].

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

8 block grid

2 core device 4 core device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Figure 2.18. Scalability management [nVi12].

2The thread and block execution is nondeterministic.
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Figure 2.19. Example of thread and block distribution in two grids [nVi12].

2.5.2 CUDA in detail

As explained before, each thread and block has its own identifier. This way, a programmer
can decide where each part of the data is processed. Similarly to the concept of the thread
and block, CUDA provides the concept of the grid. While blocks can be unidimensional (1D)
and bi-dimensional (2D), threads can be unidimensional, bi-dimensional and three-dimensional
(3D). This approach simplifies memory addressing for multidimensional data, so it can be useful
for image processing and complex mathematics problems involving matrices.

2.5.3 CUDA hardware outline

The CUDA GPU contains N3 streaming multiprocessors, where each multiprocessor is a
set of 8 streaming processors (SPs) (see Figure 2.20). Each streaming multiprocessor creates,
plans and executes up to 24 warps3 in one or more blocks (768 threads). Thus, each warp
executes one instruction per 4 clock cycles [nVi12].

3A block is divided into 32-thread groups called warps.
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Figure 2.20. CUDA GPU hardware.

Streaming processors perform scalar operations over 32-bit single-precision integers and
floats; similarly, each one executes independent threads, though all streaming processors should
execute the instruction read by the instruction unit in every instant, according to the Single
Instruction Multiple Thread (SIMT) framework. A set of threads executes the same instruction
of the kernel in SIMT by exploiting data parallelism and to a lesser extent the tasks. Threads
are managed by the hardware and are transparent to the programmer.

2.6 CUDA programming model

2.6.1 Introduction

CUDA programs are written in a C-like style language with an extended set of keywords for
parallel programming specifics. As CUDA programming is C based, it is possible to integrate
CUDA keywords with C/C++ language instructions in the same project.

As observed in Figure 2.21, the NVCC compiler discriminates between C/C++ code and
CUDA-specific language. This process generates machine target code for the CPU and the
Parallel Thread Execution (PTX) code that is similar to pseudointermediate code. Finally, the
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Figure 2.21. CUDA compilation phases.

PTX code is translated to the specific machine code of the nVidia chip.

2.6.2 Data level parallel programming

In the data parallelism model, the instructions are oriented to operate over a data set.
This data is arranged either in arrays or cubes (three-dimensional arrays). This way, a group
of tasks collectively work over different parts of the data structure. As can be appreciated
from Figure 2.22 the main characteristic of this model is that tasks always apply the same
instructions over different parts of the array. The origin of this model is the SIMD architecture
and is the CUDA programming oriented technique.

for i = 1 to 10
{

  z(i) = x(i) * pi
   z(i)++
}

Task A

for i = 11 to 20
{

  z(i) = x(i) * pi
   z(i)++
}

Task B

for i = 21 to 30
{

  z(i) = x(i) * pi
   z(i)++
}

Task C

1 10 11 20 21 30

x

Figure 2.22. CUDA data level parallel programming example.
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2.7 Cloud formation

According to Hans Häckel [Häc06], the air contains water but in vapour form. The water
vapour is much more than «water in a gaseous state»; it is a absolutely invisible, colourless
and odourless constitutive element. When air containing water vapour comes in contact with
a sufficiently cold temperature, then small water droplets are formed in the natural process
called condensation. However, the air can contain only a certain quantity of water vapour,
the extreme condition of which is called the saturation humidity. The temperature at which
condensation is produced is termed the thermodynamic temperature of the dew point or simply
the dew point.

This previous phenomenon also happens in the atmosphere. In meteorology, the free
atmosphere is understood as the region of the atmosphere not affected by the earth’s surface.
The microscopical droplets that appear suspended in the free atmosphere become visible in the
form of clouds. However, a surface tension acts over them, which tends to shrink the droplet
surface. This mechanism increases the tension inside the droplets and, as consequence, the
water molecules experiment a surface push outward and are ultimately lost to the environment.

Usually, small dust particles contribute to cloud formation. There are untold numbers of
these particles in the atmosphere. In pure air, there are approximately 100 particles per cm3,
but in polluted cities, there are normally 1 million per cm3. Their diameter is approximately
1µm, but smaller particles can also exist. In meteorology they are called aerosols.

Many of these particles, originating from cities, forest fires, artificial combustion, heaters,
vehicle engines or volcanoes, contain small salt crystals. It is known that salt usually attracts
water. These salt particles also allow the formation of clouds in the free atmosphere.

In physics, hot air is less heavy and tends to move upward, whereas cold air exhibits the
opposite effect. When different parts of the ground warm up, such as roads in summer, the
rising of isolated and self-contained air volumes are produced in the manner of air bags, called
air layers. These volumes start to rise until they reach the level of condensation where a cloud
is formed. Since the level of condensation can be considered a flat and horizontal surface, the
lower limit of clouds appears as a smooth plane.

The blue and yellow lines in Figures 2.23 and 2.24 represent the decreasing temperature in
relation to the altitude and the free atmosphere temperature according the altitude, respec-
tively. In Figure 2.23 the cloud starts growing at a condensation level at 1.8 km of altitude (0.9
km in Figure 2.24). This process is called expansion. When the volume of hot air reaches 7
km of altitude as shown in Figure 2.23, it and the free atmosphere have the same temperature.
Far beyond this altitude, a thermal inversion happens. This phenomenon occurs when the air
volume has a temperature lower than the free atmosphere, and consequently clouds cannot
form. A similar situation appears in Figure 2.24.
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Figure 2.23. Vertical profile
of a cloud.
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Figure 2.24. Flat cloud.

2.8 Cloud taxonomy

The rigorous classifications of clouds did not begin until the nineteenth century. Jean
Baptiste Lamarck (1744-1829) and Luke Howard (1772-1864) independently published their
works in 1801 and 1803, respectively. Howard was a prominent personality in the world of
cloud classification. Moreover, his taxonomy has been improved over the years. Howard’s
classification was based in observable characteristics such as the height, extension and form.
He also used Latin names for his sorting, which fit well in the scientific worldview of that age.
Johann Wolfgang von Goethe was attracted by Howard’s classification and dedicated several
poems to them. Finally, the efforts of H. Hildebrandsson and R. Abercromby led to the first
international atlas of clouds in 1896.

The actual cloud classification is guided by a continually revised publication edited by the
World Meteorological Organization (WMO), an UN subdivision. The last revision was released
in 1987.

According to Figure 2.25, the classification of the 10 genera of clouds by altitude is as
follows:

2.8.1 High clouds

• Cirrus (Ci): Isolated clouds in the form of white and subtle filaments. They look like
hair. They are formed by ice crystals at temperatures below -40◦C.

• Cirrocumulus (Cc): Spots or bands of isolated small thin white clouds of granulated
aspect without shadows. Their appearance is usually regular.

• Cirrostratus (Cs): White and transparent cloud veils of a fibrous or smooth aspect
covering the sky in part or in total. They normally produce halo effects and are formed
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Figure 2.25. Cloud taxonomy.

by small ice crystals.

2.8.2 Middle clouds

• Altocumulus (Ac): Spots or bands of white or grey clouds in the form of sheets or
rollers with a diffuse aspect. They can be isolated or not and are formed by a mixture
of small ice crystals and supercooled water droplets.

• Altostratus (As): Bands or layers of grey or bluish clouds with a fluted, fibrous and
uniform character. They usually cover the sky, allowing only glimpses of the sun. They
are mixed clouds that allow iridescence and crown effect observation.

2.8.3 Low clouds

• Stratocumulus (Sc): Spots, bands or layers of grey and/or white clouds, with dark
parts in the form of mosaics. They appear attached in fibrous shapes and contain small
water droplets above 0◦C.

• Cumulus (Cu): Isolated clouds, usually dense and well delimited. They normally grow
in the vertical direction in the form of protuberances, domes or towers resembling a
cauliflower. The lower side is dark and flat. The sun-illuminated parts are very radiant.
The cumulus temperature lies above 0◦C.

• Stratus (St): Totally grey cloudy layer with an uniform low frontier that may generate
rain.
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• Cumulonimbus (Cb): Large and dense clouds with vertical growths like a high moun-
tain. They usually have flat or fibrous forms in the upper part. These clouds are frequently
very dark under the lower limit. They may produce rain.

• Nimbostratus (Ns): Dark and grey clouds that imply rain or persistent snowfall. The
sun cannot be seen through them. They usually generate the optical phenomenon called
a rainbow.

[Häc06].

2.9 Meteorological concepts

This section examines several meteorological theorems and properties related to cloud
physics. It is not the aim of this section to delve too deeply into complex concepts that may
be outside the scope of the present thesis.

2.9.1 Atmospheric composition

Air is composed of several gases and other liquid/solid particles as explained in Section 2.7.
The atmosphere is a mixture of nitrogen (78%), oxygen (21%) and argon (1%) and very small
quantities of neon, helium and other gases in a permanent form. This composition is uniform
up to 90 km of altitude. The most abundant gases in the atmosphere in variable concentrations
are water vapour, carbon dioxide and ozone. A very important concept in meteorology is that
of moist air which is a mixture of two ideal gases: dry air and water vapour [RY96].

2.9.2 Ideal gas

The ideal gas satisfies the following equation:

pV = RT (2.13)

where p is the pressure, V is the molar volume, R is the universal gas constant and T is
the temperature.

If we assume the mass of one mole as M, then the density ρ = M/V . Therefore, if we
substitute these relations into Equation 2.13, we obtain:

p = RcT ρ (2.14)

where the constant Rc ≡ R/M [And10].
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2.9.3 First Law of Thermodynamics

As explained by Andrews [And10], the First Law of Thermodynamics as applied to a closed
volume is expressed mathematically as:

dU = dQ+dW (2.15)

where dU is the amount of internal energy, dQ is the heat in the system and dW is the work
performed.

If we assume functions of state, then Equation 2.15 can be formulated as:

dU = T dS− pdV (2.16)

where S is the entropy. Equation 2.16 can be rewritten as:

dH = T dS+V d p (2.17)

where H =U + pV is the enthalpy.
Equation 2.14 implies that for a unit mass of air (V = 1/ρ) and U = cvT , where cv is the

specific heat capacity at constant volume:

H = cvT +RcT = cpT (2.18)

where cp is the specific heat at constant pressure. If Equation 2.18 is substituted into Equation
2.17 and divided by T , we deduce:

S =
∫

cpd(lnT )−Rcd(ln p) (2.19)

By integrating Equation 2.19, we finally obtain:

S = cp ln(T p−κ)+C (2.20)

where κ = Rc/cp ≡ 2/7 for a diatomic gas and C is a constant.
The potential temperature (θ )45 of a mass of air is derived from Equation 2.19 by assuming

dS = 0.

θ = T
(

100kPa
p

)κ

(2.21)

where T is the temperature of the air at pressure p.

4An adiathermal process occurs when heat is neither gained nor lost.
5An adiabatic process is both adiathermal and reversible.
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2.9.4 Water vapour state equation

When the water is in the vapour phase, it has an ideal gas behaviour, and its state equation
is:

e = ρvRvT (2.22)

where e is the vapour pressure, ρv is the vapour density and Rv is the ideal gas constant equal
to 461.5Jkg−1K−1 [RY96].

2.9.5 Hydrostatic equilibrium

As cited by [RY96], the air is balanced because the vertical pressure force on the air
equilibrates to the force of gravity as seen in Figure 2.26.

Therefore, the hydrostatic equation is stated as:
∂ p
∂ z

=−ρg (2.23)

where p is the pressure at height z.

Downward force

Air parcel

Upward force = ∂p / ∂z 

Figure 2.26. Hydrostatic equilibrium applied to a parcel of air.

2.9.6 Dry adiabatic lapse rate

The dry adiabatic lapse rate for moist air is denoted by the equation:
dT
dz

=− g
cp

=−Γ (2.24)

where Γ = 0.98 ◦C/100 m ≡ 10−2K/m

"This is the rate at which temperature falls off with height in the process of dry adiabatic
ascent" [RY96].

2.9.7 Buoyant force

Consider a parcel of dry air with volume V , temperature T and density ρ . This parcel
displaces an equal volume of air of temperature T ′ and density ρ ′. We assume that the
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downward force on the parcel and the displaced air is ρgV and ρ ′gV , respectively, whereas the
upward force is the same for both the parcel and the displaced air and is defined by −V ∂ p

∂ z . If
the net buoyant force (upward) is V g(ρ ′−ρ), the mass per unit is:

FB = g
ρ ′−ρ

ρ
= g

T −T ′

T ′
(2.25)

As a conclusion, the force is positive when the parcel is warmer than the ambient air, and
vice versa [RY96].

2.9.8 Stability criteria of dry air

Equation 2.24 of the dry adiabatic lapse rate will serve us to evaluate the stability of
atmospheric layers with respect to the vertical displacement of an air parcel. As is seen here,
the stability condition depends on the ambient lapse rate.

Taking T as the ambient air parcel temperature and ∆z as the adiabatically raised distance
that is cooled by the amount Γ∆z, then the temperature is decreased to T −Γ∆z.

γ =−
(

∂T
∂ z

)
(2.26)

Equation 2.26 defines the ambient lapse rate. Hence, the excess temperature over that of
the ambient air is ∆z(γ−Γ). When this expression is positive, the ambient air parcel is warmer
than the surroundings parts, and by the effect of the buoyant force, 2.25 predicts movement
upwards.

As a conclusion, the stability criteria for dry air is summarized in the following cases:
• γ < Γ Stable

• γ = Γ Neutral

• γ > Γ Unstable
[RY96].

2.9.9 Stability criteria for moist air

Consider the mathematical expression of the pseudoadiabatic process [RY96]:
dT
T

= k
d p
p
− L

T cp
dws (2.27)

where ws represents kilograms of water vapour.
We proceed to differentiate Equation 2.27 with respect to height:

dT
dz

=
kT
p

d p
dz
− L

cp

dws

dz
(2.28)

and employing Equation 2.23 on the hydrostatic response and the Clausius-Clapeyron equation,
we obtain the pseudoadiabatic lapse rate:

39



Radiometry Chapter 2

Γs =−
dT
dz

= Γ

(
1+ Lws

R′T

)(
1+ L2εws

R′cpT 2

) (2.29)

As a consequence, the moist air stability criteria is:

• γ < Γs Absolutely stable

• γ = Γs Saturated neutral

• Γs < γ < Γ Conditionally unstable

• γ = Γ Dry neutral

• γ > Γ Absolutely unstable

2.10 Radiometry

Radiometry is the branch of physics that studies the interaction of light radiation with
matter. It is useful to calculate the effect of light on the condensed water vapour inside and
outside the cloud. The history of light as a concept began in Ancient Greece and, in the Middle
Ages, with the description of reflection and refraction phenomenon by Al-Hazen (eleventh
century). Later, in the seventeenth century, the first experimental laws were described by
Descartes and Snell. At the end of the seventeenth century, Huygens and Newton announced
their opposing theories called undulatory and corpuscular theory, respectively. Newton’s theory
prevailed until 1801 when Young, Fresnel and Foucault recovered Huygens’ undulatory theory
as well.

2.10.1 Main radiometric cloud phenomena

It is well known that light consists of electromagnetic radiation that the human eye can
perceive. The visible spectrum ranges from 380 to 740 nanometres (430-770 THz). The
frequency (ν), the period (T ) and wavelength (λ ) are related by the following equation:

c = λν =
λ

T
(2.30)

where c is the propagation velocity in the medium, 3 · 108m · s−1 in a vacuum and lower in
other media.

The nine major radiometric phenomena related to clouds in this thesis are explained below:

• Absorption: This phenomenon occurs when the light radiance is transformed into en-
ergy, specifically heat, when it interacts with other objects. For example, when light
impacts on a perfect grey surface, 50% of the radiation is reflected, but the remainder
is converted into heat.
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- Extinction: This phenomenon is related to the attenuation of light due to absorption
when traversing a medium. If we define Ks as the scattering coefficient and Ka as the
absorption coefficient, the extinction coefficient is determined as K = Ks +Ka [Har03].

- Optical depth: This effect is a mathematical concept that measures the relative
loss of light when traversing a medium of thickness s, where 1 represents the maximum
opacity as expressed in Equation 2.31.

τ(0,s) =
∫ s

0
K(~x+ t~ω)dt (2.31)

where ~x is a point inside the medium and ~ω is the direction of light propagation [Har03].

- Transmittance: This mathematical concept is related to the amount of light trans-
mitted from a volume unit to an adjacent volume unit. It is expressed in Equation
2.32.

T (s,s′) = e−τ(s,s′) (2.32)

As a consequence, the opacity of the integral is defined as α(s,s′) = 1−T (s,s′) [Har03].

- Absorbance: The absorbance is the ratio between the light intensity transmitted
by the material and the light intensity received by the material.

A =−log10

(
Iout put

Iinput

)
=−log10T (2.33)

• Scattering: This term refers to the diffusion of light while traversing a medium in
multiple directions other than the direction of the light source.

- Single scattering: Here, most of the light is scattered in the direction of incidence.
This phenomenon occurs when light traverses small particles or very transparent mate-
rials. One example is the interaction of light with the condensed droplets of a container
of beer.

- Multiple scattering: In this case, the light is scattered in multiple directions and
reaches multiple particles, similar to a chain reaction. This effect occurs when light
traverses a collection of small particles such as condensed water vapour.

- Scattering albedo: The single scattering albedo is the proportion of attenuation by
extinction σ = Ks

K . «Single scattering albedo is the probability that a photon "survives"
an interaction with a medium» [Har03]. The albedo ranges from 0 to 1, where 0 means
no scattering and 1 no absorption.
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2.10.2 Phase functions

The phase functions are probability formulas that express the amount of light from the
incident direction ω that is scattered into another direction ω ′. Scattering depends on the
phase angle φ between the incident light direction ω and resultant light direction ω ′ as
illustrated in Figure 2.27.

The phase function is dimensionless, and its probability distribution adds up to 1 when
integrated over the entire solid angle.

Fx(x) =
∫

4π

P(ω,ω ′)dω = 1 (2.34)

Φ 

ω 

ω' 

cos(0º) = 1

Forward
scattering

Backward
scattering

Figure 2.27. Scattering angle, φ , represented as the relation between the incident light from
the sun and scattered light from the water droplet.

There are several types of phase functions; typical examples are discussed in the following
paragraphs:

• Rayleigh phase function: This phase function was proposed by John William Strutt
(Lord Rayleigh) and models the scattering of light by particles in the atmosphere to
produce the blue sky phenomenon.

P(θ) =
3
4

1+ cos2(θ)

λ 4 (2.35)

As indicated in Equation 2.35, θ is the angle between ω and ω ′, and λ is the wavelength
of the incident light. The squared cos(θ) gives more weight to the directions closer to
the scattering limit values.

• Henyey-Greenstein phase function: This phase function was developed by Louis G.
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Henyey and Jesse L. Greenstein in 1941 and it is a useful model of Gustav Mie’s complex
scattering theory.

P(θ) =
1

4π

1−g2

[1+g2−2gcos(θ)]3/2 (2.36)

where g is the symmetry parameter and ranges within −1 ≤ g ≤ 1 with the following
meaning:

g =


< 0 backscattering (most of the light is scattered back to the light source)
0 isotropic scattering (no scattering)
> 0 forward scattering (most of the light is scattered in the incident direction)

(2.37)
As seen in Equation 2.36, the function works on a ellipse, where its values are greater
near the poles.
Figure 2.28 is a simulation of the scattered light intensity as a function of the angle
using a particle system; Figure 2.29 is the same simulation of light scattering but using
a polar representation. Both figures were plotted with the MiePlot application [Lav17].

Figure 2.28. Plot of the Mie scattering angle per light intensity using 50 particles for a cumulus
distribution with perpendicular and parallel polarisations.

A basic plot in Figure 2.30 of the Henyey-Greenstein phase function can help to illustrate
the previous concepts:
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Figure 2.29. Polar plot of the Mie scattering in a water droplet with 50 particles for a cumulus
distribution and both polarisations. A high forward scattering appears in the image.
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Figure 2.30. Henyey-Greenstein phase function for asymmetry parameters g = 0.99, g = 0.5,
g = -0.5 and g = -0.99.
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2.10.3 Light transport model

The mathematics of the light transport model applied in this thesis is much like that based
on the work by Mark Harris and Nelson Max[Har03; Max95] as explained in this section.

As seen in Figure 2.31, the intensity of light coming from the light source is attenuated
due to absorption and outscattering, while the inscattering intensifies the incoming light.

Letting L be the intensity of the light and Ka the absorption coefficient, we define the
Absorption term as:

dL(~x,~ω)

ds
=−Ka(~x)L(~x,ω) (2.38)

where Equation 2.38 expresses the change in light intensity caused by the absorption over
distance.

The outscattering term is written in a similar form:

dL(~x,~ω)

ds
=−Ks(~x)L(~x,ω) (2.39)

where Equation 2.39 is the variation of the light intensity as affected by the distance in the ~ω
direction.

Therefore, as cited in Subsection 2.10.1 on the K coefficient, we can combine Equations
2.38 and 2.39 to represent absorption and outscattering in the same expression:

dL(~x,~ω)

ds
=−K(~x)L(~x,ω) (2.40)

Regarding the inscattering term, we need to calculate all the incoming scattered light in
all solid angle directions (4π) by taking into account the scattering directions:

dL(~x,~ω)

ds
= Ks(~x)

∫
4π

P(~x,~ω,~ω ′)L(~x,ω ′)dω
′ (2.41)

Finally, the light transport formula is a single differential equation that combines Equation
2.40 and Equation 2.41 as seen below:

dL(~x,~ω)

ds
=−K(~x)L(~x,~ω)+Ks(~x)

∫
4π

P(~x,~ω,~ω ′)L(~x,ω ′)dω
′ (2.42)

Equation 2.42 is approximated with the assumption of Max [Max95] and Harris [Har03]
and used in this thesis for volumetric cloud lighting as seen in Chapter 5.

L(D,~ω) = L(0,~ω)T (0,D)︸ ︷︷ ︸
transmission

+
∫ D

0
g(s)T (s,D)ds︸ ︷︷ ︸
in-scattering

(2.43)

where

g(s) = Ks(~x(s))
∫

4π

P(~x,~ω,~ω ′)L(~x(s),ω ′)dω
′ (2.44)
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Figure 2.31. The effect of inscattering, outscattering, transmission and attenuation in the light
transport model.

