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Abstract
Given the limited resources of health care systems, the economic evaluation of medical
techniques and treatments is becoming more and more important. The most a
common tools for cost-effectiveness analysis are decision trees and Markov models, but
they can only solve relative small problems. Probabilistic graphical models, such as
Bayesian networks and influence diagrams, have been used in artificial intelligence for
knowledge representation and explanation, especially in medicine, but only in unicriteria
problems. In the last years, the Research Center for Intelligent Decision-Support
Systems (CISIAD) at UNED, has developed new algorithms for cost-effectiveness
analysis with decision trees and influence diagrams. It has also proposed two new types
of probabilistic graphical models: Markov influence diagrams which extend influence
diagrams for temporal reasoning, and decision analysis networks, which can model
and evaluate problems with asymmetries such as restrictions and partially ordered
decisions.

This thesis addresses three methodological problems related to the evaluation of
cost-effectiveness models.

First, there are different corrections for reducing the error introduced by the
discretization of time in Markov models. In general, numerical integration techniques
give more accurate results than standard approaches, such as half-cycle correction,
but we found that they can lead to a greater error when the model has discontinuities,
for example when an expensive treatment is withdrawn after some time. We proved
that building a new model averaged at the points of discontinuity yields much more
accurate results.

Second, the existing cost-effectiveness algorithms for Markov influence diagrams
could only evaluate models with two criteria and one decision. In this thesis I have
developed a new cost-effectiveness algorithm that can evaluate models with several
criteria and any number of decisions with findings between the decisions.

Third, decision analysis networks could only evaluate unicriterion problems. In
collaboration with other members of the CISIAD, I have extended the algorithms
developed for Markov influence diagrams, to perform cost-effectiveness analysis on
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decision analysis networks.

I have applied Markov influence diagrams to the economic evaluation of two
medical interventions. Our analysis of pediatric cochlear implantation in Spain has
proved that it is cost-effective with respect unilateral cochlear implantation, and the
model for colorectal cancer screening with immunochemical fecal occult blood test
showed that it is cost-saving with respect to no screening.
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1
Introduction

“Research is what I’m doing when I don’t know what I’m doing.”

Wernher von Braun Read

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7



4 1. Introduction

1.1 Motivation

Decision support systems help decision makers to allocate a finite set of resources
efficiently. Given that each decision maker may have different effectiveness criteria
and different risk aversion, it is important to establish objective methodologies that
can support those decisions in order to improve the use of finite resources. It is also
necessary to have ways of representing and solving complex problems. None of these
models can represent all the complexity of the real world but they may offer a useful
simplification that can explain and solve those problems. Artificial intelligence (AI)
includes multiple useful frameworks to work with complex problems. In this thesis I
focused on a particular AI field, the knowledge representation and reasoning. This
field tries to represent real world problems and to perform complex tasks over them,
such as Cost-Effectiveness Analysis (CEA). One of the frameworks in this field are the
Probabilistic Graphical Models (PGMs).

PGMs have proved to be a good way to represent and analyze complex problems.
PGMs have an intuitive and compact data representation and allow efficient reasoning
using general-purpose algorithms. They can also be applied to several domains such as
medical diagnosis, natural language processing, traffic analysis, social network models,
computer vision, planning...

The main goal of the Research Center for Intelligent Decision-Support Systems
(CISIAD) at the Universidad Nacional de Educación a Distancia (UNED), is to do
research on PGMs and their application in diagnosis and decision making, especially
in medicine. PGMs can encode complex temporal Markov models, which are the
most popular modeling framework in health technology assessment, and perform
cost-effectiveness and sensitivity analysis, which are the most common methods for
economic evaluation.

1.2 Objectives

The aim of this thesis is to perform CEA with new AI models. To achieve this
goal, I elaborated a research plan in which I considered three main tasks related to
developing and applying algorithms for performing CEA on PGMs. However, during
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the evaluation of existing medical models, we observed a common issue in the standard
evaluation methodologies when the models have discontinuities. This new research
line was introduced as a fourth objective.

1. Developing new algorithms for cost-effectiveness and sensitivity analysis with
Markov Influence Diagrams (MIDs) (Díez et al., 2017).

2. Developing new algorithms for CEA with Decision Analysis Networks (DANs)
(Díez et al., 2018a) to solve large asymmetric problems such as models in which
the decisions are not totally ordered.

3. Applying PGMs to two real medical decision problems:

a) Cost-effectiveness of pediatric Bilateral Cochlear Implantation (BCI) in
Spain.

b) Cost-effectiveness of ColoRectal Cancer (CRC) screening with the fecal
occult blood test in Spain.

Although these analyses were done for Spain, the models built can be applied in
other countries with minor modifications.

4. Evaluating Markov models with within-cycle corrections (adjustments made to
reduce the error introduced when the time is discretized) when the model has
discontinuities.

1.3 Methodology

First of all, I reviewed the state of the art about PGMs and health economics evaluation.

The next step was working on the development and improvement of the algorithms
for cost-effectiveness and sensitivity analysis on MIDs, a new type of PGM proposed
by the CISIAD (Díez et al., 2017). Even though MIDs were already defined when
I started this thesis, small modifications, such as the definition of criteria in utility
nodes, were needed to perform CEA. Then we applied these algorithms to two medical
problems: CRC screening and pediatric BCI.

For each of these medical applications we had to study the state of the art. We
then selected as basis the most relevant models in the literature and tried to replicate
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them in OpenMarkov . This process helped us to determine the relevant variables
and causal relationships in the model. Taking into account all this information and
the models in the literature, we built new models following an iterative approach:
defining each block of the model, building and testing it to ensure that the underlying
logic of the model was correct. The next steps in the modeling process were ruled by
two simple criteria: the first one was to detail as much as possible the real problem
(given the current data) and the second one to search for missing data that could
give more detail to our model. When the assumptions taken in the model were not
relevant to the expected results of the CEA (taking into account the uncertainty over
the parameters), we entered a phase of testing—we had tested the functionality of
many parts of each model several times during the construction, but in this phase,
we tested the model as a whole. In this final phase we also obtained feedback from
experts that helped us to improve our models.

To accomplish the implementation of CEA on DANs, we previously designed the
algorithms based on the ones we developed for MIDs. DANs were already defined when
I started this thesis, but it was necessary to adapt the existing algorithms to perform
CEA. These algorithms and their adaptations were implemented in OpenMarkov,
expanding their functionality and adapting each part to the capabilities of DANs.
When the design and implementation were ready, we check these algorithms using
unitary and functional tests.

The analysis of discontinuities in Markov models started during my short stay at
the School of Health and Related Research (SCHaRR) of the University of Sheffield,
where I was able to work with some of their models. As stated in the previous section,
during the evaluation of a medical decision model we found a problem with some mid-
cycle adjustment techniques when the models have discontinuities. After reviewing the
state of the art and analyzing the different mid-cycle adjustment techniques proposed
in the literature, we made an empirical study in which we compared each of these
techniques with a gold standard. Even though the results obtained in the empirical
approach offered some useful conclusions, we made the decision that it was necessary
to formalize the theoretical demonstration in order to be able to generalize these
conclusions.
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1.4 Organization of the thesis

This document has been structured in five main parts:

• Part I explains the motivation, objectives, methodology, and organization of this
thesis.

• Part II reviews the state of the art about PGMs and medical decision making.

• Part III presents the main methodological contributions of this thesis, describing
the cost-effectiveness algorithms developed for MIDs and DANs and our analysis
of within-cycle corrections when applied to Markov models with discontinuities.

• Part IV describes the two decision support systems developed to analyze the
cost-effectiveness of pediatric BCI and CRC screening.

• Finally, Part V, presents the conclusions and discuss some research lines for
future work.
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2.1 Introduction

The first known treatise on probability, “Liber de ludo aleae”, attributed to Gerolamo
Cardano, was written in the 1560s but was not published until 1663. Around 1654,
Fermat, developed with Blaise Pascal the principles of the theory of probability, as we
know it today, while they tried to solve some problems posed by the also mathematician
and player-Chevalier de Méré. Those writings were formalized by Christiaan Huygens
in his treaty of “De Ratiociniis in Ludo Aleae” Calculating in Games of Chance) in
1657, which was the first published work on probability calculation. In 1763, two years
after its author’s death, it was published the work of Thomas Bayes published “Essay
Towards Solving a Problem in the Doctrine of Chances”, which serves as the basis for
the theorem that carry his name. This theorem states the principles that allow us to
use a model that tell us the conditional probability of an event A given the event B.

(Euler, 1741) is considered as the first article on graph theory. This article solved
the problem of the Köningsberg Bridges over the river Pregel, which consists in find a
path that goes through the seven bridges without crossing the same bridge twice. In
such theories only discrete probability spaces were involved and the analysis methods
were solely combinational.

The joint use of graphs and probabilistic distributions is applied in a wide
spectrum of knowledge areas. In engineering, this idea was first developed by Kirchhoff
(1847) to analyze electrical networks. In statistical physics, Gibbs (1902) used an
undirected graph to represent the distribution over a system of interacting particles.
In 1921 the graphical idea applied to Bayes problems was developed by Wright (1921)
in his paper “Correlation and causation”. Wright was one of the pioneers in the use of
graphical method and proposed the use of a directed graph to study inheritance in
natural species, a method which is still broadly used.

In 1933, Kolmogorov (1933) published the book on the fundamentals on prob-
ability theory establishing the foundations of modern probability theory. Bartlett
(1935) proposed the idea of analyzing interactions between variables. The first book on
graph theory was written by König (1936)—see (Tutte, 2001). In the field of computer
science, Turing (1950) presented methods for building computerized expert systems
designed to carry out difficult tasks, such as solving to complex problems or performing
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medical diagnosis. Some early AI systems used probabilistic methods based on the very
restrictive naive Bayes model (Lodwick et al., 1963; Warner et al., 1964; de Dombal
et al., 1972; Gorry, 1973). The idea was also adopted in economy and social science;
e.g. Wold (1954) used it in his is article “Causality and econometrics” and Blalock
(1971) in his book “Causal Models in the Social Sciences”, both authors showed the
usefulness of this tool in their respective fields.

Although the naive Bayes model restricts itself to a small set of possible hy-
potheses (e.g., diseases) and assumes that the findings (e.g., symptoms or test results)
are conditionally independent given each hypothesis, it was surprisingly successful,
performing (within its area of expertise) at a level comparable to or better than that of
experts. For example, the system of de Dombal et al. (1972) averaged over 91.8 percent
correct diagnoses of acute abdominal pain, whereas expert physicians were averaging
around 79.6 percent. Nevertheless, much uncertainty and confusion remained about
the role of probability in AI (Szolovits and Pauker, 1978).

In the 1980s the probabilistic methods began to have a major acceptance, driven
forward by two main factors. The first was the theoretical development of Bayesian
Networks (BNs) by Judea Pearl (1986; 1988). Simultaneously the paper by Lauritzen
and Spiegelhalter (1988) proposed an efficient algorithm for PGMs. The second
important factor was the construction of large-scale, highly successful expert systems
based on this framework. Two of the most visible of these applications were the
Pathfinder, an expert system for hematopathology diagnosis (Heckerman et al., 1992)
and the MUNIN, a causal probabilistic network for interpretation of electromyographic
findings (Andreassen et al., 1987).

Nowadays, probabilistic methods in general, and PGMs in particular, have
gained almost universal acceptance in a wide range of disciplines and fields, generally
in processes of modeling, simulation, and knowledge representation.
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2.2 Basic definitions

2.2.1 Graphs

A graph (G) consists of a set of nodes (V ) and edges (E). An edge is a binary relation
between two nodes (X, Y ), where X, Y ∈ V . If X and Y are ordered in their relation,
the edge is directed; if not, the edge is undirected. Directed edges are also known as
arcs or directed links and can be represented by an arrow; e.g. if the edge (X, Y ) is
directed we can represent it as the arc X → Y . We say that a graph is directed when
all its edges are directed and, it is undirected when all its edges are undirected.

When there is an arc X → Y , we can say that X is the parent of Y and that Y
is the child of X. The set of parents of a node X is denoted by Pa(X) and the set of
its children by Ch(X).

A path is an ordered set of distinct nodes {X0, X1, ..., Xn} and edges such that
there is an edge that links every pair of adjacent nodes; i.e. there is an edge (X0, X1),
an edge (X1, X2), etc. The path is directed if all the edges that conform the path
are directed and are oriented in the same direction. All the nodes for which there is
a directed path to X are known as the ancestors of X and are denoted by An(X).
The nodes for which there is a directed path from X are known as the descendants of
X and are denoted by De(X). In graphs used for PGMs there can be only one link
between each pair of nodes.

A cycle in a directed graph is a path {X0, X1, ..., Xn} in which the last and first
node are linked by an edge; i.e. (X0 → Xn). A directed graph that does not have any
cycle is called acyclic directed graph.

A tree is an acyclic directed graph in which each node has only one parent,
except the root node, which has no parents. The nodes having no children are known
as leaves.



2.2. Basic definitions 15

2.2.2 Probabilistic graphical models

A PGM consist of a graph G = (V,E) and a probability distribution P over a set of
variables X, such that each node in V represent one of the variables. As every node in
the graph represents one of the variables of the PGM, we are going to use the terms
node and variable indifferently. The graph can only contain one link between each pair
of nodes. There are several types of PGMs: some of them use acyclic directed graphs
(for example BNs, influence diagrams, etc.), others use undirected graphs (Markov
networks, also known as Markov random fields), while others use acyclic partially
directed graphs (Koller and Friedman, 2009; Sucar, 2015). The absence of an edge in
the graph represents a relation of independence in P . Therefore there is a relationship
between the graph and the probability distribution, which determines how probability
can be factored.

2.2.3 Bayesian networks

A BN (Pearl, 1988) is a PGM whose graph is directed and acyclic. Unlike decision
models contains only one type of node. The probability distribution can be factored as

P (x) =
∏
i

P (xi | pa(Xi)) , (2.1)

where pa(Xi) denotes a configuration of the parents of Xi, i.e. an assignment of values
to each one of the parents of Xi; and P (xi|pa(Xi)) are the conditional probabilities
obtained from P (x). This equation involves a conditional probability distribution for
each node in the graph.

BNs satisfy two properties which also can be used as alternative definitions:

1. Markov property. Each node is independent of its non-descendants given its
parents, i.e., if Y is a set of nodes such that none of them is a descendant of X,
then P (x|Pa(X), y) = P (x|Pa(X)).

2. d-separation. Two nodes X and Y are d-separated in the graph given a set of
nodes Z, when there is no active path connecting them. A path is active if every
node W between X and Y satisfies this property: if the arrows that connect W
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Figure 2.1: BN for the diagnosis of the dyspnea causes (Lauritzen and Spiegelhalter, 1988).

with its two neighbors converge in it, then W or at least one of its descendants
is in Z; else, W is not in Z. If X and Y are d-separated in the graph given a
set of nodes Z, which we denote by IG(X, Y |Z), then they are probabilistically
independent given Z: ∀X, ∀Y, ∀Z, IG(X, Y |Z) = IP (X, Y |Z) .

We will assume in this thesis that BNs are discrete, which means that each variable
has a finite set of states; i.e. the domain of a variable Xi is dom(Xi) = (x1

i , x
2
i , ..., x

n
i ).

Figure 2.1 shows an example of a BN.

In practice it may be useful to know the a posteriori probability of some variable
of interest given a set of findings. A finding is the determination of the value of a
variable, Xi = xi, from the observed data; e.g. determining that a patient is a smoker.
The evidence is the set of the all available findings at a given time or situation, i.e.
the assignment of a value to each variable in set x = {x1, x2, ..., xn}.

2.3 Decision models

Decision theory is the study on how and why the decisions are made. This can be
analyzed from two different perspectives. The first one, called “descriptive”, studies
the rationale underlying a decision and tries to explain the process that decision
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makers follow. The second perspective, which is the one we are interested in, is known
as “normative” and describes a complete framework to help decision makers. This
approach consists in giving the decision maker useful information in order to help to
reduce the uncertainty of the expected results before making one or another decision.
Decision analysis includes the evaluation of each of the possible events or consequences
of making a decision, but must also evaluate all the alternatives to that decision, taking
into account the opportunity costs.

2.3.1 Decision trees

A decision tree (DT) (Raiffa, 1968) is a tree having three types of nodes: chance,
decision and value. Chance nodes, drawn as circles, represent events which are not
under the direct control of the decision maker. Decision nodes, drawn as rectangles,
correspond to actions under the direct control of the decision maker. Decision nodes
represent all the alternatives that the decision maker has. This set of possible decision
rules must be exhaustive and exclusive; i.e. all the alternatives must be represented
and they must be incompatible between them. Value nodes, drawn as triangles or
hexagons, are the leaves of the DT and each one represents the expected outcomes of
a particular scenario. Figure 2.2 shows an example of a DT.

Each node in the DT (except the leaves) represents a chance or decision node.
We build a DT from its root node to its leaves. Each of the branches (links) of a chance
node are labeled with one of the possible states of the variable and the conditional
probability of that state, while the branches of decision nodes represents the available
options. The leaves of the DT are the expected outcomes of each possible scenario;
i.e. each leaf has a value conditioned on the configuration of all the nodes in its path,
from the root to the leaf.

The evaluation of a DT (Raiffa, 1968) is computed from the leaves to the root.
When evaluating a chance node we calculate the weighted sum of its branches; i.e. the
sum of the values of each branch weighted by its probability:

UX(Pa(x)) =
∑
X

U(x|Pa(x)) ·P (x|Pa(x)) (2.2)
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Figure 2.2: Graphical representation of a DT.

When evaluating a decision node we must to get the decision that give us higher
utility; the optimal policy for this decision that is obtained as the maximum utility
between its branches:

UD(Pa(d)) = max
d
U(d|Pa(x)) (2.3)

In Figure 2.3 we can see the previous example solved. The expected outcome
of the disease in the scenario in which the result of the test is negative no therapy is
applied is 9.9107, that is obtained from:

UDisease(scenario) =
∑

Disease

U(disease|scenario) ·P (disease|scenario)

= U(disease = no|scenario) ·P (disease = no|scenario)

+ U(disease = yes|scenario) ·P (disease = yes|scenario)

= 10 · 0.9851 + 4 · 0.0149 = 9.9107
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Figure 2.3: Evaluation of a DT.

When the consequences of the interventions are not deterministic, it is necessary
to model the probability of each outcome. Algorithm 2.1 shows the standard roll-back
algorithm for the evaluation of unicriterion DTs.

Algorithm 2.1: Roll-back algorithm for unicriterion DTs.

Input: A decision tree
Result: The expected utility and a policy for each decision node

1 foreach node n do
2 if n is a chance node then
3 un = ∑

i pi ·ui, where pi is the probability of the i-th branch and ui
is its utility

4 if n is a decision node then
5 un = max ui

DTs are the tool used most frequently for decision analysis, especially in medicine
(Pauker and Wong, 2005). They have the advantage of almost absolute flexibility, but
also have four drawbacks.

First, their size grows exponentially with the number of variables. In general a
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variable gives rise to several nodes in the DT.

Second, a DT cannot represent conditional independencies; so the graph of the
tree does not represent the structure of the problem nor the hypotheses implicit in the
model.

Third, DTs require in general a preprocessing of the probabilities (Howard and
Matheson, 1984a; Bielza et al., 2011); for example, medical diagnosis problems are
usually stated in terms of direct probabilities, namely the prevalence of the diseases and
the sensitivity and specificity of the tests, while DTs are built with inverse probabilities,
i.e., the positive and negative predictive values of the tests. Even in cases with only a
few chance variables, this preprocessing of probabilities is a difficult task. For these
reasons, DTs can only represent small problems. In the medical literature, trees usually
have 3 or 4 variables and between 6 and 10 leaf nodes. A tree of 5 variables typically
contains around 20 leaf nodes, which implies that building, debugging, and analyzing
it would require a significant effort. Given that the maximum size of DTs in practice
is of the order of 50 nodes, they can only solve problems of at most 6 or 7 variables.

And fourth, standard evaluation algorithms cannot perform CEA when the tree
contains embedded decision nodes, i.e., nodes that are not the root of the tree. Even
worse, TreeAge, which is by far the most common software package for DTs, may
return wrong results in this case, without warning the decision analyst (Arias and
Díez, 2014).

2.3.2 Influence diagrams

Influence diagrams (IDs) (Howard and Matheson, 1984a; Pauker and Wong, 2005),
in contrast to DTs, have the advantages of being very compact, representing condi-
tional independencies, and using direct probabilities, i.e., the probability of the effect
conditioned on the cause.

IDs are a generalization of BNs used to model and solve decision problems. An
ID consists of an acyclic directed graph G = (V,E), where the set V has three types
of nodes: chance nodes V C , decision nodes V D, and value nodes V U , as shown in
Figure 2.4.
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Figure 2.4: Types of nodes in an ID.

Figure 2.5: Types of arcs in an ID. Figure extracted from (Arias and Díez, 2014).

In IDs, each chance nodeXi ∈ V C represents a random variable with a conditional
probability distribution while each decision node Di ∈ V D represents a controllable
variable whose value is determined by the decision maker with a decision rule (also
known as policy), δi : Pa(Di)→ Di, which determines the values of di based on the
observed values. The collection of policies constitutes an strategy.

Value nodes, V U , drawn as diamonds or hexagons, represent the expected benefit
or loss, or more generally, the outcome for the decision maker, in other words value
nodes represent functions that the decision maker wants to maximize. Value nodes
cannot be parents of chance or decision nodes.

Depending on the type of node they point at, there are three types of links or
arcs in an ID. Links pointing at chance nodes represent probabilistic dependencies (as
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in BNs); for example, the link Disease → Result of test in Figure 2.5. Links pointing
at decision nodes, such as Result of test → Therapy, are named information arcs and
represent availability of information. Thus like X → D from a chance node X to
a decision node D, means that the state of X is known before decision D is made.
Finally, links pointing at value nodes represent functional dependence, such as the link
Disease → Health state.

It is assumed that and ID has no barren nodes—a chance node or a decision node
that does not precede any other node, or that all its descendants are barren—since
they have no impact on the decisions (Nielsen and Jensen, 1999).

We assume that there is a a total ordering of the decision nodes, given by a
directed path that connects all the decision nodes.

It follows from this definition that in an ID with a set of n decisions D1, ..., Dn,
the set of informational arcs induces a partitioning of chance variables V C into n+ 1
disjoint subsets, {C0, ...,Cn}, where Ci contains every chance variable C with an arc
C → Di but with no arc C → Dj to a previous decision, j < i; i.e., Ci is the subset
of chance variables known for Di but unknown for previous decisions. This induces a
partial order ≺ in V C ∪ V D:

C0 ≺ {D0} ≺ C1 ≺ ... ≺ {Dn} < Cn (2.4)

The set of variables whose value is known by the decision maker when making
the decision Dj are called the informational predecessors of Dj and are denoted as
iPred(Dj). The no-forgetting property of IDs, also known as perfect recall assumption
(Koller and Friedman, 2009), states that the decision maker remembers all previous
decisions and observations. It implies that iPred(Di) ⊆ iPred(Dj) ∀i ≤ j. In
particular, iPred(Dj) is the set of variables that occur before Dj, i.e. iPred(Dj) =
C0

⋃
D0

⋃
C1

⋃
...
⋃
Di−1

⋃
Ci.

