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1. State of Art

Internet hosts millions of sites and it is home of other resources such as anima-
tions, video, simulations or laboratories which are ready to use or consult at any
moment. This vast ocean of resources is changing how learning takes place and,
in this sense, schools and universities are also changing the concept of education.
These changes on teaching methods affect also how the laboratory practices and the
experimental procedures are taught. This research work focuses in how the experi-
mental laboratory practices are done through the Internet.

1.1. Online Resources in Education

Nowadays, online resources for education have become common in most courses,
both in distance education and in classroom-based courses [1, 2, 3,4, 5,6, 7,8, 9,
10, 11]. Those resources can illustrate concepts, explain theoretical notions or be
a complement to a speech. As it is known, a picture is worth a thousand words,
but, when pictures are not enough we can take advantage of the Internet. In this re-
gard, distance education universities, as UNED, found in Internet a breeding ground
for developing their applications and courses, taking advantage of the advances in
communication and computation technology to make the learning process easier.

The hands-on learning, where the student must be in place, is a proven teach-
ing method, but widespread of new devices and the great interest of the students in
remote learning is awakening more and more ways of teaching. On the one hand,
online resources are becoming common in student life-cycle, then is easy to add
more capabilities to these resources as interactivity or dynamics. On the other hand,
the learning scheme is broadening, and in some cases defining full online pedagog-
ical scenarios. Those scenarios are not anymore complementary materials to use
in, or outside, the classroom, but full and self-contained courses with links to other
resources and in some cases, they even provide experimentation capabilities. Next
subsections are dedicated to these web-based or online courses.



1.1.1. Web-Based Courses

Technology has become an important part of our life and a main component of
most activities, therefore, it is also true on web-based courses, that can be found to-
day all over the Internet in many different shapes. Online courses have not changed
only how the users access to materials, this technology also changed how the stu-
dents plan their studies during the week [12]. It has influenced also the age-range of
students ! and the economic status of students [13]. Regarding this, every year there
are new students coming to university/school to take classes, and many of them
have grown up with the Internet. Some courses now include the use of Learning
Management System (LMS), where the students become familiar with online edu-
cation. Some universities have widen their niches developing Massive Open Online
Courses (MOOC), where students can acquire their skills at distance. Educational
social media networks have also influenced the way of education and sharing is
perceived, and those sites conform a good engagement for new students, due to
their familiarity with social networks. The different types of Web-based courses are
not well established, and therefore, the presented types in last lines are not unique
neither independent and sometimes can be found in any combination [14, 15].

Online and classroom education have a wide variety of subjects available and
the areas of knowledge are not restricted by the online education nature. Although,
the work, exercises, practices and processes are not equally deployed inside a web-
page for an engineering or literature subject. As this document cannot cover the
broad spectrum of education, we will focus in Science, Technology, Engineering
and Mathematics (STEM) courses, where the experimental laboratory practices are
very common.

A key element inside STEM subjects is the need to learn theoretical concepts
which are applied in practice shaped like procedures, examples and practices. A
common approach to teach those real-world applications is to use: exercises, tests
and laboratories. Laboratories and simulations are the main differentiating element
with non-STEM areas, and conventionally are on-site group classes. As these ex-
periences cannot be done without the lab equipment, it is posed a problem to the
remote education in its early days. Nowadays, remote experimentation is possi-
ble and common on remote education paradigm. Online accessible labs appeared to
enhance the performance of remote education, allowing the student to pass their lab-
oratory practices by means of simulations and remote laboratories. On this matter,
remote experimentation plays an important role inside STEM area and web-based
courses.

Thttps://www.insidehighered.com/news/2014/06/06/one-semester-students-satisfied-unfinished-
georgia-tech-online-degree-program



Web-based courses have reached a high level of acceptance inside the student
community, therefore, many education institutions have launched their courses on-
line. As a consequence, online courses platforms have recently appeared as web-
sites to deploy, share and maintain courses from different sources: universities,
schools and other education institutions. Next section will describe this platforms
and will introduce some of them.

1.1.2. Web Platforms for Online Courses

Online courses platforms have been appearing and growing from 1960 [16]
to nowadays, adding new courses everyday and motivating student to widen their
knowledge. These platforms are designed in different ways depending on the num-
ber of students expected and how resources are shared. Because it is impossible
to name all of the platforms which are offering online courses, we will name some
web-based courses inside the STEM area and with Virtual and/or Remote Labs
(VRL) available.

Graasp is a website which contains lots of spaces to share material resources,
teaching experiences. It allows teachers to create and organize their online re-
sources, like VRLs. Inquiry learning spaces” can also be found in this platform,
as full learning sequences about a specific subject. Therefore, students or teachers
can find in Graasp apps, labs, materials and full pedagogical frameworks.

Massive learning is now present in the form of different websites. MOOCs
inside these sites contain videos to teach in a equivalent way as classical classrooms
using independent teaching modules and sometimes accessible remote labs or links
to them 3. Some of those sites are Coursera ¢ , EDX ° and MiriadaX °.

The Go-Lab Ecosystem’ targets science teachers from primary and secondary
schools and aims to help them enrich their teaching practices with innovative teach-
ing approaches and supportive technical tools 8. Go-Lab is divided in two parts, one
dedicated to sharing VRLs from different institutions and the other one to develop,
maintain and share inquiry learning spaces.

LMSs are server applications that offer many tools related with online distance
education. Some plugins and tools help to deploy courses or materials, add docu-

Zhttp://www.ceebl.manchester.ac.uk/ebl/
3https://moocs.epfl.ch
“https://www.coursera.org
Shttps://www.edx.org/es
Ohttps://miriadax.net/home
https://www.golabz.eu
8http://support.golabz.eu/about



mentation, configure of maintenance procedures, tracking the usage and other func-
tionalities. Therefore, LMSs are mainly designed to help in deployment of online
resources or full Web-based courses. Moodle” is a LMS which is used by many
universities and undergraduate courses. Those courses are inside a website where
enrolled students and teachers can navigate, read, download or interact with the re-
sources embedded there. Not all the courses include online VRLs in their subjects,
however, the text will briefly introduce a couple of them. The first one, the Lab-
oratorio de Instrumentacdo para Medicdo (LIM) ', that is a Moodle based site,
developed by the Porto University, which contains 8 VRLs inside the mechanical
engineering area. The second one, University Network of Interactive Labs (UNI-
Labs), all the examples of chapters 8 and 9 are deployed in this website, next sub-
section will talk about this Moodle based Website.

UNILabs platform

UNILabs is the University Network of Interactive Labs. It was born on Septem-
ber 2013 from a previous project, UNEDLabs [17], which originated from another
project [18]. This project was created inside the "Informdtica y Automdtica” de-
partment, at Escuela Técnica Superior de Ingenieria Informdtica, Madrid, Spain,
that has been working in the area of VRLs experimentation since nineties.

It is a network formed by a large number of universities that share their VRLs
in form of online laboratories which cover several topics: Physics, control theory,
electronics, etc. On the one hand, it is frequent that each existing Remote Lab
(RL) is based on different hardware equipments. On the other hand, it is also usual
to find VRLs applications in UNILabs that were built and deployed using similar
technologies. In this regard, all of the labs inside UNILabs share the same three
free and open source applications: Moodle (the LMS that supports the web content
of the open course in which the VRLs are), Easy Java Simulations (for building
the VRLs applications), and middleware software created in the department (RIP,
NodeJSONRPCElement, LabviewElement, etc).

UNILabs already offers fifteen courses from eight different universities with
around 30 VRLs and contains many control education online laboratories that are
complementary to university courses and also an Open course that can be visited to
see some online labs, without needing a student or teacher account.

“https://moodle.org/?lang=es
10https://limserver.fe.up.pt



1.2. VRLs in Web-Based Courses

VRLs are included in some online courses and are unvaluable digital resources
in Engineering education [19, 20, 21, 22]. Lab sessions play a critical role in the
STEM area, where the student needs to learn the practical behavior of complex the-
oretical subjects, practice laboratory skills and learn protocols that can be applied in
their future careers. To fulfill that needs, web-based scientific courses must include
remote experimentation or simulations that provide that knowledge and laboratory
capabilities. Once a laboratory objective is defined by the teaching team (like learn-
ing about the system itself or about the procedure to obtain data), lab practices may
follow a common scheme. Without regard to the nature of the lab, remote or simu-
lation, lab practices of a web-based course usually follow a common structure:

1. Book in advance to access the lab, following the schedule rules.
2. Access the lab activity.
3. Interact with the lab in order to obtain the data, learn the procedure or both.

4. Use the information gathered from the lab. This may imply analyze the data
in a qualitative or quantitative manner and/or complete additional tasks to
widen the knowledge about the lab system.

5. Make a laboratory report to consolidate the acquired skills and knowledge.

Consequently, if the purpose of the VRLs is to be used as teaching tool in the
same way as real hands-on lab, it is the duty of teacher and developers to enhance
their system to be satisfactory learning tools. In a certain way, a VRL replicates the
hands-on lab, and in the same way, experimentation is usually related to touch and
see real systems, in the sense that touching lab elements produces changes which
must be perceived by the student. To reproduce the feeling of a real interaction with
equipment is not an easy task and “the psychology of presence may be as important
as technology” [23].

Building a Graphical User Interface (GUI) to give the feeling of being phys-
ically in a laboratory it not immediate, but can be associated to how the data is
obtained and presented to the user. Therefore, when, how and how much data needs
to be exchanged is a key factor. The following example illustrates, step by step, the
process of building up this consciousness of being working with a lab:

e Think about a student going through a lab practice with only a notebook and
a sheet of paper with previously generated data. But, is not the best possible



laboratory, as long as there are no interaction, no dynamic change and is
textual, with no graphical elements.

e One step forward, the notebook and the paper sheet may be replaced by a
mobile device, where the screen data is changing with the time, this lab is
still not so interactive but dynamic, leaving to the user the data analysis.

The data is already dynamic but it is still textual. A chart to visualize the
data enhances the student experience with the lab, as now is also a graphical
environment.

Adding an animation or, even better, a webcam to monitor the real object takes
the lab to the next level, making a conceptual link between both, the interface
and the real system. However, up to this point, the data flow is unidirectional,
as it is flowing from the system to the user.

Adding fields, buttons, sliders or other modifiable elements improves the sen-
sation of interactivity and free will. Now, the lab is actually a remotely oper-
ated system and fits perfectly with the definition of laboratory.

Local Remote
Real Hands-on Data-sets Real Time Near Real Batch
Time
Non-Real Math Simulation Data-sets

Table 1.1 Different data sources to be used in a online lab, it specifies if the data source is

real or non-real equipment

Laboratory users, whether they are students, researchers or any other role, can

find over the Internet different ways of experimentation, from a monitoring tool to
interactive user interface. Therefore, the way they carry out their experiences can
vary greatly from one to another, but in every case a lot of data is usually generated
and gathered. How all these data are obtained may affect the global structure of
the lab, the goal of the experiments or the pedagogical framework. Therefore it is
important to discuss data sources. Table 1.1 contains a summary of all these data
sources:

e Data from real equipment: Information provided by real machines, sensors,
actuators and so on. How is it acquired imposes three categories:



— Hands-on: This is the classical experimental situation, where the stu-
dents physically interact with the real equipment. The acquisition is
made in-situ and the data gathered depends-on the user interaction.

— Data-sets: The user is not actually performing the experiment, but rather
is working on data previously gathered from another lab experience.
This approach is common when the process is complex to reproduce or
when the objective of the lab practice is not to learn the process but to
extract information from the data.

— Remote: Remotely accessible laboratories have become so common and
the widespread of this kind of experimentation have driven the launch
of different approaches:

* Real time: It is known as hard real time, and considers that if some
data is not acquired following the schedule it can cause the system
failure. These systems involve solid timing constraints and allows
the viewer to observe data that is being acquired at the same time
from real equipment.

x Near-Real time: It is the same as before, but with smoother timing
constraints, the schedule allows infrequent losses or delays. Near-
Real time systems assume some delays which are almost harmless
to the system or user experience. Non-time-critical systems are
grouped together inside this classification.

x Batch lab: This approach is a time delayed data acquisition from
an experience. Batch experiments are usually preferred when the
time to complete a experience or the processing is so long that an
interactive session is not convenient or even not feasible. This ap-
proach is also used in situations where a new experience can be run
regardless of the experiments history.

e Data not gathered from real equipment: This type of data includes virtual
labs or simulations, where the data does not proceed from experiment, but
from computer simulations. Therefore, the evolution of the system can be
obtained from:

— Mathematical simulation: The labs lies on a mathematical core and the
status of the system is being calculated every Or time step.

— Simulated data-sets: Data is not calculated but obtained from a previ-
ously computed data-set which contains all the possible changes of the
simulated system.



The previous classification is not unique and must be taken as a guide to discuss
possible architectures and configurations which are representative, [24, 25]. We are
interested in virtual and remote labs in all its forms, but this work will make special
emphasis in the remotely operated ones.

Next two subsections will present definitions of virtual and remote labs using
the information provided along the chapter.

1.2.1. Virtual labs

Virtual Lab (VL) are designed to do experimentation without the real system
providing simulated data to the user. It usually contains animations or dynamic
schemes to provide a graphical representation of the system status. Frequently a
simulated lab imply less restrictions than the real one and also has more config-
urable parameters because VLs are not built-in a fixed set-up. Using as example
the coupled drives system, from chapters 8 and 9, the lab has been developed in
both versions, virtual and remote. On the one hand, the remote version is fixed and
contains many limitations to prevent the rupture of the elastic band. On the other
hand, virtual lab allows to change the distance between motors, the elasticity of the
band and the speed, leaving to the student total freedom to explore the behavior of
the system in different situations. Therefore, to be highly configurable is one of
the strengths of VLs and usually have sufficient configuration freedom to explore
different behaviors.

As said in previous sections, a virtual lab can be based on a simulation of a
real lab or a theoretical simulation. Both are valuable resources to explain concepts
without the expense of building and maintaining a real system. In the former case,
the VL provides a safe framework to explain extensively concepts and procedures
and can be useful to prepare students to use the real one. From a educational point of
view both labs are valuable resources which can be used together in a step-by-step
approach:

1. Students learn about the theory of the system and lab procedures in a previous
part of the course or studying all the documentation available.

2. They access the virtual lab to understand the theoretical concepts in a wide
testing ground where they can explore fully the opportunities of the system.
They will also learn lab procedures, which may be similar to those to be
performed in the real version.

3. Finally, when students pass the VL, they can access the remote one, where the
knowledge acquired can be useful to fully exploiting the time and resources
of the lab session.



From the data point of view, virtual labs do not need to access to hardware or
hard-disk and it is easier to embed one inside a web-page. Nevertheless, the con-
sumption of computational resources in VLs can be too high, due to mathematical
simulation, the graphical elements or both. Therefore, developers must consider the
requirements needed to be run in low profile devices (smart-phones, tablets, etc).

1.2.2. Remote labs

Remote labs (RLs) are designed to do experimentation over the real systems,
but from distance, using applications which provide a user interface to replicate
the experience of handling the equipment on-site. As RLs are remotely operated
systems they need interactive elements to control the status of the lab, in this regard,
the user interface must allow the user to edit and see the behavior of the lab. To
make a strong link between the interface and the real system, RLs usually contain
webcam images and graphical charts to visualize the data from the lab. As the
data provided is real (has been provided from a working system), cam images and
data representation gives the needed feedback to change the status of the lab and
correlate actions and re-actions. Laboratory practices on real systems are more
restricted than VRs, in this sense, the intervals to modify parameters tend to be
narrower and it is very common to find noisy signals, delays and less points of
data. For this reason, the presented step-by-step approach may be useful to provide
the students with a theoretical and virtual knowledge before dealing with the real
system.

The data gathering method depend on the system, the architecture, developers’
design and pedagogical target, but, in any case, the interface will need to access the
data from real devices. The data acquisition implies a direct or indirect connection
to the hardware, which is the cornerstone of this work. Considering the previous
classifications and definitions, it is not an overstatement to say that the number
of solutions and approaches to make VRLs is enormous and, as seen in previous
section, there are also many platforms where the labs can be deployed. Next section
will present different architectures that are being used to develop VRLs.

1.3. Architectures and approaches

Accessing hardware remotely from an user interface can not be defined as an
single issue, because it groups different problems together. In order to analyze the
situation inside the area of remote experimentation, problems can be divided in four
major classes:



e Accessing the hardware: Obtain/transfer data from/to any system implies
using sensing and actuating devices. Without any additional element, the
control of the lab usually is restricted to on-site activities, as looking at sensor
values and changing knobs to interact with the lab.

e Remote access to the system: Remotization is the process to make a face-
to-face lab remote. Although, it usually implies adding more actuators and
sensors, to control the system. Additionally, the system will need connectivity
capabilities to allow the remote access.

e Control from the interface: Using an application to control a laboratory
implies finding a design that fixes with the educational and procedural goals
established by the developers and teachers.

e Concurrency and load management: When the system is accessible from
the network and many users want to access, the developers can face problems
with the amount of users and scheduling.

Developers, researchers and teachers have been dealing with these problems
from the early nineties [26] revealing many ways to achieve the objective, but, there
is not actually a best option, because each solution has to face different problems.
The emergence of the Internet of Things (IoT) has also driven the development
of libraries and tools, getting closer to sensor-actuator-device networks, which is
directly related to virtual and remote experimentation.

The section is divided into three subsections, but, there is no full equivalence
between sections and problems, as some of these problems may be coupled. The
subsections are: hardware-to-network, network-to-device and architectural styles.

First one, problems related to the remote access to hardware and systems. The
second subsection will describe common approaches to data exchange and commu-
nications. Finally, the third one is about full solutions which in some cases groups
both, hardware-to-network and network-to-device.

1.3.1. Hardware-to-network

Data acquisition from hardware is a wide area of knowledge, and it is beyond
of the scope of this work to discuss in depth the technologies available to obtain it.
Although, as the hardware must have a computational layer and server capabilities,
we can define the global situation in a bird’s-eye view.

Nowadays, when any system is studied to be transformed into a VRL it usually
contains multiple sensors and actuators. Those can be used to acquire data and/or
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Figure. 1.1 Hardware to network schemes

change the system status. As long as the data provided by sensors is needed in the
user interface, the readings must be stored, processed and sent. Just as with the
actuators, if a user needs to send a message containing the new values to actuators,
it is also needed a system to acquire the message, process it and apply the changes
into the lab. Therefore, the needs of this kind of labs push to choose a hardware-
software combination.

Figure 1.1 illustrates different schemes that have been shown to be successful
in many works. Next classification is done dividing the tasks by entities, which can
be real or virtual devices. The communication between devices can be wired or
not, and can use any available machine-to-machine or computer bus protocol (I12C,
parallel, serial, CoAP, MQTT, etc). To simplify, we will group similar structures,
including Server, Client and DataBase (CSDB) as one entity, but is also common
to find those in different devices. CSDB will provide connectivity characteristics
like services to attend client petitions or to connect with other servers (for example,
databases).

e Hardware-[Acquisition-Data Processor-CSDB]: Two different entities, the



2Devices 3Devices 3Devices 3Devices
(Opt.1) (Opt.2) (Opt.3) (Opt.4)
Adv Less devices and | Faster acqui- | Acquisition and | Multi-source ac-
faster acquisition | sition, as is a | control together | quisition.
dedicated device | add insignificant
delays
Disadv | Resource costly, | Additional Additional com- | Additional
as one de- | delays due to | munication tasks | delays due to
vice must do | communication communication
everything between devices between devices

Table 1.2 Advantages and disadvantages of the hardware to network schemes.

system and a device in charge of acquisition, data processing and send/receive
messages (Number 1 of Figure 1.1).

e Hardware-Acquisition-[Data Processor-CSDB]: Three different entities, sys-
tem, acquisition board or device which is dedicated to one system, and a de-
vice on charge of processing and send/receive messages (Number 2 of Figure
1.1).

e Hardware-Acquisition/Data Processor-CSDB: Same as the last one, but the
acquisition and data processing is made by one device (Number 3 of Figure
1.1).

e Hardware-Broker-[Data Processor-CSDB]: Three different entities, sys-
tem, acquisition board or device which is listening to many sensors and actu-
ators from one or multiple systems, and a device on charge of processing and
send/receive messages (Number 4 of Figure 1.1).

As the data flow pushes new data to the CSDB entity, it is ready to be sent
using the network and the Internet. Therefore, CSDB defines how the data is sent
to the user, and it is important if the target is a student, database or monitoring
systems. Table 1.2 contains pros and cons of each scheme regarding their use in
remote experimentation.

Therefore, architecture, protocol and data format are key elements when con-
sidering the communications. First, we consider some common protocols, then the
data format and finally some full solutions (architectural styles).



1.3.2. Network-to-device

Virtual and remote experimentation through Internet is a very specific area in-
side the computer networks science, therefore just a small set of protocols has been
used to create laboratories. The following paragraphs present briefly four well
known protocols as a basis for the discussion of more complex solutions that will
be discussed over the architectural styles part.

Protocols

In the computer networks area, a protocol is as set of rules to define and to re-
strict the ways in which one system communicates with another. Some well known
protocols which have been used in VRLs development are being presented within
Table 1.3 which contains pros and cons of each one.

Raw Transmission Control Protocol (TCP) or TCP streams are considered
one of the “most popular protocol in the development of web-based applications”,
[27] and some works have based their real time systems in this protocol [28]. It is
a host-to-host protocol in packet-switched computer networks''. However, a major
drawback of using a raw TCP stream is that the developers must code from scratch
other capabilities, as the detection of connection failures or security layers.

HTTP/HTTPS: Hypertext Transfer Protocol/Secure is also, one of the “most
popular protocol in the development of web-based applications”, [27]. The Hy-
pertext Transfer Protocol (HTTP) is an application-level protocol for distributed,
collaborative, hypermedia information systems'>. It was originally designed for
communication between web browsers and web servers, but it is currently being
used in almost any surfing the web applications. Therefore, this protocol is being
used in some steps to make the lab accessible from a web browser. HTTP follows
a client-server structure, a client opens a connection to make a request, then waits
until it receives a response. It is a stateless protocol, meaning that the server does
not keep any data (state) between two requests. Some solutions (long polling, push,
comet) use HTTP to obtain data from the server, but, as these are not immediate,
this protocol has been used with some limitations in remote experimentation [27].
Nowadays, Server-Sent Events (SSE) allow to enable the client to receive messages
from the server, making SSE also a good option to implement communications in
remote lab experimentation, being the trend nowadays in some applications which
need this feature in their applications. The widespread of HTTPS to obtain secure
communications has incremented the difficulty to connect dumb devices to the In-

https://tools.ietf.org/html/rfc793
Zhttps://tools.ietf.org/html/rfc2616



Raw TCP HTTP Websocket

Adv. Less delays in real-time | Widespread and ready | Widespread and
apps. to use full-duplex communi-
cations

Disadv. | Higher level capabili- | Is not a full-duplex | Needs to upgrade from
ties must be coded by | communication and | HTTP to Websocket

hand needs SSE to obtain | which may cause
streaming updates from | problems with some
server network elements, as

proxies

Table 1.3 Advantages and disadvantages of the different protocols.

ternet (which only support HTTP) and has no additional security layer.

Websocket'3: WebSockets provide full-duplex communication channels over
HTTP/ HTTPS, although, they are not the same. It uses one TCP connection for
the server-client and client-server traffic, using any available port (for example: 80,
443 or 8081). This protocol enables a data exchange between the client and a server
that can be done without a previous request from the client. Due to the good users’
reception, major browsers support the Websocket protocol and are widespread in
data exchange application. Nevertheless, Websockets implies some pros and cons
regarding their use in communications [29, 30, 27, 28].

Data formats

Since data transmission is a central issue in remote experimentation, data for-
mat, the way information is encoded, plays an important role in communications.
As those formats may be either proprietary or free and may be either unpublished
or open, this thesis only considers those formats which are open and free, because
they provide better integration into other systems and are more extensible. Most of
the data transmitted in remote experimentation is encoded as numerical or string-
like data, and in a lesser extent binary. Usually this data has a tree structure and is
self-contained, therefore, it is needed a solution to enclose multiple types of data
together, transmitted and used on the client. Table 1.4 which contains pros and cons
of each one.

Systems communicate to exchange information, but, as said before, the infor-
mation or data comprises many types, some of those are complex structures, as files

Bhttps://tools.ietf.org/html/rfc6455



or objects (for example, from an object oriented programming language). Sending
complex elements which need to be used in both sides implies a methodology to
translate and reconstruct these elements. These processes are called: serialization
and deserialization, and are used in many communication system due to their flex-
ibility to be used in most systems. Serialization formats are widely used to send
data. Next lines contains four main data formats that have been selected because
they are the basis of a big number of other data formats.

XML, Extensible Markup Language (XML) defines a set of rules for encoding
documents. It is both human-readable, machine-readable and has strong support via
Unicode for different human languages. The language is widely used for sending
data from devices or machines to web services. Some of the labs included at the
UNILabs Web are developed using this format [31] to exchange data between both
sides.

JavaScript Object Notation (JSON), is a language-independent data format
and was derived from JavaScript. JSON is a human-readable text format consist-
ing of pairs attribute/value and serializable data types. It is commonly used for
asynchronous browser—server communication and is included in major browsers.

YAML Ain’t Markup Language (YAML) is based in many other formats and
languages (XML, JSON, HTML) is not binary, is human readable and is available
for multiple programming languages '“. This format is now being used in metadata,
log evaluation, model-based information and storage [32, 33].

Resource Description Framework (RDF) is being used widely on Semantic-
web and Big Data tools [34, 35]. Although, their knowledge-models for the data
exchange in remote experimentation could be like using sledgehammers to crack
nuts if the remote system has just a few sensors and actuators, but could be useful
for large remote monitoring frameworks [36] .

XML JSON YAML RDF
Adv. Human readable | Flexible, human | Based in other | Perfect for Big
and widespread | readable and | formats and lan- | Data and knowl-

widespread guages edge models
Disadv. | The syntax is | No support of [ Not  included | Can be tricky
verbose and | namespaces by default in all | and complex to
strict browsers be used in small
systems

Table 1.4 Advantages and disadvantages of the different data-formats.

4http://yaml.org/spec/1.2/spec.html




Architectural styles

Architectural styles are set of principles and patterns to solve common problems
that arise in the development of an application. Architectural styles provide abstract
frameworks to develop robust solutions and enhance the design reuse. Since com-
munication between systems is essential in VRLs, the architecture of the solution
should consider the exchange of information with sensors and actuators, whether
they are or not inside a laboratory system. In the following it is presented some
common architectural styles that have been used in the remote experimentation
field. Table 1.5 contains pros and cons of each one.

Representational State Transfer (REST): It is used to design networked appli-
cations using just HTTP to call between machines. The concept relies on resources
addressable through a URL using a stateless, client-server, cacheable communica-
tions protocol. REST defines constraints to be used when creating web services
[37] and in networked applications. Requests made to a resource’s URI will need
a response with a payload formatted in either HTML, XML, JSON, or some other
format. The response can confirm if some alteration has been made to the stored
resource. REST applications use HTTP requests to create, read, update, and delete
(CRUD) data. REST is commonly used along with HTTP, but, there are Internet
examples where some users have been also implemented REST with Websocket
instead of HTTP'>,

Remote Procedure Call (RPC): It is usually used with distributed systems,
making possible calling procedures in the local machine or on a remote machine.
Therefore, if a computer program calls a procedure on a remote machine it is coded
as a normal or local subroutine, making the process to communicate with the other
system transparent for the user. This location transparency is useful to handle re-
mote values, methods or services as local ones [38]. RPC is commonly used along
with HTTP, but, can be also implemented with other protocols. RPC is also used
for exchanging information in UNILabs VRLs [31].

Simple Object Access Protocol (SOAP): SOAP is used for web-services, and
uses XML information for the message format and relies on HTTP or SMTP. SOAP
allows clients to invoke web-services and receive messages independent of the op-
erating system. SOAP defines three part, one to set the message structure (enve-
lope), the encoding rules and conventions to structure procedure calls and responses.
Then, calling to a web service and integrating the response information into the
client application can be done directly as all the information about the structure of
the data is already in the message. SOAP has been used to obtain data from remote
devices [39], and is still in use [40], but in some cases is being replaced smoothly

Shttps://hackernoon.com/rest-over-Websockets-instead-of-http-8 1b0f0632295



by REST [41, 42, 43].