Because this is a multiple scattering light transport model, it generates a problem of
recursion as expressed in Equation 2.43. This thesis addresses this issue in Chapter 5.

2.11 Fluid dynamics

Cloud advection and convection depend of the fluid state of the gas mixture in the atmo-
sphere. Thus, advection is treated as the cloud movement caused by the velocity of the fluid,
whereas convection is related to the fluid motion due to thermal states in the cloud. The
equations of cloud dynamics can be expressed via either the Euler equations of an incompress-
ible fluid or the Navier-Stokes equations of incompressible flow. The second option is selected
for this thesis; a basic demonstration of the Navier-Stokes equation for a compressible fluid is
presented here, as most cases in real life are based on compressible fluids.

2.11.1 The Navier-Stokes equation

The explanation of the Navier-Stokes equation is based on [And10], which reports that the
equation is developed based on Newton’s Second Law:

F = m ·a =⇒ (ρδV )a = δF (2.45)

where δV = δxδyδ z is the volume of a cubical water droplet, ρδV is the mass, a is the
acceleration and δF is the force vector.

If we consider the pressure force acting in the x direction of the cubic droplet, the force
at position x is p(x)δA in the positive abscissa, where δA = δyδ z is the area of the droplet.
Therefore, the pressure in the negative abscissa direction at position x+δx is:

p(x+δx)δA≈
(

p(x)+
∂ p
∂x

δx+ ...

)
δA (2.46)
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by using a Taylor expansion formula.
In the positive abscissa direction, the equation remains:

−δx
∂ p
∂x

δA =−δV
∂ p
∂x

(2.47)

Therefore, in three dimensions, the force is:

δFpress =−(δV )(∇p) (2.48)

If the gravity force is considered to act downwards:

δFgrav =−(ρδV )g~k. (2.49)

where~k = (0,0,1).
Finally, we consider the viscous forces applied on the droplet as seen in Figure 2.32, where

the flow is in the abscissa direction and varies only in the z direction. From the kinetic theory
of gases, the x component of the viscous force applied on a surface from the top is:

τ = η
du
dz

(2.50)

where η is the viscosity constant.

δxδy 

z + δz 

δz 

z
τ(z) 

τ(z + δz) 

Figure 2.32. Horizontal forces applied on the bottom and top of the cubical droplet.

The net contribution to the viscous force is defined as:

[τ(z+δ z)− τ(z)]δxδy≈ ∂τ

∂ z
δxδyδ z =

∂τ

∂ z
δV (2.51)

By using Equation 2.50, the following is obtained:

η
d2u
dz2 δV (2.52)

Thus, by generalizing the Equation 2.52, the viscous vector force is:

δFvisc = δV η

(
∇

2u+
1
3

∇(∇ ·u)
)

(2.53)

if we consider the incompressible fluid for which ∇ ·u = 0.
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Finally, by substituting Equations 2.48, 2.49 and 2.53 into Newton’s Second Law and
applying Equation 2.55 of a trajectory (r(t)) of a small droplet at a time t:

a =
d2r
dt2 =

∂u
∂ t

+(u ·∇)u =
Du
Dt

(2.54)

we achieve the Navier-Stokes equation for a compressible fluid as:
Du
Dt

=− 1
ρ

∇p−gk+Fvisc (2.55)

where Fvisc = δFvisc/δV .

2.12 Summary

This chapter is a brief review about the computer graphics methods and hardware technol-
ogy related to efficient cloud rendering from a volumetric rendering perspective. The utilization
of new multicore devices is an advantage for a state-of-the-art cloud display, along with the
optimizations of large fluid grid structures benefiting from CUDA parallel programming. All
these elements have been thoroughly applied in the present thesis and will be discussed in the
forthcoming chapters. In addition to introducing the basic concepts related to cloud physics,
a review of cloud formation conditions and cloud taxonomy is presented. In addition, an
abbreviated explanation of general meteorological theory regarding to the atmosphere, ther-
modynamics and other related important concepts is presented. Because one of the most
important aspects of this thesis is cloud lighting in all daytimes and circumstances, a concise
overview of radiometry with the most relevant issues is developed. Finally, this part concludes
by explaining the basic background for the understanding of the Navier-Stokes equations by
illustrating the compressible fluid flow deduction as a basis for the incompressible assumption
that will be briefly explained in Chapter 7.
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CHAPTER 3
State of the art and author contributions

This chapter deals with the relevant works about cloud rendering from the emergence of
computer graphics to the latest findings. To this end, a brief definition about the two

main branches in cloud generation is presented in Section 3.1. A complete overview of the
state-of-the-art cloud rendering techniques will be developed and explained with several image
samples in Section 3.2. Following that, the specific contributions of the author of this thesis
relative to the previously mentioned methods are listed in Section 3.3. Finally, an author-
developed comparison and the pros and cons of each feature per method are analysed using
tables in Section 3.4.

3.1 Ontogenetics vs. physically based methods

Researchers studying computer-generated clouds have developed different approaches to
addressing natural phenomena. Huang et al.[Hua+08] report on the two main groups of cloud
rendering methods: physically based models and ontogenetic models. In the first approach, the
atmospheric equations of cloud advection, thermodynamics, radiometry, and fluid dynamics
are applied [Miy+01; Har+05]. In the second method, only a formal geometric visualization
of the cloud in an artistic simulation using minimal physical characteristics is used.

While the physically based methods may be either more realistic but slower or less realistic
but faster, the ontogenetic methods are a very useful choice to provide cloud rendering in
many industrial and academic environments not needing very accurate scientific systems. This
approach is an interesting and pragmatic option for the domestic world. The computer game
industry requires more realistic but efficient cloud landscapes in its adventures. In contrast, the
film industry prefers very-slow-to-process but accurate frames for their aesthetic value in story
telling, whereas the computer games industry opts for balanced systems, i.e., a favourable
middle point between realism and performance. However, in the context of Moore’s law, the
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objective trend in a future will be more physically based methods for all systems.

3.2 Cloud rendering methods

3.2.1 Texturized primitives

With this option, basic surfaces like skydomes or skyboxes are texturized with an omni-
directional true colour capture of the sky. Other implementations use procedural textures
applied to spheres and ellipsoids; this was the starting point for cloud generation in the early
years with the work of Gardner [Gar85] and Max [Max94]. This method may be considered
as obsolete in modern GPUs, however, it is used in small devices that do not have three-
dimensional (3D) acceleration. A state-of-the-art contribution to this approach was recently
provided by Mukina and Bezgodov [MB15]. The main limitation of this method is the inability
to approach, manoeuvre around, or traverse gaseous bodies, in addition to the lack of animation
of the different cloud parts. This method is not used in this thesis due to the aforementioned
limitations.

Figure 3.1. Virtual island
[Jim03]. Example of a textur-
ized skybox.

Figure 3.2. Procedural tex-
turized skydome [Bek19].

As seen in Figure 3.1 the cloud representation in the island landscape has good realism;
however, the clouds are drawn on the back side of a cube surface, thus avoiding any kind of
interaction or animation. In addition to this drawback, a joining effect where the sides of the
cube meet is produced.

Figure 3.2 is a sample of a rendered sky with the Lumion 3D application using a method
similar to that of [MB15]. Although the clouds are procedurally generated with an artificial
intelligence (AI) method, they lack three-dimensional aspects in the context of approaching,
manoeuvring around or traversing.
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3.2.2 Particle systems

The particle system method [Ree83] is based on a very basic and small three-dimensional
geometry with an applied transparent texture. The typical three-dimensional geometries in-
clude triangles, quads and simple polygons. This technique is used for creating fire, explosions,
grass, waterfalls, stars, rain, snow and smoke effects. A particle system structure (Figure 3.3)
contains a set of tiny objects that emanate from a container called an emitter. The emitter
controls the particle position and speed. Each particle has a lifespan, colour, texture and shape.
In addition to these elements, other objects control the particle behaviour as affected by the
gravity, wind and so on. Since 2002 authors have tried to achieve the simulation of clouds
using basic quads or triangle surfaces with a Gaussian texture [Hua+08]. Harris conceived a
new algorithm using particles with an efficient multiple scattering illumination system, which
was based on Max equations [Max95]. The resulting rendering was improved with the use
of impostors [Har+05; HL01; Har02]. The use of this technology increases performance and
speed. This technique is considered useful for physical workload model simulators. However,
the overall realism is not accurate enough as seen in Figures 3.4 and 3.5.

Others

Others

<<Interface>>

IPar�cleSystem
Shape3D

Par�cleSystem

Par�cleManager

Behaviour

* Par�cleEmi�er

<<Interface>>

IExternalInfluence Gravity

*

Par�cle*

<<Interface>>

IGenera�onShape PointGenera�onShape

1

Figure 3.3. UML class diagram of a particle system [Jac08].

Figure 3.4. Particle sys-
tem cloud using the [Har03]
method.

 

Figure 3.5. Particle sys-
tem cloud using the [Hua+08]
method.
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3.2.3 Geometry distortion

The basic idea behind this technique by [Kni+02] consists in drawing a complex cloud
mesh with a group of megaparticles as explained by Ebert [Ebe97] and Engel [Eng07]. Then,
a lighting algorithm, like Phong or Gouraud shading, is used on the geometry. After this step,
the cloud map needs blurring using a Gaussian filter to distort it. To do this, a quad is placed
at the center of every cloud and billboard vertex with respect to the camera, covering the
entire cloud from any angle. This quad is rendered to distort the cloud map and sample a
2-channel fractal/noise texture to obtain a distortion offset. Afterwards, the blurred cloud map
is sampled using texture coordinates distorted by this offset and the distance from the quad
to the camera. Optionally, a radial blur may be performed to soften the resulting image. At
a final stage, the render target is merged to the back buffer. This method is midway between
particle systems and volumetric rendering, with good performance and easy shading, but it
lacks accurate realism and is not suitable for cloud shapes other than cumulus. This method
has not been used in this thesis because it is difficult to adapt for arbitrary-shaped clouds.

Figure 3.6. A cumulus cloud produced by distorting a set of spheres [Gir12].

As can be appreciated in Figure 3.6, the complete set of sphere-based mega-particle-
generated shapes is grouped in a cumuliform cloud distribution. This approach allows the
application of a basic but efficient lighting system as mentioned before. The results have good
quality, and the shadowing and occlusion effects are easy to implement for cumulus types in
most of the cases. The animation and dynamics can be obtained by controlling the sphere
centres in a particle-system-like style.
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3.2.4 Volumetric rendering

This model represents the current state-of-the-art in cloud rendering, and as such it is used
in computer games, flight simulations, and real-time computer graphics. The main references
for volumetric rendering are found in [DCH88; Lev88]. Volumetric rendering is the model
upon which the research work explained in this thesis is based. This technique is the same
as that used to obtain two-dimensional (2D) medical images from 3D magnetic resonance or
computed tomography data. Volumetric rendering of clouds still implies a heavy workload for
most modern GPUs, but the realism is very accurate and may become standard in the coming
years. Later contributions to this approach were made by Yusov [Yus14], Elek et al. [Ele+12],
Dobashi et al. [Dob+00], and Goswami-Neyret [GN17], while further contributions include
the latest cutting-edge findings in light scattering made by Klehm et al. [KSE14] and Peters
et al. [Pet+16] with very high performance at 1920×1080 pixels.

Figure 3.7. A very realistic
raymarched volumetric cumu-
lus cloud [Bou08].

Figure 3.8. Volumetric neu-
ral network generated cloud
[Kal+17].

Figures 3.7 and 3.8 are volumetric rendering cloud examples. They use thousand of rays
to evaluate noise hypertexture samples and calculate an accurate lighting system. In spite of
the high realism, the real-time performance is not efficient enough in some contexts, on the
other hand. As an example, the work of [Kal+17] uses complex neural networks to render a
frame every 10 minutes.

53



Pros and cons of each method Chapter 3

3.3 Main thesis contributions

The main contributions of this thesis to the state of the art are discussed in the following
lines as an attempt to illustrate the author’s efforts in this computer graphics research field.
For a better clarification of this section, contributions are detailed separately for each rendering
method.

3.3.1 To texturized primitives

The main contributions of this thesis to the texturized primitive method is the availability
of approaching, manoeuvring around, and traversing the gaseous region, in addition to the
capability of cloud entity animation. Similarly, the cloud responds to sunlight depending on its
position in real-time. Finally, the effects of perspective are more real than those of skydome
or skybox projected clouds.

3.3.2 To particle systems

The author of this thesis decided to use pseudospheroids as the basic primitive instead of
particles to allow the animation of the cloud with reduced system overhead. The realism of
each pseudospheroid is better than that achieved using a collection of texturized particles. This
method is very convenient to produce time-evolving cumuliform clouds, as will be explained in
Chapter 7.

3.3.3 To geometry distortion

The improvements achieved in this thesis in the area of distorted megaparticles include
the possibility to use arbitrary-shaped clouds other than cumulus, for example, thin and subtle
clouds (cirrus) or L-system jet streams. Another advantage is the availability to use better
lighting models based on multiple scattering and the animation effect caused by wind advection
at the frayed edges.

3.3.4 To volumetric rendering

The contributions of this thesis to this emerging and "de facto" method are the improve-
ment of the performance of existing algorithms and the development of new and efficient
algorithms and methods to reduce the physics workload of many slow hyperrealistic imple-
mentations without loss of quality. The mentioned methods are well suited for animation and
real-time rendering on standard computers by using lightweight and ontogenetics-based fluid
dynamics algorithms.
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3.4 Pros and cons of each method
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As seen in Table 3.1 the volumetric rendering method is the most advantageous method
in the list of state-of-the-art methods in the computer cloud generation field, fulfilling all the
requirements. The rest of the methods lack some important features such as realism or anima-
tion effects. However, some volumetric rendering models still need performance improvement.
Table 3.2 provides a comparison of features per author. As emphasized in the work of Mukina
et al. [MB15], that work meets the basic requirements for the architectural industry but lacks
three-dimensional effects. That work falls in the texturized primitives category. In addition,
the research by [Har03] is an example of the particle-system-based method, so it represents the
opposite end of the preceding cited work. The investigation of [Kni+02] is a case of geometry
distorted clouds, whereas the neural network model of [Kal+17] from Disney Research is an
example of very accurate photorealistic cumulus clouds; however, it lacks real-time capability.
Finally, the research by [JG18] is a demonstration of a new contribution to the state of the
art by implementing efficient algorithms for real-time GPU volumetric cloud rendering.

3.5 Summary

This chapter aims to illustrate the main cloud rendering methods from the emergence of
computer graphics to the latest trends in this research field. It seeks to present the strengths
and weaknesses of each rendering model as an attempt to find solutions that resolve the
shortcomings of each system. As a counterpart, the author delineates and demonstrates his
contributions to the state of the art in relation to other authors’ works and by presenting novel
features of his work.
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CHAPTER 4
Cloud rendering

This chapter introduces the basic methods for cloud rendering from the procedural texture
generation to the scene delimitation. For this reason, in Section 4.1 is illustrated the

three-dimensional structure to generate random noise in the simplest version. In Section 4.2
a complete description of the hypertexture generation and demonstration is provided, along
with a complete plot diagrams that compare the produced noise with Gaussian distribution.
The cloud rendering methods will be explained in Section 4.3 through the definition of the
pseudosphere concept, the development of the basic rendering algorithm layout and the cloud
generation detail when approaching to the observer. Finally, in Section 4.4, a brief outline of
this thesis approach for locating cloud primitives is given.

4.1 Water vapour emulation

Fluid and asymmetrical cloud shapes were a serious challenge during this research. An
efficient 3D data structure that can hold density information and respond to light and wind
advection is very convenient for a real-time cloud rendering. However, raytracing of three-
dimensional points in real-time requires hardware support by a GPU shader technology that
parallelizes the raymarching of a discrete frame buffer pixels by using multiple processing
elements.

To create an efficient vapour density simulation, a three-dimensional cube of 64×64×64

single-precision floats is filled with uniform random noise pre-calculated in the host before
passing it to the GPU where it is used to generate fractal Brownian motion (fBm) noise, as
shown in Figure 4.1:
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Figure 4.1. The uniform noise in the colour scale plot shows the irregular density of water
droplets in a cloud hypertexture. In the MATLAB fourth dimension plot it is possible to observe
the nature of atmospheric vapour in the colour values in the cube plot.

4.2 Hypertexture generation

4.2.1 Introduction

The uniform noise is transformed into a Gaussian-like noise using the fBm described in the
Iñigo Quilez’ homepage [Qui18].

Basically an fBm can be implemented as a fractal sum of Perlin noise functions [Per85].
The Perlin noise is basically a pseudorandom mapping of Rd into R with an integer d which can
be arbitrarily large but which is usually 2, 3, or 4. It is used as procedural texture in Computer
Graphics to emulate controllable pseudorandom appearance with the aim of generating a wide
variety of object surfaces, fire, smoke and clouds. This noise usually imitates the textures
in nature due to its stochastic properties. The implementation implies three steps : (1) n-
dimensional grid definition with random gradient vectors, (2) computation of the dot product
between the gradient vectors for distance calculation and (3) the interpolation of the mentioned
dot products. The algorithm cost is O(2n) where n is the number of dimensions.

4.2.2 The fBm noise

As cited in [Die04], the fBm noise is defined by Mandelbrot and van Ness [MV68] by its
stochastic representation 4.1.

BH(t) =
1

Γ
(
H + 1

2

) (∫ 0

−∞

[
(t− s)H− 1

2 − (−s)H− 1
2

]
dB(s)+

∫ t

0
(t− s)H− 1

2 dB(s)
)

(4.1)

where Γ represents the gamma function and 0 < H < 1 is called the Hurst parameter 4.2.
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Γ(α) =
∫

∞

0
xα−1e−xdx (4.2)

The integrator B is a stochastic process, ordinary Brownian motion, where B is recovered
by taking H = 1/2 in Equation 4.1. This integral can be seen as a Lebesgue-Stieltjes integral.
It is called the stochastic integral with respect to Brownian motion.∫ b

a
φ(s)dB(s) (4.3)

Equation 4.3 has a natural definition when the integrand φ is a simple function, which
means that there exists an integer γ > 0 and a strictly increasing sequence of real numbers
(t j)

γ

j=0 with t0 = a and tγ = b, in addition to a sequence of real numbers (φ j)
γ−1
j=0 such that

φ(s) = φ j for s ∈ (t j,t j+1]. Thus, the stochastic integral is defined in Equation 4.4:
∫ b

a
φ(s)dB(s) =

γ−1

∑
j=0

φ j
(
B(t j+1)−B(t j)

)
(4.4)

A sequence of Lebesgue square integral functions (ψn) is said to converge in the L2-norm
to the square integral function ψ if Equation 4.5 applies:

lim
n→∞

∫
(ψ(s)−ψ(s))2ds = 0 (4.5)

assuming that ψ is a simple function for every n. A possible definition would be
limn→∞

∫
ψn(s)dB(s). Since

∫ b
a ψ(s)dB(s) has a finite second moment, there is a square

integrable random variable Z on the probability space of B(Ω,F,P) with the property stated in
Equation 4.6:

lim
n→∞

E

[(
Z−

∫ b

a
ψn(s)dB(s)

)2
]
= 0 (4.6)

where E denotes the expectation operator with respect to P. If ψ is square integrable, this
random variable is unique in the sense that another random variable that satisfies Equation 4.6
is almost surely equal to Z. Therefore, Z is taken as the definition of the stochastic integral∫ b

a ψ(s)dB(s). The second moments of Equation 4.1 can be computed by a standard formula,
which leads to the fact that the variance of BH(t) is VHt2H for some constant VH . Given
BH = {BH(t) : 0≤ t < ∞} with 0 < H < 1, the following properties are characterized:

• BH(t) has stationary increments;

• BH(0) = 0, and EBH(t) = 0 for t ≥ 0;

• EB2
H(t) = t2H for t ≥ 0;

• BH(t) has a Gaussian distribution for t > 0;

The covariance function for the three first properties is given in Equation 4.7:
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ρ(s,t) = EBH(s)BH(t) =
1
2
{t2H + s2H− (t− s)2H} (4.7)

for 0 < s≤ t. For Gaussian processes, the mean and covariance structure determine the finite-
dimensional distribution uniquely. Therefore, we conclude from Equation 4.7 that {BH(at) :

0 ≤ t < ∞} and {aHBH(t) : 0 ≤ t < ∞} have the same finite-dimensional distributions: the
fractional Brownian motion with the Hurst parameter H is self-similar with the Hurst parameter
H. In fact, fractional Brownian motion is the only Gaussian process with stationary increments
that is self-similar. The fBm noise also has applications in communications, finance, physics
and bioengineering.

4.2.3 More about the fBm noise

The implementations of this thesis makes intensive use of the fBm noise as a summation
of weighting uniform noise. Thus, let w be the octave scale factor, s the noise sampling factor
and i the octave index, the fBm equation is defined as:

f bm(x,y,z) =
n

∑
i=1

wi · perlin(six,siy,siz) (4.8)

where w = 1/2 and s is 2.

Each iteration is called an octave. In this case, the Algorithm 4.1 uses five octaves with
uniform noise instead of Perlin noise. When the number of octaves is increased above five,
the algorithm does not produce better vapour deformation shape, but decreases the overall
frame performance. To analyse performance, an unrolled version of the previous summation
was implemented in the thesis fragment shader code.

As commented in the introduction of Section 4.2, the uniform noise used for the fBm
generation has the aspect of Figure 4.2 on the left, while the proper fBm has the look plotted
in Figure 4.2 on the right. This soft appearance will be useful for cloud texture rendering.
The probability distribution of these two kind of noises can be appreciated in the histogram
of Figure 4.3.

Figure 4.2. Bi-dimensional representation of uniform noise (left) and fBm noise (right). It can
be observed that the base noise on the left is sharper while the fBm is softer due to the octave
accumulation.

60



Chapter 4 Cloud tracing

Other authors (see for example [HSA05]) also make use of fractional octave division in
their research with respect to the 2D flat animation of clouds.

The fBm noise is calculated for each unit of the frame buffer along the tracing of the ray
to produce cloud density. Alternatively, the noise may be pre-calculated in the host application
before passing it to the shader to achieve higher frames-per-second. If the basic pre-calculated
3D noise is used for all the scene, a simple raymarching algorithm may be used, as explained
on the next page.
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Figure 4.3. Histogram of the uniform noise (light grey) and fBm noise (dark grey). The fBm
noise has a Gaussian-like distribution.