The quantitative information that defines an ID is given by assigning to each
probability node C a probability distribution P (c | pa(C)) for each configuration of its
parents (as in BNs), and assigning to each value node U a function ψU(pa(U)) that
maps each configuration of its parents onto a real number.
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The domain of each function ψU is given by its functional predecessors fPred(U).
In the case of an ordinary utility node, the functional predecessors will be the parents
of the utility node.

For each configuration vD of the decision variables VD, we have a probability
distribution over the chance variables vC:

P (vC : vD) =
∏

C∈VC
P (c | Pa(C)) , (2.5)

that represents the probability of configuration vC when the decision variables
are set to the values vD.

A stochastic policy for a decision D is a probability distribution defined over D
and conditioned on the set of its informational predecessors, PD(d | iPred(D)). If PD is
degenerate, i.e. it only has zeros and ones, we can say that the policy is deterministic.
A deterministic policy could be understood as a function πD that assigns to each
configuration of iPred(D) a value d of D.

A strategy ∆ is a set of policies, one for each decision, {PD | D ∈ VD}. A
strategy ∆ induces a joint distribution over V C ∪ V D defined as follows:

P∆(vC ,vD) = P (vC : vD)
∏

D∈VD
PD(d | iPred(D)) (2.6)

=
∏

C∈VC
P (c | Pa(C))

∏
D∈VD

PD(d | Pa(D))

The expected value of a strategy ∆ is defined as:

EU(∆) =
∑
vC

∑
vD
P∆(vC,vD)ψ(vC,vD) , (2.7)

where ψ is the value associated with the node U0, that is the global outcome.
The optimal strategy is one that allows obtaining the maximum expected value:

∆opt = arg max
∆∈∆∗

EU(∆) , (2.8)

where ∆∗ is the set of all strategies for the ID.
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The expected value of an ID, also known as maximum expected value, is the one
obtained when applying the optimal strategy:

EU = EU(∆opt) = max
∆∈∆∗

EU(∆) (2.9)

The evaluation of an ID consists in find the maximum expected value and the
optimal strategy. It can be performed by applying this equation:

EU =
∑
c0

max
d0

...
∑
cn−1

max
dn−1

∑
cn

P (vC : vD)ψU0(vC,vD) . (2.10)

The optimal strategy of an ID always can be obtained and, in case that more
than one strategy gives the maximum expected utility, we will say that there exist
multiple optimal strategies.

IDs can be evaluated by obtaining their equivalent DTs. The first step to build
an equivalent DT is to determine the order in which the variables will appear on the
tree. There are two main rules to define this order:

• If we have two decisions D1 and D2 and D1 is made before D2, then D1 must
be placed at the left of D2. Remember that for IDs we must know the total
ordering of the decisions.

• The variables that are known before taking a decision D1; i.e. the informational
predecessors of the decision iPred(D1), must appear at the left of that decision.
The other variables (those unknown before making a decision) must appear to
the right of the decision.

Applying the rules above we can say that, when a variable X is known before making
a decision D2 but it is unknown before making a decision D1, that variable will be
placed between that decisions in the tree. Once the structure of the DT is defined, we
must indicate what are the expected outcomes for each of the leaves of the tree.

There are several evaluation algorithms (Shachter, 1986; Jensen et al., 1994;
Dechter, 1996; Cowell et al., 1999) that can evaluate IDs. During this thesis we used
variable elimination(Shachter, 1986).

Variable elimination evaluate the variables one by one according to a certain
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order (that can be defined with an heuristic). Variables that have been evaluated can
be removed from the model, and this process continues until all the variables have
been evaluated.

To eliminate a variable it is necessary to perform a series of transformations on
the ID; these transformations are guaranteed to preserve the optimal policies and the
expected outcomes. The operations that can be made to the network are:

• Eliminate barren nodes, chance or decision nodes that are leaves in the graph;
i.e. the nodes that do not affect the decisions or expected outcomes.

• Eliminate chance nodes whose all children are value nodes and do not have
other children. In this case, the outcome is updated according to the result of
marginalizing in this variable the joint probability function.

• Eliminate decision nodes whose children are value nodes and which all its
ancestors are also parents of those value nodes. The evaluation of this decision
nodes and its children (the value nodes) result on a potential that maximizes the
expected outcome. The policy that maximizes the expected outcome is added to
the optimal policies set and the outcomes function is updated.

• If none of the previous operations can be applied, we must apply the arc-reversal
algorithm between chance variables. It consists in transforming a decision or
chance node, so that the transformation puts us in one of the situations described
above (transforming it in a barren node, or in nodes whose children be only value
ones). To make arc-reversal between nodes Xi and Xj it is required that there
be no other trajectory between these nodes. Then the arc Xi → Xj is inverted
and each node inherits the parents of the other node.

2.3.3 Markov influence diagrams

MIDs (Díez et al., 2017) are PGMs that extend IDs in the same way as Markov decision
trees extend DTs (Beck and Pauker, 1983; Sonnenberg and Beck, 1993)—allowing
the representation of repetitive events, as we will see in this section. MIDs allow
building state-transition models. As IDs, MIDs consist of a graph—that defines the
relationships between the variables (generally causal)—and a set of potentials that
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Figure 2.6: MID for the HIV model of Chancellor et al. (1997).

include the probability distributions and the utility functions. Figure 2.6 shows an
example of an MID.

They are especially designed to perform CEA. Using a causal graph that may
contain several variables per cycle, MIDs can model various features of the patient
without multiplying the number of states; in particular, they can represent the history
of the patient without using tunnel states (sub-states that can be visited only in a
fixed sequence, normally used to represent temporal permanence on a state).

The main novelty presented by MIDs versus IDs is that they allow representing
variables that evolve over time. These temporal variables are represented by an index
in brackets, which express the cycle to which the node belongs, for example State [0] in
Figure 2.6 belongs to the cycle 0. MIDs also allow representing non-temporal variables
such as Therapy type. In this way, if we take the set of nodes that belongs to the
cycle i and its arcs, we can talk about the temporary slice in the i-th cycle. MIDs can
represent the temporal evolution of chance variables and utility variables of the model.

An MID can be expanded by representing all the nodes and links in each of
cycles.

In Figure 2.6 we can observe the MID representation of the model of Chancellor et
al. (1997). This model compares two possible treatments for HIV. The link State[0] →
State[1] implies that the health state of a patient depends on his/her health state in
the previous cycle; i.e. the state in which it was in the previous cycle, and of the time
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that the patient was in treatment. In this model, the cycle length is one year and
the temporal horizon is 20 years. In Figure 2.6 we can see the expanded network for
two cycles. The network can be expanded to the number of desired cycles to evaluate
a specific time horizon. This expansion will replicate the slice of the last period to
create the nodes and relationships of the subsequent periods.

Due to the computational cost, MIDs containing temporal decisions can only be
evaluated for very short horizons. For this reason we will assume that all decisions
are atemporal, i.e., they are made at the beginning of the process; they may be
conditioned on future events (for example, “do the test when the symptom is present”),
but the policy is the same for all cycles. This way it is possible to evaluate MIDs
with large horizons. This is the main difference between MIDs and dynamic IDs
(Tatman and Shachter, 1990), and leads to a completely different evaluation of the
model. To our knowledge, the restriction to atemporal decisions is also present in all
economic evaluation models, including cohort models, patient-level simulation and
discrete event simulation. An important difference, however, is that cohort models
usually represented the patient’s state with a single variable, taking on a limited
number of values (states), and consequently often need to multiply the number of
states—for example, to represent the patient history—while patient-level simulation,
discrete event simulation and MIDs can use several variables to model different features
of the health state.

Like in IDs, there is a need for a directed path that goes through all the decision
nodes, establishing the order in which the decisions are made. The only exception to
this rule is when the order of the decisions is not relevant for the evaluation of the
model (Nielsen and Jensen, 1999); i.e. when the order in which the decisions are made
does not affect the maximum expected utility.

A temporal model is stationary after i cycles when all its potentials do not vary
after the i-th cycle and no other k′ < k makes the model stationary. This property can
be used to define only the first non-stationary i cycles and expand the network from
the cycle i. Since the model is stationary in i it is enough to replicate the slice of that
cycle the number of times necessary to reach the temporal horizon. The representation
of the stationary model is known as compact representation of the model, while the
representation of all the temporal horizon is known as expanded representation of the
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model.

MIDs may contain temporal numerical variables, for example the value of the
variable Time in treatment in Figure 2.6 increases by one in each cycle; i.e. it is 0 years
in the first cycle, 1 year in the second cycle, etc.

An MID can be converted into an ordinary ID by expanding it to the desired
horizon and then evaluated with the standard algorithms for IDs. Given that an can
be converted into an ID, all the evaluation evaluation algorithms for IDs works also
for processed MIDs.

2.3.4 Decision analysis networks

There are three types of asymmetries: order asymmetry, domain asymmetry and
information asymmetry. Order asymmetry occurs when there are multiple decisions
that can be made in different orders; we say that there is domain asymmetry when
the value taken by a variable restricts the values that other variables can take and
the information asymmetry occurs when a variable is observed only for some values of
another variable (Jensen et al., 2006; Bielza et al., 2011; Díez et al., 2018a).

Several formalisms have been proposed for representing and solving asymmetric
decision problems, but all of them have drawbacks; for example, unconstrained IDs
(Jensen and Vomlelová, 2002) cannot represent domain asymmetry nor information
asymmetry, and sequential IDs (Jensen et al., 2006) may need redundant links with
complex labels.

DANs (Díez et al., 2018a) are a new type of PGM that allows to represent
asymmetric problems. That is important because almost all the real-world problems
are asymmetric.

Like IDs and MIDs, the graph of a DAN has three types of nodes: chance,
decision and value, and each variable in a DAN has a potential.

DANs represent domain asymmetry by means of restrictions (Díez et al., 2018a).
Each restriction is associated to a link, X → Y , such that X and Y are chance or
decision variables. A restriction is a pair (x, y), where x is a value of X and y is a value



2.3. Decision models 29

Figure 2.7: Example of a DAN.

of Y . It means that variable Y cannot take the value y when X takes the value x. In
Figure 2.7 we can see a DAN in which the decision of not performing the test restricts
the possible values of Result of test. The restriction in this figure is represented by a
red arrow crossed by two parallel lines.

Information asymmetry is modeled with revelation links. A revelation link is an
arc X → Y , such that Y is a chance variable and X is a chance or decision variable,
and certain values of X reveal the value of Y . The values of X that reveal the value
of Y are known as revelation conditions. If all of the values of X reveal the value of
Y we can say that X reveals Y unconditionally; otherwise we say that X reveals Y
conditionally. All the conditional revelations induce information asymmetry, while
unconditional revelations do not. Another way of representing the availability of
information and satisfying the non-forgetting property (Howard and Matheson, 1984b;
Nielsen and Jensen, 1999; Koller and Friedman, 2009) is by means of always-observed
variables, whose value is always known before making any decision. Figure 2.8 shows
an example of an always-observed variable, Symptom, marked with a red border, which
is always known before making the decisions of performing the test and applying a
therapy.

The decision in a DAN can be partially ordered. When decision D1 is necessarily
made before D2we draw a link D1 → D2. Please note that information links in IDs
and MIDs are replaced with the revelation links in DANs. Every ID can be easily
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Figure 2.8: Example of an always-observed variable in a DAN.

transformed into an equivalent DAN, but for many DANs there is no equivalent ID.
Therefore, IDs can be understood as a small subset of DANs.

The evaluation of DANs is described by Díez et al. (2018a) but basically there
are two approaches: build an equivalent DT or decompose the DAN into symmetric
DANs 1. As the authors explain, symmetric DANs can be evaluated with the same
algorithms as IDs, so it is possible to apply variable elimination algorithm to evaluate
the symmetric DANs calculated by the Decomposition into Symmetric DANs (DSD)
algorithm.

1A DAN is symmetric if it contains no asymmetry, i.e., it has no restrictions, if a value of a variable
X reveals Y, then all the other values of X reveal Y, and a directed path connects all the decisions.
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The main goal of a national healthcare system is to improve the health conditions
of the population, trying that each one of its individuals have the best possible health
state. Despite that, the resources of any health system are limited and insufficient
to cover all medical needs of their population. Therefore it is important to make
decisions about what treatments must be applied with that limited resources. For
many years, decision making was based on subjective evaluations and patients could
receive one or another therapy (or no one) depending on social, geographical, political
or economic factors. Trying to establish objective criteria to make medical decisions
and considering principles as the equality, several techniques have been developed to
offer useful information for decision makers. To allow decision makers to have objective
information to compare therapies, it is necessary to weigh the costs and outcomes
of each alternative. Depending on whether we measure the health related outcomes
we are really talking about one type of analysis. Cost-benefit analysis measures all
health-related outcomes in economic units (Drummond et al., 2005). This approach
was considered lacking in sensitivity, which has led into other measurements that
represent both the effectiveness of the intervention and the benefit to the patient. In
CEA health related outcomes are expressed in medical units, such as life expectancy,
quality-adjusted life years or patient experience. In cost-utility analysis effectiveness
is identified with Quality Adjusted Life Expectancy (QALE). This approach derived
into the cost-utility analysis, a particular kind of CEA that measures the utility in
Quality-Adjusted Life Years (QALYs).

3.1 Cost-effectiveness analysis

CEA is the most common framework in health economics (Siebert, 2003). This analysis
compares the costs and effectiveness of different alternatives and order them according
to their cost-effectiveness ratio. CEA is a particular type of multicriteria optimization
problem with two criteria: cost and effectiveness. Given that a cost-utility analysis is
by definition a CEA we are going to refer they also as CEA.
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3.1.1 Quality of life

While direct and indirect costs derived from a treatment can be obtained objectively,
the measurement of the quality of life is subjective. The estimation of quality of life is
obtained from a group of informants. They can be patients suffering from a disease
or people who are given all the information about the consequences of the disease.
Therefore, it can vary depending on the demographic, sociological, historical, and
personal factors of the informants. The more representative the sample of informants,
the better it will represent the preferences of the general population.

The quality of life, QoL, is measured in a scale where 1 corresponds to perfect
health and 0 to being dead. When the quality of life varies over time, the QALE
corresponding to an interval of time [t1, t2] is given by:

QALE =
∫ t2

t1
QoL(t) · dt (3.1)

There are different techniques for obtaining the quality of life associated with an
intervention or treatment. The most common is the Time-Trade-Off (TTO) method,
which consists in asking to each informant how much time he/she would give up in
order to regain perfect health. For example, if one subject indicates that 10 years of
life with a treatment equals 8.5 years of life with perfect health (that is, he would give
up 1.5 years of life), we estimate that, for him, the quality of life associated with that
treatment is 8.5 / 10 = 0.85.

3.1.2 Willingness to pay and net monetary benefit

The main purpose of CEA is to determine whether the effectiveness of an intervention
outweighs its economical costs (Drummond et al., 2015; Neumann et al., 2016). One
of the approaches is to convert our CEA into a cost-benefit problem—in which all the
measures are converted to economic units. To transform the effectiveness, measured
in QALYs, into economic units we must know the Willingness To Pay (WTP) of
the decision maker, also known as cost-effectiveness threshold. The WTP is the
amount, in economic units, that a decision maker is willing to pay in order to gain one
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quality-adjusted life year. Given the WTP (λ) of a decision maker we can calculate
the Net Monetary Benefit (NMB, Eq. 3.2) to know if an intervention is cost-effective
for that decision maker. If the NMB is positive the effectiveness (EA) outweighs the
costs (CA) of that intervention while if the NMB is negative the intervention is not
cost-effective for this decision maker as the costs are greater than the effectiveness.
When there are several interventions, the problem is determine which one maximizes
the NMB (Stinnett and Mullahy, 1998).

NMBA(λ) = λ·EA − CA (3.2)

The WTP is a subjective value that depends on each decision maker so it is
impossible to determine whether an intervention is cost-effective or not without fixing
a WTP value. The WTP of a national health care system depends on factors as the
budget constraint and diverse social aspects. In Spain, given the lack of an official
value, several researchers have tried to estimate the shadow threshold; the results
obtained are e20,000/QALY (Pinto and Rodríguez, 2001), e30,000 per life year gained
(Sacristán et al., 2002), e24,000-42,000/QALY (Soto, 2004), e9,000-38,000/QALY
(Pinto and Martínez, 2005), and e30,000-45,000/QALY (de Cock et al., 2007). The
threshold usually accepted as a consensus among experts and most commonly used in
Spanish economic evaluations (Catalá-López et al., 2016) is e30,000/QALY.

In the UK, it has been accepted the WTP £20,000-£30,000/QALY (NICE, 2013)
to decide whether an intervention should be applied. In the US the estimate of the
WTP is $50,000-$100,000 based on the studies of Kaplan and Bush (1982) and Ubel
et al. (2003).

Given that the WTP is a subjective measure, in the field of health economics
different interventions are usually compared through the Incremental Cost-Effectiveness
Ratio (ICER).

3.1.3 Deterministic cost-effectiveness analysis

CEA is a multi-objective problem in which we want to maximize the effectiveness
while minimizing the costs. It can also be considered an optimization problem with
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restrictions because it tries to optimize the QALYs without exceeding a budget
constraint.

As we are working on a bicriteria problem, the analysis of each alternative will
have two different outcomes: a cost in economic units and a effectiveness in QALYs.
Given a ratio between both outcomes (economic units per QALY) we obtain a measure
that represents the amount of money that a decision maker needs to pay in order to
obtain a QALY.

If we compare two interventions A and B such that B is more effective than A
(EB > EA) at a lower cost (CB < CA) we can say that the intervention B dominates the
intervention A. In other situations, we have an alternative with a higher effectiveness
but also at a higher cost. It is then necessary to calculate the ICER, defined as the
ratio between the increment in cost and the increment in effectiveness.

ICER (A,B) = (CB − CA)
(EB − EA) (3.3)

If we have a third intervention D, we can say that A and B jointly dominate D
if the following conditions are met:

UA < UD < UB (3.4)

CA < CD < CB (3.5)

ICER (D,B) < ICER (A,B) < ICER (A,D) (3.6)

In this case D can never be the optimal intervention as we can see in Figure 3.1.

The graphic representation of costs and effectiveness of different interventions is
known as cost-effectiveness plane. Each point of the Cartesian space represents an
intervention. The segmented line joining those interventions that are not dominated,
either individually or jointly, is called the efficiency frontier, cost-effectiveness frontier,
or Pareto frontier (Steuer, 1986). In Figure 3.2 we can see a more detailed example in
which G is jointly dominated by A and B, and F is dominated by E.

ICER (A,B) represents the money necessary to invest in the intervention B with



36 3. Medical decision analysis

Figure 3.1: An example of extended dominance.

Figure 3.2: Cost-effectiveness frontier.
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respect the intervention A to gain one more QALY. Given that WTP is the amount of
money a decision maker is willing to pay in order to gain a QALY, we can say that B
is cost-effective than A for a WTP (λ) when ICER (A,B) < λ.

3.1.4 Cost-effectiveness partitions

The result of the deterministic CEA can be presented as a Cost-Effectiveness Partition
(CEP). A CEP contains, for every value of λ, a cost-effectiveness pair and the optimal
intervention. This way the algorithm evaluates the tree for all the values of λ, grouping
a finite set of intervals, such that within each interval the cost, the effectiveness, and
the intervention are the same for all the values of λ. The thresholds that delimit
the intervals are determined dynamically when evaluating the tree. This way the
new roll-back algorithm can evaluate cost-effectiveness decision trees with embedded
decision nodes. A CEP of n intervals (with n ≥ 1) consists of the following elements:

• Θ = {θ1, . . . , θn−1} – a set of n− 1 values (thresholds), such that 0 < θ1 < . . . <

θn−1,

• C = {c0, . . . , cn−1} – a set of n values (costs),

• E = {e0, . . . , en−1} – a set of n effectiveness values, and

• I = {I0, . . . , In−1} – a set of n interventions.

CEPs were introduced by Arias and Díez (2011) for the evaluation of DTs with embed-
ded decision nodes, using the same algorithm as for unicriterion DTs (Algorithm 2.1),
but assigning to each node a CEP instead of a single value. Similarly, the algorithms
for the evaluation of unicriterion IDs can be adapted to the cost-effectiveness case
(Arias and Díez, 2015). In Chapter 5, we will apply them to perform CEA with MIDs
and DANs.

Figure 3.2 shows an example of CEA in which 4 interventions are not dominated
(A, B, D and E) and 2 dominated (F and G). Each intervention is placed in the plane
according to its cost and effectiveness (Table 3.1).

For each pair of consecutive interventions in the cost-effectiveness frontier, there
is an ICER (a threshold in the CEP) which determines the slope of the line that
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Intervention Cost Effectiveness

A 1.0 0.75
B 2.1 3.0
D 4 5.0
E 3.0 4.2
F 3.8 4.2
G 2.0 1.5

Table 3.1: Costs and effectiveness of the interventions of the example introduced in Fig-
ure 3.2.

λ Cost Effectiveness Optimal intervention

0.0 - 0.49 1.0 0.75 A
0.49 - 0.75 2.1 3.0 B
0.75 - 1.25 2.1 3.0 E
1.25 - +∞ 3.0 4.2 D

Table 3.2: CEP intervals of the interventions of the example introduced in Figure 3.2.

connects the two interventions in the cost-effectiveness plane. In our example, the
thresholds are:

ICER(A,B) = 0.49

ICER(B,E) = 0.75

ICER(E,D) = 1.25 .

The resulting CEP is shown in Table 3.2.

3.2 Sensitivity analysis

Although we have a lot of useful information codified in our model all decisions are
subject to some level of uncertainty. Each parameter of the model represents an
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expected value that one variable takes in an specific scenario, but this values are
usually extracted from non-perfect information, for example from studies that cannot
analyze the entire population because it is unfeasible. When modeling a decision
support system we must take into account all the uncertainty (Raiffa, 1968). The
parameters determine the final output of the model and it is necessary to determine
how its variation affect the outcomes. The Consolidated Health Economic Evaluation
Reporting Standards (CHEERS) (Husereau et al., 2013) recommends Deterministic
Sensitivity Analyses (DSAs) for individual parameters (e.g. discount rates) and
Probabilistic Sensitivity Analyses (PSAs) to observe the impact of uncertainty across
all the parameters. Health technology assessment guidelines require a PSA in all the
studies that implies decision making (Weinstein et al., 2003; Claxton et al., 2005;
Tan-Torres Edejer et al., 2012; NICE, 2013; Versteegh et al., 2016).

3.2.1 Representing the uncertainty

In the reference case, each parameter is an estimate value. Given the parameters
of the model, each possible state is defined as a set of probabilities. Each of this
possible states has associated an expected cost and an effectiveness. The expected
costs and effectiveness of an intervention will be calculated as the multiplication of
the probability of each possible state and the sum of the outputs expected for this
state. So, the uncertainty of the parameters will propagate across the model and will
affect the output of the reference case.

