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Resumen
Es bien conocido entre la comunidad científica que una de las principales áreas de la

ciencia que presenta en estos días mayor número de incógnitas está relacionada con la
morfogénesis y la embriología. En otras palabras, cómo a partir de una distribución uniforme
de células no diferenciadas, ni siquiera en lo que a información genética se refiere, puede
aparecer una estructura constituida por reordenamientos y diferenciación celular. El por qué
células aparentemente iguales experimentan procesos de diferenciación diferentes es, hoy en
día, un misterio. No obstante, se está avanzando en la comprensión de estos mecanismos
mediante estudios biológicos de quemotaxis, información posicional o de existencia de
pre-patrones que revelan complicadas interacciones entre células.

Los modelos teóricos que predicen la formacion de algunas de estas estructuras, en
concreto los modelos de Reacción diffusión, generan una dinámica no lineal extremadamente
compleja. Dicha dinámica es capaz de reproducir patrones que a priori sugieren un posible
tratamiento computacional. Emplear esta aparente lógica implícita que aparece durante la
formación de patrones, permitiría desarrollar algoritmos computacionales donde toda la
lógica de decisión sería transferida al modelo numérico. Puesto que los modelos númericos
de reacción diffusión son fácilmente reproducibles en plataformas físicas especializadas,
esto daría lugar a implementaciones de bajo costo.
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Chapter 1

Introduction

When surfing the rich tapestry of patterns that arises when playing with nonlinear systems, a
persistent idea comes to mind: there is a huge amount of decision-logic taking place in the
background as the pattern develops [15]. By means of a simple Reaction-Diffusion (RD)
system, a wide range of behaviors can be reproduced: from simple excitations waves [58] to
a more complex stable pattern formation through the so called Turing instability [73].

Beyond this, different instabilities or combinations of them [75] [17] have given rise
to very intriguing static and dynamic structures. And the nuances found in the resulting
concentration profiles reveals a mechanism that can be summarized in a single word: self-
organization. A local transfer of information originates self-organize complex structures in a
larger scale. Computationally, these concentration profiles are identified as simple geometric
information, not surprisingly early works in this topic have already emphasized this point
of view [. . . ]. RD systems can be numerically reproduced as a network of coupled cells
with short-range coupling, which greatly simplifies its codification and enables a direct
hardware implementation by means of standard technologies (GPU, FPGA, VLSI). Even
more, combination of the intrinsic massive parallelism of the model propagation and the
short-range diffusive coupling between cells results in a fault tolerance that can be interpreted
as noise resistance (isolated damage cells do not influence the overall behaviour), exposing
the robustness of natural phenomena. Computational models producing dynamics of RD
systems have already been employed in image processing operations [32, 33, 48, 61, 62],
calculation of the shortest time to reach a destination point [59] and the shortest path
between two points [79]. The idea of RD-based path planning has been introduced by
Adamatzky [4, 6] and Trevai et al. [71, 72] whom demonstrated experimental and strictly
computational feasibility of such approaches, respectively.

That being said, it would be appealing to develop a computer algorithm based on a
RD-core whose different configurations encapsulate the necessary logic to perform suitable
decisions during the execution. Where some inputs deliver some outputs and where the main
benefit is the ability to deal with complexity in a natural way.
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In summary, although the computation using RD systems has already been explored,
until now there wasn’t any definitive method to design general purpose algorithms, that takes
advantage of their rich spatiotemporal dynamics. Therefore an outcome in the form of an
standard method to use RD systems for general purpose computation will be an interesting
achievement in the use of RD systems.
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1.1 Objectives

The general objective of this thesis is to investigate, design, and implement mobile robotics
algorithms based on reaction-diffusion systems. The numerical study of frontwaves propaga-
tion for the FHN model is addressed. Also, due to the computational burden associated with
the numerical integration of RD systems in two dimensions, the optimization of its spatial
integration is also addressed.

The following specific objectives are considered in this thesis:

• Investigate the dynamics of the FHN model, particularly the propagation of wavefronts
in bistable systems to derive properties that can be used in the design of algorithms.

• Perform the stability analysis of the FHN model for the ranges of interest, and analyze
the associated Turing instability conditions.

• Development of numerical optimization techniques to decrease the computational
burden, in order to get computation times in the average range (at least) of minutes.

• Development of mobile robotics algorithms, with a focus on exploration and planning
strategies.
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1.2 Outline and contributions

The organization of this thesis is as follows:

chapter 2 This chapter aims to put the self-organization research field into historical context
with a focus on parts of the field related to this thesis. Therefore its origins will be
briefly discuss, as well as the connection between all the terms involved in what is
understood as self-organization in science, i.e. complexity, non-linearity, bifurcation,
emergence or dissipative structures.

chapter 3 This chapter is devoted to illustrate the basic principles that govern the dynamics
of RD systems, with a focus on the Fitz-Hugh Nagumo model and more particularly
in the bistable configuration that is used in this thesis.

chapter 4 This chapter provides a description of the used computational framework. There-
fore, a brief introduction to the FHN model, leads to the description of a new computa-
tional method in which the main decision logic is transferred to the model dynamics,
that seamlessly encapsulates geometric operations. This feature will be used for
general purpose computation in the next chapter.

chapter 5 This chapter illustrates all the developments achieved in this thesis. In particular,
starting with a single robot exploration task, a cooperative multirobot exploration
algorithm is introduced. Also a computation of the Voronoi diagram by means of the
RD core, is presented. All the developed algorithms are compared with its standard
counterparts.
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1.3 Publications

The research done in this thesis has resulted in the following publications, included in
Appendix B:

• A. Vázquez-Otero, Jan Faigl, Raquel Dormido, and Natividad Duro. Reaction diffusion
voronoi diagrams: From sensors data to computing. Sensors, 15(6):12736–12764,
2015.

• A. Vázquez-Otero, J. Faigl, N. Duro, and R. Dormido. Reaction-diffusion based com-
putational model for autonomous mobile robot exploration of unknown environments.
International Journal of Unconventional Computing, 4:295–316, 2014.

• A. Vázquez-Otero, J. Faigl, N. Duro, and R. Dormido. Reaction-diffusion process
based computational model for mobile robot exploration task. In Workshop Proceed-
ings on Unconventional Approaches to Robotics, pages 16–18, Piscataway, 2013.
IEEE.





Chapter 2

Nonlinear Dynamics

Abstract

The self-organization illustrated by Nature in almost all aspects of our reality
exposes what are very complex behaviours. However, on the contrary, this
can very often be captured by simple dynamical models. Although nowadays
this constitutes a prolific area of research, throghout the last century the self-
organization was struggling for acceptance among the scientific community,
only in the second half, after the development of the thermodynamics-of-out-
of-equilibrium it was set as a research field. This chapter thus aims to put this
research field into historical context with a focus on parts of the field related to
this thesis. I will therefore briefly discuss its origins and connection between
all the terms involved in what is understood as self-organization in science,
i.e. complexity, non-linearity, bifurcation, emergence, dissipative structures,
spatially extended systems, etc.
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2.1 Self-Organization

A troublesome origin

The term self-organization (self-organizing) can be traced back to a statement made by the
philosopher Inmanuel Kant in his Critique of Judgment. In that work he questioned the
validity of using the causality principle of classical physics to explain life. As a known
scientific phenomena, it dates to early XX century, likely to 1910 when Lotka published
the work Contribution to the Theory of Periodic Reactions (Lotka, 1910). One decade
later in 1921 the chemist William Bray suggested Loctka’s work as a plausible explanation
of his observation of a chemical oscillationis. Nevertheless, attention to both works was
conspicuous by his absence, and even 30 years later Belousov did not succeed in his attempt
to publish his observation of periodic oscillations in color when oxidizing citric acid with
bromate and cerium IV (the work eventually appeared in the proceedings of a conference
without refereeing. During that time, the main impediment was that in the vast majority
of the cases reactants do not self-organize, thus making it difficult to accept the concept of
global organization in a well defined structures, although at least since the 1890s there have
been reports of chemical systems that self-organize.

Regardless of the troublesome origin, throughout the century, and especially with the
inclusion of chemical diffusion in the experiments, the number of systems found that show
spontaneous organization was increased gradually and early in the 1950s. In these systems,
the reactants interact generating periodic variations of concentration that are macroscopically
interpreted as patterns. Such an outcome is the interaction between reaction and molecular
diffusion.

Finally, despite the fact that the self-organization concept was around for a while (even
with some experimental findings), it was not until the decades of the 1960s and 1970s
that the term became used in the scientific literature. During that time, Prigogine and co-
workers started the development of the thermodynamics of systems far-from-equilibrium,
demonstrating that reacting systems in such conditions could lead to self-organization.
Indeed, the Belouzov-Zhabotinsky reaction was presented as an experimental example of
such behaviour.

The theoretical works that ends up in Prigogine (being laureate with the Nobel Prize),
started in around 1940. All these works focused on the non-linear dynamics of reactive pro-
cesses far-from-equilibrium, which under certain conditions may give rise to self-organization.
This type of self-organizaton coming from RD systems will be the subject of the present
work.
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Fig. 2.1 Key events that lead to the self-organization field

The export of entrophy and the kinetic resistance

Ther term kinetic resistance, as it is used in the present context was coined in order to describe
the general opposition among the scientific community against the new observed phenomena
of spontaneous chemical oscillations. The well established concept of thermodynamic
equilibrium for a closed system weighted like a stone, and was required the development of
the afore-described thermodynamics of out-of-equilibrium prior to such observations were
accepted.

In these open systems (far-from-equilibrium), the chemical reactions are able to generate
a flux of dissipation from where the system can extract the energy, that is used for driving
and mantaining the system far-from-equilibrium. That energy that flows through the system
can be used to decrease its entropy, generating ordered states, and thus leading to a new
type of dynamics capable of developing patterns. As expected, the consumption of the
chemical species involved stops the process, and the system goes back into the standard
thermodynamical equilibrium, hence the dissipative structure would disintegrate.

Although the open thermodynamical systems out-of-equilibrium have been systemati-
cally investigated, it is worth mentioning Turing’s precursor statement of such sytems, in his
work:

In order to maintain the wave pattern a continual supply of free energy is required. It is
clear that this must be so since there is a continual degradation of energy through diffusion.
This energy is supplied through the fuel substances (A, B in the last example), which are
degraded into waste products.

Indeed, formalization of the self-organization processes was achieved by the Belgian
chemist Ilya Prigogine, while working in the topic that he called “dissipative systems“,
and also by the German physicist Haken who worked on similar issues under the name of
synergetics (Timeline) .
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An obvious example of the so-called dissipative structures are living systems. Sunligh
and nutrients constitute a source of low entropy, that in the form of waste products with
high degree of entropy are exported back. During this process, the internal entropy of the
living organism decreases, allowing to counteract the general tendence to reach a maximun
of entropy stated in the second law of thermodynamics. Therefore a living organism is
continusouly generating entropy that is transferred out of itself, and thus increasing its own
order.

A good overview of the situation of that time can be found in [26], where it is noticeable
that only thirty years ago the kinetic preconception was striving for acceptance among
(experimental?) biologist’s

Kinetic theory envisages pattern and form as being generated by movement away from
equilibrium, explicable therefore only in terms of rates of chemical reactions and transport
processes. Its language is necessarily that of the partial differential equation, with both
position and time as variables. (...) In my experience, most physical scientists, given the
problem of living self-organization and with no prior knowledge of its theories, instantly
adopt the kinetic preconception, because they see nothing else in all our philosophies that
seems suitable to this task. It is usually difficult to convey to them that most biologists are
not envisaging explanations along kinetic lines: "But what else could do it?"

leading to an even more dramatic consideration:

General adoption or rejection of the kinetic concept in life will require a weight of
evidence from many individually less definitive experiments. This will not happen until many
more biologists understand the kinetic preconception and consider it promising enough to be
worth following up.

In short, the kinetic theory describes the formation of patterns (i.e. self-organization),
by means of chemical reactions and transport processes, taking place far-from-equilibrium.
Partial differential equations with dependence in both, time and position are the mathematical
tools required to describe such systems.

Emergent behaviours in complex systems

The export of entropy does not by itself address the problem of how or why the self-
organization occurs. Prigogine noted that such self-organization typically takes place in
non-linear systems, which are far from their thermodynamic equilibrium state. This is where
the complex systems come into the scene, leading to the rise of self-organization in complex
systems out-of-equilibrum.
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A complex system can most easily be described if we begin to define the field of
Complexity before. It is a paradigm that tries to study a large body of phenomena from a
common perspective occurring in systems constituted by multiple small units, and the most
comprehensively studied example is the Rayleigh-Benard convection. Consider a layer of
fluid heated from below. As a consequence of the heat absorption the bottom layer decreases
its density compared to the upper layers. At some point the temperature gradient generates a
difference in density between the top and the bottom layers strong enough to overcome the
liquid viscosity and the thermal diffusivity, producing a convective motion in the liquid. That
convective motion can take place in two different directions of rotation (broadly speaking) in
regards of a normal observer: clockwise or counterclockwise, and both of them are equally
probably at the beginning of the rotation.