REST RPC SOAP
Adv. Very flexible to create | Remote calls are trans- | Rules and conventions
web services even re- | parent for the developer | make the message self-
garding the protocol contained and has a
built-in retry system
Disadv. | Has no built-in retry | The client needs to | It uses only HTTP

know the method name
and parameters, this
couples client and
server

system and SMTP protocols
and message format is
heavier than the other

two

Table 1.5 Identify synchronous and asynchronous messages using their origin and cause

1.3.3. Programming languages

Last sections have presented the different parts to consider when developing a
lab from scratch. Programming languages are the last pillar needed to establish a
starting basis, and at this step we will make a difference between the user interface
and system software. On the one hand, the user interface should use a web-browser-
friendly programming language to embed the resulting application inside a web-
page or similar, because the general trend of last years is to move the application
to web-browsers allowing the access from many different systems and through the
Internet. On the other hand, the server side interacts with the real hardware and/or
with the devices involved in the data transfer. Therefore the programming language
at the server side must be a hardware-interaction-friendly.

In the early nineties, the idea of remote experimentation was considered a futur-
istic approach [26]. Few years later the first remote lab, was developed as a proof
of concept, was developed [44]. In the same year, the first remote lab using Java
technology inside a web browser was created [45], thus beginning a path to develop
remote and virtual labs using the World Wide Web [46, 47, 48, 49]. Java-based
VRLs were the state of the art, but two decades later, after the development of many
remote labs, Java has been restricted to be used in the server side and not anymore
in the client side. This was consequence of Java vulnerabilities found when using
applets to run code inside a web browser, in addition, the restrictions for running
non digitally signed Java applets made even worse the common dissemination of
VRL based on this technology.



Nowadays, the development of VRLSs can be done using one or more program-
ming languages, some are used to interface with hardware, as LABView and others
can be used on the browser at the client side, as Javascript. Other languages have
been used in this field, some well known as: the C family, MATLAB, PHP, SQL.
Other have become widespread recently, like Python, which is general-purpose,
interpreted, multi-paradigm programming language and can be used in remote ex-
perimentations [50, 51].

Next chapter contains a description of the main tool used to develop the exam-
ples in chapters 9 and 8, Easy Java Javascript Simulations, and how it evolved along
with developers until today.



2. Easy Java Javascript
Simulations (EjsS)

EjsS is going to be a major issue all along this document, therefore this chapter
is dedicated to introduce the tool and its features. At the end of the chapter, the
reader will have a global vision of the topic and will be able to focus in the main
research contained in later chapters.

2.1. EjsS: The tool

EjsS is a open-source tool developed in Java that assists non-expert program-
mers in the creation of dynamic simulations. The tool was originally designed to
be used for learning purposes, and relies on a model-controller-view architecture to
ease the design process of the virtual or remote lab !. A user can neglect the imple-
mentation details and focus on the science and knowledge behind the idea, writing
equations, coding the behavior and/or the visual interface. The motivation of this
approach is to enlighten the creation process to teachers. They may or may not have
advanced knowledge of programming, but that are proficient in their topics and can
benefit from the incorporation of digital tools into their courses.

As a tool to develop labs, EjsS is intended to be intuitive and easy to handle.
To make it possible EjsS contains a main editor that allows the user to create an
application defining the model and the view as separated entities. In this regard,
the main window is divided in a tab-like structure where we can distinguish the
following components: Description, Model and View (see Figure 2.1):

1. Description: It is a minimal text editor or a HTML-enabled window to write
information of the application. It is shown to the user at the beginning of an
experience.

Ifor simplicity, we will call them VRLs or applications from here on
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Figure. 2.1 Both editors, the Java (a) and the Javascript (b) enabled versions

. Model: It describes the process under study in terms of 1) variables, which
hold the different possible states of the system, and 2) relationships among
these variables, expressed by computer algorithms. This tab contains also
sub-tabs variables, initialization, evolution, fixed relations, custom and ele-
ments. In fact, the model panel is the core of the application and its behavior
depends on the parameters and code defined inside each sub-tab.

. View?: It can be defined from scratch or using some templates, included
within the editor. The tool offers two panels to define the view:

e L eft panel to create a tree structure for the view.

e Right panel with the components to be added.

The creator can define the properties of the final application, its interactiv-
ity or how the view is capable of reacting to some user actions. The view
can be as complex as desired, but some of these reactions do not need to be
coded by the user, because they are already precoded inside the core of EjsS.
For example, a VRL may show a graphical representation (either realistic or
schematic) of the states of the process, a web-cam or both.

2From here on, the term “view” will be used to refer to GUL



The tool contains also packaging capabilities to be used when the app is finished.
Thus, the developer of the lab can deploy it as a standalone app or embed it in a
web-page.

2.2. Applications

Since the first launch of EjsS to nowadays some research groups have developed
their simulations, labs and apps [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. The tool
has also evolved in the hands of the group of Francisco Esquembre [63, 64], the
creator of the tool, and other developers from UNED and other universities. In this
regard, from the first version, many other features have been included to enhance
the tool itself.

As is a tool in continuous development, enhancing EjsS is possible in many
ways, from changing the core code to adding capabilities in a modular way. Each
one of these modules is called model-element. These elements add features not
included in the main tool, such as a file chooser, tools for accessing hardware or to
connect with external software [31, 65].

2.2.1. Enabled versions

As said before, EjsS can be used by those who has minimal knowledge about
programming. Inside the tool, Java or Javascript are the available programming
languages, but each one uses a different editor. Each one of these editors is called
an enabled version. Although, at the beginning, EjsS was only able to create Java
applets, in recent versions (5.0 or newer) Javascript is also an option. Figure 2.1
explore the differences and similarities between both versions.

Similarities may be summarized as follows. In addition to the graphical likeness,
the main process of interacting with the editor and building the model or the view
remain the same in both versions. To build the model, using any of the versions, the
user can select each sub-tab to define:

e Variables that can be used in any part of the application.
e [nitialization code, to be accessed on the startup of the application.

e Differential equations or code for each step in the evolution during the appli-
cation life-time.

e Functions defined by the user to be accessed from anywhere inside the app.



o Model elements to add new features to the main model code.

The creation of the view in EjsS relies on a drag and drop philosophy, where
users can choose the components of the interface. These are inserted inside a hi-
erarchical tree structure. Each view components has also a configuration menu, in
which the individual parameters can be tuned in order to obtain the behavior and
the look desired by the developer.

As some key words are being using in the text and some are quite similar, from
here in advance the text will follow next two conventions:

e View components or just components refer to each independent particle of the
view obtained from the panel on the view tab.

e Model elements or just elements refer to the additional features that can be
added to the model using the matching sub-tab.

2.2.2. Java-enabled version and Javascript-enabled version

Top part of Figure 2.1 shows the Java editor. Since it is using Java as develop-
ment language the final application can not be used anymore inside web browsers,
but is still useful as standalone application. The main difference between the editor
is related to the language, but model tab contains a model elements sub-tab, where
the elements are not all the same as in the Javascript version.

Bottom part of Figure 2.1 shows the Javascript editor, which uses Javascript as
development language. As far as the application is made using these two languages
the final application can be embedded in web pages and also as standalone applica-
tion. The main window is also divided in the same tab-like structure where we can
distinguish Description, model and HTML-View.

2.3. Architecture of a VRL inside UNILabs

The creation and configuration of UNED labs, integrated with UNILabs, fol-
low design patterns that simplifies the lifecycle of development, maintenance and
update. The main topology followed in the labs is shown in Figure 2.2.

e Moodle provides the web interface and support for the booking system. Sev-
eral plugins have been added to the UNILabs website, to provide extra capa-
bilities. All these plugins were created by UNED and have been accepted and
published by Moodle:
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Figure. 2.2 VRLs topology inside UNILabs

— Add Java applets or Javascript applications using the EjsApp plugin’.

— EjsAppBooking plugin adds a booking system to schedule connections
to the applications and labs 4.

— The remlab manager block used along with the Ejsapp plugins allows
to manage the remote labs in Moodle courses. >

— Gathering user interactions, make collaborative sessions and other fea-
tures are also available in the Github repository®.

e SARLAB (Sistema de Acceso a Recursos de LABoratorio) solves the prob-
lem of having remote laboratories with public IP directions. It hides labora-
tory computers behind a private network, preventing the access for unautho-
rized users. It also manages the access of external users (clients) to laboratory
computers and offers control over power supplies. It is a free system which
requires additional software to be used within the VRLs, but it is an optional
parameter inside the remlab_manager plugin.

e Lab Server is the device or combinations of devices on charge of the hardware
to networks capabilities described in chapter 1. Those devices may be PCs
or single board computers, such as raspberry pi 7 or beagleboard ®. Other
devices, like development boards, as arduino 9 can be used to perform some

3https://github.com/UNEDLabs/moodle-mod_ejsapp
“https://github.com/UNEDLabs/moodle-mod_ejsappbooking
Shttps://github.com/UNEDLabs/moodle-block_remlab_manager
“https://github.com/UNEDLabs

"https://www.raspberrypi.org

8https://beagleboard.org/bone

“https://www.arduino.cc



lab server tasks.

e Hardware: The real system, which contains one or more sensors and/or actua-
tors. The lab may be provided by private companies, which implies additional
hardware, as acquisition cards, and also additional software, like interfacing
programs or drivers to be used in LabVIEW, Matlab, Python, etc.

The chapter has presented EjsS as a flexible tool to create VRLs and the ar-
chitecture used in the Informdtica y Automdtica department of UNED. A common
architecture when making courses with remote laboratories gives the developer a
known environment to deploy and test new functionalities when making VRLs. For
example, with the given architecture, if the lab is virtual, it is simple to add the
EjsS packaged file inside a UNILabs course. The packaged file contains the needed
files to run the lab. Inside the package it is included at least a .jar file (in the Java
version) or a XHTML file (in the Javascript version). Then, when the user wants to
practice with the VL, the XHTML file is served from Moodle, ready to use. When
using RLs, the architecture is quite different. However, if the Lab Server and Hard-
ware are ready to use, the process is similar, as the Moodle plugins and EjsS model
elements are in charge of connection through SARLAB and other interfacing tasks.

This chapter finishes the introduction part, that defines the main concepts in the
development of VRLs courses which will be revisited in next chapters.
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DEVELOPMENT






3. Problem Discussion

Some of the most usual issues when developing VRLs have been presented. But,
in addition, developers may face problems regarding the deployment of VRLs. As
said before, some authoring tools are prepared to build VRLs and get them packaged
and ready to be deployed, as EjsS. Even in this easier situation when these VRLs
are remote and accessible through web-courses, other limitations and issues must
be solved. The deployment can impose its own limitations due to the architecture
of the application and/or the device which is running the lab.

Decisions must be made regarding the way data is acquired from hardware,
which protocols are being used and how is the application deployed. But, even an
excellent selection of these can result in a bad user experience due to some other
factors. In this sense, a collection of structural problems have been identified. These
problems can be grouped inside three major categories:

e Locate the controller at the client: This architecture leaves the control tasks
to the GUI, which can change the number of useful control strategies.

e The model and view dependency: The strong coupling between model and
view can be restrictive, for example with code, model or view reutilization.

e The computational cost: The calculations needed to run these applications
can be excessive for some devices.

3.1. Controller Location

Some configurations when developing VRLs may imply building together the
GUI and the software in charge of controlling the system. This software is called
controller, and can perform two tasks. The first one, concerns the automation of
the laboratory system. For example, a servo to control one dial of a machine. This
is a control task which is translating interactions from the user. The second one, is
related with the lab experience itself. The best example are control engineering labs,



where the goal of the lab is usually to study, modify and implement a controller. The
two tasks are then coupled, as both commonly use actuators and sensors available to
control some variables. Both controllers can face complications when are embedded
inside networked VRLs.

" [ Client GUI | y
| Controll System
| % g

Client Side

Figure. 3.1 Diagram of the control problem with the controller at server side

Figure 3.1 shows two separated parts: the client and server side. The first,
contains the controller and the user interface. The second, contains the system and
the sensors. On this subject, the signal to control the system is computed in the client
side and must travel across the network to reach the real system. The limitations
that appear when studying these systems are complex and have been faced together
in different areas. Networked Control Systems (NCS) are an intersection between
control theory and communication theories, and it have been studied intensively
[66]. The VRL development constraints are numerous as result of controlling the
system in a networked environment [67, 68, 69, 70], as the one shown in figure 3.1.
Commonly, these issues are divided in three categories:

e Timing: This category is wide, and it groups together three sub-categories:
communication delays, sampling intervals and bandwidth limitations.

— Delays: Delayed systems are studied in depth in control engineering
without involving NCSs. The study of delays in networked systems
became important “as information about the network state can only be
observed or relayed to controllers after a time delay, and the effect of a
local control action can be felt throughout the network after substantial
delay” [68].

— Bandwidth limitations: The amount of bits that can be sent over the
network is limited. In this sense, data from applications with high band-
width consumption can be affected or even be impossible to be trans-
mitted.



— Sampling intervals: Sensor readings, status messages and other data
exchange in NCSs can be scheduled precisely in a VRL. Although, “’the
transmission intervals will be very likely to be time varying. in fact, the
time between two successive transmission/sampling can be very uncer-
tain and significantly large.” [69].

e Channel reliability: Failures or congestion over unreliable channels may im-
ply packet losses, errors and disordered arrival. Then, reliability depends on
which transport protocol is used to exchange data. There are many protocols,
but, regarding Internet, only two are considered: UDP or TCP.

— User Datagram Protocol (UDP) gives a connectionless service, which
handles each packet independently of others. As it is an unreliable chan-
nel, it allows packet losses and out-of-order packet arrive.

— TCP protocol is based in point-to-point connections which ensures in-
order delivery and reliable communication channels.

e Data quantization and architecture: How signals are transformed from
analog to digital ”is a common phenomenon in all digital control systems
and thus has been a classical topic in conventional digital control theory even
before the popularity of NCSs” [69].

There are different approaches to solve or minimize problems regarding NCSs.
VRLs developers can take advantage of some of this efforts to neglect or reduce
some of these restrictions.

e Using a reliable protocol to perform the communication can reduce losses
and errors in the data exchange. All protocols considered in Chapter 1 rely
on TCP channels. Most of VRLs are developed using TCP protocols, on this
point, as UDP is not used, the reliability of the communication channel is
ensured.

e Dividing data in small pieces, the quantization, has an effect on the stability
of controlled systems. It has been studied in depth regarding the size of each
packet, concluding that if each packet can contain a big enough number of
bits, the quantization effects can be neglected [66].

e NCS have studied multiple control strategies. Some control strategies reduce
the data exchange and thus the delays and obtain better sampling characteris-
tics [67].



Changing the control strategy, choosing a reliable communication protocol and
controlling the size and rate of messages can be used to reduce the issues regarding
the NCS systems. Although, the depth of the problematic imply that each NCS
needs further research and no general conclusions can be assumed.

3.2. Model and view dependency

Interactive online applications require great efforts in the form of programming,
designing and testing. In parallel, the design of a laboratory to enhance the science
learning outcomes implies that multiple areas must share its resources and efforts.
When a remote system is used as an online lab, both processes have to merge. This
join creates a complex but great breeding ground to develop many lab experiences.
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Figure. 3.2 Two paths to describe the process of acquiring knowledge regarding their qual-
itative or quantitative nature

Figure 3.2 describe the process of acquiring knowledge from a system with
VRLs. Remote labs are commonly automated systems to control and read a set of
variables and/or parameters. Let’s suppose that every value, configuration or pa-
rameter can be read or controlled online. In this situation, the number of available
modifications (and states possible) increases greatly, so it does the number of tasks
that can be performed. Lets call the teachers lab to the lab which can control every-
thing in a particular lab. Thus, all the conceivable VRLs which can be made with
with one specific system must be contained in the teachers lab. This concept can be



applied to the knowledge that can be extracted from the VRL. Then, the ideal con-
cept of the teachers lab may push somebody to think that labs must be as similar
as possible to it. Nevertheless, VRLs for education are commonly simple and well
designed to help the students in the learning process. These VRLs usually contain
only those fields which are needed in the lab experience. Educators who want to of-
fer many simple labs, instead of the teachers lab, may need to create many different
student labs with the same system.

One online lab can be used to perform a finite set of lab tasks. Each task is used
to obtain small pieces of knowledge. Figure 3.3 shows a graphical representation
of how the GUI can produce the extraction of knowledge from the system. For ex-
ample, it is possible to suit the lab to be used by three different groups of students
with different knowledge level by using the same set of variables. But, any addi-
tional task or change in the accessible variables may imply modifications or even
the implementation of a new GUI. It means that there is a high dependency between
the user interface and the system side. Thus, any of the lab experiences that can be
developed will be tightly coupled with the online GUI.
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Figure. 3.3 Extracting knowledge from a online laboratory. Accessible variables define a
finite set of lab tasks and the knowledge that can be obtained through their
observation and manipulation.



Last paragraphs show that the coupling is not just a superficial problem but
rather an architectural one. Other problems may arise when developing VRLs,
which are divided into three categories:

e The design of the experiments depends on the number of tasks that can be
performed and the knowledge that can be gained from each experiment, then
new ideas from teaching may imply new applications.

e Usually, VRLs development needs a close work between the controller side,
the model, and the GUI. Work with both sides together is almost mandatory
in the first steps of the development. When the real system is placed in its
final location, the development of the GUI commonly becomes difficult if
there is a tight coupling between both sides. The difficulty is as higher as the
number of changes to be done in the model. For example, changing the name
of a variable, sensor or actuator may be done twice, in the GUI and in the
model. This problems may end in reducing the number of changes in the lab
or in making heavier applications to cover all the possible future desires of
teachers. Both consequences limit the flexibility when developing VRLs, and
increase the effort of building new labs.

e The GUI is the main front-end for students, and represents the lab for them.
As said before, the experiment design influences the GUI design, and both are
usually designed considering the final user knowledge and experience. As a
consequence, a GUI may perfectly suit the needs of a group of students, but,
it may not be appropriate when is used by other students. Therefore, to some
point at least, the success when learning from lab experiences gets entangled
by the design of the GUL

Regardless of the final purpose of the web application, developers have faced
these problems and some solutions have been applied to reduce the effects of cou-
pling between the model and the view:

e Modular programming techniques allow developers to simplify the coding of
VRLs. These techniques define a module with a functionality and required
data to be run. This level of decomposition leads to simpler solutions when
coding VRLs, and can be applied to reduce the coupling problems. In this
context, modular programming and reusable code allow to reduce the work
needed to develop the view and the controller of a system.

e An Application Programming Interface (API) defines a collection of proce-
dures to communicate with components. An API can define how to use vari-
ables, remote calls, processes, data objects or structures, etc. APIs show the



accessible and useful elements for the developers, abstracting the coding be-
low. A well defined APIs can suit most of the needs of developers of applica-
tions. As result, the efforts are focused on designing and developing a good
API for a specific system.

e Developing single-task labs or modules, where each one will illustrate one
concepts. The single responsibility principle states that "A class should have
only one reason to change”, where a responsibility is a family of functions
that serves one particular actor” [71]. In the case of VRLs, depending on
the final goal, these modules may focus on one of two: (i) explain a simple
concept or (ii) complete a big task which is divided in a set of simpler tasks.
Regarding the second option, the lab can be adapted to the level of knowledge
of the student by adding or removing labs from this learning path.

Considering the VRL development area, the solutions presented reduce or coun-
teract the effects of coupling. This is achieved by designing the software to be more
flexible and reusable in many other laboratory systems.

3.3. Computational cost

The rise of smart devices in the market and society presents lots of changes in
people’s life. Smartphones have become, in most cases, the main device to browse
the Internet, consume multimedia content, mailing or exchanging messages, etc.
The increase in their importance lies on the shift in user preferences from computers
as desktops or laptops, to smart devices. The usability of these devices has been
studied, as well as their usage in cloud environments [72, 73, 74], concluding they
can be useful for the main user. Remote or virtual web-based labs have been also
designed and created to be run inside smartphones, as in [75, 76, 77, 78]. The
existence of so many potential target devices are a great opportunity to reach more
users, but also an important increase in the effort of development due to:

e VRL developers may consider the possibility to make their labs accessible
from smart devices, supporting as many operating systems and web browsers
as possible. The support should cover near to one hundred percent of users,
as mobile devices are a must-have product nowadays.

e On the one side, there are powerful devices that can be compared with some
computers. These devices can run, without problems, the calculations of quite



complex virtual labs. On the other side, many users have old or low-end de-
vices, that sometimes can not run simulations fluently. In the worst case, ap-
plications suffer a crash or the device gets overheated. To reach more potential
target users, the solution must provide a low computational cost alternative.

e Because of the wide variety of devices in the market, the compatibility with
smart devices is sometimes not well defined. In combination with available
web-browsers and programming languages the compatibility becomes even
fuzzier.
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Figure. 3.4 Possible offloading solutions, different approaches used in mobile devices.

Available solutions include many different approaches, and it is not in the scope
of this thesis to describe all of them. However, most of them suffer the same lim-
itation: the computational resources. The lack of resources in mobile devices sup-
pose a challenge to developers. Many researches focus their work in offloading
the mobile devices [79, 80, 81, 82, 83, 84, 85, 86, 87, 88]. These studies widened
the mobile device definition including sometimes: smart-phones, tablets, laptops,
robots and IoT elements. Resource-contrained devices can take advantage of dif-
ferent strategies [79]. Figure 3.4 shows how these strategies are divided in different
categories depending on how and where the computations are done:

e Cloud computing: It is focused on the idea of user as data consumer. In this
regard, mobile devices delegate the data storage and the data computations



to the cloud. "Putting all the computing tasks on the cloud has been proved
to be an efficient way for data processing since the computing power on the
cloud outclasses the capability of the things at the edge” [89]. Data produc-
tion inside user devices is now a reality, but the bandwidth may result in a
bottleneck. Thus, cloud computing becomes less powerful as the user needs
to send more data from its device.

Fog computing: Originally, it was designed to work with IoT devices as it pro-
vides interconnectivity between services or devices with different technolo-
gies. ”To provide a self-organizing network infrastructure for IoT services, it
incorporates network virtualization and traffic engineering aspects from Net-
work Function Virtualization (NFV) and Software-Defined Network (SDN)”
[89]. Due to the time response and the flexibility of the fog computing, it
appears as a good offloading solution.

Edge computing: The data is also processed at the edge of the network. Then,
the processing delays are smaller than in cloud approaches. This proximity
between data source and computing makes it suitable for [oT. It appeared as
a complement to IoT and cloud computing, where the origin of the data are
terminal devices. Sometimes it is mixed with fog computing and some studies
consider fog as a subset of edge computing [89].

Others: Many other strategies are capable to offload devices by delegating the
computation in other elements of the network.

— Superfluid cloud [90]: This solution creates multiple virtualization plat-
forms where the deployment of these elements is not restricted to one
location: the edge, the access network or the core. The increase in the
number of devices and virtual machines enhances the capabilities of the
cloud and its flexibility.

— Edge-centric computing: It is a novel paradigm that moves the locus of
control of Cloud Computing applications and services to the edges of the
network. The nodes defined are deployed across data centers and nano
data centers and collaborate with each other in a peer-to-peer fashion”
[91].

— Opportunistic: Most of the information delivered to users comes from
the cloud and content service providers. Sometimes obtain some of this
data from other close and connected devices appears as a good solution
to decrease the computing, delays and network resources consumption.



The opportunistic solution was originally conceived to offload the mo-
bile network traffic [92], but it has been considered to offload smart
devices [93].

The paradigms presented reduce greatly the computational effort in mobile de-
vices. Nevertheless, considering the VRL development area, computing and data
creation is done at client and server sides. As each lab is different and the available
architectures are many, the usability of these solutions is not generalized for VRLs.

This chapter has presented many problems that arise at the development process
of VRLs. The placement of the controller is a complex problematic which combines
control and communications. The coupling between view and model is a develop-
ment restriction, increasing the efforts of creating, updating and maintaining labs.
Computational cost can result in a limitation for the user even in powerful devices.
Next chapter contains a solution proposal, which is the main contribution of this
research work.



4. An Architecture for VRLs

A good selection of structure, protocol and data format chosen from Chapter 1
can improve the potential of the VRLs. From last chapter, we have seen that some
decisions on the design of the architecture involve complex issues, that must be
solved. Some of these problems regard a higher design/development effort, a de-
crease in performance, the user experience and/or the system controllability. When
grouping the decisions to be made, the number of available subsets is enormous.

The goal is to design an excellent architecture to be used in all VRLs. To achieve
the objective, it is imperative to choose a compatible subset of options and to apply
mechanisms to overcome the impact of last chapter problems. Next sections show
a solution proposal which groups together different approaches. Additional issues,
that appear along with the architecture, are also solved across the chapter.

4.1. Decoupling model and view

This section discusses main aspects of the solution for all the problems presented
in last chapters. On the one side, many VRLs, as presented in Chapter 1 consider a
design paradigm where the model and the view are two indivisible concepts. That
coupling worked well in the past but, the set of issues presented suggests that de-
coupling the model and the view may provide benefits. On the other side, Chapter
1 has described many different ways to create VRLs. Both sides together provide
the perfect breeding ground to decouple model and view inside a functional archi-
tecture.

Decoupling the model and the view is not solely confined to the separation of
both elements. Model and view have different tasks to perform. The nature of each
one defines a different set of tasks. The set of tasks of view or model can be imple-
mented in many programming languages. However, to achieve a full decoupling,
the underlying language should not imply an immovable link between both parts.

To summarize, the solution provides the possibility to create two different en-
tities: the model, which runs on the server side accepting connections of local and
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Figure. 4.1 Architecture of a VRL made using Java and Javascript enabled version

remote views, and the view, which should be able to obtain data from connected
models and show an interactive view to the user. The communication protocol pro-
vides means to exchange information between the model and the views, without
considering which programming language has been used to develop the model.

Figure 4.1 shows the overall picture of the system and contains the view, model
and communications. It also illustrates the two types of labs, virtual and remote,
from the perspective of decoupling:

e Virtual labs: The structure comprises the GUI and the model as separated
entities.

— The model of a VL plays the role of the computation software. A basic
model contains a communications component and a main computation
core. All the calculus are made in this side and usually is not connected
to external software.

— The view of a VL is the GUI and contains a communications component
and the visual elements of the interface.

e Remote labs: The structure comprises the GUI, the model and the external
hardware as separated entities.

— The model of a RL makes similar task as VL regarding the computa-
tion software but it also includes hardware connection abilities. A basic
model contains a communications component and a main computation
core, but the core can connect to external hardware, software or both.

— The view of a VL is the GUI and contains the same structure as in the
case of a VL.



Model and view independence is the first step to create VRLs with better char-
acteristics. A decoupled architecture fixes the tasks to be performed by each part
and reduces the effect of problems presented in sections 3.1, 3.2 and 3.3.

e Controller at client: Deploying the view in a different device to the model can
lead the solution to the problems inside NCSs. Nevertheless, the key factor is
the task division, which defines where the controller must be placed.

e Model-View dependence: Dividing the tasks of model and view and deploy-
ing each one in a different device can produce a decoupling between both.
However, it is not totally ensured, as it also depends on the particular coding
of view and model.

e Computational cost: The computational load in the user device is reduced by
decoupling both parts, as the model can be in control of heavy calculus.

The decoupling may reduce the problems presented in last chapter, but, the com-
munications, specific tasks and detailed structures are not yet fully defined.

4.2. Communications

Communications are a central issue in the proposed framework. In many cases,
the difference between VRLs relates to how communications are handled. Then, the
protocol, format and design may suppose a barrier and is useful to define standards
to access to hardware or to other connected devices.

Actual applications are made following many different designs, as seen in Chap-
ter 1. A communication standard must include a solution where the data format and
protocols are common between applications. It also must be adopted by the commu-
nity and readily available to any user. These three conditions set a restriction over
the privative and commercial formats and protocols, which are not readily available
for everyone. In this scenario, the set of candidate technologies is smaller and the
choice of format and protocol should be made considering:

e Usability, the easier to use, the better to migrate from other IDEs or tools.

e Availability, the protocol should be easy to implement at least in most com-
mon programming languages.

e Use of standard technologies and combined with careful design of the soft-
ware must contribute to reduce maintenance.