4.3 Cloud tracing

4.3.1 Pseudospheroids

For every pixel in the frame buffer, the ray is traced form back to front to calculate the
noise with the condition that the density value is smaller than γ . This variable is modulated
as a function of the position inside the pseudospheroid with a random component to produce
the effect of cloud surface as shown in Equation 4.9:

γ ← e

 −‖ ~rayPos−sphereCenter‖

radius×
((

1−κ

)
+2κ f bm(x,y,z)

)
(4.9)

The appearance of the pseudospheroids can be appreciated in Figure 4.4, where R is the
radius of the base sphere and γ is the value provided by the function in Equation 4.9. The
pseudosphere objective is to emulate a more irregular and realistic primitive form for cumulus
clouds.
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Figure 4.4. Pseudospheroid shape in 2D satisfying Equation 4.9.

The Equation 4.9 filters the unit volume densities and generates a pseudospheroid by scaling
the nominal sphere radius by ± k, where rayPos is the Euclidean straight line point of the ray
and sphereCenter is the center of the sphere in R3. The fBm function serves as a normalized
random variable. The distance to the center of the sphere is used to modulate the maximum
density that water vapour is allowed to have, as shown in Figure 4.5.
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Figure 4.5. Distance/density relationship. The greater the distance between the ray and the
sphere center, the lower the density of water vapour. The exponential approach gives natural
realism by softening the cloud borders.
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4.3.2 Basic cloud rendering algorithm

The rendering of the cloud involves tracing rays through a volume delimited by a set
of implicit surfaces, while sampling the noise texture. The sampling of the noise texture is
performed only when the ray traverses the volume defined by a set of spheres. The pseudocode
scheme in Algorithm 4.1 is an improved version of Apodaca’s code [AG00] and basically
illustrates the execution over a list of N randomized bounded-surface volumes. The alternative
of using spheroids and ellipsoids instead of other surfaces is also cited by Gardner [Gar85]
and Elinas and Stürzlinger [ES00]. To discard positions outside the cloud and thus reduce
the computational effort, we iterate over the pseudospheroids contained in the corresponding
bounding box only. In addition, a short list of pseudospheroids that intersect the ray is created
and sorted with the Insertion Sort algorithm [Wei95; Knu98]. This collision method requires
the computation of the discriminant of the quadratic equation resulting from equaling the
implicit formulas of rays and spheres using the reference code based on Shirley’s book [SK03].

Basically, the Algorithm 4.1 starts in line 27 with the rayTrace function, tracing a ray for
each pixel in the frame buffer within an origin and direction. After cloud limits detection in line
28, the algorithm begins to iterate over a set of detected clouds by selecting the spheres that
intersect the ray (lines 2 - 8) with a simple Euclidean discriminant (line 7). If this discriminant
is positive, the algorithm inserts the sphere’s near and far collision limits (λ ) in a candidates
array (line 12). Retaking the main function, the algorithms continues by sorting the collided
spheres in ascending order, from close to far, using the Insertion Sort algorithm. After this
operation, the algorithm iterates over each sphere (lines 34 - 51) one by one rendering the
pseudosphere (line 40 and 41)and lighting the clouds (lines 42 - 46). Once the chain of spheres
has been rendered, the resulting pixel is blended with the sky by considering transparency (lines
30 and 52).
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1 Function getCandidates(rayOrigin, ~rayDirection, i)
2 for j← 0 < number of spheres in boundingbox[i] do
3 ~temp← ~rayOrigin− sphereCenter
4 a← ~rayDirection · ~rayDirection {Dot products}
5 b← 2.0 · ~rayDirection · ~temp
6 c← ~temp · ~temp− radius2

7 ∆← b2−4ac
8 if ∆ > 0 then
9 σ ←

√
∆ {There is a collision}

10 λin← −b−σ

2.0×a
11 λout ← −b+σ

2.0×a
12 candidates[k]← (λin,λout , j,i)
13 k = k+1
14 end
15 end
16 return (candidates,k)
17 Function sortCandidates (candidates, n)
18 for k← 1 < n do
19 aux = candidates[k] {Insertion-sort algorithm}
20 h = k−1
21 while ((h >= 0)and(auxλin < candidates[h]λin)) do
22 candidates[h + 1] = candidates[h]
23 h = h−1
24 end
25 candidates[h + 1] = aux
26 end
27 Function rayTrace(rayOrigin, ~rayDirection)
28 B← boundingboxDetection(rayOrigin, ~rayDirection)
29 τ ← 1
30 R← (0,0,0,0) {Consider alpha-channel}
31 for each (i in B) do
32 (C,n)← getCandidates(rayOrigin, ~rayDirection, i)
33 end
34 candidates← sortCandidates(C,n)
35 for j← 0 < n do
36 λ ← candidates[ j]λin
37 λout ← candidates[ j]λout
38 while λ ≤ λout do
39 rayPos← rayOrigin+λ · ~rayDirection
40 ρ ← f bm(rayPos) {Trace pseudospheroid}
41 γ ← e−‖ ~rayPos− sphereCenter‖/(r((1−κ)+2kρ))

42 if ρ < γ then
43 R← R+ lighting(ρ,rayPos, ~rayDir, ~sunDir,
44 voxelGrid[candidates[ j]i],sunColor)
45 if τ < 10−6 then
46 break for (34:)
47 end
48 end
49 λ ← λ +A · e−(‖ ~rayOrigin− cloudCenter‖ ·δ ) {LOD}
50 end
51 end
52 return R {Blend with the sky}

Algorithm 4.1: Basic volumetric cloud rendering in GPU.
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4.3.3 Level of detail (LOD)

An improved level of detail (LOD) equation controls the increment on the Euclidean straight
line [Gil88] according to the distance from the center of the cloud, thus executing longer
steps when the cloud is close to the camera and smaller steps when it is far. This method
compensates the higher number of pixels receiving a trace from inside the volume with the
lower requirements for detail when traversing the cloud.

The aim of this technique is to provide more efficient distance effects for computer graphics
applications that do not require high detail when the observer is near or inside the cloud mass.
This aspect is mainly useful for computer games and virtual reality educational software where
there is no need to analyse the texture details.

λ = A · e−(‖ ~rayOrigin− cloudCenter‖ ·δ ) (4.10)

Equation 4.10 represents the LOD behaviour for the Euclidean straight line increment in
relation to the distance between the observer and the centre of the cloud. This equation
relates to line 48 of Algorithm 4.1.

The previous equation is obtained if it is considered that λ = A ·e−distance ·δ and, in the
present implementation, λ ranges from 0.1 at infinite distance to 10 when the cloud center is
at distance 20 from the camera. Therefore, solving δ in the next equation:

δ =−
ln
(

λ

A

)
distance

(4.11)

And replacing this constant in Equation 4.10, we obtain the plot of Figure 4.6:
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Figure 4.6. Three plots of different coefficients for Equations 4.10 and 4.11. The X axis
represents the typical distance of cloud rendering from nearby (0) to the camera being far away
(100). The Y axis represents the achieved step size at the specified distance and δ constant.
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4.4 Scene delimitation

The technique explained hereby eliminates the need to use complex space-partitioning
algorithms like K-D trees, Octrees, or Quadtrees (see Section 2.2) for locating primitives
thanks to the fact that each cloud only needs a small number of spheres to create a cumulus
in this proposed model. In addition, the use of bounding boxes to delimit the volume of each
cloud also improves performance. The proposed system uses Smits’ algorithm [Smi02] and
the improvement in [Wil+05] to limit raymarching to the volume inside cloud boundaries, as
shown in Figure 4.7.

NON-PROCESSED 

RAY

PROCESSED RAY

Figure 4.7. Bounding box delimitation of clouds. The Smits’ algorithm is useful for optimizing
raymarching by calculating the segment of the Euclidean straight line along which rendering
must be performed according to the λ value.

This method increases the FPS rate by discarding rays that never hit the boundaries of
the rectangular prism containing the cloud in the scene, and avoiding iterations over spheres
outside the camera view frustum. As an additional advantage, the bounding box model allows
for assigning a separate voxel grid to each cloud, which facilitates the calculation and storage
of illumination data. Each spheroid in the candidates’ lists has a pointer to its corresponding
voxel grid, as seen in Algorithm 4.1. The improved Smits’ algorithm is implemented in the
GPU code in a fragment shader with a very reduced linear cost.

Since each bounding box contains an array of pseudospheres with R3 coordinates and a
radius in the form of GLSL vec4 style, the shader application makes use of another array of
pointers to the lower limit and upper limit of the corresponding set of spheres in the first array,
as Figure 4.8 illustrates. The second array of pointers is useful for redirecting the collision
detection function to the specific clouds under the raymarching process.

Because of the fact that the cloud rendering model of this thesis needs only approximately
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30 spheres to generate a cumulus, the resulting bounding box iteration is very efficient, as will
be seen in Chapter 6.

vec4vec4vec4vec4

CLOUD 1

vec4

lowLimits upLimits

vec4vec4vec4vec4

CLOUD N

vec4

lowLimits upLimits

Bounding Box 1 Bounding Box i Bounding Box N

Figure 4.8. Each cloud has a set of pseudospheres distributed in a 1D array (above). When
the ray collides with a bounding box, their spheres are processed as a result of the lower and
upper limit array of the pointers (below) in the GLSL fragment shader.

4.5 Summary

This chapter illustrates the basics of cloud rendering methods, including water vapour
generation, along with the mathematical demonstration of the fBm noise used to evaluate the
hypertexture of the clouds. A complete illustration of the basic cloud rendering algorithm in
GPU with the use of pseudospheroids is explained as well. The chapter ends by explaining the
present thesis’ efficient method to delimit and locate cloud primitives in the GPU shader code.
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CHAPTER 5
Lighting and shading

The present chapter aims to introduce the main concepts and prior literature references
used for creating the thesis lighting and shading model. Thus, in Section 5.1, a brief

outline of the main referenced authors and main contributions to the state of the art are
introduced. Next, in Section 5.2 a complete explanation of the lighting and shading model is
developed. The intricacies of the no-duplicate-tracing (NDT) algorithm are exposed in Section
5.3 along with its flow chart, and the details of the parallel shading precalculation is introduced
in Section 5.4. Finally, a set of images illustrates the achieved lighting objectives in Section
5.5.

5.1 Introduction and contributions

To optimize the performance, this thesis uses a two-pass drawing algorithm. The first
pass computes the illumination inside the cloud and is executed only when the location of
the light source changes. The second pass renders the projection of the cloud on the frame
buffer. The calculation of transmittance and scattering are inspired by the principles exposed
by Max [Max95] with code optimizations to improve performance with the application of ap-
proximations by Harris [HL01] and Tessendorf [Tes16] in the pseudospheroid-based volumetric
rendering of this theis. The main differences with these works are the application of the ray-
marching technique over a set of pseudospheroids/ellipsoids instead of a particle system, the
use of a pre-calculated voxel grid with the NDT algorithm, and the combination of simpli-
fications methods to generate a new model of code optimization as seen in Algorithm 5.1.
The implemented model makes use of the voxel technique, which divides the space in a 3D
grid with regular cells. These cells may store information light transmittance, density and
other physical parameters. The voxel technique is currently used in CT and MRI systems in
medicine. Essentially, the main contributions to the previously cited authors’ work are:
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• The combination of three different techniques in a pseudospheroid based volumetric
rendering.

• The use of the no-duplicate-tracing (NDT) algorithm for transmittance precomputation.

• The simplification of the referenced algorithms to achieve high performance in standard
computers.

5.2 Lighting and shading model

Algorithm 5.1 illustrates the required steps for calculating the lighting and shading in
the GPU shader. The lighting function is called in Algorithm 4.1, line 42. The performed
calculations are widely detailed in the following paragraphs.

1 Function lighting(ρ,rayPos, ~rayDir, ~sunDir,gridIndex,sunColor)
2 ∆τ ← e−φρ

3 {Calculate Voxel}
4 voxelIndex← rayPos−gridMin

gridMax−gridMin

5 {Precomputed-light retrieval}
6 pL← texture(gridIndex,voxelIndex)
7 {Absorpted-light calculation}
8 aL← sunColor ◦ pL
9 {Scattered-light calculation}

10 sL← sunColor · phase(g, ~rayDir, ~sunDir) · pL
11 {Total-light calculation}
12 tL← aL ·κ1+ sL ·κ2
13 {Calculate cloud colour}
14 colour← (1−∆τ) · tL · τ
15 τ ← τ∆τ

16 return (colour,1− τ)

Algorithm 5.1: Lighting and shading.

The mentioned algorithms are illustrated in Figure 5.1 where the green ray represents
the illumination pass pre-computed in the CPU and the red ray represent the rendering pass
performed in the GPU. The illumination pass traces a ray l from each voxel v(l) inside the
volume of the cloud towards the light source I, covering a distance D. The voxel stores the
amount of light received by transmission and scattering in that point of the cloud. This part
is pre-calculated in the CPU. The render pass traces a ray s that traverses the entire cloud
from 0 to P to calculate the light projected on the frame buffer, taking into account the
contribution of emission and reflection. This part is executed in real-time in the GPU.
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5.2.1 Transmittance

This calculation is performed one time for the pre-computed light and in each pass for
the rendering. The attenuation of light inside the cloud is governed by a property called
transmittance that represents the amount of light passing through a given section of the
volume. All the light inside the volume of the cloud, whether it is absorbed or scattered, is
affected by transmittance. The amount of light passing along a ray from point s to point s’
is expressed as:

τ(s) = ρ(s) ·A (5.1)

T (s,s′) = e
∫ s′

s τ(t)dt (5.2)

where τ(s) is the extinction coefficient that represents the amount of area that occludes light
in a plane perpendicular to the ray, ρ(s) is the particle density of water vapour at location s,
and A is the area occluded by the particle projected on the plane perpendicular to the ray. For
the forthcoming expressions we will use the simplified notation T (s,s′).

5.2.2 Illuminations pass (CPU side)

The first pass computes the illumination inside the cloud assuming that the light source
is static, and therefore the calculations are performed only when the light source changes
location or intensity. The illumination inside the cloud is stored as a grid of voxels using
floating point scalars. The light collected in a voxel is the sum of the light transmitted from
the light source across the volume plus the light scattered from all the preceding points 1

along the ray between the voxel and the light source. This second term involves a summation
of multiple light contributions with their corresponding transmittance. Illumination of a voxel
is computed using a back-to-front raymarching algorithm with the NDT method.

Let L(v) be the light collected at point v inside the cloud, I0 the intensity of the light
source, and D be the depth of v from the surface of the cloud. The expression that represents
the light incident on point v is:

L(v) = I0 ·T (0,D)︸ ︷︷ ︸
absorption

+
∫ D

0
C(l) ·T (0,l)dl︸ ︷︷ ︸
scattering

(5.3)

The first term in Equation 5.3 is the light propagated across the volume of the cloud to point
v that is affected by the total transmittance form the surface to the point. The second term
is the light scattered in the forward direction along the ray (l) from the surface of the cloud
to the destination point. This term is the summation of the light emitted by scattering from
each intermediate point along the ray, attenuated by the corresponding transmittance of the
segment.

1This thesis applies a simplified multiple forward scattering technique.
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The term C(l) is the approximation of the forward light-scattering density according to
[HL01]. The mentioned work reports that 50% of the light scatters in the forward direction
of the ray over a small solid angle γ that is of about 0.0001 steradians. The remaining 50%
is ignored because it requires a large amount of computation.

C(l) =
1
2

γ

4π
(5.4)

Equation 5.3 is converted to discrete form to be calculated using a raymarching algorithm
with step size ∆l. Ti is the transmittance between the target point and point i along the ray:

L(~v) =
D/∆l

∑
i=0

1
2

γ

4π
·Tt−1 + I0TD (5.5)

5.2.3 Render pass (GPU side)

The second pass renders the projection of the cloud on the frame buffer using a raymarching
algorithm that takes into account reflection and scattering.

The light reflected at point s inside the cloud depends on the light present at this point
L(s) and the area occluded by particles τ(s). The reflected light is further affected by the
transmittance form point s to the surface of the cloud.

The light scattered at point s is affected by the same properties as the reflected light
but also the phase function that approximates the refraction of light depending on the angle
between the light source and the observer. The amount of light projected on point ~x of the
frame-buffer is expressed as:

I(~x) =
∫ P

0

L(s)τ(s)κ1︸ ︷︷ ︸
reflection

+L(s)τ(s)P(~ns,~nl)κ2︸ ︷︷ ︸
scattering

 ·T (0,s)ds (5.6)

The first term in Equation 5.6 accounts for reflected light, and the second term accounts for
scattered light. P(~ns,~nl) is the phase function representing the amount of light from direction
~nl as refracted in direction ~ns. Both terms are affected by the transmittance T(0,S) from the
surface to point s. The κ1 and κ2 coefficients are weighting constants.

I(~x) =
P/∆s

∑
i=0

∫
∆s

0
L(i∆s+ t) [κ1 +P(~ns,~nl)κ2] · τ(i∆s+ t) ·T (0,i∆s+ t)dt (5.7)

To compute the emitted light using a raymarching algorithm with step size ∆s, this thesis
used the approximation proposed by [Tes16] that converts the continuous integral into a
summation of segment integrals. Ti represents the transmittance from the surface to point i.
The phase term is considered constant along the segment integral and can be taken out.

I(~x) =
P/∆s

∑
i=0

[Tiκ1 +TiP(~ns,~nl)κ2]
∫

∆s

0
L(i∆s+ t)τ(i∆s+ t)dt (5.8)
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The differential transmittance ∆Ti along segment ∆s is denoted as:

∆Ti = e−
∫

∆s
0 τ(~x+ s~n)ds (5.9)

The exponential function e can be approximated using the first two terms of its McLaurin
series expansion as:

∆Ti = 1−
∫

∆s

0
τ(~x+ s~ns)ds (5.10)

This allows simplifying the segment integral in 5.8 as 1−∆i. We also assume that L(i∆s+t)

is constant inside the segment integral.

I(~x) =
P/∆s

∑
i=0

[Tiκ1 +TiP(~ns,~nl)κ2]Li · (1−∆Ti) (5.11)

The proposed implementation made uses the Henyey-Greenstein phase function to approx-
imate the refraction of light in water droplets:

P(~ns,~nl) =
1

4π

1−g2

(1+g2−2g~ns ·~nl)3/2 (5.12)

where θ(~ns ·~nl) is the scattering angle and the parameter g is conveniently equal to the
asymmetry factor. To improve performance, the implementation passes the voxel grid lighting
in a 3D texture to the GPU. This allows using hardware accelerated trilinear interpolation to
obtain the lighting values along the marching ray.

I

dl
I0

ds

v(l)

P

0

D

0

x(s)

Figure 5.1. A two-pass algorithm for lighting along ray l and rendering along ray s .
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5.3 The No Duplicate Tracing Algorithm (NDT)

The purpose of this algorithm is to avoid duplicate or void tracing when spheres or ellipsoids
overlap or have gaps. This simple method is implemented in a few lines of CPU code to pre-
compute the transmittance from the light source to the target voxel, reducing calculations
while preserving accurate cloud rendering, as shown in Algorithm 5.2. It applies a Greedy
heuristic [BB96] to obtain the optimum set. The image and flow chart in Figures 5.2 and 5.3
respectively explain the possible cases that may arise during the execution of a raymarching.

1 candidates← sortCandidates(C,n)
2 λ ← candidates[0]λin

3 for j← 0 < n do
4 if λ > candidates[ j]λout then
5 continue
6 end
7 else if λ < candidates[ j]λin then
8 λ = candidates[ j]λin

9 end
10 while λ ≤ λout = candidates[ j]λout do
11 {Compute transmittance}
12 λ ← λ +∆

13 end
14 end

Algorithm 5.2: No-Duplicate-Tracing.

This algorithm was tested in the render phase of the GPU side to optimize the performance;
however, the control logic of the code prevents a correct pseudosphere illustration, causing
rendering errors or aberrations in the overlapped part of the spheres. Despite this unlucky
pitfall, the NDT algorithm duplicates the precalculation phase performance in both the CPU
and the CUDA implementations.

Others research regarding bounding volumes overlapping includes the work of Lipuš and
Guid [LG05].

Algorithm 5.2 has been empirically checked with a set of test cases from basic to complex
scenarios in MATLAB with very good results. Currently, there is no formal math demonstration
of the algorithm accuracy.
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I1 I2 O1 O2 I4 O4
Ray-marching Ray-marching

I3 O3

Voxel grid

Figure 5.2. A basic model
that illustrates the zones to
sweep. In this case, only I1
to O2 and I4 to O4 are traced
following the ray.

GENERATE RAY
Order candidates 

by collision

λ  = candidates[0].in
i = 0

λ  > 
candidates[i].

out

λ  < 
candidates[i].

in

FALSE

λ  = candidates[i].in

TRUE

Trace ray from λ to 

candidates[i].out 

i == N

i++

RETURN COLOR

TRUE

FALSE ATRUE

A

FALSE

Figure 5.3. A flow chart illus-
trating the no duplicate trac-
ing algorithm (lines 1–14 in
Algorithm 5.2

5.4 Precomputed light parallelization

As mentioned in the introductory Chapter 1, the precomputed light calculation has been
parallelized with CUDA technology using a different kernel to process each ray from the cloud
to the light source and introducing the NDT algorithm in the parallel code.

The CUDA implementation distributes threads (Tx,Ty,Tz) according to the GPU max-
ThreadsPerBlock device capability. Since this variable is usually 1024 in the studied archi-
tectures, the multiplication is Tx×Ty×Tz = 1024. Thus, the distributions of threads in each
dimension is Tx = 16, Ty = 8, and Tz = 8 in this case.

Then, it is necessary to calculate the block dimensions with the following equation:

Blockx,y,z =
⌈Dimx,y,z +2

Tx,y,z

⌉
(5.13)

where Dimx,y,z represents the dimensions of the voxel grid.
Therefore, Algorithm 5.2 is processed in each kernel call serially:

dim3 blocks(Blockx,Blocky,Blockz)
dim3 threads(Tx,Ty,Tz)
kernel<<<blocks,threads>>>(params...)
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Once inside the parallel kernel, it is possible to access the grid cells using the following offset:

indexi, j,k = blockIdxx,y,z×blockDimx,y,z + threadIdxx,y,z

where blockIdx is a CUDA keyword referencing the current block index, whereas blockDim

is also a CUDA keyword indicating each block dimension, and threadIdx is another keyword
with the current thread index.