Therefore, the evolution of the system as a consequence of being heated from below,
results in the splitting of the associated dynamics in two possible directions, both equally
probably. This is what is known as a bifurcation (that leads to the acquisition of complexity),
as it is shown in Figure 2.2. The name "bifurcation" was first introduced by Henri Poincaré
in 1885 in the first paper in mathematics showing such a behavior, and nowadays constitute
a huge field .

This prototypical example (i.e. Rayleigh-Benard convection) constitutes a nonlinear
system exhibiting self-organization, and it shares a number of important properties with many
other pattern-forming mechanisms in spatially extended systems. In particular, the majority
of the concepts introduced before (patter formation, thermodynamics far from equilibrium,
etc.) can be better understood using this example.

Nowadays complexity is a highly interdisciplinary branch of science that embodies
concepts from different fields such as nonlinear dynamics, statistical physics, probability and
information theories, data analysis and numerical simulation.

One of the main characteristics that these systems exhibited, is a macroscopic correlation
length, understood as the maximun distance at which the local interactions between the single
agents occur, leading to develop global patterns. Another interesting and related concept is
the closure: albeit the system is thermodynamically open, allowing the exchange of matter
and/or energy between the system and the environment, the organization is determined purely
internally. Such closure in regards of the organization turns a set of interacting discrete
agents into a well defined “whole”. This whole exhibits properties that cannot be reduced to
the properties of its original agents. These properties that only “emerge” when considering
the system as a whole are called emergent. This in turn is the underlying idea of approaching
these complex systems, the global behaviour does no represent the simple sum of its parts.
Therefore, to describe self-organization the word emergent is used: the mutual interaction of
the elements of a system resulting in the emergence of global states that cannot be anticipated
based purely on the properties of such elements. Another feature of some of these systems is
that self-organization can be strongly affected at an early stage in the process by the presence
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Fig. 2.2 Bifurcation. . .

of weak external factors that break the symmetry of the system and so modify its collective
behaviour (bifurcation behaviour). Besides that, two types of modulations known as negative
(damping) and positive (amplifying) feedbacks are always present in these systems.

The computational side

The main advantage of computational models that reproduce self-organization in any of its
approaches, is that they do not rely on the dissipation of energy, as there is no consumption
of chemical species. Hence, from a computational viewpoint one can take all the advantages
of the self-organizing theory, like its inheritance of robustness -interpreted as noise tolerance-
whilst dismissing the drawbacks.

The majority of the existing applications have lead to the development of computer
programs such as neural networks, artificial life simulations, and genetic programming,
which are indeed capable of solving complex problems. For instance, is a well known
example the study of the collective behaviours of ants. The manner in which individual
ants release chemicals in their attempt to show the other members of the colony the path
to some source of food, generates a network of trails connecting the nest and the source.
This knowledge has been succesfully applyed to the optimization of packet transport in
communication networks.

Nonetheless, from an engineering point of view grasping and reproducing the behaviours
that the self-organization field can exhibit through computer simulations, is only the first part
of the problem. Yet an adequate application for that behaviour must be found.



2.1 Self-Organization 13

Self-organization nowadays

All in all, after the aforedescribed no-less-than-troublesome origin, the term self-organization
is nowadays a very complex and broad subject matter to the interests of many disciplines,
often not related to each other at all. Ranging from physics and chemistry to human society,
cybernetics, biology and many others.

Herein, the preferred field of application will be the classical pattern formation in
systems-far-from-equilibrium, which has many potential but as of yet relatively few prac-
tical applications. Finally, in light of the previous sections, a qualitatiave description of
self-organization can be set as follows:

Self-organization can be defined as process that allows the arise of overall order out
of the local interacions between the components of an initally desordered system. The
emergence of order relies only in those agents, and has no external agent. It is often triggered
by random fluctuations that are amplified by positive feedback. Is decentralized, and thus is
robust and noise resistant -understood as perturbation over the local agents-.

Our description is herein skewed according to the pattern formation field described
through the Turing instability, that is the cornerstone upon which the present thesis is built.
It must also be noted that both terms (emergence and self-organization) are not always
necessarily conflated; there may be instances of self-organization without emergence and
vice versa.

A more detailed yet qualitatiave explanation in regards of the historical background that
concerns the development of the concepts involve in self-organization can be found in: [27],
[68], [30], [41], [49].





Chapter 3

Reaction-Diffusion systems

Abstract

The computational framework used in this work relies in the dynamical
properties of Reaction-Diffusion (RD) models, mathematically a set of coupled
nonlinear partial differential equations of the parabolic type (PDEs). They
are naturally applied in chemistry. However, the system can also describe
dynamical processes of non-chemical nature. In spatially extended systems
a RD model may develop complex behaviours, from oscillating phenomena
till pattern formation by means of the Turing instability. Since there is no
general rules for finding the solutions of such equations, the qualitative study
of nonlinear equations, i.e. exploring the stability of the equations and its
asymptotic behavior provides a good overview of its dynamics. Therefore, this
chapter is devoted to illustrate the basic principles that govern the dynamics of
RD systems, with focus on the Fitz-Hugh Nagumo model and more particularly
in a bistable configuration.
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3.1 The Reaction-Diffusion equations

3.1.1 Introduction

Reaction-diffusion equations are mathematical models that describes the evolution of one
or more variables over a domain of interest. Originally intended to describe chemical
reactions they have nowadays a wide application to describe different dynamical systems. A
prototypical form can be written as follow:

ut = D∆u+ f (u) . (3.1)

Overall it describes the evolution of the state variable u(x, t), and more precisely the
concentration of such variable over the domain x∈ Ω ⊂ R. As it can be seen, it comprises
two terms with completely different associated dynamics. The so-called reactive described
by f (u) : R → R that accounts for the changes in u, and the diffusive due to D∆u -the
Laplacian operator of u multiplied for a constant- that stands for the diffusion of u along
Ω . Mathematically, reaction–diffusion systems constitute semi-linear parabolic partial
differential equations. They can be represented in the general form of:

ut = D∆u+ f (x,u,∇u) , (3.2)

where u(x, t) ∈ Rm.

3.1.2 Reactions

The substration of the diffusive term transforms eq. 3.1 in a ODE (or m-D ODE in case
u(x, t) ∈ Rm) as ut = f (u). A few common examples are the following. The Logistic growth
that describes the spread of a population in space, limited by K is given by:

f (u) = au ·
(

1− u
K

)
(3.3)

The Predator-prey, where a population characterized by y feeds from preys defined by x is
described as:

ẋ = a1x
(

1− x+α12y
K1

)
˙̇y = a2x

(
1− x+α21y

K2

) (3.4)

And finally the so-called Law of mass action -indeed, a mathematical model, not a Law-
as an example of chemical reaction. Let’s define an irreversible chemical reaction as:

X +Y k−→ R, (3.5)
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being k the reaction rate. Assuming that the rate of production of R corresponds with the
number of collision between molecules X and Y multiplied by the probability of reaction
for each collision. Then, △c

△t = kxy where x,y,r are the concentrations of X ,Y,R, thus in
△t → 0:

ṙ = kxy (3.6)

3.1.3 Diffusion

To introduce the idea of diffusion, the conservation of mass and the Fick’s law are the
classical methods. For studying the variation of a variable u(x, t) ∈ R3 that represents the
concentration value of a substance inside a container, one shall study the flux J (x, t) ∈ R3

through the surface that establish the boundaries of the container, thus:

d
dt

∫
Ω

u(x, t)dV =−
∫

Γ

J (x, t)dS. (3.7)

And from the divergence theorem:

∫
Γ

J (x, t)dS =
∫

Γ

divJ (x, t)dV, (3.8)

the previous can be reformulated as follows:(
d
dt

u+divJ
)
= 0 (3.9)

well known as the first law of Ficks, that connects the first time-derivative of the density
and the flux when assuming conservation of mass. Finally, using Fick’s second law that
states that the flux has the direction of the negative gradient (of the particle distribution):
J =−D∇u (it means proportional to the concentration value) , the diffusion equation (also
known as the heat equation) results:

ut = D△u (3.10)

3.1.4 The Reaction-Diffusion equation

The general equation that describes the conservation of a variable c inside a volume V
bounded by the surface S is:

∂

∂ t

∫
V

c⃗ (⃗x, t) d⃗v =−
∫

S
J⃗ ·dS⃗+

∫
V

f⃗ (⃗c, x⃗, t) · d⃗v (3.11)

where the term −
∫

S J⃗ ·dS⃗ represents the material flux, and
∫

V f⃗ (⃗c, x⃗, t) · d⃗v the sponta-
neous creation or destruction of particles, i.e. the sources and sinks of c⃗. And finally the term
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c⃗ (⃗x, t) represents the concentration level of c⃗ (⃗x, t) in a neighboorhod of the point x⃗ at a fixed
time t.

And using the already introduced diffusion term: ut = D△u the previous expression can
be rewritten as:

∫
V

[
∂

∂ t
c⃗ (⃗x, t)+ ∇⃗J⃗− f⃗ (⃗c, x⃗, t)

]
d⃗v = 0 (3.12)

that yields the general transport equation:(
∂

∂ t
c⃗ (⃗x, t)+ ∇⃗J⃗− f⃗ (⃗c, x⃗, t)

)
= 0. (3.13)

Thus, for purely diffusive process we get the reaction-diffusion equation:

∂

∂ t
c⃗ (⃗x, t) = f⃗ (⃗c, x⃗, t)+D∇⃗2⃗c (3.14)

which states that variations in the concentration level is due to both terms a sources and
diffusive.

3.2 Reaction-Diffusion dynamics

Motivation

The main characteristic of these reaction-diffusion systems is that, under some circumstances,
they exhibit spontaneous symmetry breaking phenomena and spatial self-sustained structures
that were proposed as a base to explain the formation of patterns in Biochemistry and
Morphogenesis [31, 55, 56]. Reaction-diffusion systems have been shown to exhibit a lot of
different behaviors which will be summarized along this chapter.

The simplest way to write a reaction-diffusion equation such as the one described in
3.14 is by the set of two equations below,

˙u = f (u,v)+Du∇2u
v̇ = g(u,v)+Dv∇2u

(3.15)

where u and v are the concentrations of the two relevant species identified as activator (u)
and inhibitor (v). f (u,v) is typically a cubic function while g(u,v) is quadratic or linear.

Computationally, it describes the evolution of the states variables u and v for each point
over an integration grid, being the remaining parameters constants of the model. The grid
points (also called grid cells) are spatially coupled with its neighbours by means of the
Laplacian component, which is also responsible for spreading out information along the
integration domain. A standard method for analyzing the associated dynamics of Eq. 3.15
involves plotting the nullclines (sometimes called zero-growth isocline) that describe the
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dynamics of a zero dimensional system or a single cell. Thus, the dynamics of each cell is
governed by its associated nullcline configuration, plus the spatial interactions with other
cells due to the diffusive coupling. The following section is a roundup of the typical systems
in which RD models are split for its study. The associated nullclines configuration will help
to understand qualitatively their dynamics.

3.2.1 Excitable systems: one fixed point

Let’s suppose a system consisting of two chemical species RD (modeling by means of
FitzHugh-Nagumo) with a set of nullclines such that the system contains only one stable
fixed point, as shown in Figure 3.1. Any initial configuration far from the stable fixed point
(that defines an homogeneous steady state) will decay to the stable state by means of an
excitable wave. Let’s study the influence in the model evolution of an initial perturbed state.

Small perturbation

If the initial state is close to the stable point, what in the phases space implies that the initial
point is near the fixed stable point, the evolution of the concentration for the cell of interest
is reproduced in Figure 3.1a.

Moderate Perturbation: autowaves

If the perturbation exceeds a certain threshold the linear analysis is not possible, and the
overall system behavior would be completely different to that described in the previous case.
In this new situation the perturbed point develop a cycle in the phases space as it is shown in
Figure 3.2. This cycle can only be explained by the nonlinearity of the terms involved.

We can summarize by saying that introducing in an active RD media one perturbation
higher above a certain threshold, it does not fall linearly towards the corresponding stable
fixed point, but it does follow a cycle in the phases space. This leads to a wave of excitation
called autowave typically consists of a wave of activation followed immediately by a wave
of inhibition.

This nonlinear dynamics of the point is transferred to the neighbors because of the
diffusive coupling (in a spatially extended system), forcing the original disturbance to
move through the system, and thus giving rise to the phenomenon known as autowave and
recognized in the form of a pulse that spreads through the system until disappear against the
walls. Such behaviour is shown in Figure 3.2.

These autowaves are clearly distinct from the classical waves. The term autowave was
coined by R. v. Khokhlov as an abbreviation of “autonomous waves” because once initiated
does not need any external support for evolving through the media, consuming the energy
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(a)

(b)

Fig. 3.1 Evolution of the concentration levels for a cell of interest after being pertubed: (a)
phases space representation (b) concentration profiles of u and v over time.

stored in it till the complete consumption of the chemical species ivolved in the chemical
reaction.