In this regard, communications are implemented with the WebSocket protocol,
and using the JavaScript Object Notation (JSON) data format. Both have been
presented briefly in Chapter 1 and fulfill the requirements of usability, availability
and maintenance.

4.2.1. Technologies

Communication technologies set the available features that can be developed
inside the applications and how these are deployed online. Choosing WebSocket
protocol and JSON data format the solution present the following characteristics
and advantages:
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Figure. 4.2 A vector list defined using a JSON structure

e WebSocket: Using Websocket protocol in web applications has become a
widespread solution in the last years and it is supported by most browsers. It
uses one TCP which provides full-duplex communication and uses any avail-
able port. All these characteristics make WebSocket a good choice to develop
VRLs.

e JSON is a human-readable data format used for asynchronous browser—server
communication. Though it was derived from Javascript, it is considered
language-independent and many programming languages provide means to
parse and generate JSON. The format uses name/value pairs (see Figure 4.2),
which can represent from simple data types to complex structures.

Remote experimentation may become even more important in next years, and
therefore, other protocols and formats should fit in the restrictions imposed. As
the field of VRLs is in constant update and upgrade, new technologies will also
appear eventually, fitting or not with the conditions presented before. However,



nowadays, converging into a standard for implementing VRLs has been discussed
by different research groups. Communications architecture tries to get closer to
these standardization efforts and fulfills all the conditions presented.

RLs development implies data exchange, at least between the user and the real
system. Moreover, many web applications need to exchange some information with
databases, external software, devices, local hardware or even between different sub-
modules inside the same application. Defining the communications upon the same
basis, a set of common technologies, is fundamental to establish a standard and
makes the code reusable. This unification in communications is not complete yet,
but, considering all the advantages, establishing the use of the Websocket protocol
and the JSON data format is one step forward on the process of generalizing the
communications between:

e Models: As the model is an individual entity, it can run without interactions
from outside. Eventually, a client may want to connect with the model to
carry out a experimental practice. When the interactions and requests begin,
the model is on charge of parsing, processing and sending back all the infor-
mation required. At the same time, the model is listening to answer to other
messages from external software, devices or hardware connected.

e Views: A different individual entity that contains a visual representation and
capabilities to connect with the model. The laboratory data exchange will be
possible if the model is available or any other element needs to establish a
communication with the GUI.

e Hardware may be present or not, depending on the nature of the lab. The
complexity of the element can go from a single sensor or actuator to complex
systems as the engine of a car. The origin of the data is also important, as it
can be local, like in built-in GPS of mobile devices, or remote, like the status
of a solar panel. If the messages and/or the protocol used to exchange this
information are common, the number of technologies needed decreases, and
so the complexity.

e At present, smart devices are actively involved in daily tasks, as smart phones
or tablets. Technology has worked in favour of development of the IoT, thus,
systems like Rapsberry Pi, Arduino or Beaglebone can be used to create smart
devices connected to the network. It is essential to share the communications
structure when using such devices, in order to make any solution to grow
along with the new IoT technologies.



Message format and smart device specification

In the suggested solution, one VRL is divided in two parts: the view and the
model. Both parts, are already equipped with the capabilities to exchange data
using JSON. The messages include data that express the interaction between the
model and the view in a way. The way this exchange is done, can vary from one
developer to another. Two options are proposed as valid and compatible:

e Mixed format: The data is sent in plain text, but, not all of the information
is inside a JSON structure. The message contains two parts: the header and
the information. The last one can be JSON-parsed and is human readable. To
understand the header, both parts in the communication process must know
the meaning. It is possible that this option leads the solution to a low level
coupling, which is commonly not desired, as the solution looks for the inde-
pendence between both.

e Pure JSON format: One goal of the JSON format is to provide an easy
way to understand the information inside a message. The JSON structure can
contain detailed data about the lab and its functionalities. The JSON by it-
self is not enough to assist the generalization process, neither the decoupled
solution. To satisfy both requisites, an excellent option is to use the Smart
Device Specification (SDS). The SDS was developed to decouple server and
client in remote lab implementations, and to obtain a well-defined representa-
tion of the server, including services and functionalities [94]. Therefore, this
format allows the views to obtain details from the remote or virtual system,
and also to interact with it using JSON messages. SDS transmits a bigger
amount of data, compared to common data exchange in VRLs. In this sense,
this additional information allows to virtually replicate the system, with its
components, and to know the status of sensors, actuator, etc. As this format
provides wider and more standardized communications, it is a better option.

Considering both structures, and in order to join the efforts to make a stan-
dard, the communications should use the SDS. The latter provides a useful self-
documented interface, so the client can build the user interface without any addi-
tional information. Therefore, the GUI can be developed to use the laboratory with-
out information about hardware and internal work of the server. Additionally, the
information of the model is reusable and can be maintained in many other systems
just modifying (adding or deleting) the list of sensors and actuators. Also, there
are considerable benefits to exchange data and re-configure real equipment using a



standard. A full description of the Smart Device Specification for remote labs can
be obtained from [94] and the complete specification is published on GitHub .

The client can easily obtain a description of the lab and information about the
status of the equipment by using the available services. This information is given in
JSON notation and can contain data from sensors, actuators or additional features
included by the developer of the lab. Therefore, the possible interaction options
in a lab depend on the services defined in the server, such as, send values to actua-
tors, obtain data from sensors, modify the configuration of internal hardware, obtain
information about the status of sensors or actuators, etc.

The decoupled laboratory architecture results in a model that commonly makes
no assumptions about the GUI. The model then offers a set of services which are
accessible using the protocol and format described in a metadata file. It is common
to find remote labs which also assume this approach, a Lab as a Service (LaaS)
where functionalities are made as independent modules [95, 96, 97, 98, 99, 100].

The smart device model uses a close approach to the LaaS, describing the lab
as a single entity. LaaS is seen through a set of services and aims to solve the
common challenges in VRLs developing and implementation. Both approaches
obtain benefits from the interoperability with other heterogeneous systems, modular
design and development and the steps forward standardization.

Researchers have been focusing in the implementation of utilities as services
LaaS [101]. Some of these models includes Sensing as a Service (SaaS) [102], In-
frastructure as a Service (IaaS) [103], Database as a service (DBaaS) [104], SaaS
(Sensing as a Service) [105]. This way, the same services can be adapted to the
needs of its developers or users, widening the usefulness of the software, infrastruc-
ture, database, sensors or the VRLs. Thus, fixed GUIs are commonly avoided, as
they confines consumers to a certain Web technology. Developers can customize
their application using their own needs to create a learning environment.

4.3. Client-Server Structure

Proposed solution defines two different sides: 1) the server, which contains
the real system and runs the model of the lab, and 2) the client, which runs an
interactive interface to the user. The communication protocol provides means to
exchange information between the model and the views, without considering which
programming language has been used to develop the model.

This task division allows to move a step forward, as the model and the controller
are at the server side. Then, as the server side controls the real system and do the

Thttps://github.com/go-lab/smart-device-metadata/raw/master/smart-device-specification/



computations, the VRLs can be used as non-networked control system, reducing its
difficulties. The proposed solution is flexible, and is suitable to be configured as a
NCS, as long as developers want to. Figure 4.3 shows the diagram for the control
system, where the controller and system are now at the same side.
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Figure. 4.3 Diagram of the controller at server side. The server side computes the control
signal, actuates in the system and read the sensors.

The minimal set of tasks that must be carried out by each side is not clearly
defined from last sections. Client and server sides have to be designed to be inde-
pendent one from the other.

4.3.1. Client Side

The GUI is a key element when talking about VRLs, as it is the front-end of
the real system or simulation. A GUI has to perform different tasks: synchroniz-
ing, drawing and plotting activities inside the view. In this regard, the model-view
pair must maintain the information flow between both sides, when each one is in a
different machine. The user side is divided in main tasks and subtasks:

e Visual interfacing: GUI, which contains also the graphical representations
and interactive elements:

— Graphical handlers: All the visual elements in a GUI may contain avail-
able methods to modify or edit them.

— Updating data subtask: If an event produces a change which affect the
visual appearance of the GUI, it must be updated.

— Subtask to wait for and handle user interactions: loops which wait for a
particular event are called listeners, and must be defined for each inter-
active element of the GUI.



e Communication: The Websocket protocol implies at least three subtasks to
control the communications:

— Definition: A client must be defined using an IP direction and port where
the GUI can find a working server.

— Configuration: The parameters of the communication need to be ed-
itable, at least the IP and port mentioned.

— Listeners: Incoming messages need to be handled to process the data.

e Message processing: Messages and internal processing of the data must be
considered as a separated task, to allow developers to introduce new changes
without affecting all the architecture. Thus, at least two sub-task must be
done:

— Formating task: The data is sent inside a message structure. This struc-
ture is known by model and view. Therefore, tasks to read or write
messages must consider how the methods must be used. Which is the
same as how the API defined inside the SDS.

— Wrapping or interfacing task: To reduce the additional data inside one
SDS message, this task asks for the data needed by the GUI. It makes
a translation work, in order to interface between GUI and format task,
preparing the data to be used by the view. The wrapper reduces also the
amount of methods accessible to the developer.

4.3.2. Server Side

The model carry out the data processing and interacting with the real system.
The model will send updates periodically and needs to know how the user is inter-
acting with the view at every moment. Some basic tasks of a model inside a VRL
can be covered by adding the characteristics listed below:

e Metadata Services: The view will need the metadata to inform about the inter-
nal structures of the lab. If the metadata is available it must be obtained using
a metadata service. Minimal requirements include three metadata services to
answer request regarding:

— The API and data-models.
— The sensors set.

— The actuator set.



e Data Services: The view and model need to exchange the data from the lab
by sending/receiving messages. Thus, the model must be able to receive and
identify the different types of message. Minimal requirements includes four
data services, in charge of receiving the messages and then:

— Check, parse and apply the requested changes in actuators.
— Check, parse and read data from sensors.
— Check, parse and configure sensors.

— Check, parse and configure actuators.

4.4. Programming Languages

As the decoupling is meant to be language independent, the solution has to study
some considerations regarding the language. As the VRL is usually designed to be
embedded in a web-page, the programming language plays a key role, mainly at the
client side. These considerations shows restrictions that have been imposed during
the last years and how they have been countered.

4.4.1. Java

In early 2015, web browsers started dropping Java support due to many vul-
nerabilities and security problems [106, 107, 108, 109, 110]. As a consequence,
browser embedded Java-based VRLs were sentenced to death. Figure 4.4 contains
a histogram including all Java vulnerabilities reported in NVD (National Vulnera-
bility Database 2) during time divided by its severity and most known restrictions
involving applets and NPAPI plugins®.

The graph in Figure 4.4 shows that 2013 was the year with more high and
medium impact vulnerabilities detected. As consequence, solutions and patches
to minimize Java issues appeared in time, adding restriction to run applets and de-
creasing their usability:

e April 2013: Applets should be signed by a trusted certificate. More or less at
the same time web browsers announce the end of support for NPAPI-based
plugins.

Znvd.nist.gov/vuln/data-feeds
SNPAPI-based plugins allows the browser to handle content types that are not natively handled, some
of these are: Java Runtime Environment, Flash Player or Adobe Shockwave Player



MNumber of Vulnerabilities Reported

250

200

150

100

Medium Severity
High Severity Safari drops

e Low Severi :
&l Firefox drops NPAPI support

NPAPI support

Opera drops ___
NPAPI support

Chrome drops
NPAPI support

Applets are blocked by default —

Applets should be signed
with trusted certificate

0 T T T ¥ T T T T
1996 1997 1998 199% 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year

Figure. 4.4 Java vulnerabilities reported during time divided by its severity plotted from

the data of the NVD (National Vulnerability Database). The graph includes the
most known restrictions involving applets and NPAPI plugins

February 2014: Applets are blocked by default, system prompts a message to
run or not the Java app. Java options can be configured to allow running not
signed applets by reducing the security level, but informing the user about
security risks. Additionally, Java update informs that this option for non-
signed applets will be deleted in next updates.

September 2015: Google Chrome browser drops NPAPI support in its last
update.

May 2016: Opera browser drops NPAPI support in its last update.
March 2017: Mozilla Firefox browser drops NPAPI support in its last update.

September 2018: Safari browser drops NPAPI support in its last update.

On the one side, users have devised strategies to solve these limitations in the use

of Java applications embedded in web browser. The simplest solutions lie on using
extensions or browsers that still allows the NPAPI-based plugins. Java started also
other strategy, Java Web Start or JNLP, to run Java applications using a web browser
by running it inside the user machine. JNLP allows to “launch applications simply
by clicking on a Web page link. If the application is not present on local computer,
Java Web Start automatically downloads all necessary files. It then caches the files



on the computer so the application is always ready to be relaunched anytime you
want™*. On the other side, Javascript labs shows up as a fresh alternative, based on
standard and modern technologies that opens up new possibilities.

4.4.2. Javascript

Javascript shows like the best choice to obtain flexible and usable VRLs inside
web environment. On this subject, web accessible labs that use HTML+Javascript
commonly are compatible with smart devices. However, changing the programming
language to develop VRLs is not an easy task. There are some advantages and
drawbacks when using Javascript:

e Access to local data: Accessing hardware or the users’ file system using only
Javascript. The restrictions imposed to Javascript, related to accessing local
resources, gave the user a security layer. But, the developers may need to
implement this functionality in the GUI if the lab need to access it.

e Use of third-party libraries: Due to the nature of Javascript or because
Javascript is younger than other languages, some libraries are not yet devel-
oped or will never be. Some problems have to be solved using new libraries,
slowing down for a short time the development of new laboratories.

e Multi-device experience: Chapter 3 shows that smart devices must be able
to run VRLs. Both problems regarding the use of mobile devices are solved
when combining the solution proposal and Javascript:

— The labs are accessible from mobile devices, no matter the operating
system the user just needs a browser that supports JSON and Websocket.

— The computational cost is reduced as the solution leaves the heavier
computations to the model, which is done in the server side. As the
model is the main producer of data, the client just receives the data that
needs to be plotted, drawn or shown. This functionality works as an
edge computing solution, as a terminal device is on charge of doing the
calculations for the user.

In summary, this chapter has presented a solution that comprises an architecture,
protocol, format, task division and programming language for the development of
VRLs. The proposed architecture moves forward to the standardization and solves
actual problems that appears in the design and development steps. The theoretical

4Obtained from : https://docs.oracle.com/javase/8/docs/technotes/guides/javaws/



solution has been implemented to be used inside the EjsS tool. This implementation
is described in next chapter materializing some key elements shown along the last
chapters.






5. EjsS Implementation

Last chapters presented the proposed solution as well as a glimpse about the
implementation in the EJS tool. Replacing Java-based VRLs with HTML and
Javascript enabled applications is a good approach to, at least, solve the Java prob-
lem. Still, Java is considered excellent for not web-embedded tasks. The TIOBE
index' shows the percentage of hits that search engines returns when searching
about programming languages. Consulting TIOBE Java index> shows that is an
extremely active programming language, as nowadays it is in the first place of the
index. Actually, all the information that can be obtained from the Internet suggests
that Java is being used massively and that it is evolving to counteract the restrictions
as web-embedded applications.

A trade-off implementation of the solution is to combine both languages, Java
and Javascript, using the best of each one. Javascript can be used on the client,
where it is naturally supported inside web browsers. Java can be used on the server
side, taking advantage of their computational power and the use of well known
libraries. This approach also allows the reutilization of previously developed Java
labs by deploying the model in a separated device, the server. This chapter addresses
the architecture and detailed characteristics of this implementation.

5.1. [Easy Java & Javascript

The Java & Javascript (J&Js) solution is a logical evolution of the tool. Java,
as inherited programming language is still an excellent choice to implement the
functionality on the server side, (i.e. hardware access). Using Java at the server
also reduces the computational load by taking care of the simulation or image pro-
cessing. On the client-side, a web application (based on HTML and JavaScript) is
a better option to provide visual feedback and interaction to the user. In this regard,

Thttps://www.tiobe.com/tiobe-index
Zhttps://www.tiobe.com/tiobe-index/java/



to obtain a complete decoupling, the architecture also allows both parts, the Java
model and the HTML-Js view, to exist as individual entities.

Unfortunately, there are some problems associated with major changes in soft-
ware on continuous development, as EjsS is. Some drawbacks associated with the
migration from one language to another have been presented before. In the EjsS
implementation some of these drawbacks are also present:

e Programming language. The context of use of EjsS greatly reduces the
common implications of changing the programming language to two consid-
erations:

— Re-Build pre-existent labs. The migration from Java to Javascript im-
plies the need to rebuild the labs or even redesign them from scratch,
considering the restrictions imposed by Javascript. There are two main
concerns that must be addressed:

* Access to local data: Developers have different approaches to cope
with this restriction, and there are github repositories, public Do It
Yourself(DIY) web pages that contains examples of different ways
to access the file-system or hardware using Javascript, but this is not
always in the best practices when developing JS and HTML labo-
ratories. Javascript is used in mostly all web-sites to allow the in-
teractivity in web-pages and all web-browsers contains a Javascript
engine. In this sense, JavaScript code inside a web-page should be
restricted to web-related actions [111]. The Javascript sandboxing
and same-origin policy > are two constraints which are included
in browsers to minimize non-web actions like accessing the hard-
drive. Therefore, problems arise in research areas like IoT or nav-
igation apps, where connecting with hardware is not just a good
practice but is fundamental to be functional. However, the GUI
of VRLs do not usually require access to the user file-system or
hardware, but some data exchange. The exchange of data is a key
element at experimental courses. On this matter, architectures for
online laboratories, presented in Chapter 1 provide solutions to han-
dle data exchange, file upload, storage and download using different
approaches.

* Use of third-party libraries: Java has been used as programming
language to develop applications since around 1995%, therefore,

3https://tools.ietf.org/html/rfc6454
“http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html



many libraries have virtually grown with the programming lan-
guage, and also many of them have died during Java lifetime. Many
Javascript libraries have not been and will not be developed. This
lack of libraries implies, that some labs must be re-built due to the
nature of Javascript or because Javascript is younger than Java. In
any case, some problems have to be solved using new libraries,
slowing down for a short time the development of new laboratories.

e Multi-device access: The change in the programming language should con-
sider the compatibility with mobile devices. The solution presented is com-
patible with new devices and also with those which have less computational
resources.

As said in previous sections, EjsS manages two parts of a VRL, the view and
the model. Both parts, are already equipped with the capabilities to exchange data
using JSON. EjsS is able to manage these interactions by identifying the method
which is going to be used. Each method will trigger a different process in the model
or the view. The method name is included in the format of the message, and the
implemented solution supports two structures:

WebSocket WebSocketServer

C: Collect Vars Requested ‘A
D Metadata

E: Method call 1 param .
F- Method with map Opj ~ Metadata: D
-> pro Input I- Initialize processinputData <- .onmessage
M: Method call Iddle: ©
P: Set Property
R: Reset

U: Update

User Interaction: |

Figure. 5.1 All headers of the EjsS oriented structure in a single message

e EjsS oriented structure: Is a mixed format, composed by a header and a
JSON message. Figure 5.1 shows the headers supported by both the view and
the model. EjsS oriented structure is meant to be minimal, exchanging just
the minimum information needed, relying on the coding of the GUI and the
model to perform the tasks and to retrieve the additional information from
itself. One goal of the JSON format is to provide an easy way to understand
the information inside a message. As these headers difficult the debugging
process for the final user of the editor, in practice, they are not being used at



present. There are a limited set of situations when the format is used. First, to
support model made by prior versions of the tool. Second, when the system
is running simple examples in the local machine.

e Smart Device Specification (SDS): SDS has been presented before, and it is
the best option, as it provides wider and more standardized communications.
The implementation of J&JS enabled version uses the SDS and it contains
additional features to write, read and fulfill SDS like data structures. Another
key benefit of this choice, is that the architecture is similar to other EjsS ele-
ments, such as RIP element®. Some model elements of EjsS have been using
the JSON format for a long time using structures close to SDS format ©.

Therefore, the J&Js version should be able to create views to communicate with
systems written in other programming languages just considering a few rules re-
garding the communication. Consequently, some problems related with changing
the programming language (see Chapter 3) will not be an issue anymore in future
similar situations.

5.2. View side

The main aspects of building the GUI are already solved when using EjsS. Since
the tool is in charge of initializing, synchronizing, drawing and plotting the elements
inside the view. Then, decoupling the model-view pair must maintain the informa-
tion flow between both sides, even when each one is in a different machine.

5.2.1. HTML+Javascript

A closer look to web pages designs shows that making an interactive, user-
friendly and flexible GUI is not an easy task. The GUI for a VRL must contain
interactive elements, some computation capabilities, dynamic data and it is always
nice to have a good looking interface. The implemented solution facilitates the work
of developers, by giving tools to combine HTML, Javascript and Cascading Style
Sheets (CSS), Figure 5.2.

e HTML is in charge of the structural building of the view. It uses a hierarchical
structure, defining parent and child elements inside a tree.

Shttps://github.com/UNEDLabs/rip-spec
Ohttps://github.com/UNEDLabs/rip-python-server
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Figure. 5.2 A GUI of a virtual laboratory

e Javascript carries out the behavioral part of the GUI. From special actions,
when interacting with the view to computations, Javascript is used to code
any additional capability.

e CSS is a stylesheet language which guides browsers to change HTML ele-
ments’ properties (the color, font, layout, etc.)

Developers create their GUIs and can control some interactive functionalities
or style parameters just editing fields. A user interface created by using the J&Js
enabled version of EjsS will generate all the code needed to build the web-page.
The webpage will contain generated code in Javascript, HTML elements and CSS
even if the developer has a minimal knowledge about all these technologies.

Figure 5.3 shows a GUI made in EjsS using: HTML, Javascript and CSS. The
Javascript version of EjsS helps in the development of GUI made with this three
languages. The same view can be also created in the Java&Javascript editor, but the
user can not differentiate between both. In the first one, model and view both use
the same programming language and the communication is done in a straight way,
as both are running in the same machine and browser. In the second one, model
and view are defined in different programming languages and the communication
processes are made in a transparent way for the final users as well as for the devel-
opers. The solution implementation adds the needed Javascript code to control the
communication, update and interaction.

The user side is divided in parts and components. Each part supports main
tasks: visual interfacing, communication and message processing. One main task
is divided in a set of subtasks, some of these relies on components. This section
describes how this components work together inside the GUI. Figure 5.4 shows the
client structure:
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Figure. 5.3 A GUI of a virtual laboratory
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Figure. 5.4 Client side internal structure

e A general container, the GUI, which contains also the graphical representa-
tions and interactive elements.

e The Socket View component is defined inside the global container, this socket
view in in charge of the communications: definition, configuration and listen-
ers related to the Websocket protocol.

e The wrapper is defined to surround the format element, is an interface be-
tween both, and prepares the data to be used by the EjsS view.

New capabilities have been added in the initialization, auto-generation and the
update processes. Figure 5.5 show these features in a flowchart, further lines give a
description of each process and detailed information.
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Figure. 5.5 General flow chart of the initialization of the VRL
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Figure. 5.6 Initialization flow chart of the GUI

5.2.2. Initialization process

The initialization process is called as soon as the web-page is loaded. The Figure
5.6 shows how the initialization is made inside the GUL

1. On the load of the webpage the view creates a basic, but not yet functional
view structure. To be functional, the GUI needs to obtain the metadata which
defines the lab and the first update message.

2. The Socketview component tries to connect with the server side by sending



requests to open a Websocket with the server side.

The flow chart shows that the first step of the initialization ends with the vi-
sual representation waiting for the first update and the client waiting for a metadata
answer from the server. The time sequence diagram of Figure 5.7 shows how the
threads are created and when the processes are called. If the message contains
metadata, the work flow goes directly to the next step, which is in charge of auto-
generating the needed view structure. To do that, the view contains a method which
is called Generator.

‘ GUI 3 I ‘SocketView SocketView || Remote Syst._1

WS _server() 2[ |

WS _client()_4

e W _Upg. Request_5
Ok

ke e e T L _______

Comm. through WS

Disconnect_12
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Stop

Lk--2 Reset_13

Figure. 5.7 A sequence diagram of the initialization of the client

When the first message arrives the client, the view is ready to process it by using
the incoming message task which is described in Figure 5.8. The flow chart shows
two branches, the left one will carry out the non-metadata messages, while the right
will process the metadata messages.

At the initialization, the right branch is the first to be used, as the first expected
messages are metadata. When the Websocket is established, the connection ac-
knowledge from the server usually contains no payload, then, the Socketview will
ask for the metadata of the laboratory. This metadata contains information about
the lab and defines the API to interact with it. It also contains information about the
type of the data to be send/received and also all the sensors and actuators accessi-
ble remotely. As said in Chapter 3, by default, the format used follows the Smart
Device Specification.
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5.2.3. Auto-generation process

Generator method will parse, classify and redirect the messages using a work-
flow which is described in Figure 5.9. The first type of message expected is the API
definition, using this message the GUI will create, in an autonomous way, methods
to support the message building and verification. Building methods include tem-
plates for any data-model needed. The next subsections provide further details on
that matter.

After the handshake, the client is ready to talk with the remote lab’s model.
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Figure. 5.9 A flow chart describes the generator process

If the metadata is known, the format on the conversation is also known. Thus,
the client side knows how to send and process the messages, but the GUI is still
unaware of the sensors, actuators or variables that can be exchanged. Therefore, the
next step is to ask for the list of sensor and actuators. SDS defines three types of
elements: sensors (readable), actuators (writable) and variables (both). EjsS defines
four accessibility modifiers: input, output, public and protected. The mapping is
shown in Figure 5.10.

Type EjsS SDS
Readable Inputs Sensor
Writable Outputs Actuator

Mixed Public Variables
(Locat 01 ars)

Figure. 5.10 SDS defines two types of elements: sensors (readable) and actuators
(writable). EjsS defines four accessibility modifiers: input, output, public and
protected



Figure. 5.11 A sequence diagram of the initialization of the client (inside the WS connected
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When all the exchangeable items are defined the system will be fully prepared
to perform theirs tasks as user interface. Figure 5.11 shows a sequence diagram
which describes the metadata request and code generation. At the time of writing
this document these messages are just logged inside the tool, but can be used in

future works inside multiuser sessions.
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"apis": [
{
"protocol": "websocket",
"produces": [
"application/json"
s
"operations": [
"method": "Send",
"nickname": "getSensorData",

"summary" :
"type":
"parameters":

"name" :
"required":

"type":
"paramType":

"allowMultiple":

oo I 1]

L

"message",
"description":

true,

"SensorDataRequest",

"message",
false

"Returns captured values",

"Get data from the sensor with the given sensor identifier",
"SensorDataResponse",

Figure. 5.12 First API function defined using SDS in a JSON structure




SDS and format

The tool allows using different formats to process the data. In most cases, the
default data format (the Smart Device Specification) fulfils the laboratory needs. In
this respect, EjsS has coded functions to create the main methods to interact with
the SDS component, and the wrapper to interface with our tool.

Figure 5.9 shows respective calls to methods: Generate Methods and Generate
Model Filling. Both methods use the SDS to easily create in/out capabilities inside
the main SDS structure, leaving to the wrapper a small set of methods to send/re-
ceive/check data.

Generate Methods: this method uses the definition of APIs inside the first meta-
data message. Each API is defined by a JSON structure like the one shown on Fig-
ure 5.12. The JSON metadata contains the nickname to call the method, the fype
of data produced and the parameters needed to use the method. The parameters are
defined following a common shape: name, whether is required in the structure or
not and the type of data. Using this information, the method generator, makes a
Jjust-required version of the method which is shown in Figure 5.12. As API defini-
tion contains also optional parameters, the method generator will also create a full
method, containing required and optional parameters as inputs. The flowchart of
Figure 5.15 describes how the process is carried out.

When all the APIs are processed, the methods are accessible from the SDS
structure and also from the wrapper, to perform all the operations needed to send
a coherent message to the model. The method generated by the tool is created
following a specific definition of the API operation, but this is not fixed. Methods
and models are created dynamically after the metadata arrives. Then, if the API
definition inside the metadata changes (between two accesses to the web-page) the
auto-generated methods will change also. If the API defined in the metadata is
changed, the SDS structure is created following the new specification, and usually
the developer has no need to modify the wrapper or the GUI.