We can represent the uncertainty of a parameter in two ways: “forcing” a
deterministic variation of its reference value or assigning a second order probability
distribution that explains the uncertainty of the variable (Sucar, 2015). Depending on
the type of the parameter, it is common to use a set of probability distributions to model
the second order probability distribution (Briggs et al., 2006). Probability parameters
could be fitted with beta distributions in order to ensure that the probability will
still remain between 0 and 1. Costs are usually fitted with gamma or log-normal
distributions and quality of life estimates with beta distributions.



40 3. Medical decision analysis

Figure 3.3: Example of a tornado diagram with 8 parameters.

3.2.2 Deterministic sensitivity analysis

DSA analyzes the sensitivity of the results to variations of one or more parameters.
To carry a DSA the values of the parameters are manually modified across a specific
range. The range of variation is commonly specified as a percentage variation of the
reference value of this parameter. E.g. if we examine what happens to our results if
the cost of a test vary on a fifth of its value (±20%) and the expected value of this
test is e50, the range of variation goes from e40 to e60.

According the number of parameters that vary at the same time we can speak
about univariate sensitivity analysis or multivariate sensitivity analysis. Univariate
analysis varies only one parameter at each time assuming the principle of ceteris
paribus (keeping all the other things parameters unchanged). Two of the most common
plots used to present that information are tornado and spider diagrams.

Tornado diagram represent the impact of different parameters in the expected
utility. For each parameter with uncertainty a univariate sensitivity analysis is per-
formed. Tornado diagram is represented as a bar graph in which each bar corresponds
to one parameter. The length of the bars is determined by the minimum and maximum
expected utilities obtained when applying the variation to the parameters (see Fig. 3.3).
The different bars are ordered following their impact to the expected utility, what
gives the graph the look of a tornado.
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Figure 3.4: Example of a spider diagram with 8 parameters.

A limitation of tornado diagrams is that they only give information about the
minimum and maximum expected utility but do not show whether the utility increases
when the parameter increases or when it decreases, nor whether variations are linear.
In contrast, spider diagrams (see Fig. 3.4) show how the expected utility varies with
respect the variation of each parameter.

Although they are not so widely used, other sensitivity analyzes such the uni-
variate utility plot graph (van der Gaag and Coupe, 2000) or the bivariate map graph
(in which we can see the impact of the variation of two parameters at the same time)
could be used to analyze and present useful information to the decision maker.

Another common sensitivity analysis tool in health economics is the Expected
Value of Perfect Information (EVPI) which represents the WTP for obtaining perfect
information, that is, how much we would be willing to pay for having perfect information.
The EVPI is calculated as the difference between the expected value and the expected
value given perfect information and could give us a notion about if it is worth to invest
money to reduce the uncertainty of our model.
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Figure 3.5: Example of a cost-effectiveness plane.

3.2.3 Probabilistic sensitivity analysis

PSA consists in analyzing the joint impact of all the uncertainties of the parameters
of model. In this analysis we sample all the parameters according their second order
probability distributions and perform an evaluation of the model obtaining the expected
output. Using Monte Carlo simulation we run different sampled models and analyze
the expected output of each simulation.

When applying PSA on a cost-effectiveness model, one of the most common
visualizations is to represent each cost and effectiveness obtained from the Monte
Carlo simulations in a cost-effectiveness plane. In Figure 3.5 we can see a graph in
which each pair of points (red square and blue circle) represent one simulation. This
representation express how concentrated or scattered are the simulations of the model,
that giving us a clear view of the uncertainty of the model.

By analyzing the cost-effectiveness Monte Carlo simulations, we can calculate
the percentage of simulations in which one intervention is cost-effective with respect
the other for a range of specific WTP values. This information can be displayed on a
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Figure 3.6: Example of an acceptability curve.

chart known as the cost-effectiveness acceptability curve and represents the probability
of each intervention to be cost-effective than the other for each WTP. In the Figure 3.6
we can see that the cost-effectiveness acceptability curve that shows the probability
of combination therapy being cost-effective with respect monotherapy for a range of
WTP values.
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Results of this work were presented as a poster at the conference of the Society
for Medical Decision Making (Pérez-Martín et al., 2017b) and later published in the
journal of Medical Decision Making (Pérez-Martín et al., 2019).

4.1 Introduction

Markov models are the most popular modeling framework in health technology as-
sessment (Beck and Pauker, 1983; Sonnenberg and Beck, 1993)—cf. Sec. 2.3.3. They
represent the state of a patient as a set of mutually exclusive and exhaustive health
states, such that the patient is in one and only one of them at a time. All the possible
events are represented by transitions from one state to another. Every state has an as-
sociated cost and an effectiveness value. The total cost and effectiveness, accumulated
over time, determine the net benefit of each intervention.

In economic evaluations of health technologies most Markov models use a discrete
time approach, i.e., the time horizon is divided into a finite number of intervals of the
same length, called cycles. In the classical presentation, transitions can only occur at
the limit between consecutive intervals. The evaluation of a Markov model applies
transition matrices to calculate for each cycle the probability that the patient is in
one or another state. In the case of monotonically decreasing costs—which typically
happens when patients are dying progressively—the assumption that transitions occur
at the end of each cycle overestimates the cost, and assuming that they occur at
the beginning underestimates it. The half-cycle correction (HCC) (Sonnenberg and
Beck, 1993; Naimark et al., 2008) tries to minimize the error by adding a cycle of half
duration at the beginning of the evaluation, which can be interpreted as assuming that
transitions occur exactly in the middle of each cycle. Current guidelines for economic
evaluation of health technologies recommend using this correction (Siebert et al., 2012).
However, in recent years there has been a controversy about how to interpret and
apply this method, and whether it should be replaced with a different approach, the
Life-Table (LT) method, which averages the probabilities of state occupancy at the
boundaries of each interval (Naimark et al., 2008; Naimark et al., 2013; Naimark et al.,
2014; Barendregt, 2009; Barendregt, 2014). (Some authors present LTs as a way of
implementing the HCC, but we refer to them as a different method for the sake of
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clarity.)

More recently, Elbasha and Chhatwal (2016a) and Elbasha and Chhatwal (2016b)
have proposed alternative within-cycle corrections based on numerical-integration
techniques, which assume that cost and utility evolve continuously over time. These
authors present an example whose results “suggest that the standard HCC method
and the trapezoidal rule are not as accurate as Simpson’s 1/3 and 3/8 rules” (Elbasha
and Chhatwal, 2016a).

However, many medical models include abrupt changes in costs at certain points
in time; for example, when expensive drug treatments are provided only for a limited
time. The purpose of this work is to prove that different “corrections” applied to the
same model may yield significantly different results. Using a slightly modified version
of a model taken from the literature, we compare three “classical” approaches (those
that assume that transitions occur at the beginning or at the end of each cycle, and
the LT method) and several numerical-integration techniques. Our experiments show
that when averaging the left and right limits of the cost at the point of discontinuity
and applying the trapezoidal rule the result is more accurate than when applying
the 3/8 Simpson rule to this model, and much more accurate than when applying
numerical-integration techniques to the non-averaged model.

4.2 Empirical analysis

In order to compare several methods for the evaluation of Markov models, other authors
have used synthetic examples (Soares and Canto e Castro, 2012; Naimark et al., 2013;
Barendregt, 2014; Elbasha and Chhatwal, 2016a; Elbasha and Chhatwal, 2016b). In
this work we use a slightly modified version of a real-world model, built by Chancellor
et al. (1997) to determine the ICER of two interventions for HIV: monotherapy, which
only applies zidovudine, and combination therapy, which adds lamivudine for two years,
until it becomes ineffective for clinical reasons. The model has a cycle length of 1 year
and was evaluated for a horizon of 20 years. It is now obsolete for clinical practice
because there are more effective treatments for HIV, but it is still useful for pedagogic
purposes. In particular, this model it is studied as an example in the book of Briggs
et al. (2006). An Excel version of the original model is available at www.herc.ox.ac.

www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation
www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation
www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation
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uk/downloads/decision-modelling-for-health-economic-evaluation. We have
reimplemented it as an MID (Díez et al., 2017)—see Fig. 2.6—using OpenMarkov, an
open source tool developed by our group (Arias et al., 2017a). The model is available
at www.probmodelxml.org/networks.

The inaccuracy introduced by the discretization of time into cycles increases with
the cycle length: when it approaches 0, all the methods studied in this work converge
to the same results as a continuous-time model (Soares and Canto e Castro, 2012;
Naimark et al., 2008; Naimark et al., 2013; Barendregt, 2014; Chhatwal et al., 2016;
Elbasha and Chhatwal, 2016b). This should be our gold standard for comparing the
accuracy of different methods. However, due to the difficulty of building a continuous-
time version of Chancellor’s model, we used as a gold standard a model with a cycle
length of 1 day, which required a slight modification of the probabilities for the reasons
explained in (Chhatwal et al., 2016). Figure 4.1 shows that the instantaneous cost
function, calculated with this model, has a discontinuity at t = 2, when the patients
in the combination therapy arm stop receiving lamivudine.

As mentioned in the introduction, we have applied three “classical” approaches.
Two of them are based on the assumption that transitions occur at the beginning or
at the end of each cycle. The third is the LT method (Barendregt, 2009; Barendregt,
2014). Another classical approach is the HCC, but it cannot be applied to this model
because it assumes that the cost function for each state is constant.

We have also applied three of the numerical-integration methods proposed in
(Elbasha and Chhatwal, 2016b): the trapezoidal rule and two Simpson rules, called 1/3
and 3/8. We also study the Riemann-sums rules but we do not include explicitly in
the results because they are equivalent to the “classical” techniques that assume that
transitions occur at the beginning or the end of each cycle. The classical approaches
(transitions at the beginning of cycles, transitions at the end, and LTs) are insensitive
to the value of the cost function at the point of discontinuity, t = 2, but numerical
integration depends significantly on whether at this point we take the left or the right
limit. We have examined both cases.

Finally, we have built a model in which the value of the cost for each state at
t = 2 is manually set to the average between the values for t < 2 and for t > 2.
This approach derives from the mathematical analysis in the section 4.3, which shows

www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation
www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation
www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation
www.probmodelxml.org/networks
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Figure 4.1: Instantaneous cost function for combination therapy obtained from our gold
standard, i.e., the model with a cycle length of one day. It has a sharp discontinuity at t = 2.
This figure shows the three possible scenarios: the point belongs to the first interval, the
point belongs to the second interval, the point do not belong to any of these intervals.
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that when the cost associated to some states has discontinuities at the boundaries
between cycles but varies smoothly inside each cycle, the trapezoidal rule applied
to the averaged model is a very good approximation. We have also applied other
numerical-integration rules to the same model.

4.3 Mathematical analysis

A discrete Markov model consists of a set of states—usually a finite set—together
with a probability distribution P0(s) for the states at time 0 and a function that
describes the dynamics of the system and allows to compute the distribution Pt(s) for
any posterior moment. This is sometimes called state membership function because it
indicates the probability that an individual is in state s at time t.

Markov models used for economic evaluation also contain functions that specify
the cost and the effectiveness for every state at each moment, and the discounts for
them. In this section we focus on how to estimate the total cost; the estimation of
effectiveness is identical.

Let c(s, t) be the cost function and γ(t) the corresponding discount function;
necessarily, γ(0) = 1. The instantaneous discounted cost is

c(t) =
∑
s

Pt(s) · c(s, t) · γ(t) (4.1)

and the total cost is
C =

∫ tf

t0
c(t) · dt . (4.2)

The instantaneous cost is measured in monetary units per time unit (for example, in
euros per year) and the total cost in monetary units. In most models the cost function
c(t) decreases monotonically because the cohort that enters the model requires fewer
and fewer resources as the patients progressively die.

Discrete-time Markov models divide the time into a finite number of intervals of
the same length, τ , called cycles. When the model is evaluated for a limited number of
cycles, h (the horizon), the time points that delimit the intervals are {0, τ, 2τ, . . . , hτ}.
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The probability of being in state s at time iτ is

Pi(s) =
∑
s′
Pi(s | s′)Pi−1(s′) . (4.3)

where Pi(s | s′) is the transition matrix. When the transition matrix is time-
independent, we can drop the subindex and just write P (s | s′). (In order to simplify
the notation, we have written Pi(s) instead of Piτ (s).) This way we obtain a set of
probability distribution, {P0(s), P1(s) . . . , Ph(s)}.

4.3.1 Classical approaches

The classical approach to the evaluation of discrete-time Markov models assumes
that transitions between states can only occur at the limit between cycles, i.e., the
state of the system does not change within each cycle. It also assumes that the cost
function for each state is constant in the interval (iτ, (i+ 1)τ); let ci(s) be this cost.
Additionally, the discount function usually decreases very slowly, which means its
value in this interval its very approximately γ(iτ). The accuracy of this approximation
depends on the cycle length.

Some models assume that transitions only occur at the end of a cycle, i.e.,
the probability in the interval [iτ, (i + 1)τ) is Pi(s). With these assumptions and
approximations, the total cost is

CE =
h−1∑
i=0

∑
s

Pi(s) · ci(s) · γ(iτ) · τ , (4.4)

where the subindex E stands for “end”. When the cost function (cf. Eq. 4.1) decreases
monotonically, this assumption leads to an overestimation of the total cost, i.e.,CE is
higher than the true cost, C, given by Equation 4.2.

Alternatively, it is possible to assume that transitions only occur at the beginning
of each cycle, i.e., the probability in the interval (iτ, (i+ 1)τ ] is Pi+1(s). Therefore,

CB =
h−1∑
i=0

∑
s

Pi+1(s) · ci(s) · γ(iτ) · τ , (4.5)
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where the subindex B stands for “beginning”. When the cost function decreases
monotonically, this assumption leads to an underestimation of the total cost, i.e.,
CB < C < CE.

4.3.1.1 The trapezoidal rule and the half-cycle correction

In an attempt to obtain a better approximation, the trapezoidal rule computes the
average cost for each cycle as the arithmetic mean of the instantaneous costs at its
boundaries:

CTR =
h−1∑
i=0

c(iτ) + c((i+ 1)τ)
2 · τ (4.6)

= c(0) · τ

2 +
h−1∑
i=1

c(iτ) · τ + c(hτ) · τ

2 . (4.7)

This equation was applied when evaluating Markov DTs with different software
packages, such as SMLTREE, Decision Maker, and TreeAge (Sonnenberg and Beck,
1993; Naimark et al., 2013). Unfortunately, when explaining this method those authors
did not present it as the trapezoidal rule applied to instantaneous costs, but as a way
of approximating the state-occupancy probabilities in order to subsequently estimate
the cost accrued in each cycle. Furthermore, sticking to the traditional assumption
that transitions can only occur at certain moments, they interpreted the first term in
Equation 4.7 as the cost accrued during a cycle of length τ/2 in which no transition
occurs; hence the name “half-cycle correction” (HCC) and the assertion that this
“correction” is equivalent to assuming that the transitions occur at the time points
{0.5τ, 1.5τ, 2.5τ, . . .}, i.e., halfway through each cycle (Beck and Pauker, 1983; Naimark
et al., 2008).

In summary, the trapezoidal-rule method and HCC apply exactly the same
equation but with a different interpretation.

4.3.1.2 The life-table method

An alternative approach, based on the same premises as the usual presentation of the
HCC, consists in first averaging the state-occupancy probabilities at the boundaries
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and then calculating the costs:

CLT =
h−1∑
i=0

∑
s

Pi(s) + Pi+1(s)
2 · ci(s) · γ(iτ) · τ , (4.8)

where ci(s) is the cost inside the i-th interval, again assumed to be constant. This
is called the LT because it is based on the procedure that demographers use it to
estimate life expectancy (Barendregt, 2009).

It is easy to check that
CLT = CE + CB

2 .

We have already seen that when the total-cost function decreases monotonically, CE is
an overestimation of the true cost and CB is an underestimation, so their arithmetic
mean, CLT , is expected to be closer to the true value than if we assumed that all
transitions occur either at the beginning or at the end of each cycle.

4.3.1.3 A comparison of HCC and LT

We have seen that HCC was explained as a method that approximates the state-
occupancy probability within each interval by applying the trapezoidal rule to the
state-occupancy probability at the boundaries between cycles, but it was implemented
by applying Equation 4.7 to the cost, assumed to be constant, accrued in each cycle.
This inconsistency motivated the severe criticism of (Barendregt, 2009; Barendregt,
2014).

However, we should first note that in general the two methods yield almost the
same results, despite the apparent differences in the way of doing the calculations. In
fact, when the cost function is time-independent for each state (a basic assumption of
the HCC), we can write c(s) instead of c(s, t) in Equation 4.1, so that Equation 4.6
leads to

CHCC =
h−1∑
i=0

∑
s

Pi(s) · c(s) · γ(iτ) + Pi+1(s) · c(s) · γ((i+ 1)τ)
2 · τ . (4.9)

Comparing this with Equation 4.8, we observe that they only differ in the way of
applying the discounts. If there is no discount, CLT = CHCC . If the cycle length
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τ is short or the discount function decreases slowly, then γ(iτ) ≈ γ((i + 1)τ) and
CLT ≈ CHCC , but HCC is more accurate because it uses the values of γ(t) at the
boundaries of each cycle, in coherence with the trapezoidal rule, instead of applying
the right-boundary discount all along the cycle.

Additionally, the HCC approach presented here only requires that the total cost
function, c(t), varies smoothly inside each cycle, while LT requires that the cost of
each state, c(s, t), is constant inside each cycle. When this condition does not hold,
HCC is more accurate than LT.

For these reasons, we disagree with some of the arguments claiming the superiority
of LT over HCC. For example, Barendregt (2009) argued the standard HCC method
is incompatible with discounting; Naimark et al. (2013), who were initially strong
advocates of the HCC, finally agreed with him. However, the instantaneous cost in
Equations 4.6 and 4.7 clearly include the discounts (see Eq. 4.1).

Barendregt (2009) also said: “I know of very few relevant Markov models in
medical decision making where QALY weights and unit costs are constant across
all cycles”. However, HCC does not require that the cost function c(t), given by
Equation 4.1, be constant. In our analysis, the derivation of Equation 4.7 only required
that c(s, t) be continuous (for every state s).

In turn, Naimark et al. (2013) said that “the standard approach to the HCC
assumes that the state membership curve is declining and monotonic.” Our derivation
of Equation 4.7 does not require that assumption, so we disagree with their assertion
that “the standard HCC is not appropriate for nonmonotonic states”, which they
define as the states whose membership function (their state-occupancy probability) is
not monotonic.

In summary, we claim that there was nothing wrong in the application of the
HCC—in fact, Equation 4.7 is in general more accurate than 4.8. The problem was in
the way of explaining and justifying the method.
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4.3.2 Numerical-integration approaches

4.3.2.1 The approach of Naimark et al.

To our knowledge, Naimark et al. (2013) were the first to propose using numerical-
integration techniques to obtain an approximation similar to that of the HCC but more
accurate. Using our mathematical notation, their approach is the result of combining
Equations 4.1 and 4.2 and permuting the summation and the integration, so that when
the cost function for each state is constant, the total cost is

C =
∑
s

c(s) ·Paccrued(s) , (4.10)

where
Paccrued(s) =

∫ tf

t0
Pt(s) · γ(t) · dt . (4.11)

They proposed computing this integral (for each state s) using Simpson’s simple rule.

Clearly, the assumption that c(s, t) is time-independent makes this method
unsuitable for discontinuous cost functions.

4.3.2.2 The approach of Elbasha and Chhatwal

Elbasha and Chhatwal (2016a) and Elbasha and Chhatwal (2016b) also used numerical
integration, but in a different way: they depart from the set of probability distributions
for the limits between intervals, {P0(s), . . . , Ph(s)}, as in the classical approach, but
the probabilities inside each interval are not assumed to be constant; they are just
unknown. Instead of trying to estimate the accrued probability for each state, as in
the approach above, Elbasha and Chhatwal compute the instantaneous cost at the
boundaries between intervals, {c(0), c(τ), c(2τ), . . . , c(hτ)}, and then apply different
numerical-integration techniques. They prove that the left Riemann sum is equivalent
to assuming that the transitions occur at the end of each cycle, the right Riemann
sum is equivalent to assuming that they occur at the end, and the trapezoidal rule is
equivalent to the HCC.1

1Elbasha and Chhatwal (2016b) also say that the trapezoidal rule will give the same result as
LT. However, we have already explained why HCC and LT give different results when there are



58 4. Evaluation of Markov models with discontinuities

4.3.3 The trapezoidal rule for models with discontinuities

Both HCC and numerical-integration methods implicitly assume that the cost function
is continuous. When applying the trapezoidal rule, which is equivalent to the HCC,
the cost accrued in the i-th cycle is

∫ (i+1)τ

iτ
c(t) · dt ≈ c(iτ) + c((i+ 1)τ)

2 · τ . (4.12)

If the cost function varies smoothly inside the interval but there are discontinuities at
the boundaries, we should write instead

∫ (i+1)τ

iτ
c(t) · dt ≈

(
lim
t→iτ+

c(t) + lim
t→(i+1)τ−

c(t)
)

· τ (4.13)

and Equation 4.7 should be replaced with

CTR = c(0) · τ

2 +
h−1∑
i=1

c∗(iτ) · τ + c(hτ) · τ

2 , (4.14)

where
c∗(iτ) =

∑
s

Pi(s) · 1
2

(
lim
t→iτ−

c(s, t) + lim
t→iτ+

c(s, t)
)

· γ(iτ) . (4.15)

This means that if the cost function c(s, t) is discontinuous at iτ for a state s, we can
still apply the trapezoidal rule but in the calculation of the “instantaneous cost” at iτ
we must take the average of the left and right limits for c(s, t). The adjustment can
be implemented by setting c(s, iτ) to this average in the model.

This analysis justifies the application of the trapezoidal rule to the averaged
model, which we recommend as the most accurate approach for evaluating Markov
models with discontinuities.

discounts. Section 9.2.1 in (Gray et al., 2011) shows an example in which the numerical results
yielded by both methods are different.
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Method ICER
(₤/QALY)

Percentage error
(%)

Gold standard (cycle length = 1 day) 6,543
Classical approaches
transitions at the beginning of cycle 6,680 2.09
transition at end of cycle 6,401 −2.17
life tables 6,539 0.06

Numerical integration
– Left limit at t = 2 years

trapezoidal 7,440 13.71
1/3 Simpson 7,146 9.22
3/8 Simpson 7,603 16.20

– Right limit at t = 2 years
trapezoidal 5,640 −13.8
1/3 Simpson 5,945 −9.14
3/8 Simpson 5,579 −14.73

– Average of limits at t = 2 years
trapezoidal 6,540 −0.05
1/3 Simpson 6,545 0.03
3/8 Simpson 6,590 0.72

Table 4.1: Impact of different within-cycle correction methods in the ICER and the per-
centage error with respect to gold standard.

4.4 Results of the empirical analysis

Table 4.1 summarizes the results obtained with each method. As expected, the
approaches that assume that transitions occur at the beginning or the end of each
cycle give higher errors, but it would have been difficult to predict their signs because
biases affect the cost and the effectiveness of each of the interventions. Among the
three classical approaches, the LT method yielded the smallest error, as expected. In
contrast, the error introduced by numeric-integration techniques may be higher than
13% with respect to the value computed with the gold-standard model.