All the waves here presented for RD systems are commonly named autowaves. Au-
towaves are waves responsible for most of the processes in Nature [45]. Somehow, one
can say they are the waves Nature chooses to interact. They represent a particular class of
nonlinear waves that propagate through an active media at the expense of the energy stored
in the medium and are manifestations of a strongly nonlinear active media [45]. These waves
behave in a completely different way than those in classical mechanics [64], in fact, they con-
serve amplitude, shape and velocity as they propagate through a homogeneous medium, they
annihilate upon collision with another wave without interfering, they do not reflect on bound-
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(a)

(b)

Fig. 3.2 Evolution of the concentration levels for a cell of interest after being pertubed: (a)
phases space representation (b) concentration profiles of u and v over time.

aries; the only property they share with classical waves is diffraction. A list summarizing
these properties is shown in Table 3.1. These are the properties that Nature takes advantage
of in order to make completely different systems work. These systems range from heart
muscle to pulse propagation in neurons just to name a few [23–25, 36, 37, 42, 47, 60, 63, 66].
These waves can exhibit different configurations in extended systems, a summary of them
can be found in [42, 46].

Summarizing, a medium is considered as “excitable” [57] when a perturbation larger
than a given threshold applied to a system does not decay immediately to its stationary value.
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Fig. 3.3 Some examples of autowaves, propagating with different geometries in systems of
two dimensions.

Table 3.1 Properties of autowaves compared with those of waves in classical mechanics.

Property Classical waves Autowaves

Conservation of Energy + -
Conservation of Amplitude and Waveform - +
Reflection + -
Annihilation - +
Interference + -
Diffraction + +

On the contrary, the perturbation grows and makes a large and non-trivial excursion in the
space of variables. This cycle consists in a first part, called ”state of excitation”, where the
system remains for a while. This state is able to perturb its neighboring due to diffusive
process, leaving the steady state and making the same cycle, but with a delay in time. This
way, a wave of excitation travels through the medium. Immediately after this wave crosses
the system, it remains in a state impossible of being re-excited again (refractory state) during
a certain period of time. A few examples of such waves in two dimensions are shown in
Figure 3.3.
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In Nature, among the most common examples of excitable systems are neurons and
cardiac tissue, due to the important role that waves plays in the fibrillation mechanism
and tachycardia. The propagation of electric stimuli in the heart obeys the laws of a three-
dimensional excitable system, and its study has revealed new possible ways of treatment for
heart dysfunctions. In the case of neurons, the excitation is due to electrical stimulus that
perturbs the quiescent state. It is well known that, during neuronal diseases such as epilepsy,
synchronization in state of excitability of the neurons arises [10, 13, 21].

The spatial geometry and properties of the waves excited in a medium depend on the
dimensionality of the system. Traveling waves induced by diffusion are a typical solution in
one-dimensional excitable media. The pulse propagates with constant velocity and profile. In
two-dimensional systems the shape of the excitation wave depends on the initial perturbation:
from target patterns to different kinds of spirals or chemical turbulence [53, 67].

3.2.2 Oscillatory regime

Reaction-diffusion systems may transit via a Hopf bifurcation from a steady state (excitable
regime) to a periodic behavior, thus appearing a limit cycle in the system that produces
periodic oscillations. This behavior is plotted in Figure 3.4 and Figure 3.5, where it can be
seen that in the phases space there is on only one fixed point that is unstable. Not long ago
a simple inorganic reaction oscillating periodically would have been thought to violate a
natural law. Today such reactions are being systematically designed and studied as analogues
of periodic behavior in living organisms. It is well known how the oscillations and the
periodic changes in a natural system determines many of the main relevant aspects in its
development [11, 65].

3.2.3 Bistable systems

When a system is endowed with more than one steady state (typically two stable steady states
and one unstable) is called bistable [19]. Depending on the initial values of u and v, the
system will evolve to either of these two stable fixed points. Figure 3.6 shows the associated
nullcline configuration. Both stable states are connected via a front. The dynamics of these
are well studied and understood [74]. In the biological word, a large amount of systems
exhibit two steady states. For instance, bistable behavior of inhibitory neurons has been
observed controlling impulse traffic through the amygdala [51]. The ultimate aim was the
design, via genetic regulatory networks, of a bistable bacteria [54]. This “Toggle Switch”
was implemented in E. Coli using first principles, allowing the possibility to model the gene
network and predict future transitions.
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e
(a)

(b)

Fig. 3.4 Evolution of the concentration levels for a cell of interest after being pertubed for an
oscillatory system: (a) phases space representation (b) concentration profiles of u and v over
time.

3.2.4 Stationary Structures: Turing Mechanism

Reaction-diffusion systems can also exhibit different structures. Half a century ago, Alan M.
Turing [38] developed a theory of Morphogenesis which had a deep impact on theoretical
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(a) (b)

Fig. 3.5 Examples of the oscilatory configuration found in 2D systems: (a) exotic implemen-
tation in the genes of a mouse (b) chemical oscillations.

developments in pattern formation and reaction-diffusion systems. Turing showed that
stationary concentration patterns may spontaneously develop in an open system containing
two reacting substances provided one of them diffuses much faster than the other. Nowadays,
the Turing mechanism is still considered as a prototype for the formation of coherent patterns
in nonequilibrium systems [29]. Turing mechanism [38] or BZ reaction [43], where proposed
to explain the cell differentiation in the first days of development of early embryos [39], and
the pigmentation of the skin of animals [1]. These patterns have an intrinsic wavelength
which does not depend on the dimensions and geometry of the system. It is necessary that
the diffusion coefficients involved are different, and that the diffusion of the inhibitor is
larger than that of the activator in a proportion that depends on the nonlinearities of the
system. They are non-homogeneous in space, but stationary in time. Figure 3 presents
different Turing patterns obtained in chemical experiments and by numerical simulations
with a reaction- diffusion set of equations.
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(a)

(b) (c)

Fig. 3.6 Evolution of the concentration levels for a cell of interest after being pertubed for
a bistable system: (a) bistable nullcline configuration where both stable states are equally
stable; (b) the first stable stated is more stable than the second one. Reason why the majority
of the trajectories in the phases space ends up in that fixed point; (c) conversely, the second
fixed point is more stable than the first one.

3.3 Linear stability analysis for diffusion-driven instability

This section is devoted to find necessary and sufficient conditions for the diffusion-driven
instability of the homogeneous steady state. We also choose zero flux boundary conditions,
therefore nothing occurs due to any external input, but by self-organisation:

(n ·∇)

(
u
v

)
(3.16)

n denotes the outer normal to ∂B, the closed boundary of the considered domain B.



3.3 Linear stability analysis for diffusion-driven instability 27

3.3.1 The spatially homogeneus problem

In the neighborhood of a fixed point can be found the same dynamics that in the case of
a linear system, and thus the study of its dynamics can be easily performed. This, for an
isolated “cell” means that any initial condition will decay to such stable point. For a nonlinear
system like the following:

ẋ = f (x,y)
ẏ = g(x,y) ,

(3.17)

the fixed points (x0,y0)i are the solutions of 0 = f (x,y) and 0 = g(x,y). And it is possible
that the system has one, or more depending on the shapes of f (x,y) and g(x,y) that usually
are quadratic, cubic or linear, and its intersections.

A brief reminder of the linearization process for this system is described in Appendix A,
resulting in the eigenvalues expression A.4:

λ1,2 =
τ±

√
τ2−4∆

2 , (3.18)

where τ = tr(A). The condition that guarantees stability for this system (stable spirals,
according to the standard stability analysis ref[strogad?]) is λ1,λ2 ∈C which in turn implies
that Re|λ |< 0. Therefore, the conditions for obtaining a stable solution for the linearized
system at the fixed point (in the absence of diffusion, as we are dealing with a single cell)
are:

|A|= fugv − fvgu > 0 (3.19)

trA = fu +gv < 0. (3.20)

The above two conditions means that in a bounded area of the fixed point under consider-
ation, it is possible to find stable solutions in the form: w ∼ (v1eλ1t +v2eλ2t).

3.3.2 Spatial instability or Turing conditions

The eigenvalues equation

Adding the diffusion term brings spatial dependence to the system:

ẋ = f (x,y)+Du△x
ẏ = g(x,y)+Dv△y.

(3.21)
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Now each “cell” influences the behaviour of its neighbor’s. The linearization described
in Appendix A.3 along with the solution in the form w ∼ eλ t+i⃗k⃗r results in the equation A.20
for the associated eigenvalues:

λ1,2 =
1
2

(
trA− trD · k2 ±

√
(trD · k2 − trA)2 −4h

)
(3.22)

where h
(
k2
)

is:

h
(
k2)= DuDvk4 − k2 (Dv f ∗u +Dug∗v)+ |A| . (3.23)

As already discussed the steady state (u0,v0) is (linearly) stable if Re|λ | < 0 for both
eigenvalues λ1,2. Remark that we wanted to have a stable steady state in case of absent
spatial effects, which corresponds to Re|λ (k2 = 0)|< 0, which again corresponds to A.14
and leads to the conditions for the trace and the determinant above (Equation 3.19). Second,
we require Re|λ (k ̸= 0)|> 0, i.e. such that the steady state is unstable if spatial disturbances
(via diffusion term) are present. From the trace condition (for the case without diffusion) we
know that ( fu +gv)< 0. Besides, it’s generally true that (Du +Dv)k2 > 0 for all k ̸= 0, thus
we find that the term

(
trA− trD · k2

)
is always < 0. In view of this, examining Equation

A.20 confirms that the only possibility to ensure that Re|λ (k2 ̸= 0)|> 0 remains in the term:
h
(
k2 ̸= 0

)
< 0. Examination of the terms in the parable confirms that the only possibility is:

(Dv f ∗u +Dug∗v)> 0 (3.24)

The diffusion coefficient ratio

Defining d = Dv
Du

as the coefficient ratio between both diffusion coefficients, Equation 3.24
can be rewritten as:

(d fu +gv)> 0 (3.25)

Since we know that trA = fu +gv < 0 (meaning they have opposite signs) this implies
that at least d ̸= 1, otherwise (d fu +gv)< 0.

Minimun of the parabola: h
(
k2
)

Still we have not yet found a sufficient condition for Re|λ |> 0 (only a necessary condition).
In order to get a negative h

(
k2
)

for some k, the minimum hmin must be negative. Since h2

represents a parabola, it’s indeed simple to find its minimum in order to force it to be < 0:{
0 =

dh(k2)
dk2 = 2DuDvk2 − (Dv fu +Dugv)

}
→ k2

min =
Dv fu+Dugv

2DuDv
(3.26)
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and substituting k2
min into h

(
k2
)
< 0:

hmin
(
k2

min
)
= DuDv

(
Dv fu+Du fv

2DuDv

)2
− Dv fu+Du fv

2DuDv
(Dv fu +Du fv)+ |A|

=−1
4
(Dv fu+Du fv)

2

DuDv
+ |A|< 0.

(3.27)

Now let’s investigate how the condition h
(
k2
)
< 0 applies to this case. On the one hand

|A|> 0 due to the requirements for the case without diffusion (Equation 3.19). On the other,

−1
4
(Dv fu+Du fv)

2

DuDv
+ |A|< 0 (3.28)

and thus, the condition can be written as follows:

(Dv fu +Dugv)
2 −4DuDv |A|> 0, (3.29)

or using the coefficient ratio:

(d fu +gv)
2 −4d |A|> 0. (3.30)

Turing conditions

Finally puting together all the found requirements, the Turing conditions for getting unstable
states in the presence of diffusion result in the following set of equations:

fugv − fvgu > 0
fu +gv < 0
(Dv fu +Dugv)

2 −4DuDv ( fugv − fvgu)> 0,

(3.31)

or in the more compact form:

|A|> 0
trA < 0

(d fu +gv)
2 −4d |A|> 0

(3.32)

where (d fu +gv)> 0.

Critical diffusion coefficient (dc) and critical wavenumber (kc)

The unstable states arise for values of h(k2 ̸= 0)< 0, and so the system changes its behaviour
from stable to unstable at the exact point hmin = 0. For this case, from Equation 3.27 can be
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extracted the equality: |A|= (d fu+gv)
2

4d . Fixing all the kinetic parameters allows to define a
critical diffusion coefficient ratio dc > 1 as the appropriate root of the previous equality:

{
( fugv − fvgu)−

(dc fu +gv)
2

4dc
= 0

}
→ d2

c f 2
u = 2(2 fugv − fu fv)dc +g2

v = 0 (3.33)

Correspondingly, we can determine the critical wavenumber kc by:

{0 = DuDvk4 − k2 (Dv fu +Dugv)+ |A|} → k2
c +

(Dv fu +Dugv)

DuDv
. (3.34)

Unstable modes and dispersion relation

Thus, in case of h(k2) < 0 when d > dc, there are two zeros k2
1 and k2

2 of h(k2) = 0, and
the unstable wavenumbers are between them: k2

1 ≤ k2 ≤ k2
2. Vice versa, one can plot λ (k2)

against k2 (the so-called dispersion relation). Examples of both, the accessible unstable
modes and the dispersion relation are depicted in Figure 3.7. Of course, in the unstable range,
we have Re|λ (k2)|> 0.