Generate Model Filling uses the definition of models and types of data inside
the first metadata message. Each model is defined by a JSON structure like the one
shown on Figure 5.16. A model contains the information and structure to define
requests, sensors, actuator, clients or any other element desired by the developers.
The model contains a unique id to identify it, a set of optional properties that can be
added to the structure and required properties, needed to make a coherent model. On
the one side, required properties must be included to send a structured and compre-
hensible message to the model. For example, if you need the value of a sensor, you
need to specify which sensor, if there is more than one. On the other side, optional
properties include additional information or requests which are needed eventually.



function getSensorData(method,sensorld,configuration,accessRole) {

if ( method == undefined) {
console.log(’Required parameter, method : must be an input’);
errorLauncher (’Required parameter’);
5 return null;
¥
if ( sensorId == undefined) {
console.log(’Required parameter, sensorId : must be an input’);
errorLauncher (’Required parameter’);
10 return null;

}
this.websocket.send (\acs{JSON}.stringify ({
’method’ : method,
’sensorId’ : sensorld,
15 ’configuration’ : configuration,
>accessRole’ : accessRolel}));}

Figure. 5.13 First autogenerated method

For example, obtain the value of a sensor and also, configure it to be read every
50 milliseconds. Using this information, the autogenerator takes into account all
the required parameters and makes a method to fulfill models. Figure 5.17 shows a
flowchart representing the full process.

"method": "getSensorData",
"sensorId": "Position"

}

Figure. 5.14 The simplest message to be sent using the getSensorData API definition of
Figurefig:autogenMethod

To explain this process, we compare Figure 5.13, which contains the API de-
fined in JSON and Figure 5.16, which contains the data-model and Figure 5.13,
with the generated method. The API definition contain severals fields which are
needed to the example: method, nickname, parameters and return type. Figure 5.14
will help to understand the minimum information needed to be sent.

e Method defines how to use the API operation: In the example the value is
send, which mean that the user must send a message tto the server.

e Nickname is the name to be used to call the method, i.e the name of the
method at the model side (see Figure 5.14.). The nickname field, Figure
5.12, contains getSensorData which corresponds to the name of the Javascript
method.

e Parameters: The parameter JSON object contains six fields, in this exam-
ple, we will consider just two: the required and the type fields. The type is
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Figure. 5.15 A flow chart of the method generator

SensorDataRequest, which is a data-model, Figure 5.16. It shows that the
structure needs a method and a sensorld values to be built. Which are the first
two input parameters in the autogenerated method (Figure 5.13). These two
parameters are required, therefore, are also inside conditional structures to
verify that they are defined. Last two parameters are optional: configuration
and access-role, both will need their own models to be built (Appendix E),
but are not included in the example.

e Return fype has the value: SensorDataResponse. This name also references
to a data-model, which is shown in the Appendix E.

Both capabilities, the autogeneration of methods and models, assist developers
to reduce the coding effort, following the foundations of EjsS and enhancing the
flexibility of the tool with respect to a fixed definition of the APIs and Models.
Therefore, when the API is changed in the server side, the client side can adapt
itself. Eventually, a change may imply a major modification in the data structure.
In those cases, the structure surrounding the SDS component (the wrapper) must be
changed too.
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"SensorDataRequest": {
"id": "SensorDataRequest",
"required": ["method", "sensorId"],
"properties": {
"method": {

"type": "string",

"description": "The method should be equal to the nickname of one of the provided services."

"sensorId": {

}

"type": "string"

B

"configuration": {

}

"type": "array",
"items": {
"$ref": "ConfigurationItem"

}

"accessRole": {
"type": "string",

"description":

accessRole is not defined, the controller role

P,

is assumed."

"This field contains one of the roles defined in the concurrency roles list.

If

Figure. 5.16 First autogenerated models
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SDS Wrapper

”A wrapper is a software design pattern that allows the interface of an existing
class to be used as another interface” [112]. The SDS wrapper is an interfacing
software to allow the communication between both structures, SDS and GUI. The
wrapper adapts the implementation of the SDS structure to provide the client with
an interface that complies with the API of the lab. Those methods are not fixed and
the wrapper is defined as a configurable element inside the J&JS enabled version.
Therefore, the interface is configurable and the developer can edit the main code or
even re-write it from scratch, but always maintaining the interface skeleton: meth-
ods from/to the SDS and from/to GUI. The wrapper solution provides developers
with more flexibility to cope with different scenarios.

As seen in Figure 5.4, the wrapper is a structure which surrounds the SDS ele-
ment, and will adapt, route and translate the inbound/outbound messages. On the
one hand, when the lab’s developer creates the model and the view inside the EjsS
editor, the default wrapper is commonly enough to maintain an adequate commu-
nication flow. On the other hand, connecting to non-EjsS models or labs may need
some minimum changes to adapt the interfacing. This shall be accomplished by one
of the following three options:

e Modifying the main code of the wrapper, which is accessible to the user,
adapting the methods to cover the needs of the actual model or the view.

e Filling a template that is also supplied by the editor. It contains the skele-
ton of the wrapper with the methods required to communicate with the view
and the SDS element. Figure 5.18 shows the template from the editor, it con-
tains empty and coded methods, which correspond to optional and interfacing
methods.

e Writing the wrapper from scratch, if none of the previous options fulfills the
needs of the developer. Though, the developer has absolute flexibility with
this approach, it is usually the less desirable option, because it implies a
reimplementation of the functionality. Writing the wrapper is also the most
uncommon option, because the APIs are defined in a similar way inside the
metadata and the EjsS view needs are fixed.

As Figure 5.4 shows, all the components of the GUI share a unique Websocket
element. In this sense, visual elements, SDS and wrapper can use the WebSocket to
send messages. Sharing the Websocket connection is not needed, as long as the SDS
component contains methods to handle the functionalities available. Nevertheless,
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Wrapper.prototype = {
methods: {

connect: ’connect’, // Open a new connection
disconnect: ’disconnect’, // Close the connection
get: ‘get’, // Get some variables from the server
set: ’set’, // Set some variables in the server
callAction: ’callAction’, // Calls a method of the model
extract: "extract", // Get/check useful info from a message
eval: ‘eval’, // Send code to evaluate
open: ’open’, // Send an order to open files or similar
step: ’step’, // If the evolution in the server is done by steps, make just one
},
post: function(method, params) {//calling some method with no prebuild method, just sends
message
if (method == undefined) this.websocket.send(\acs{JSON}.stringify(params));
else this.smartdevice [method] (params);
},
sync: function(callback) {
if (callback != undefined) callback (response);
},
connect: function(callback) {
this.smartdevice = new _smartDevice(fullData);
this.smartdevice.loadApis();
this.smartdevice.loadModels ();
this.smartdevice.generateMethodCall () ;
3
get: function(vars, eachStep, callback) {
if (eachStep === undefined || eachStep == false) {
this.smartdevice.getSensorData("getSensorData",vars);
Yelsed{
this.smartdevice.getSensorData("getSensorData",vars,[this.smartdevice.fillConfigurationItem(
"updateFrequency" ,2.0)1);
}
},

set: function(vars, values, auth, callback) {

if (vars.length == 1) this.smartdevice.sendActuatorData(auth, "sendActuatorData",

[vars], [valuesl);
else this.smartdevice.sendActuatorData (auth, "sendActuatorData",

},
extract: function(strMsg, callback){
var jsonMsg = \acs{JSON}.parse(strMsg);
var vars = {}, extracted = {};
if (jsonMsg.hasOwnProperty ("method")){
var method jsonMsg.method;
if (method == "getSensorData"){
vars = ["sensorId", "responseData"];
//(C...) all the types needed
}else return undefined;

extracted = this.smartdevice.extract(vars, jsonMsg);
return this.toEjssReadable (method,extracted);
},
toEjssReadable: function(method,dataExtracted){
var nameValue = {};
if (method == "getSensorData"){
var valueNames = dataExtracted.responseData.valueNames;
var dataValues = dataExtracted.responseData.data;
for(var i = 0; i<valueNames.length;i++) nameValue [valueNames [i]]
return nameValue;
}else if (method == "sendActuatorData"){
var valueNames = dataExtracted.payload.valueNames;
var dataValues = dataExtracted.payload.data;
for(var i = 0; i<valueNames.length;i++) nameValue [valueNames [i]]
return nameValue;
Yelsed{
//(C...) all the types needed
Yelsed{

"modelVars",

dataValues [i];

dataValues[i];

console.log("The method : " + method + " is not handled in this wrapper. \n" +

"Will be ignored.");
return undefined;

return dataExtracted;

}}

Figure. 5.18 Wrapper template given to the developers from the editor

"modelVars",

vars,



to enhance the default wrapper by providing a higher level of flexibility, the Web-
socket is accessible by using the post method. Calling the post method will send
parameters inside a JSON structure without using the API specifications, providing
a method to debug errors and to do some testing in development time. The tool be-
comes more usable because it is adapted to developers with different programming
knowledge. For example, lets define an API as simple as possible for a system with
just one sensor and one actuator:

e To change an actuator just send the raw value embedded in JSON structure.
The system contains only one actuator, then, its name or ID is useless, and
the structure will be like

{"method” : ”sendActuatorData”,”value” : 0.0}

e To obtain a value, send a read message. Using one sensor implies that a
reading can be done just calling the method like:

{"method” : " getSensorData”}

In this situation, the API definition is simple but enough to interface with the
hardware, if there is no need to add other capabilities, developers may use one of
these two solutions:

e After the initialization, generated methods and models can achieve both ac-
tions using the methods set and get, from the wrapper. Both processes will
imply that the SDS fills model templates, therefore, are simpler for the devel-
oper.

e The developer can pass over the SDS component and send the messages from
the wrapper, because SDS component has no need to check the messages or
extract the information from the message, because its simplicity.

Choosing the solution is up to the developer needs, however, ignoring the SDS
element is a solution suited for testing simple JSON structures or to be used in the
course of modifications of APIs or the metadata.

Wrapper component has been presented like the main configurable part of the
view from the developer point of view in the client side. The presented architecture
needs another piece to define a complete lab.



5.2.4. Update process

The end of the initialization process ensures that the GUI is ready to be used.
Models, methods, variables, sensors and actuators are generated to represent and
exchange the data. Also, the user interface is prepared to process user interactions
or to be updated when new data arrives.

A view defined using the EjsS editor will contain many individual elements,
each one can be added, edited or deleted from a tree structure to configure the
GUI. The configuration of these elements is commonly made using links between
properties of the DOM element from the HTML view to variables, constant or even
methods, defined locally. In this regard, those links are used also in J&JS enabled
version, and works in a similar way, following the next update process:

o If the user interacts with the GUI: The variable will be updated locally, chang-
ing the immediate view aspects related to it, then the new value of the variable
is sent to the model. The consequences of the change will be processed in the
model, and finally, an update will be sent to all the available views connected.

e The model will send updates to the available views periodically, depending
on the evolution time rate defined periodically (depending on the evolution
time rate), event triggered or on request. Also, events can be defined, and if
any is triggered a new update will be sent to the connected clients.

The messages carrying update information are sent from the model and are pro-
cessed using the same flowchart presented in Figure 5.8. This flowchart shows how
the left branch obtain the type of the message and then triggers and update of the
view or call a method to send back an answer.

As said before, the complexity level of the laboratory’s view is related to the
goals to be achieved. The number of capabilities, and the complexity of the view is
usually proportional to the number of sensors and actuator that are used. From the
client to the model side, the view send a message when an interaction is detected.
Each variable linked to a sensor or an actuator is connected to a listener, which
triggers an action when detects the change. Updates and message events continously
arrive to the client from the model. Building remote labs implies a trade-off between
the volume of messages and the quality of service are defined in the lab application,
and this will be on hands of the developers. Next section will describe this piece:
the server side details and the model features.



5.3. Model side

The model is in charge of processing the data and interacting with the real sys-
tem at the server side. On the one hand, the model is running its code every step
of time. If one or more views are connected, the model will send updates periodi-
cally. On the other hand, the model needs to know how the user is interacting with
the view at any moment and in some cases to send a specific change which only
involves modifying one visual element (a color, adding point to a graph, pop-ups,
etc). These features are in the hands of the model, and how it does the process-
ing depends on the type of model which is working at the remote lab. EjsS supports
two types of models, as both are capable to perform a coherent communication with
views created using the tool.

5.3.1. EjsS Model

Figure. 5.19 Server side internal structure

Model-view pairs created with Java & Javascript enabled version have built-in
communication capabilities to transmit data between them. It is also possible to
establish a communication with a preexistent EjsS model and just create the view.

EjsS models are divided into different structures, as the views. These structures
contains components, each one in charge of one or more tasks. All the components
are shown in Figure 5.19, representing its most important components and the re-
lationship between them and with external entities. Figure 5.19 shows a general
container, each EjsS model contains:

e A SocketView component that is in charge of the communications. It will
establish communication with its counterpart in the view side. Therefore,
is in charge of the communications: definition, configuration and listeners
related to the WebSocket protocol.



e The structure also contains the main program or evolution of the system
as a separated component. The evolution carry out with the processes pro-
grammed by the developer and a set of minimal model tasks. On this subject,
the evolution is at least in charge of:

— Control the internal time evolution. It allows to update the view period-
ically and to solve evolution equations.

— Running the code of the model elements, like those to interact with hard-
ware.

e Model elements, as said in previous chapters, may connect with hardware,
external software or other devices, that the remote lab could need. Model el-
ements also add functionalities, like the wrapper/SDS editing and translation

e The last component is responsible of actions and custom methods. Those
user-actions can be triggered from the view and are defined, by the developer,
inside the custom tab of the EjsS editor (Figure 5.29). Additionally, model and
view internal methods are callable remotely. For example, play and pause,
which are intrinsic methods to the model, may be triggered from the view
when the user clicks in a button.

First launch of the laboratory begins at the server side, where the model runs.
At the initialization, the model executes a set of tasks that has to be completed
before being able to exchange data with the view. The model must make sure that
all components have a valid state, run user-defined initialization code and configure
the communications. Of course, not all the tasks are needed while the user is not
connected. Therefore, the model will initialize the variables and the Websocket
server. After initializing, the server listens for incoming connections. If a model is
run from the terminal, the Websocket server will prompt a message if there are no
clients connected for a long time.

When the user opens the webpage at the client side, the Websocket client is
initialized. At this point, the client sends a handshake, (an HTTP upgrade of com-
munications to the model). If the model is listening, the handshake from the server
will accept the upgrade, establishing a communication. When the socket is created
the model will run the initialization code, and then listen for the first message. Fig-
ure 5.20 shows how the model process incoming messages. Regarding this, the first
message must be a petition for all the metadata: the APIs definition, the sensor set
and the actuators set. All this information is processed during the package of the
application and would be sent without delay to the client.



At this point, the model has the media to send and receive messages to and from
the client. Although, the model has no clue about the data needed by the client.
Client can make a request including the variables, sensors and actuators needed to
be sent in the updates from model. If the model receives no request from the client,
it will send all the variables (regarding or not to sensors and actuators) defined as
public, input or output (see Figure 5.10).

Figure 5.21 contains the flowchart of all the processes needed to process this
message. Periodic updates are not necessarily needed for every item. Only those
elements containing an updaterate field are stored in the periodic update list and are
sent with the synchronous updates. The elements without the updaterate field are
sent just once, in the first update message.
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Figure. 5.20 A flowchart representing how the model processes an incoming message
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Figure. 5.21 A flow chart representing the getSensorData routines inside the model

The next steps depend on the initialization code, commonly one of the follow-
ing: an update from the model or a interaction from the user. If the evolution is
already started, the model sends the first update message, with all the values of the
sensors and actuators used in the GUI. If the evolution is waiting for an action, the
next message incoming to the model can be an interaction from the GUI (for exam-
ple, a click on a button). Figure 5.22 contains a sequence diagram to illustrate how
the first update is obtained as result of a request message sent from the view.

During the normal life cycle of the lab there will be many messages from/to the
model. Synchronous messages are sent at fixed periods of time, related to the step-
time of the evolution. Asynchronous messages are not sent in regular intervals and
can be triggered at any time. The causes can be many, from actions (which are calls
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Figure. 5.22 A sequence diagram of the SAVs’ request and first update from model side
(inside the WS connected box)

. . Cause Evolution Step Action Interaction | Model Event
Origin
Model or Java view Sync Sync/Async ASync Async
HTML+Js View None Async Async None

Table 5.1 Identify synchronous and asynchronous messages using their origin and cause

to model, custom or view methods) to periodic messages. On this subject, Table 5.1
presents a mapping between triggering causes and the synchrony of messages.

Defined in Model (Core) View (Core)  Model (User) View (User)

Target Prefix _view _customMethod _htmIMethod

Prog. lenguage J (Model) JS (View) J (Model) J (Model)

Table 5.2 Classification of actions by its target, programming language and their location
(where are defined)

The structure of all the messages is defined inside the APIs, and, if there is



no addition to the main metadata file, the messages will be processed as shown in
Figure 5.20. Incoming messages from the client are restricted to a finite set and are
divided into three groups: Reading, writing and action call.
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Figure. 5.23 A flow chart representing the send ActuatorData routines inside the model

On the one hand, Reading is commonly a non-disruptive method, which only
implies the return of data from the model to the GUI. The model does not need to
be updated after the process (except for registering of variables in the synchronour
update list). On the other hand, reading always implies an answer, then, after a
variable or sensor has been located and the value has been obtained, the only task
that is needed is to package it into a JSON message understandable to he GUI.
Figure 5.21 contains the full process.



Writing means a change in actuators or in input variables, therefore, implies a
different processing in the model with regard to the reading. Commonly, writings
provoke an update in the model after the change, however an answer is not always
needed. Figure 5.23 contains the full process, including some controls to verify that
the lab is working like a multiuser session. On this point, if the change of the value
is not possible, the system will return a message with the error or status. Actuators
and sensors are physical elements and commonly are linked to model variables.
Although, the model can define other variables to support additional functionalities.
Figures 5.21 and 5.23 shows that the process make no-difference between variables
or real sensor/actuators in the first coarse processing.
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Figure. 5.24 A flow chart of the custom method routine

Writing and reading values are intrinsic to input and output information to the
system. Variables are entities which are by default read and write. Although, other
processes and messages can trigger a change in variables, sensors and actuators.
Actions are defined as methods to be called, therefore, any accessible element can
be changed as result of the call.

Actions are defined in EjsS as calls to model, custom or view methods. Model
and view methods are included by default inside the core of EjsS and custom meth-
ods are added by the developer. Messages to handle the actions are needed to main-
tain the normal work of EjsS Java & Javascript enabled version. Model and view



decoupling produces the splitting of some methods, related to being written in Java
or Javascript. Actions are further identified by its target, which is specified by a
prefix in the name of the sensor. Table 5.2 classifies the action by its target and their
location (where are defined).

Prefixes allow the model to distinguish between actions. Excepting the core
functionalities, the process is: message parsing, identification and calling method
routines. Figure 5.24 shows the custom methods routine as a flow-chart. As methods
are user-defined, the model needs to verify that the call request match with it. Non-
custom methods are called without additional processes, because they can not be
changed by the developer.

5.3.2. Non-EjsS Models

EjsS models are the most common situation when using the proposed tool, but
a benefit of using the SDS is that it is possible to connect to Non-EjsS models too.
Connecting to Non-EjsS models is an advantage when talking about sharing VRLs
in education and research areas. In relation to this, commonly a GUI developer,
who makes a interface for a remote system, needs to know many details about the
system and how it works. The SDS provides that information in a standard and
human-readable structure, grouping together: API’s, models, descriptions for lab,
sensors, actuator and so on.

In addition to the information about the lab, the developer will need to include
some features in the model to meet the needs of the view. Basic needs of the view
can be covered in the model by adding the characteristics listed below:

e Metadata Services: The view needs the metadata to provide tools to the user
and to build many of the internal structures of the GUI; a precise description
of the lab is needed. If the metadata is available and can be obtained from the
server due to a metadata service, the editor of EjsS will handle the situation
and will make easier the build of the view. Minimal requirements includes
three metadata services.

— To answer any getMetadata call with the API and data-models. The
information is stored in a JSON file and sent on first connection or as a
response to the call.

— A service to answer to getSensorMetadata call with the sensors set. It
is also a good practice to include inside the JSON structure informa-
tion regarding the nature of the elements, the type of data obtained and
appropriate names.



— A service to answer to getActuatorMetadata calls with the actuator set,
including all the additional information about them.

e Data Services: The view and model need to exchange the data from the lab
by sending/receiving messages. Thus, the model must be able to receive and
identify the different types of message. Minimal requirements includes four
data services, in charge of receive the messages and then:

— Check, parse and apply the changes sent by sendActuatorData.

— Check, parse and read data from sensors when a getSensorData call
arrives.

— Check, parse and configure sensors.

— Check, parse and configure actuators.

5.4. Timeline in a VRL session
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Figure. 5.25 A sequence diagram of a generalized synchronous exchange of data when
initializations and first updates are done (inside the WS connected box)



Last sections have established the basis to understand the foundations of parts
of the Java & Javascript enabled version and how they work together inside the
final application of a laboratory. Each part has been treated alone, just making
references to the main needs to fit in the global architecture. This section presents
an EjsS view and model interacting together from the first load to the end of the lab
session, focusing in the messages exchange and timeline.
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Figure. 5.26 A sequence diagram of a generalized asynchronous exchange of data when
initializations and first update are done and the model is running (inside the
WS connected box)

Next step-by-step list shows all the tasks of a full lab session ordered by time.
It starts from the launch of the model to the disconnect signal from user. Numbers
of the list can be correlated with numbers inside all the time sequence diagrams
presented before. Figures 5.25 and 5.26 present the exchange of synchronous and
asynchronous messages. Since wrapper and SDS structure are defined inside the
same view element, Figures 5.27 and 5.28 contain detailed processes to add com-
plementary information to the diagram.

1. Model side: The Initialize model order can be done from a service, manually
or any other method available inside the server side.



. Initialize the model will trigger the initialization of the Websocket server.
It will listen, waiting for a connection.

. Client side: the user loads the web-page. It implies to initialize the GUL

. Initializing the GUI produce the initialization of the Websocket client. The
GUI try to connect with a model at a IP address and port given by the devel-
oper. Websocket handshake uses initially the HTTP protocol in the session
establishing phase.

. If GUI and model are available, client sends an HTTP GET request contain-
ing the Websocket Upgrade Request. When the connection is accepted, the
communication established.

. Model side: the evolution is initiated. The evolution will run the first steps
of the code or will initialize the equation solvers.

. Client side: as the view needs the metadata to work properly, it will ask for
metadata. If the client needs the information, it will also asks for the sets of
sensors and actuators. When the metadata answer returns, the initialize the
SDS structure is called. It triggers the auto-generators, creating the methods
and models needed to a coherent data exchange.

. Client side:The GUI makes the first request of data. This first request in-
cludes all the variables which are going to be included in the updates. Model
side: the request triggers the first update, containing the values of sensors
and actuators. As those may differ from the initial values, the view will be
likely reshaped.

. From this point, the model and client can be continuously sending messages
or the model can be waiting for a message to run the application or to initialize
hardware. If the system is not started it will wait for the play/start action, and
when the message arrives, the model will trigger a method call. When hard-
ware is initiated periodic sensor readings will produce model updates. For a
student, the session with the real lab starts here, because the hardware data
is available and the interactions will cause changes. Read, write and action
messages are going to be sent/received, following the procedures illustrated in
Figure 5.27 in the client side and 5.28. Life cycle of messages follow this se-
quence: arrives-precheck-routing-checking-extraction-translation-events for
incoming messages and event-extraction-translation-formating-routing-send
for outgoing messages:



El ‘SocketView”V.Elements” GUI ”Wrapper” SDS |

WS Connected )
Process
getSensorData msg 9.119.1
Check 9.11T
_OK
Extract 9.1V
Arrays:
| var. val.
Translate 9.V
Pairs é: o]
{var,val}
update()
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Precheck tests the message to verify that is JSON formatted.

As the message is valid, now we can distinguish the type of message
verifying if method of API fields are there. As soon as the message is
identified a routing process starts.

Each process do a checking to verify the presence of required fields.

A valid and readable message can be processed, to do that we need to
extract all the information needed. This step may be different when
using non-EjsS models.

EjsS or model can exchange information, but each one may use a differ-
ent format to understand changes and events, therefore a Translation/-
formating is needed.

User interactions, actions and model events may trigger asynchronous
messages during the lab session.

10. Model side: Any action which arrives the model may trigger an update in the
model and therefore an update message to all connected views. This update
is an asynchronous message. Figure 5.26 shows one of these asynchronous
updates inside the sequence diagram.
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Figure. 5.28 A sequence diagram representing the model side receiving a message, from
the client, triggered by an user interaction (inside the WS connected box)

11. Periodically, other update messages are sent, these are synchronous messages.
Figure 5.25 shows one of these synchronous updates inside the sequence dia-
gram.

12. When the user wants to disconnect or if the model waits to much time without
receiving messages the session will be finished. When the session is closed,
the client will be disconnected.

13. The final task is to reinitialize the model and wait again for a new user.

Figure 5.7 contains an example of sequence diagram of a small lab session. In-
teractions and updates generated are examples to illustrate the process, but the ses-
sion can exchange data during a full laboratory practice. Frequency and sizes will
be treated at Chapter 7, where the advanced user-available features are described.



5.5. EjsS Editor

This new editor of the J&JS enabled version is similar to the original editor.
Figure 5.29 shows that this new version preserves the main structure of the previous
version, with some minor differences. The elements inside the user window have
been briefly described in Chapter 1 and on the references given. In this regard, the
top panel of the editor still shows the classical View panel to create a Java view,
that will optionally run in the server. Additionally, the editor contains the HtmlView
tab, where the developer can build the XHTML graphical interface for the final user.
Both views can be built by using the same drag and drop elements of their respective
editors.
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Figure. 5.29 Main view of the EjsS editor, in Java + Javascript enabled version

However, the J&JS enabled version contains an additional configuration element
which helps to set-up connections, the SDS element. These configuration allows to
set: the server IP, port, wrapper and variables included in the application. The EjsS
editor contains the model element, and using the configuration panel is also possible
to make some automated tasks, like adding variables.

5.5.1. SDS element

Figure 5.30 shows the SDS element, which can be found inside the Software
Links folder, added to the model within the configuration window. Having a com-
mon shape in configuration windows has a double goal, first, it is easier to the
developers to understand and handle the configuration of various elements. Second,
move closer to a unique element or grouping elements with similar capabilities.
Similar configuration windows can be found also in LABView element and RIP
element.
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Figure. 5.30 Configuration window of the SDS element when added to a VRL

The configuration window is divided in tabs. Each tab allows the user to perform
different actions in order to understand the remote system, configure the connection
parameters, obtain variables and edit the wrapper. The element provides two modes
of operation: local and remote. The local mode is designed to run the application in
the same computer, without configuring other connection parameters and with no
change in the wrapper. The remote mode gives to the developer a higher control of
the element. On this point, if Local model selector is ticked the numbers of tabs is

reduced to one, but, when remote model is selected there are four tabs:

e Server is the main tab of the configuration window and contains two types
of elements. First, editable elements: Server Address, Port, SelectRemote-
Model/SelectLocalModel and Get metadata are editable. Second, information

from the server: Lab Id, Lab Description and Listed API Operations.

— Server Address is the remote or local direction of the laboratory, where
our model is waiting for user connections, by default localhost (allows
to do development tests).

— Port: The remote port number where the server is listening, by default

2055.

— Lab Id: A string that identifies the lab with a name but not a unique
identification. If there is no ID inside the editor, it will take EjsS model




as name. If it is a non-EjsS model the ID will depend on the developer
of the model.

— Lab Description: A string that provides a brief textual description of the
lab. If description is not edited by the developer, it is replaced by the
default value: EjsS interaction Metadata.

— SelectRemoteModellSelectLocalModel: This selector allows to specify
whether the model and the view are going to be defined in the same
editor (local option) or not.

— Get metadata: This button tries to establish a connection with the model,
asks for metadata, sensors and actuators and finally disconnects. All the
information gathered is updated in the configuration window.

— Listed API Operation: In the example of Figure 5.30 all the operations
described in metadata are listed. For an EjsS model these methods fixed
(by default) are: callAction, getActionsMetadata, getSensorMetadata,
getSensorData, getActuatorMetadata and sendActuatorData. For each
one there are also 3 cells to be fulfilled by the developer:

1. Parameter needed to call the method, which is the same as metadata
model which defines the structure of the JSON message.