M 

Figure 5.4. The 3D grid with M×N×O voxels with a parallel trace of the shadow including
the NDT algorithm.

The basic idea behind the parallel implementation is tracing a parallel ray from each voxel
in the grid as illustrated in Figure 5.4. When each thread processes a ray in the light source
direction, the equations explained in Section 5.2.2 are applied in parallel along with the NDT
algorithm.

The CUDA implementation of the lighting precomputing phase reaches a remarkable high
performance as demonstrated in the benchmarks section of Chapter 8.
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5.5 Lighting samples

The daylight landscape of Figure 5.5 is an example of cloud shading using the NDT
algorithm. The pseudospheroid composition can be appreciated.

Figure 5.5. An example of shading with the sunlight coming from the left.

The multiple forward scattering can be observed in Figure 5.6 in a daylight scene with the
sunlight coming from the front. The silver lining effect is also relevant in this figure.

Figure 5.6. A cumulus formation over snowed mountains.
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Figure 5.7. A sunset landscape.

A sunset with two cumulus clouds is generated in Figure 5.7. The adjustment of the phase
and light intensity and colour allows this kind of scenes. The multiple forward scattering and
silver lining is also represented.

Figure 5.8. Full moon over the ocean.

Figure 5.8 is a sample of a night scene with the moon lighting the clouds with specific
parameters of the phase and light colour.
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5.6 Summary

This chapter is intended to introduce the lighting system used in the present thesis by ref-
erencing the main authors on whose work the research is based and the author contributions
to the state of the art in the volumetric cloud rendering field. Therefore, this discussion illus-
trates the base algorithm for lighting and shading and the mathematical theory development
about the implemented model. The chapter also explains the NDT algorithm used to simplify
the raytracing in addition to its application in the precomputed light parallelization. Finally,
several image samples of enlighted clouds in different day stages are presented.
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CHAPTER 6
Cloud shape improvement

This chapter presents four different methods to define the geometry of the cloud to fulfil
different requirements from an artistic point of view. These methods range from purely

mathematical random generation to user-defined 3D meshes modelled in an editor. Thus,
in Section 6.1 is explained the basic formulas to generate a Gaussian cumulus cloud along
with a complete case study of a cumulus cloud from a statistical point of view. Later, in
Section 6.2 is introduced the approach of this thesis to emulate the level of condensation in
cumulus clouds. A new strategy to generate fractal clouds by using the spheroid distribution
is described in Section 6.3. The optimization of the system performance from the application
of metaballs with a simple modification of Algorithm 4.1 is detailed in Section 6.4. Finally,
a novel technique to generate a cloud resembling known forms based on smooth ellipsoid
adjustment and the collision detection formula is introduced in Section 6.5.

6.1 Gaussian cumulus cloud generation

6.1.1 3D Gaussian cloud generation

The proposed algorithm accomplishes cumulus generation by using a three-dimensional
Gaussian distribution of basic pseudospheroid primitives already seen in Section 4.3. The
thesis implementation uses a Gaussian distribution with clamping to generate the position of
the pseudospheroids as it is done for the particles in the method by Huang et al. [Hua+08].
Unlike their work, the number of primitives to produce a realistic cloud is much smaller than
in a particle system. Typically the model uses 35 pseudospheroids while the particle system
requires thousands of them.

Let P be the position of the pseudospheroid, C the center of the cloud, and N a random
variable with normal distribution, the base equation is:
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
Px =Cx+∼N (µx,σx)

Py =Cy+∼N (µy,σy)

Pz =Cz+∼N (µz,σz)

(6.1)

Figure 6.1. A cumulus
plot using Equation 6.3 with
Nx(0,3), Ny(0,0.9), Nz(0,3)
and ε2 = 2.0.

Figure 6.2. Another cumulus
plot using Equation 6.3 with
Nx(0,4.5), Ny(0,2.9), Nz(0,4)
and ε2 = 2.0.

Table 6.1 shows the typical µ and σ of the normal distribution used in each of the axes.
The previous values must be added to the center of the cumulus to place the cloud into the
scene.

Axis µ σ Clamped

X µx σx [−k1σx,k2σx]
Y µy σy [µy,tσy]
Z µz σz [-m1σz,m2σz]

Table 6.1. Typical parameters for the proposed Gaussian equations.

The radii of the pseudospheroids depend on the distance from their center (P) to the
center of the cloud (C) according to a Gaussian function, as shown in Figures 6.1 and 6.2.
Two variants of the proposed distribution can be used to compute the magnitude of the radius
as described in Equations 6.2 and 6.3:

radiusi =
ε1

|Px−Cx|+ |Pz−Cz|+1.0
(6.2)

radiusi = ε2 ·
(

1.0−0.1
√(

(Px−Cx)/2σx)2·((Py−Cy)/2σy)2 · ((Pz−Cz)/2σz
)2
)

(6.3)

where εi represents the maximum possible radius of each sphere in the corresponding
variant. The experiment used the constants ε1 = 15.0 and ε2 = 2.5 for real cumulus generation.
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This thesis introduces another improvement to hit the performance target with a pre-
processing algorithm that reduces the list of spheroids by removing those that are within the
range [3σx/4,σy/3,3σz/4] which creates a sort of hollow cloud. This filter causes the removal
of ∼ 20% of spheroids in the nucleus of the cloud, which yields a ∼ 30% average improvement
in frame rate without affecting the look of the cloud. In addition to the prior filtering, the
pre-processing algorithm removes spheres contained inside other spheres by comparing the
differences in radii (ri,r j) with the distance between their centers (xi,yi,zi) and (x j,y j,z j) using
Equation 6.4.

∀i∀ j|ri− r j| ≥
√
(xi− x j)2 +(yi− y j)2 +(zi− z j)2 (6.4)

The O(n2) complexity of the previous computation is not a big burden due to the reduced
number of spheres required in the present Gaussian model that do not require, in this case,
real-time processing.

Figure 6.3. A rendered Gaussian cumulus cloud with Nx(0,3.5),Ny(0,0.9),Nz(0.3.0) and ε2 = 1.5.
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6.1.2 Case statistical analysis

Let us consider a generated cloud sample with N(0,2) distribution ∀x,∀y,∀z with the data
shown in Table 6.2:

Px Py Pz R
4.52892 0 -6 2.18678
0.840693 2.76951 0.360271 2.32276
-0.344144 0 -3.07531 2.37106
2.13971 0 0.686463 2.40637
3.81488 0 -0.405287 2.34015
-0.416573 0 0.21741 2.48042
-2.87359 1.57103 0.923407 2.34045
... ... ... ...

Table 6.2. The generated data for the mentioned cloud.

After processing the data with the R statistical application 1, the histogram of Figure 6.4
for the Px coordinate is obtained. A pseudo-Gaussian distribution can be observed in the blue
plot centred in the range [-1,0].
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Figure 6.4. The generated histogram for the Px coordinate of Table 6.2.

However, for the highest precision, we calculate the maximum likelihood estimators [Ald97]:

1https://www.r-project.org/
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mean sd
-0.09645557 1.78332609
( 0.30143713) ( 0.21314824)

Table 6.3. Estimator result using fitdistr in R with its corresponding approximation errors.

As demonstrated in Table 6.3, the estimator calculus reveals that the distribution satisfies
N(0,2).

Finally, to compare the distribution of the current generated cloud with other distributions,
we make use of Q-Q diagrams. For this purpose, an envelope restriction of 95% has been
applied in all graphs, and the results are shown in Figure 6.5. The normal plot for the Px

coordinate is the most accurate approximation for the analysed data, producing the least
number of samples (black circles) outside the envelope (dotted blue lines).
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Figure 6.5. Q-Q diagram for the Px coordinate of Table 6.2 plotted in R.
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Figure 6.6. Box-and-whisker plot of the Px coordinate with the other three samples.

As seen in Figure 6.6 a strong overlap between the boxes occurs for samples 1,2,3 and
4, which can indicate that they follow the same distribution. Finally, we confirm the model
accuracy by applying the nonparametric Kruskal-Wallis test with two hypotheses:

• H0: All the distributions are identical.

• H1: The distribution of at least one of the sample sets tends to produce values greater
than the minimum of the distribution of another set of samples.

After applying the test, we obtain that:

Kruskal-Wallis chi-squared = 0.69665, df = 3, p-value = 0.874.

Thus, we claim that when the p-value is greater than 0.001, we accept the null hypothesis,
and therefore the stochastic model in C++ generates correct clouds.
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6.2 Level of condensation

The level of the condensation effect of a typical cumulus cloud as seen in Section 2.7 can
be achieved using the contents of the precomputed light voxel values. Thus, the researched
algorithm in this thesis uses the previous values to adjust the bottom side of the cloud from a
specific height that has been previously reduced in the host application. Figure 6.7 illustrates
the cited case. Assuming that Y is the ordinate axis, the raymarcher passes only the rays
satisfying Equation 6.5.

(!bFlat ∨ (rayPos.y > gridMin.y+ voxel[rayPos]×δ ))) =⇒ render (6.5)

where δ is the adjustment factor.

Reduced grid height

Voxel fluctua�on
+

X

Y

Figure 6.7. Flat cumulus by varying the voxel precomputed light value relative to the reduced
height of the grid.

6.3 Fractal cumulus generation with L-systems

L-systems, also called Lindenmayer systems, were originally developed in 1960 by the biolo-
gist Aristid Lindenmayer to describe the fractal evolution of plants and other natural phenom-
ena. In collaboration with Przemyslay Prusinkiewicz, a large collection of impressive images of
nature was collected [PL96]. These systems consist of a set of grammar rules with a defined
alphabet which are recursively called, starting from an axiom production. Subsequent calls
generate a string of symbols which denote a specific meaning. The proposed research uses
L-system grammars to generate a wide variety of cloud shapes. A deep study on the L-system
is also explained in [Jon01] with exhaustive algorithms for clouds and plants, respectively. The
approach of this thesis differs from that of Kang et al. [KPK15] in the addition of a propor-
tional random factor in the generation of the sphere radius and the distance between primitives
in each recursive call, as explained in Figure 6.8. Another difference from the cited work is
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the use of volumetric rendering and the proposed density function (Equation 4.9). The 3D
algorithm for L-system generation of spheres is referred to in the website of the Department
of Computing for Neurobiology at Cornell University, which contains a complete MATLAB
explanation and sources.

AXIOM

Y

X

+

Random length/
radius

Random length/
radius

X

+

Y

X

&

Y

String to 
interpret

Figure 6.8. After each recursive call, the interpreter generates a new proportional random radius
and length for the primitives. This produces more natural and impressive cumuliforms.

Before calling the GLSL image render, the proposed solution uses an algorithm coded
in C++ running on the host as a tiny interpreter for the recursive generation of spheres
according to axiom and rules. For example, in the call to the following Backus-Naur form
(BNF) grammar, the implemented C++ algorithm will generate a string of "X","Y","+" and
"&" symbols:

Axiom→ X

X → X +Y

Y → X & Y

(6.6)

In the Equation 6.6 " + " means turn left with a δ angle using a rotation matrix, and " &
" means pitch down with a δ angle by using a rotation matrix. As a result, Figures 6.9, 6.10
were generated using different angles and iterations.

The corresponding lexical analyser must insert a sphere of a proportional uniform random
radius and length in the current branch step for each of the X and Y items found, and then
apply the rotation angle given by the " + " and " & " operators. Hence, the string produced
by the equation 6.6 will generate 128 spheres according to the L-system grammar shape and
will be ready to transfer to the OpenGL shader for real-time animation.
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Chapter 6 Cumuliforms with optimized metaballs

The thesis L-system grammar derivative is suitable for generating jet streams and a sort of
cloud called Castellanus, as cited by Häckel [Häc06] due to its elongated and crenelated shape.
The advantage of this interpreter is that it allows a formal definition of clouds for designers
to generate a variety of original cloud shapes for computer games and digital art.

Figure 6.9. Iterations = 7, δ = 10◦. The lower the δ angle, the thinner and more strange
the cloud shape becomes, so the cloud looks like a 3D spiral. This is caused by the recursive
turning operators in the grammar productions that respond to the director rotation angle and
the uniform random sphere radius.

Figure 6.10. Again, using exactly the same grammar and iterations with a yet larger angle, for
instance [50◦,100◦], the resulting grammar derivation generates dense cumulus formations.
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6.4 Cumuliforms with optimized metaballs

The metaballs technique proposed by Blinn [Bli82] for the creation of organic-looking
n-dimensional objects could be also applied to generate cumulus formations with very high
performance and render quality. The proposed model differs from the Dobashi approach
[Dob+99] in that it uses optimized equations and a mean calculated in the CPU:

f (x,y,z) = γ =
spheres

∑
i=1

ri
2

(x− xi)2 +(y− yi)2 +(z− zi)2 ≥ 1 (6.7)

where x,y,z is the raymarching position, ri is the current sphere radius and xi,yi,zi is the sphere
center.

r̄2 =
N=spheres

∑
i=1

ri
2

N
(6.8)

and where

ρ = f bm(rayPos) · r̄2 ·φ (6.9)

Equation 6.8 is pre-calculated in the CPU only once, and Equations (6.7) and (6.9) are
used in the GPU shader algorithm. φ is a constant to adjust the fading effect in the edges of
the cloud and rayPos is the Euclidean straight line point of the ray in R3 used to evaluate the
fBm noise explained in Section 4.2. It usually has a value of 0.6 in the tests of the present
thesis.

This method has very high performance and achieves a remarkable number of frames-per-
second. Besides this, render quality is sufficient, as shown in Figure 6.11, but lower than that
generated by Algorithm 4.1.

6.5 Cloud generation from 3D meshes

6.5.1 Basic operations

This section explains the last geometry innovation for real-time cloud rendering based
on using three-dimensional mesh editors like Blender, 3D Studio, or Maya. Making smoke
or clouds with known shapes is a complex task that requires algorithms and mathematical
optimization in addition to a suitable 3D model before rendering. The user may use the GPL
Blender application as a geometry editor for several models used in this research. Effective real-
time rendering needs a previous decimation of big meshes up to a level of 1000 triangles or less.
Bigger quantities require more powerful GPUs and do not pay off since the spatial definition
of smoke does not allow high detail. The key idea of this algorithm is replacing triangles
with ellipsoids to achieve more real and suggestive cumuliforms. To improve performance, the
ellipsoids are pre-calculated in the host and then rendered on the GPU, applying the same
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Figure 6.11. Two cumulus formations by using Gaussian distribution and optimized metaballs.
Just six spheres were used to render the samples by randomizing the sphere radius.

techniques explained in Chapters 4 and 5. Initially an ellipsoid is centered at the barycenter
of each triangle. This is achieved by scaling the triangle by a specified amount from the
barycenter without translating it. The maximum distance between each scaled vertex and the
barycenter is used to calculate a circumscribing ellipsoid with radius (a, b, c). This approach
is effective and accurate, as explained in Figures 6.12 and 6.13.

Let P1, P2 and P3 be the vertices of a triangle. The proposed model defines Barycenter
(B) as:

B =
( 3

∑
i=1

xi

3
,

3

∑
i=1

yi

3
,

3

∑
i=1

zi

3

)
(6.10)

and scale as:
P′i = (Pi−B) · scale+B (6.11)

radiusa = ‖(B−P′1)‖

radiusb = ‖(B−P′2)‖

radiusc = ‖(B−P′3)‖

(6.12)

where P′i is the scaled triangle vertices (x,y,z) from 1 to 3.

An optimization of the previous algorithm could be made by performing a R3 rotation of
the direction vector, with the maximum radius of the ellipsoid over the direction vector of
the maximum distance from the triangle vertices to the barycenter. The solution requires
the application of the principles of Rodrigues’ Rotation Formula for this issue. This solution
provides more accurate geometry with the cloud description, and a softer shape for the model.
This approach may be considered as a real-time filter for mesh geometry, producing rough
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P1

P2

P3

B

X scale 

X scale 

Max b

Scaled detection area

P3'

P2'

P1'
X scale 

Resulting ellipsoid

Triangle mesh

Max a Max c

Figure 6.12. Ellipsoid scaling
process. The proposed algo-
rithm multiplies each triangle
vertex (P1,P2,P3) by a factor
that typically falls in the range
(0.1,2], once the barycenter
(B) is calculated. Afterwards,
the shader algorithm uses the
maximum distance from the
barycenter to the scaled trian-
gle vertex as relation for den-
sity estimation through the el-
lipsoid/ray collision equations.

Figure 6.13. After rota-
tion. As seen in the image
above, showing the original el-
lipsoid in black and the result-
ing one in green, the previous
equations allow the overlap-
ping of the R3 direction vec-
tors. Hence and according to
the direction of the larger tri-
angle vertex, the algorithms
produce the resulting rotation.

results. Therefore, a continuation of the previous formulas is as shown:

i f


max(radiusa) ~dirTria = P′1−B

max(radiusb) ~dirTria = P′2−B

max(radiusc) ~dirTria = P′3−B

(6.13)

i f


max(radiusa) ~dirEllip = (radiusa +Bx,By,Bz)−B

max(radiusb) ~dirEllip = (Bx,radiusb +By,Bz)−B

max(radiusc) ~dirEllip = (Bx,By,radiusc +Bz)−B

(6.14)

(1) Axis and angle using cross product and dot product:

x =
~dirEllip× ~dirTria

‖ ~dirEllip× ~dirTria‖
(6.15)

θ = cos−1

(
~dirEllip · ~dirTria

‖ ~dirEllip‖ · ‖ ~dirTria‖

)
(6.16)
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(2) Rotation matrix using exponential map:

R = eAθ = I + sin(θ) ·A+(1− cos(θ)) ·A2 (6.17)

(3) A is a skew-symmetric matrix corresponding to x :

A = [x]x =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (6.18)

Equations 6.15, 6.16, 6.17 and 6.18 are pre-calculated in the CPU side only once, and
solely the R rotation matrix is passed to the GPU for real-time rendering.

Thanks to this algorithm, the overall performance is not reduced even in lower speed GPUs
as it is demonstrated in the benchmarks sections 8.2.1 and 8.2.2.

Decimation of the mesh to 300–700 triangle faces is required to increase performance
and provide better conformance to the cloud shape. For instance, the hand mesh wireframe
is decimated to 354 faces before rendering as seen in Figure 6.14. A 95% decimation still
produces good visualization and performance (Figures 6.15 and 6.16). Lower decimations
may be considered depending on the hardware used.

Figure 6.14. A hand mesh transformed into a soft 3D cloud. The final result is successfully
optimized for the real-time GPU algorithm animation and rendering.
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Figure 6.15. A rabbit mesh with 370 triangles. 80% decimation has been performed on
this mesh, reducing the number of triangles from 1850 to 370 to achieve a suitable real-time
performance.

Figure 6.16. The rabbit mesh blended with the ground of the landscape. The rotational filter
allows to recognize the mesh correctly.
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6.5.2 Ray-ellipsoid intersection approach

This section is intended to analyse the mathematical artefacts used to detect the intersec-
tion between the ray departing from the frame buffer with the rotated pseudoellipsoid. As a
consequence, it is important to recall the Euclidean parametric straight line equation and the
ellipsoid implicit equation, corresponding to Equations 6.19 and 6.20, respectively.

R≡


x = x0 +λ~vx

y = y0 +λ~vy

z = z0 +λ~vz

(6.19)

x2

a2 +
y2

b2 +
z2

c2 = 1 (6.20)

Since the straight line follows Rodrigues’ rotation formula, we need to specify the following
transformation:

M =

k11 k12 k13

k21 k22 k23

k31 k32 k33


x− cx

y− cy

z− cz

 (6.21)

where cx,cy and cz in Equation 6.21 are the barycenter coordinates.
Therefore, if we substitute M into Equation 6.20 and solve λ , we obtain the discriminant:

M(1)2

a2 +
M(2)2

b2 +
M(3)2

c2 = 1 (6.22)

∆ =


(2 k11 vx+2 k12 vy+2 k13 vz)(k11 (cx−x0)+k12 (cy−y0)+k13 (cz−z0))

a2 +
(2 k21 vx+2 k22 vy+2 k23 vz)(k21 (cx−x0)+k22 (cy−y0)+k23 (cz−z0))

b2 +
(2 k31 vx+2 k32 vy+2 k33 vz)(k31 (cx−x0)+k32 (cy−y0)+k33 (cz−z0))

c2


2

4
− (k11 vx+k12 vy+k13 vz)2

a2 +
(k21 vx+k22 vy+k23 vz)2

b2 + (k31 vx+k32 vy+k33 vz)2

c2




(k11 (cx−x0)+k12 (cy−y0)+k13 (cz−z0))2

a2 +
(k21 (cx−x0)+k22 (cy−y0)+k23 (cz−z0))2

b2 +
(k31 (cx−x0)+k32 (cy−y0)+k33 (cz−z0))2

c2 −1

 (6.23)

Finally, we use ∆ to detect ray-ellipsoid intersection and obtain λin and λout consecutively.
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6.6 Summary

This chapter is an overview of the accomplished work around the cloud shape improvement
as a new approach for generating efficient cloud rendering. Its contents address new formulas
to recreate Gaussian cumulus clouds with a complete statistical study of a generated cloud.
In addition to the Gaussian cumulus clouds, the chapter describes the approach to emulate
the level of condensation by flattening the bottom side of the cumulus cloud using the GLSL
shader resources. The chapter also reveals the researched method for fractals and the metaball
optimization technique as a new perspective for cloud shape improvement. The present chapter
finalizes with a wide explanation of the novel technique to generate pareidolic 2 effects from
decimated 3D meshes using the Rodrigues’ rotational formula to smooth the cloud form and
the mathematical development to detect ray-ellipsoid collision in this new model.

2A situation in which someone sees a pattern or image of something that does not exist, for example a face in a
cloud (Cambridge Dictionary).
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CHAPTER 7
Cloud dynamics simulation

The main purpose of this chapter is recreate the main techniques and the researched models
to simulate cloud advection and convection movement in the atmosphere. Therefore, in

Section 7.1 is reviewed the theoretical background about fluid mechanic physics in computer
simulations and the exposition of CUDA parallelization principles in the fluid class implementa-
tion. The simplified novel technique of cloud animation and deformation using the parameters
provided by the fluid engine class is graphically explained in Section 7.2. Section 7.3 illus-
trates the proposed model for the metamorphosis between two mesh clouds with a previous
introduction to the referenced bibliography about this matter.