(a) (b)

Fig. 3.7 A typical representation of: (a) accesible wavenumbers; (b) dispersion relation.

The range k2
1 ≤ k2 ≤ k2

2 defines the relevant nodes in the final solution (as the time
increases), as all the other modes tend to zero exponentially. Therefore the final solution:
∼ ∑

k2
k1

ckeλ (k2)tWk(
−→r ).

Remark: The wavenumbers are discrete when considering a finite domain, so only certain
k values may be in the relevant range.
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Physical interpretation

In general two types of diffusion driven instability are possible, as shown in Figure 3.8

Fig. 3.8 Left case: u is the activator of v (and self-activating), v is the inhibitor (self-inhibition
and inhibition of u). For the pattern formation, the inhibitor must diffuse faster than the
activator. Right case: v is the activator of u (but self-inhibiting), diffuses faster. u inhibits v
(but is self-activator).
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3.4 The RD Model of Fitz-Hugh Nagumo (FHN)

3.4.1 The model

All the results presented so far are generic for reaction-diffusion systems (Equation 3.15).
Nevertheless, for practical realizations we used the two-variable Fitz-Hugh-Nagumo model
[20, 35, 52] where the nonlinearities are given by,

f (u,v) = ε
(
u−u3 − v

)
g(u,v) = (u−αv+β )

(3.35)

where ε ,α , β , and φ are parameters characteristic of the model.

This model was based upon research of the giant squid axon by Hodgkin and Huxley,
the FitzHugh-Nagumo model is one of the simpler excitable cell models available. It is a
reduction of the four-variable Hodgkin-Huxley model, based upon the similarity in speed
of the dynamics of the individual variables. Though primarily considered to be qualitative
in nature, it is representative of the excitable phenomena of cardiac cells and has been used
as a base model for testing of novel computational methods [40]. The FitzHugh-Nagumo
model equations relate the cell membrane electrical potential u, and the gating variable (also
called the cell’s refractory potential, v). The model is able to reproduce many qualitative
characteristics of electrical impulses along nerve and cardiac fibers, such as the existence of
an excitation threshold, relative and absolute refractory periods, and the generation of pulse
trains under the action of external currents.

3.4.2 Particularizing the RD stability analysis to the FHN model

3.4.3 Fixed points

The equations of the FHN model:

u̇ = ε
(
u−u3 − v

)
+Du△u

v̇ = u−αv+β +Dv△v,
(3.36)

and applying the stability analysis described in the previous section: for the fixed points
in the form f (u,v) = 0 and g(u,v) = 0:

{
0 = ε

(
u−u3 − v

)
0 = u−αv+β ,

}
→

u3 +u
( 1

α
−1
)
+ β

α
= 0

v = u+β

α

(3.37)

that represent a straight line plus a cubic equation.
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Linear stable

Now applying the conditions 3.19 and 3.20, as described in previous section, for obtaining
linear stability in the absence of diffusion:

A =

(
fu fv

gu gv

)
=

(
ε
(
1−3u2

)
−ε

1 −α

)
(3.38)

that yields to:

{trA < 0}→ ε
(
1−3u2

0
)
−α < 0

{|A|> 0}→ ε
(
1−α

(
1−3u2

0
))

> 0
(3.39)

Spatial instability

Adding the diffusion and applying the necessary and sufficient condition (Dv fu +Dugv)
2 −

4DuDv ( fugv − fvgu)> 0 results in:

(
Dvε

(
1−3u2)−Duα

)2 −4DuDv
(
−αε

(
1−3u2)+ ε

)
> 0 (3.40)

Or using the coefficient ratio d = Du
Dv

:

(Dv fu +Dugv)
2 −4DuDv ( fugv − fvgu)> 0

(d f +gv)
2 −4d ( fugv − fvgu)> 0

f 2
u d2 −2( fugv − fvgu)d +g2

v > 0

(3.41)

that substituing the parameters result in:

(
ε
(
1−3u2))2

d2 −2ε
(
2−α

(
1−3u2))d +α

2 > 0. (3.42)

Finally putting together the three conditions for the diffusion-driven instability applied
to the FHN model:

ε
(
1−3u2

0
)
−α < 0 (3.43)

ε
(
1−α

(
1−3u2

0
))

> 0 (3.44)(
ε
(
1−3u2))2

d2 −2ε
(
2−α

(
1−3u2))d +α

2 > 0 (3.45)

h(k2)

h
(
k4)= DuDvk4 − k2 (Dv fu +Dugv)+ |A| (3.46)
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and

h
(
k2

min
)
= −1

4
(Dv fu+Du fv)

2

DuDv
+( fugv − fvgu)

= −1
4

(Dv fu+Du fv)
2

DuDv
+( fugv − fvgu).

(3.47)



Chapter 4

Computational Framework

Abstract

This chapter is devoted to provide a description of the computational frame-
work that is used in the present work. In particular, a new method to solve
computational problems using reaction diffusion systems is presented. The
novelty relies on the use of model configurations that tailors its spatiotemporal
dynamics to develop geometrical operations as a part of the system’s natural
evolution. Consequently, all the main decision logic that is usually required for
performing computations in a standard algorithm is herein transferred to the
model dynamics, that seamlessly encapsulates geometric operations.



36 Computational Framework

4.1 The RD computational framework

4.1.1 Introduction

The idea of RD computation relies in a RD-core capable to develop all the necessary logic to
perform suitable decisions during the execution. The main benefit of this approach is the
ability to deal with complexity in a natural way, encapsulating all the complexity in the RD
dynamics. Nevertheless, using excitable systems for developing RD-based algorithms, as it
has been the norm so far, drags the problem of the volatility [Vladimir cara feliz wavefronts]
of the transport of information. In this context the information is generally associated with the
model evolution itself, like a traveling perturbation where the transport of information relies
in the interpretation of a transient state. That’s the main reason why traditional RD-based
algorithms have to do a continuous checking of the system evolution, as a series of iterative
processes, [Adamatzky, wave computing] in order to follow the information transport, and
thus relegating their use for solving computational problems to a mere conceptual idea rather
than a competitive approach with traditional algorithms. A RD-based algorithm should
provide some new qualities in order to justify their use, and fulfilling this requirement entails
(at least) the use of stable states to represent information rather than transient states, in order
to avoid continuous checking.

Bistable systems are conceptually the best suited to meet these conditions, allowing to
codify information easily distinguishable because of coexistence of both states. But such
coexistence is based on the fact that both states must remain separate, without actually mixing.
This feature has been achieved increasing the stability of the frontwaves separating both
states. Additionally, novel properties that have been found over the course of the analysis
done in the present work have allowed the implementation of different algorithms using only
RD-based computation.

In short, the apparent decision-logic exhibited by the RD model can be seen as an
abstraction layer for problem solving, allowing one to embed the complexity of a real
problem into the model spatiotemporal evolution. This analogy confers the RD model the
status of a computational framework in which geometrical operations can be performed.

4.1.2 The asymmetric bistable domain: traveling frontwave

As already discussed in Section 3.2 the fixed points of the system are the ones represented
by the nullclines intersection, and basically can be classified in stable and unstable states,
leading to stable steady states SS or conversely to unstable steady states US. Concentration
levels of the state variables (u,v) evolve naturally toward the concentration levels determined
by SS. For the purpose of this work we are concerned with the nullcline conguration depicted
in Figures 3.6c and 3.6b leading to the so called bistable regime in which the model presents
two SS and one US (green and red discs, respectively). It basically means that the system
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(i.e., the concentration levels of (u,v) for each grid-cell) tends to remain in any of these two
SS, being feasible that some portions of the system be in one, while the remaining parts be in
the other. A symmetric nullcline configuration is depicted in Figure 4.1

Fig. 4.1 General symmetric configuration for a bistable system. Both stable states are equally
stable.

(a) (b)

Fig. 4.2 Asymmetric nullcline configurations for a bistable system. (a) Two possible asym-
metric configurations. (b) Superposition of both asymmetric configurations. It can be seen
how close are they fixed points.

Consequently, an interesting property of the bistable regime lies in the possibility to
modulate the relative stability of both SS. Allowing to differentiate between SS+ and SS−
that clearly represent the more and less SS respectively. Moreover, the relative stability
of both SS can be trivially related with the area under the curve, which is reproduced in
Figure 4.32g Thus, the relative stability of the system can be modulated through the nullcline
conguration. Finally, as the system evolves toward the concentration level of SS+, a default
conjuration in SS− causes the system to move to SS+ if a small perturbation is introduced.
Under these circumstances the mobile frontier that separates both SS and drives the shift can
be considered as a traveling frontwave. Thereby, only this type of autowaves is used in this
work.
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4.1.3 The Switch-of-phase strategy

The nullcline configuration depicted in the left part of Fig. 4.32g characterizes a system with
a tendency to evolve towards the stable point (SS+)a while for the right diagram in the same
figure the tendency is towards (SS+)b.

From a superimposion of the both figures, as it is shown in Fig. 4.32h, it is evident
that the stable points are relatively close in both nullclines, i.e., (SS−)a ≈ (SS+)b and
(SS+)a ≈ (SS−)b. The fact that their concentration levels are so close enables a smooth
transition from the nullcline configuration depicted in the left part of Fig. 4.32g to the
configuration depicted in the right part of the figure, and vice versa. Therefore, if the
parameters of the model are slightly modified, after a short period conditioning in which
(SS−)a becomes (SS+)b and (SS+)a becomes (SS−)b, the model evolves according to the
new nullcline configuration.

It is because the system dynamics can be tailored to reproduce different behaviors using
diverse nullcline configurations, that geometric operations can be encapsulated in the model
spatiotemporal evolution using this switch-of-phase mechanism.

Hence, the problem boils down to find proper nullcline configurations capable of repro-
ducing the desired behaviors.

4.1.4 Sensory information: binary forcing

It has been shown in literature that some natural phenomena can be explained in terms of the
RD systems, e.g., a pattern formation where self-organization plays a key role. An intriguing
characteristic of such natural processes is how its development becomes fairly robust against
the unavoidable imbalances that arise in every living system. This behavior is consistently
reproduced by the RD dynamics, which exhibits a strong capacity to deal with external
perturbations, either overcoming it, or adapting its internal behaviour to accommodate to
them. The so-called external forcing has been systematically studied as a mechanism for
interacting with RD systems. It comprises both the spatial [? ? ] and the spatiotemporal [? ]
domains, and it can consist in a weak influence that barely affects the dynamics, or a strong
perturbation that determines its behavior. For perturbing the FHN model as it is defined in
Eq. 3.36, the main technique consists in the local modification of the nullcline configuration
for a few cells of interest. The effect of this modification on the dynamics is an inhibition of
the frontwave propagation at these points; hence, it is equivalent to the introduction of binary
information into the system, which can be used to represent obstacles in robot path planning
as it was shown in [77].

An example of an environment representation created from raw sensor measurements is
shown in Figure 4.3a. The showed map is created by integration of the sensors measurements
into an occupancy grid, where each cell denotes a probability the cell is occupied by
an obstacle. New sensor measurements, in this case a scan from a laser ranger finder,
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are integrated into the occupancy grid using Bayes’ rule [44]. Then, a grid map of the
environment is created from the occupancy grid by thresholding the probability value of each
cell into one of three states: occupied, free, and unknown. A wavefront evolution in a grid
map is shown in Fig. 4.3b and Fig. 4.3c, where it can be noticed how the wavefront covers
the available space during its evolution, while stopped at the edges of the grid map, which
represent obstacles. This feature allows to integrate the external (environmental) information
into the RD computational grid in a straightforward way.

(a) (b) (c)

Fig. 4.3 A visualization of sensor measurements transferred to the integration grid: (a)
occupancy grid with integrated sensor measurements where detected obstacles are in black,
identified freespace is in white, and unknown parts of the environment are in gray; (b and c)
the occupancy grid that represents the map of the environment is transferred (merged) to the
integration grid of the model, where a wavefront is triggered.