We also observe in the table that numerical-integration methods are very sensitive
to the value of the cost functions at the point of discontinuity. It was expected, because
these methods try to estimate the value of the cost, c(t), around the point t = 2 by
“propagating” it towards its left and its right, thus amplifying the effect of the choice
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made for c(2). The best results are obtained when taking the average of the left and
right limits for t = 2, but these results are not much better than when using the LT
method. It is also interesting to note that, even though the 3/8 Simpson rule is usually
more accurate than the trapezoidal rule and the 1/3 Simpson rule in the absence of
discontinuities, in this example it is clearly the opposite.

With respect to computational efficiency, the gold standard model, with daily
transitions, was evaluated in 22.64 hours, while the classical approaches and the
numerical-integration methods applied to a model with yearly transitions only took
one or two seconds (1.40 s on average).

4.5 Discussion

The HCC was proposed by Sonnenberg and Beck (1993) as a method for computing
accumulative outcomes (for example, cost and effectiveness) more accurately in discrete-
time Markov models. Naimark et al. (2008) offered two analytical justifications of the
HCC with didactic purposes, but their idea was criticized as a “kludge” in a paper
entitled “The half-cycle correction: banish rather than explain it” (Barendregt, 2009),
which argued that the HCC should be replaced with a more accurate technique, the
LT method. A few years later Naimark et al. (2013) proposed several modifications
aimed at “redeeming the kludge”, but again Barendregt (2014) criticized their work
severely, to the point that Naimark et al. (2014) surrendered and accepted that “the
standard approach to the HCC is flawed and should be abandoned”.

In our opinion, the problem was that in (Sonnenberg and Beck, 1993) and
(Naimark et al., 2008) the HCC was not justified as the application of the trapezoidal
rule to the instantaneous discounted cost but as its application to the state-occupancy
probabilities in order to subsequently calculate the cost and effectiveness accrued in
each cycle. That was the source of several mathematical inconsistencies and made
the HCC impossible to apply when the cost function is discontinuous (Barendregt,
2009; Barendregt, 2014). Another problem of the traditional way of presenting the
HCC is the assumption that transitions can only occur at the boundary between
cycles—an idea exposed in most papers and virtually all the textbooks that explain
Markov models. However, following the ideas of Elbasha and Chhatwal (2016a) and
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Elbasha and Chhatwal (2016b), we have shown that (in the absence of discontinuities)
the trapezoidal rule is formally equivalent to the HCC—see Sec. 4.3.1.1—but the
interpretation is different, because it does not assume that transitions only occur at
the boundaries between cycles or halfway through each cycle.

Elbasha and Chhatwal also argued that more sophisticated numerical-integration
techniques, such as Simpson 1/3 and 3/8 rules, in general give more accurate results
than the trapezoidal when the function of interest is not linear inside each cycle.
Unfortunately they did not take into account one of Barendregt’s criticism of the
HCC: its inaccuracy when the model has discontinuities, a problem which also affects
numerical-integration approaches. We faced it when evaluating Chancellor’s model:
the cost function has a severe discontinuity at the end of the second year, when
lamivudine becomes clinically ineffective and is withdrawn.2 Common sense says that
it does not matter whether it is withdrawn a second before t = 2 or one second later,
so a model in which lamivudine is applied in the interval [0, 2) should give the same
results as if it is applied in the interval [0, 2]. A continuous-time model would be
insensitive to this modeling decision, but the evaluation of a discrete-time model with
a large cycle length is very sensitive to the cost at t = 2 because this is an input of the
numerical-integration algorithm. In our example, the difference between withdrawing
lamivudine just before or after t = 2 is higher than 27%; the error with respect to the
gold standard is ±13%. Interestingly, the 3/8 Simpson rule, which is generally the
most accurate for continuous functions, gave worse results than the trapezoidal rule
and the 1/3 Simpson rule; the results were even worse than when assuming that all
transitions occur at the beginning or the end of a cycle. If the ICER estimated is close
to the WTP threshold, this error may lead to making a wrong decision.

As mentioned above, the errors were reduced when applying numerical-integration
techniques on a model in which the cost at t = 2 is the average between administering
lamivudine and not administering it. The application of the trapezoidal rule to this
model is justified by the algebraic analysis in the sec. 4.3.3 and results in an error
of only −0.05% in the ICER. The 1/3 Simpson rule also gives a small error, 0.03%.
These are smaller than the 0.06% of the LT method and much smaller than the 0.72%
of the 3/8 Simpson rule.

2The cost function c(s, t) is discontinuous only for the three states in which the patient is alive.
When the patient is dead (fourth state) there is no discontinuity.
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A limitation of our study is that we have only studied one model. Further studies
are necessary in order to determine to what extent the qualitative results obtained
generalize to other models. However, our analysis serves at least as a warning that in
the case of discontinuities numerical-integration techniques may give wrong results
because they were designed for continuous functions.

4.6 Conclusion

In many cases it is not possible (or its unfeasible given the computation times) to
build a continuous-time Markov model or to shorten the cycle length of a given
discrete-time model (Chhatwal et al., 2016), but within-cycle corrections, such as the
HCC, may give very good approximations (Soares and Canto e Castro, 2012; Elbasha
and Chhatwal, 2016a; Elbasha and Chhatwal, 2016b). However some models have
discontinuities in costs due to the withdrawal of expensive therapies. (There might also
be discontinuities in the effectiveness, but we have not found any example.) The LT
method is insensitive to discontinuities at the boundaries between cycles, but the HCC
cannot be applied because it is based on the assumption that the cost for each state is
constant. Numerical-integration techniques may also lead to significant errors in this
case. We have proved mathematically that the trapezoidal rule—formally equivalent
to the HCC but with a different interpretation—yields a good approximation also
when the cost function has discontinuities at the boundaries between cycles but varies
smoothly within each cycle, provided that it is applied on a model in which the value
of the instantaneous cost function for each point of discontinuity is set to the average
of the left and right limits. In the real-world model we have studied, the 1/3 Simpson
rule also gave a good result, even though we did not have mathematical justification for
it, but the 3/8 Simpson rule, which is more accurate for models without discontinuities,
introduced significantly larger errors. As a conclusion, when a model has discontinuities
we recommend building an averaged model and applying the trapezoidal rule instead
of more sophisticated numerical-integration techniques.



5
Cost-effectiveness evaluation
with Probabilistic Graphical

Models
“A little inaccuracy sometimes saves a ton of explanation.”

Saki

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Cost-effectiveness analysis with Markov influence diagrams . . . . . . . 65

5.2.1 Multicriteria analysis . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2 From MPADs to MIDs . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.3 Efficient evaluation of MIDs . . . . . . . . . . . . . . . . . . . . 68

5.3 Cost-effectiveness analysis with decision analysis networks . . . . . . . 70

5.3.1 Complexity of modeling the n-test problem with decision trees . 73

5.3.2 Evaluation of the DAN . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



64 5. CE evaluation with PGMs

This chapter presents the methodological contributions to the cost-effectiveness
evaluation with two types of PGMs: MIDs and DANs. Results of the work carried out
in this chapter has been included in Díez et al. (2017), Arias et al. (2017a), Arias et al.
(2017b), and Arias et al. (2019).

5.1 Introduction

Several types of computational models are available for medical decision making. As
we mentioned in Section 2.3.1, DTs (Raiffa, 1968) are the most popular, but they
are suitable only for small problems because their size grows exponentially with the
number of decisions and chance variables. When doing CEA, the standard roll-back
algorithm cannot evaluate DTs with embedded decision nodes—i.e., those that are not
the root of the tree (Arias and Díez, 2014). A possible solution consists in having only
one decision node (at the root of the tree) representing all the possible strategies, as
recommended by Kuntz and Weinstein (2001), but this solutions usually leads to huge
DTs even for small problems (Arias and Díez, 2011). A much more efficient algorithm
proposed by Arias and Díez (2011) can perform CEA on trees with embedded decision
nodes, but still the size of problems that can be represented is very limited.

Standard algorithms for IDs, such as arc reversal (Olmsted, 1983; Shachter, 1986)
and variable elimination (Jensen and Nielsen, 2007), can only evaluate unicriterion
IDs, which makes them unsuitable for health technology assessment. Arias and Díez
(2015) and algorithm for perform CEA with IDs, which is an adapted version of their
algorithm for DTs, and applied it to two models whose equivalent DTs would contain
more than 10,000 leaves.

CEA is even more difficult when time must be modeled explicitly. The most
common approach is to build state-transition models (Briggs et al., 2006; Gray et al.,
2011; Siebert et al., 2012), which allocate members of a population into one of several
categories, or health states, and discretize time into a set of fixed-length intervals,
called cycles. Markov DTs, originally called Markov cycle trees (Sonnenberg and
Beck, 1993), were the first representation used to implement state-transition models.
There are several software used for building state-transitions models (such as Excel or
TreeAge), but it is also common to find models written in programming languages
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Figure 5.1: Example of multicriteria MID.

such as C++ or R (Tosh and Wailoo, 2008).

In this chapter we present the algorithms developed for CEA with two types
of PGMs proposed by our group: MIDs, for temporal problems, and DANs, for
asymmetric models, in particular models with partially ordered decisions.

5.2 Cost-effectiveness analysis with Markov influence diagrams

When I started this thesis, the researchers at the CISIAD had already proposed a
new type of PGM, called Markov Processes with Atemporal Decisions (MPAD), which
was designed to perform CEA with state-transition models. This section presents the
modifications on which I worked and that were necessary to improve MPADs, including
the one that contributed to changing its name to Markov Influence Diagrams (MIDs).
Please note that in this section we will use the acronym MPAD for the formalism that
already existed and MID for the formalism to which I contributed.

5.2.1 Multicriteria analysis

MPADs allowed to define two criteria: cost and effectiveness. To perform the analysis,
each value variable of the model had to be assigned to one of these criteria. At that
time, MPADs only supported two criteria, cost and effectiveness.

MIDs support multiple criteria, each one measured in its own units. In Figure 5.1
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Figure 5.2: Unicriterion evaluation in a multicriteria model.

Figure 5.3: Cost-effectiveness evaluation in a multicriteria model.

we can see a model with four different criteria: clinical effectiveness, cost of personnel,
cost of the medication, and cost of equipment. Each criteria has its own measurement
units; for example, we can quantify the cost of the personnel in hours of work, and the
cost of the drug in economic units.

There are at least two ways to evaluate MIDs with more than two criteria. First,
we can combine all the criteria into a single one using a weight for each criterion, as
shown in Figure 5.2, and then perform an unicriterion analysis. Alternatively, we can
reduce the original criteria to only two criteria, cost and effectiveness, as shown in
Figure 5.3, and then perform a CEA.

To perform a CEA, all the decision criteria must have an assigned role, either
cost or effectiveness, depending on whether they should be minimized or maximized.
In this particular type of bicriteria analysis, the factor of each criterion is used to
obtain weighted values. This is useful when we want to have multiple scenarios in a
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Figure 5.4: Example of mulidecision MID.

single model, for example, if we want to not include some expected outcomes we can
assign factor equals to zero to its criterion. In Chapter 6 we will use these decision
criteria weights to perform two analyses with the same model: one including social
costs, and one without including them.

5.2.2 From MPADs to MIDs

MPADs could contain multiple atemporal decisions, but they had to be merged into
a single one with the Cartesian product of their states. This approach, is similar to
the one proposed by Kuntz and Weinstein (2001) for DTs. The main limitation of
this evaluation is that it does not allow to have evidence, neither before the decisions,
nor between them. In contrast, Figure 5.4 shows a MID in which there is evidence
before the decisions (e.g. Eligible ETT ), which can be used to particularize the CEA
to specific subpopulations, and evidence between them (e.g. Result ETT ), which may
represent the results of different test.

Even though the CISIAD had developed specific algorithms for MPADs, we real-
ized that it was possible to convert them into IDs by applying several transformations,
such as expanding the network or weighting each criterion. Therefore, these new type
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of model can be understood as an extension of IDs an be evaluated with a modified
version of the cost-effectiveness algorithms for IDs, which allow the models to represent
more complex problems (for example the one presented in Figure 5.4). The integration
of MPADs and IDs results in a new type of model that we decided to call MIDs. This
integration required several changes in our open-source software, OpenMarkov, which
are described in Appendix C.

To evaluate the resulting ID, value nodes should be kept separate until the
moment of eliminating the first decision, because if we joined them into a single node
when initializing the algorithm, the computational complexity would grow exponentially
with the horizon.

5.2.3 Efficient evaluation of MIDs

The evaluation of a MID can take a long time and consume a lot of memory due to
the size of the equivalent ID, which is proportional to the temporal horizon. A good
elimination heuristic can reduce the time and memory spent in the evaluation but it is
not always enough to evaluate large complex models.

In Chapter 4 we explained the need of calculating the cost and effectiveness in
each cycle of a Markov model. With the algorithms we had implemented for MIDs
we could perform CEA, obtaining the CEPs; however in order to obtain the cost and
effectiveness for each cycle, it was necessary to evaluate the network once for each
value-variable in the expanded model; for example, the model in Figure 5.4, which
has a temporal horizon of 20 years, must be evaluated 45 times: 20 times for each of
the two temporal value-variables and once for each atemporal value-variable. Given
that this approach consumes a lot of time and memory, we developed Algorithm 5.1,
which adds and deletes nodes dynamically taking advantage of the Markov property
(see Sec. 2.2.3), while storing the cost and effectiveness of each cycle.

As we can see in Figure 5.5, each iteration takes into consideration all the
variables relevant at this moment. After building the network for a particular time
slice, the algorithm removes the variables that are not relevant for future slices, thus
obtaining an intermediate network that only contains the parents of the sub-networks
in the next slices. This iterative evaluation returns the cost and effectiveness of each
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Algorithm 5.1: Temporal evaluation of MIDs

Input: A Markov influence diagram (MID)
Result: Set of expected instantaneous costs and effectiveness in each cycle, ci and

ei

1 network ← getAtemporalVariables(MID)
2 for slice ← 0 to temporalHorizon do
3 network.addVariablesInSlice(MID, slice)
4 network.removeUnnecesaryVariables()
5 ci, ei ← network.removeVariables()

Figure 5.5: Flowchart of the temporal-evaluation algorithm.
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Figure 5.6: Temporal evolution of the variable State [i].

slice.

Algorithm 5.1 can be used for three different purposes:

1. Performing CEA efficiently, i.e. without doing inference with all the potentials
at the same time it consumes less memory than other algorithms.

2. Applying the numerical integration techniques explained in Chapter. 4 using the
values of cost and effectiveness of each cycle

3. Displaying the temporal evolution of a variable of interest, i.e. showing either
the value of a numeric variable or the probability of each state of a finite-states
variable. In Figure 5.6 we can see the temporal evolution of the variable State [i]
of the MID for the HIV model of Chancellor et al. (1997) (see Fig. 2.6).

5.3 Cost-effectiveness analysis with decision analysis networks

As we said in Section 2.3.4, DANs are a new type of PGM specially designed for
asymmetric problems.

To solve CEA problems with DANs, we combined the method for unicriterion
DANs and the CEA algorithms for DTs with embedded decision nodes (Arias and
Díez, 2011) and for IDs (Arias and Díez, 2015). The basic idea is straightforward, but



5.3. Cost-effectiveness analysis with decision analysis networks 71

Figure 5.7: Mediastinet, a DAN for the mediastinal staging of non-small cell lung cancer.

the integration of those algorithms is not trivial.

We illustrate the method with some examples. The first one is a fictitious
problem involving two mutually-exclusive therapies and n tests. The goal is to find,
for each value of λ, the optimal intervention, i.e., to determine which test must be
done first, if any, and depending on its result, whether to do a second test, etc., and
finally to decide what therapy to apply, if any. We solve in detail a numerical example,
with two tests (n = 2) and examine empirically the computational time required to
solve this problem for different values of n. We then show how to solve a real-world
problem: finding the optimal sequence of six tests available for the mediastinal staging
of non-small cell lung cancer (see Fig. 5.7). We solved this problem with an ID (Luque
et al., 2016), which we have now converted into a DAN.

We introduce here the n-test problem as an example involving unordered decisions.
In Section 5.3.1 we discuss why, in spite of its apparent simplicity, it is difficult to
determine the optimal intervention—as a function of λ—even for only two tests (n = 2).
Then we will show how to solve the problem using DANs.

Example 5.1. (The n-test problem). For a disease X There are two mutually-exclusive
therapies and n tests, each having two possible outcomes, positive and negative. Every
test can be performed once at most.

In order to solve the problem numerically, we will assume that are only two
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Figure 5.8: A DAN for the 2-test problem.

Therapy Cost Effectiveness
disease no disease

no therapy e0 1.2 QALY 10.0 QALY
therapy 1 e20,000 4.0 QALY 9.9 QALY
therapy 2 e70,000 6.5 QALY 9.3 QALY

Table 5.1: Cost and effectiveness of each intervention for the 2-test example.

tests, A and B, such that the latter is more accurate, but more expensive, as shown in
Table 5.2. The DAN for this problem is shown in Figure 5.8.

We will suppose that the prevalence of X is 0.14. The effectiveness of the
therapies depends on whether the disease is present or not, as shown in Table 5.1.
The best situation for the patient occurs when the disease is absent and no therapy is
applied (effectiveness = 10.0 QALY). The worst situation occurs when the disease is
present and no therapy is applied (effectiveness = 1.2 QALY). For sick patients, the
second therapy yields 6.5 QALY while therapy 1 only yields 4.0, but when a therapy is
applied to healthy patients (by mistake) it reduces the effectiveness due to side effects,
especially therapy 2.

Test Cost Sensitivity Specificity

A e18 78% 91%
B e150 90% 93%

Table 5.2: Cost, sensitivity and specificity of each intervention for the 2-test example.
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5.3.1 Complexity of modeling the n-test problem with decision trees

We have introduced in Example 5.1 the n-test problem. We analyze here the complexity
of modeling it with DTs, first for the unicriterion case and then for CEA.

5.3.1.1 Decision trees for unicriterion analysis

If cost and effectiveness were combined into a single criterion, the NMB (cf. Eq. 3.2),
the optimal intervention could be found by building the DT. When there is no test
(n = 0), the tree contains the decision node “Therapy” at the root, with a “Disease X”
node in each branch. If we denote by l(n) the number of leaves in the tree for n tests,
we have l(0) = 3×2 = 6. When there is one test, the decision node at the root has two
branches: “do the test” and “do no test”. The first one has two branches, “positive”
and “negative”. Each of these three branches has a “Therapy” node, as in the previous
case, so the tree has l(1) = 3× 3× 2 = 18 leaves. When there are n tests, the root has
one branch, “do no test”, and n branches “do test A”, “do test B”, etc. The “no test”
branch has 6 leaves; each of the other branches has l(n− 1) leaves for a positive result
of the test and l(n− 1) leaves for a negative result. Therefore, l(n) = 2n· l(n− 1) + 6,
and we have l(2) = 78, l(3) = 474, l(4) = 3, 798, etc. Consequently the problem is
hard for two tests and virtually impossible to solve for more than two tests. If there
were more than two therapies and each test had more than two outcomes, the problem
would be much harder even for only two tests.

5.3.1.2 Decision trees for cost-effectiveness analysis

The standard roll-back algorithm for CEA evaluates DTs by assigning a cost-
effectiveness pair to each node, starting from the leaves, and then performing a
CEA at the root, which returns a set of ICERs. This algorithm cannot be applied to
the trees described in the previous section (except for n = 0) because the evaluation
of an embedded decision node does not return a single cost-effectiveness pair.1 The

1Old versions of TreeAge evaluated embedded decision nodes by asking the user for a value of λ in
order to select for each node the branch that maximizes the NMB. The question might disconcert
the user, because it is not necessary: the tree must be evaluated for all the values of λ,not for a
particular one. Recent versions use a default value, which can be set by the user. Using a single
value of λ makes it is possible to assign a cost-effectiveness pair to each node, but the evaluation
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solution proposed by Kuntz and Weinstein (2001) consists in building a DT containing
just one decision node, at the root, with an outgoing branch for each intervention.
When no test is available (n = 0), there are only three possible interventions: “no
therapy”, “therapy 1”, and “therapy 2”. Each branch has a chance node, X, with
two outgoing branches, “present” and “absent”. Therefore, in this case the tree has 6
leaves, l(0) = 6.

When n = 1, there are three no-test interventions, as in the previous case, plus
each with a plus 3× 3 do-test interventions: “if test is negative, then no therapy; if
positive, no therapy”, “if test is negative, no therapy; if positive, therapy 1”, “if test
is negative, no therapy; if positive, therapy 2”, “if test is negative, then therapy 1;
if positive, therapy 2”, . . . , “if positive, therapy 2; if negative, therapy 2”. The 3
interventions in which the therapy applied is the same regardless of the result of the
test can be ruled out because it is not worth doing a test that will not guide the
decision about the therapy. Therefore, there are 3× 2 do-test interventions. Each one
has 2× 2 leaves, because the chance node that represents the result of the test has
two outgoing branches, “positive” and “negative”, and node for X has two outgoing
branches, “present and absent”. Therefore, the tree has 6 + 6× 4 leaves, i.e., l(1) = 30.

When n = 2, there are 3 no-test interventions; each one corresponds to a branch
outgoing from the root of the tree, and has two leaves. There are also some interventions
that begin doing test A. When it is positive, there are 3 subsequent interventions
that do not perform test B (as many as when there was not test available) and 6
interventions that perform it (as many as if there were only one test available), i.e., 9
sub-interventions. There are also 9 sub-interventions for a negative result of test A.
This makes a total of 9× 9 interventions that begin doing test A. However, it is not
worth doing the test when it does entail a difference in the sub-intervention applied
after it, so we can limit our analysis to 9× 8 = 72 interventions. Each branch for an
intervention in which both tests are done contain 2× 2× 2 = 8 leaves. An intervention
that performs only test A leads to 2× 2 = 4 leaves. When test B is done only for one
of the outcomes of test A, the branch contains 6 leaves. This makes a total of 480
leaves for the interventions that begin doing test A. There are also 72 interventions
that begin doing test B. This makes a total of 3 + 72 + 72 = 147 interventions and

depends on the value arbitrarily chosen and the result is often wrong (Arias and Díez, 2014).
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6 + 480 + 480 = 966 leaves.

For n ≥ 3 the possible interventions are so complex that it is very difficult even
to estimate their number, but the increase from l(1) = 30 to l(2) = 966 leaves shows
the impressive increase of the size of the tree for every test we add.

We have excluded from these counts the interventions in which the result of a test
does not guide the next decisions—for example, the interventions that apply a therapy
regardless of the result of the test. Depending on the numerical parameters of the
model we might discard more interventions. For example, in the one-test problem we
can see that the incremental effectiveness of “therapy 1” with respect to “no therapy”
grows with the probability of disease X. Therefore, the intervention “when test A
is negative apply therapy 1; when positive, apply no therapy” is clearly suboptimal.
However, when the number of decisions increases, the proportion of therapies that can
be discarded is smaller and smaller.

In summary, building manually a DT with only one decision node for CEA, as
proposed by (Kuntz and Weinstein, 2001), is unfeasible for the 2-test problem and
absolutely impossible for n > 2.