7.1 Fluid simulation background

7.1.1 Introduction

We have already introduced the Navier-Stokes equations in Section 2.11. Now, we address
the stable fluid method, which is used to solve these equations in a computer graphics sim-
ulation. As described in [Ama09], the stable fluid method requires an implicit linear system
solver such as, for example, the Jacobi, Gauss-Seidel or conjugate gradient methods.

As explained in Section 2.11, the motion of a viscous fluid can be demonstrated with the
Navier-Stokes equations, which are a set of partial differential equations that state a relation
between the pressure, velocity and forces during a specific period of time. Therefore, the
fluid properties are described in relation to the density and velocity. As seen before, the
Navier-Stokes equations are based on Newton’s Second Law of Motion:

F = m ·a (7.1)

where m is the mass, a is the particle acceleration, and F is the resulting force.
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There are other alternatives to describe fluid motion, such as the Euler equations used in
[Har03]; however, the Navier-Stokes equations are the most advanced ones, as seen in the
following.

The Navier-Stokes equations used in the present thesis state that:

∇v = 0 (7.2)

∂u
∂ t

=−(u ·∇)u+ v∇
2u+F (7.3)

∂ p
∂ t

=−(u ·∇)ρ + k∇
2
ρ +S (7.4)

where u is the velocity field, v is the viscosity of the fluid and F is the external force applied to
the velocity field. ρ is the field density, k describes the density diffusion rate, S is the external
force applied to the density field, and ∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂ z

)
represents the gradient.

Equation 7.2 ensures mass conservation and initializes the velocity field to zero. Equations
7.3 and 7.4 describe the evolution of the velocity and the density, respectively.

This thesis uses the [Sta03] approach to simulate cloud motion; in addition, the density
equation 7.4 is not required in its approach due to the use of the novel method of cloud guide
points as explained in Section 7.2.

The basic algorithm 7.1 based on the work of [Sta03] has been modified in the following
manner as cited in [JG19]:

1 while simulating do
2

3 Retrieve UVW force equations
4 Add force
5 Diffuse
6 Project
7 Advect
8 Apply to guide points
9 end

Algorithm 7.1: Execution flow of the thesis fluid simulator.

• Add force: The process consists in adding a 3D force F (Equation 7.3) to the velocity
field in each grid cell. For each grid cell, the new velocity is:

u = u0 +∆t×F. (7.5)

where u is the velocity, u0 it the previous value of u, ∆t is the time increment and F is
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the applied force (wind).

• Advection: The advection function describe the transport of clouds, which is the re-
sulting velocity of the fluid when moving. For a better understanding of advection, let
us consider that each grid cell defines a fluid particle as illustrated in Figure 7.1:

i, j +1 

i, j i + 1, j i-1, j  

i, j -1 

Figure 7.1. The velocity vector components are stored in a 3D grid of cells.

The advection can be calculated either with an explicit method such as the Euler method,
a midpoint method such as Runge-Kutta or an implicit method such as [Sta03].
If an explicit method is used, Equation 7.6 results:

r(t +δ t) = r(t)+u(t)δ t (7.6)

where r(t) is the particle position and δ t is the elapsed time while moving along the
velocity field u. The problem is that when u(t)δ t is greater than the size of the grid
cell, the simulation fails. Nevertheless, [Sta03] overcomes this problem with an implicit
solution approach as explained in Equation 7.7:

q(x, t +δ t) = q(x−u(x,t)δ t, t) (7.7)

where q is a quantity carried by the fluid, e.g., velocity, temperature, or density.
«With stable fluid methods, the trajectory of the particle from each grid cell is traced
back in time, to its former position. This approach is also referred as semi-Langrangian
advection». [Ama09].

• Diffusion
The diffusion is represented by the v∇2u term in Equation 7.3, where the viscosity is
the fluid internal resistance to flow. The resistance is caused by the diffusion of the
momentum, such as the dissipation of velocity.
As with advection, the diffusion can be approximated either with explicit or implicit
methods.
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The explicit approach of diffusion is described in Equation 7.8:

u(x, t +δ t) = u(x,t)+ vδ t∇2u(x,t) (7.8)

where ∇2 is the discrete form of the Laplacian operator, δ t is the time increment and v

is the viscosity. This formulation also fails during the simulation.
The implicit version obeys the explicit Equation 7.9:

(I− vδ t∇2)u(x,t +δ t) = u(x,t) (7.9)

where I is the identity matrix. This equation, called the Poisson equation, remains stable
for arbitrary time increments and viscosities and can be solved by iterative solvers such
as Jacobi relaxation, Gauss-Seidel relaxation and conjugate gradient. This thesis opts
for the first technique because the ontogenetic implementation does not require a lot
of precision, so an efficient and reliable simulation is enough for the standard industry
purposes.

7.1.2 Fluid class parallelization

We consider the fluid simulator as a 3D grid with cell interactions with their neighbours
as seen in Figure 7.1. The CUDA implementation is similar to that explained in Section
5.4 and cited in [JG19] with the distribution of the threads (Tx,Ty,Tz) according to the
maxThreadsPerBlock device capability, which is Tx× Ty× Tz = 1024, so the distribution is
Tx = 16,Ty = 8,Tz = 8. The dimensions of the block are:

Blockx,y,z =
⌈Dimx,y,z +2

Tx,y,z

⌉
(7.10)

where Dimx,y,z are the dimensions of the voxel grid.
As the approach of this thesis is based on [Sta03], the cloud movements are simulated

inside a relocatable grid tunnel of M×N×O corresponding to x,y,z dimensions where the
wind force vectors are applied and calculated.

According to the modified Algorithm 7.1 a CUDA parallel class has been developed by
replacing Stam’s serial triple for a loop of 8-10 lines as:
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1 vo id FluidCPU : : advec t ( i n t b , f l o a t ∗ d , f l o a t ∗ d0 , f l o a t ∗ u , f l o a t ∗ v , f l o a t ∗ w
, f l o a t dt )

2 {
3 i n t i , j , k , i0 , j0 , k0 , i1 , j1 , k1 ;
4 f l o a t x , y , z , s0 , t0 , s1 , t1 , u1 , u0 , dtx , dty , d tz ;
5
6 dtx = dty = dtz = dt ∗ MAX(MAX(dimM , dimN) , MAX(dimN , dimO) ) ;
7
8 f o r ( i = 1 ; i <= dimM ; i++) {
9 f o r ( j = 1 ; j <= dimN ; j++) {

10 f o r ( k = 1 ; k <= dimO ; k++) {
11 x = i − dtx ∗ u [ IX ( i , j , k ) ] ; y = j − dty ∗ v [ IX ( i , j , k ) ] ; z = k −

dtz ∗ w[ IX ( i , j , k ) ] ;
12 i f ( x < 0 .5 f ) x = 0 .5 f ; i f ( x > dimM + 0.5 f ) x = dimM + 0.5 f ; i 0 = (

i n t ) x ; i 1 = i 0 + 1 ;
13 i f ( y < 0 .5 f ) y = 0 .5 f ; i f ( y > dimN + 0.5 f ) y = dimN + 0.5 f ; j 0 = (

i n t ) y ; j 1 = j 0 + 1 ;
14 i f ( z < 0 .5 f ) z = 0 .5 f ; i f ( z > dimO + 0.5 f ) z = dimO + 0.5 f ; k0 = (

i n t ) z ; k1 = k0 + 1 ;
15
16 s1 = x − i 0 ; s0 = 1 − s1 ; t1 = y − j 0 ; t0 = 1 − t1 ; u1 = z − k0 ; u0 =

1 − u1 ;
17 d [ IX ( i , j , k ) ] = s0 ∗ ( t0 ∗u0∗d0 [ IX ( i0 , j0 , k0 ) ] + t1 ∗ u0∗d0 [ IX ( i0 , j1

, k0 ) ] + t0 ∗ u1∗d0 [ IX ( i0 , j0 , k1 ) ] + t1 ∗ u1∗d0 [ IX ( i0 , j1 , k1 ) ] ) +
18 s1 ∗ ( t0 ∗u0∗d0 [ IX ( i1 , j0 , k0 ) ] + t1 ∗ u0∗d0 [ IX ( i1 , j1 , k0 ) ] + t0 ∗

u1∗d0 [ IX ( i1 , j0 , k1 ) ] + t1 ∗ u1∗d0 [ IX ( i1 , j1 , k1 ) ] ) ;
19 }
20 }
21 }
22 }

Listing 7.1. Original serial code version for advection.

with the following code calling the CUDA parallel kernel in blocks and threads.
1 vo id FluidCUDA : : advec t ( f l o a t d [ ] [ N + 2 ] [O + 2 ] , f l o a t d0 [ ] [ N + 2 ] [O + 2 ] ,

f l o a t u [ ] [ N + 2 ] [O + 2 ] , f l o a t v [ ] [ N + 2 ] [O + 2 ] , f l o a t w [ ] [ N + 2 ] [O + 2 ] ,
f l o a t dt )

2 {
3 dim3 b l o ck ( numBlocksX , numBlocksY , numBlocksZ ) ;
4 dim3 th r ead (THREADS_X, THREADS_Y, THREADS_Z) ;
5
6 f l o a t dtx , dty , d tz ;
7
8 dtx = dty = dtz = dt ∗ MAX(MAX(M, N) , MAX(N, O) ) ;
9

10 k e r n e lAdv e c t << < block , t h r ead >> > (d , d0 , u , v , w, dt , dtx , dty , d tz ) ;
11 }

Listing 7.2. Kernel call.
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1 __global__ vo id k e r n e lAdv e c t ( f l o a t d [ ] [ N + 2 ] [O + 2 ] , f l o a t d0 [ ] [ N + 2 ] [O +
2 ] , f l o a t u [ ] [ N + 2 ] [O + 2 ] , f l o a t v [ ] [ N + 2 ] [O + 2 ] , f l o a t w [ ] [ N + 2 ] [O +
2 ] , f l o a t dt , f l o a t dtx , f l o a t dty , f l o a t dtz )

2 {
3 i n t i = b l o c k I d x . x∗blockDim . x + th r e a d I d x . x ;
4 i n t j = b l o c k I d x . y∗blockDim . y + th r e a d I d x . y ;
5 i n t k = b l o c k I d x . z∗ blockDim . z + th r e a d I d x . z ;
6
7 i n t i 0 , j0 , k0 , i1 , j1 , k1 ;
8 f l o a t x , y , z , s0 , t0 , s1 , t1 , u1 , u0 ;
9

10 i f ( ( i >= 1) && ( j >= 1) && ( k >= 1) && ( i <= M) && ( j <= N) && ( k <= O) )
11 {
12
13 x = i − dtx ∗ u [ i ] [ j ] [ k ] ; y = j − dty ∗ v [ i ] [ j ] [ k ] ; z = k − dtz ∗ w[ i ] [ j ] [

k ] ;
14 i f ( x < 0 . 5 ) x = 0 . 5 ; i f ( x > M + 0 . 5 ) x = M + 0 . 5 ; i 0 = ( i n t ) x ; i 1 = i 0 +

1 ;
15 i f ( y < 0 . 5 ) y = 0 . 5 ; i f ( y > N + 0 . 5 ) y = N + 0 . 5 ; j 0 = ( i n t ) y ; j 1 = j 0 +

1 ;
16 i f ( z < 0 . 5 ) z = 0 . 5 ; i f ( z > O + 0 . 5 ) z = O + 0 . 5 ; k0 = ( i n t ) z ; k1 = k0 +

1 ;
17
18 s1 = x − i 0 ; s0 = 1 − s1 ; t1 = y − j 0 ; t0 = 1 − t1 ; u1 = z − k0 ; u0 = 1 −

u1 ;
19 d [ i ] [ j ] [ k ] = s0 ∗ ( t0 ∗u0∗d0 [ i 0 ] [ j 0 ] [ k0 ] + t1 ∗ u0∗d0 [ i 0 ] [ j 1 ] [ k0 ] + t0 ∗ u1

∗d0 [ i 0 ] [ j 0 ] [ k1 ] + t1 ∗ u1∗d0 [ i 0 ] [ j 1 ] [ k1 ] ) +
20 s1 ∗ ( t0 ∗u0∗d0 [ i 1 ] [ j 0 ] [ k0 ] + t1 ∗ u0∗d0 [ i 1 ] [ j 1 ] [ k0 ] + t0 ∗ u1∗d0 [ i 1 ] [ j 0

] [ k1 ] + t1 ∗ u1∗d0 [ i 1 ] [ j 1 ] [ k1 ] ) ;
21 }
22 }

Listing 7.3. CUDA parallel kernel version for advection.

Note that the cited triple for loop in Listing 7.1 has been parallelized through (i, j,k) indices
that point to the grid block threads (lines 3-5) in Listing 7.3. The protective line 10 in Listing
7.3 avoids exceeding the thread access outside the grid limits due to the distribution performed
in Equation 7.10.

Essentially, the parallelization of Listing 7.1 in Listings 7.2 and 7.3 achieves the multiple
calculation of advection by swapping the cells of the grid tunnel one at a time. The same
calculation and CUDA C++ code is performed for the other functions in Algorithm 7.1, i.e.,
diffuse and project.
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7.1.3 Jacobi relaxation with CUDA device pointers

Once of the problems arising in the diffuse and project functions is the feedback in the
linear solver, which implements the discretization of Equation 7.9 with the following Poisson
equation for each grid cell:

Dn
i, j,k = Dn+1

i, j,k−
kdt
h3

(
Dn+1

i−1, j,k +Dn+1
i, j−1,k +Dn+1

i, j,k−1,D
n+1
i+1, j,k +Dn+1

i, j+1,k +Dn+1
i, j,k+1−6Dn+1

i, j,k

)
(7.11)

where Dn and Dn+1 are the grid cell velocity before and after diffusion, respectively; i, j,k is
the spatial position in the grid; dt is the simulation time step value; h3 is the volume of the
cell; and k is the diffusion rate.

The previous equation must be rewritten in the form of Equation 7.12 to obtain the value
Dn+1

i, j,k:

Dn+1
i, j,k =

Dn
i, j,k +

kdt
h3

(
Dn+1

i−1, j,k +Dn+1
i, j−1,k +Dn+1

i, j,k−1,D
n+1
i+1, j,k +Dn+1

i, j+1,k +Dn+1
i, j,k+1 +Dn+1

i, j,k

)
1+ kdt

h3

(7.12)
Equation 7.12 is the sparse linear solver system in the form Ax = b [Ama09] in its serial

version. This equation is solved with an iterative method for parallelization using Jacobi
relaxation.

This linear solver feedback causes a race condition inside the CUDA kernel if no precautions
are taken. Thus, the Jacobi approximation is performed in simulation to avoid this error as
explained in Algorithm 7.2:

1 Function linearSolverKernel(x,x0,y,a,c)
2 i, j,k← blockIdxx,y,z×blockDimx,y,z + threadIdxx,y,z
3 if ((i, j,k ≥ 1)and(i, j,k ≤ Dimx,y,z)) then
4 y[i, j,k]← x0[i, j,k]+a× (x[i−1, j,k]+ x[i+1, j,k]+ x[i, j−1,k]+ x[i, j+1,k]+

x[i, j,k−1]+ x[i, j,k+1])/c
5 end
6
7 (...)
8
9 for t← 1 < times for approximation do
10 linearSolverKernel <<< grid,block >>> (x,x0,y,a,x)
11 aux← x
12 x← y
13 y← aux
14 end

Algorithm 7.2: Basic pseudocode of the linear solver with the Jacobi approximation.

Algorithm 7.2 is the solution to the race condition with good approximate convergence
results.
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Regarding the C++ CUDA implementation, Algorithm 7.2 is improved using a simple
pointer swap that simulates lines 11-13 perfectly, as seen in the following listings:
1 // L i n e a r s o l v e r
2
3 __global__ vo id k e r n e l L i n S o l v e ( f l o a t x [ ] [ N + 2 ] [O + 2 ] , f l o a t x0 [ ] [ N + 2 ] [O +

2 ] , f l o a t y [ ] [ N + 2 ] [O + 2 ] , f l o a t a , f l o a t c )
4 {
5 i n t i = b l o c k I d x . x∗blockDim . x + th r e a d I d x . x ;
6 i n t j = b l o c k I d x . y∗blockDim . y + th r e a d I d x . y ;
7 i n t k = b l o c k I d x . z∗ blockDim . z + th r e a d I d x . z ;
8
9 i f ( ( i >= 1) && ( j >= 1) && ( k >= 1) && ( i <= M) && ( j <= N) && ( k <= O) )

10 {
11 // update f o r each c e l l
12 y [ i ] [ j ] [ k ] = ( x0 [ i ] [ j ] [ k ] + a ∗ ( x [ i − 1 ] [ j ] [ k ] + x [ i + 1 ] [ j ] [ k ] + x [ i ] [ j

− 1 ] [ k ] + x [ i ] [ j + 1 ] [ k ] + x [ i ] [ j ] [ k − 1 ] + x [ i ] [ j ] [ k + 1 ] ) ) / c ;
13 }
14 }

Listing 7.4. The linear solver kernel explained in Algorithm 7.2.

1 vo id FluidCUDA : : d i f f u s e ( f l o a t x [ ] [ N + 2 ] [O + 2 ] , f l o a t x0 [ ] [ N + 2 ] [O + 2 ] ,
f l o a t d i f f , f l o a t dt , f l o a t dev_y [ ] [ N + 2 ] [O + 2 ] )

2 {
3 i n t max = MAX(MAX(M, N) , MAX(N, O) ) ;
4 f l o a t a = dt ∗ d i f f ∗max∗max∗max ;
5
6 dim3 b l o ck ( numBlocksX , numBlocksY , numBlocksZ ) ;
7 dim3 th r ead (THREADS_X, THREADS_Y, THREADS_Z) ;
8
9 f o r ( i n t k = 0 ; k < LINEARSOLVERTIMES ; k++)

10 {
11 k e r n e l L i n S o l v e << <block , t h r ead >> > (x , x0 , dev_y , a , 1 . 0 f + 6 .0 f ∗ a ) ;
12 SWAP( x , dev_y ) ; // Main t r i c k
13 }
14 }

Listing 7.5. The trick that simulates lines 11-13 of Algorithm 7.2.

Let us take the previously allocated device *devU and *devUPrev arrays in Listing 7.5
as a illustrative example for the pointer swap trick. Figure 7.2 shows the initial pointer
assignation; then, the pointers are swapped in line 9 of Listing 7.6 as seen in Figure 7.3.
When the diffuse function is called, the pointers enter into a finite loop, swapping their
pointers LINEARSOLVERTIMES iterations as indicated in Figures 7.4 and 7.5. After the
diffusion kernel function call, the pointers remain in the stage of Figure 7.5 since they were
passed by value.
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1 // S i m u l a t i o n s t e p
2
3 vo id FluidCUDA : : v e l S t e p ( )
4 {
5 dim3 b l o ck ( numBlocksX , numBlocksY , numBlocksZ ) ;
6 dim3 th r ead (THREADS_X, THREADS_Y, THREADS_Z) ;
7
8 addSource << <block , t h r ead >> > (devU , devUPrev , dt ) ; addSource << <block ,

t h r ead >> > (devV , devVPrev , dt ) ; addSource << <block , t h r ead >> > (devW ,
devWPrev , dt ) ;

9 SWAP(devUPrev, devU) ; // Sentence under study
10 diffuse(devU, devUPrev, visc, dt, devUy)) ; // Sentence under study
11 SWAP( devVPrev , devV ) ;
12 d i f f u s e ( devV , devVPrev , v i s c , dt , devVy ) ;
13 SWAP( devWPrev , devW) ;
14 d i f f u s e (devW , devWPrev , v i s c , dt , devWy) ;
15 p r o j e c t ( devU , devV , devW , devUPrev , devVPrev , devUPrevy ) ;
16 SWAP( devUPrev , devU ) ; SWAP( devVPrev , devV ) ; SWAP( devWPrev , devW) ;
17 advec t ( devU , devUPrev , devUPrev , devVPrev , devWPrev , dt ) ; advec t ( devV ,

devVPrev , devUPrev , devVPrev , devWPrev , dt ) ; advec t (devW , devWPrev ,
devUPrev , devVPrev , devWPrev , dt ) ;

18 p r o j e c t ( devU , devV , devW , devUPrev , devVPrev , devUPrevy ) ;
19 }

Listing 7.6. The client function.

*devU *devUPrev

*devUy

devU

devUY

devUPrev

Figure 7.2. First step.

*devU *devUPrev

*devUy

devU

devUY

devUPrev

Figure 7.3. Second step.

*devU *devUPrev

*devUy

devU

devUY

devUPrev

Figure 7.4. Third step.

*devU *devUPrev

*devUy

devU

devUY

devUPrev

Figure 7.5. Fourth and final
step.
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7.2 Guide points and deformation

7.2.1 Guide points

Since the previously explained fluid class engine does not use density values, it takes ad-
vantage of force components to move the cumulus cloud in the wind direction. Each cloud
entity has a pivot or guide point on a selected pseudosphere that is on the pole opposite to
the wind origin as observed in Figure 7.6. This method retrieves the values of the UVW force
components in Algorithm 7.1 to generate an incremental variable for this guide point according
the status of the fluid class engine [JG19].

M

O

Guide points

Wind force 
vector

Figure 7.6. Four cumulus clouds with guide points drifting with the generated wind inside the
whole fluid grid tunnel.

The grid used in the tests of the research has dimensions of M = 100,N = 40,O = 40. The
grid can be seen as a wind tunnel where the force components are injected into 100×40×40=

160000 cells; however, when CUDA is not enabled, the CPU serial version should iterate the
cells but with an increment to step over some rows or columns with the aim of achieving better
performance.

The guide point is applied to the sphere that is farthest from the origin of the wind for
better simulation and control. This guide point is fed with the R3 force components of the
fluid engine as specified in Equation 7.13:

sphPos(x,y,z)i =
S

∑
i=1

FU,V,W (x,y,z) (7.13)

where S is the number of pseudospheres and F is the wind force component in R3 for the
guide point. As an example, Figures 7.7 to 7.14 show the evolution of a cumulus cloud at
different time points of its trajectory for the wind coming from the east.
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Figure 7.7. First frame. Figure 7.8. Second frame.

Figure 7.9. Third frame. Figure 7.10. Fourth frame.

Figure 7.11. Fifth frame. Figure 7.12. Sixth frame.

Figure 7.13. Seventh frame. Figure 7.14. Eighth frame.