4.1.5 Sensory information: gradient-like forcing

In the previous section, a binary grid in the form of the grid map of the environment has been
introduced as external information into the integration grid through the local modification of
the nullclines of the particular point of interest (the obstacles). It means that at each point of
the grid representing an obstacle the nullcline configuration is replaced by other that inhibits
the wavefront propagation. This inhibition is suitable for introducing binary information into
the integration grid and thus any propagating will stop at reaching any of these locations.
Besides, the model allows to consider an additional constraint in the form of an extra (point
dependent) term, being the final expression to be discretized:

u̇ = ε
(
u−u3 − v+φ

)
+F +Du△u

v̇ = (u−αv+β )+Dv△u
. (4.1)
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To our interest, the F term (Fi j for a cell at the coordinates i j in the computational grid)
represents the environmental information coming from sensors, and the main difference
with regards to the previous method (the local nullcline modification) is that it allows to
introduce gradient-like information. In other words, the FHN dynamics is determined by
a combination of the nullcline configuration plus the diffusive term, and such a behaviour
is somehow resistant to a set of values that can be introduced through Fji at each cell. For
example, it can establish an effective range Fji ⊂ [0,max) which introduces a gradual delay
in the wavefront propagation, reaching the complete inhibition. An intensive use of this
feature is shown in [76], where the RD-model is employed for planning a path in the robotic
exploration task. An example of such a behavior is depicted in Fig. 4.4, where a planar
frontwave evolves according to a different values of F along the vertical axis: a maximum
delay in the upper part of the front regarding the lower part where the value F = 0 means no
forcing at all. Therefore, we can generate a profile that exhibits a gradient of velocities in
the wavefront propagation along the vertical axis. This result is compatible with other RD
properties used in the framework, like the annihilation upon a collision, and hence opens up
a wide range of possibilities.

Fig. 4.4 A profile of velocities in a wavefront propagation in 2D (300×700 grid size) under
the influence of the F matrix, where the abscissa represents four states of the same evolving
front at different times. The forcing matrix F is introduced along the vertical axis, with
values in the range ⟨0,−0.035⟩.
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4.2 A computational example: path planning

4.2.1 The Path-planning approach

The afore described computational framework provides a new mechanism fully based in the
dynamics of RD systems to perform geometrical computations, and thus the results include
the idiosyncratic of the RD frontwaves. For instance, in [78] was introduced a path planning
algorithm fully based in the RD dynamics in which the resulted path does not coincide with
the geometrical shortest path as it is defined in [ref], though it has another interesting features
that makes the algorithm suitable for addressing the robotic path-planning problem.

The RD algorithm is based on the following properties already discussed:

• Particular wavefront properties for reproducing different behaviours.

• Switch-of-phase mechanism for connecting different stages of the algorithm.

• Introduction of external information in the computational grid on-the-fly, through
the local modification of the model nullclines for the cells of interest, as the I/O
mechanism.

4.2.2 RD based Path Planning with Binary Forcing

The path planning problem is a problem of finding a shortest collision free path starting from
some initial location and ending at the desired location, while a robot navigated along the
path will avoid a collision with obstacles. The key point of the method introduced in [78] is
a consideration of the obstacles in a form of grid map used for forcing the RD model. The
concept of the RD based planning is visualized in Fig. 5.2. The planning algorithm consists
of two phases: propagation and contraction. The dynamics of the propagation phase is
ruled by the nullcline configuration depicted in Fig. 4.5a, whilst the contraction phase is
governed by the configuration shown in Fig. 4.5b. The algorithm works as follows. First,
the system is initially set in SS− and a small perturbation is introduced at the robot location,
which triggers a frontwave to move the system towards SS+, see the picture in Fig. 4.5c.
When the frontwave reaches the goal area (i.e., changing the concentration values to SS+),
which can be easily detected to constitute the termination condition for the propagation, the
contraction phase is activated. During the contraction phase, the start and goal locations are
simultaneously kept at the concentration levels of SS− in opposition to the system tendency
of evolving towards SS+.

The result of combining the changing of phase together with forcing the start and goal
locations in the contraction phase is shown in the last series of the pictures in Fig. 4.5d.
The contraction of the domain (SS−)contract over itself in benefit of the more stable domain
(SS+)contract leads to a final single path linking the start and goal locations, which corresponds
to the requested shortest path.
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(a) (b)

(c) (d)

Fig. 4.5 An example of the system evolution in the path planning problem; (a) nullclines
configuration for the expansion phase; (b) nullclines configuration for the contraction phase;
(c) propagation phase; (d) contraction phase. The free space is in white and obstacles are in
brown; values of the u state variable are in gray; the final solution is shown in red.
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4.2.3 Extending the path-planning algorithm

However, the technique that has been exemplified in the path planning algorithm constitutes
an approach that can be generalized in order to address different problems, rather than just
calculation of the shortest path between two points. In particular, the following constitutes
the key aspects in which the RD computation, for the path planning algorithm, is based:

• Natural parallelism of the model evolution.

• Natural resistance to isolated damaged cells, interpreted as noise resistance.

• The non-annihilation of frontwaves upon a collision.

• Absence of pattern formation during the frontwave evolution, therefore it spreads out
like an ordinary fluid.

• Change of relative stability in a bistable configuration leading to a switch of the
direction of the fronts propagation.

Each one of these properties encapsulates a different decision-logic capability. For
instance, the non-annihilation provides information about frontwave collisions, where now
the particular location of that collision remains as a part of the system evolution.

The aim of this work is to provide a computational framework fully based on the RD
computation, and for that purpose the inclusion of additional properties will extend the
scope of applicability beyond the path-planning algorithm. To that end, the next section is
devoted to explore the possible behaviors that can be extracted from the general dynamics
of the FHN, and suitable for being used in an algorithm that follows the technique used in
the path-planning one. Such technique uses the switch-of-phase mechanism, which in turn
relies in the asymmetric bistable configurations described in Section 4.1.2. According to that
mechanism, there are two available configurations of the nullclines to be analyzed: depicted
in Figure 4.32g, which have received the name of expansion and contraction phases. In
both cases the system holds two HSS (namely SS+ and SS−) able to coexist, although the
natural tendency of the system is to evolve towards the more stable one (SS+) by means of a
traveling front separating both states. All these terminology will be used in the following
sections.
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4.3 Stability Analysis

4.3.1 Introduction

In Figure 4.32g are depicted two nullcline configurations that have been associated in
Section 4.2 with an expansion and a contraction phase respectively. Although this conforms
the natural succession of stages in the path planning algorithm, the fact is that the expansion
phase can also be followed by another expansion phase with a slightly different nullcline
configuration. And the same applies to the contraction phase, that can be followed by another
contraction phase, what in turn gives rise to the development of more complex algorithms.
That being said, the analysis of the frontwave propagation will take place independently
for both phases. Firstly, the expansion phase will be analyzed in order to find different
behaviours that can be exploited in an algorithm design. Subsequently the contraction phase
will undergo similar study.

4.3.2 Frontwave propagation in the expansion phase.

To analyze the properties of the frontwave propagation in the expansion phase the following
experiment, exemplified in Figure 4.6 is proposed. It consists in setting up the whole system
in SS−, knowing that in the absence of any external perturbation the system will remain
static indefinitely. Afterwards, a circular wavefront is initiated in the upper right corner with
a concentration level very close to SS+. The frontwave initiated at the perturbed point starts
to spread through the medium moving the system to the more stable state SS+ till a static
situation is reached. The series of slits visible in the figure are introduced as binary forcing
(see Section 4.1.4), and their purpose is to serve for the analysis of the wavefront behaviour
when it is about to penetrate channels with different sizes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.6 Exemplification of the slits experiment for the expansion phase. The subfigures
show different stages of the model evolution after a small perturbation is introduced in the
right upper corner. Note that the slits are treated as binary forcing.

In particular, the distance between the first pair of adjacent slits in Figure 4.6 is 18 grid
points. Each next pair of adjacent slits gets its distance increased by one grid point, resulting
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in a series of slits with increased distance between them: [18 : 1 : 42]. And thus constituing a
series of channels with different sizes.

4.3.3 Experimental results

The pictures are distributed in each Figure along four different columns, and the reason is a
different size of the slits in each column.

Figures 4.23, 4.24, 4.25, 4.26, 4.11, 4.12 and 4.13 are composed of a grid of 4 rows and
4 columns resulting in 16 images each one. Each image is the final state of a simulation in
which a wavefront has been left to evolve freely till reaches a static situation, as described in
previous section. The differences in each picture are due to:

• each column has different slits width. In the first column the width of the slits is four
grid points. The remaining colums have a slit width of five, six and seven grid points
respectively.

• each row represents a simulation with a different α value.

Therefore, the experiment is intended to study variations in the frontwave propagation
with respect to the α value, that governs the slope of the linear nullcline as it is shown in
Figure 4.14.

Thus, the FHN parameters are fixed, except the variable α that varies according to the
range α ⊂ [2 : 0.2 : 9], as it is shown in Table 4.1. The Slits pattern work as a set of binary

Table 4.1 FHN model values used in the Slits experiment.

ε β α Du Dv

10 -0.2 [2:0.2:9] 0.1 1.5

obstacles (similarly to the path planning algorithm), that allows to study the penetration of
the frontwave in openings of different widths. Thus, from the pictures in the first column,
two main features can be observed in correlation with the growth of α (i.e. moving from
Figure 4.23 to 4.13):

1. The background pattern that can be seen in the first row of Figure 4.23 gradually disap-
pears as α grows, so that the frontwave clearly evolves towards a more homogeneous
final state. In particular, starting with the last row in Figure 4.24, and for higher values
of α , the wavefront evolution is fully homogeneous, vanishing any trace of pattern.

2. The robustness of the non-annihilation property is gradually increased with α , as for
lower values (e.g. α ⊂ [2.5 : 0.5 : 4]) some annihilations can be found upon a two
fronts collision. From Figure 4.26 and thereafter the annihilation becomes a strong
property.
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3. In the fourth column (where the slits width is 7 grid points) the correlation between α

and the ability of propagating through tunnels of different sizes (from now named as the
narrow passage problem, as it contains further implications regarding the robotic path-
planning problem) becomes clear. Revealing a mechanism for introducing information
in the form of a wavefront for slits of different sizes in a simulation grid.

Fig. 4.7 Slits experiment

Fig. 4.8 Slits experiment
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Fig. 4.9 Slits experiment

Fig. 4.10 Slits experiment

Fig. 4.11 Slits experiment
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Fig. 4.12 Slits experiment

Fig. 4.13 Slits experiment
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Fig. 4.14 Multiple nullclines in regard to the variation of α according with Table 4.1. The
green and red disks highlight the nullcline with α = 5 that is used in the expansion phase of
the path planning algorithm.

It must be noted that the slits width used in the experiment ([4 : 1 : 7]) is due to the
fact that lower widths are treated by the wavefront as background noise. In such case the
frontwave propagation is able to overcome the slits as it is shown in the set of Figures 4.15,
4.16, 4.17, 4.18, 4.19, 4.20, ??, where the same experiment is reproduced with slits of width
[1 : 1 : 3]. This reveals a new feature, again according to the growth of α: the minimum
slit-width that a frontwave cannot overcome in any of the studied simulations is 7 pixels, as
can be observed in the third column. Therefore, it can be assumed that 7 pixels width is the
maximum size from which the model switches from background noise to a binary wall: a
lower limit.

Up to this point 5 empirical features associated with the frontwave propagation in our
particular asymmetric bistable configuration have been found.

It should be noticed that the same experiments have been reproduced starting the wave-
front in the upper left corner with similar results.
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Fig. 4.15 Slits experiment

Fig. 4.16 Slits experiment

Fig. 4.17 Slits experiment
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Fig. 4.18 Slits experiment

Fig. 4.19 Slits experiment

Fig. 4.20 Slits experiment
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4.3.4 Frontwave propagation in the contraction phase.

For the contraction phase a slightly different experiment has to be hammer out. Taking into
account the path planning algorithm, usually the second phase (contraction) is triggered after
the expansion phase. For that reason a normal start for the contraction phase will be the
end condition of the expansion phase. Thus, aiming to study only the contraction phase, the
following experiment is proposed:

• First, lets use a flat square (i.e. without any obstacle) with size of 500x500 grid points
as the forcing background. Which in fact only transfers its the size to the simulation
grid.

• Second, the whole system (i.e. u and v) is set in the concentration level of the more
stable state, therefore in principle the system should remain static.

• Finally, as the forcing condition let’s set a smaller square with size of 250x250 grid
points in the less stable state. This must trigger a frontwave from the more stable, with
different results with regard to the model parameters. Those different results is what
we are going to investigate.

An exemplification of this process is shown in the series of pictures depicted in Fig-
ure 4.21.

(a) (b) (c)

(d) (e) (f)

Fig. 4.21 Exemplification of the Square experiment for the contraction phase. The green
square corresponds with the less stable state.



4.3 Stability Analysis 53

Fig. 4.22 Multiple nullclines in regard to the variation of α according with Table 4.2. The
green and red disks highlight the nullcline with α = 5 that is used in the contraction phase of
the path planning algorithm.

4.3.5 Experimental results

In this experiment, the FHN parameters are fixed again except the variable α that varies
according to the range α ⊂ [1.0 : 0.2 : 6], as it is shown in Table 4.1 (although all the
simulations have been performed, only the more representatives are shown. For example,
values bigger than 4.4 produce the same result). Also, in Figure 4.22 are depicted the
corresponding nullclines for the variation of α .