5.3.2 Evaluation of the DAN

Cost-effectiveness DANs can be evaluated with Algorithm 5.2, which recursively
decomposes the original network into DANs without decision nodes. We illustrate its
performance for 2-test DAN (cf. Fig. 5.8). We denote the variables by capital letters
and their values (states) by the corresponding lowercase letters. Thus, X represents the
disease and +x and ¬x mean that it is present or absent respectively, RA represents
the outcome of test A and +rA/¬rA a positive/negative result, etc.

The algorithm is first invoked with the original DAN and no evidence, because
no variable has yet been observed. The first decomposition generates two new DANs,
as shown in Figure 5.9; in one of them the first decision is whether to do test A or
not, and in the other the first decision is whether to do test B. The decomposition of
the former generates two new DANs, in which DA disappears because every decision
node is deleted when making the decision; in one of these DANs the option chosen
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is to do the test, +dA, which reveals the value of RA; in the other the option chosen
is not to do the test, ¬dA, which is incompatible with the two values of RA (because
in this case the test is neither positive nor negative), so node RA does not appear in
this network. The DAN for +dA is then decomposed into two new DANs: one for
the positive result of the test (+rA) and another one for a negative result (¬rA). The
process continues until the network contains no decisions and every observable variable
has been assigned a value. In this case the algorithm returns a probability (a single
number) and a CEP, and the recursion continues backwards. At the end of the process
the probability returned is 1 and the CEP contains the optimal intervention for each
value of λ. The process is explained in more detail in Appendix B.

Every node in the decomposition tree (Fig. 5.9) corresponds to a node in a DT
(Fig. 5.10), which implies that Algorithm 5.2 can be adapted to generate a DT if we
wish, provided that our computer has enough memory to store it.

5.3.3 Results

Figure 5.11 shows the conclusion of the CEA for the 2-test DAN, which solves the
numeric problem stated in Example 5.1. The CEP consists of 6 intervals, each having
an optimal interventions. When the WTP is very low, i.e., λ < e7.718.95/QALY, it is
not worth doing either test because, regardless of its result, no therapy will be applied.
For all the other intervals, a therapy is applied only when the last test performed
is positive. In the second interval, i.e., e7,718.95/QALY < λ < e21,385.50/QALY,
test A should be done; if it is positive, the first therapy should be applied. The optimal
intervention for the third interval is similar, with therapy 2 instead of therapy 1. In
the fourth interval test B should be done first; if it is positive, test A must be done to
determine the optimal treatment: therapy 1 when A is negative and therapy 2 when it
is positive. In the fifth interval the optimal intervention is to do both tests, in any
order, even if the first one is negative; if one of them is positive, therapy 1 must be
applied; if both are positive, the most beneficial treatment is therapy 2. In the sixth
interval, the WTP exceeds e113.139.00/QALY; a positive result in test B leads to
the direct application of therapy 2, while a negative result requires doing test A and
applying therapy 1 when this is positive.
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Algorithm 5.2: Cost-effectiveness analysis for a DAN

function : evaluateDAN
input :DAN – a decision analysis network,

e – evidence (a configuration of a set of variables E)
output :P (e) – the probability of the evidence,

CEP(e) – a cost-effectiveness partition
1 if DAN has decision nodes then
2 O← always-observed variables in DAN, except those in E
3 else
4 O← all the chance variables in DAN, except those in E

5 if O = ∅ and DAN has no decisions then
6 P (e)← product of the projected probability potentials
7 CEP(e)← sum of the projected utility potentials
8 else if O 6= ∅ then
9 select X ∈ O such that X has no ancestor in O

10 foreach x of X do
11 DANx ← instantiate (DAN, X, x)
12 {P (e ◦ x),CEP(e ◦ x)} ← evaluateDAN(DANx, e ◦ x)

13 P (e)← ∑
x
P (e ◦ x)

14 P (x | e)← P (e ◦ x)/P (e)
15 CEP(e)← averageCEP(X,P (x | e), {CEP(e ◦ x1), . . . ,CEP(e ◦ xm)})
16 else if exactly one decision D can be made first then
17 foreach d of D do
18 DANd ← instantiate (DAN, D, d)
19 {Pd(e),CEPd(e)} ← evaluateDAN(DANd, e)

20 P (e)← Pd(e) for an arbitrary value d
21 CEP(e)← optimalCEP(D, {CEPd1(e), . . . ,CEPdm(e)})
22 else
23 DI ← decisions that can be made first
24 foreach D in DI do
25 DAND ← prioritize (DAN, D)
26 {PD(e),CEPD(e)} ← evaluateDAN(DAND, e)

27 P (e)← PD(e) for an arbitrary decision D
28 OD ← new decision variable (meta-decision), with one value for each decision

D in DI

29 CEP(e)← optimalCEP(OD, {CEPD1(e), . . . ,CEPDm(e)})
30 return {P (e),CEP(e)}
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Figure 5.9: Recursive decomposition of the DAN for the 2-test problem. Every node in
this tree corresponds to an invocation of evaluateDAN (Algorithm 5.2). In the DANs, chance
nodes having associated evidence are colored in gray.
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Figure 5.10: DT generated from the DAN for the 2-test problem. Every node in this
tree corresponds to a node in the decomposition tree (Fig. 5.9), i.e., to an invocation of
evaluateDAN. The “meta-decision” node OD (order of the decisions) determines which
decision to make first.

Figure 5.11: CEP for the 2-test problem. It is the final result of evaluating the DAN in
Figure 5.8 with Algorithm 5.2.

It is possible to solve the n-test problem for a higher number of tests. Adding
a new test to the DAN takes less than 2 minutes in OpenMarkov’s graphical user
interface, which is negligible compared to the time required to add a new test in a DT.
On a desktop computer, Algorithm 5.2 can evaluate the DAN for n ≤ 3 in less than a
second, for n = 4 in 7 seconds, for n = 5 in 2 minutes, for n = 6 in 40 minutes, and
for n = 7 in 17.5 hours.

Algorithm 5.2 is an adaptation for CEA of Algorithm 1 in (Díez et al., 2018a).
The CEA version of Algorithm 2 in that paper, which is much more efficient, can solve
the case n = 7 in 9 minutes and n = 8 in 3 hours. With parallel computation the
evaluation would be much faster. These are remarkable results because the DTs (with
embedded decision nodes) have more than 6 million leaves for n = 7 and more than
100 million for n = 8—see Section 5.3.1.

The DAN Mediastinet, which contains 5 partially-ordered tests, can be evaluated
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in less than 3 seconds. The resulting CEP contains 18 intervals. Figure 5.12 shows the
optimal intervention for λ = e30,000/QALY, which is the shadow cost-effectiveness
threshold estimated for the Spanish public health system (Sacristán et al., 2002; de
Cock et al., 2007). This intervention differs from the one we obtained from the ID
that used the same parameters, which applies chemotherapy when the endobronchial
ultrasound test (EBUS) is positive—see Figure 5 in (Luque et al., 2016)—while the
DAN recommends doing transesophageal ultrasound-guided fine needle aspiration
(EUS) and mediastinoscopy (MED) in this case.

5.3.4 Discussion

Using DANs it is possible to solve many decision problems that cannot be modeled
with traditional techniques. One reason is that the standard roll-back algorithm
for CEA cannot evaluate DTs containing embedded decision nodes (Arias and Díez,
2014). It would be necessary to build a tree containing one decision node, at the root,
with an outgoing branch for each intervention, as proposed by Kuntz and Weinstein
(2001). In Subsection 5.3.1 we show that when no test is available (n = 0), there
are 3 intervention, one for each therapy, so the tree has only 6 leaves. When n = 1
there are 9 interventions—after excluding some that are clearly suboptimal—and the
tree has 30 leaves. When n = 2 there are 147 interventions and the tree grows up
to 966 leaves. For n ≥ 3 the interventions are so complex that it is very difficult to
estimate their number, but the increase from 30 to 966 leaves shows us the impressive
growth of the tree for every test we add.

Due to the complexity of the problem, economic evaluations involving unordered
decisions use expert knowledge either to impose a total ordering among them or to
select a very small number of interventions. For example, a CEA of four tests for the
diagnosis of coronary heart disease only examined 8 out of the thousands of possible
interventions (Walker et al., 2013). It is likely that the shortlist contained the optimal
intervention, but it is not necessarily so.

In fact, if we reexamine the six interventions resulting from the evaluation of the
2-test problem, which we presented in Section 5.3.3, we can see that the first three ones
are straightforward, but those for the fourth and the last intervals are not so obvious.
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Figure 5.12: Optimal intervention for λ = e30,000/QALY obtained from the DAN Medi-
astinet (cf. Fig. 5.7).
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Some decision analysts, including ourselves, might have overlooked the intervention
that turned out to be optimal for λ > e113.139.00/QALY: “do test B first; if positive,
apply therapy 2; if negative, do test A and if this is positive apply therapy 1”. That
strategy is counterintuitive, because apparently no therapy should be applied when
test B, which is more sensitive and specific than A, has ruled out the presence of
the disease. However, a numerical analysis shows that P (+x| + rA,¬rB) = 0.1317,
and for this posterior probability therapy 1 is more effective than both no therapy
and therapy 2. This situation reminds us of the application of AI to games, such
as go and chess: even the best human players examine only a very small amount of
combinations, while computers, which evaluate many more possibilities, sometimes
find excellent moves that no human would have figured out. Similarly, when we built
the ID Mediastinet, the pneumologist who helped us did not know whether EBUS
should be done before EUS or vice versa. This questions has been solved with the
DAN version of the same model (cf. Fig. 5.12).

DANs are not only superior to the traditional way of doing CEA with DTs.
They also outperform the methods we have proposed previously. One of these is the
algorithm for evaluating cost-effectiveness DTs with embedded decision nodes (Arias
and Díez, 2011). These trees do not need one branch for each intervention, because
their evaluation implicitly compares all the possible interventions. So in the n-test
problem they only need 18 leaves (instead of 30) for n = 1 and 78 leaves (instead
of 966) for n = 2. However, it is still impossible to manually build the trees for a
higher number of tests, which require 474 leaves for n = 3, 2,845 leaves for n = 4, etc.
By contrast, DANs can evaluate up to the case n = 8, for which the DT would contain
more than 100 million branches, as mentioned above.

DANs are also superior to IDs. These can perform CEA for large problems (Arias
and Díez, 2015), but only if the decisions are totally ordered. So when building an
ID for the 2-test problem we must decide which test to do first, either A or B, and it
would therefore be impossible to obtain the CEP shown in Figure 5.11.

Additionally, the use of restrictions allows DANs to usually avoid dummy states,
such as “test not done”, which in an ID must be added to the outcomes of a test to
indicate that when we decide not to do the test the result is neither “positive” nor
“negative”. Dummy states unnecessarily increase the size of the probability tables and
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the number of parameters, some of which are 0 or 1 (Bielza et al., 2010; Díez et al.,
2018a). For this reason even when a problem can be modeled with an ID, the DAN
representation is cleaner and more elegant.

The main drawback of DANs is that health economists, who are all familiar with
DTs, would need to learn a new formalism. However, the effort is small for someone
acquainted with the fundamentals of decision analysis, and the possibility of easily
solving much larger problems much more easily will soon compensate for the time
invested. Additionally, the availability of an open-source tool for DANs will avoid the
need to acquire software licenses for building and evaluating DTs. In fact, OpenMarkov
can automatically convert a DAN into a DT; if the tree is too big, it can be expanded
only to the desired depth. This implies that the decision modeler who builds a DT
only has a DT, while the one who builds a DAN has both the DAN and the tree, with
much less effort.

We conclude this section with a comment about efficiency. Using DANs it is
possible to model problems involving many decisions. Adding a new test to a decision
problem takes less than two minutes in OpenMarkov, so we can model the n-test
problem for arbitrary large values of n. The problem lies in the time complexity,
which in general increases much faster than exponentially with the number of nodes in
the DAN. Fortunately, Algorithm 5.2, which is equivalent to the evaluation of a DT,
can easily be implemented in parallel, using a negligible amount of memory for each
branch. Alternatively, it is possible to use a more efficient decomposition of the DAN
(cf. Algorithm 2 in (Díez et al., 2018a)), which can take profit of tensor-processing
libraries that run on GPUs and TPUs.
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Results of this work were presented in Pérez-Martín and Díez (2015) and Pérez-
Martín et al. (2016) and later published in the journal The Laryngoscope (Pérez-Martín
et al., 2017a)..

6.1 Introduction

6.1.1 Audition and hearing loss

According to the World Health Organization (WHO) around 466 million people have
disabling hearing loss, and 34 million of these are children1. They have estimated that
untreated hearing loss involves an annual global cost of US$ 750 billion, which makes
hearing loss one of the most common chronic diseases around the world. This decrease
in hearing ability is usually linked to age (one third of people over 65 years of age are
affected by disabling hearing loss), but also affects younger sectors of the population.

Deafness significantly influences an individual’s social and learning development,
especially if it occurs prior to the development of lingual capacity (pre-speech deafness).
An individual with deafness will not only require a greater effort of adaptation in their
daily life, but will also need additional reinforcement elements, such as the learning of
sign language or warning systems to identify some sounds.

There are several causes of hearing loss: infections, traumatisms, hereditary
hearing disorders, autoimmune diseases, adverse drug reactions, circulatory problems,
neurological diseases (such as multiple sclerosis), etc. (Sataloff and Sataloff, 2005).
Sensorineural deafness is the most common cause of permanent hearing loss and it
was usually caused by a damage in the inner structure of the cochlea.

The cochlea is the part of the inner ear involved in the hearing process. It is
a spiral-shaped cavity in the bony labyrinth, which is formed by the cochlea, the
vestibule, and three semicircular canals. The cochlea is divided in three tubes: the
scala vestibuli, the scala tympani and the cochlear duct. The scala tympani and the
cochlear duct are separated by the basilar membrane, which it lodges the organ of
Corti, the main responsible of the perception of sound. It is formed by 3 ducts that

1https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
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6.1
Figure 6.1: The analysis of sound frequencies at the basilar membrane. (A) The fibers of
the basilar membrane become progressively wider and more flexible from the base of the
cochlea to the apex. As a result, each area of the basilar membrane vibrates preferentially to
a particular sound frequency. (B) High-frequency sound waves cause maximum vibration of
the area of the basilar membrane nearest to the base of the cochlea; (C) medium-frequency
waves affect the centre of the membrane; (D) and low-frequency waves preferentially stimulate
the apex of the basilar membrane.Encyclopaedia Britannica ,Inc.

contain the hair cells, which transform the sound vibration (a mechanical wave) into
a neural signal (an electrical signal) that can be processed by the brain. When the
pressure of the sound moves the fluids of the inner ear, the basilar membrane deforms
in a specific area, depending on the frequency of the sound: low frequencies stimulate
the hair cells near the apex, while higher frequencies stimulate those close to the base,
as shown in Figure 6.1.

There are several techniques and technologies for the partial recovery of hearing.
However, their effectiveness varies depending on the etiology of deafness.

Hearing aids are external devices that amplify the sound. They are relatively
cheap and very effective for low to mild deafness.

However, for severe to profound sensorineural hearing loss, Cochlear Implants
(CIs) are much more effective (Clark, 2003; Papsin and Gordon, 2008). The loss of
hearing ability due to damage to the cochlea also makes it difficult to understand the
sounds, and can be perceived in a distorted or muffled way. It can also cause different
effects depending on the intensity or frequency of the sound, being able to clearly hear

https://www.britannica.com/science/cochlea/media/123552/18100
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Figure 6.2: Cochlear implant components. The CI (C) has two main components, one
external (A) and the other internal (B). External component is composed by the microphone
and the speech processor (1) and the coil (2). Internal component is composed by the
receiver-decoder-stimulator (3) and the electrode array (4).

some sounds and not others (of greater or lesser frequency or intensity).

6.1.2 Cochlear implants

A CI is an electronic medical device that allows the recovery of audition in cases of
severe to profound hearing loss. Its implantation requires a surgical operation in which
the electrode array is placed along the spiral of the cochlea. Each electrode in the
array is responsible to stimulate a set of cells of the auditory nerve and, therefore, will
be responsible for a specific frequency band (see Fig. 6.1).

As shown in Figure 6.2, it has two main components, one external and one
internal. The external component captures the sound of the environment with a
microphone and converts it into a digital signal, that is transmitted from the external
coil to the internal coil, placed under the skin. The internal decoder transforms the
signal into electrical impulses, which are sent to the electrode array placed inside the
cochlea to stimulate the hair cells, the hearing nerves and finally the neurons in the
brain.

The first multichannel CI—with more than one electrode in the array—was
implanted in 1976 at the Saint-Antoine hospital in Paris (Chouard et al., 1977). In
1984 the Food and Drug Administration (FDA) of the United States authorized the
CI in adults and in 1990 in children. The first BCI (that is, a device implanted in
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each ear) was made in 19962. Since then BCI has become more and more frequent,
although with a very unequal use in each country.

Children who have only one CI have greater difficulty understanding language
(even with mild noise), and the effort of concentration necessary makes them feel
tired at the end of the day (Summerfield et al., 2003). In contrast, BCI significantly
increases the understanding of oral language in children and adults, especially in group
conversations and in noisy environments (Peters, 2007). In addition, the BCI allows
users to identify the source of the sound, improving understanding of spoken language
(especially in noisy environments), allowing continue hearing when the first implant
fails, increasing traffic safety (when crossing a road, riding a bicycle, driving a car, etc.)
(Johnston et al., 2009; Sparreboom et al., 2010; Crathorne et al., 2012; Schoonhoven
et al., 2013). It also improves the integration of children in the classroom and the
school performance: In 1986 it was shown that children with unilateral hearing loss
were 10 times more likely to discontinue a course (Bess, 1986); in Belgium, it was found
in 2007 that all the children with BCI studied in ordinary schools, while 46% of those
who carried a unilateral implant attended specific schools for deaf people(Raeve, 2007).
On the other hand, the BCI allows to continue listening when one of the devices run
out of battery, when one of the two processors is damaged or when the internal part
of the implant fails. In some cases it has been necessary to remove the internal part of
the implant and it has not been possible to reimplant it in the same ear; if the other
ear has not been developed because it has never received acoustic stimulation, the
second implant would then have a very low efficiency. For all these reasons, the experts,
mainly in the United States and the United Kingdom, recommend without a doubt
the pediatric BCI (Offeciers et al., 2005; Peters, 2007; Balkany et al., 2008; Papsin
and Gordon, 2008) and some of them even consider that it could be cost-effective for
certain groups of adults.

Although BCI has several advantages, cost-effectiveness studies have not proved
unequivocally the efficiency of the BCI.

2http://www.medel.com/about-Med-el/

http://www.medel.com/about-Med-el/


92 6. Cost-effectiveness of bilateral cochlear implantation

6.1.3 Previous cost-effectiveness studies

The first study that measured the increment in quality of life from unilateral to bilateral
CI was conducted by Summerfield et al. (2003). The value obtained, 0.3 was used in
almost all the CEAs done in the next years. Using the quality of life estimated at a
previous study (Summerfield et al., 2002) they determined that the ICER of BCI with
respect to UCI for adult people was of £100,000/QALY, much higher than the WTP
established by the NICE, which at this time was of £50,000/QALY.

In 2006 the NICE commissioned the elaboration of a clinical guideline for cochlear
implantation. The manufacturers of CIs were invited to submit their CEAs of the BCI.
Cochlear Europe Ltd. presented one, cited in (Bond et al., 2007), which estimated
an ICER of £32,909/QALY for adults and £39,049/QALY for children. This is
counterintuitive because the benefits of BCI are higher for children than for adults,
and hence the ICER should be lower.

At the end of that year Barton et al. (2006) showed that simultaneous BCI
(implanting both devices in the same surgical operation) is cost-effective for certain
groups with severe to profound hearing loss that do not benefit from hearing aids:
children with prelocutive deafness; adults and children that are also blind; adults and
children with risk of ossification of the cochlea (which usually occurs shortly after
meningitis). Due the weakness of the arguments in that study, NICE published in
March 2008 a second version of the guideline, which recommended BCI only for children
and adults with blindness or at risk of ossification of the cochlea—see (Raine et al.,
2010) for more information about this publication and the subsequent controversy.

In 2007, the Agencia para la Formación, Investigación y Estudios Sanitarios de la
Comunidad de Madrid Pedro Laín Entralgo, in Spain, made a brief CEA of pediatric
BCI (L-Pedraza Gómez et al., 2007), also based on the gain in quality of life obtained
by Summerfield et al. (2002). Costs were obtained from Spanish institutions. The
study concluded that the ICER was e53,018/QALY for adults in case of simultaneous
BCI and e63,487/QALY in case of sequential implantation (implanting both devices
in two different surgical operation). For children, the ICERs were e44,199/QALY
and e56,640/QALY, respectively. As mentioned in Section 3.1.2, the WTP for the
Spanish public health system, accepted as a consensus among experts, is around
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e30,000/QALY, implied that BCI was not cost-effective in our country.

Shortly afterwards, Bichey and Miyamoto (2008) published a CEA of the BCI
based on their own measurements of the increase in quality of life, obtaining much
lower ICERs than in other studies, as shown in Table 6.1. They used the HUI instead
of the quality of life estimate of (Summerfield et al., 2002). Surprisingly, in their study,
the increment in quality of life from UCI to BCI is higher than from profound deafness
to UCI.

Two years later Summerfield et al. (2010) published a CEA of the BCI based on
a Markov model. This study used the probabilities and economic costs of Bond et al.
(2007) and Bond et al. (2009a), and the gain in quality of life of 0.03 (Summerfield
et al., 2003). This study concluded that the ICER of BCI lies below the WTP of NICE.
However the sensitivity analysis showed that the probability of BCI being cost-effective
was only 48%.

More recently Chen et al. (2014) analyzed the cost-effectiveness of BCI with
respect non-implantation and with respect the UCI. The ICERs obtained were
$14,658/QALY and $55,020/QALY respectively. In the first case BCI was clearly
cost-effective, but in the second the conclusion was quite uncertain.

Table 6.1 shows a summary of the ICER obtained in these studies, which differ
significantly. One factor that might explain the differences is the country where each
study was conducted. Almost all direct and indirect costs of the treatment as well as
its effectiveness vary according the geographic location.

Another factor that affects the ICER is the gain in quality of life used in each
study. Table 6.2 shows the estimates of the gain in quality of life obtained by previous
studies. This is the parameter with the highest influence on the results, and therefore
can significantly change the obtained ICER.

In conclusion, the most recent studies tend to confirm that the BCI is cost-
effective. However, the degree of uncertainty was still high when we decided to conduct
our study of BCI in Spain.