2. Returns cells are the metadata models returned from the model
when the operation is completed.

3. Purpose provides additional information about the functionalities
of the operation. If it is a non-EjsS model it will be written by the
developers, if not, is a fixed description.

e Reported Variables/Linked Variables: The laboratory reports a set of vari-
ables that can be read or written. The element, by default, links the variables
from that set with their counterparts defined in the view. If these variables
are not created, the element will create a new list with them. The reported
variables tabs tell us the names of the sensors, actuator and variables inside
the lab. Figure 5.31 contains an example of tab with the info from the server.

— Server Writable Variables: These field is a table of actuators (inputs)
and variables (public).
— Server Readable Variables: These field is a table of sensors (outputs)

and variables (public).

e Wrapper: This tab provides an editor to adapt the default wrapper with user-
specific code. It also allows to make file operations as Save Wrapper/Load



Wrapper: Allows to re-load the original file, templates or to save the changes
made in the code of the wrapper.

Editor for model element smartDeviceElement {SmartDeviceElement)

Server Reported Variables r Linked Variables r Wrapper |
Server writable and readable variables

Server Writable Variables Server Readable variables

MName Type MName Type
conf_spacei double e double
conf_spaceY double conf_space double

Figure. 5.31 Configuration window of the SDS element when added to an example

Wrapper edition

If the user has not changed the wrapper file, the corresponding tab will show
the actual EjsS default code with all the needed methods. These methods are valid
to connect with most labs, but in some cases (e.g. non-EjsS models) it might be
necessary to modify the default behavior. In this sense, it is possible to load other
files:

o Empty skeleton: As said in previous sections, it is possible to edit a wrapper
from scratch using an empty template with named methods but without valid
coding inside.

e Minimal template: Minimal template contains some code, see Figure 5.18.

e Default/other files: It is possible to reload the original version of the file or
load a pre-saved versions, if needed.
Variable generator

EjsS associates information resources (such as sensors or actuators) with vari-
ables of the model. In this situation, the tools uses a process to include all the
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Figure. 5.32 Autogenerated variables created by SDS element when used inside an example

needed variables to the model. Those variables support any of the possible pro-
cesses of reading/writing, and also have listeners associated to identify events that
result in model changes. The exchange task can also be done in an automated pro-
cess or the values can be sent manually from any: methods, evolution, properties or
visual element.

Figure 5.31 shows the set of sensors/actuators of an arbitrary example, we can
see that all the variables that needs to be exchanged are inside two boxes. The vari-
ables allow read or write, as sensors (read-only) or actuators (write-only). We can
find two readable: e and conf_space and two writable: conf_spaceX and conf_spaceX.
In the left side of the image we can see the variables tab, each table has a name cho-
sen by the developer but the AUTO_SmartDevice table is the auto-generated one.
Figure 5.32 contains the auto-generated variables, which are defined maintaining
the type specified by the model.






6. Advantages and limitations of
implementation

EjsS J&JS enabled version implements the proposed solution by decoupling
the model/view pair, adding the communication capabilities and using Java and
Javascript as programming languages. Developing VRLs using this solution, main-
tains the same functionalities of other EjsS versions and adds new capabilities. Con-
sidering the characteristics of the communication and architecture, the VRL devel-
opment is enhanced, although some limitations also appear as result of the change
in the main architecture.

6.1. Advantages

Laboratory sessions in hands-on laboratories are commonly done by groups of
students. Group work improves the skills of students and allows the teacher to use
available systems by many users at the same time. From an educational point of
view, the teacher can explain and carry-out the experience with the students. Re-
mote experimentation can take advantage of grouping students by using multiuser
and/or multiview laboratories in EjsS J&JS.

6.1.1. Multiuser sessions

The nature of remote experimentation introduces some technical issues when
tackling with multiuser sessions, that were difficult to solve in previous versions
of EjsS. Multiuser session are lab practices where there are more than one user
connected to the same system, each one with one of two roles: controller or viewer.
Configuration of EjsS tool ensures that a single user can view and control the lab.
If there is more than one client, anyone can control and view the system, as the
number of views is not restricted. To prevent concurrent changes in the model,
two roles are specified: controller and viewer. The first one, is in control of all



the writable changes and can read any of the variables. The first one, the viewer,
can only read variables and see how the changes made by the controller affect the
application.

Previous versions of EjsS have also the possibility to make collaborative session
by using peer-to-peer connections, which can result in a complex network architec-
ture.

6.1.2. Multiview sessions

Mutiview or Collaborative sessions can be done using the restrictions regarding
the viewer/controller scheme, but it is also possible to have different views for the
same model. The purpose of having different GUIs can be to adapt the interface to
different levels of knowledge, complexity, permissions or learning objectives. The
J&IJS version allows simultaneous users with different GUI connected to the same
model.

Multiview along with collaborative sessions are useful advantages that can im-
prove the leaning process. Together, they can provide complex lab experiences
where the student has a limited framework to interact and the teacher has a full GUI
to control all the parameters of the application.

The current version of the tool supports making this type of sessions, but the
process is not automated and the teacher capabilities must be programmed on each
application.

6.1.3. Reutilization

One of the goals of the research is to reuse previous models without coding all
applications from scratch. The reutilization feature is possible by loading the old
file inside the tool, creating the HTML GUI and changing the parts of the code
where external or Java libraries were used. The HTML view can be similar to the
old application, but this is not the best approach, because all the variable links and
calls would be applied, sometimes consuming too much network resources.

Chapters 8 and 9 contains two examples of applications that illustrates the pro-
cedure described in How to update a Java lab to Java & Javascript. This document
is included in the Appendix D. Next section describes restrictions related to the
development and use of the tool.



6.2. Limitations

It is also important to consider the limitations of the EjsS J&JS enabled version.
Most constraints are related to the connectivity of the labs: data flow through Inter-
net, access to resources, the frequency of messages and delays in communications,
etc. The next subsections discuss the main limitations of the tool.

6.2.1. Methods or dynamic calculus

Methods and variables are recovered at the moment of packaging the applica-
tion, custom methods are extracted from the custom tab and the set of methods
proper to the model and view are automatically added. In this sense, any other
functionality or method defined in the model but not defined in custom tab can-
not be dynamically found, and therefore, neither can be used. As all the coding is
packaged with the model, including those inside the properties of the view, using
methods to calculate properties can slow down the application. For example, the
developers may choose to define the Position X property inside a 2D Shape as

3 % (otherPosition + 10)

It looks like a simple calculus, but it implies a delay, and, if the view is going to be
updated many times, can affect the performance of the GUI.

6.2.2. Access to resources

Accessing to server or local files and sharing these files with the view or the
model can not be done by default and implies coding the process to send binaries.
Take as an example, an application that needs to send sound files, captured by a
microphone in a pneumatic cylinder lab. In this situation, the EjsS the model can
capture the sound, but by default, the model cannot included it inside a SDS JSON
message. To send this file, the user need to add the code to decode and serialize the
sound. It is possible to send binary files by using the capabilities inside the Smart
Device Specification, but is not defined inside EjsS.

6.2.3. View elements association

Method calls between Javascript GUIs and Java model are processed as de-
scribed is last sections. The optional Java view, used to control the system from the
server, adds some restrictions to the development. The limitation appears when a
method call from a view element needs to be reported to the analogue one in other



view. When an action arrives to the model, it uses reflection! to call the correspond-
ing model/custom/view method. Reflection allows the model to inspect the names
of all the members of a Java class, then, is possible to find the view elements defined
in the Java view. An action to modify a view element and called from the model
implies and update in Java and Javascript view. Then, reflection must be applied in
both views. A call like

_view.trail .addPoint(0.0,0.0)

produces an update in the element called trail, but, both must have the same name
in the Java and Javascript views.

As the model is the central node, therefore, the Java view and the Javascript one
do not know each other. In this situation, there is no real association between Java
and Javascript views, and the frail element must be present in both and using the
same name.

This effect only appears in the situation described in last paragraph and is not
common. In remote experimentation, as described in this document, the model
tasks usually rest on servers. Commonly, neither the developers nor the teachers are
close to these servers when a lab session begins. Therefore, the Java view would
probably not be used during experimentation time. If the developer or teacher need
to use the Java and the Javascript views simultaneously they can benefit from the
multiuser capabilities of the tool. However, if the use of the Java view is a essential
requirement, the multiview capabilities will became unusable.

6.2.4. Communication speed and delays

In remote experimentation, the performance of the application is a key element,
as VRLs are teaching tools that should serve to motivate students in their learn-
ing, and not frustrate them due to performance problems. Besides, the way a lab is
perceived is also important for teaching, for remote labs must behave in a similar
way to classroom labs. The user experience when using the lab is affected by many
factors. Analyze how in the communication speed and delays change with the lab
configuration in not immediate, therefore some test must be done before the deploy-
ment of the lab. These experimental tests focus on measuring the time required by
the lab to complete cycles of communication and message parsing between a web
browser and the remote lab. On the one hand, the remote lab is usually located in a
university’s lab and it is available for students through an online course managed by
an LMS server. On the other hand, student is located in a home network connected

Thttps://www.oracle.com/technetwork/articles/java/javareflection-1536171.html



to the Internet. In this situation, it is not the same to control a servo-motor as to
control a heatflow system, because the amount of data and the timing constraints to
be exchanged is different.

Considering a situation in which the bandwidth of data to be exchanged is con-
stant, different combinations of the lab configuration parameters (i.e. message rate,
message length, and number of variables) produce a change in the response time of
the global system. In this regard, using many variables to be exchanged or just a few
to prevent the slow down can affect the user experience or the quality of the data.
Next chapter describes some additional features to prevent this kind of problems
and useful to study the behavior of the systems.






7. New Elements and additional
features

EjsS J&JS enabled version has been developed along with other additional fea-
tures and tools related with the creation of virtual and remote laboratories. The
capabilities have been included inside the enabled version of last chapter and are
made to enhance the user experience and facilitate the configuration.

7.1. Performance and parameterization

As the number of variables is not completely relevant for most labs because their
processing is a low time-consuming task at the model side, it could be problematic
when using EjsS. The message rate and message length are the key configuration
parameters that determines the response time and, therefore, the quality of service
of VRLs. Due to the different characteristics of remote labs and final users devices
and networks, the best configuration parameters cannot be established a priori and
must be managed by an external architecture that monitors the network and lab
status in real time.

7.1.1. Minimum information exchange

While the main purpose of the tool is making easier the development of VRLSs
in education and research, delay-related problems and network status can affect the
normal behavior of a system. HTTP-based labs have shown some disadvantages
when used alone to develop VRLs, until the emergence of some architectural styles,
as REST is.

Those issues are related with the delays when trying to build hard or soft real-
time systems. In this regard, though Websocket performs better in the field of real-
time experimentation, it is not perfect, and new labs must be tested before their
deployment.



Most of networked lab applications need a steady flow of information using a
connection free of errors and reliable data delivery. Therefore, as the bandwidth is
limited, developers have to design their applications to only exchange the variables
needed. While EjsS contains processes to control the number of view updates per
second and the number of model steps between updates, the remote experimentation
area commonly faces a problem regarding to coupled effects:

e Message length: The total number of bytes inside a single message. As the
total size of one Websocket message is virtually unlimited !, the total length
affects in the parsing time and processing time at both sides: server and client.

e Message rate: The frequency established to send messages to the client is
at least the number of view updates defined in the EjsS editor. Each sent
message needs some time to navigate to the receiver and some more time to
verify the arrival. Moreover, if the rate of messages is high, it is possible to
find buffering delays at the receiver side.

As said before, both elements imply significant changes in the application per-
formance, although tests done by other authors, reveal that Websockets show a sig-
nificant performance drop when sending small messages and could be countered
when the message size increases [30]. To prevent those situations, the number of
view updates per second and the number of model steps are key parameters in order
to obtain a good performance. To prevent delays, EjsS collects events close in time
to send them in the same message. Therefore, the synchronous messages can be
adapted to fit the time requirements by changing usual EjsS parameters.

Finally, asynchronous messages can also imply a drop in performance if those
are not following the same restriction. In this regard, developers must design their
application trying to collect also the requests for readable elements and/or the mes-
sages to change writable elements.

7.1.2. Reconfigurable elements

The proposal presented in this work benefits from the Smart Device Specifica-
tion by including it in laboratories, enabling interaction and configuration by send-
ing simple messages. While adding the SDS in laboratories implies the development
of new services (as the metadata services) the software tool EjsS (used to develop
the labs) contains new functionalities to automatically include the SDS in the lab.

Thttps://tools.ietf.org/html/rfc6455#section-5.2



Therefore, the presented architecture used in VRLs enhances the flexibility in
the management of lab resources. Using the servo-motor (see Chapter 9) as exam-
ple, it contains the following set of configurable elements:

e Sensors: The remote lab is equipped with two sensors. One of them measures
the angular position of the motor. The other one, a tachometer, measures the
angular speed. External entities can send messages to change:

— Position or speed readings: The model can be configured to send mea-
sures from only one sensor (either position or speed) or from both (po-
sition and speed). To be used in different lab experiences, or to be acti-
vated in a running experiment.

— Actual rate for reading from the sensor (as long as it is within the limits
of the sensor).

e Step time or update rate: It is possible to modify the step time, which is
the number of number of cycles per second inside the model. This affects the
frequency of synchronous messages between the view and the model. This
setting, however, does not have any effect on asynchronous messages, which
depends on user interactions, such as dragging elements.

e Actuators: The actuators, as the sensors, allow a degree of adaptability to
be configured in an efficient way. The servo-motor lab is equipped with one
single actuator, the motor. In spite of the electrical signal of the motor, there
are some other configurable elements:

— The Access roles (controller and viewer): Controllers can change the
value of the input signal in the motor. Viewers can only obtain infor-
mation regarding the actual state of the actuator but are not allowed to
modify it.

— Nominal update interval: Is the minimum time between subsequent
changes in the actuator, in the servo-motor laboratory the available inter-
val is narrow because of the fast dynamics of the system: [0.1,1.0]sec.

Each configurable element can be modified by sending configuration JSON
messages.

However, the configuration must be available inside sensor/actuator descriptions
or information about them. The architecture allows to measure the performance in
real time, adapting the configuration dynamically to enhance the experience of the
user with the remote lab.



7.1.3. Quality of Service

The behavior of some elements can be changed using the parameters presented
to configure sensors and actuators. The purposes of sensor/actuator re-configuration
are up to the developers, but usually are one of two. First one, how the software
controls the system.

It relies on acquiring and actuating rates/delays to prevent effects like aliasing.
As this parameters can be discovered while the system is being developed usually
can be configured in a previous step of the GUI or model design. Second one, how
is the user experience, regarding the possibility to understand the behavior of the
lab and also to enhance the interactivity of the lab.

The implementation of the solution does not include the measurement of the
response time in real time. However, it can be done manually and it allows to adapt
dynamically the remote lab configuration. As every lab is different from others and
the configuration elements are distinct, the process is not included inside the main
code of the tool. Therefore, to implement this feature, the user needs to modify
both, the GUI and the model, including a task to measure these times.

7.2. J&JS as elements

The exchange of data when decoupling model and view is possible using the
J&JS enabled version. Although, limitations related to the methods defined by the
user at the client side can restrict the usability of the tool, if the lab owner needs
to define those. To complement the version, two new model elements have been
developed:

1. An element to add capabilities to Java labs.

2. An element to add capabilities to Javascript labs.

Both elements can not add the same capabilities that are included by default
inside the J&JS version, therefore, non-programmer users can find difficulties to
use these elements inside their applications.

7.2.1. Java SDS and Javascript SDS Elements

The Java element is designed to be used with the Java enabled version of EjsS.
This element creates a service which is listening to the messages from other SDS
enabled devices which want to connect.



The capabilities added by this element are less than in the J&JS enabled version,
thus, most of the capabilities must be implemented by hand.

The Javascript element is designed to be used with the Javascript enabled version
of EjsS. The element is fully functional and adds almost all the client capabilities
described in chapter 4.1. The element has the same icon and configuration window
but it can not include some enhancements, like automatically building the first get
message to configure the auto update from the model.

The Java and Javascript elements are meant to be used by developers with some
programming skills. To make both available to non-programmer users some ca-
pabilities must be added. At the moment of writing this document, to add these
capabilities is a future work but, both elements can establish a stable communica-
tion to exchange data and interact with a other pre-existent labs.
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8. Virtual Labs

This and next chapters present the labs which have been developed. These labo-
ratories are virtual or remote, however, in some cases both types are available. This
chapter presents the VLs divided by the version of EjsS used: Javascript or J&JS.
The VLs are described using three different focal points:

e Physical description of the experimental device: The VLs are usually based
in real equipment and systems, this section gives a description and some
mathematical background. To lighten the description of the labs, some parts
of the mathematical background of the system are included as appendices.

e The virtual lab GUI: This section describe the user interface and additional
details about the development, like the equations used to simulate the behav-
10r.

e Learning objectives: The purposes of the lab can be many, but this section
gives a glimpse about some activities that can be achieved.

Developers and teachers around the world are continuously involved in the cre-
ation of new resources to enhance teaching. On this subject, UNED is up-to-date,
having many online courses and web-accessible resources. During the research and
development of the tool described in previous chapters some new virtual labs have
been updated or created to be used inside the UNILabs website.

EjsS, in both versions JS and J&JS, has been used to create user interfaces and
models to controls the laboratories. In each VRL, EjsS plays similar roles in order
to achieve a good experience for the user. As said in Chapter 1, to replicate a real
lab, the GUI needs to be: graphical, dynamic, interactive and representative of the
system to be studied. The following virtual labs represent real systems that allow
users to carry out lab experiences inside the control engineering and physics area.



8.1. Virtual labs developed in Javascript

EjsS Javascript version allows deploying VRLs inside a Webpage. Thus, it is
used as a first option to develop labs from scratch, as it eases the creation and de-
ployment process. The two coupled electric drives and The vibrating wires experi-
ments have been developed using this enabled version.

8.1.1. Two coupled electric drives

Coupled electric drives apparatus is designed to allow students at all academic
levels to investigate basic and advanced principles of control, including control of
multi-variable systems. The real system is a compact bench designed by TecQuip-
ment' to show the engineering problems regarding the control of multi-variable
systems.

Physical description of the experimental device

Industry contains many production examples where coupled drives systems are
needed. The applications of the coupled drives go from textile area to the production
of plastic filaments. The system presented contains two electric Direct Current
(DC) motors and a pulley connected by a flexible belt. The pulley is mounted in a
swinging arm, which is called jockey, and measures the speed and the tension of the
belt.

The aim of the lab is to help student to understand control topics regarding the
control of more than one output using more than one input. On this point, the
problem is to control the belt speed and the tension of the belt by regulating the
voltage in both motors. As the system has two motor voltages and two outputs
(speed and tension of the belt), it is a 2x2 Multiple Input Multiple Output (MIMO)
system.

The equipment can be used in-place, without any extra hardware, to learn con-
trol techniques and to study in depth an example of multivariable system. But in
order to prepare the students and to widen the access to this system, remote and
virtual labs have been created.

Using the real system as a reference, a simulation application has been devel-
oped, in order to be representative of the real system and to be highly configurable
to the student.

Appendix A contains the steps to obtain a mathematical model of the coupled
electric drives. The model obtained, for this MIMO system, can be translated into

Uhttps://www.tecquipment.com/es/
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Figure. 8.1 Equivalent dynamic components of coupled electric drives [113]

the form of transfer functions inside 8.1 and 8.2.
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Where x is the jockey pulley vertical position, [11,15,1,] are the motors and pulley
inertia, m is the jockey pulley mass, [b1,b,] are the motors friction, [b,;,b,,] are
the translational and angular pulley friction, [0}, 65, 8,,] are the angular positions,



[k,ko] are the belt and spring stiffness and r is the radius of the pulley and the
motors, which are assumed to be equal. The transfer functions define both outputs
depending of the inputs. Last equations correspond to:

e The velocity of the belt (equation 8.1): Contains a first order pole, which
depend on the parameters used in the system (see Table 8.1).

e The tension of the belt (equation 8.2): Two complex and two real poles are
identified in the transfer function.

m r I b k ko | by | «
0.35]0.03[8-10*]9-102] 50 | 200 | 0.5 | n/6
kg | m kgm> | Nm/s | N/m | N/m | N/s

Table 8.1 Coupled electric drives parameters

The values regarding the real equipment are used in the model and are included
in Table 8.1.

The virtual lab GUI

Figure 8.1 contains a graphical representation of the coupled drives system. The
scheme is simplified using some assumptions, that can be established: the jockey as

Preliminary code for StateSp

fal = 1.0/1s* (ul - bs* (wltwperturb(}} - ks*rs*rs* (3.0% (chl-th) /2.0 - (x+xperturh())*Math.cos {alpha) /rs!];
dwz = 1.0/Is*(uZ - ba* (wi+wperturk(]) - kes*rs+rs*(3.0% [thZ-thl) /2.0 + [x+xperturh|))*Math.cos(alpha) /ra)];
ddx = 1.0/Ta* (-ba*dx -ka*ra* [Math.cos (alpha)* (Ehi-thl)+[x+xperturh ()} /rs* (ka/ks + 2.0%Math.cos (alpha) *Math.cos (alpha) | *ks*ra) |

<

comment, Code to be run before solving equations

2 Variables © Initialization ® Evolution O Fixed relations © Custom O Elements

Frames  StateSp ControlPID
per second

=
&’
100 Indep. Var. tejs & Increment |dt ‘@) Prelim code T
; ]
State Rate [lg]
TS g
. N
digjs o ~
15 Y
dwl @]
= dwl
[ dligls i &
dith2 A
5 |digjs W
L lew
= dw2
fps| g (18IS .
SPD g/ Solver Runge-Kutts 4 ~ [Tel |0, 00001

....... Events 0

Autoplay Comment

Figure. 8.2 Javascript editor showing equations and code to be run before running the equa-
tion solving algorithms



a swinging arm with three elements, the elastic band as spring-like couplings and
frictionless pulley.

Using the EjsS editor, simulation can built over the equations of the model. The
simulation can be defined using the differential equations (Appendix A), leaving the
precoded algorithms to numerically solve them. (see Figure 8.2)

The virtual laboratory of the coupled electric drives contains different parts in-
side the GUI window. The GUI distribution is common to many labs made in the
Informdtica y Automdtica department. The simulations window is usually divided
into three sections: a menu, the system 2D graphical representation and control, and
the evolution graphs and indicators. Figures 8.3, 8.4 contains a visual example of
all the functionalities working during a common lab experience.

(a) Controls tab and plot of the angular velocity (b) PID tab for a coupled automatic tension
for a manual control. control and the output.

Figure. 8.3 Control and PID views of the virtual laboratory application of the coupled elec-
tric drives.

e Menu: In the top left corner of the VL’s user interface there are four buttons:

— Save Files: Used to save four different graphs: the belt’s position, ve-
locity, and tension, and the motors’ angles. From this menu, users can
also save the numeric data in a .m file for later analysis with Matlab.

— Control: This menu button allows modifying the mode in which the
experiment runs: in a manual way (open loop) or with an automatic
control (closed loop with a controller).

e System representation and control: In last section Figure 8.1 shows a 2D rep-
resentation of the system (two motors at the bottom, a flexible belt, and a



jockey pulley at the top). The visual representation is included in the labora-
tory GUI as shown in Figure 8.3. Under this visualization zone the application
shows three tabs:

— In the Controls tab (Figure 8.3.a), students can change the velocity of
the motors using the U; and Uj sliders or introducing the values directly
in the editable numeric fields at the right. In automatic mode, the U and
U, sliders are disabled and the user can change the tension and velocity
references (the two inputs of this system), and select whether to make a
coupled or a decoupled control for these variables.

— The PID tab (Figures 8.3.b and 8.3.c) shows three or six fields to adjust
the PID parameters of tension and/or velocity controllers, depending on
the kind of control that is selected: coupled or decoupled. In coupled
mode (Figure 8.3.b), students have to choose the variable they want to
control, either the tension or the velocity of the belt. In decoupled mode
(Figure 8.3.c), both PID controllers are activated and the user can change
their six parameters.

— The Parameters tab (Figure 8.3.c) provides the possibility of studying
the system’s time response by introducing a sinusoidal input signal. In
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of a frequency sweep of fifty points. The one on the right offers the graphs of
the magnitude and phase values gathered in the sweep.



addition, selecting the "Auto-Bode” allows to configure an automatic
“ac sweep”, obtaining a graph like the one in Figure 8.4.

Finally, the VL has three more buttons (in its bottom-left part) for controlling
the execution of the simulation: play, pause and reset.

e Evolution graphs and indicators: The right part of the virtual lab application
offers a graphical representation of the most important variables in different
tabs: position, motor/pulley angles, velocity, and tension of the belt and esti-
mations of gain and phase.

The Javascript virtual lab of the coupled electric drives is nowadays included
inside UNILabs, inside the open course” and inside the Laboratory practices of the

master in systems engineering and control course 3

Learning objectives

The simulated lab gives to the student a schematic representation of the coupled
electric drives. The lab is initiated to be controlled manually. In this situation the
simulated motors are not powered, waiting for user interactions. The laboratory
practice can be done by following the steps defined by the teacher or by the student.
The following paragraphs explain the main activities to be performed with this web-
lab.

e System Identification: One of the VL’s main purposes is to identify by gath-
ering useful information about the order of the system and the values of zeros
and poles. This activity may be performed acquiring data from all these steps
in the simulation:

1. The open loop analysis returns information of the dominant pole, as
happens with first order systems, and the over-damped step response
delimits the value of damping factor, as happens with second order sys-
tems.

2. A most accurate damping factor and the natural frequency can be ob-
tained by introducing a disturbance in the system. This allows deter-
mining the value of the complex pole pair.

Zhttps://unilabs.dia.uned.es/course/view.php?id=24&lang=en
3https://unilabs.dia.uned.es/course/view.php?id=4&lang=en



3. The frequency response analysis provides detailed information of the
transfer function. This can be used for checking results of previous ac-
tivities, for explaining the differences with a second order system, or for
fitting with a better model (identifying the other two real poles).

e PID Tuning: When the automatic control mode is selected in the upper menu
(as described in the previous Section), a closed loop is established for con-
trolling the velocity or tension of the belt by means of a PID controller. In
coupled mode, students can select the control variable (either velocity or ten-
sion) in this MIMO system, and may change the proportional, integral and
derivative parameters of the PID controller (kp, 77, Tp) in order to obtain a
response that satisfies the specifications asked in the practice guide. In de-
coupled mode, students work with two SISO systems and, therefore, with
two PID controllers. Then, an analysis of the output signals (stored in .m
files), allows to obtain an approximated model of the system.

e Frequency Response Analysis: The model can introduce a sinusoidal input
inside the simulated system. It can be defined by modifying the values of the
frequency (w) and amplitude (A):

ui = Asin(ot)

By introducing such an input and registering the magnitude and phase estima-
tions from the AC Signals graph in the evolution window, students can obtain
the magnitude-frequency and phase-frequency graphs (i.e. a Bode plot). An
analysis of this plot helps with the system identification problem since it pro-
vides information about poles and zeros of the open and closed loop transfer
functions of the system. The VL is also provided with an option to auto-
matically obtain the Bode plot and the data array. A student can process the
data (stored in .m files) and obtain the plot of Figure 8.4, which shows a
magnitude-frequency graph in open loop and in closed loop (for coupled and
uncoupled control) in simulation mode.

e Disturbances Analysis: The 2D visualization allows introducing an isolated
disturbance, by clicking and dragging the pulley, to obtain the natural fre-
quency and damping ratio of the system. This can be used for studying the
double complex pole of the system in order to identify the transfer function
in the virtual laboratory.

e User Defined Controller: As an advanced task, the user can write different
controllers to use in the control loop. This tool extends the use of the labora-



tory either for investigation or learning purposes. The code of the controller
can be written by using an special Moodle environment, Blockly*. Using
the Moodle plugin, the user can use visual blocks to code Javascript tasks
[114, 115, 116]. By using this option the students can:

— Add features to the basic web-lab built-in PID controller.

— Analyze and compare the behavior of well-known controllers for learn-
Ing purposes.

— Develop/test a controller for investigation purposes.