Table 4.2 FHN model values used in the Square experiment.

ε β α Du Dv

10 0.1 [1.0:0.2:6] 0.1 1.5

The results of the experiment are shown in Fig. ??, from where the following features
can be extracted:

• In Figure ?? the resulting pattern seems to be filling the space, but as the α gets bigger
the pattern seems to be more symmetric, in the sense of a peano-like curve. Indeed, an
extra set of simulations for a smaller integration grid confirm such behaviour. These
resuls are shown in Figure 4.27 where the initial condition was a small circle in the
center of the grid set in SS−, instead a square.
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• In Figures ?? the resulting pattern configures a partition of the plane that resembles a
Voronoi Diagram.

• In Figure ??, ?? and ?? the resulting patterns are circles that highlights the existance
of an original wavefront. This feature is interesting since it retains the information
about the existance of wavefronts during the expansion phase.

• In Figure ?? the original patch of the sytem set in SS− completely dissapears in favor
of SS+. This is indeed the configuration used in the shortest path algorithm.

Summing up, at least four interesting behaviours for the contraction phase have been iden-
tified. These behaviours show the evolution of frontwaves in a way that they seem to bear
some decision-logic rooted in their dynamics. This is, perhaps the proper way in which
Reaction-Diffusion systems can be used for general purpose computation.

Fig. 4.23 Slits experiment

Fig. 4.24 Slits experiment
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Fig. 4.25 Slits experiment

Fig. 4.26 Slits experiment

(a) (b) (c) (d) (e)

Fig. 4.27 Results for the Square experiment for the α values [3.2,3.4,3.5,3.6,3.8] using a
smaller matrix of size 300x300 grid points.

4.3.6 Stability analysis

The basic stability analysis follows the steps described in Section 3.3, thus the linearization
around the stable fixed points leads to the stability conditions, and later on the presence of
diffusion yield to instability of the fixed points.

The first part is the stability of the fixed points. Thus, figures 4.28 and 4.30 collect the
stability conditions for both phases expansion and contraction, respectively. In those figures
are depicted the conditions 3.19 and 3.20 for the three fixed points of the particular nullcline
configuration (i.e. for each α). Therefore the variation [2 : 0.2 : 9] for the expansion phase
and [1 : 0.2 : 6] for the contraction phase are depicted. It can be confirmed with regard to the
figures that each nullcline configuration posses two stable points and one unstable point.

The Turing instability conditions are designed for the stable fixed points, that in the
presence of diffusion must become unstable. Therefore, conditions 3.46 have been examined
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for both stable states for each nullcline configuration (i.e. for each α value). And again
for both phases, expansion and contraction. The first fact that can observed is that all
wavelengths result negative, which physically has only one possible interpretation. The
associated wavelength is infinite with regard to the size of system, or in other words there is
no characteristic wavelength associated with the system. And hence, both stable states are
actually stable in the presence of perturbations.

Although this result is actually in agreement with the fact that frontwaves evolve without
developing any actual pattern during the expansion and contraction phases of the path
planning algorithm, it is not with other values of α , specially the lower ones. Nevertheless,
Turing is not the only possible explanation for patter formation in bistable systems, though it
is in general the most common and well study bifurcation that leads to pattern formation.
There is evindence in the literature in both experimental [science] and theoretical [] side of
highly irregular pattern formation in bistable systems due to frontwave interacionts. Those
patterns are initated by a finite amplitude perturbation (like in the present case) rather than
through spontaneous symmetry breaking.

Furthermore, in view of this result the Slits experiment developed in 4.3.2, where it was
shown the ability of the frontwaves for penetrating openings with different sizes now it has
to be explained not in relation with an intrinsic wavelength, but likely with regard to the
frontwave curvature properties. This is an open question that should be studied in detail, but
at least so far it can be asserted that conventional Turing is not the mechanism responsible of
the frontwave properties used in this work.

Expansion phase

(a) (b)

Fig. 4.28 Stability conditions for the expansion phase.
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(a) (b)

(c) (d)

Fig. 4.29 Dispersion curves for the contraction phase corresponding with the Turing analysis
of both stable states: SS+ and SS-

Contraction phase

(a) (b)

Fig. 4.30 Stability conditions for the contraction phase.
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(a) (b)

(c) (d)

Fig. 4.31 Dispersion curves for the contraction phase corresponding with the Turing analysis
of both unstable states: SS+ and SS-

4.4 Comments on Stability of the RD system and Reduction of
Computational Requirements

Computational autowaves generated from the implementation of reaction-diffusion models
naturally lack a good performance. The reason is the demanding computational cost of the
Laplacian numerical integration, which relies on the addressing memory with an irregular
pattern. Nevertheless, the computation can be significantly speed up based on observation
of the system stability in the sense of Lyapunov. The wavefronts whose propagation lead
to the shift from one stable state to the other define the only regions in the environment
that are actually evolving. In the computational grid, this means that as the evolution of the
grid-cells reaches the new stable state, these nodes remain in this state unchanged. Hence,
this observation can be utilized to decrease the computational burden of the spatial integration
of the model by performing computations only for these grid cells. Notice that although
this approach can restrict propagation of the frontwaves in the boundaries of evolving areas,
the values of u and v tend to a stable level, and therefore, the restrictions only limit the



4.4 Comments on Stability of the RD system and Reduction of Computational Requirements59

velocity of the propagation. Moreover, the velocity of the underlying physical model is also
limited and constant, and therefore, using the knowledge of the propagation behavior one
can set suitable parameters without affecting the propagation. These parameters have been
experimentally set for the particular developed approach.

The proposed routine can be exemplified as follows: after several computational steps,
cells are examined if their value of the concentration level u has changed after the selected
period Tactive, i.e., testing the value uactivation = |u(k) - u(k+Tactive)| of the computational
steps k and k+Tactive. Then, the cells for which the difference uactivation is above a certain
limit (e.g., > 10−3) are denoted as active for the next batch of the computational steps.
Besides, a small neighborhood of each such an active cell is also marked as an active to
further support a propagation of the frontwaves. This technique is exemplified in Figure 4.32,
where the active nodes in the integration grid have been highlighted as darker regions. The
herein used discretization of the FHN model is a simple finite difference method on a
Cartesian grid: a simple forward in time centered in space (FTCS) scheme that facilitates the
manipulation of the integration loop for including the described optimization.

A basic comparison for the two environments potholes and jh is shown in Table 4.3.
Using a grid resolution of 800×800 points as a baseline for the potholes environment and
840×960 for the jh environment, four additional resolutions have been computed for the
propagation phase of the Voronoi problem. The results show that the proposed optimization
technique scale well with the increasing grid resolution, allowing an intensive study of the
possible autowave-based applications, particularly those implementations whose simulated
environments are represented by large-size matrices, as for example collaborative robot
exploration. Moreover, since this optimization is hardware-agnostic it can be ported to
specialized platforms. Furthermore, other techniques have also been considered including
the use of SSE instructions and sparse matrices. They proved to be inefficient, though.

Table 4.3 Computational time (in minutes) spend in the expansion phase of the Voronoi
computation for the environments potholes and jh. For both variants of the RD-based algo-
rithm: the original named naive and the optimized version according to Section 4.4 named
optimized. The size of the baseline is 800×800 grid points for the potholes, and 840×960
grid points for the jh. The computational times have collected using a workstation with the
Intel iCore7 3770 processor, Debian jessie (64-bit), 16 GB RAM, and C++ implementation
compiled by the GCC 4.9.2 with the O3 enabled.

Resolution factor
1 1.2 1.5 1.7 2

potholes
naive 8.49 15.3 27.4 44.4 69.3
optimized 1.3 2.1 2.5 3.3 5.2

jh
naive 12.5 20.7 44.5 65.8 103.4
optimized 1.4 2.2 4.1 5.2 7.2
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.32 Examples of frontwaves evolution for four different environments, diamonds,
labyrinth, potholes and spiral. Darker parts of the frontwaves are the current active nodes,
i.e. the only regions of the frontwave which are actually evolving, and hence the only nodes
that undergo spatial integration.



Chapter 5

RD based algorithms and its
applications to Mobile robotics

Abstract

This chapter illustrates all the developments achieved in this thesis. The
properties exhibited by frontwaves in their propagation in bistable asymmetric
systems, analyzed in previous chapters are herein applied to the development
of computational algorithms. These algorithms have been focused on mobile
robotics, and compared with state-of-the-art algorithms in their respective fields.
In particular, starting with a single robot exploration task, a cooperative multi-
robot exploration algorithm is introduced. Also a computation of the Voronoi
diagram by means of the RD core, is presented and also compared with a stan-
dard algorithm. The RD based computation not only proves its capability to
perform ordinary computations, but also provides some new qualities over the
standard approaches. In view of this, the RD based computation is not a distant
prospect anymore.
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5.1 Introduction

The mobile robot exploration task refers to an algorithm to create a map of an unknown
environment, i.e., a problem, where a mobile robot is requested to autonomously cover all
reachable regions by its sensory system. Beyond the basic feature of exploring an unknown
area, a desired quality of the exploration algorithms relies upon the generation of a minimal-
cost path by the exploring unit. Such a property can be specified by a distribution of the
possible observation points, resulting in a set of points that minimizes the path length through
the environment to cover all the area. Thus, measuring the performance of the exploration
task is based on the strategy for determining the next goal. Therefore, the characterization of
the exploration strategy is based on the optimizations used for selection of such goals.

The basic exploration approach was introduced by Yamauchi in a seminal paper [80],
along with the concept of frontier based exploration strategy. In Yamauchi’s approach, the
robot is navigated towards the closest location (the so-called frontier) in the limit between
the known/unknown area. This approach provides a feasible solution of the exploration task
and it forms a fundamental approach for more advanced exploration strategies [50], where
additional improvements turn around a way how to select candidates for the next robot goal
and how to evaluate the cost of navigation towards such goals. Thus, not only the distance
cost is used, but also additional aspects can be considered like localization issues [70] or
expected utility of the next goal [8], e.g., a combination of the distance cost with an expected
information gain [22].

In this work, a new robot exploration algorithm fully based on RD processes is introduced
and used for presenting a set of operations over the RD core. Although it is similar in many
aspects with a regular frontier-grid-based approach, it provides a new way how the goal
candidates can be generated and the next goal is determined. The approach is based on
our previous work on computational autowaves applied in the path planning problem [78].
Considering the path planning method in the exploration task provides a new way how to
deal with multi-criteria cost function and how a utility of the goals can be considered.

5.2 Exploration Strategy Based on Autowaves

Although the proposed exploration strategy exhibits similar behaviour as regular frontier-
based approaches, it is based on different underlying principles. That is why we split the
description into a formal characterization of the algorithm, features of the autowaves applied
in the exploration task, and proposed concept of utility consideration in the selection of the
next goal for a mobile robot. The proposed approach follows standard exploration procedure
in which the main loop can be defined by the following steps:

1. Integrate new sensor measurements into a map.
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2. Determine goal candidates.

3. Select the next goal.

4. Navigate the robot towards the goal.

For the first step, we consider a common approach based on the occupancy grid [16].
However, the next three steps are based on principles of autowaves. In particular, instead of
explicit searching for Yamauchi’s frontiers, we use propagation of the frontwave to determine
the possible goal candidates. The candidates correspond to frontiers; however, we can take
advantages of the RD model dynamics and consider the determination of the candidates
in a completely new way, see Section 5.2.1. The next goal is then selected using the same
principles of propagation the frontwave. Finally, we employ the autowaves-based path
planning [78] to determine the path to the goal along which the robot is then navigated. A
detailed description of these three steps is presented in Section 5.2.1. Moreover, the new
concept of dealing with utility of the goal candidates is proposed in Section 5.2.2.

Prior detailed description of the proposed utilization of the frontwave propagation
principles, it is necessary to consider the following assumptions to expose the particularities
of the exploring units and working environment in the proposed autowaves-based exploration
approach:

• The map being explored consists of a series of objects and boundaries, all treated as
binary information.

• Objects and boundaries are both represented by their edges.

• Each object or boundary within the sensor range is interpreted as an object–edge.
Therefore, the exploring unit shapes the environment without any awareness about the
correspondence between objects or boundaries.

• Since everything is treated as binary information, the discovered area is simply split
into reachable and unreachable locations.

5.2.1 Determination of the Next Goal

The goal candidates are determined as a border of the currently known space of the envi-
ronment. Here, the current map of the environment is used as a medium for exhibiting the
RD model dynamics. The principle of the process is visualized in Fig. 5.1. A frontwave
(triggered from an excitable nullcline configuration) starts at the robot position and evolves
as an ordinary fluid, covering all the available space (freespace in the integration grid) while
adopting the shape of the space, and therefore, providing the boundary of the reachable area
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after reaching a static situation. Then, superimposing the obstacles (unreachable positions)
results in the reachable border to the robot, as depicted in the red profile shown in Fig. 5.11.