Other works, such as [Dob+00], have proposed an efficient and realistic method of cloud
motion based on cellular automation. Their OpenGL implementation requires a small amount
of computation and has low memory requirements as a result of the Boolean operations. Their
research includes shadows of clouds and shafts of light.
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7.2.2 Deformation

Since the assumed approach is ontogenetic, the cloud edge deformation is independent
of the state of the fluid engine. Thus, the choice taken for modelling this feature is based
on a modification of the WebGL work of [Qui15] but applied the efficient volumetric cloud
rendering based on pseudospheres and fluid translation dynamics of this thesis. The model
essentially consists of the increment of the fBm noise that is affected by a frame iterator and
the wind direction as seen in Algorithm 7.3:

1 Function fBm(~q, ~wind, f rame)
2 ~q←~q+ ~wind · f rame
3 f ← 0
4 a← 0.5
5 for i← 0 < 5 do

6 f =
i

∑
j=0

a ·uni f orm(~q)

7 ~q =
i

∏
j=0
⊗2.0

8 ~q =
i

∑
j=0

0.03

9 a =
i

∏
j=0

0.5

10 end
11 return f

Algorithm 7.3: fBm function modification for cloud deformation.

The resulting deformation can be observed between Figure 7.7 and Figure 7.14, featuring
very good results, especially in the area of fluid class engine adaptation.

7.3 Cloud morphing

In addition to the cloud motion generated by an efficient fluid simulator, many users in the
computer game and visual arts fields are increasingly requiring new attractive special effects
(FX) in their virtual outdoor products. Recently, researchers have begun to incorporate this
requirement in their landscape generation software. The work of [YW11] is a notable example
of a framework implementation for cloud modelling, rendering and morphing.

This thesis also researches the incorporation of some types of FX, especially with the
morphing effect based on the work of [BN92] and [LWS98].
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7.3.1 Morphing background

The alteration of an object shape into a different one is called morphing, which comes
from the word «metamorphosis». As explained in [HB04], given two keyframes with different
line segment numbers that represent the object transformation, we can adjust the object
specification in one of the keyframes so that the number of edges or vertices are the same in
the two keyframes as seen in Figure 7.15.

a

b

c

a’

b’

c’

keyframei

keyframei+1

Figure 7.15. Since the the keyframe i+1 has an additional vertex, we add one vertex c between
vertex a and b in keyframe i. By using linear interpolation to generate intermediate frames, a
transition from c to c′ is made.

As a consequence, the general rules to equalize the keyframes are the following:

• Using edges: Let Ei and Ei+1 be the edges of a polygon in two consecutive keyframes.

Emax = max(Ei,Ei+1)

Emin = min(Ei,Ei+1)

Next, we calculate the following values:

Te = Emax mod Emin

Ts =
⌊Emax

Emin

⌋
Therefore, the preprocessing stages for the edge equalization are performed as follows:

Stage1 =
(Te)Framemin

Ts +1

Stage2 =
rest of linesFramemin

Ts
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• Using vertices: Let Vi and Vi+1 be vertices of a polygon in two consecutive keyframes.

Emax = max(Vi,Vi+1)

Emin = min(Vi,Vi+1)

Next, we calculate the following values:

Tls = (Vmax−1) mod (Vmin−1)

Tp =
⌊Vmax−1

Vmin−1

⌋
Therefore, the preprocessing stages for vertex equalization are performed as follows:

1. Add Tp points to Tls line sections in key f ramemin.

2. Add Tp−1 points to the rest of the edges in key f ramemin.

7.3.2 Proposed model

In a similar way as that explained in Section 7.3.1 for the vertices case, this thesis pro-
poses a new approach for the transformation of two 3D wireframe meshes by moving each
pseudoellipsoid barycenter (i.e., the vertex) of the source shape to the target shape through
linear interpolation as described the following equation in GLSL, as cited in [JG19]:

f (x,y,a) = x · (1−a)+ y ·a (7.14)

where two situations may arise: 1

A) Barycenters in the source > Barycenters in the target mesh: In this case, we
assign a direct correspondence between the barycenters in the source and target in itera-
tive order. The excess barycenters in the source are randomly distributed by overlapping
them across the target barycenters with the calculation of the modulus between their
barycenters as seen in Figure 7.16.

B) Barycenters in the target > Barycenters in the source mesh: The opposite
operation implies a random reselection of the excess source barycenters to duplicate
them and generate a new interpolation motion to the target mesh as seen in Figure 7.17.

1Although just one of the choices below is required with the inversion of the a variable from 1 to 0, an alternative
approach is proposed here.
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Figure 7.16. Case A. The excess barycenters in the hexagon are randomly distributed and
overlapped over the triangle barycenters.

+

++

Figure 7.17. Case B. The required barycenters are added to the triangle for a random reselection
to the hexagon barycenters.

Another problem that arises in the morphing model is the orientation or correct rotation
of the pseudoellipsoids when they are moving from the source to the target. Thus, the first
difficulty is to relocate the source ellipsoid in the direction of the triangle. This drawback
is successfully overcome as explained in Section 6.5. Another difficulty is the incremental
rotation when the source ellipsoid travels linearly to the destination with the objective to
achieve smooth rendering during the animation. Figure 7.18 illustrates this issue.

As explained in [JG18], the first rotation is generated with Rodrigues’ transformation for-
mulas (Equations 7.15 and 7.16) given the first angle θ .

R1 = eAθ = I + sin(θ)A+(1− cos(θ))A2 (7.15)

R2 = eAαi = I + sin(αi)A+(1− cos(αi))A2 (7.16)
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where αi is the incremental angle from 0 to αn, which is the final angle in the target
pseudoellipsoid orientation.

Rotate one 
step

Itera�ve 
rota�onal  
increment

Star�ng 
posi�on End posi�onOriginal plot

θ α 
0 n 

α 

Figure 7.18. Example layout of the rotation process for 3D meshes.

Equation 7.15 is performed once in the CPU, whereas Equation 7.16 is calculated in each
morphing iteration until the final angle is reached. Usually, the morph animation ends when
all the pseudoellipsoids have reached the last rotation angle.

Therefore, the GLSL shader performs the transformation of Equation 7.17 during the
rendering.

Tfinal = R2 ·R1 ·Point of the pseudoellipsoid (7.17)

An additional difficulty found during the proposed morphing model is the definition of the
bounding boxes. Due to the complexity of the animation control, the implementation uses a
shared bounding box with the size of both meshes. On the other hand, an efficiency improve-
ment was achieved with shadowing as a result of the linear interpolation of the precomputed
light voxels.

The mesh deformation is also applied during the metamorphosis by using the method
explained in Section 7.2.2 but without the fluid dynamics engine.

Finally, Figures 7.19 to 7.26 show an example of the progression of a hand-to-rabbit mesh
metamorphosis.
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Figure 7.19. First step. Figure 7.20. Second step.

Figure 7.21. Third step. Figure 7.22. Fourth step.

Figure 7.23. Fifth step. Figure 7.24. Sixth step.

Figure 7.25. Seventh step. Figure 7.26. Eighth step.
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7.4 Summary

We have reviewed in the present chapter the main concepts related to fluid simulation for
advection and convection in the computer graphics field. The explanation of the behaviour
and internal methods of the fluid engine class is useful to understand the cloud dynamics
research work. This chapter also introduces the critical parts of the CUDA code parallelization
to achieve a more efficient and effective C++ implementation. It also illustrates the cloud
deformation principles applied in this thesis and the novel technique of the guide points. Finally,
an exposition is included of the essential ideas to perform 3D cloud model morphing along
with a background introduction to this effect.
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CHAPTER 8
Results and benchmarks

To confirm the initial hypothesis, benchmarks and measurements were made using different
GPUs to evaluate that the developed algorithms yield good realism and performance in

all kind of graphic cards. For this reason, this chapter begins with a deep complexity analysis
of the essential algorithm implemented on the GPU, which is performed in Section 8.1. A
complete collection of performance metric graphs in both serial and parallel execution tests is
also analysed in Section 8.2 for the static and dynamic cloud rendering models. Section 8.3
explains the impact of CUDA parallelism in the overall system speedup, and finally, Section
8.4 deploys a wide range of cloud taxonomy figures to assess the quality of the rendering.

8.1 Complexity analysis

Analytical verification of Algorithm 4.1 that runs on the GPU has been undertaken to
assess its complexity. The following analysis has been developed using [BB96] notation.

Considering |B| as the number of collisions with clouds per ray, n as their overlapped
bounding boxes near-plane resolution area in pixels, s as the number of pseudospheroids in
their bounding boxes, c as the size of selected candidates to be rendered, and d as the depth
of raymarching, Algorithm 4.1 has the following execution times: 1

• If we assume no sphere collisions, the Insertion Sort algorithm will not have any elements
to classify in the best-best case, so we will obtain an asymptotic execution time of:

tbest−best =
|B|

∑
i=1

n

∑
j=1

1+
s

∑
t=1

(1+6)︸ ︷︷ ︸
getCandidates()

'Ω(|B|ns) (8.1)

1The numeric constants refer to the instruction count.
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• In the worst-best case the candidates list is already sorted, so no swap will be done.

tworst−best =

|B|

∑
i=1

n

∑
j=1

1+
s

∑
t=1

(1+6+5)︸ ︷︷ ︸
getCandidates()

+
n

∑
j=1

 c︸︷︷︸
sortCandidates()

+1+
c

∑
w=1

(
1+2+

d

∑
z=1

20

)
︸ ︷︷ ︸
Raymarching iterations

 (8.2)

' o−Ω

(
n(4c+20dc+12|B|s)

)
• The worst-worst case happens when a complete collision is detected and the candidate

list is in descending order, so the resulting asymptotic worst-case execution time is:

tworst−worst =

|B|

∑
i=1

n

∑
j=1

1+
s

∑
t=1

(1+6+5)︸ ︷︷ ︸
getCandidates()

+
n

∑
j=1

 c2︸︷︷︸
sortCandidates()

+1+
c

∑
w=1

(
1+2+

d

∑
z=1

20

)
︸ ︷︷ ︸
Raymarching iterations

 (8.3)

' o−o
(

n(c2 +3c+20dc+12|B|s)
)

• Regarding the average case we assume a p probability of sphere collision, so an approx-
imate measure of total collisions will be calculated as a percentage of total spheres in
scene.

tavg =

|B|

∑
i=1

n

∑
j=1

1+
s

∑
t=1

(1+6+5)︸ ︷︷ ︸
getCandidates()

+
n

∑
j=1

 c2︸︷︷︸
sortCandidates()

+1+
s·p

∑
w=1

(
1+2+

d

∑
z=1

20

)
︸ ︷︷ ︸

Iterations probability

 (8.4)

' o
(

n(c2 +20dsp+12|B|s+3ps)
)

The analysis indicates that, despite the algorithm having quadratic complexity in the worst
case for a single-frame buffer pixel, modelling the cumulus with fewer spheres reduces the
number of hits, resulting in faster sorting and execution.

Some tests were performed by replacing the Insertion Sort algorithm with iterative Quick-
sort which contains O(nlog2n) instead of O(n2), expecting that it would provide better per-
formance. However, no improvement in FPS was obtained in these experiments. On the
contrary, there was a decrease in the overall frames-per-second. The cause of this reduction
is an increase in memory access on the GPU caused by the Quicksort algorithm, so in spite of
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the in-line optimizations it could not be exceeded the speed of Insertion Sort. Another alterna-
tive for the Insertion Sort algorithm is Batcher’s Odd–Even Mergesort as cited by Kipfer and
Westermann [MR05] due to the better low-level parallelization and its worst-case complexity
parallel time, represented by O(log2(n)).

8.2 Benchmark tests

8.2.1 Static rendering

A set of tests was performed on the algorithm suite with using an nVidia GeForce 8800
GTS (96 cores), a GeForce 1030 GT (Pascal, 384 cores), a GeForce GTX 1050 non-Ti (Pascal,
640 cores) and a GeForce GTX 970 (1664 cores), running on a 64-bit Core i7 CPU 860@2.80
GHz (first generation, 2009) with 6 GB random access memory (RAM). The project was
implemented entirely in C++ using the OpenGL and GLM math libraries for the host side and
the OpenGL Shading Language for the GPU side. The raymarching step size was determined
by λ in line 48 of Algorithm 4.1 for the cumulus test and was constant at 0.1 for the 3D
mesh tests. Promising results were obtained when the cloud was far from the camera with the
8800 GTS at 800×600 and 640×480 pixels, especially with metaballs. The same algorithm
suite performs perfectly in all resolutions using the nVidia GTX 970, GT 1030, and GTX 1050
non-Ti, in particular when rendering clouds derived from 3D meshes. Besides this, a significant
2× frame rate improvement in the nVidia 8800 GTS was achieved in relation to [Bou+08]
for cumulus rendering. For this benchmark, we used 35 spheres for cumulus generation and
the R rotation for the 3D rabbit mesh. Both tests used a grid size of 20×20×20 voxels and
a uniform hypertexture of 643 single-precision floats. The pre-computation in the CPU took
under 0.010 s thanks to the no duplicate tracing algorithm. Without the NDT algorithm, the
CPU execution time would double for the aforementioned cumulus in all cases. The graphic
driver used the factory default configuration in all tests. The CPU load did not exceed 15%
and and host memory usage did not exceed 24.5 MB in all tests when running at a resolution
of 1920× 1080 pixels. Regarding the GPU hardware usage, with the nVidia 1030 GT, for
instance, the top mark frame-buffer usage was 21% at maximum frames-per-second, the bus
interface was 4% at maximum power, and the maximum memory allocation peak was up to
7%.

Card/OpenGL
Euclidean Distance Cumulus 3D Model

GT 1030 32→ ∞ 25→ ∞

GTX 1050 non-Ti 24→ ∞ 20→ ∞

GTX 970 0→ ∞ 12→ ∞

Table 8.1. The table above shows the minimum distance from the cloud at which Full High-
Definition (HD) 1920 × 1080 pixels rendering reaches 30 FPS (minimum real-time). This
distance is suitable for scenarios where getting close to the surface of the cloud is required.
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Figure 8.1. With the GeForce
8800 GTS the performance at
800 × 600 pixels overcomes
the limit of the hyperrealistic
method shown in [Bou+08].
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Figure 8.2. With the GeForce
1030 GT the performance is
optimum in most cases, except
when the level of detail (LOD)
equation is manually bypassed
to force higher quality.
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Figure 8.3. Performance in a
GeForce GTX 1050 non-Ti is
optimum in 99% of cases.
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Figure 8.4. Based on em-
pirical tests in a GeForce
GTX 970, the proposed model
achieves a geometric frame
rate increment in all algo-
rithms. Results are very
promising for the both cumu-
lus and 3D mesh tracing al-
gorithms in all resolutions, in-
cluding Full-HD.

118



Chapter 8 Benchmark tests

8.2.2 Dynamic rendering and morphing

For the dynamic cloud rendering and the morphing effect, a set of benchmark tests were
performed using an nVidia GeForce 1030 GT (Pascal, 384 cores), a GeForce GTX 1050 non-Ti
(Pascal, 640 cores) and a GeForce GTX 1070 non-Ti (Pascal, 1920 cores), running on a 64-bit
Core i7 CPU 860@2.80 GHz (first generation, 2009) with 6 GB RAM. As seen in Section 8.2.1
the project is implemented in C++ using OpenGL and GLM libraries with GLSL for the shader
language. The Visual C++ 2017 compiler was set to O2(maximum speed optimization) and
Ot (favouring optimization for speed over optimization for size). In addition, the Qpar options
were enabled to generate CPU parallel code. In the CUDA compiler side, the compute_61
flag was set for device code generation, and the O2 option to maximize speed and the fast
math operations flag were enabled. As in the static benchmarks, the λ raymarching step was
established in 0.1 for the morphing effect. The cumulus dynamic tests were performed over a
moving sea scape with a real sky function using four clouds in the scene with 35 spheres per
each one (140 spheres in total). The metaballs tests used a plain terrain landscape with two
clouds with 6 spheres each one. With the aim to analyse the CUDA parallel performance, two
benchmark versions were defined for each graphics card: a 103 precomputed light grid size
with a 100×20×40 fluid volume and a 403 precomputed light grid size with a 100×40×40

fluid volume.
The following tables and graphs demonstrate the performance metrics for different graphics

cards.

Card/OpenGL
Euclidean Distance Cumulus 3D Model

GTX 1070 non-Ti (CPU) 35→ ∞ 24→ ∞

GTX 1070 non-Ti (CUDA) 35→ ∞

Table 8.2. Minimum distance from the cloud at which full HD (1920×1080) reaches 30 FPS
in an nVidia GTX 1070 non-Ti with a problem size of 103 for the precomputed light grid and
100×20×40 for the fluid engine grid.

Card/OpenGL
Euclidean Distance Cumulus

GTX 1070 non-Ti (CPU) 40→ ∞

GTX 1070 non-Ti(CUDA) 37→ ∞

Table 8.3. Minimum distance from the cloud at which full HD (1920×1080) reaches 30 FPS
in an nVidia GTX 1070 non-Ti with a problem size of 403 for the precomputed light grid and
100×40×40 for the fluid engine grid.
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Figure 8.5. GeForce 1030
GT CPU simulation bench-
mark; 79.3% of the samples
are above 30 FPS (see Ta-
ble 8.4). The performance at
640× 480 is good enough in
this case.
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Figure 8.6. GeForce 1030
GT CUDA simulation bench-
mark; 75% of the samples in
the graph are above 30 FPS
(see Table 8.5). The paral-
lel GPU overhead behaviour is
very similar to that shown in
Figure 8.5.
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Figure 8.7. GeForce 1030
GT CPU simulation bench-
mark with a greater problem
size; 80% of the samples fall
over 30 FPS as seen in Table
8.6.
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Figure 8.8. GeForce 1030
GT CUDA simulation bench-
mark with a greater problem
size; 80% of the samples fall
over 30 FPS as seen in Table
8.7. More overall speedup is
gained.

120



Chapter 8 Benchmark tests

D
ist
.

C
U
M
U
LU

S
(3
20

x
24

0)
C
U
M
U
LU

S
(6
40

x
48

0)
C
U
M
U
LU

S
(8
00

x
60

0)
M
O
R
P
H
.(

32
0
x
24

0)
M
O
R
P
H
.(

64
0
x
48

0)
M
O
R
P
H
.(

80
0
x
60

0)
M
ET

A
B
A
LL

S
(1
02

4
x
76

8)
0

37
4.

1
12

0.
8

91
.4

64
.3

53
.1

34
88

.8
10

20
5

57
.3

28
15

0.
9

26
.7

13
.7

25
.7

15
17

8.
5

40
.7

22
.8

17
1.

3
35

.1
20

.3
14

.2
20

17
6.

5
32

.4
19

.7
23

7.
2

40
.1

23
.1

16
.7

30
19

7
45

.8
24

.6
23

3.
2

63
32

.4
23

.7
35

24
7.

1
55

.9
30

.2
25

3.
4

73
.9

36
.4

28
.7

40
27

8.
2

64
.3

35
21

8.
6

79
.8

45
34

.2
50

29
2.

1
81

.8
44

.9
25

5.
1

78
.5

50
.9

10
1.

8
>

10
0

40
8.

6
13

6.
2

74
.6

15
3.

9
58

.7
51

.6
26

3.
1

M
EA

N
25

26
1.

9
41

.2
63

.5
2

19
3.

1
56

.5
44

44
44

4
34

66
.3

22
22

22
2

ST
A
N
D
A
R
D

D
EV

IA
T
IO

N
84

.5
61

24
99

9
35

.9
68

38
11

8
25

.1
47

86
82

6
63

.3
10

07
02

9
19

.3
75

37
81

3
13

.4
30

74
83

80
.2

95
23

30
1

T
O
TA

L
M
EA

N
59

.2
6

Table 8.4. FPS metrics
for the GeForce GT 1030
in CPU simulation mode for
a Light = 103,Fluid = 100×
20×40 problem size.
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Table 8.5. FPS measures
for the GeForce GT 1030 in
CUDA simulation mode for
a Light = 103,Fluid = 100×
20×40 problem size.
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Table 8.6. FPS measures
for the GeForce GT 1030
in CPU simulation mode for
a Light = 403,Fluid = 100×
40×40 problem size.
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Table 8.7. FPS metrics
for the GeForce GT 1030 in
CUDA simulation mode for
a Light = 403,Fluid = 100×
40×40 problem size.

122



Chapter 8 Benchmark tests

0

10

20

30

40

50

60

70

80

90

0 10 15 20 30 35 40 50 >100

T
IM

E
 [

M
S

]

DISTANCE TO CLOUD CENTER

NVIDIA GeForce GTX 1050 non-Ti - 640 cores / 2GB
(Light grid = 103, Fluid grid = 100 × 20 × 40) - CPU Times

CUMULUS (640 x 480) CUMULUS (800 x 600) CUMULUS (1024 x 768)

MORPHING  (640  x 480) MORPHING (800 x 600) MORPHING(1024 x 768)

METABALLS (1024 x 768) REAL-TIME

Figure 8.9. GeForce 1050
GTX CPU simulation bench-
mark; 77.7% of the samples
are above 30 FPS (see Ta-
ble 8.8). The performance at
800×600 is acceptable.
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Figure 8.10. GeForce 1050
GTX CUDA simulation bench-
mark; 77.7% of the samples
are above 30 FPS (see Ta-
ble 8.9). The performance is
slightly higher in this version.
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Figure 8.11. GeForce 1050
GTX CPU simulation bench-
mark with a greater problem
size; 72.2% of the samples
are above 30 FPS (see Ta-
ble 8.10). The performance is
slightly lower than that of its
counterpart.
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Figure 8.12. GeForce 1050
GTX CUDA simulation mea-
sures; 75% of the samples
are above 30 FPS (see Table
8.11). The CUDA version is
observed to improve the CPU
times.
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Table 8.8. FPS for the
GeForce GTX 1050 non-Ti
in CPU simulation mode for
a Light = 103,Fluid = 100×
20×40 problem size.
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Table 8.9. FPS for the
GeForce GTX 1050 non-Ti in
CUDA simulation mode for
a Light = 103,Fluid = 100×
20×40 problem size.
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Table 8.10. FPS metrics for
the GeForce GTX 1050 non-
Ti in CPU simulation mode for
a Light = 403,Fluid = 100×
40×40 problem size.
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Table 8.11. FPS bench-
marks for the GeForce GTX
1050 non-Ti in CUDA sim-
ulation mode for a Light =
403,Fluid = 100 × 40 × 40
problem size.
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Figure 8.13. GeForce 1070
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Table 8.12. FPS for the
GeForce GTX 1070 non-Ti
in CPU simulation mode for
a Light = 103,Fluid = 100×
20×40 problem size.
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Table 8.13. FPS bench-
marks for the GeForce GTX
1070 non-Ti in CUDA sim-
ulation mode for a Light =
103,Fluid = 100 × 20 × 40
problem size.
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Table 8.14. FPS bench-
marks for the GeForce GTX
1070 non-Ti in CPU simu-
lation mode for a Light =
403,Fluid = 100 × 40 × 40
problem size.
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Table 8.15. FPS metrics for
the GeForce GTX 1070 non-Ti
in CUDA simulation mode for
a Light = 403,Fluid = 100×
40×40 problem size.