8.1.2. The vibrating wires

The vibration nature is a key element when studying physical phenomena in
systems. In this sense, students of STEM areas must learn about the basis of this
concept and methodologies to obtain information from sinusoidal signals. A com-
mon lab in Physics courses studies the wave motion on a fixed string.

The vibrational string is included inside one of the subjects of the first course
on UNED Physics degree. Commonly is a hands-on laboratory where the student
can excite and acquire data directly from the oscilloscope. Virtual and remote labs
provide an alternative for students that cannot access to the experimental setup. The
full setup is described in [117].

This virtual experiment gives the student an application to learn the dependence
between many physical parameters. It is known that the fundamental frequency
depends on the parameters of the string:

e Density, as the inverse of the square root.
e Length, as the inverse.

e Tension, as the square root.

This fact allows the student to learn about experimental procedures and data
analysis using different representations of data (linear, inverse, logarithmic). Each
collection of data implies fitting the data-point to well known curves, in order to
acquire experience in laboratory data analysis.

“https://opensource.google.com/projects/blockly



Physical description of the experimental device

The laboratory is designed to control some of parameters that have a known
dependence with the natural frequency. The student can learn about the existent
dependence between parameters: a linear dependence between the period and the
length of the string, an inverse dependence between the frequency and the radius, a
square root dependence between the tension and the frecuency, and so on. The key
goal of the experimental device is to establish a set-up with a fixed set of parameters
which produce different behaviors. The virtual GUI is designed to look like the real
set-up, containing also the same capabilities. Therefore, the student can explore the
interface and repeat the experimental process as many times as needed in the virtual
lab.

The virtual lab simulates the behavior of the vibrating strings, for this purpose
the system is described in the form of equations in the additional documentation
given to the students. The mathematical basis are also explained in the Appendix
B, from where we can extract an equation:

z1(t) = Ajcos(2mfit) (8.3)

where the fundamental frequency f] is given by

1 T

fl = E %, (8-4)

where r is the radius of the string, L is the length of the string, T is the tension and
p its volumetric density.

Equation 8.3 gives the dependence between the parameters that are controllable
and the fundamental frequency. The set of parameters which can be modified de-
pends on the experimental device and the available materials.

Figure 8.5 shows the real experimental device which is used in the remote lab.
As the idea is to replicate the real set-up, some of the elements are simulated in
the GUI. The graphical representation of the lab includes some of the elements but
some are overlooked in the virtual version, to maintain a clean view of the simulated
process.

There are five different strings (2) made of different materials (copper, kanthal,
constantan, and nickel) and with diameters ranging from 0.3 mm to 0.5 mm. One
of the ends of the strings (with the exception of the central string) is fixed on the
aluminum structure of the device, while the other end of the strings is connected to
a dynamometer (10) that measures the tension along the string. In the case of the



Figure. 8.5 Fully developed experimental device, consisting of the following elements: (1)
DC LED light source, (2) strings, (3) stepper motor, (4) LEGO gear connected
to LEGO servomotor, (5) light sensor, (6) linear stage, (7) LEGO carrier, (8)
mobile aluminum rod, (9) rule and length indicator, and (10) dynamometers.
The close-view figure shows a frontal view of the string plucking element con-
sisting of (11) the rotation axis of the LEGO gear, (12) trajectory described by
the LEGO gear perimeter, and (13) string under study.

central string, the fixed end is connected to the axis of a stepper motor (3), so that the
tension can be controlled. A LEGO carrier (7) is used to displace an aluminum rod
in close contact with the strings (8) along the y axis, in such a way that the length of
the vibrating part of the strings can be changed from 380 mm to 550 mm. The signal
acquired from the vibration of the wires is obtained mathematically and shown to
the user in order to download and/or analyze it. The movement, acquiring and
calibration is done by real equipment, which is shown and described in appendix 9.



The virtual lab GUI

The GUI is made using the Javascript enabled version of EjsS and is done to
give the student the control of the experimental environment (tension, length. ..) as
in a hands-on laboratory.

The experiment is simulated by creating a laboratory environment which can
emulate the experimental device and the available tool in a classic hand on lab. In
this regard, the application window is divided into three sections: a 2D and 3D
graphical visual representation of the system, the controls panel and the plots/graph
panel. To create the signals obtained from the oscilloscope, which will be plotted
in the graph panel, the VL uses equation 8.3. Each string is defined internally as
a collection of parameters, which can be used inside the equation. The variables
in charge on defining the string can be easily changed, allowing the developer to
change its response in a fast way.

e Visual representation (2D/3D): The top-left side of Figure 8.6 shows a 3D
model of the system in which the user can observe the basic parts of the real
structure of the vibrating string laboratory.

e Controls panel: Using the controls, buttons and sliders of this panel shown in
top-right side of Figure 8.6, the user is helped to go through the experimental
protocol, highlighting each step and giving tool-tips to make it easier.

e Plots/Graphs panel: This part of the interface, at the bottom part of Fig-
ure 8.6, allows the user to see data in different plots and graphs. The vibrating
string laboratory plots the light intensity versus, first, the position of the linear
stage (see section 5 for details in this calibration procedure), and second, time
(in order to obtain the frequency of the fundamental normal mode).

Figure 8.6 shows the basic structure of the virtual laboratory when the .xhtml
is served to the client. The virtual lab also allows students to get familiar with the
available interaction and the protocol, in order to be prepared to the remote version
of the lab

Learning objectives

The simulated graphical representation allows the student for the visualization
of a general view of the experimental setup as well as closer view of the dynamome-
ters and the length of the strings. The student can initialize the experiment by click-
ing in connect, to emulate the starting sequence which is done in the remote lab.
When the simulation is started, and the experimental experience begins, each sub-
sequent step is colored in cyan, to guide the student through the process:
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. Location of the strings’ positions: A complete sweep is simulated along the
whole range the strings positions. The effect of the light sensor continuously
measuring the light intensity to capture the shadows of the strings. Then, the
student can plot the function light intensity versus position along the x axis.
Where the noise and shadows are obtained numerically. Figure 8.7.a shows
that the light intensity is roughly symmetric with a local maximum at the
center which represents a simulated light source placed at the center of the
device. Thus, the student can determine the position of each string from the
five local minima in the light intensity.

. Positions must be written down: The GUI gives five field to write the po-
sitions obtained from the calibration procedure. The step of obtaining the
positions must be accurate in the remote version, therefore, the simulation
reward the accuracy by giving best results in next steps.

. Selection of the string and the length to explore: After this calibration, the
sensor can be displaced over to the positions of the strings by choosing the
string. Then, the linear stage shown in the 3D representation moves to the
string position.

. Selection of the tension (if needed): If the string selected by the student is
the central one, the tension can be varied. In that purpose, by clicking an
increase tension (or decrease) control, the tension is increased (or decreased)
in steps of approximately 0.05 N. The student observes both the measurement
of the dynamometer and a color representation of the tension in the string.
The user is able to change the tension as long as it is maintained below 10N,
presenting to the user the real limit of the remote string.

. Execution of the experiment and data acquisition: When the previous
steps have been completed, the simulation is ready to execute the experiment
in those conditions selected by the student (considering the parameter of the
string selected). Then, by clicking the corresponding control, the VL runs the
plucking the string by generating the wave for the user. Figure 8.7.b shows
the results of this simulated wave from one experiment with a correctly mea-
sured position. If the position is not accurate, the signal becomes noisy, even
being impossible to identify the wave. The student has to analyze these data,
calculating the frequency of the fundamental normal mode, f7.

. Analysis of the results and comparison with theory: Once the student has
completed experiments under different physical conditions, the dependence
relation between f| and the physical parameters of the string (7', L, p) can



be established. Then, the student should be able to discuss the experimental
errors and the validity of the theoretical model.

8.2. Virtual labs developed in Java & Javascript

8.2.1. The servo motor lab

The servo motor lab is a well known example in control engineering areas. This
system together with the use of EjsS has a long history within the Informadtica y
automdtica department [118, 119, 120, 60, 121]. The system can be used to achieve
multiple goals, and for that reason the servo-motor virtual and remote labs are in-
cluded in three experimental courses of the UNILabs website:

e An open course with free access Labs on control”.
e Labs of a course on control, inside the degree in informatics engineering. ©.

e A course of laboratory practices of the Master degree in Systems Engineering
and Control’.

Physical description of the experimental device

The servo motor system consist in a electrical driven motor which contains a
sensor device to measure the angle of the external wheel and a tachometer to mea-
sure the speed. This was a system designed by La Ecole polytechnique fédérale de
Lausanne®, and the main purpose is to control its position or speed. The system
additionally includes optional parts, to enhance different effects:

e The main axis of the motor also includes a configurable load. This loads
consist in a set of small disks which can be attached to the axis. Therefore,
the load can be changed between different courses of different classrooms to
change the dynamics of the servo-motor.

e Bottom part of the disc also includes a magnetic brake. The damping effect
over the servo disc can be also modified, moving up and down the magnetic
source. The magnetic brake represent a viscous friction, which can be also
modeled mathematically.

>https://unilabs.dia.uned.es/course/view.php?id=24
®https://unilabs.dia.uned.es/course/view.php?id=4
"https://unilabs.dia.uned.es/course/view.php?id=7
8www.epfl.ch/index.en.html
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Figure. 8.8 Real servo motor system with it protractor disc.

The input of the servo-motor is a variable voltage, which is applied in the DC
motor. The outputs are also voltages, from the position and tachometer. These
voltages can be easily translated to radians per second and angular position. Figure
8.8 shows the real servo motor lab.

The mathematical model used to simulate the system is the same to be used as
reference for the students. To make it easier, there are some assumptions that can
be made. Both, the assumptions made and the mathematical model that relates the
input (voltage) and the output (position) is shown in Appendix C. The model shows
that the transfer function that will be analyzed by the students is shown in equation
8.5.

G(S) . K1
E.(s)  s((LuBm~+RaJy)s+RuBym + K Kp)

(8.5)

The virtual lab GUI

The virtual lab simulates the behavior of the servo-motor lab, for this purpose
the system is described in the form of differential equations.

ealt) — Raia(t) = Ly Malt) | g, 400) (8.6)
dt t
d’o(t) de(r) .

The differential equations are shown in Eqs 8.6 and 8.7. Where ¢, is the arma-
ture voltage, ey is the field voltage and iy, i their corresponding currents. R, and L,
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Figure. 8.9 GUI of the servo-motor lab

are the resistance and inductance of the armature. K}, is the counter-electromotive
force constant and K is the torque constant. J,, and B,, are the moment of inertia
and the viscous friction coefficient. 77 is the torque associated with the load of the
motor.

The available interactive elements gives the user means to control different ex-
perimental modes:

e Manual operation:The system can be controlled manually to change the input
voltage to the motor. The signal in the simulation has the same limits as the
real servo-motor.

e Automatic operation: This represents the controlled variable. Kp, T;, and
Tp. Proportional gain, integral time, and derivative time of the built-in PID
controller. The output to control can be changed between the speed and the
position.

Learning objectives

The simulated graphical representation allows the student in the visualization
of a general view of the experimental setup. The angular position of the motor is
represented as a protractor disc, Figure 8.9. When the user loads the webpage, the
laboratory starts. Using the VL the student can perform common tasks in control
engineering courses. Each one of the activities can be performed using one of the
two available outputs.

e System Identification: One of the VL’s main purposes is to identify the sys-
tem or to gather useful information about the order of the system and the



values of zeros and poles. The open and closed loop analysis can provide to
the student enough data to build a theoretical model. The quality of the model
will affect consequent steps, as the student may use this model to design con-
trollers or to be prepared for the remote version.

e PID Tuning: When the automatic control mode is selected in the upper menu
(as described in the previous Section), a closed loop is established for con-
trolling the velocity or position of the servo-motor by means of a PID con-
troller. Students can select the control variable (either velocity or position)
and may change the proportional, integral and derivative parameters of the
PID controller (kp, T;, Tp). in order to obtain a response that satisfies the
specifications asked in the practice guide. Then, an analysis of the output
signals, allows to obtain an approximated model of the system.

e Disturbances Analysis: The 2D visualization allows introducing an isolated
perturbation, by clicking and dragging the top yellow point in the servo.
These single perturbations can be used to study and obtain information about
the viscosity term, which have been shown in the physical description.

e User Defined Controller: As in the coupled drives example, advanced users
can write different controllers to use in the control loop. The code of the
controller can be written by using an special Moodle environment, Blockly®.
Using the Moodle plugin, the user can use visual blocks to code Javascript
tasks [114, 115, 116]. By using this option the students can:

— Add features to the basic web-lab built-in PID controller.

— Analyze and compare the behavior of well-known controllers for learn-
Ing purposes.

— Develop/test a controller for investigation purposes.

8.2.2. Planar parallel robots lab

Planar robots are a subgroup of robots which are designed to develop their
movements inside a fixed plane, they can develop very accurate movements at high
speed and payloads compared to serial robots. The kinematics problems involved
in the movement can be modeled using algebraic expressions which can be sim-
ulated using mathematical tools. Parallel robots intersects with the planar group,
and are also known to have an increased accuracy to bear high loads. In this re-
gard, ’the teaching of parallel robotics cannot be treated as a mere continuation of

“https://opensource.google.com/projects/blockly



serial robotics because there are significant conceptual differences between these
two types of manipulators” [53]. Therefore, kinematics problems behind of parallel
robots can not be directly obtained from the serial robotics kinematics, additional
resources, as a EjsS simulation, can be helpful to improve these theoretical con-
cepts.

Physical description of the experimental device

Inside the robotics area, actual robots are constructed using a variety of joint
types. The system which is going to be explored in this subsection is just using pla-
nar revolution joints, where the rotation axis are always perpendicular to the plane
of the robot. All the arms are connected between and considered rigid segments,
where the beginning or the end of the arms could be fixed, a bond with other arm,
or the end-effector. The movement through the plane depends on the position of
the joints, and the angle between one segment and the next defined the status of the
arm.

The example presented in this sections is a planar parallel robot which is simu-
lated using EjsS J&JS enabled version. The main purpose of developing this lab in-
side this architecture is to decrease the computational cost of the simulation. As the
mathematics behind the kinematic problem inside these systems may imply heavy
computations the architecture presented can be helpful, splitting the costs between
the model and the view. Usually real robots are defined in a fixed design, where the
main parameters, as the length of the arms, can not be modified. On the one hand,
we are considering ideal simulated robots inside a Cartesian plane, without flexing
arms or loose joints. On the other hand, their movements are restricted by archi-
tectural constraints and by developers-defined restrictions, like maximum/minimum
joint angles.

The model used in this work correspond to one Degree Of Freedom (DOF),
planar robot with 4 rotational joints (4R). It is called the 4R linkage and has been
studied deeply along the time in the robotics area [122, 123, 124, 125, 126, 127,
128].

The 4R linkage is a closed chain of joints, which has two fixed pivots as shown
in Figure 8.10. The arm distances are fixed, as the system contains only rotational
joints. The mathematical model can be obtained using common kinematics analysis
[122].

The analysis uses as origin the point marked with an O in Figure 8.10. 0 is the
input angle and @ the is output angle. The analysis of the mathematical relationships
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Figure. 8.10 An schematic representation of the 4R linkage, where main angles and lengths
are shown

between these angles leads to equations 8.8 and 8.9.

P(0) = arctan (g) +arccos (\/%Bz]) (8.8)

A(0) =2abcos(0) —2gb
B(6) = 2absin(0)
222 2
C(6)=g"+b"+a"—h"—2agcos(0)

A(8)cos(®) + B(0)sin(®) = C(6) (8.9)
A(8) = 2ah —2ghcos(0)
B(0) = 2ghsin(6)
C(0) = b* —a® — g* — h* +2agcos(H)

Solving both equations to a single value of 6 imply that there are two solutions.
Then, each 6 value correspond to two different positions of the planar robot as is
shown in Figure 8.11.

Both equation that contains the relationship between the angles in the planar
robot has geometric limitations. The limitation is expressed in the form of a condi-
tion which restricts the values of A, B and C on Equation 8.9:

A2+ B2 C?>0 (8.10)



Figure. 8.11 Visual representation of the two solutions behavior which is shown in equation
8.9 and 8.8

If restriction shown in Equation 8.10 is not satisfied, the linkage cannot be as-
sembled. In this regard, the limits of the angles are defined by the solution given
when the restriction is equal to zero. The solutions returns the maximum and min-
imum theta angles, and therefore the range of the input 8 angle. In the same way,
the limits over the output ® angle can be calculated, returning the output range.

Both restrictions over the input and output define a workspace for the planar
robot. The range of movement of the robot depends on the lengths of the arms, the
distance between the fixed points and the restrictions imposed by the designer.

The virtual lab GUI

Parallel planar robots simulation, as other VRLs, are intended to enhance the
learning process by giving the students flexible systems to test the limits and behav-
iors of their robots. In this sense, architectural and user-defined restrictions can be
edited to take advantage of the characteristics of virtual labs.
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Figure. 8.12 Virtual lab of the three arm planar robot

Figure 8.12 shows the GUI of the 4R linkage. The elements which conform



the robot structure are editable and interactive, giving the user total control over the
configuration. The available fields and buttons give the student means to visualize
and explore different characteristics:

e Direct interaction with the schematic robot: The movable joints (red and
white circles) can be clicked and dragged by the user. When the position
of the red joint is changed, the system reacts calculating the actual positions
of the joints and redrawing. It is also possible to modify the relative position
of the fixed points by dragging the white circle in the right part of the robot.
All this calculations are made in the server side, giving a light application for
the student, and returning the whole set of angles.

e Parameter edition: The fields available give a wide range of configurations,
which can be divided in three categories

— Length edition: The arms have been defined with a variable size. The
sizes are controlled by a, b and c fields. Each change in the length may
imply the recalculation of the actual status of the robot. As said before,
if some limitations are exceeded, the linkage cannot be assembled. In
this situation, the GUI reacts imposing a limit in the slider or the field.
Although, if the user insist, the limit will be exceeded, and the robot will
appear as broken to give feedback about the system limitations.

— User defined limitation over the input angle: The GUI uses « as input
angle, which correspond to 0 int he mathematical analysis. The param-
eters ¢max and gnin parameters define the user restrictions in the form of
maximum and minimum angles (in radians).

— Arm split rate: Figure 8.12 shown that grey and yellow arms are divided
in two halves, the A and B parameters control where this division is
located. This divisions is now just a visual reference to help the student
to identify the position where the blue arm can be blocked. On this
point, the system will not react when the user crosses this limitations.

e Dynamic workspace update: The right part of the GUI contains plots. The
bottom plot is reserved to show the workspace of the actual robot configura-
tion, a versus Y (which is the output angle ®). The configuration space is
calculated in the model when any interaction is received, returning 200 points
containing the (&, y) pairs.

e Dynamic movement using the full input range: The mathematical analysis
defines the range for the input and the output. On this matter, the GUI makes



a simulation of the movement adding a physical work over the input joint.
The evolution obtained can be studied in the corresponding graph.

Learning objectives

The introduction to parallel robotics can be done by using this type or virtual
lab, which has the educational goals of familiarizing students with the following:

1. Inverse kinematics: It is as a “start-up” in the understanding of parallel
robotics and is carried out by analyzing the movement of a set of parallel
structures in terms of the restrictions imposed by each link.

2. Direct kinematics: The inverse kinematic solution in parallel robotics is usu-
ally easier to understand than the forward kinematic problem. The inverse
kinematics of the 4R robot are analyzed; the students should be able to de-
rive the equations themselves. Next, the student checks and visualizes all the
feasible solutions using the virtual lab. This session is particularly interesting
for students since they can observe the different configurations of the robot in
rapid succession to achieve the same position and orientation.

3. Workspace and singularities: It focuses on the forward kinematic problem.
The students are asked to solve the geometric constraints of the 4R robot
in terms of the joint coordinates. The students should come to understand
the complexity of the forward kinematic problem, in contrast to the inverse
kinematic problem, for parallel robots. The VL allows students to find the
relationship between the direct and inverse kinematic problems.

These concepts are fundamental for an introduction to parallel robotics. Other
concepts, such as dynamics are not introduced here, to focus in the kinematics.
Although, some basis can be explained using the the applied physical work in the
input joint and with the angle versus time graph.

Experimenting with the virtual lab, and configuring these parameters helps stu-
dents comprehend the concepts involved. As the data and information in obtained
by its own, student can develop complex analysis regarding the behavior of the sys-
tem. Regarding this, topics such as the workspace and singularities analysis, are
easier to understand when the various parameters involved can be modified.

8.2.3. Heatflow lab

The heatflow lab is a well known example in control engineering areas. This
system and the use of EjsS has also a long history within the Informdtica y au-
tomdtica department [129, 18, 58, 130, 121]. The system can be used to achieve
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Figure. 8.13 The heatflow system and its components: The three platinum temperature sen-
sors, the blower and the heater grid

multiple goals and is also suitable to perform advanced control practices. As the
servo motor-lab, the heatflow VRLs are included in three experimental courses of
the UNILabs website:

e An open course with free access Labs on control'?.

e Labs of a course on control, inside the degree in informatics engineering. '!.

e A course of laboratory practices of the Master degree in Systems Engineering
and Control 2.

Physical description of the experimental device

Quanser Consulting'? designed the heat-flow system we chose for the labora-
tory. This system consists of a partially isolated transparent tunnel with a heating
grid, a blower, and three platinum sensors along the length of the tube: S1, S2, and
S3. By controlling the power of the heater V},, manually or in a automated process,
the user can observe and analyze the outputs shown by the sensors. The fan speed

10https://unilabs.dia.uned.es/course/view.php?id=24
https://unilabs.dia.uned.es/course/view.php?id=4
Zhttps://unilabs.dia.uned.es/course/view.php?id=7
Bhttps://www.quanser.com/solution/control-systems/
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Figure. 8.14 GUI of the heatflow along with the EjsS editor

can be also changed by changing the input signal V}, and the real speed is provided
by its internal tachometer, producing the V; signal.

The heatflow system is used to study: concepts related to the temperature flow
control in presence of delays and identification techniques. Figure 8.13 shows the
laboratory system with the main components of the heatflow device. Using sys-
tem identification techniques, shown in [58], the transfer function obtained can be
expressed as in equation 8.11.

_ Kp(1+13)exp(—14s)
G8) = = ar) (1 - 705)

Where the gain K, (degrees C/volt), the lags, and the delays depend on which
of the three sensors the user selects for closing the temperature control loop.

(8.11)

The virtual GUI

Figure 8.14 shows the GUI of the VL developed with EjsS to control the plant.
The virtual version contains a the main view divided into different parts. The graph-
ical representation of the system is a schematic 3D representation to facilitate vi-
sualization of the heat-flow dynamics. It allows to know the actual state of the
laboratory, as it gives visual feedback about the temperatures inside the transparent
tube, the heater and the movement of the fan. To obtain this feedback, the inner
air’s color changes according to its temperature and the grid surrounding the heater
is also colored. The bottom-left part of this panel shows several tabs that let users
modify different experimentation parameters as:



e Manual operation: The system can be controlled manually to change the input
voltage of both: the fan and the heater. The response is shown inside the
graphics, at the right side of the GUI.

e Automatic operation: This represents the controlled variable. Kp, T;, and
Tp. Proportional gain, integral time, and derivative time of the built-in PID
controller. The output to control can be changed between one of the three
available sensors Sy, S or S3.

Using the built-in differential equation editor, the model is implemented using
the information obtained from [58]. The model is designed to work as the real one,
changing the analog signals V}, and V}, and students can close the control loop in any
of the available sensors.

Learning objectives

The heatflow VL simulates the system dynamics using the knowledge gathered
about the model. The GUI gives to the user the possibility of introducing new
voltage values or to close the control loop over one of three sensors. The voltage of
the blower can be changed an is used as a source of perturbations. Visual elements
provide the possibility to perform many different laboratory practices. The activities
can be divided into three different categories:

e System Identification: In this situation the model is complex, but some tasks
regarding the system identification can be achieved. The information gath-
ered may provide useful information about the order of the system and the
values of zeros and poles. Even so, the knowledge level required to run and
understand the system result widened, as the heatflow transfer function can
be simplified. The different levels of complexity are translated to different
qualities of the model, allowing the teacher to introduce and study delayed
systems.

e PID Tuning: A closed loop can be established for controlling the temper-
ature in one of the sensors. In all the cases, the controller used is a PID.
Students can select the sensor and configure the proportional, integral and
derivative parameters of the PID controller: kp, 77, Tp. These parameters can
be changed in order to gather new information about the model or to satisfy
the requirements of the laboratory practice.

e Disturbances Analysis: The system allows the introduction of perturbations
in the form of variable airflow. Modifying the values of the blower voltage the



system can simulate the effect of the new air being introducing and flowing
along the tube.

e User Defined Controller: As in last examples, advanced users can write
different controllers to use in the control loop. The code of the controller
can be written by using an special Moodle environment, Blockly'. Using
the Moodle plugin, the user can use visual blocks to code Javascript tasks
[114, 115, 116]. By using this option the students can:

— Add features to the basic web-lab built-in PID controller.

— Analyze and compare the behavior of well-known controllers for learn-
ing purposes.

— Develop/test a controller for investigation purposes.

14https://opensource.google.com/projects/blockly






9. Remote Labs

This chapter presents RLs which have been described following the same struc-
ture of the last chapter. Each RL description is divided in three parts:

e Server side description: The RLs are usually based in real equipment and
systems, this section gives a description and some mathematical background.
To lighten the description of the labs, some parts of the mathematical back-
ground of the system included as appendices.

e The remote lab GUI: This section describe the user interface and additional
details about the development, like the equations used to simulate the behav-
ior.

e Learning objectives: The purposes of the lab can be many, but this section
gives a glimpse about some activities that can be achieved.

Some labs have been updated from previous labs, and some have been developed
from scratch. To represent the real lab which is the server side, the GUI has to be:
graphical, dynamic, interactive and representative of the system to be studied.

The following remote labs allow the user to carry out lab experiences inside the
control engineering and physics area. Some labs have been described mathemati-
cally in Chapter 8, then, the model description is not included, but can be consulted
in the appendices.

9.1. Remote labs developed in Javascript

The two coupled electric drives and The vibrating wires experiments have been
developed using this version.



9.1.1. Two coupled electric drives

The two coupled electric drives lab has been presented in its virtual version
in previous chapter. Thus, the mathematical and theoretical modeling have been
presented along with some common structures which are also used in the remote
version. To maintain the global structure help students in the leaning process. A
similar GUI is used to avoid a process of understanding and knowing new inter-
faces. Although, some changes are inevitable, because controlling a remote system
is more restrictive than virtual versions. The coupled electric drives RL is a fast
dynamics system, where the time needed to reach stable states is short. Fast dy-
namics imply that the student can make many changes and gather more data than is
a slower system. But, the student needs a higher level of knowledge to carry out the
experience than in other RLs due to the limitations of the real elastic band and the
speeds of the motors.

Server side description

The architecture of previous remote labs in UNED were usually based on three
software tools: EjsS, LabVIEW (Laboratory Virtual Instrument engineering Work-
bench) and the JIL server [131, 132, 21, 133]. In this line, the effort of the present
lab focuses in the use of open standards and technologies to reduce the economical
cost and efforts required for building RLs. In this sense, the Remote Hardware In-
teroperability (RHI) Protocol protocol [31] provides a well defined interface to get
state measurement and control and handle user requests. The interoperability API
relies on two standard remote procedure calling protocols (RPC): XML-RPC and
JSON-RPC. This is somewhat similar to the smart device paradigm [98] which is
used in the implementation of the EjsS J&JS.

In summary, as a general approach, RLs development can be decomposed into
the middleware tier that implements the RHI protocol, and the hardware control,
which usually must perform several tasks: Communication, Data-Acquisition and
Control, and Data Logging.

In the remote lab, the server tasks are carried out by a low-cost development
platform: the BeagleBone Black (BBB) board. The BBB is a low-cost, community-
supported development platform for developers and hobbyists. This board has many
interesting 1/O capabilities, such as USB client and host, Ethernet, HDMI, GPIO
with PWM and even built-in support for I2C and SPI. It is shipped with a pre-
installed Angstrom Linux distro, which is optimized for embedded systems, but it
is compatible with several Linux distros, such as Debian or Ubuntu, and even with
Android.