Fig. 5.1 Calculation of the frontier using autowaves. Four left pictures represent a wavefront
evolution. In particular, the light gray circular area corresponds to an omnidirectional sensor
data (laser scanner), whilst the black rectangle in the top is an obstacle. The gray wavefront
evolves from the robot position, covering all the discovered area till it reaches a static
situation. The rightmost pictures represent the complete profile of the wavefront (top), and
the final border reachable to the robot depicted in red (bottom).

The determined border corresponds to the frontier; however, the main difference is that
we consider only reachable and unreachable parts of the space and all the logic of getting the
contour is provided by the underlying dynamics of the RD system.

Once the border is determined, the next goal can be selected. Even though any path plan-
ning algorithm can be eventually used, we rather consider autowaves-based approach [78].
The border does not distinguish the unknown cells from the obstacles. However, the front-
wave propagation within the determined area given by the border takes advantage of the
superimposing obstacles because autowaves preserved a distance (according to the wave-
length of the frontwave) from the obstacles, see [78] for a detailed discussion. An example
of determining the next robot goal together with the determination of the path using the
propagation and contraction phases is depicted in Fig. 5.2. Another example of the goal
determination is shown in Fig. 5.6.

It is worth to mention another interesting feature of the autowaves-based path planning
that is an ability to deal with noisy data, e.g., due to an imperfect sensor measurements.
The autowaves dynamics is developed over an extension of points (characterized by the

1Notice, the rectangular obstacle is drawn only for the visualization purpose as only its bottom edge is
detected by the sensor system.
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Fig. 5.2 An example of determination of the next goal and the particular path towards the
goal in a circular shaped environment. The already explored area is in white while the gray
denotes not yet explored areas; the black color is the shape of the environment and the
obstacles are superimposed only for a visualization purpose as they are not known during the
exploration.

associated wavelength) rather than isolated pixels. This feature provides the autowaves not
just an ability to overcome the isolated points, but also to correctly interpret noisy data within
the exploration context, i.e., to consider several isolated (but nearby points) as a part of a
larger structure. In Fig. 5.3 is shown an example of this property.

5.2.2 Utility Function

The aforementioned algorithm provides a basic approach for the exploration task and can
be considered as a similar to the greedy frontier-based approach. The performance of the
frontier-based exploration can be improved using the so-called utility function, which aims
to consider an expected benefit of the frontiers to select the most suitable frontier in order
to fulfill the mission objective, e.g., to collect the map of the whole environment as quickly
as possible. Such approaches usually combine the distance cost with expectations about
new areas, e.g., based on entropy [8]. Contrary to these approaches, we proposed a different
concept based on features of the frontwave propagation.

The dynamics of the underlying RD model allows to add an extra term representing
additional information that is considered in the model evolution. This is numerically rep-
resented as a matrix term (point dependent) that can selectively introduce delays in the
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Fig. 5.3 An example how autowaves deal with noisy data. The rightmost pictures show a
detailed exposition of the frontwave evolution in the vicinity of the obstacle. The final state
is shown in the leftmost picture. The gray light area represents the robot sensors data as
reachable locations, the brown area are obstacles, which are not part of the integration grid,
but are depicted for the sake of clarity. The surrounding polygon appears as a series of blue
isolated points corresponding to the mapped obstacle sides (as unreachable positions).
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wavefront propagation, and therefore, it can prioritize some regions over others. This means
that gradient-like information, rather than a binary map, can be used to represent the working
environmenthis proposed concept has been verified in an exploration of a simple circular
environment. In this deployment, the robot is equipped with an omnidirectional laser scanner
with the sensing radius 5 m.

Fig. 5.4 Visualization of the exploration behaviour for two different settings of the RD
based computational model using extra background for modifying velocity of the frontwave
propagation. The blue curve represented the traveled path of the robot to explore the whole
environment.

Two basic implementations of the utility function are visualized in Fig. 5.4, which leads
to two different behaviors. In the left case, the function is designed to prefer unexplored
areas, this is achieved by decreasing the extra background along regions of the frontier that
do not represent obstacles, therefore these regions becomes candidates for the next goal. As
a consequence, the robot prefers to explore the open-space first. Conversely, in the right
sub-figure, the background is especially decreased along detected obstacles, which increases
the frontwave velocity along these regions. Therefore, once the robot discovers an obstacle,
the next goal is naturally selected close to the already known obstacles, which provides a
wall-following behaviour.

5.2.3 Performance of the RD based Exploration and Standard Approaches

The proposed principles of the selection of the next robot goal and planning a path to the goal
by means of propagation of the frontwave in the known reachable environment have been
integrated into the exploration framework [18]. The integration provides an initial overview
of the performance of RD based exploration strategy in comparison to standard approaches.
The considered performance indicator is the path length of the robot to explore the whole
environment.
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The proposed RD based exploration strategy does not explicitly consider information
gain, and therefore, it can be considered as a pure distance cost strategy. Therefore, we
select the greedy exploration [80] and the TSP based approach [34] with the TSP distance
cost for the presented comparison. However, a direct comparison of the approaches is not
an easy task. It is because the proposed approach is based on a different computational
model, where some properties directly accessible in regular frontier-based approaches are
not straightforwardly and easily tunable. For example, a filtration of small frontier groups,
which can significantly improve performance [28], and especially the planning horizon [18],
i.e., a period of new goal determination. Thus, a direct comparison of the results would not
be fair, and therefore, we include two variants of the greedy and TSP exploration strategies.

In the first variant, denoted by a subscript 1 (i.e., greedy1 and TSP1), the next goal is
determined after the robot reaches its current goal (like in the RD based exploration), while
in the second variant (greedy2 and TSP1), the next goal is determined after performing 7
navigational primitives, as it is suggested in [18]. In all these approaches, selected represen-
tative of the frontiers are considered as goal candidates using K-means algorithm, which
decreases the computational burden of the TSP solution and also improves the exploration
performance. A further description of this selection can be found in [34].

The RD based and greedy strategies are deterministic while the TSP based strategy is a
stochastic method (due to the used approximate solution of the TSP). Despite of that, we
consider a single trial for each problem in this feasibility study and thus the presented results
have only an indicative importance.

Fig. 5.5 Environments considered in the feasibility evaluation of the RD based exploration.

Two environments denoted as autolab and potholes are considered for the evaluation.
The autolab environment represents an office like environment with dimensions 35 × 30
meters, and the potholes environment is a large open space (40× 40 meters) with several
obstacles, see Fig. 5.5



5.2 Exploration Strategy Based on Autowaves 69

Fig. 5.6 Propagation of the frontwave towards goal candidates, selection of the next goal
(a-d), an evolution of the RD model for the determination of the path to the selected goal
(e-g) and the final found path is shown in green in the bottom rightmost picture; (h) the
current travelled path is in blue.

An example of the frontwave propagation during the selection of the next robot goal
and the consecutive contraction phase of the used RD based path planning [78] is shown in
Fig. 5.6.

Indicative results are presented in Table 5.1, where the columns represent the length of
the total traveled path (in meters) for the particular sensor range ρ . Notice, how a faster
replanning period improves the exploration performance. On the other hand, for replanning
after reaching the current goal, the RD based exploration provides competitive results to
other approaches. Selected exploration paths for particular exploration strategies are depicted
in Fig. 5.7.

Table 5.1 Length of the Exploration Path

Algorithm
autolab potholes

ρ=3 m ρ=5 m ρ=7 m ρ=3 m ρ=5 m ρ=7 m

RD based 256.1 196.4 141.1 570.7 375.7 271.1

Greedy1 262.5 232.5 182.9 545.8 398.8 320.4
TSP1 263.0 222.8 174.9 543.9 342.5 283.0

Greedy2 223.6 183.7 118.2 552.6 349.0 276.8
TSP2 219.1 159.4 107.8 466.5 345.6 243.1
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(a) autolab, RD, ρ=7 m (b) autolab, Greedy1, ρ=7 m

(c) potholes, RD, ρ=5 m (d) potholes, TSP1, ρ=5 m

Fig. 5.7 Final exploration paths, the edges of the detected obstacles are in black while the
unexplored areas (“inside the obstacles”) are in gray.

5.2.4 An Extension of the Proposed RD based Computational Model for Multi-
Robot Exploration

The proposed computational model can be easily extended for exploration by a team of
mobile robots. The extension can be considered as a semi-centralized approach, where the
robots are considered independently while they shared a common map of the environment
being explored. The proposed demonstration of the multi-robot exploration works as follows:

• Prior the determination of the next robot goal, each robot makes a local copy of the
common map.

• The position of the other robots is introduced to the local map as a solid objects; thus,
robot considers the remaining robots as simple obstacles.
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• A single step of the exploration algorithm is performed and new information is gathered
from the environment.

• The local maps are merged into the common map (e.g., using the notion of occupancy
grid and Bayes’ rule like in [69]) and the process of determination of the robot goals
is repeated.

The termination condition of the exploration is the identical as in the single exploration
algorithm, i.e., the exploration is terminated if all goal candidates (frontiers) have been
covered. Examples of selected steps of the multi-robot exploration are visualized in Fig. 5.8.

5.2.5 Discussion

The presented results indicate the proposed RD computational model based on the underlying
dynamics of the highly non-linear system can be employed in the mobile robot exploration
problem and it also seems the RD based exploration provides competitive exploration paths
to the standard approaches.

Regarding the computational requirements of the proposed computational model based
on the evolution of the RD model, it should be noted that it can take an advantage of the
implicit parallel propagation; hence, it can be computed in parallel, and therefore, pruning all
the possible solutions to the most adequate ones in parallel as well. This makes us optimistic
about future implementation using massive parallel computation and a practical deployment
of the method in real exploration problems.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.8 Examples of selected steps of the multi-robot exploration: (a) frontwave propagation
during determination of the possible goal candidates (frontiers) superimposed to the map of
the environment;; (b) determined goal candidates (part of the map is enlarged for the sake of
clarity); (c) final exploration paths for all robots; (d), (e), (f) same step of the exploration
algorithm from the perspective of each robot (notice that all robots share the same map,
corresponding to the whole discovered area in this particular step)
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5.3 Voronoi diagrams

5.3.1 Conventional Computation of Voronoi diagrams

A computation of Voronoi Diagram (VD) is a basic problem studied in Computational
geometry. One of the simplest cases of Voronoi diagram is a division of a plane with n points
(called generating points) into a set of convex cells, where each cell contains exactly one
generating point. For all points inside a cell, the distance to its generating point is smaller
than to any other [? ]. An example of this ordinary Voronoi diagram is shown in Figure 5.9a
and Figure 5.9b

Many applications of the Voronoi diagram can be found. We are interested in an
identification of the topology of the environment to improve the navigation of a mobile robot
that is not solely based on metric information, but rather on identification of important places,
e.g., crossings and rooms. In our case, the environment is represented by a discrete cell
lattice called a grid map. The map can be created from the occupancy grid in which new
sensor measurements of the robot’s surroundings taken by sonar or laser based ranger finder
are integrated using Bayes rule [44]. A cell in the occupancy grid has associated probability
the cell is occupied and thus a grid map is created from the occupancy grid by thresholding
the value of the probability, e.g., all cells with the probability of being occupied higher than
0.5 are considered as obstacles.

Regarding the navigation, a generalized Voronoi graph (GVG) has been introduced
in [12] to identify topological places and also to determine paths between the places. A
formal definition of the GVG can be found in [? ] but basically the GVG is one-dimensional
set of points that are equidistant to the n closest obstacles in n dimensions. For a walled
environment [9], for example as visualized in Figure 5.9c and Figure 5.9d, the GVG results
in a set of points equidistant from two or more obstacles.

It is known that Voronoi diagrams are sensitive to noise, which can be seen in Figure 5.10a
and Figure 5.10b. That is why Beeson et al. introduced an additional pruning techniques to
remove poor junction places [9].

In this paper, we consider RD-based computation of the Voronoi diagram to determine a
skeleton of the grid map that represents the topology of the robot environment. The method
is described in the next section.

5.3.2 RD-based Computation of Voronoi diagrams

The pioneering work at developing algorithms for computing Planar Voronoi Diagrams
(PVD) using RD models (to the best of our knowledge) deal with the Cellular Automaton
(CA) modelisations of RD systems [2, 7] in which some of the well known RD behaviors
where successfully reproduced. In particular, a type of excitable waves that travel and
interact with others annihilating after a collision, constituted the early pillars for developing
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(a) (b)

(c) (d)

Fig. 5.9 Examples of the ordinary Voronoi diagram for k generating points in a plane and
generalized Voronoi graph in walled environment: (a) random points, k=25; (b) four points
forming a rectangle, k=4; (c) four walls forming a rectangular environment; (d) rectangular
environment with fives polygonal obstacles with pruned parts of the Voronoi diagram outside
the freespace of the polygonal environment.

(a) (b)

Fig. 5.10 Generalized Voronoi graph in walled environment: (a) four walls forming a
rectangular environment; (b) rectangular environment with fives polygonal obstacles with
pruned parts of the Voronoi diagram outside the freespace of the polygonal environment.