3Range of ICERs obtained when applying different techniques for measuring incremental quality of
life.
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Study Country Sources Population ICER

Summerfield et al.
(2002) United

Kingdom
own data adults £61,734/QALY

Summerfield et al.
(2003) United

Kingdom
Summerfield
et al. (2002)

adults £100,000/QALY

Summerfield et al.
(2006) United

Kingdom
own data adults £102,500/QALY

Barton et al. (2006) United
Kingdom own data adults £32,909/QALY

children £39,049/QALY
Bond et al. (2007)
Bond et al. (2009a)

United
Kingdom data projection adults £49,559/QALY

children £40,410/QALY
L-Pedraza Gómez
et al. (2007) Spain Summerfield

et al. (2002)
adults e53,018/QALY
children e44,199/QALY

Bichey and
Miyamoto (2008) USA own data adults

and
children

$2,187/QALY

Summerfield et al.
(2010) United

Kingdom
own data children £21,768/QALY

Chen et al. (2014) Canada own data adults $55,020/QALY
Kuthubutheen et al.
(2015) Canada own data adults $(16,047 -

55,020)/QALY3

Table 6.1: Summary of previous cost-effectiveness studies of BCI.
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Study PopulationInformants Method ∆QoL

Summerfield et al. (2002) adults experts TTO 0,031
Summerfield et al. (2006) adults patients with BCI HUI-3 0,03
Bichey and Miyamoto (2008) adults

and
children

patients with BCI or
their parents

HUI-3 0,11

Lovett (2010) children parents of children
with BCI and UCI

VAS 0,33

Summerfield et al. (2010) children experts, students and
parents of disabled
children

VAS 0,06
TTO 0,05

Sparreboom et al. (2012) children patients with BCI HUI-3 0,04
Härkönen et al. (2015) adults patients with BCI 15D 0,03

Table 6.2: Summary of previous studies that estimate the gain in quality of life.

6.2 Model

We have built a state-transition model, implemented as an MID, which represents the
events that may occur along the life of a CI user implanted at the age of one year.
The cycle length is one year. We assume that the child is severely to profoundly deaf,
has not been implanted previously, and receives one or two implants. We must take
into account that since 2010 all the regional health systems in Spain apply screening
programs to all newborns, and in case of severe to profound deafness, the child is
implanted when he/she is around 12 months old.

Figure 6.3 shows the graph of the model. It contains one decision, Intervention
decided, drawn as a blue rectangle, with three possible options: simultaneous BCI ,
sequential BCI and UCI . Given that in developed countries the standard practice is
to give at least one implant to all children with severe to profound deafness, we did
not include the option no implant in our model.

Chance nodes are drawn as rounded rectangles. The node Intervention applied
represents whether the patient receives one implant, two implants simultaneously, or
two implants sequentially. In general this variable takes the same value as Implantation
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decided, but when the decision is to put two implants simultaneously, sometimes they
must be put in different operations due to clinical complications, as discussed below.
The six nodes in the upper right zone of the graph in Figure 6.3 represent the gender
and age of the patient, and whether he/she is alive. Gender does not have a temporal
index because it is an atemporal variable, i.e., its value does not change. Variables
whose value can change over time have indices, written in square brackets, which
denote the period of time. Thus, Implants used [i] indicates how many implants the
patient is using in the i-th cycle; it has four states: both implants, only first implant,
only second implant, or none. The numbers 1 and 2 written in the name of a variable
outside the brackets denote the first or the second implant respectively. For example,
Elective non use 2 indicates whether the person decides to use the second implant or
not. When the value of a chance variable is known with certainty, the node is colored
in gray; in this model we know with certainty that the child is one year old and alive
(nodes Age [0] and Alive [0]), and all the external and internal components of the
CI are brand new (nodes Processor 2 age [0], Internal device 1 age [0], and Internal
device 2 age [1]).

Value nodes are drawn as green hexagons. The nodes ∆QoL0→1 [i] and
∆QoL1→2 [i] denote the increase in quality of life from no implant to one implant
and from one implant to two implants respectively; the quality of life accrued in
the i-th cycle depends on the number of implants used in it. The other value nodes
represent monetary expenditures. The prefix “CS” means “cost for the (health) system”
and “CF” means “cost for the family”. The three child nodes of Intervention applied
represent the costs of implantation; they are atemporal because they are paid only
once. The other costs depend on the number of implants used in each cycle and on
the occurrence of adverse events.

6.2.1 Probabilities

Every chance variable in the model has a conditional probability distribution for each
configuration of its parents in the graph. The node Gender has no parent; therefore
its probability is just the prior probability of being male or female. We obtained it
from the database of the Spanish National Institute of Statistics (INE) for January 1st,
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2015.4 The probability of dying in the i-th cycle, represented by Death [i], depends on
Gender and Age [i] ; it is therefore the annual mortality rate, also taken from the INE.

If Intervention decided takes the value UCI or sequential BCI, then Intervention
applied takes the same value, with probability 1, but when Intervention decided =
simultaneous BCI, it is not always possible to do it. Therefore, the probability of
Intervention applied is 89% for simultaneous BCI, 10% for sequential BCI, and 1% for
UCI . We assigned these probabilities because in the 50 cases reported by Ramsden
et al. (2009) it was always possible to put both implants in one surgery, as planned,
but in other 50 cases planned for simultaneous BCI (Holland et al., 2012), it was
possible only in 39 patients; in 10 cases the second ear had to be implanted later and
one patient received only one implant, for unknown reasons.

The probability tables for some nodes in the model are degenerate, i.e., the child
variable depends deterministically on the values of its parents. For example, Alive [i]
= true if and only if the user was alive in the previous cycle and has not died, i.e., if
Alive [i−1] = true and Death [i−1] = false. Similarly, the value of Implants used [0]
is determined by the intervention applied: if Intervention applied = UCI, then the
patient is initially in the state only first implant, whereas if the intervention is either
simultaneous BCI or sequential BCI, the initial state is both implants. In subsequent
cycles, Implants used [i] takes the same value as in the previous cycle except when the
user dies, when he/she decides not to use the second implant, or when the internal
device has been explanted and could not be reimplanted. Even though there are
adolescents and adults who refuse to use the second implant when they receive it a
long time after the first one, the experts we consulted in Spain and at international
conferences could not recall any case of a child who refused one or both implants after
receiving them at a very early age; therefore those experts agreed that it is a good
approximation to set that probability to zero in our model. We might have removed
this node, but decided to maintain it for similarity with previous models (Bond et al.,
2009b; Summerfield et al., 2010) and to perform a DSA for that probability.

The probability of a failure of the external components was set to 0.115 for the
first two years, 0.095 between the third and the fifth, 0.104 for the sixth and seventh,
and 0.16 afterwards, as in (Bond et al., 2009b).

4www.ine.es/jaxiT3/Tabla.htm?t=9663

www.ine.es/jaxiT3/Tabla.htm?t=9663
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Revision surgery may be due to a failure of an internal device or to a major
medical/surgical complication. In accordance with (Bond et al., 2009b; Summerfield
et al., 2010) we set the probability of internal device failure to 0.001 for the first 9
years and 0.003 afterwards, and the probability of major complication (other than
a failure) to 0.041 in the first year and 0.004 afterwards. Some manufacturers have
reported lower failures rates,5 but due to discrepancies in their reports and in published
studies (Rădulescu et al., 2013; Hildrew and Molony, 2013), we decided to use the
same probabilities as in (Bond et al., 2009a; Summerfield et al., 2010), thus taking a
conservative position in favor of UCI6. We also followed those authors in assuming
that a failing internal device can be replaced, but a major complication may make it
impossible to reimplant the device; we set the probability of permanent explantation
in case of major complication to 0.043, in accordance with (Wang et al., 2014).

The possibility of dying at revision surgery, mainly because of the complication
of anesthesia, slightly reduces the effectiveness of bilateral implantation. The peri-
operative mortality rate is less than 1/10,000 for children (González et al., 2012) and
less than 20/10,000 for adults (Braz et al., 2009). Taking a conservative approach
in favor of UCI, we set those probabilities to 0.0001 until the age of 18 and 0.002
afterwards.

Table 6.3 summarizes the probabilities used in the model.

6.2.2 Outcomes and costs

The effectiveness depends on the quality of life at each moment, QoL(t) (Equation 3.1),
which in our model only depends on the number of implants used, as shown in Figure 6.3.
Therefore, the incremental effectiveness of BCI with respect to UCI mainly depends
on the difference in quality of life between having one and two implants, ∆QoL1→2, as
we explained in Section 6.1.3. In our general-population survey, the estimates for this
parameter ranged from 0.106 to 0.293, depending on the elicitation technique (Artaso

5www.medel.com/int/reliability-reporting, www.advancedbionics.com/content/dam/ab/
Global/en_ce/documents/candidate/AB_Reliability_Report.pdf

6Given that our final goal was to convince the Spanish health authorities that BCI is cost-effective,
we made several conservative modeling decisions in favor of UCI, to make the conclusions more
compelling.

www.medel.com/int/reliability-reporting
www.advancedbionics.com/content/dam/ab/Global/en_ce/documents/candidate/AB_Reliability_Report.pdf
www.advancedbionics.com/content/dam/ab/Global/en_ce/documents/candidate/AB_Reliability_Report.pdf
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Parameter Value Source

Being male 0.4914 National Institute of
Statistics

Major complication | device age < 1 yr 0.041 Bond et al. (2007)
Summerfield et al. (2010)

Major complication | device age ≥ 1 yr 0.004 Bond et al. (2007)
Summerfield et al. (2010)

Perm. explantation | major complication. 0.043 Wang et al. (2014)
Surgical mortality | age < 18 yr 1.0E-4 González et al. (2012)
Surgical mortality | age ≥ 18 yr 0.002 Braz et al. (2009)

External device failure | 1styr 0.16 Bond et al. (2007)

External device failure | 2ndyr 0.115 Bond et al. (2007)

External device failure | 3rd- 4th yr 0.095 Bond et al. (2007)

External device failure | 5th- 6th yr 0.104 Bond et al. (2007)

External device failure | ≥7thyr 0.16 Bond et al. (2007)

Internal device failure | < 8thyr 0.001 Bond et al. (2007)

Internal device failure | ≥8thyr 0.0035 Bond et al. (2007)

Table 6.3: Probabilities used in the model. The annual mortality rate, which is not shown
in this table because it depends on age and gender, was also taken from the National Institute
of Statistics.
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and Díez, 2016). In the model we used the lowest value, ∆QoL1→2 = 0.106, for two
reasons: because that was the value obtained with the version of the time trade-off
method most commonly used in quality of life studies, and because we wished to take
a conservative approach in favor of UCI. As in our survey we did not measure the
increase in quality of life from no implant to one implant, ∆QoL0→1, we took the value
0.106 from (Summerfield et al., 2010).

According with Equation 3.3, the ICER does not depend on the absolute costs
of the three interventions—simultaneous BCI, sequential BCI, or UCI—but on the
differences between them. For this reason we have not explicitly included in our model
the costs common to the three interventions, such as the cost of the first implant. This
way we avoid including in the model parameters which are absolutely irrelevant.

The price of the second implant was set to e21,000, the average of the prices we
obtained from a manufacturer and a distributor for our country7. We did not assume
any discount, for the reasons discussed below.

In the case of simultaneous BCI, we assumed that surgery requires 100 more
minutes than UCI (Smulders et al., 2016) at a cost of e229/hour, including personnel
and materials; this value is the average of e169/h (Herranz Amo et al., 2006) and
e289/h (Palà et al., 2003). Sequential BCI has an extra cost of e1,000 for the
pre-surgical selection and exploration assessment (50% of the corresponding cost for
UCI), plus e3,500 for the surgical intervention and e600 for rehabilitation (Torre
et al., 2005), the same as for UCI. These are conservative estimates in favor of UCI,
because in general the pre-surgical assessment made for UCI is also valid for the second
implantation, and because if the gap between implantations is short, both ears can be
rehabilitated at the same time.

If the internal device fails during the first ten years, the manufacturer provides a
new one; after the guarantee period, the health system pays e13,000 for it (commu-
nication from a manufacturer). In all cases the health system takes over the cost of
surgery.

If the external processor fails during the first two years, it is replaced by the
manufacturer. After the seventh year, it is replaced by the health system.8 Between

7The other main manufacturer did not respond when we asked them.
8Even though a national law says that a processor that fails after seven years of use must be replaced,
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the third and the sixth year, the user must cover the repairs; we have included this
expense in maintenance costs, together with coils, microphones, cables, and batteries,
which in Spain are covered by users and their families. According to our study with CI
users, these costs amount to e675/year for users under the age of 18 and e373/year
for adults.

In our model we did not include the incremental cost of programming the second
implant because in most cases it is covered by manufacturers, whose experts travel to
hospitals in different cities; in the few cases in which the processors are programmed
by the personnel of the implantation center, the marginal cost is low. We will come
back to this issue in the discussion.

Given that all the cost estimates were obtained in few months before submitting
our study to a journal, we did not apply any conversion to current euros.

Table 6.4 summarizes the quality of life increases and the economic costs used in
our model.

6.2.3 Second-order uncertainty

The uncertainty of the model was represented by adding second-order distributions to
the main parameters (Briggs et al., 2006). Each parameter denoting a probability p
(in the reference case) was assigned a beta distribution B(α, β) with a mean of p, i.e.,
α/(α + β) = p; when p was taken from a study that did not indicate the number of
subjects involved, we assumed a sample size of 100, which is implemented by making
α + β = 100, as in (Luque et al., 2016). Therefore α = 100p and β = 100(1− p).

We modeled the increment in QoL from one to two implants, ∆QoL1→2 with a
Gamma with k = 22.832 and θ = 0.004, as this is the distribution that better fitted the
data from our general-population survey (Artaso and Díez, 2016). The increment from
total deafness to one implant, ∆QoL1→2, was modeled with a Gaussian, N (0.1056;
0.1217), in accordance with (Summerfield et al., 2010).

Following the recommendation of Briggs et al. (2006), costs were modeled with

the replacement period is often longer because some regional governments, especially in these
times of economic crisis, are reluctant to fulfill their duties. However, in our model we have
assumed that all of them comply with the regulation.
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Parameter Value Source

∆QoL0→1 (from zero to
one)

0.106 Summerfield et al. (2010)

∆QoL1→2 (from one to
both)

0.106 Artaso and Díez 2016

CS: Device e21,000 manufacturers
CS: Surgery (increase for

simultaneous BCI)
e382 Palà et al. (2003)

Herranz Amo et al. (2006)
Smulders et al. (2016)

CS: Surgery (increase for
sequential BCI)

e4,500 Torre et al. (2005)

CS: Habilitation (increase
for sequential BCI)

e600 Torre et al. (2005)

CS: Processor 2 replace e6,300 manufacturers
CS: Internal device 2

replace
e13,000 manufacturers

CF: Maintenance (each
implant)

e675 (age < 18)
e373 (age ≥ 18)

our survey among CI
users

Table 6.4: Quality of life and economic costs.

Gamma distributions. We used a Gamma with k = 155.961 and θ = 4.314 for the
maintenance costs of users under 18, and k = 37.491 and θ = 9.866 for adults, following
the distributions that better fitted the data collected by our survey (Artaso and Díez,
2016). In the remaining cases, each parameter denoting a cost c was assigned a Gamma
distribution with a mean µ = c and a standard deviation σ = µ/5 = 0.2c, as in (Bond
et al., 2007; Summerfield et al., 2010).

These choices of equivalent sample size and standard deviations are debatable,
but the sensitivity analyses showed that their impact is virtually null for a WTP of
e30,000/QALY.
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6.2.4 Evaluation of the model

We expanded the MID for a horizon of 100 cycles, i.e., until the age of 101, and
evaluated the model with the algorithms, described in Section 5.2. Following the
recommendations of the Panel on Cost-Effectiveness in Health and Medicine convened
by the U.S. Public Health Service (Gold et al., 1996), we applied an annual discount
rate of 3% on both costs and effectiveness—the same value as in other economic
evaluations of BCI (L-Pedraza Gómez et al., 2007; Chen et al., 2014; Catalá-López
et al., 2016)—and in the DSAs we applied rates of 0%, 5% and 7%.

We also performed a PSA with 10,000 simulations in order to obtain a scatter
plot and an acceptability curve (Drummond et al., 2005; Briggs et al., 2006), and other
types of DSAs to find out how the ICER varies for different parameters of the model.

6.3 Results

6.3.1 Reference case analysis

When considering only the costs currently covered by the Spanish health system, the
incremental effectiveness of simultaneous BCI with respect to UCI was 3.163 QALYs,
and the incremental cost e32,649, which leads to an ICER of e10,323/QALY. For
sequential BCI the effectiveness is the same as for simultaneous BCI, the incremental
cost is e37,109, and the ICER e11,733/QALY. If the health system covered all
the maintenance costs (at the current prices), as in other countries, the ICER with
respect to UCI would be e15,035/QALY for simultaneous BCI and e16,446/QALY
for sequential BCI.

These values are far below the WTP of the Spanish health system, that is
estimated on e30,000/QALY as discussed in Section 3.1.2, which implies that BCI is
clearly cost-effective in all cases.
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Figure 6.4: Cost-effectiveness scatter plot for simultaneous and sequential BCI, including
only the costs currently covered by the Spanish health system.

6.3.2 Sensitivity analyses

Figure 6.4 shows the scatter plot resulting from the PSA, with UCI as a comparator.
As a consequence of the hypotheses in our model, sequential BCI always has the same
effectiveness as simultaneous BCI, but at a higher cost. In all the simulations the
ICER was below e30,000 with respect to UCI, which implies that for this WTP both
simultaneous and sequential BCI are cost-effective with virtually 100% certainty. This
conclusion can also be drawn by observing the acceptability curves in Figure 6.5.

If the health system covered all the maintenance costs, the acceptability curves
for BCI would increase more slowly (see Fig. 6.6), but it is almost sure that both
interventions are cost-effective with respect to UCI—the probability is 99.98% for
simultaneous BCI and 99.92% for sequential BCI.

Given that the most influential and most uncertain parameter in the model is
the increase in quality of life from UCI to BCI, represented by the node ∆QoL1→2 in
Figure 6.3, we performed a DSA for it, assuming that the other parameters take the
same values as in the reference case. We can observe in Figure 6.7 that for a WTP
of e30,000/QALY, an increase of QoL as low as 0.037 suffices to make simultaneous
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Figure 6.5: Acceptability curves for simultaneous (left) and sequential BCI (right), including
only the costs currently covered by the Spanish health system.

Figure 6.6: Acceptability curves for simultaneous (left) and sequential BCI (right) if the
health system covered all the maintenance costs.

BCI cost-effective9; if the health system covered all the maintenance costs, it would be
cost-effective for an increase of 0.054.

There is also uncertainty about the quality of life increase from no implant to
one implant, ∆QoL0→1, but this parameter has little influence on the results. Its
reference value is 0.106. If we vary it from 0.05 to 0.20 (while maintaining the value of
∆QoL1→2), the ICER only varies from 10,354 to 10,269 euros per QALY gained.

Another assumption in our model is that the probability of voluntary non-use of
the second implant is null for children that receive both implants at the age of one.
As mentioned above, the experts we consulted considered this a good approximation.
Additionally, if we increased that probability to a value as high as 1%, the ICER of
simultaneous BCI would only increase by e69/QALY.

9Let us remember that the value of ∆QoL obtained in our study (Artaso and Díez, 2016) is 0.106
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Figure 6.7: Sensitivity analysis: ICER of simultaneous BCI with respect to UCI as a function
of the increase in quality of life from having one implant to having two, ∆QoL1→2. Under
the current coverage policy (orange curve), BCI is cost-effective when ∆QoL1→2 > 0.037.
If the system covered all the maintenance costs (blue line), BCI would be cost-effective for
∆QoL1→2 > 0.054.

We have also analyzed the impact of different discount rates. They are more
relevant for CI than for other health technologies because a significant part (40%) of
the cost is paid at the moment of implantation while the benefit (the effectiveness)
is gathered along the user’s lifetime, up to a horizon of 100 years. Consequently, if
we raise the discount from 3% to 5% and 7%, as recommended in (Gold et al., 1996),
the ICER for simultaneous BCI increases from 10,323 to 13,703 and 17,353 euros per
QALY respectively, because discounts affect more the effectiveness than the costs. In
the absence of discounts, the ICER would be e6,422/QALY. In all cases the ICER is
clearly below e30,000/QALY.
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6.4 Discussion

Our study has focused on one-year-old children with bilateral severe to profound
hearing loss who qualify for bilateral CI. Unlike other studies (Bond et al., 2009b;
Summerfield et al., 2010; Foteff et al., 2016b), the only comparator in our analysis was
UCI; we did not compare BCI with “UCI plus a contralateral hearing aid” because the
benefit of a hearing aid depends on the degree of hearing loss in that ear; in some cases
a hearing aid provides better audition than a CI, while in others it is almost useless.

Simultaneous BCI clearly dominates sequential BCI because it is as safe and
effective, but less expensive, even though we have not included in the model the extra
cost assumed by users and their families (traveling, work hours lost, etc.). Therefore
children that need two implants and have none should receive them in one surgical
operation. However, because of current policies, many children have received only
one implant. If they receive the second within a short time interval—say less than
a year—it will be cost-effective according to our model, but the certainty of this
conclusion depends on two parameters: the increase in quality of life from one to two
implants and the WTP. Additionally, the effectiveness of the second implant decreases
when the age of implantation and the time lag increase. Unfortunately, the lack of
detailed effectiveness data in the literature makes it impossible to specify with precision
in which cases sequential BCI is cost-effective. The dependence of cost-effectiveness
with age of implantation has only been studied for UCI (Semenov et al., 2013).

Our results agree with those of recent studies (Bond et al., 2009b; Summerfield et
al., 2010; Foteff et al., 2016b) and with the guidelines of the British National Institute
for Health and Care Excellence, which recommends simultaneous BCI for newborn
children and admits the possibility of a second implant for children who already have
one “only if this is considered to provide sufficient benefit by the responsible clinician
after an informed discussion with the individual person and their carers” (NICE, 2009).
The main difference is that in our study the probability of BCI being cost-effective
is much higher than in previous PSAs (Bond et al., 2009b; Summerfield et al., 2010;
Foteff et al., 2016b).

The principal limitation of our analysis—and of all other CEA of BCI—is the
uncertainty about the increase in quality of life from one to two implants, ∆QoL1→2
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(see Table 6.2). The studies aimed at measuring it have returned very disparate
estimates, partly due to the use of different elicitation techniques. The values obtained
using Visual Analog Scales (VAS) range from 0.02 (Smulders et al., 2016) to 0.33
(unpublished study by R. Lovett, cited in (Summerfield et al., 2010)); however, VAS
estimates are not appropriate for economic evaluation because they are not based
on a preference scale. The estimates obtained using quality of life indexes range
from −0.003 (Lovett, 2010) to 0.11 (Bichey and Miyamoto, 2008); these extreme
values are both obtained using the Health Utility Index, HUI-3. A problem of general
health indexes is their low sensitivity to improvements in audition (Lutman, 2008;
Sparreboom et al., 2012; Kuthubutheen et al., 2015; Smulders et al., 2016). In our
opinion, the most reliable technique of those used for measuring that increase is the
Time Trade-Off (TTO), because it is preference-based and does not suffer from a lack
of sensitivity. Previous estimates of ∆QoL1→2 with the TTO have returned the values
0.031 (Summerfield et al., 2002), 0.05 (Summerfield et al., 2010), 0.12 (Kuthubutheen
et al., 2015), and 0.09 (Smulders et al., 2016). In the survey we conducted for this
project, the values obtained with the TTO ranged from 0.106 to 0.293 , depending on
the way the questions were framed (Artaso and Díez, 2016); as mentioned above, in this
research we have used the lowest of these values to make the conclusions more credible.
Given that all the five TTO studies have returned values above the threshold of 0.042
derived in our sensitivity analysis (cf. Fig. 6.7), we can conclude that sequential BCI
is cost-effective for the Spanish public health system beyond any reasonable doubt.