The JIL server functions have been assumed by Node.js, a lightweight and ef-
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Figure. 9.1 The architecture of the remote lab.

ficient platform which is built on Chrome’s JavaScript runtime. This platform has
been chosen because it is a ready-to-use tool, built-in in the installation of any BBB,
and, as its website claims, it is for “easily building fast, scalable network applica-
tions”.

The motivation for changing the PC by the BBB is twofold. On the one hand,
it is much cheaper and it can, at least for this purpose, do the same function. On
the other hand, the equipment used in the laboratory requires space, and PCs are
much more bulky. Though it is possible to replicate the previous communication
architecture based on LabVIEW with a BeagleBone Black board due to its low-cost
and computational capabilities.

The middleware and the server tiers are implemented in the BBB. The frame-
work is divided into three subsystems: Communication, Data-Acquisition and Con-
trol, and Data Logging.

The communication subsystem provides an implementation of the RHI protocol.
Since there is a current trend to propose client in Javascript for compatibility with
tablets, smartphones and similar devices, the use of the JSON format facilitates the
integration with javascript applications.

The data-acquisition and control subsystem directly interfaces with the plant
hardware, reading the velocities from the motors and the tension from the belt, and
sending the control actions (received from the user interaction with the EjsS appli-
cation in the client side) to the motors. Finally, the data-logging subsystem consists
of a low priority loop which writes to disk the system events (sensor readings, user
commands, etc).

With respect to the connection between the plant and the board, the signal mea-
sured from the sensors and the control voltages admitted by the motors are within
the range (-15V, 15V). However, the analogs inputs of the BBB board admit only
a range of (OV, 1.8V), while the outputs only can provide values in the range (0V,
3.3V). So to adapt the levels, a signal-conditioning block was designed (basically
an amplifier with gains chosen according to the ranges, see Figure 9.2).
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Figure. 9.2 The plant and the board work at different voltage levels, so an op-amp based
circuit was added to each I/O to obtain the adequate ranges.
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Figure. 9.3 The remote lab application.

The remote lab GUI

The client interface for the remote lab is still implemented as an EjsS applica-
tion, similar to the virtual laboratory described in the previous Section (see Figure



9.3). Therefore the thoroughly change of the server is transparent to the user. As
seen in Figure 9.3, the GUI for the RL is almost identical to the VL one. Therefore,
just a minimal explanation is required in this regard to show the differences.

Step Time: This menu is not possible in the remote version, as long a the step
time is not controllable in a real system.

System web-cam and control: The web-cam image contain a view of the
coupled drives system, but to enhance the visualization of the dynamics, ad-
ditional semitransparent figures have been added as augmented reality feed-
back. The high speed of motor and pulley makes almost impossible to appre-
ciate its movement. Thus, the augmented reality feature is overlapped to the
video image and help he user to identify the movement of the pulley and the
motors.

In the Controls tab. Students are also in control of the velocity of the motors,
but remote version can not afford different rotation directions, neither big
differences between speeds. In automatic mode, the U; and U, sliders are
disabled and the user can change the tension and velocity references (the two
inputs of this system), and select whether to make a coupled or a decoupled
control for these variables.

The Controller tab is not available in the remote version, as seen in the pre-
vious chapter some Blockly tools' included in Moodle can be used to write
user-defined code in VRLs.

The AC Signals tab: The main capability for making an "ac sweep” is avail-
able in the remote lab. Although, the real device is limited to a narrow inter-
val of frequencies. For this reason, and due to the fragility of the elastic band,
these fields and option are not available for students.

Experimental protocol

Students who have obtained an accurate model of the coupled drives system
in the virtual laboratory will be able to program better controllers or tune better
PID parameters to get the desired response in both, virtual and remote versions. In
addition, they get better prepared for the remote laboratory where the system iden-
tification is not easy. If the students want to obtain a model for the real system they
must take into account the results in virtual application, and then, fit the parame-
ters of their models using the outputs of the remote lab. Visual elements provide

Thttps://opensource.google.com/projects/blockly



the possibility to perform many different laboratory practices. The activities can be
divided into three different categories:

e System Identification: In this situation the model is complex, but some tasks
regarding the system identification can be achieved. As the VL is a simulated
lab, the user can study the similarities and differences between both. The
information about the system response can be gathered to compare with the
expected behaviors. This activity may be performed acquiring data from all
the steps in the remote experiment like the open and closed loop responses.

e PID Tuning: When the automatic control mode is selected in the upper menu
(as described in the previous Section), a closed loop is established for con-
trolling the velocity or tension of the belt by means of a PID controller. In
coupled mode, students can select the control variable (either velocity or ten-
sion) in this MIMO system, and may change the proportional, integral and
derivative parameters of the PID controller (kp, 7, Tp) in order to obtain a
response that satisfies the specifications asked in the practice guide. In de-
coupled mode, students work with two SISO systems and, therefore, with
two PID controllers. Then, an analysis of the output signals (stored in .m
files), allows to obtain an approximated model of the system.

e User Defined Controller: As in last examples, advanced users can write
different controllers to use in the control loop. The code of the controller
can be written by using an special Moodle environment, Blockly?. Using
the Moodle plugin, the user can use visual blocks to code Javascript tasks
[114, 115, 116]. By using this option the students can:

— Add features to the basic web-lab built-in PID controller.

— Analyze and compare the behavior of well-known controllers for learn-
ing purposes.

— Develop/test a controller for investigation purposes.

9.1.2. The vibrating wires

The vibrating wires lab has been presented in its virtual form in the previous
chapter. Thus, the mathematical and theoretical modeling have been presented
along with some common structures which are also used in the remote version.
Maintaining the global structure, the students can follow a similar path to perform

Zhttps://opensource.google.com/projects/blockly



Figure. 9.4 Fully developed experimental device, consisting of the following elements: (1)
DC LED light source, (2) strings, (3) stepper motor, (4) LEGO gear connected
to LEGO servomotor, (5) light sensor, (6) linear stage, (7) LEGO carrier, (8)
mobile aluminum rod, (9) rule and length indicator, and (10) dynamometers.
The close-view figure shows a frontal view of the string plucking element con-
sisting of (11) the rotation axis of the LEGO gear, (12) trajectory described by
the LEGO gear perimeter, and (13) string under study.

the lab experiences. Both graphical user interfaces are almost equal, therefore, the
experience gained in the virtual version can be applied in the remote one.

Server side description

With LEGO™ Kits it is remarkably easy to introduce experimentalists into
robotic designs. The development of Arduino boards also allows one to control
stepper motors, light diodes, and so, in an easy manner. These tools can be widely
used to construct future laboratories, compatible with the requirements of a given
experimental setup and allowing the students to measure, analyze and extract con-
clusion with laboratories developed in the cloud.



A schematics of the device is shown in Figure 9.4 (which is the same Figure
from 8). The real version contains five different strings (2) made of different ma-
terials (copper, kanthal, constantan, and nickel) and with diameters ranging from
0.3 mm to 0.5mm. One of the ends of the strings (with the exception of the cen-
tral string) is fixed on the aluminum structure of the device, while the other end of
the strings is connected to a dynamometer (10) that measures the tension along the
string. In the case of the central string, the fixed end is connected to the axis of
a stepper motor (3), so that the tension can be controlled. A LEGO carrier (7) is
used to displace an aluminum rod in close contact with the strings (8) along the y
axis, in such a way that the length of the vibrating part of the strings can be changed
from 380 mm to 550 mm. This length is measured by means of a rule and an in-
dicator attached on the mobile rod (9). A DC-LED (Galaxy 1000) light source (1)
illuminates the system from above, and a linear stage (RS 340-3749) (6) is setup
below the strings along the x axis. Two elements are attached on the top of this
linear stage: 1) a light sensor (Phywe 08734-00) covered by an opaque cap with a
0.3 mm slit oriented along the y axis (5), and ii) a LEGO gear connected to a LEGO
servo motor (4). As can be seen in the close view of Fig. 8.5, the rotation axis of
the LEGO gear (11) does not coincide with its center, so that the perimeter of the
gear roughly describes an ellipse when the LEGO servo motor rotates (12). The
position of the opaque cap and the gear along the vertical direction has been fine-
tuned in such a way that, first, the cap of the light sensor is placed less than two
millimeters below the horizontal plane formed by the strings, and second, the apex
of the gear perimeter trajectory coincides with the horizontal plane formed by the
strings (13). The stepper motor and the linear stage are controlled by two identical
drivers (EasyDriver), and An Arduino I/O boardcard is used to send the convenient
digital signals. A power supply (Lendher 3003D) provides the current required by
both drivers, and a second identical power supply is used for the DC-LED light
source. An oscilloscope (PicoScope 2203) is used to read the measurement from
the light sensor. A LabVIEW code has been developed to control all of the above
mentioned elements within the JIL server [131, 132, 21, 133] which have been used
successfully in other labs. To connect both sides (LabVIEW on the server side and
EjsS on the client side) the lab architecture includes a JIL server, [31]. JIL uses the
XML-RPC protocol to encode the messages and allow data exchange between both
sides, as shown in figure 9.5.

The remote lab GUI

The GUI for both the virtual and remote lab is built using EjsS in the Javascript
enabled version. It gives the student the control of the experimental environment



Figure. 9.5 VRL communications architecture

(tension, length...) as in a hands-on laboratory.

Figure 9.6 shows the basic structure of the virtual laboratory when the .xhtml
is served to the client. As it was said in previous sections, the virtual laboratory
is based on a simulation of the system behavior and the GUI. The virtual lab also
allows students to get familiar with the available interaction and the protocol, in
order to be prepared to the remote version of the lab. The application window is
divided into three sections: the web-cam, the controls panel and the plots/graph
panel.

e Web-cams: In the remote version, this panel contains a panel which can be
used to observe one of three web-cams. Using the obtained images, the stu-
dent take measures from the tension and length of each string, or observe the
device with a general view of the lab. Figure 9.6 contains and example of the
remote GUI running.

e Controls panel: As in the virtual GUI, the user is helped to go through the
experimental protocol, highlighting each step and giving tool-tips to make it
easier.

e Plots/Graphs panel: The vibrating string RL plots the light intensity versus,
first, the position of the linear stage (see section 5 for details in this calibration
procedure), and second, time (in order to obtain the frequency of the funda-
mental normal mode). Both obtained using the oscilloscope device which is
connected to the light sensor.

Experimental protocol

Three CCD cameras allow the student for the visualization of a general view
of the experimental setup as well as a close view of the measurement elements



Vibrating Wires

Open | | ZipConnect | | HReset

& Calibrate Positions | UseData

Positions

Store positions

Choose Type: [fireiz v | Use String Goto!

Lenght and Tension Sliders

3 < k. £ Lenght of String [1[send_Length
| ' Tension | 41Decrease | @Set | I» Increase
— il i .

. . Hit_String | sHIT| | Use Hit Data
Front View | Top View | Isometric View |

| Repeat Same | Diff, Length | Change String | FinishLabWork |

Signal from Oscilloscope
¥_Max:
et
e i SN
st T
T n
- " Th
- -
rt |
ey
i Sy,
Y Min: ot | 1 ™
= T T T T T, T T T, T T T Y
Sters
X Min: Faw X_Max: face
Select String Positions fsa

Figure. 9.6 The Remote vibrating string system laboratory.

(dynamometers and length indicator). Once the student connects to the remote
controller, an automated initialization procedure is executed by the device: The
DC-LED is turned on, and the linear stage and the LEGO carrier are displaced to
their initial positions, determined by means of two LEGO limit switches. After this
initialization, the student has to proceed as follows:
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Figure. 9.7 a) Light intensity versus position of the light sensor along the x axis. b) Light
intensity versus time after the gear hits one of the strings. The inset graph
represents a close view of the results fromt =3.5stot =3.55s.



. Location of the strings’ positions: A complete sweep is performed by the
linear stage along its whole range of displacement, while the light sensor
attached on its top is continuously measuring the light intensity. Therefore,
the student can see the function light intensity versus position along the x axis.
As can be seen in Fig. 9.7a, the light intensity is roughly symmetric with a
local maximum at the center. This is because we use a single light source
placed at the center of the device in order to avoid multiple shadows produced
by multiple light sources. Thus, the student can determine the position of each
string from the five local minima in the light intensity.

. Selection of the string and the length to explore: After this calibration, the
linear stage is displaced to the string selected by the student, and the LEGO
carrier moves backward or forward to reach the desired length. The student
still needs to obtain a precise measure of the positions of the wires, but the
real linear stage helps the student by performing an automated fine-tuning. It
ensures that the thin slit of the light sensor is placed exactly below the string
shadow.

. Selection of the tension (if needed): If the string selected by the student is
the central one, the tension can be varied by the stepper motor. In that pur-
pose, by clicking an increase tension (or decrease) control, the stepper motor
rotates a fixed number of steps in the clockwise (or counterclockwise) direc-
tion, so that the tension is increased (or decreased) in steps of approximately
0.05 N. The student observes the measurement of the dynamometer by means
of one of the CCD cameras, and is able to change the tension as long as it is
maintained below 10 N to avoid breakage of the string.

. Execution of the experiment and data acquisition: When the previous
steps have been completed, the device is ready to execute the experiment in
those conditions selected by the student. Then, by clicking the corresponding
control, the light sensor starts to measure the light intensity, and the LEGO
gear attached on the top of the linear stage performs a 360° rotation, plucking
the string when it reaches its highest position. The Fig. 9.7b shows the results
of an actual experiment as an example. The instant in which the gear hits
the string and the relaxation dynamics are clearly observed. The student has
to analyze these data, calculating the frequency of the fundamental normal
mode, fi.

. Analysis of the results and comparison with theory: Once the student has
completed experiments under different physical conditions, the dependence



relation between f] and the physical parameters of the string (7', L, p) can
be established. Then, the student should be able to discuss the experimental
errors and the validity of the theoretical model.

9.2. Remote labs developed in Java & Javascript

9.2.1. The servo motor lab

The servo-motor lab has been presented in its virtual version in last chapter.
Thus, the mathematical and theoretical modeling have been presented along with
some common structures which are also used in the remote version. To maintain the
global structure help students in the leaning process. A similar GUI is used to avoid
a new process of understanding and knowing the GUI. Although, some changes
are inevitable, because controlling a remote system is more restrictive than virtual
versions. The servo-motor RL is a fast dynamics system, where the time needed to
reach stable states is short. Fast dynamics imply that the student can make many
changes and gather more data than a slower system. Therefore, the student needs
less level of knowledge to carry out the experience. But, these students which have
studied the model obtained in the VL can make smarter decisions, taking advantage
of the available time.

Figure. 9.8 Components of the remote servo motor lab.

Server side description

The labs which are rebuilt using the EjsS J&JS enabled version follow a com-
mon architecture. Remote labs in UNED were usually based on three software tools:
EjsS, LabVIEW (Laboratory Virtual Instrument engineering Workbench) and the
JIL server [131, 132, 21, 133]. In the server PC, there is a LabVIEW VI (Virtual In-
strument) which is plant-dependent and implements a local control. The server PC
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Figure. 9.9 Software components of the remote servo motor lab.

runs the JIL server as the main interface between the local EjsS model application
and the LabVIEW VI. The model application establish also the communications
between the server side and the final user. This local architecture is described in
Figure 9.9

The Figure 9.8 shows the servo-motor lab with all its components at the server
side. It is divided into three main elements:

e Servo-motor device, presented in Chapter 8.

e Computer and Uninterruptible Power Supply (UPS): Computer contains the
software which is needed to establish the exchange with the hardware and
with the client. In this sense, the computer carry out all the server side tasks:

— Runs the model, which is on charge of listening to connections from
clients, building and translating the messages from the client and run
the code which is triggered by user interactions (Chapter 5 contains ad-
ditional details). The model establishes a connection between the clients
and the LABView software.

— Runs the LABView software: LABView is in charge of connecting with
the acquisition board to perform control and sensing tasks. LABView
is also in charge of exchanging information with the model, which adds
the communication capabilities using the SDS. Control of the system is
done inside the LABView software, as the acquisition board and servo-
motor hardware are intended to be used with this software. LABView is
a powerful tool that enhances the capabilities of the hardware.

e Webcam: Is an IP-camera which is connected to the same network as the
computer and is used to provide a visual reference of the system. Figure



shows a image which is similar to the one shown in the VL, but in the remote
version the user observes the real marked disk.

The remote lab GUI
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Figure. 9.10 Components of the remote servo motor lab.

Figure 9.10 shows the GUI of the RL developed with EjsS to control the plant.
The remote version of the GUI is similar to the one presented in the VL, but, there
are some differences. The graphical representation of the system has been changed
by a web-cam image, which contains a view of the motor system. The RL is ex-
changing information to know the actual state of the laboratory in the server side
and it is plotted and visualized in the graphs and field in the GUI.

Experimental protocol

The remote lab is almost equal to the simulated version of the lab. Although,
some minimal details must be commented, as the experiences return real, then,
different data. When the user loads the webpage, the laboratory must be started
manually by connecting to the server. Using the RL the student can perform com-
mon tasks in control engineering courses and use their experience from the virtual
version of the servo-motor lab.

o System Identification: RL’s identification can be done in two ways. The first
one implies a comparison step, where the student must compare both, the
virtual and remote responses. The second step involves obtaining an accurate
model for the real motor. This can be done by gathering information from the



open and closed loop analysis. The first step implies qualitative comparison
to prepare student for the subsequent modeling.

e PID Tuning: The closed loop is used for controlling the velocity or position
of the servo-motor by means of a PID controller. The student can tune the
PID by hand by changing the proportional, integral and derivative parameters
of the PID controller (kp, T;, Tp). The user can perform this task with no
knowledge about the system, but, in order to obtain the best response, the
student can also use the acquired knowledge to design the perfect PID for
each situation, following the goals of the practice guide.

e Disturbances Analysis: The real lab cannot introduce an isolated disturbance
in the motor, but in the manual control mode, the user can introduce signals
to reproduce part of this behavior.

e User Defined Controller: It can be done as in the virtual version, using the
Moodle plugin which uses Blockly to edit the controllers of the lab.

The set of activities presented for the servo-motor lab are enough to cover the
possibilities for this lab. Although, more complex lab experiences can be imagined,
then, the RL not limited to this set. The system is configured to exchange just a few
variables needed to make these educational laboratory practices, but there are much
other information that can be exchanged. On this subject, experiments for advanced
students, regarding the system identification for example, are also possible. The
server side is not the idealized version of the lab where anything in controllable.
Such kind of server side is possible, but not useful for education. Although, the
combination of model + LABView gives a wide range of controllable parameters.
And as the lab is using J&JS enabled version of EjsS, adding these variables or
making new calculations in the model is easier than in previous versions.

9.2.2. Heatflow lab

The reader has a glimpse about the heatflow system, as the mathematical and
theoretical modeling have been presented previously in Chapter 8. In the virtual
version the simulation can be configured to use a bigger step time. This change
results in a simulation where the time runs faster than with little step times. In the
remote version the time is not a editable variable and the heatflow lab is a system
characterized by slow dynamics. This means that the system needs a significant
amount of time to reach stable states. Slow dynamics imply that the student needs
a higher level of knowledge to carry out the experience than in the case of the



servo motor lab. Therefore, the student can make smarter decisions to improve the
available time.

Server side description

The Figure 9.11 shows the heatflow lab with all its components at the server
side. Is divided in three main elements:

e Heatflow system: It contains three sensors, a heater grid and a blower inside
a semi-isolated plastic tube.

e Acquisition board: Connected to both, the computer and the heatflow, to ac-
quire the data from sensors and to control the signals of the blower and the
heat grid actuators.

e Computer and UPS: Computer contains the software which is needed to es-
tablish the exchange with the hardware and with the client. In this sense, the
computer carry out all the server side tasks:

— Runs the model, which is in charge of listening to connections from
clients, building and translating the messages from the client and run
the code which is triggered by user interactions (Chapter 5 contains ad-
ditional details). The model establishes a connection between the clients
and the LABView software.

— Runs the LABView software: LABView is in charge of connecting with
the acquisition board to perform control and sensing tasks. LABView
is also in charge of exchanging information with the model, which adds
the communication capabilities using the SDS. Control of the system is
done inside the LABView software, as the acquisition board and heat-
flow hardware are intended to be used with this software. LABView is
a powerful tool that enhances the capabilities of the hardware.

e Webcam: Is an IP-camera which is connected to the same network as the
computer and is used to provide a visual reference of the system. As the
heatflow lab is not too visual some capabilities have been added to the GUI
to improve the feedback.
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Figure. 9.12 GUI of the heatflow RL with the augmented reality feature activated to see
the temperature in the airflow inside the plastic tube. As 3D graphics con-
sume many computation resources, a 2D simplified view is also available, but
without the augmented reality capabilities

The remote lab GUI

Figure 9.12 shows the GUI of the RL developed with EjsS to control the plant.
The remote version of the GUI is similar to the one presented in the VL, but, there
are some differences. The graphical representation of the system has been changed
by a web-cam image. The RL is exchanging information to know the actual state
of the laboratory in the server side. The bottom-left part of this panel shows several
tabs that let users modify different experimentation parameters as:

e Manual operation: The system can be controlled manually to change the input



voltage of both: the fan and the heater. The response is shown inside the
graphics, at the right side of the GUI.

e Automatic operation: This represents the controlled variable. Kp, 77, and
Tp. Proportional gain, integral time, and derivative time of the built-in PID
controller. The output to control can be changed between one of the three
available sensors S, S or S3.

The web-cam image contains a view of the heatflow, but to enhance the visual-
ization of the dynamics, an additional image has been added in a augmented reality
manner. The additional 3D representation gives some visual feedback about the
temperatures inside the transparent tube, the heater and the movement of the fan.
Some of the RL incorporate the augmented reality feature by which a graphical rep-
resentation of the system is overlapped to the video image. In the heatflow system
this feature is particularly useful because users can appreciate the heating process
inside the duct since the colour of the air changes from blue to red gradually. The
augmented reality feature can give the user the feeling of physical presence in the
lab and some visual feedback.

Experimental protocol

The RL of the heatflow is a real system where the dynamics are slow. The
knowledge gathered in its virtual version may play a key role in the experimental
process in the real lab. Visual elements provide the possibility to perform many
different laboratory practices. The activities can be divided in four different cate-
gories:

e System Identification: In this situation the model is complex, but some tasks
regarding the system identification can be achieved. As the VL is a simulated
lab, the user can study the similarities and differences between both. The
information about the system response can be gathered to compare with the
expected behaviors. The heatflow is a delayed system and can be studied in
many different ways in the control systems theory.

e PID Tuning: As in the VL, the control loop can closed using one of the
three available sensors. The RL is configured by default with PID parameters
which are not optimized. In this regard, students can modify the selected
sensor and configure the proportional, integral and derivative parameters of
the PID controller: kp, T, Tp. The characteristics of the output and control
signals are more restrictive in the RL, because of their natural limitations.



e Disturbances Analysis: The VL gives also control over the voltage of the
blower, changing the airflow crossing the plastic tube. It allows to see the
real effects of introducing perturbations. As is a real system, the blower has a
minimum voltage to be operational and a maximum voltage, where the airflow
1S maximum.

e User Defined Controller: As in last examples, advanced users can write
different controllers to use in the control loop. The code of the controller
can be written by using an special Moodle environment, Blockly®. Using
the Moodle plugin, the user can use visual blocks to code Javascript tasks
[114, 115, 116]. By using this option the students can:

— Add features to the basic web-lab built-in PID controller.

— Analyze and compare the behavior of well-known controllers for learn-
ing purposes.

— Develop/test a controller for investigation purposes.

Though these are the main activities that can be performed over the heatflow
system, the RL is not limited to this set. The system is configured to exchange just
a few variables needed to make these educational laboratory practices, but there are
much other information that can be exchanged. On this point, experiments for ad-
vanced students, regarding the system identification for example, are also possible.
The server side is not the idealized version of the lab where anything in control-
lable. Such kind of server side is possible, but not useful for education. Although,
the combination of model + LABView gives a wide range of controllable parame-
ters. And as the lab is using J&JS enabled version of EjsS, adding these variables
or making new calculations in the model is easier than in previous versions.

3https://opensource.google.com/projects/blockly






10. Conclusions and Future Work

10.1. Conclusions

The outcomes of the research done in this Thesis can be divided into software,
developed VRLs results.

10.1.1. Software results

Software results comprises two main contributions. The first one is the study
and analysis of the VRLs needs and its problematic. On this subject, the VRLs
design has been divided in three topics:

e Hardware to network.
e Network to device:

— Architectures.
— Protocols.

— Data formats.

e Programming languages.

Similarly, the problematic associated to the architecture of the VRL has been
studied and divided in three main problems:

e Controller location.
e Model and GUI coupling.

e Computational needs of the system.



The second one shows a collection on minimal requirements for a solution, tak-
ing in considerations the state of art and the problems presented. Following this re-
quirements, a new enabled version of EjsS has been implemented. The tool makes
easier the development of VRLs by automating the GUI and model creation. The
implemented solution is adaptable to other lab structures and the level of standard-
ization given by the data format make the VRLs usable by other developers or in-
stitutions.

The study of the problematic when developing VRLs is of particular interest
since the problems are associated with many different areas of study. Thus, usually
it is not possible to find general solutions, as each problem is inside a wide area of
knowledge.

Therefore, a general design of a solution has been proposed to eliminate or
reduce common problems when developing VRLs inside an online course. In this
sense, the solution gives general guidelines to conform laboratories that can be run
in mobile devices and be compatible with other laboratories, tools and devices by
sharing a common structure.

It is always desirable to check the theoretical solution inside a real environment.
In this regard, EjsS tool is the perfect framework to implement the solution as to
test it in the development of VRLs. A significant effort has been dedicated to ease
the use of the tool, encapsulating all the low-level issues presented at the client side
into an EjsS Model Element, and adding a wrapper to enhance the edition by the
user. Then, the implementation of the solution inside a real tool in important, an so,
the labs developed using this tool.

10.1.2. Developed VRLs results

To illustrate and validate the software results, a collections of virtual and remote
labs for education are presented in this Thesis. These VRLs have been done using
the different versions of EjsS and in different areas like: Physics, Robotics and
control engineering:

e Physics area labs studies physical phenomena in systems. On this point, stu-
dents of this area must learn about the basis of the system and methodologies
to obtain information. The Thesis has presented two version of the vibrat-
ing wires lab: the virtual and the remote. In this lab the student can excite
a wire and acquire data directly from the oscilloscope to study the nature of
vibrations.

e Robotics area: The kinematics problems involved in the movement of robots
can be simulated using mathematical tools such as EjsS and can be helpful to



improve these theoretical concepts. The Planar robots lab gives the students
a flexible system to test the limits and behaviors of their robots.

e Control engineering area have well known examples to study automatics.
In this regard, four labs have been developed or updated. These labs share
similar learning objectives: System identification, PID tuning, disturbances
analysis and the design of a controller.

— Two coupled electric drives remote lab in both versions: virtual and
remote. This lab is used to investigate basic and advanced principles of
control on multi-variable systems. Additionally it offers the possibility
to perform frequency response analysis.

— Servo motor lab: The main purpose of this lab is to control its position
or speed.

— Heatflow lab: The main purpose of this lab is to control the temperature
by closing the control loop using one of three sensors.

10.2. Future Work

Lines of further work can be divided into software, developed VRLs. On the
one hand, the software ones:

e Add capabilities to the Javascript and Java elements, to make its interfaces
simpler and ready-to-use.

e Build a Java library containing all the functionalities described to be reusable
and ready to use in non-EjsS environments.

e Merge different elements into a common model element, sharing resources
and capabilities. The final element will be able to connect with software,
hardware or devices in a simpler manner.

e Consider other programming languages to build the library, to widen the us-
ability of the solution.