128



Chapter 8 CUDA parallel algorithm analysis

8.3 CUDA parallel algorithm analysis
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Figure 8.17. Speedup calculation for the nVidia 1030 GT. The CPU fluid version improves the
CUDA performance.
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Figure 8.18. Speedup for the nVidia GTX 1050 non-Ti. The CPU version still performs better
than the CUDA implementation.
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The metrics that Figures 8.17, 8.18 and 8.19 illustrate were measured with four dynamic
cumulus clouds with different sizes for the precomputed light grid and fluid engine grid. As can
be observed in the previous graphs, the speedup (see Section 2.4.2) increases as the problem
size increases. This effect is demonstrated on the right side of the graphs when the CPU time
for the precomputed light algorithm overcomes the CUDA version as measured in milliseconds.
In this case, the CUDA implementation is much better in all studied graphics cards.

8.4 Quality of rendering

Figures 8.20 to 8.28 show a collection of different cloud types from high- to low-altitude
clouds. They are the most reliable proof of the quality of the rendering that the implemented
models researched in this thesis have achieved.

Figure 8.20. Cirrus Castellanus.

Figure 8.21. Cirrus Uncinus.
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Figure 8.22. Altostratus Undulatus.

Figure 8.23. Altocumulus Lenticularis Duplicatus.

Figure 8.24. Altocumulus Castellanus.
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Figure 8.25. Cumulus Humilis.

Figure 8.26. Stratocumulus.

Figure 8.27. Cumulonimbus Calvus.
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Figure 8.28. Cumulonimbus Incus.

8.5 Summary

The exposed chapter is a complete analytical and empiric study of the presented algorithms
and models. The first part of the chapter evaluates the complexity of the base algorithm for
cloud rendering and morphing for its implementation in a GPU through GLSL shaders. This
chapter also measures the times and FPS metrics in both serial and parallel code for static
and dynamic rendering and points out the impact of the problem sizes in the serial (CPU)
and CUDA overall performance. Finally, a wide collection of cloud types are illustrated to
demonstrate the quality of the rendering.
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CHAPTER 9
Discussions, conclusions and future work

The final chapter of this thesis gives an overview of all the work carried out. Thus, Section
9.1 discusses the critical parts of this thesis in comparison to other authors’ models,

providing a clarification about the main achievements and the feature elements that are lacking.
A review of the developed contents and accomplished features is summarized in Section 9.2
containing the conclusions. This work ends by proposing future possible improvements for the
final user with the aim to complete the remaining features as explained in Section 9.3.

9.1 Discussions

In comparison with particle system and basic raytracing methods, the proposed algorithm
results in greater realism than the one found in [KPK15; Hua+08; Har02; Bi+16; Hor+05;
Mon+17], as shown in Figures 9.1, 9.2 and 9.3 and higher performance (Table 9.1). The
obtained realism is comparable to that of off-line and photo-realistic models that use all
physical characteristics, as shown in Figure 9.4, that are not suitable for use in real-time due
to the long execution times required. A novel non-real-time approach is found in [Kal+17]
which applies the radiance-predicting neural network model (RPNN) to emulate real cumuli.
However, it takes ∼ 12 hours to train the network using an nVidia Titan (Pascal) GPU and
two Intel Xeon CPUs (24 cores/48 threads in total). The present research goes in the direction
of balancing the realism of volumetric rendering and the performance of particle systems to
exceeds the limitations of the non-real-time and photo-realistic methods cited in [Nar+06;
Jar+08; Cer+05]. It is also a suitable framework for implementing lighting and shadowing
algorithms, with lower GPU overhead as compared to the methods of other works [GMF09;
Zho+08; Del+10]. The present research improves pre-computation times to the millisecond
level as opposed to minutes [Yus14; Zho+08; ASW13], or hours [Kal+17].
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With respect to the research by Bouthors [Bou+08], the thesis model shows an increase
in FPS performance on the same graphics hardware. While not obtaining the hyperrealism of
radiometry achieved in that model, the thesis research about cloud generation method using
3D meshes improves on the geometry accuracy and smoothness obtained by Wither et al. in
the rapid sketch modelling of clouds [WBC08]. In contrast to the realistic method by Mukhina
[MB15], where the cloud is projected on an hemispherical disc, the volumetric algorithm of this
thesis allows for the navigation and traversal of gaseous mass to observe details. This thesis
also improves on the overall realism in the model of Elek et al. [Ele+12], while maintaining
the same performance as the conservative raymarching version of their implementation when
it is executed at 1920×1080 pixels. Despite the efforts, the method of this thesis lacks the
precision of the excellent work by Klehm et al. [KSE14] and Peters et al. [Pet+16] with
respect to scattering and shadow maps.

None of the algorithms cited above covers the aspect of cloud motion and shape alteration.
This thesis implements the effect of wind advection over a dynamic system of primitives
efficiently as seen in Chapter 7.

Regarding the morphing algorithm, the proposed animation yields between 80 and 137 FPS
with approximately 350 ellipsoids, which implies better performance and rendering quality than
the work of [YW11]. This thesis also presents a new approach for cloud dynamics based on
a GPGPU that achieves realistic cloud movement using parallel algorithms with a significant
increment in speedup by applying CUDA technology in comparison to the outdated serial
algorithms cited above. In addition, the guide points simplify the motion implementation
and software engineering complexity in an affordable way, as opposed to other accurate but
challenging-to-implement methods such as [Dob+00].

Figure 9.1. Gen-
erated cloud using
a particle system
with Harris [HL01],
Huang et al. meth-
ods [Hua+08]. The
contour of the cloud
and the overall realism
lack accuracy.

Figure 9.2. A cloud
modelling method
by Montenegro et
al. [Mon+17] that
combines procedural
and implicit models.

Figure 9.3. The
proposed ontological
volumetric cloud ren-
dering method with
lighting. The proce-
dural noise improves
cloud edges and fuzzy
volume effects.
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Huang et al. Montenegro et al. Kang et al. Yusov Bi et al. Present thesis

FPS 99.5 30 60 105 50 > 150
(GTX 680) (GTX 1050 non-Ti)

Table 9.1. Average frequency of other particle and volumetric systems compared with the
proposed method.

Figure 9.4. Photo-realistic clouds with all physical characteristics. The image above was
generated with POV-Ray in 1 h, 18 min using the 100% of the CPU cores at 1024 × 768
resolution in pixels. The image below was generated with Lumion 7.5 taking around 1 s for the
skydome texture. These are antithetical model examples that differ from the real-time system
explained in this thesis.

9.2 Conclusions

This thesis presents a real-time cloud rendering method with a good balance between
realism and performance. The algorithm uses flat uniform noise transformed into fBm with low
memory usage (64×64×64 single-precision floats) to ensure efficient computational costs of
raymarching. The constructive primitives are composed of a new particle called pseudosphere
which equation has been developed hereby. In addition, the use of bounding boxes containing
very few pseudospheroids allows for the application of a simple linear loop which discards clouds
outside the camera view. This low number of pseudospheroids is achieved thanks to a custom
developed Gaussian equation that covers the most typical cumuli used in video games and
virtual reality software. The linear discrimination can perform even better if sphere location
is made with space-partitioning algorithms, but it requires much coding time and complex
CPU/GPU coordination.

The use of pre-calculated light stored in a voxel grid along with optimizations like the no
duplicate tracing algorithm improves the speed of light computing. This algorithm is optimal
when the location of the viewer changes faster than the location of the light source or the
geometry of the clouds. A limitation of the lighting model is the calculation of multiple
scattering only in the forward direction, which neglects 50% of the remaining scattered light.
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The algorithm implements a function that allows the use of 3D meshes to define the
shape of clouds that should resemble recognisable objects. A novel technique has been used,
consisting of fitting ellipsoids to the vertices of each triangle and rotating them to smooth the
look of the cloud by the use of Rodrigues’ formula.

Regarding the motion and cloud dynamics, this thesis addresses the simplification of the
Navier-Stokes fluid equations by making use of a reduced version of a fluid solver with CUDA
parallel capabilities to adapt it to the previous static rendering research. Thus, the application
of the novel technique of the guide points eases the implementation with very reliable results.

As an artistic and attractive effect, this thesis also presents a new morphing algorithm for
3D meshes evoking animated pareidolic phenomena.

In summary, taking into account the data presented in the results Chapter 8, it can be
conveyed that the initial hypothesis is confirmed and that these algorithms are a good candidate
for applications requiring a good balance between performance and realism, such as computer
games, flight simulators, and virtual reality.

9.3 Future work

All the work performed in the course of this thesis aims to recreate clouds with all their
beauty while keeping in mind the efficiency requirements. There is still room for future im-
provements as noted below:

• A precipitation model: It would be useful for a complete but efficient rain simulation
model to be used in computer games and flight simulators. Such a model should recreate
all precipitation artefacts, such as hail, snow, lightning and turbulences.

• Shadow mapping: The present implementation lacks projected shadows; therefore, the
recreation of this effect would be advantageous.

• Light beams: This thesis also lacks light beams from either sunset or sunrise. Imple-
mentation of this effect would slow down the overall execution but is very feasible with
the exposed model.

• Full-featured cloud deformation: The guide points technique should be applied to all
the spheres of the cloud to achieve a more realistic turbulent deformation.

9.4 Summary

This chapter is the final point of the trip. The main pros and cons of the carried out
research are discussed and analysed along with other works and models accomplished by
authors worldwide. At last, a challenging message is given to the reader to highlight the
applied efforts in the course of this thesis with the hope that others will continue this work in
the future.
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APPENDIX A
Appendix A

Listing A.1. Cumulus static and dynamic simplified shader.

1 ////////////////////////////////////////////////////////////////////
2 // ONTOGENETIC MODEL FOR REAL-TIME VOLUMETRIC CLOUDS SIMULATION THESIS
3 // Software Engineering and Computer Systems Department
4 // National University for Distance Education (UNED)
5 // Carlos Jiménez de Parga, PhD student.
6 // License Creative Commons Attribution-NonCommercial-ShareAlike 3.0
7 // Unported License.
8 // Last revision 19/04/2019
9 //////////////////////////////////////////////////////////////////

10
11 #version 450 core
12 #pragma optimize(on)
13
14
15 // Declare uniforms
16
17 uniform sampler3D iNoise;
18 uniform sampler3D iVoxel[10];
19 uniform float iDepth;
20 uniform int iNumSph;
21 uniform int iNumClouds;
22 uniform bool isFlat[10];
23 uniform int iTurn;
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24 uniform vec2 iResolution;
25 uniform mat4 iView;
26 uniform vec3 iPos;
27 uniform vec3 iVmin[10];
28 uniform vec3 iVmax[10];
29 uniform int iLowLimits[10];
30 uniform int iUpLimits[10];
31 uniform float iTime;
32 uniform vec3 iWindDirection;
33 uniform vec3 iSunDir;
34 uniform bool iSnow;
35
36 // Global variables
37
38 vec3 cloudColor; // Color of the cloud
39 vec3 sunColor; // Color of light source
40 vec4 candidates[100]; // List of candidates
41 float kPhase; // Phase function constant
42 float T; // Light threshold
43 int n = 0; // Number of candidates
44 vec3 rdNorm; // Normalized ray-direction
45 vec3 skyColor; // Color of the sky
46 float sunSize = 0.5; // Sun radius
47 float tmin, tmax, tymin, tymax, tzmin, tzmax; // For Smits' algorithm
48
49 in vec2 fragCoord; // Fragment shader 2D coordinates
50 out vec4 FBColor; // Returned frame buffer color
51
52 // Spheres array
53
54 layout(std140) uniform iCloudPosBlock
55 {
56 vec4 iCloudPos[150];
57 };
58
59 // Calculate fBm noise
60
61 float fbm(in vec3 q)

140



Appendix A

62 {
63 q = q + iWindDirection * iTime;
64
65 float f = 0.0;
66 float a = 0.5;
67
68 for (int i = 0; i < 5; i++) {
69 f += a * textureLod(iNoise, q / 128.0, -100.0).r;
70 q = q * 2.0 + 0.03;
71 a *= 0.5;
72 }
73
74 return f;
75 }
76
77 // Collision detection routine
78
79 void addCandidates(in vec3 rayOrg, in vec3 rayDir, int boundIdx)
80 {
81 // Limits of the cloud spheres
82
83 int sphStart = iLowLimits[boundIdx];
84 int sphEnd = iUpLimits[boundIdx];
85
86 // Iterate over spheres
87
88 for (int j = sphStart; j < sphEnd; j++)
89 {
90
91 vec3 cloudPos = iCloudPos[j].xyz; // Sphere (x,y,z) position
92 float radius = iCloudPos[j].w; // Sphere radius
93
94 vec3 temp = rayOrg - cloudPos;
95 float a = dot(rayDir, rayDir);
96 float b = 2.0*dot(rayDir, temp);
97 float c = dot(temp, temp) - radius * radius;
98
99 float disc = b * b - 4.0*a*c;
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100
101 if (disc > 0.0) // There is a collision
102 {
103
104 disc = sqrt(disc);
105 float t = ((-b - disc) / (2.0*a));
106 float limit = ((-b + disc) / (2.0*a));
107 candidates[n] = vec4(t, limit, j, boundIdx); // Add to candidates array
108 n++;
109
110 }
111 }
112 }
113
114 // Insertion-sort algorithm
115
116 void order()
117 {
118 int h;
119 vec4 aux;
120
121 for (int i = 1; i < n; i++)
122 {
123 aux = candidates[i];
124 h = i - 1;
125 while ((h >= 0) && (aux.x < candidates[h].x))
126 {
127 candidates[h + 1] = candidates[h];
128 h--;
129 }
130 candidates[h + 1] = aux;
131 }
132 }
133
134
135 // Simplified Henyey-Greenstein phase function
136
137 float phase(in float g)
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138 {
139 return 0.0795 * ((1.0 - g * g) /
140 pow(1.0 + g * g - 2.0*g*dot(rdNorm, iSunDir), 1.5));
141 }
142
143 // Raytrace pseudo-sphere
144
145 vec4 trace(in vec3 rayOrg, in vec3 rayDir, in vec3 color)
146 {
147
148 float localDen, den;
149
150 float tIn, tOut;
151
152 for (int i = 0; i < n; i++)
153 {
154
155 int sphIdx = int(candidates[i].z); // Sphere index
156 int boundIdx = int(candidates[i].w); // Cloud index
157 vec3 cloudPos = iCloudPos[sphIdx].xyz; // Sphere 3D position
158 float radius = iCloudPos[sphIdx].w; // Sphere radius
159 vec3 iVoxMin = iVmin[boundIdx]; // Bounding box 3D min values
160 vec3 iVoxMax = iVmax[boundIdx]; // Bounding box 3D max values
161 vec3 difVox = iVoxMax - iVoxMin; // Voxel distance
162
163 tIn = candidates[i].x; // Lambda-in
164 tOut = candidates[i].y; // Lambda-out
165
166
167 bool bFlat = isFlat[boundIdx]; // Is the cloud flat?
168
169 // LOD (Level-of-Detail)
170 float lambda = clamp(10.0*exp(-distance(rayOrg, cloudPos)*0.23), 0.1, 10.0);
171
172 while (tIn <= tOut) // Iterate over candidate sphere list
173 {
174 vec3 pos = rayOrg + tIn * rayDir; // Raymarch position
175
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176 vec3 index = (pos - iVoxMin) / difVox; // Voxel index
177
178 // Pre-compute light value
179 float precLight = texture(iVoxel[boundIdx], index, -100.0).r;
180
181 // Condition for flat cloud
182 if (!bFlat || (pos.y > iVoxMin.y + precLight * 1.2))
183 {
184 den = fbm(pos); // Density
185
186 // Create pseudo-sphere
187 localDen = exp(-distance(pos, cloudPos) / (radius*(0.7 + 0.4*den)));
188
189 // Render pseudo-sphere with lighting
190 if (den < localDen)
191 {
192
193 float deltaT; // Calculate differential transmittance
194
195 deltaT = exp(-0.2 * den);
196
197 vec3 absorpLight = sunColor * precLight; // Absorption
198
199 // Scattering
200 vec3 scatterLight = sunColor * phase(kPhase)*precLight;
201
202 // Total light
203 vec3 totalLight = absorpLight * 0.9 + scatterLight;
204
205 // Resulting cloud color
206 color += (1.0 - deltaT) * totalLight * T;
207
208 T *= deltaT; // Accumulate transmittance
209
210 if (T < 1e-6) // Exit condition
211 return vec4(color, 1 - T);
212
213 }
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214 }
215
216 tIn += lambda; // Step raymarching
217
218 }
219
220 }
221
222 return vec4(color, 1 - T); // Return color with transparency
223 }
224
225 // Render cloud
226
227 vec4 render(in vec3 rayOrg, in vec3 rayDir, in vec2 px)
228 {
229
230 rdNorm = normalize(rayDir);
231
232 // background sky
233 vec4 skycol;
234 vec4 res = vec4(0);
235
236 float sun = 1.0 + dot(iSunDir, rdNorm);
237
238 if (iTurn == 0) // Morning scene
239 {
240 float fexp = exp(-sun * 1000.0 / sunSize);
241 float fexp2 = exp(-sun * 1000.0 / 0.1);
242
243 skycol = vec4(0.2*sunColor*fexp + 0.6*sunColor*fexp2, 1.0);
244 // sun glare
245 skycol += vec4(getSkyColor(rdNorm.xyz) + 0.2*sunColor*exp(-sun), 0);
246
247 }
248
249 else if (iTurn == 1) // Sunset scene
250 {
251
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252 vec3 stars;
253
254 if ((rdNorm.y > 0.1) && (dot(iSunDir, rdNorm) > -0.995))
255 {
256 float g = 0.2*fbmgal(rdNorm); // Generate stars
257 stars = 0.3*vec3(g*g*g, g*g*1.3, 8.5*g);
258 if (length(stars) < 2.4)
259 stars = vec3(0);
260 }
261
262 // sun glare
263 skycol = vec4(getSunset(rdNorm, px) +
264 0.2*sunColor*exp(-sun) + stars, 1.0);
265
266 resM.xyz = resM.xyz / 5.0; // Mountain darkness
267
268 }
269 else // Night scene
270 {
271 vec3 stars = vec3(0);
272
273 if ((dot(iSunDir, rdNorm) > -0.9988))
274 {
275 float g = 0.2*fbmgal(rdNorm); // Generate stars
276 stars = 0.3*vec3(g*g*g, g*g*1.3, 1.5*g);
277 }
278
279
280 #ifdef FULLMOON
281
282 // Render fullmoon
283 float fexp = exp(-sun * 1000.0 / sunSize);
284 float fexp2 = exp(-sun * 1000.0 / 0.2);
285
286
287 skycol = vec4(0.2*sunColor*fexp + sunColor * fexp2, 1.0);
288 // moon glare
289 skycol += vec4(0.2*sunColor*exp(-sun) + stars, 0);
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290
291 #else
292
293 // Render quarter moon
294 float time = 812.81;
295
296 //Diffuse
297 float r = 0.05;
298 vec3 vp = vec3(sin(time*0.2), cos(time*0.2), sin(time*0.2));
299 vec3 vl = normalize(vp);
300 float diffuse = diffuseSphere(rdNorm, -iSunDir, r, vl);
301
302 skycol = vec4(vec3(diffuse) + stars, 1);
303 #endif
304
305 resM.xyz = resM.xyz / 8.0; // Mountain darkness
306 }
307
308 // Smits' algorithm
309
310 for (int i = 0; i < iNumClouds; i++)
311 {
312
313 float vminX = iVmin[i].x;
314 float vmaxX = iVmax[i].x;
315 float vminY = iVmin[i].y;
316 float vmaxY = iVmax[i].y;
317 float vminZ = iVmin[i].z;
318 float vmaxZ = iVmax[i].z;
319
320 bool flag = true;
321
322 if (rayDir.x >= 0)
323 {
324 tmin = (vminX - rayOrg.x) / rayDir.x;
325 tmax = (vmaxX - rayOrg.x) / rayDir.x;
326 }
327 else
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328 {
329 tmin = (vmaxX - rayOrg.x) / rayDir.x;
330 tmax = (vminX - rayOrg.x) / rayDir.x;
331 }
332 if (rayDir.y >= 0)
333 {
334 tymin = (vminY - rayOrg.y) / rayDir.y;
335 tymax = (vmaxY - rayOrg.y) / rayDir.y;
336 }
337 else
338 {
339 tymin = (vmaxY - rayOrg.y) / rayDir.y;
340 tymax = (vminY - rayOrg.y) / rayDir.y;
341 }
342
343 if ((tmin > tymax) || (tymin > tmax))
344 flag = false;
345
346 if (tymin > tmin)
347 tmin = tymin;
348
349 if (tymax < tmax)
350 tmax = tymax;
351
352 if (rayDir.z >= 0)
353 {
354 tzmin = (vminZ - rayOrg.z) / rayDir.z;
355 tzmax = (vmaxZ - rayOrg.z) / rayDir.z;
356 }
357 else
358 {
359 tzmin = (vmaxZ - rayOrg.z) / rayDir.z;
360 tzmax = (vminZ - rayOrg.z) / rayDir.z;
361 }
362
363 if ((tmin > tzmax) || (tzmin > tmax))
364 flag = false;
365
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366 // In bounding-box
367 if (flag)
368 addCandidates(rayOrg, rayDir, i);
369
370 }
371
372 T = 1.0; // Initialize T
373
374 if (n > 0 && resM.w < 0.0) // No mountain collision
375 {
376 order();
377 vec3 color = vec3(0.0);
378 res = trace(rayOrg, rayDir, color);
379
380 return res + skycol * T;
381 }
382 else if (n > 0 && resM.w > 0.0) // Mountain collision
383 {
384 order();
385 vec3 color = vec3(0.0);
386 res = trace(rayOrg, rayDir, color);
387
388 return resM * T + res;
389 }
390 else if (n == 0 && resM.w < 0.0)
391 return skycol;
392 else if (n == 0 && resM.w > 0.0)
393 return resM;
394 }
395
396
397
398
399
400
401
402
403
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404
405
406 void main()
407 {
408
409 // Change coordinate system
410 vec2 p = (-iResolution.xy + 2.0*fragCoord.xy) / iResolution.y;
411
412 vec2 position = fragCoord.xy / iResolution.x;
413
414 switch (iTurn)
415 {
416 case 0:
417 // MORNING
418 sunColor = vec3(1.0, 1.0, 1.0);
419 kPhase = -0.4;
420 break;
421 case 1:
422 // SUNSET
423 sunColor = vec3(1.0, 0.8, 0.2);
424 kPhase = -0.4;
425 break;
426 case 2:
427 // NIGHT
428 sunColor = vec3(0.9, 0.9, 0.9);
429 kPhase = -0.38;
430 }
431
432 // Camera ray
433 vec4 rayDir = iView * normalize(vec4(p, 1.5, 1));
434
435 // Frame-buffer return color
436 FBColor = render(iPos, rayDir.xyz, position);
437
438 }
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Listing B.1. Mesh/Morphing static and dynamic simplified shader.