The disparity of TTO results makes it inappropriate to conduct a meta-analysis,
but in order to have a rough summary, we note that the average is 0.078 and the median
0.09. As these values satisfy the condition ∆QoL1→2 > 0.054 (see again Fig. 6.7), it is
also reasonable to conclude, albeit with a small amount of uncertainty, that BCI would
still be cost-effective if the health system decided to cover all the maintenance costs.

There are minor sources of uncertainty that we have not considered in our
sensitivity analyses. One of them is the risk of meningitis as a consequence of CI.
Some years ago that was a serious concern, but nowadays its incidence has decreased
(Lalwani and Cohen, 2011; Chen et al., 2013), mainly because many cases were due to
electrode positioners that are no longer used. Additionally, some of those cases are
not due to the implant itself, but to “congenital abnormalities of the cochlea which
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predispose [deaf people] to meningitis even prior to implantation” (FDA, 2002). In
Spain all children are vaccinated against several types of meningitis, and some receive
prophylactic perioperative antibiotic treatment before CI surgery, with no extra cost
in the case of simultaneous BCI and a negligible cost for sequential BCI. For these
reasons we assumed that BCI neither increases significantly the risk of meningitis nor
requires additional expenditures to prevent it.

With respect to costs, some of the assumptions in our model are specific for
current policies in Spain: in most implantation centers the cost of programming is
covered by manufacturers; users and their families assume most of the maintenance
costs, including batteries and cables, lost coils, the repairs of the processor (and its
replacement, if necessary) between the third and the sixth year of use; the cost of
surgery when the internal device is always covered by the health system, even during
the guarantee period, etc. Additionally, in our model the second implant has the
same price as the first one. In contrast, the technical report of Bond et al. (2007,
Fig. 26) took into account the discounts on the second device, which in the UK might
be “equivalent to 40% or more for the second implant” (NICE, 2009) and were decisive
for the approval of BCI in that country. In this aspect our model agrees with most
CEA of BCI, including the journal version of the paper by Bond et al. (2009b), which
did not consider the effect of discounts because “the continued presence and size of
these discounts in the future is impossible to guarantee”.

6.5 Conclusions

Our study has proved beyond any reasonable doubt that BCI is cost-effective for
the Spanish public health system. Even if the system took over all the maintenance
costs, which in Spain are partially covered by users and their families, it would still be
cost-effective, but with a small amount of uncertainty, mainly due to the imprecise
estimation of quality of life increase from one to two implants. From the societal
perspective, BCI would be even more cost-effective because of savings in education
and better employment opportunities, but there is not enough data to quantify these
advantages.

Given that putting both implants in one surgical operation saves costs for
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the health system (additional surgery and (re)habilitation) and for users and their
families (traveling, work hours lost. . . ), bilateral implantation should be performed
simultaneously. For little children who already have one implant, it is cost-effective
to give them a second one. In this case, the benefit decreases with age and with the
gap between implantations, but again the uncertainty about the increase in quality of
life makes it impossible to specify with precision when sequential BCI ceases to be
cost-effective.

Our analysis agrees with recent studies that concluded that BCI is cost-effective
for children (Bond et al., 2009b; Summerfield et al., 2010; Foteff et al., 2016b), at
least when performed simultaneously, and possibly also for adults (Chen et al., 2014;
Kuthubutheen et al., 2015; Foteff et al., 2016a; Smulders et al., 2016), but disagrees
with previous studies carried out in Spain, which asserted, after brief analyses, that it
was not cost-effective even for children (Estrada et al., 2011; L-Pedraza Gómez et al.,
2007).

The conclusions of this study are specific for Spain. We can assume that health
preferences, and consequently the effectiveness of BCI, are very similar in other
countries, but costs may differ significantly because of variations in both prices and
policies. In (Pérez-Martín et al., 2017a) we announced that the MID used for this study
is publicly available at www.probmodelxml.org/networks, so that other researchers—
using our open-source software tool OpenMarkov—can examine the model, replicate
the results, perform other sensitivity analyses, and adapt it to different countries.

www.probmodelxml.org/networks
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The work described in this chapter was carried out in collaboration with Marta
Lalana of the Clinical Analysis Service of the Hospital de Barbastro in Huesca, Spain.
The implementation of the CRC detection programs in Aragon and all the data
collected in that study were carried out before this work. We will refer to that work
as the "Aragon study". Partial results of this work were presented in (Lalana et al.,
2016b; Lalana et al., 2016a).

7.1 Introduction

7.1.1 Colorectal cancer

CRC is one of the most frequent causes of morbidity and mortality in the world. In
2012 more than 1.3 million new cases were diagnosed and near 700,000 people died for
this cause (International Agency for Research on Cancer, 2012). In Spain, CRC is the
most frequent cancer with 41,441 new cases and a 15,449 deaths in 2015 (Sociedad
Española de Oncología Médica, 2017).

CRC can be localized in the colon, the rectum, or both (see Fig. 7.1). In most
cases, CRC starts as an adenomatous polyp, a small set of noncancerous cells, which
may turn into CRC. Adenomas can be small and cause few or no symptoms, but
finding and removing them can prevent CRC.

There are two main staging systems used to describe the state of CRC. In the
Tumor-Node-Metastases (TNM) system, developed by the AJCC (American Joint
Committee on Cancer), the stage is determined by three variables: tumor “T”, regional
nodes “N”, and metastases “M” (Edge and Compton, 2010). The second system
classifies the state of CRC into 5 stages, from 0, an early stage of CRC, to IV, in which
cancer has spread to distant parts of the body.

7.1.2 Screening programs

Screening consists in looking for a disease in asymptomatic people. It may find the
disease at an early stage or even prevent it, for example CRC can be avoided by
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Figure 7.1: Graphical representation of the colon and rectum.

removing the polyps before they become tumors. Usually an abnormal result in the
screening is not decisive but may lead to performing a diagnostic test, i.e. a test that
can diagnose the disease with relative certainty. General population CRC screening
programs exclude people having high-risk factors, such as previous CRC, family history
of CRC, Lynch Syndrome, etc. Those people are assigned to more intensive surveillance
diagnostic testing as colonoscopy.

Not all the diseases are suitable for screening programs. CRC meets the necessary
requirements for being subjected to screening: known natural history, high incidence,
morbidity and mortality, and availability of a test, the Fecal Occult Blood Test (FOBT),
which is simple, reliable, and efficient. Randomized Control Trials (RCTs) have proved
that screening with FOBT reduces the mortality between 15 and 33% (Kronborg et al.,
1996; Hardcastle et al., 1996; Towler et al., 1998; Faivre et al., 2004). CRC screening
with FOBT improves the prognosis, with the consequent reduction of incidence and
mortality (Gómez Hernández et al., 2013).

The introduction of a CRC screening program implies inevitably an immediate
increase in costs, but also to mid and long-term saving due the decrease in the incidence
of CRC and the avoidance of expensive treatments.

In Spain, the updating of the cancer strategy of the Spanish National Health
System includes among its objectives the implementation of population-based CRC
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screening programs for individuals with low to medium risk.1 Since 2016 all the
autonomous communities, except Ceuta and Melilla, have implemented a program
consisting in measuring every two years the concentration of hemoglobin occult in feces
and performing the colonoscopy when the test is positive. In Aragon, the program
started in 2014 for a target population between 50 and 69 years old. In 2015 the
coverage reached 19% of this population (see fn. 1).

The goal of the study described in this chapter was to determine the cost-
effectiveness of CRC screening program with a biennial FOBT. We consider two
possible ages of entry, 50 and 60 years, and compared them with the no-screening
intervention.

7.2 Model

The model was implemented as an MID (Díez et al., 2017) using OpenMarkov.
Figure 7.2 shows the compact representation of the model.

It is a state-transition model, based on the natural history of CRC (Tappenden
et al., 2007; Sobhani et al., 2011), which evolves from normal epithelium to malignant
lesion. The five health states: normal epithelium, low-risk adenoma, high-risk adenoma,
CRC, and dead, are modeled with the variable State [i]. The stage of the CRC is
modeled with another variable, CRC stage [i], as shown in Figure 7.3.

Our model assumes that the cohort begins with “normal epithelium” at the age
of 30 years and moves through the states of the model, with a cycle length of one year
and a temporal horizon of 70 cycles, that is, until the age of 100 years.

Following the classification of the American Cancer Society, polyps are considered
“low-risk adenomas” when they meet the following conditions: presence of one or two
adenomas less than 10 mm, tubular, and low grade. In our model, we unify high and
medium-risk adenomas into a single health state, which we call "high-risk adenomas".
They are those that meet any of the following conditions: presence of three or more
adenomas smaller than 10 mm; one or more adenomas with a size equal to or greater

1http://www.cribadocancer.com/index.php/cancer-colorrectal/
red-de-programas-de-cribado-espanoles/situacion

http://www.cribadocancer.com/index.php/cancer-colorrectal/red-de-programas-de-cribado-espanoles/situacion
http://www.cribadocancer.com/index.php/cancer-colorrectal/red-de-programas-de-cribado-espanoles/situacion
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Figure 7.3: State-transition model based on the natural history of CRC.

than 10 mm, or with high-grade mucosal dysplasia, or with 20% or more of fluffy
component. This group also includes carcinomas in situ (intraepithelial carcinoma or
that invades the lamina propria).

Adenomas do not present spontaneous regression. Those less than 1 cm in
diameter can grow and become CRC. We have considered that CRC can only be
produced from a high-risk adenoma.

When FOBT is positive, the patient must be recommended for colonoscopy,
as shown in Figure 7.4. The adenomas detected are removed at the moment with
a polypectomy. If they turn out to be high risk, a colonoscopy is performed three
years later; if they are low risk is performed five years later. Patients with a negative
colonoscopy are taken out of the screening program, and a follow-up colonoscopy is
performed 10 years later, as recommended by the CRC screening guidelines (Levin
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Figure 7.4: Scheme of the CRC screening program.

et al., 2008).

Patients diagnosed with CRC, either by screening or by the appearance of
symptoms—even before the start of screening—are treated and then classified into
clinical follow-up stages according to their TNM.

7.2.1 Probabilities

The annual transition probabilities for our model were obtained from the literature.
From normal epithelium to low-risk adenoma the probability is 1.60%; from low-risk
adenoma to high risk adenoma, 2.12%; from high-risk adenoma to CRC Stage I, 3.26%;
from Stage I to Stage II, 58.29%; from Stage II to Stage III, 65.55% and from Stage III
to Stage IV, 86.48% (Tappenden et al., 2007).
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Parameter Value Source

Sensitivity of FOBT to adenomas 28.2% Gondal et al. (2003)
Sensitivity of FOBT to CRC 68.8% Allison et al. (1996)
Specificity of FOBT 94.4% Allison et al. (1996)
Sensitivity of colonoscopy to low-risk adenomas 86.7% Martín-López et al. (2014)
Sensitivity of colonoscopy to high-risk
adenomas

92.9% Martín-López et al. (2014)

Sensitivity of colonoscopy to CRC 94.7% Martín-López et al. (2014)
Specificity of colonoscopy 100% López-Bastida et al. (2010)

Martín-López et al. (2014)

Table 7.1: Sensitivity and specificity of FOBT and colonoscopy.

The recurrence rate of low-risk adenoma—i.e. the probability of developing a
new adenoma after the polypectomy—is 18% in the first year and 5% in subsequent
years. After the removal of a high-risk adenoma this probability is 25% for the first
year and 6% for the subsequent years (Winawer et al., 1993).

The sensitivity and specificity data of the FOBT and the colonoscopy are shown
in Table 7.1, indicating the bibliographic source of each probability.

The probability of clinical symptoms is 7% for CRC Stage I, 32% for Stage II,
49% for Stage III and 85.4% for Stage IV (Tappenden et al., 2007).

The annual specific mortality, represented by the node CRC_death [i], is: 0% for
Stage I, 1% for Stage II, 6.02% for Stage III and 38.37% for Stage IV (Tappenden et al.,
2007). The probability of death from other causes, node OC_death [i] in the model,
was obtained from the Spanish National Institute of Statistics (INE),2 subtracting
from the general mortality rate the cases of CRC.

We have estimated the participation and compliance rates through the “Aragon
study”, registered patients from 8 health centers which from January 2014 to June
2015: 3 centers from the Barbastro sector (Abiego, Berbegal and Barbastro) and 5
from Zaragoza III (Delicias Norte, Miralbueno, Cariñena, Borja and Bombarda). They
comprise a total of 83,699 inhabitants (Amorín Calzada, 2008),3 of whom 12,122 were
between 60 and 69 years old. In a first filtering, 1,428 persons were excluded due to

2www.ine.es/dynt3/inebase/index.htm?type=pcaxis&file=pcaxis&path=/t20/e301/defun/
a2010

3http://zaragoza3.es/Gerencia/Poblacion/pob_sector.htm

www.ine.es/dynt3/inebase/index.htm?type=pcaxis&file=pcaxis&path=/t20/e301/defun/a2010
www.ine.es/dynt3/inebase/index.htm?type=pcaxis&file=pcaxis&path=/t20/e301/defun/a2010
http://zaragoza3.es/Gerencia/Poblacion/pob_sector.htm
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clinical criteria by using data stored in health centers databases; such as previous
digestive pathologies, family history of CCR, etc... The rest, 10,694 persons, were
invited to participate in the study. After the interview conducted in the nursing
consultation, 588 persons were excluded for other clinical reasons and 135 refused to
participate in the study. Therefore, from the 9,971 persons eligible for screening, 5,874
participated, representing a rate of 58.91%. Only one patient with a positive FOBT
refused colonoscopy, which means a compliance of 99.82%.

7.2.2 Outcomes and costs

Because of the scarcity of data about quality of life related to CRC in our country, we
used the estimates obtained by Ness et al. (1999) in the United States: 0.91 for the
general population; 0.74 for CRC Stage I; 0.70 for Stage II; 0.50 for Stage III, and
0.25 for Stage IV.

Our model includes two types of costs: those of the screening program and those
associated with the diagnosis, treatment, and monitoring of CRC.

The cost of the invitation to the program, e0.65, was obtained from (Sobhani
et al., 2011). The cost of FOBT, including the transfer of the analyzer, reagents, and
maintenance, is e1.67, according to the framework agreement signed by the Health
Service of Aragon and Sysmex Spain S.L4.

The cost of applying the test, estimated in e2.75, was calculated using the annual
gross salary of the staff who performs the test and the number of hours they employ.

The costs of colonoscopy, biopsy, and polypectomy are e173, e75 and e341.
They were taken from (López-Bastida et al., 2010), and updated according to the
inflation data published by the Spanish National Institute of Statistics.

The costs of CRC treatment in Spain for stages 0, I, II, III and IV were e6,573,
e20,298, e28,251, e36,894 and e27,001, respectively (Corral et al., 2015).

4http://www.boa.aragon.es/cgi-bin/EBOA/BRSCGI?CMD=VERLST&BASE=BOLE&DOCS=1-33&SEC=
IMPRESION&SEPARADOR=&&PUBL=20131217

http://www.boa.aragon.es/cgi-bin/EBOA/BRSCGI?CMD=VERLST&BASE=BOLE&DOCS=1-33&SEC=IMPRESION&SEPARADOR=&&PUBL=20131217
http://www.boa.aragon.es/cgi-bin/EBOA/BRSCGI?CMD=VERLST&BASE=BOLE&DOCS=1-33&SEC=IMPRESION&SEPARADOR=&&PUBL=20131217
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Policy Cost Effectiveness

Start screening at 50 years e2,375 22.843 QALYs
Start screening at 60 years e2,647 22.762 QALYs
No screening e2,910 22.696 QALYs

Table 7.2: Cost-effectiveness results for the reference case.

7.3 Results

7.3.1 Reference-case analysis

As mentioned above, we have evaluated three different screening strategies with FOBT:
starting the screening at 50 years, starting at 60, and not performing the screening.
The model has a temporal horizon of 70 cycles, that is, until the cohort reached 100
years of age. In the reference case, a discount rate of 3% per year was applied for both
costs and effectiveness (Weinstein et al., 1996).

Table 7.2 shows the cost and effectiveness of each policy. We can see that in
the reference case, the cost of starting the screening at 50 is lower than the cost of
starting at 60, which is in turn lower than that of no screening. Additionally, starting
the screening at 50 yields more QALYs than starting at 60, which is in turn more
effective than no screening. Therefore, in the reference case, starting the screening at
50 years dominates the other policies, i.e. it is cost-saving. This means that the cases
of CRC avoided or detected in an early state lead to savings grater than the cost of
starting the screening at a young age.

7.3.2 Sensitivity analysis

Also in this study we have modeled the uncertainty by assigning second-order probabil-
ities to the parameters. The uncertainty of each probability has been modeled through
a Beta distribution with a sample size (α + β) of 100 individuals. Uncertainty about
costs has been modeled using Gamma distributions with a standard deviation of 10%
over the reference value Γ(µ, 1

10µ). Even though Briggs et al. (2006) recommended the
use of a standard deviation of 20%, which is the value we used in Chapter 6, in the
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Figure 7.5: Cost-effectiveness scatter plot of the policies relative to no-screening. Each
point represent a simulation measuring the costs in eand the effectiveness in QALYs. The
origin of coordinates corresponds to no screening.

CRC model we assume a lower uncertainty on the costs because we obtained them
from public official lists.

Using these second-order probability distributions we made 10,000 Monte Carlo
simulations. Figure 7.5 shows the scatter plot for the incremental values of cost and
effectiveness of the two screening strategies, taking as reference the strategy of no
screening. Most simulations have lower cost and greater effectiveness, but for some
simulations the cost of screening is higher, which means that the savings due to
prevention and early detection are smaller than the costs of FOBT and colonoscopy.

The acceptability curve in Figure 7.6 compares the strategy of starting the
screening at 50 with no screening. We can see that the strategy has a 95% probability
of being cost-saving. For a WTP of e30,000/QALY, the probability that the screening
be cost-effective is virtually 100%.

If we compare the two screening strategies, start the screening at 50 has a 99%
probability of being cost-effective with respect to start the screening at 60.
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Figure 7.6: Acceptability curve comparing the strategies of starting at 50 versus no screening.

7.4 Discussion

Our study has compared three interventions: starting the screening at 50 years, starting
at 60, and no screening. Although in Aragon it was decided to start the screening
at 60 years, our study shows that starting it at 50, as recommended by the Spanish
clinical practice guidelines, saves costs.

In our study we have only considered the immunochemical FOBT (iFOBT),
while other authors (López-Bastida et al., 2010; Lejeune et al., 2014) also analyze
the Guaiac test (gFOBT). Although this type of test was approved by the European
Commission and recommended by the health authorities in some countries, such as
France, it has been criticized because its low sensitivity and because it reacts with the
non-human heme group in food (Macrae et al., 1982). In contrast, immunochemical
tests, which are based on a specific analysis method for human hemoglobin, offer
greater sensitivity and specificity without the need of a previous diet excluding meat or
without peroxidases. Additionally, iFOBT only needs one sample to be reliable instead
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the three needed by the gFOBT. For this reason, iFOBT presents better compliance.
Furthermore, the samples can be analyzed automatically, which allows the process to
be reproducible and subject to quality control. This explains why iFOBT, in spite
of being more expensive, is cost-effective with respect gFOBT (López-Bastida et al.,
2010; Lejeune et al., 2014). Hence we decided do not include the gFOBT in our model.

In our study we considered that the test is positive when the hemoglobin concen-
tration is equal to or higher than 117 ng/mL. This is the cut-off point recommended
by Hamza et al. (2013), used in the health system of Aragon, and established by
default in the SENTIFIT-FOB Gold latex test. However, other authors argue that
the most cost-effective cut-off point is 110 ng/mL (Chen et al., 2007). In addition,
the concentration of hemoglobin in stool is related to the severity of the lesion, and
therefore this result could be useful to stratify the risk and prioritize colonoscopies in
patients with higher concentrations of blood in feces (Auge et al., 2014). Determining
the most appropriate cut-off point for screening is a topic for future research.

Some authors consider the risk of death due to complications in diagnostic
procedures, such as endoscopic perforation (López-Bastida et al., 2010). However, in
our study we assumed that this probability is almost null, according to the results of
other randomized trials (Faivre et al., 2004; Sobhani et al., 2011).

As we said, several parameters of our model were taken from the “Aragon study”,
mentioned in the first paragraph of this chapter, whose participants were people
between 60 and 69 years old, since in Aragon it was decided to start the screening at
60 and advancing it progressively until reach the age of 50. The participation rate in
the screening was 58.91%, very similar to that of previous studies (Tappenden et al.,
2007; Sobhani et al., 2011). We assumed that the participation and compliance rates
for patients aged from 50 to 59 are the same as those for patients from 60 to 69.

The other hypotheses in our model coincide with those commonly used in the
literature. The evolution of the cohort begins at the age of 30, when the prevalence of
adenomas and CRC is almost null. We assumed that progression to CRC occurs only
from a preexisting adenoma (Levin et al., 2008; Sobhani et al., 2011). This is due to
the lack of evidence related to the rate of de novo CRC. We also considered that 100%
of the adenomas detected in colonoscopy are removed in the polypectomy.
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The results of our model agree with those of previous cost-effectiveness studies of
CRC screening, which concluded that FOBT is cost-effective (Tappenden et al., 2007;
López-Bastida et al., 2010; Sobhani et al., 2011) and with a recent study (Arrospide
et al., 2018) that indicates that it is not only cost-effective but also cost-saving in
Spain.

Our model—as well as all the models used in the cost-effectiveness studies of our
group—is available on the Internet so that other researchers can examine it, check
the results and modify it—for example, changing the prevalence of CRC to adapt
the model to other regions, varying the sensitivity and specificity values of the tests,
introducing other screening patterns, etc. As we have not found any public available
CRC screening model, it has not been possible to investigate all the reasons for the
differences in costs and effectiveness values obtained.

7.5 Conclusions

According to our analysis, biennial CRC screening with the iFOBT dominates the
alternative of no screening; i.e. it obtains greater effectiveness at a lower cost. This is
mainly because the detection and removal of polyps increases life expectancy and avoid
expensive treatments. If the screening start at the age of 50, the gain in effectiveness
and the economic savings are greater than if it starts at 60. According to the PSA,
the probability of these conclusions is close to 100% for the WTP of e30,000/QALY,
which is accepted as a consensus of experts as the value for the Spanish health system.

The model used in this study is available on the internet, so that it can be
examined and reused by other researchers.
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8.1 Main contributions

In this thesis we have shown the usefulness of Probabilistic Graphical Models (PGMs)
for decision analysis. In particular we addressed three methodological problems
related to the evaluation of cost-effectiveness models and applied them to two medical
problems.

In Chapter 4 we have compared different approaches for minimizing the error
introduced by the discretization of time in Markov models. There has been a lot of
controversy about how to interpret and apply half-cycle correction, and whether it
should be replaced by the life-table method. More recently were proposed within-cycle
corrections, based on numerical-integration techniques, which were a good starting
point to address the shortcomings of standard approaches. However, this methods
are less accurate when the model has discontinuities. We proved that building a new
model averaged at the points of discontinuity yields much more accurate results.