On the other hand, in developed VRLs lines of future work we propose the
completion or update on VRLs that are now in development or in its Java version:



e Complete a RL, that is now in development by using the J&Js version. The re-
mote version for the planar robot (see Subsection label VL-planarRobot): The
virtual one is very useful to check and understand the basis of planar robots,
but the remote will give a practical vision of the data acquiring, structural
restrictions and direct and inverse problems.

e Complete the Maxwell disc laboratory, that are now in development by using
the Javascript version:
— Remote version of Maxwell disc laboratory.
— Virtual version of the Maxwell disc.
— A pneumatic linear actuator laboratory.
e Update the Mobile robots laboratory, that is now only available in its Java
version, by using the J&Js version. The mobile robots lab was used before in

its Java version [134, 135], now due to the their library usage and processing
it is a good candidate to be used in the J&Js version.
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A. Coupled Electric Drives
Mathematical Model

The mathematical model for the coupled electric drives system is well known
[113] and can be obtained using the scheme in Figure A.1. Using the lagrangian
mechanics, the kinetic energy, and the dissipation term of motors and pulley, it
follows that:

1 1 1 5 1 .
T= me,% +5h 67 + b 67 + o 6, (A1)
1o 1 1 1
R= §b1912+§b29§+§bme,§+§bmx§ (A.2)

Where x), is the jockey pulley vertical position, [/1,>,1,] are the motors and
pulley inertia, m is the jockey pulley mass, [b1,b;] are the motors friction, [by,bp4]
are the translational and angular pulley friction, and [0y, 6,,6,,] are the angular
positions. o 1is the half-angle between the elastic belts. o is not constant, due
to the movement of the jockey, but, the total variation can be neglected in a first
approximation. The elastic nature of the belt can be approximated to a spring so
that the potential energy is:

V= 31781 — 60) + K1 (61 ;) —xcos(a0)”

1 1
+5k[r(6, — 62) —xcos(a)]? + Ekoxz (A.3)

Where [k,ko] are the belt and spring stiffness and r is the radius of the pulley
and the motors, which are assumed to be equal. Neglecting the pulley inertia and
angular dissipation and using equations (A.1), (A.2) and (A.3), we finally obtain the



following expressions where the torques 7; and 7, are the system inputs:

.. . 3 3
1,6 +b16, +kr2[§61 — 592 — fCOS(O()] =T (A4)
r
.. . 2 3 3 X
1,6, +b,6, + kr [—591 + 592 + ;COS(OC)] =T (A.5)

mx + b x — kry cos( o) + xko
2
+kr[0) cos(a) + TX cos’(a)] =0 (A.6)
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Figure. A.1 Equivalent dynamic components of coupled electric drives [113]



The equations (A.4), (A.5) and (A.6) are used in the virtual laboratory, taking
I=L=hL=1I,b=b; =b.
Dynamic equations in matrix notation could be written as:

L 0 0 b 0 O
M= 0 L 0 |B=|025b 0
0 0 m 0 0 by
3 kr? —3kr? —krcos(a)
K= —3kr? 3kr? krcos(ot)

—krcos(a) krcos(a) ko+ 2kcos? ()

) 0 0 T
M - 57 6, +B- % 6, +K = (%)
X X 0

On this point, the problem is to control the belt speed and the tension of the belt
by regulating the voltage in both motors. Then system inputs are the two motor
voltages and the outputs are the speed and tension of the belt. Finally, with the
Laplace transform and rewriting the output and input vector to match with the inputs
and outputs of the system:

m r 1 b k ko | bpr o
035[0.03[8-107*[9-1072] 50 | 200 | 0.5 | #/6
kg m kgm?® Nm/s | N/m | N/m | N/s

Table A.1 Coupled electric drives parameters

Thus, using the Table A.1, to simplify the equations, the transfer functions of
this MIMO system are:
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Equation (A.7) (the belt’s velocity) matches with a first order system, while in
equation (A.8) (the belt’s tension) we get a transfer function with two real and two
complex poles. This transfer function has been obtained making some assumptions
due to the dimensions and geometry of the real system:

e Model the elastic band as springs, mass and friction.
e Neglect the pulley inertia.

e Neglect the angular disipation.

e Neglect the variation in «.

e Assume equal inertias for both motors.

The system parameters (see Table A.1) have been obtained from a bench de-
signed by TecQuipment', therefore, the final results in this Appendix are an ap-
proximation to this system. Later simulations done using the differential equations
can consider or not the assumptions presented, giving to the developers different
levels of fidelity to the real system.

Thttps://www.tecquipment.com/es/



B. Vibrating Strings Mathematical

Model

Consider a string of length L, volumetric density p and mass M, that oscillates
in the YZ plane under a constant tension 7. Fig. B.1 shows a forces diagram on an
infinitesimal length dy of the string. This infinitesimal portion of the string has a
mass dm = udy, with u = M /L the linear density of mass. Net tensions produced

on the string are

]

F Tcos(a+do)—Tcosa , (B.1)
F, = Tsin(a+da)—Tsina . (B.2)
T
S arda
¢¢tf‘ V

dy

Figure. B.1 In an infinitesimal portion of the string dy appear two tensions, one at each end
of the portion, so that under a small displacement assumption the horizontal
net tension is null.

Under the assumption of a small displacement in the vertical direction, a first



order Taylor expansion of the forces gives

F = 0, (B.3)
F, = Tdo . (B.4)

Newton’s Second Law gives, then

Tda = dma (B.5)

0%z
= (udy)ﬁ : (B.6)

By relating the angle o with its YZ components, taking derivatives and aproxi-
mating in Taylor’s first order we obtain an equation for the infinitesimal angle
2%z

dao = ——d B.7
o 2P B.7)

so as the equation that describes the wave motion is

2 2
9% _ KO (B.8)
dy? T 0t?
which is the so-famous wave equation [136]. This equation describes the temporal
evolution of a transversal wave propagating at a speed v = +/T /.

For a fixed-fixed string both ends are fixed, so that the displacement at these
nodal points is zero. The temporal part of the solution to the wave equation can be
written as a linear combination of normal modes

- . (nTy _
1) = A (—) e "™ | B.9
z(y,t) ’; nsin (— cos (@yt)e (B.9)
where
T
N (B.10)
L\ u

Here, 7y is a damping coefficient. Fig. B.2 shows the vertical oscillation of the string
as a function of the position x, for the first four normal modes. Each n mode has
(n+ 1) fixed nodes (positions where there is no displacement) and n anti-nodes
(positions with maximum displacement).



Equation B.9 shows that the bigger the normal mode, the higher the damping
factor. Eventually, all the n > 1 modes vanish and the only surviving term gives a
“stationary” wave

ant) = Aﬁiﬂ(%)cos (%ﬁt) e (B.11)

Note that the amplitude of the perturbation eventually goes to zero as a conse-
quence of its proper damping coefficient —7.
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Figure. B.2 First four normal modes of vibration for a fixed-fixed string. Each n mode
has (n+ 1) points where the oscillation is zero. The wave length of mode n is
An =2L/n.

At a fixed position y = L/2 we have
Zl(t) = AlcOS(Zﬂflt) , (B.12)
where the fundamental frequency f] is given by

1 T

fl = m %, (B-13)

where r is the radius of the string and p its volumetric density. If we select a control
parameter (as could it be the tension, for example), by measuring the frequency f



of the string as a function of this parameter we may stablish a relationship of the
kind

f = oaTh | (B.14)

so as for different tensions we may perform a least squares method to obtain the
constants & and 3 and, therefore, find the density of a string just knowing the length
of the string and its radius, i.e.,

p = — . (B.15)



C. Servo Motor Mathematical
Model

Figure. C.1 Components of the remote servo motor lab.

The servo-motor system is DC motor with two separeted windings, the armature
and field. When power is applied, the polarities of the energized field and the arma-
ture windings are misaligned, and the rotor will rotate until them are almost aligned.
Figure C.1 shows a basic scheme to represent the equivalent electrical circuit.

In this regard, the voltages which can be applied are e,, the armature voltage,
and ey, the field voltage. Lets assume that:

e The magnetic flux is proportional to the electrical current flowing across the
excited winding.

e The torque is proportional to the magnetic flux and electrical current through
the armatures winding.



Both relations can be expressed like:

O(t) = Kyiy (C.1)

Where iy is the field current, ¢(t) is the magnetic flux, and K r 1s the constant
that relates both magnitudes.

Tiu(t) = Kn@(1)iq(2) (C.2)

Where i, is the armature current, 7;, is the torque and K, is a constant value.

Maintaining constant the field and armature voltages the magnetic flux is also
constant. Then, the torque can be obtained as a proportional relation with the field
current as:

Tm(t) = Kmeifia(t) = Klia(t) (C.3)

Where K] is the torque constant, combination of the constants of both contribu-
tions to torque. If the magnetic flux is constant, the counter-electromotive force has

only one contribution due to the change in the axis angle. This relation is expressed
like:

do(t)
t

eh(t) =K, =K, (C4)

Where K}, is the counter-electromotive force constant. The circuit from Figure
C.1 is an approach to the real model. Thus, the corresponding circuital equation can
be expressed like:

dig(1)
dt

Where R, and L, are the resistance and inductance of the armature. The resultant
torque obtained using a common mechanics analysis result in three components:
Friction torque, loading torque and total torque from motor. Next equation shows
the relation between these three:

eq(t) = La + Raia(r) +ep(1) (C.5)

d*e(t)
dt?

Where J,, and B,, are the moment of inertia and the viscous friction coefficient
and T, is the torque associated with the load of the motor. Combining the gathered

do(t)
Cdr

T = T,(t) — B ~T; (C.6)



expression of the torque and circuital analysis is obtained a relation between the
output angle and the field voltage:

ea(t) = Raialt) = Lf’ff +Kbd3§t> (ek)
d’0(t) do(t) ,
In 2 + B, i =K la(l‘) -1 (C.8)

Both equations represent the behavior of the system, although, choosing the
parameters carefully it can be simplified. If we also assume that the motor has no
load, the Laplace transform and the transfer function can be easily obtained like:

Eu(s) —Rul,(s) = sLyl,(s) + sK,0(s) (C.9)
21,0 (s) + 5B 0(s) = KiI,(a) (C.10)
486 _ Ky (C.11)

E.(s)  s((LaBm~+RaJy)s +RuBym +K(Kp)

Where ¢, is the armature voltage, ey is the field voltage and iy, iy their corre-
sponding currents. R, and L, are the resistance and inductance of the armature. K,
is the counter-electromotive force constant and K is the torque constant. J,, and
B,, are the moment of inertia and the viscous friction coefficient. 7 is the torque
associated with the load of the motor.






D. Document: How to change a lab
from Java to Java& Javascript

D.1. First steps

D.1.1. Locate your files

Any developer who wants to use the Java &Javascript enabled version to reuse
a Java lab needs at least two thing:

e The original file, with extension .ejs, written in Java.

e A EjsS distribution with the Java & Javascript version enabled. To obtain it,
the user can write to jacobo.saenz@bec.uned.es and ask for a copy.

Once the file is located and the EjsS editor is ready to be used, the next step is
to open EjsS and the file.

[l Consola de Ejss 5.2 e F X
Opciones Basicas | Opciones Avanzadas | Area de Mensajes
Su MV Java es: C\Program Files\Uavalre1.8.0_151
Su espacio de trabajo es: C/Users/Jacobo/Deskiop/UNEDWorkspaceEJS/ [
Idioma: |Local | ¥ v] Cargar el ltimo archivo
Aspecto grafico: [Metar - Minimizar la consola
Programming language: | Java + Html | v
Ejs§5.2 Java
Build 170503 Javascript
Java + Himl
Ejecutar Easy Java Simulations

Figure. D.1 How to run the new version of EjsS



D.1.2. Open your file

First, EjsS must be initiated, EjsS will prompt the last enabled version opened
in your computer. To open the Java & Javascript version the user must follow the
next steps:

e The editor contains two windows: The main editor and the console. To open
J&JS version the user need to change some console parameters in the Main
Options tab.

e Inside this tab, the user will found a drop menu: Programming language (see
Figure D.1). The Java+ HTML option must be selected.

e The next step is run Easy Java Simulations by clicking the corresponding
button in the console window.

e A new editor will be opened like the one in Figure D.2. Therefore, the devel-
oper is ready to open the .ejs file in the new editor.

e A soon as the developers loads the file a warning pop-up is shown, see Figure
D.3. The answer to the question about to use other editor to open the file must
be No.

Figure D.2 shows a ejs file opened with the new editor. At this point, the devel-
oper has to save the file.

Some error messages may be prompted in the console, as the file is in a different
version is quite common.

D.1.3. Save with new extension

The last step to do after changing the application or the GUI is to save the file
using the right extension: .ejsh. To do that is recommended to use the save as button
of the editor. Probably, the tool will ask if we want to write with this extension, we
must anser Yes.

D.2. Prevent problems and create the GUI

The tool can help with the change in the EjsS application, but the process is
not immediate, the developer must make some changes to obtain no-errors and to
prevent bad behaviors of the GUI. First step is to delete the sarlab element: the
Nucleo. This element is not used at this point, then the best option is to delete it.
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Figure. D.3

The next step is to add the SmartDeviceElement which will add additional func-
tionalities to the application. Figure D.5 shows the element and the icon in the
process to be added from the SoftwareLinks folder.

The SmartDeviceElement can be configured by double clicking it. Figure D.6
contains the configuration windows and some parameters. During the testing the IP
must be localhost, and the port can be 2055, 8080 or any value higher than 1300 to
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prevent access problems. Both values will be changed to use the ones selected by
the developer.

D.2.1. Reduce errors

In the best situation, the application will be runnable, and the developer can
initialize the experiment. But usually some problems will appear regarding the call
to the Java view. This view is going to be empty or will not be run, then, if possible
the developer must reduce the calls in the code to the _view object. Other errors may
be prompted, but usually are not directly related with the new editor.

In fact, _view calls are allowed, but some will produce errors. To _view to handle
an interaction will not produce data, as _view is not in the user side. If these calls
can be done in any other way, is a best practice to do it.
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D.2.2. Create you GUI

The first approach is to make our GUI directly in the main editor from the last
steps. In this situation, the developer can create an HTML view just considering a
couple of things:

e The developer can build and test its GUI by dragging and dropping the desired
elements to the tree structure of the HTML-view.

e Is recommended to reduce the dynamic calculus, it means, to use variables
and not formulas to calculate values of fields inside the HTML view element.
For example coordinates changes or similar must be done in the code, and not
in the view.

e Red field of the view elements (actions field like on_Release) must contain
Java code, remember that the model will carry out with all the calculations of
the view.

e All the variables must be initialized with a default value and the minimum and
maximum values of the GUI must be specified to prevent not allowed values.

The HTML GUI created using this methodology will be the student interface,
then, is important to test and double check all the changes in the web browser.



D.2.3. Get ready to use it

All the test done are local, which mean that both sides are in the same machine.
To use it in a networked environment the developer need to change IP and port in
the configuration windows of the element. Once it is done, it can be placed in the
server to do more testings. In the server side how the model in run in on charge of the
developer, but, if the model in running, it will accept all the incoming connections.

If the GUI needs later changes, the Editor can be opened in the remote machine
to modify the HTML view. This is the second approach to create or edit interfaces.
If the model is well designed and contains all the methods the model can be main-
tained in the remote location. If not, the model will need to be replaced by the new
one.



E. Full Metadata

This Appendix contains the full metadata file which is used inside the EjsS
models. It is defined using the JSON data format and follows the Smart Device
Specification.
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"apiVersion":
"swaggerVersion":
"basePath":
"info": {
"title":
"description":
"contact":
"license": "Apache 2.0",
"licenseUrl":

"1.0.0",

b

"authorizations":

"concurrency": {
"interactionMode":
"concurrencyScheme": "roles",
"roleSelectionMechanism":
"roles": [

{

i

"role": "controller",
"selectionMechanism":

"apis": [

"protocol": "websocket",
"produces": [
"application/json"
1,
"operations": [
{
"method" :
"nickname"
"summary":
"type":
"parameters": [

{

"Send",

"name" :

"type":

EEEICIoR

"http://127.0.0.1:8800",
"Servo Motor Control",
"EjsS interaction Metadata",

"jacobo.saenz@bec.uned.es",

"http://www.apache.org/licenses/LICENSE-2.0.html"

"synchronous",

"fixed role"],

["race"]

"getSensorMetadata",
"Lists all sensors and their metadata",
"SensorMetadataResponse",

"message",
"description":
"required":

"paramType":
"SimpleRequest",
"allowMultiple":

"The payload for the getSensorMetadata
true,
"message",

service",

false
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"authorizations": {},
"responseMessages": [

"code": 402,
"message": "Too many users"

"code": 404,
"message": "No sensors found"

"code": 405,
"message": "Method not allowed.
this server."

The requested method is not

allowed by

"code": 422,
"message": "The request body is unprocessable"
}
]
b
{
"method": "Send",
"nickname "getSensorData",
"summary": "Get data from the sensor with the given sensor identifier",
"type": "SensorDataResponse",
"parameters": [
"name": "message",
"description": "Returns captured values",
"required": true,
"type": "SensorDataRequest",
"paramType": "message",
"allowMultiple": false
}
1,
"responseMessages": [
{
"code": 401,
"message": "Unauthorised access. The authentication token is not valid"
3y
{
"code": 402,
"message": "Too many users"
s
{
"code": 404,
"message": "No sensors found"
s
{
"code": 405,
"message": "Method not allowed. The requested method is not allowed by
this server."
by
{
"code": 422,
"message": "The request body is unprocessable"
}
]
}
"protocol": "websocket",
"produces": [

"application/json"

1,
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"operations": [

{

"method": "Send",
"nickname": "getActuatorMetadata",
"summary": "List all actuators and their metadata",
"type": "ActuatorMetadataResponse',
"parameters": [
{
"name": "message",
"description": "The payload for the getActuatorMetadata service",
"required true,
"paramType": "message",
"type": "SimpleRequest",

"allowMultiple": false
}
1,

"responseMessages": [

{
"code": 404,
"message": "No actuators found"

"code": 405,

"message": "Method not allowed. The requested method is not allowed by

this server."

"code": 422,

"message": "The request body is unprocessable"
}
1,
"authorizations": {}
"method": "Send",
"summary": "Send new data to the actuator with the given actuator identifier",
"notes": "The parameters go into a JSON object send over the websocket",
"type": "ActuatorDataResponse",
"nickname": "sendActuatorData",
"parameters": [
{
"name": "message",
"description": "Provides value for actuator control",
"required": true,
"type": "ActuatorDataRequest",
"paramType": "message",
"allowMultiple": false
}
1,
"responseMessages": [
"code": 401,
"message": "Unauthorised access. The authentication token is not valid"
},
"code": 402,
"message": "Too many users"
s
{
"code": 404,
"message": "No actuator not found"
s
{
"code": 405,
"message": "Method not allowed. The requested method is not allowed by
this server."
s
{
"code": 422,
"message": "The request body is unprocessable"
}
]
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"models": {

"Sensor": {
"id": "Sensor",
"required": [
"sensorId", "fullName"
1,
"properties": {
"sensorId": {
"type": "string"
I
"fullName": {
"type": "string"
>
"description": {
"type": "string"

s

"webSocketType": {

"type":

"description":

"string",

"the type of websocket. Websockets can either be

textual.",

"enum" :

L

Ttext",
"binary"

1
}

"defaultValue":

"text"

"singleWebSocketRecommended": {

"type":

"description":
expects that a client opens a dedicated

"boolean",

"If this field is set to true it means that the

websocket for

value",

"defaultValue":

}

s
"produces":

"type":

"description":
list of mime types can be found

false

{

"string",

Internet_media_type",

"defaultValue": "application/json"
s
"values": {

"type": "array",

"items": {

"$ref": "Value"

}
s
"configuration": {

"type": "array",

"description":

"The configuration consists of an array of JSON

consist of parameter and type",

"items":
"$ref":

}
s

{

"ConfigurationMetadataltem"

"accessMode": {
"type": "AccessMode"
i
s
"Action":{
"id": "Action",
"required": [
"actionId", "fullName", "params"
s
"properties": {
"sensorId": {
"type": "string"
s
"fullName": {
"type": "string"
"description": {
"type": "string"

binary or

smart device

to read from this

"The mime-type of the data that is produced by this sensor. A
at http://en.wikipedia.org/wiki/

objects that
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"webSocketType": {
"type": "string",
"description":

textual.",
"enum": [
"text",
"binary"

1,
"defaultValue": "text"
s
"singleWebSocketRecommended": {
"type": "boolean",
"description": "If this field is set to true
expects that a client opens a dedicated

value",
"defaultValue": false
}s
"produces": {
"type "string",

"description":

Internet_media_type",
"defaultValue": "application/json"

s
"params":
"type": "array",
"items": {

"$ref":
}
s

"accessMode": {
"type": "AccessMode"

"Value"

}

"Value": {
"id": "Value",
"required": [
"name"
1,
"properties": {
"name": {
"type": "string"
s
"unit": {
"type": "string"
"type": {
"type": "string",
"description": "The data type of this value",
"enum": [
"integer",
"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",
"object",
"array",
"any",
"binary"

"rangeMinimum": {
"type": "number",
"format": "double"

s

"rangeMaximum": {
"type": "number",
"format": "double"

b

"the type of websocket. Websockets can either be binary or

it means that the smart device
websocket for to read from this

"The mime-type of the data that is produced by this sensor. A
list of mime types can be found at http:

//en.wikipedia.org/wiki/
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by

"rangeStep": {

"type": "number",

"format": "double"
"lastMeasured": {

"type": "date-time"

+
"updateFrequency": {
"type": "number",

"description": "The frequency in Hertz of which the sensor value updates",

"format": "int"

}

"ConfigurationMetadataltem": {

"id": "ConfigurationMetadataltem",
"required": [
"parameter", "type"
1,
"properties": {
"parameter": {
"type": "string",

"description": "The name of the configuration parameter"

}s
"description": {
"type": "string",

"description": "This field can provide some more information on how this
parameter should be used."

}s
"type": {
"type": "string",

"description": "The data type of that this configuration parameters expects,

number or string",
"enum": [
"integer",
"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",
"object",
"array",
"any"
s
"binary"

s
"items": {
"type": "string",

"description": "This field should only be used when the

type

describes which types are present within the array",

"enum": [
"integer",
"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",
"object",

is

’array’.

It

e.g




390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

"AccessMode": {
"id": "AccessMode",
"properties": {
"typen: {
"type "string",
"enum": [
"push",
"pull",
"stream"

]

s

"nominalUpdateInterval": {
"type": "number",
"format": "float"

s

"userModifiableFrequency": {
"type": "boolean",
"defaultValue": false

}

"SimpleRequest": {

"id": "SimpleRequest",
"required": [
"method"
1,
"properties": {
"authToken": {
"type": "string"

s
"method": {
"type": "string",
"description": "The method should be equal to the nickname of
provided services."

}
}

"SensorMetadataResponse": {
"id": "SensorMetadataResponse",
"required": [
"method", "sensors"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the nickname of

provided services."

s

"sensors": {
"type": "array",
"items": {
"$ref": "Sensor"

}

}
}s
"SensorDataRequest": {
"id": "SensorDataRequest",
"required": ["method", "sensorId"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the nickname of
provided services."
s
"sensorId": {
"type": "string"

"configuration": {
"type": "array",
"items": {
"$ref": "ConfigurationItem"
}

b

one of the

one of the

one of the
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"accessRole": {
"type": "string",
"description": "This field contains one of the roles defined in the concurrency
roles list. If accessRole is not defined, the controller role is assumed."

}
by

"ConfigurationItem": {
"id": "ConfigurationItem",
"required": [
"parameter", "value"
1,
"properties": {
"parameter": {
"type": "string",
"description": "The name of the configuration parameter"
by
"value": {
"type": "any
"description": "The value to set the configuration parameter to. The type should

equal the type given in the metadata for this sensor."

¥
I

"SensorDataResponse": {
"id": "SensorDataResponse",
"required": [
"method", "sensorId"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the nickname of one of the

provided services."
s
"sensorId": {
"type": "string"
s

"accessRole": {

"type": "string",

"description": "This field contains one of the roles defined in the concurrency
roles list. If no roles are defined controller is returned. If the
observer is returned, the observerMode field will be available with extra
info on the status of the lab."

s

"responseData": {
"type": "SensorResponseData",
"description": "The data as measured by this sensor"

¥,

"payload": {
"type": "any
"description": "This optional payload field can contain any JSON object that

provides extra information on this sensor or the current measurement."

}

"observerMode": {
"type": "ObserverMode",
"description": "This field is only available if the accessRole field returns

observer ."

}
s

"SensorResponseData": {
"id": "SensorResponseData",
"required": [],
"properties": {
"valueNames": {
"type": "array",
"description": "An ordered array with all the value names of this sensor. The
same order will be applied to the data array and lastMeasured array.",
"items": {
"type": "string"
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"data": {

"type": "array",

"description": "An ordered array with all the data values of this sensor. Each
data element in the array should be ordered in the same position of its
corresponding value elements in the values array.",

"items": {

"type": "any"

}

}s
"lastMeasured": {

"type": "array",

"description": "An ordered array with all the data values of this sensor. Each
data element in the array should be ordered in the same position of its
corresponding value elements in the values array.",

"items": {

"type": "date-time"
}
}
s
"Actuator": {
"id": "Actuator",
"required": [
"actuatorId", "fullName"
1,
"properties": {
"actuatorId": {
"type": "string"
by
"fullName": {
"type "string"
s
"description": {
"type": "string"
s
"webSocketType": {

"type": "string",

"description": "the type of websocket. Websockets can either be binary or
textual.",

"enum": [

"text",
"binary"
1,
"defaultValue": "text"
by
"singleWebSocketRecommended": {

"type": "boolean",

"description": "If this field is set to true it means that the smart device
expects that a client opens a dedicated websocket for to read from this
value",

"defaultValue": false

s
"consumes": {

"type": "string",

"description": "The mime-type of the data that is consumed by this actuator. A
list of mime types can be found at http://en.wikipedia.org/wiki/
Internet_media_type",

"defaultValue": "application/json"

s
"produces {

"type "string",

"description": "The mime-type of the data that is produced by this actuator. A
list of mime types can be found at http://en.wikipedia.org/wiki/
Internet_media_type",

"defaultValue": "application/json"

s
"values": {

"type": "array",

"items": {

"$ref": "Value"

}

s
"configuration": {

"type": "array",

"description": "The configuration consists of an array of JSON objects that
consist of parameter and type",

"items": {

"$ref": "ConfigurationMetadataltem"
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"accessMode": {
"type": "AccessMode"

! }
"ActuatorMetadataResponse": {
"id": "ActuatorMetadataResponse",
"required": [
"method", "actuators"
T
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the nickname of one of
provided services."
s
"actuators": {
"type": "array",
"items": {
"$ref": "Actuator"
s

"description": "The list of actuator metadata elements"

i3
s
"ActuatorDataRequest": {
"id": "ActuatorDataRequest",
"required": [
"method", "actuatorId"
s
"properties": {
"authToken": {
"type": "string"
s
"method": {
"type": "string",
"description": "The method should be equal to the nickname of one of
provided services."
b
"actuatorId": {
"type": "string"

"valueNames": {
"type": "array",

"description": "An ordered array with all the value names of this sensor.
same order will be applied to the data array and lastMeasured array.

"items": {
"type": "string"

}

"data": {
"type": "array",

"description": "An ordered array with all the data values of this sensor.

the

the

data element in the array should be ordered in the same position of

corresponding value elements in the valueNames array.",
"items": {
"type": "any"

by
"configuration": {
"type": "array",
"items": {
"$ref": "ConfigurationItem"
}
s

"accessRole": {
"type": "string",

The

Each
its

"description": "This field contains one of the roles defined in the concurrency
roles list. If accessRole is not defined the controller role is assumed."
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"ActuatorDataResponse": {

"id": "ActuatorDataResponse",
"required": [
"method"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the nickname of one of the

provided services."
s
"lastMeasured": {
"type": "date-time"
by

"accessRole": {

"type": "string",

"description": "This field contains one of the roles defined in the concurrency
roles list. If no roles are defined controller is returned. If the
observer is returned, the observerMode field will be available with extra
info on the status of the lab."

}

s
"payload": {

"type': "any"

"description": "The payload can be useful for describing a result that is

returned, for instance by using the SensorResponseData model. Since
results can differ from acknowledgements to result data, the field is
optional and can contain any JSON object."
s
"observerMode": {
"type": "ObserverMode",
"description": "This field is only available if the accessRole field returns
observer."

¥
},
"ObserverMode": {
"id": "ObserverMode",
"required": [],
"properties": {
"queueSize": {
"type": "integer",
"description": "Provides the length of the user waiting queue that want to get
control of the lab"

}

"queuePosition": {
"type": "integer",
"description": "Provides the position of the client who made this call in the
user waiting queue. This value should be positive and smaller or equal to
queueSize."

s
"estimatedTimeUntilControl": {
"type": "integer",
"description": "The estimated waiting time from now on until the client will get
controllerMode access. The time is expressed in seconds."
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