1 ////////////////////////////////////////////////////////////////////
2 // ONTOGENETIC MODEL FOR REAL-TIME VOLUMETRIC CLOUDS SIMULATION THESIS
3 // Software Engineering and Computer Systems Department
4 // National University for Distance Education (UNED)
5 // Carlos Jiménez de Parga, PhD student.
6 // License Creative Commons Attribution-NonCommercial-ShareAlike 3.0
7 // Unported License.
8 // Last revision 19/04/2019
9 //////////////////////////////////////////////////////////////////

10
11 #version 450 core
12 #pragma optimize(on)
13
14 // Declare uniforms
15
16 uniform sampler3D iNoise;
17 uniform sampler3D iVoxel[10];
18 uniform float iDepth;
19 uniform int iNumSph;
20 uniform int iNumClouds;
21 uniform int iTurn;
22 uniform vec2 iResolution;
23 uniform mat4 iView;
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24 uniform vec3 iPos;
25 uniform vec3 iVmin[10];
26 uniform vec3 iVmax[10];
27 uniform float iNumVoxel;
28 uniform int iLowLimits[10];
29 uniform int iUpLimits[10];
30 uniform int iDebug;
31 uniform float iTime;
32 uniform vec3 iWindDirection;
33 uniform float iAlpha;
34 uniform bool iEvolute;
35 uniform bool iSnow;
36 uniform vec3 iSunDir;
37
38 // Global variables
39
40 vec3 cloudColor; // Color of the cloud
41 vec3 sunColor; // Color of light source
42 vec4 candidates[100]; // List of candidates
43 float kPhase; // Phase function constant
44 float T; // Light threshold
45 int n = 0; // Number of candidates
46 vec3 rdNorm; // Normalized ray-direction
47 vec3 skyColor; // Color of the sky
48 float sunSize = 0.5; // Sun radius
49 float tmin, tmax, tymin, tymax, tzmin, tzmax; // For Smits' algorithm
50
51 in vec2 fragCoord; // Fragment shader 2D coordinates
52 out vec4 FBColor; // Returned frame buffer color
53
54 int vSrc, vDst; // Source and destination meshes
55
56 // Ellipsoid array
57
58 uniform iCloudPosBlock
59 {
60 mat4 iCloudPos[500];
61 };
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62
63 // Rodrigues' rotation array
64
65 uniform iCloudPosBlockR
66 {
67 mat4 iCloudPosR[500];
68 };
69
70 // Calculate fBm noise
71
72 float fbm(in vec3 q)
73 {
74 q = q - vec3(0.0, 0.1, 1.0)*iTime;
75
76 float f = 0.0;
77 float a = 0.5;
78
79 for (int i = 0; i < 5; i++) {
80 f += a * texture(iNoise, q / 256.0, -100.0).r;
81 q = q * 2.0 + 0.03;
82 a *= 0.5;
83 }
84
85 return f;
86 }
87
88 // Collision detection routine
89
90 void addCandidates(in vec3 rayOrg, in vec3 rayDir, int boundIdx)
91 {
92
93 // Limits of the cloud ellipsoids
94
95 int sphStart = iLowLimits[boundIdx];
96 int sphEnd = iUpLimits[boundIdx];
97
98 // Iterate over ellipsoids
99
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100 for (int j = sphStart; j < sphEnd; j++)
101 {
102
103 float cx = iCloudPos[j][0].x; // Ellipsoid position
104 float cy = iCloudPos[j][0].y;
105 float cz = iCloudPos[j][0].z;
106
107 float a = iCloudPos[j][1].x; // Ellipsoid radius
108 float b = iCloudPos[j][1].y;
109 float c = iCloudPos[j][1].z;
110
111 float x0 = rayOrg.x;
112 float y0 = rayOrg.y;
113 float z0 = rayOrg.z;
114
115 float vx = rayDir.x;
116 float vy = rayDir.y;
117 float vz = rayDir.z;
118
119 float k11, k12, k13, k21, k22, k23, k31, k32, k33;
120
121 mat4 R = iCloudPosR[j];
122
123 k11 = R[0].x;
124 k12 = R[0].y;
125 k13 = R[0].z;
126
127 k21 = R[1].x;
128 k22 = R[1].y;
129 k23 = R[1].z;
130
131 k31 = R[2].x;
132 k32 = R[2].y;
133 k33 = R[2].z;
134
135 // Discriminant
136 float disc = -(1.0 / (a*a)*pow(k11*vx + k12 * vy + k13 * vz, 2.0) +
137 1.0 / (b*b)*pow(k21*vx + k22 * vy + k23 * vz, 2.0) +
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138 1.0 / (c*c)*pow(k31*vx + k32 * vy + k33 * vz, 2.0))*
139 (1.0 / (a*a)*pow(k11*(cx - x0) + k12 * (cy - y0) +
140 k13 * (cz - z0), 2.0) + 1.0 / (b*b)*pow(k21*(cx - x0) +
141 k22 * (cy - y0) + k23 * (cz - z0), 2.0) + 1.0 /
142 (c*c)*pow(k31*(cx - x0) + k32 * (cy - y0) +
143 k33 * (cz - z0), 2.0) - 1.0) + pow(1.0 / (a*a)*(k11*vx*2.0 +
144 k12 * vy*2.0 + k13 * vz*2.0)*(k11*(cx - x0) + k12 *
145 (cy - y0) + k13 * (cz - z0)) + 1.0 / (b*b)*(k21*vx*2.0 +
146 k22 * vy*2.0 + k23 * vz*2.0)*(k21*(cx - x0) + k22 *
147 (cy - y0) + k23 * (cz - z0)) + 1.0 / (c*c)*
148 (k31*vx*2.0 + k32 * vy*2.0 + k33 * vz*2.0)*
149 (k31*(cx - x0) + k32 * (cy - y0) + k33 * (cz - z0)), 2.0)*
150 0.25;
151
152
153 if (disc > 0) // There is a collision with the ellipsoid
154 {
155 float sqr = sqrt(disc);
156
157 float num = (a*a)*(b*b)*cx*(k31*k31)*vx + (a*a)*(b*b)*
158 cy*(k32*k32)*vy + (a*a)*(b*b)*cz*(k33*k33)*vz +
159 (a*a)*(c*c)*cx*(k21*k21)*vx + (a*a)*(c*c)*cy*(k22*k22)*vy +
160 (a*a)*(c*c)*cz*(k23*k23)*vz + (b*b)*(c*c)*cx*(k11*k11)*vx +
161 (b*b)*(c*c)*cy*(k12*k12)*vy + (b*b)*(c*c)*cz*(k13*k13)*vz -
162 (a*a)*(b*b)*(k31*k31)*vx*x0 - (a*a)*(c*c)*(k21*k21)*vx*x0 -
163 (a*a)*(b*b)*(k32*k32)*vy*y0 - (b*b)*(c*c)*(k11*k11)*vx*x0 -
164 (a*a)*(c*c)*(k22*k22)*vy*y0 - (a*a)*(b*b)*(k33*k33)*vz*z0 -
165 (b*b)*(c*c)*(k12*k12)*vy*y0 - (a*a)*(c*c)*(k23*k23)*vz*z0 -
166 (b*b)*(c*c)*(k13*k13)*vz*z0 + (a*a)*(b*b)*cx*k31*k32*vy +
167 (a*a)*(b*b)*cy*k31*k32*vx + (a*a)*(b*b)*cx*k31*k33*vz +
168 (a*a)*(b*b)*cz*k31*k33*vx + (a*a)*(b*b)*cy*k32*k33*vz +
169 (a*a)*(b*b)*cz*k32*k33*vy + (a*a)*(c*c)*cx*k21*k22*vy +
170 (a*a)*(c*c)*cy*k21*k22*vx + (a*a)*(c*c)*cx*k21*k23*vz +
171 (a*a)*(c*c)*cz*k21*k23*vx + (a*a)*(c*c)*cy*k22*k23*vz +
172 (a*a)*(c*c)*cz*k22*k23*vy + (b*b)*(c*c)*cx*k11*k12*vy +
173 (b*b)*(c*c)*cy*k11*k12*vx + (b*b)*(c*c)*cx*k11*k13*vz +
174 (b*b)*(c*c)*cz*k11*k13*vx + (b*b)*(c*c)*cy*k12*k13*vz +
175 (b*b)*(c*c)*cz*k12*k13*vy - (a*a)*(b*b)*k31*k32*vy*x0 -
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176 (a*a)*(b*b)*k31*k33*vz*x0 - (a*a)*(b*b)*k31*k32*vx*y0 -
177 (a*a)*(c*c)*k21*k22*vy*x0 - (a*a)*(c*c)*k21*k23*vz*x0 -
178 (a*a)*(b*b)*k32*k33*vz*y0 - (a*a)*(c*c)*k21*k22*vx*y0 -
179 (a*a)*(b*b)*k31*k33*vx*z0 - (b*b)*(c*c)*k11*k12*vy*x0 -
180 (a*a)*(b*b)*k32*k33*vy*z0 - (b*b)*(c*c)*k11*k13*vz*x0 -
181 (a*a)*(c*c)*k22*k23*vz*y0 - (b*b)*(c*c)*k11*k12*vx*y0 -
182 (a*a)*(c*c)*k21*k23*vx*z0 - (a*a)*(c*c)*k22*k23*vy*z0 -
183 (b*b)*(c*c)*k12*k13*vz*y0 - (b*b)*(c*c)*k11*k13*vx*z0 -
184 (b*b)*(c*c)*k12*k13*vy*z0;
185
186 float denom = (a*a)*(b*b)*(k31*k31)*(vx*vx) +
187 (a*a)*(b*b)*(k32*k32)*(vy*vy) + (a*a)*(b*b)*(k33*k33)*(vz*vz) +
188 (a*a)*(c*c)*(k21*k21)*(vx*vx) + (a*a)*(c*c)*(k22*k22)*(vy*vy) +
189 (a*a)*(c*c)*(k23*k23)*(vz*vz) + (b*b)*(c*c)*(k11*k11)*(vx*vx) +
190 (b*b)*(c*c)*(k12*k12)*(vy*vy) + (b*b)*(c*c)*(k13*k13)*(vz*vz) +
191 (a*a)*(b*b)*k31*k32*vx*vy*2.0 + (a*a)*(b*b)*k31*k33*vx*vz*2.0 +
192 (a*a)*(b*b)*k32*k33*vy*vz*2.0 + (a*a)*(c*c)*k21*k22*vx*vy*2.0 +
193 (a*a)*(c*c)*k21*k23*vx*vz*2.0 + (a*a)*(c*c)*k22*k23*vy*vz*2.0 +
194 (b*b)*(c*c)*k11*k12*vx*vy*2.0 + (b*b)*(c*c)*k11*k13*vx*vz*2.0 +
195 (b*b)*(c*c)*k12*k13*vy*vz*2.0;
196
197 float prefix = a * a*b*b*c*c*sqr;
198 float t1 = (prefix + num) / denom;
199 float t2 = -(prefix - num) / denom;
200
201 float t, limit;
202
203 if (t1 < t2) // Order collision points
204 {
205 t = t1;
206 limit = t2;
207 }
208 else
209 {
210 t = t2;
211 limit = t1;
212 }
213
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214 // Add to candidates list
215 candidates[n] = vec4(t, limit, j, boundIdx);
216 n++;
217
218 }
219 }
220
221 }
222
223 // Insertion-sort algorithm
224
225 void order()
226 {
227 int h;
228 vec4 aux;
229
230 for (int i = 1; i < n; i++)
231 {
232 aux = candidates[i];
233 h = i - 1;
234 while ((h >= 0) && (aux.x < candidates[h].x))
235 {
236 candidates[h + 1] = candidates[h];
237 h--;
238 }
239 candidates[h + 1] = aux;
240 }
241 }
242
243 // Simplified Henyey-Greenstein phase function
244
245 float phase(in float g)
246 {
247 return 0.0795 * ((1.0 - g * g) /
248 pow(1.0 + g * g - 2.0*g*dot(rdNorm, iSunDir), 1.5));
249 }
250
251 // Raytrace pseudo-ellipsoid
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252
253 vec4 trace(in vec3 rayOrg, in vec3 rayDir, in vec3 color)
254 {
255
256 float localDen, den;
257
258 float tIn, tOut;
259
260 float t;
261
262 t = candidates[0].x;
263
264 for (int i = 0; i < n; i++)
265 {
266
267 int sphIdx = int(candidates[i].z); // Ellipsoid index
268 int boundIdx = int(candidates[i].w); // Bounding box index
269 vec3 cloudPos = iCloudPos[sphIdx][0].xyz; // Ellipsoid 3D position
270 float radius = iCloudPos[sphIdx][2].x;
271
272 // Bounding-boxes linear interpolation
273 vec3 iVoxMin = mix(iVmin[vSrc], iVmin[vDst], iAlpha);
274 vec3 iVoxMax = mix(iVmax[vSrc], iVmax[vDst], iAlpha);
275
276
277 tIn = t;
278 tOut = candidates[i].y;
279
280 // Iterate pseudo-ellipsoid
281 while (tIn <= tOut)
282 {
283 vec3 pos = rayOrg + tIn * rayDir; // Raymarching position
284
285 den = fbm(pos); // Density
286
287 localDen = exp(-distance(pos, cloudPos) / radius);
288
289 if (den < localDen) // Trace pseudo-ellipsoid
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290 {
291
292 // Calculate differential transmittance
293 float deltaT = exp(-0.3*den);
294 vec3 index = (pos - iVoxMin) / (iVoxMax - iVoxMin); //Voxel index
295
296 // Interpolate bounding-boxes pre-computed light
297 float precLight = mix(texture(iVoxel[vSrc], index, -100.0).r,
298 texture(iVoxel[vDst], index, -100.0).r, iAlpha);
299
300
301 vec3 absorpLight = sunColor * precLight; // Absorption
302 // Scattering
303 vec3 scatterLight = sunColor * phase(kPhase)*precLight;
304 // Total light
305 vec3 totalLight = absorpLight * 0.9 + scatterLight;
306 // Resulting cloud color
307 color += (1.0 - deltaT) * totalLight * T;
308
309 T *= deltaT; // Accumulate transmittance
310
311 if (T < 1e-6) // Exit condition
312 return vec4(color, 1 - T);
313 }
314
315 tIn += 0.1; // Step raymarching
316 }
317
318 }
319
320 return vec4(color, 1 - T); // Return color with transparency
321 }
322
323 // Render cloud mesh
324
325 vec4 render(in vec3 rayOrg, in vec3 rayDir, in vec2 position, in vec4 resMount)
326 {
327 rdNorm = normalize(rayDir);
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328
329 // Background sky
330 vec4 skycol;
331 vec4 res = vec4(0);
332
333 float sun = 1.0 + dot(iSunDir, rdNorm);
334
335 if (iTurn == 0) // Morning scene
336 {
337 float fexp = exp(-sun * 1000.0 / sunSize);
338 float fexp2 = exp(-sun * 1000.0 / 0.1);
339
340 skycol = vec4(0.2*sunColor*fexp + 0.6*sunColor*fexp2, 1.0);
341 // sun glare
342 skycol += vec4(getSkyColor(rdNorm.xyz) + 0.2*sunColor*exp(-sun), 0);
343
344 }
345
346 else if (iTurn == 1) // Sunset scene
347 {
348
349 vec3 stars;
350
351 if ((rdNorm.y > 0.1) && (dot(iSunDir, rdNorm) > -0.995))
352 {
353 // Create stars
354 float g = 0.2*fbmgal(rdNorm);
355 stars = 0.3*vec3(g*g*g, g*g*1.3, 8.5*g);
356 if (length(stars) < 2.4)
357 stars = vec3(0);
358 }
359
360 // sun glare
361 skycol = vec4(getSunset(rdNorm, position) +
362 0.2*sunColor*exp(-sun) + stars, 1.0);
363
364 resM.xyz = resM.xyz / 5.0; // Mountain darkness
365
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366 }
367 else // Night scene
368 {
369 vec3 stars = vec3(0);
370
371
372 if ((dot(iSunDir, rdNorm) > -0.9988))
373 {
374 // Create stars
375 float g = 0.2*fbmgal(rdNorm);
376 stars = 0.3*vec3(g*g*g, g*g*1.3, 1.5*g);
377 }
378
379 #ifdef FULLMOON
380
381 float fexp = exp(-sun * 1000.0 / sunSize);
382 float fexp2 = exp(-sun * 1000.0 / 0.2);
383
384
385 skycol = vec4(0.2*sunColor*fexp + sunColor * fexp2, 1.0);
386 // moon glare
387 skycol += vec4(0.2*sunColor*exp(-sun) + stars, 0);
388
389 #else
390
391 float time = 812.81;
392
393
394 //Diffuse
395 float r = 0.05;
396 vec3 vp = vec3(sin(time*0.2), cos(time*0.2), sin(time*0.2));
397 vec3 vl = normalize(vp);
398 float diffuse = diffuseSphere(rdNorm, -iSunDir, r, vl);
399
400 skycol = vec4(vec3(diffuse) + stars, 1);
401 #endif
402
403 resM.xyz = resM.xyz / 8.0; // Mountain darkness
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404 }
405
406 // Smits' algorithm
407
408
409 float vminX = iVmin[2].x;
410 float vmaxX = iVmax[2].x;
411 float vminY = iVmin[2].y;
412 float vmaxY = iVmax[2].y;
413 float vminZ = iVmin[2].z;
414 float vmaxZ = iVmax[2].z;
415
416 bool flag = true;
417
418 if (rayDir.x >= 0)
419 {
420 tmin = (vminX - rayOrg.x) / rayDir.x;
421 tmax = (vmaxX - rayOrg.x) / rayDir.x;
422 }
423 else
424 {
425 tmin = (vmaxX - rayOrg.x) / rayDir.x;
426 tmax = (vminX - rayOrg.x) / rayDir.x;
427 }
428 if (rayDir.y >= 0)
429 {
430 tymin = (vminY - rayOrg.y) / rayDir.y;
431 tymax = (vmaxY - rayOrg.y) / rayDir.y;
432 }
433 else
434 {
435 tymin = (vmaxY - rayOrg.y) / rayDir.y;
436 tymax = (vminY - rayOrg.y) / rayDir.y;
437 }
438
439 if ((tmin > tymax) || (tymin > tmax))
440 flag = false;
441
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442 if (tymin > tmin)
443 tmin = tymin;
444
445 if (tymax < tmax)
446 tmax = tymax;
447
448 if (rayDir.z >= 0)
449 {
450 tzmin = (vminZ - rayOrg.z) / rayDir.z;
451 tzmax = (vmaxZ - rayOrg.z) / rayDir.z;
452 }
453 else
454 {
455 tzmin = (vmaxZ - rayOrg.z) / rayDir.z;
456 tzmax = (vminZ - rayOrg.z) / rayDir.z;
457 }
458
459 if ((tmin > tzmax) || (tzmin > tmax))
460 flag = false;
461
462 // clouds
463 if (flag)
464 addCandidates(rayOrg, rayDir, 0);
465
466 if (n > 0 && resMount.w < 0.0) // No mountain collision
467 {
468 T = 1.0;
469 order();
470 vec3 color = vec3(0.0);
471 res = trace(rayOrg, rayDir, color);
472 return vec4((T == 1.0) ? skycol : res + skycol * T);
473 }
474 else if (n > 0 && resM.w > 0.0) // Mountain collision
475 {
476 T = 1.0;
477 order();
478 vec3 color = vec3(0.0);
479 res = trace(rayOrg, rayDir, color);
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480 return vec4((T == 1.0) ? resMount : resMount * T + res);
481 }
482 else if (n == 0 && resMount.w < 0.0)
483 return skycol;
484 else if (n == 0 && resMount.w > 0.0)
485 return resMount;
486
487 }
488
489 void main()
490 {
491
492 // Change coordinate system
493 vec2 p = (-iResolution.xy + 2.0*fragCoord.xy) / iResolution.y;
494 // ray
495
496 vec2 position = fragCoord.xy / iResolution.x;
497
498 switch (iTurn)
499 {
500 case 0:
501 // MORNING
502
503 sunColor = vec3(1.0, 1.0, 1.0);
504 kPhase = -0.3;
505
506 break;
507
508 case 1:
509 // SUNSET
510 sunColor = vec3(1.0, 0.8, 0.2);
511 kPhase = -0.4;
512 break;
513 case 2:
514 // NIGHT
515 sunColor = vec3(0.8, 0.8, 0.8);
516 kPhase = -0.3;
517
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518 break;
519 }
520
521 // Select either mesh evolution or involution
522 if (iEvolute)
523 {
524 vSrc = 0;
525 vDst = 1;
526 }
527 else
528 {
529 vSrc = 1;
530 vDst = 0;
531 }
532
533 vec4 rayDir = iView * normalize(vec4(p, 1.5, 1));
534
535 // Frame-buffer return color
536 FBColor = render(iPos, rayDir.xyz, position);
537
538 }
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