In Chapter 5 we have also studied how to perform Cost-Effectiveness Analysis
(CEA) with PGMs. The Research Center for Intelligent Decision-Support Systems
(CISIAD) is the only research group that has used probabilistic graphical models
to model and analyze numerous medical problems, despite of that, their application
for CEA is small yet. Although most studies are based on decision trees or Markov
models, PGMs have several advantages: they have compact representations, can solve
complex problems, and are easier to understand because are based on causal graphs
that summarize the structure of the model. Markov Influence Diagrams (MIDs) allow
temporal reasoning of models with large horizons. The existing cost-effectiveness
algorithms for MIDs only evaluate models with two criteria and one decision. In
Section 5.2 we have developed the algorithms that can evaluate MIDs with several
criteria and any number of decisions, with findings between decisions.

Using Decision Analysis Networks (DANs) it is possible to solve many asymmetric
decision problems, for example, those involving unordered or partially-ordered decisions,
which cannot be modeled with traditional techniques. Like IDs, DANs can model
some large problems for which a DT would contain millions of branches, but do not
require a total ordering of the decisions. This way DANs combine the flexibility of DTs
with the compactness of IDs. When we began this thesis, DANs could only evaluate
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unicriterion problems. In Section 5.3 we have presented cost-effectiveness algorithms
for DANs.

In Chapter 6 we have analyzed the cost-effectiveness of the pediatric Bilateral
Cochlear Implantation (BCI) in Spain. We proved that this intervention is clearly
cost-effective in Spain even if the system took over all the maintenance costs, which
in Spain are partially covered by users and their families. Under the current policy,
the probability of being cost-effective is almost 100%, while if the system covers
maintenance costs, it would be 99.98%. This study has been one of the most satisfying
parts of my thesis because of its social impact. The preliminary work conducted by
our research group, which included a thorough review of the literature, contributed to
convincing the Spanish Ministry of Health that it is clearly cost-effective. Thus Spain
became the first country in the world—to the best of our knowledge—to include BCI for
both children and adults in the portfolio of health services (cf. Orden SSI/1356/2015,
de 2 de julio), but several regional governments still refused to cover it in practice, even
for newborns. After obtaining the results of our model, we wrote a detailed report,
and submitted it to the Ministry of Health and to 11 regional health departments. In
May 2018 the Ministry of Health confirmed that BCI must be covered in Spain and
the health departments that had been reluctant to finance this intervention, finally
approved it: Andalusia in September 2018 and Catalonia in March 2019. We are
satisfied because our research on medical AI has made a difference on the life of
patients.

ColoRectal Cancer (CRC) is one of the most frequent causes of morbidity and
mortality in the world. The goal of screening programs, is to detect the disease at an
early stage or even prevent it. In Chapter 7, we have compared three interventions:
starting the screening with fecal occult blood test at 50 years, starting at 60, and
no screening. Although in Aragon it was decided to start the screening at 60 years,
our study shows that starting at 50, as recommended by the Spanish clinical practice
guidelines, saves costs. It has a 95% of probability of being cost-saving and almost a
100% of being cost-effective.

These models and algorithms, like all those built by our group, are publicly
available, so that any researcher can reproduce our results, perform new analyses or
adapt our models to their needs. In spite the reproducibility is one of the basic tenets
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of the scientific method (Peng, 2011; Repko and Szostak, 2016), the models used for
CEA are almost never publicly available.

During this thesis it has been necessary to implement several the algorithms and
functionalities. We added multiple new functionalities to OpenMarkov, such as the
definition and evaluation of multi-criteria networks, the integration of Markov Processes
with Atemporal Decisions (MPADs) and influence diagrams, the representation of
the temporal evolution of a variable or the graphical representation of the results
obtained in cost-effectiveness and sensitivity analyses (see App. C). I have also devoted
a large amount of time to maintenance tasks, such designing new tests, debugging,
and documenting OpenMarkov, because, rather than just building a research tool for
our group, we have built an open-source program that can be used by any researcher
in any country.
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8.3 Ongoing and future work

Our group is currently working on the project “Cost-effectiveness analysis with decision
analysis networks” supported by a national grant (ref. TIN2016-77206- R). We are
collaborating with a multidisciplinary team that involves researchers from Universidad
Complutense de Madrid, Hospital de la Paz (Madrid) and the Spanish group HM
Hospitals. We are working on an extended model for the CRC (see ch. 7) in which
we are using a DAN to analyze more complex policies. In the current form the new
model will be able to analyze seven decisions, each one with two or more alternatives.
We are thus analyzing 1,296 scenarios, performing CEA for all of them and comparing
the ICER of all these alternatives. This model might improve the current guidelines
on CRC in Spain.

In the future, taking as a basis our study of the CEA of pediatric BCI in Spain,
we want to adapt our model to other countries. We believe that our model can be easily
adapted to other countries making only slight modifications, helping other people to
demonstrate if the BCI is cost-effective in their countries.

We want to measure the impact of discontinuities in real-world problems with
uncertainty. The recommendations of Briggs et al. (2006) on how to address uncertainty,
followed by most of the experts in this field, could have such a high impact that the
error introduced at selecting a half-cycle correction method would be negligible. We
want to study this effect in models where uncertainty is based those recommendations
and also in models in which the uncertainty is modeled through real data.

Another line for future research is the development of more efficient algorithms
for DANs, including parallel implementations and the design of sensitivity analysis
options and explanation facilities similar to those existing for ID (Lacave et al., 2007).
Also we want to develop Markov DANs, which would combine the advantages of DANs
with those of Markov IDs (Díez et al., 2017) and try to compact the interventions
returned by the algorithms (Prada, 2014).

Finally, we will continue working on OpenMarkov, adding new functionalities
and debugging the current issues, looking for release the first official stable version.
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A
Resumen (Summary in Spanish)

Dado que los recursos de los sistemas de salud son limitados, la evaluación económica de
las técnicas y tratamientos médicos es cada vez más importante. Los árboles de decisión
y los modelos de Markov son las herramientas más utilizadas para el análisis de coste-
efectividad, pero solo pueden resolver problemas relativamente pequeños. Los modelos
gráficos probabilistas, como las redes bayesianas y los diagramas de influencia, se han
utilizado en inteligencia artificial para la representación y explicación del conocimiento,
especialmente en medicina, pero únicamente en problemas unicriterio. En los últimos
años, el Centro de Investigación sobre Sistemas Inteligentes de Ayuda a la Decisión
(CISIAD) en la UNED, ha desarrollado nuevos algoritmos para realizar análisis de coste-
efectividad con árboles de decisión y diagramas de influencia. También ha propuesto dos
nuevos tipos de modelos gráficos probabilistas: los diagramas de influencia markovianos,
que amplían los diagramas de influencia para incluir razonamiento temporal y las
redes de análisis de decisiones, que pueden modelar y evaluar problemas con asimetrías
como restricciones o decisiones parcialmente ordenadas.

Esta tesis aborda tres problemas metodológicos relacionados con la evaluación
de modelos de coste-efectividad.

Primero, hay diferentes métodos para reducir el error introducido por la discreti-
zación del tiempo en los modelos de Markov. En general, las técnicas de integración
numérica dan resultados más precisos que los enfoques tradicionales, como la correc-
ción de medio ciclo, pero pueden conducir a un error mayor cuando el modelo tiene
discontinuidades, por ejemplo, cuando se un tratamiento caro se retira después de
aplicarlo durante algún tiempo. Hemos probado que, la construcción de un nuevo
modelo promediado en los puntos de discontinuidad produce resultados mucho más
precisos.

Segundo, los algoritmos de coste-efectividad existentes para los diagramas de
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influencia markovianos solo eran capaces de evaluar modelos con dos criterios y una
decisión. En esta tesis, he desarrollado un nuevo algoritmo de coste-efectividad que
permite evaluar modelos con varios criterios y cualquier número de decisiones con
hallazgos entre las decisiones.

Tercero, las redes de análisis de decisiones solo podían evaluar problemas unicri-
terio. En colaboración con otros miembros de la CISIAD, he ampliado los algoritmos
desarrollados para los diagramas de influencia markovianos, para poder realizar análisis
de coste-efectividad en redes de análisis de decisión.

He aplicado los diagramas de influencia markovianos a la evaluación económica
de dos intervenciones médicas. Nuestro análisis del implante coclear pediátrico en
España ha demostrado que es coste-efectivo con respecto al implante coclear unilateral.
El modelo para el cribado del cáncer colorrectal con test inmunoquímico de sangre
oculta en heces mostró que permite ahorrar costes con respecto a la estrategia de no
cribado.



B
Evaluation of the DAN for the

2-test problem
In Section 5.3.2 we have used the 2-test DAN to explain the evaluateDAN algorithm,
which recursively decomposes a DAN until it contains no decisions. In this section we
offer the same explanation in much more detail.

B.1 Decomposition of the DAN

Every invocation of the Algorithm 5.2 takes two arguments: a DAN and a set of
findings, denoted by e (evidence). The first invocation always takes the original
network and no evidence. In our example, the DAN has no always-observed variable,
so the assignment in line 4 makes O← ∅. The network has three decisions: DA, DB,
and T . In principle any of them might be made first, but the algorithm detects that
T cannot reveal any information, so it must not be the first one; in line 23 it makes
DI ← {DA, DB} and then decomposes the original network into two DANs, as shown
in Figure 5.9: in one of them DA is prioritized by drawing the links DA → DB and
DA → T ; in the other, DB is prioritized. Line 28 adds a meta-decision variable OD
(for “order of the decisions”), indicating which decision will be made first. If we modify
Algorithm 5.2 in order to explicitly build the DT, this variable would be the root (see
Fig. 5.10); in other examples there might be several meta-decisions.

The evaluation of the network containing the link DA → DB arrives at line 16
and generates two new DANs, one for +dA (do test A) and one for ¬dA (do not perform
test A), which no longer contain the decision DA. This decomposition corresponds to
the branches +dA and ¬dA in Figure 5.10. In the new DANs the node DA disappears
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because this decision has been made.

In the DAN for +dA, the method instantiate marks RA as always-observed. For
this reason it has a red oval around it, which means that its value is known when
making the next decisions. The tables P (rA|dA) and cA(dA) have been projected for
+dA. Line 4 of Algorithm 5.2 makes O← {RA} and line 12 invokes evaluateDAN twice:
first with e = {+rA} and then with e = {¬rA}. In both cases the DAN is decomposed
for DB—as it was previously decomposed for DA—and then for RB, T , and X. The
upper node CE in Figure 5.10 corresponds to an invocation of evaluateDAN with a
DAN in which all the decisions have been removed and every chance node has been
assigned a value, e = {+rA,+rB,+x}.

In the DAN for ¬dA (see again Fig. 5.9), the node RA has disappeared because
the two values of this variable, “positive” and “negative”, are incompatible with ¬dA,
due to the total restriction for link DA → RA. This DAN is subsequently decomposed
as in the previous case, and also the DAN containing the link DB → DA is evaluated
in the same way.

B.2 Probabilities and CEPs returned

Every recursive call to evaluateDAN (Algorithm 5.2) returns a probability, i.e., a single
number between 0 and 1, and a CEP. The call corresponding to the upper CE node
in Figure 5.10 returns the probability P (e) = P (+x,+rA,+rB) = P (+x) ·P (+rA |
+x) ·P (+rB | +x) = 0.14 · 0.78 · 0.90 = 0.09828, computed from the conditional
probabilities of the chance nodes, just as in the case of BNs. The CEP for this node
consists of a single interval, (0,+∞), which implies that every leaf node has only
one value of cost and one of effectiveness, just as in the standard CEA algorithm
for DTs. The cost and the effectiveness for this CEP is the sum of the values of the
corresponding nodes: c = cA(+dA) + cB(+dB) + cT (t2) = 18 + 150 + 70, 000 = 70, 168
and e = e(+x, t2) = 6.5—let us remember that decisions that led to this DAN are
DA = +dA, DB = +dB, and T = t2. The intervention is empty because no decision
node has yet been evaluated.

For the other U node shown in Figure 5.10 we have P (e) = P (¬x,+rA,+rB) =
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P (¬x) ·P (+rA | ¬x) ·P (+rB | ¬x) = 0.86 · 0.09 · 0.07 = 0.005418, c = cA(+dA) +
cB(+dB) + cT (t2) = 70, 168, e = e(¬x, t2) = 9.3, and the empty intervention.

The algorithm evaluateDAN steps back to node X in that figure. It corre-
sponds to a call in which e = {+rA,+rB}. Line 13 of Algorithm 5.2 computes
P (+rA,+rB) = P (+x,+rA,+rB) +P (¬x,+rA,+rB) = 0.103698 and line 14 computes
P (+x | +rA,+rB) = 0.94775 and P (¬x | +rA,+rB) = 0.05225. These are the proba-
bilities for the two branches outgoing from node X in Figure 5.10. When averageCEP
(Algorithm B.1) is invoked in the next line, these probabilities are used to average the
cost and the effectiveness in the resulting CEP, which still has an empty intervention
and no threshold because no decision node has yet been evaluated.

The recursion steps back to node T in that figure. It corresponds to a call to
evaluateDAN with a network that still contained the decision node T . The “for” loop
in line 17 returns three probability values and three CEPs, one from each branch
of T in the tree. The three probabilities are identical, because P (e) = P (+rA,+rB)
and the results of the tests do not depend on the therapy selected after doing them.
So line 20 can arbitrarily select any of the Pd(e)’s. The three CEPs are defined
on the same interval, (0,+∞), but each one has a different cost, effectiveness, and
intervention. Then line 21 invokes the method optimalCEP (Algorithm B.2), which
performs a deterministic analysis (with Algorithm B.3) for the only interval of the
input CEPs and returns a CEP that, for the numerical parameters of this model, has
three intervals.

Node RB in Figure 5.10 corresponds to the top right DAN in Figure 5.8. The “for”
loop in line 10 receives two probabilities, P (+rA,+rB) and P (+rA,¬rB). Line 14 com-
putes P (+rB | +rA) = 0.5557 and P (¬rB | +rA) = 0.4443, which are the probabilities
of its outgoing branches. The CEP for +rA contains two thresholds, e7,551.50/QALY
and e21,385.50/QALY, while the CEP for ¬rA contains one, e70,923.70/QALY. The
method averageCEP, invoked in the next line, computes the average cost and the
average effectiveness for each of the four intervals. In the first one, i.e., when λ <

e7,551.50/QALY, the optimal intervention is not to do test B and not to apply any
therapy, even though A has given a positive result. For the other intervals, test B
is done. The optimal intervention for the second interval is: “if B is negative, apply
no therapy; if it is positive, therapy 1 is applied”. The optimal intervention for the
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third interval is similar, with therapy 2 instead of therapy 1. In the fourth interval, a
positive result of B leads to therapy 1 and a negative result to therapy 2.

The recursion continues all the way back to the root of the trees, which—as we
said above—corresponds to a call to evaluateDAN with the original DAN no evidence.
The “for” loop in line 24 returns two probabilities, which are both equal to 1, and two
CEPs, one for the DAN in which the decision DA is made before DB and another one
for the DAN in which DB is made first. Line 28 creates the auxiliary variable OD,
i.e., the meta-decision that determines, for each λ-interval, which decision must be
made first.
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B.3 Auxiliary algorithms

In this section we present some auxiliary algorithms invoked by the main method,
Algorithm 5.2. They were introduced to evaluate DTs with embedded decision nodes
(Arias and Díez, 2011) and later used for evaluating IDs (Arias and Díez, 2015). We
reproduce them here for the sake of completeness.

The method instantiate, invoked in lines 11 and 18, takes as arguments a DAN, a
variable X, and a value x, and generates a new network, DANx, as follows:

1. create DANx as a copy of the DAN;

2. if x reveals a variable Y that is not a descendant of any decision (other than
X), then declare Y as observed in DANx; if Y is a descendant of some decisions
(other than X), {D′1, . . . , D′n}, draw a link D′i → Y for i ∈ {1, . . . , n}—if it did
not exist—and declare that D′i reveals Y unconditionally;

3. if there is a total restriction (x, Y ), remove Y ; then remove recursively all the
chance and utility nodes that are children of Y ;

4. if there is a restriction (x, y), remove y from the domain of Y ;

5. if a chance node Y is a child of X, project the table P (y|pa(Y )) or uY (pa(Y ))
by making X = x;

6. if X is a decision, remove node X and its outgoing links.

Line 15 of Algorithm 5.2 invokes the method averageCEP, given by Algorithm B.1. Its
input consists of a variable X having m values (states), a probability distribution P (x),
and m CEPs. It first gathers all the thresholds of the input CEPs and computes, for
each interval, the average cost, the average effectiveness, and the intervention, taken
the cost, effectiveness, and interventions of the input CEPs for those intervals. Again,
an example can be found in (Arias and Díez, 2011).

Line 21 of Algorithm 5.2 invokes the method optimalCEP, given by Algorithm B.2.
Its input consists of a decision D having m values (options) and m CEPs. It first
gathers all the thresholds of the input CEPs and performs, within each interval, a
deterministic CEA, which may in turn generate new thresholds. Those thresholds
that lie within the interval analyzed are added to the set of CEPs, Θ; the others are
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Algorithm B.1: Weighted average of CEPs

function : averageCEP

input :X – a chance variable whose domain is {x1, . . . , xm},
P (xj) – a probability distribution for X, and
{Q1, . . . , Qm} – a set of CEPs

output :CEP – a cost-effectiveness partition
1 Θ← ⋃m

j=1 Θj

2 n← card(Θ) + 1
3 for i← 1 to n do
4 ci ←

∑m
j=1 P (xj) · costQj

(θi)
5 ei ←

∑m
j=1 P (xj) · effQj

(θi)
6 Ii ← “If X = x1, then intervQ1(θi); if X = x2, then intervQ2(θi)...”

7 return ((θ1, . . . , θn−1), (c0, . . . , cn), (e0, . . . , en), (I0, . . . , In))

discarded. For each of the new intervals, the algorithm selects the value dk of D that
maximizes the NMB. It determines the cost and the effectiveness for that interval,
just as when selecting the optimal branch outgoing from a decision node in a tree.
The optimal intervention for that interval begins by selecting D = dk and continues
with the partial intervention that the k-th CEP determined for that interval. Finally,
the algorithm eliminates the thresholds that are not necessary, i.e., those that separate
intervals having the same cost, effectiveness, and intervention. Those thresholds were
generated in branches of the tree that later turned out to be suboptimal. An example
can be found in (Arias and Díez, 2011).

The deterministic CEA performed in line 4 of this algorithm might be done with
the traditional method, which consists in keeping the non-dominated interventions
and discarding those dominated by others (single dominance or extended dominance)
(Weinstein et al., 1980). A slightly more efficient method, introduced in (Arias and
Díez, 2011), is given by Algorithm B.3. It begins by selecting the intervention with
the lowest cost and then the one with the lowest ICER among those with higher
effectiveness, and so on.

Finally, the method prioritize, invoked in line 25 of Algorithm 5.2 with a DAN
and a decision node D as arguments, is implemented by just drawing links to the other
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Algorithm B.2: Optimal CEP

function : optimalCEP

input :D – a decision node whose domain is {d1, . . . , dm} and
{Q1, . . . , Qm}, a set of m CEPs with Qj = (Θj, Cj, Ej, Ij)

output :CEP – a cost-effectiveness partition
1 Θ← ⋃m

j=1 θj

2 n← card(Θ)+1
3 for i← 1 to n do
4 perform a deterministic CEA analysis within the i-th interval
5 add to Θ the new thresholds that belong to this interval

6 n← card(Θ)+1
7 for i← 1 to n do
8 k ← arg maxj NMB(θi)
9 ci ← costQk

(θi)
10 ei ← effQk

(θi)
11 Ii ← “D = dk; intervQk(θi)...”

12 fuse contiguous intervals that have the same intervention, the same cost, and the
same effectiveness.

candidates to be the first decision, i.e., the nodes in DI .



146 B. Evaluation of the DAN for the 2-test problem

Algorithm B.3: Deterministic cost-effectiveness analysis

function : deterministicCEA

input : a set of interventions {I1, . . . , Im}
output :CEP – a cost-effectiveness partition

1 σ(0)← arg mini cost(Ii)
2 R0 ← {i | Ii ∈ I ∧ eff(Ii) > eff(Iσ(0))}
3 i← 1;
4 while Ri−1 6= ∅ do
5 σ(i) := arg minj∈Ri

ICER(Iσ(i−1), Ij)
6 θi ← minj∈Ri

ICER(Iσ(i−1), Ij)
7 ci ← cost(Iσ(i))
8 ei ← eff(Iσ(i))
9 Ri ← {j | j ∈ Ri−1 ∧ eff(Ij) > eff(Iσ(i))}

10 i← i+ 1

11 return ((θ1, . . . , θn−1), (c0, . . . , cn), (e0, . . . , en), (I0, . . . , In))



C
OpenMarkov

OpenMarkov is an open-source tool for building and evaluating several types of
probabilistic graphical models. It implements several learning algorithms and can
perform cost-effectiveness analysis and different types of sensitivity analysis. It is
developed at the Research Center for Intelligent Decision-Support Systems (CISIAD)
and constitutes a toolbox for researchers who wish to use probability-based models in
articial intelligence. OpenMarkov has been used for research and teaching in more
than 30 countries, including the Massachusetts Institute of Technology, Los Alamos
National Laboratory, the National Oceanic and Atmospheric Administration, and
several multinational companies.

The implementation of the cost-effectiveness algorithms developed in this thesis
have required several changes in OpenMarkov’s organization.

First of all, we made a deep re-factorization of the code in order to simplify the use
of its Application Programming Interface (API), in accordance with the architectural
pattern Model-View-Controller, separating the data, the logic, and the graphical
representation. After analyzing OpenMarkov’s tasks and how they worked, we were
able to clean some unnecessary and/or duplicated code structures, by establishing the
tasks and factoring out their common elements.

The second main contribution to OpenMarkov’s coded was analyzing and re-
organizing the 50 Maven modules that composed it. Some of them were using old
versions of other modules, due to the absence of a well-defined structure. We cleaned
this structure, removing unnecessary dependencies and revising the responsibilities
of each module. The new structure allowed us to recover the continuous-integration
practices and helped us to improve the documentation of the software.

We added multiple new functionalities, such as the encoding and evaluation of
multi-criteria networks, the representation of the temporal evolution of a variable,
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or the graphical representation of the CEA and the PSA. It has also been necessary
to perform some routine maintenance tasks, such as designing new tests, debugging
issues, improving the documentation of OpenMarkov.

The networks described in chapters 6 and 7, were built in OpenMarkov and are
publicly available in the website www.probmodelxml.org. Because ProbModelXML is
the native encoding format of OpenMarkov’s networks, both medical applications can
be opened and evaluated with this open-source software.

During this thesis, we presented OpenMarkov in several peer-reviewed workshops
and conferences (Arias et al., 2017a; Díez et al., 2018c; Arias et al., 2019). For a
detailed view of OpenMarkov capabilities please see the wiki1, the tutorial2, or the
video demonstration3.

1http://wiki.openmarkov.org
2http://openmarkov.org/docs/tutorial/
3http://openmarkov.org/ijcai-19/

www.probmodelxml.org
http://wiki.openmarkov.org
http://openmarkov.org/docs/tutorial/
http://openmarkov.org/ijcai-19/
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