RD-based computation. These waves in a cellular automaton lattice spreads with a constant
velocity, whereby two wavefronts starting from two different sources meet at equidistant
points at the same time. The result of the mutual wavefront annihilation at those points is a
series of bisectors that separate the wavefront sources. Therefore, it provides a generation of
the Voronoi diagram of the sources.
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On the experimental side, the so-called RD computers are implemented in a spatially
extended chemical media, where diffusive or excitation waves propagate and interact. In
this way, the results of the computations are represented by spatial distributions of reagent
concentrations. Some interesting yet computationally limited experimental realizations can
be found in [3? ]. There are based on the palladium processor, and on a supersaturated
solution of sodium acetate, commonly called hot ice. Systematic studies have highlighted the
drawbacks of such implementations, like the impossibility of inverting a VD using an RD
chemical processor. This characteristic has been shared by all subsequent implementations
of experimental RD processors. For instance, a VD irreversibility is found in [5].

Although the RD computation is the common substrate for the most of these prototypes
of processors, they are better contextualized as unconventional computing approaches. These
approaches do not only cover RD systems but they also include wider scope, like the true
slime mould Physarum polycephalum [? ]. A single-celled organism visible to the naked eye
that in the plasmodium stage grows up to the square metre scale in size. A comprehensive
description of such unconventional methods, including a gas discharge, can be found in [14].

5.3.3 FHN-based Voronoi diagrams

The technique for generating VD by means of the FHN model uses the switch-of-phase
mechanism described in Section 4.1.3, in addition to the way of introducing information in
the integration grid as described in Section ??. Firstly, an expansion phase that uses the fluid-
like behavior (a comprehensive description of this behaviour can be found in [76]) triggers
a wavefront that evolves till it covers the whole domain. This mechanism is exemplified
in the first row of pictures depicted in Figure 5.11. Then, the second stage based on a
contraction phase recovers the wavefront over itself, as it is shown in the second row of
pictures in Figure 5.11. The resulting concentration profile coincides with a planar Voronoi
diagram. Therefore, all the logic required for a computation of the diagram is transferred
to the spatiotemporal dynamics of the FHN model. The set of required values for the used
FHN model, are presented in Table 5.2. Notice that the termination condition for both stages
is trivially implemented by measuring the total amount of u (or v) summing over all grid
points. A constant value within two different iterations means the system has reached a static
situation; hence, the next phase can be triggered.

5.3.4 Experimental results

Comparison method

One of the expected advantages of the proposed RD-based computational model is that it
is a less sensitivity to spatially noisy data. This is particularly interesting in the application
of the Voronoi diagram to compute a skeleton of the grid map of the robot’s operational
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Table 5.2 Set of values for the FHN model to reproduce the desired behavior in the both
phases: expansion and contraction.

FHN Parameters
α β ε Du Dv

Phase expansion 4 -0.5 40 0.45 2
contraction 3.8 0.1 10 0.1 1.5

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.11 Steps of the RD-based Voronoi algorithm applied to the potholes environment: (a,
b, c, and d) expansion phase, a wavefront using the fluid-like behaviour evolves over the
integration domain; (e, f, g and h) contraction phases, the resulting concentration profile of
the previous stage evolves till generating a VD of the environment.

environment that can be used to create a topological representation of the environment. A
map of the environment created from the sensor measurements can be noisy, e.g., because of
a poor localization, which can lead to a miss alignment of the range measurements and noisy
grid map. Regarding the topology, the Voronoi diagram is a graph (skeleton) describing the
topology of the environment, where the nodes of the graph represent topologically important
places in the environment. The nodes with the degree higher than 3 are junction places that
represent crossings in the environment, while the nodes with the degree 1 are the leaves of
the skeleton and represent particular areas in the environment like rooms. A skeleton of a
walled environment computed as the Voronoi diagram in the grid map of the environment
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called jh is shown in Figure 5.12 together with the highlighted junction places and leaves
that represent rooms.2

(a) (b)

Fig. 5.12 Example of the topology representation of the walled environment jh computed
as the GVG of the grid map. The computed Voronoi diagram is transformed into a graph,
where nodes with the degree (number of incident edges) higher than 2 represent junction
places and nodes with the degree 1 are the leaves representing particular rooms.

If we consider a static environment, its topology is fixed and thus the number of junction
places and leaves should be the same even for an imperfect reconstruction of the map
using noisy sensor measurements. Based on this observation, we propose the following
methodology to study sensitivity of computational model to the noisy sensor data and
compare the proposed RD-based Voronoi diagram computation with the thinning algorithm
for finding a skeleton of the grid map [9].

The evaluation of the sensitivity is based on adding a noise to the map, where the noise
is added as small discs with the radius r at all boundary cells (i.e., obstacle cells that are
incident with at least one freespace cells). The radius r is drawn from a normal distribution
with the zero mean and variance σr ≤ 10. For each map we considered 10 values of σr and
because the determination of the map skeleton (using thinning algorithm [9] as well as the
proposed RD-based computational model) is deterministic we create 20 noisy maps with
added noise for each original map and particular value of σr. Then, the studied parameters of
the skeleton according to the level of noise σr are considered as average values and standard
deviations computed from 20 trials of each algorithm runs on these 20 noisy maps. Having

2Notice, some rooms are represented as two leaves and a junction place, which depends on the pruning of the
Voronoi diagram (skeleton). The particular figures have been obtained by the thinning algorithm [9].
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(a) (b) (c)

Fig. 5.13 Environment jh: (a) without added noise; and with added noise for (b) σr = 2; and
(c) σr = 5

four environments, called autolab, jh, cube, and potholes, the number of performed trials
for two algorithms in this evaluation is 1600. An example of the maps with added noise is
shown in Figure 5.13. Moreover, we also performed additional evaluation for scaled maps
for the jh, cube, and potholes environments enlarged by four different scale, which gives
4800 additional trials which gives 6400 performed trials in total.

The influence of the added noise is studied as the change of the number of detected
junctions places and the number of leaves according to the reference numbers computed
from the noise-less map. The change in the number of junctions places is measured as the
percentage deviation from the reference value denoted as JPDM. Let J0 be the number of
junctions places detected in the noise-less map and Jσ be the number of detected junction
places in the map with added noise according to σ . Then, the JPDM is computed as:

JPDM =
Jσ − J0

J0
·100%, (5.1)

where Jσ is the average number of the detected junction places over all trials for the particular
value σ and map. The number of leaves is computed as the average number of the detected
leaves in the topology graph of the Voronoi diagram that is accompanied by the standard
deviation.

The value of the JPDM around zero indicates that the particular method is not sensitive
to noise. The negative value indicates that the number of junction places in the noisy map is
lower than the reference value J0. Notice, this does not necessary mean a worse result. A
lower number of junction places is usually related to a lower number of leaves (e.g., detected
rooms) and with increasing level of noise, an entrance to a particular room can be more and
more narrow. Hence, a robot cannot safely navigate to such location, and therefore, the room
is unreachable, the corresponding leave is not part of the skeleton and also the number of
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junction places is lower. On the other hand, if the method of the determination of the Voronoi
diagram is sensitive to noise, many small branches can be part of the skeleton and thus also
the number of junction places is increased.

Determine topology graph for the RD-based Voronoi Diagram

In Figure 5.11, it can be seen that the skeleton of the map determined by the proposed
RD-based computational model is not a set of single pixel width paths, and therefore, there
can be various ways how to determine the studied indicators.

(a) (b)

Fig. 5.14 Example of found skeleton (Voronoi diagram) by the RD-based computational
model for the pothole environment: (a) light gray structure; (b) and its one pixel width
skeleton shown in red

For simplicity and also with regard to the used thinning algorithm [9], we considered
the RD-based skeleton as a simple polygon (or a set of simple polygons) and determine
single pixel width skeleton in this polygon using the thinning algorithm. This allows us to
consider the identical procedure to compute the indicators for determination of the skeleton
based solely on the thinning algorithm and on the RD-based computational model. Such a
skeleton of the determined RD-based Voronoi diagram is shown in Figure 5.14. An example
of superimposed Voronoi diagrams determined in the map with and without the added noise
in the environment autolab is shown in Figure 5.15.

It can be noticed that the thinning algorithm prunes branches of the skeleton that would
go to the corners of the particular rooms. On the other hand, this is not exactly the case of
the RD-based computation of the skeleton, which splits the skeleton according to the space
around the propagated frontwave. Therefore, instead of direct comparison of the RD-based
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(a) Thinning algorithm, σr = 4 (b) RD-based algorithm, σr = 4

(c) Thinning algorithm, σr = 7 (d) RD-based algorithm, σr = 7

Fig. 5.15 Example of found skeleton (Voronoi diagram) by the RD-based computational
model for the pothole environment: (a) light gray structure; (b) and its one pixel width
skeleton shown in red; (c) light gray structure; (d) and its one pixel width skeleton shown in
red.

skeleton with the thinning algorithm accompanied by advanced pruning of branches, we
study how the determined skeletons differ with increasing σr for each particular method and
thus we study the algorithms’ sensitivity to the level of the noise.

Results

The proposed statistical indicators of the noise sensitivity, i.e., JPDM (5.1) and the average
number of the detected leaves are depicted in Figure 5.16 and Figure 5.17, respectively.
The results show that the proposed RD-based computation of the Voronoi diagram is a less
sensitive to the added noise as the number of junction places is usually lower than the number
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of junction places for the map without the noise. The lowest value of the JPDM is -100% for
the cube environment, where none of the junction place has been detected in the environment,
see Figure 5.18 and Figure 5.19. On the other hand, the thinning algorithm is more sensitive
to the noise as the number junction places is quickly increasing and for the autolab, jh,
and potholes environments the maximal number of the junction places is for the noise level
σ = 4, see example in Figure 5.21.
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Fig. 5.16 the noise sensitivity indicator jpdm (5.1) in the noisy maps created for the particular
value of the noise level σ

The number of leaves significantly changes with the noise level for the thinning algorithm,
while for the proposed RD-based computation of the skeleton changes only slightly and
typically decreases with a higher level of the noise σ as it can be seen in Figure 5.17. The
only exception is the environment potholes, where the initial skeleton for σ = 0 does not
contain any leaves, see Figure 5.22, while with increasing σ some parts become unreachable
for the robot (frontwave propagation), which is visualized in Figure 5.23.
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Fig. 5.17 Average numbers of the leaves detected in the noisy maps created for the particular
value of the noise level σ

(a) (b) (c) (d)

Fig. 5.18 Skeletons and the determined topological maps with highlighted junction places
and leaves in the map cube with the noise level σ = 7: (a) RD-based Voronoi diagram;
(b) and its corresponding skeleton (shown in green) that is superimposed on the skeleton
determined in the noise-less map (in red); (c) Pruned GVG representing skeleton of the map
determined by the thinning algorithm [9]; (d) and the corresponding skeleton superimposed
on the skeleton determined in the noise-less map.
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(a) (b) (c) (d)

Fig. 5.19 Determined skeletons and topological maps with highlighted junction places and
leaves in the map cube with the noise level σ = 8: (a) RD-based Voronoi diagram; (b) and its
corresponding skeleton (shown in green) that is superimposed on the skeleton determined in
the noise-less map (in red); (c) Pruned GVG representing skeleton of the map determined by
the thinning algorithm [9]; (d) and the corresponding skeleton superimposed on the skeleton
determined in the noise-less map.
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Fig. 5.20 Average numbers of the leaves detected in the noisy maps created for the particular
value of the noise level σ
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(a) (b)

(c) (d)

Fig. 5.21 Determined skeletons and topological maps with highlighted junction places and
leaves in the map jh with the noise level σ = 4: (a) RD-based Voronoi diagram; (b) and
its corresponding skeleton superimposed on the skeleton determined in the noise-less map
(in red); (c) Pruned GVG representing skeleton of the map determined by the thinning
algorithm [9]; (d) and the corresponding skeleton superimposed on the skeleton determined
in the noise-less map.

Influence of the map resolution

A resolution of the grid map may influence both computational techniques to determine the
Voronoi diagram, and therefore, its influence has been studied for the potholes, cube, and jh
environments for which all the maps have been scaled 1.2, 1.5, 1.7, and 2 times. Particular
results of the JPDM indicator are shown in Figure 5.25, Figure 5.26, Figure 5.27. Examples
of the determined skeletons for both algorithms using different map resolutions are shown
in Figure ??, Figure ??, Figure ??. Although a higher resolution increases computational
burden of the both techniques, it can be noticed the proposed RD-based computation is
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(a) (b)

(c) (d)

Fig. 5.22 Determined skeletons and topological maps with highlighted junction places and
leaves in the map potholes with the noise level σ = 0: (a) RD-based Voronoi diagram; (b)
and its corresponding skeleton superimposed on the skeleton determined in the noise-less
map (in red); (c) Pruned GVG representing skeleton of the map determined by the thinning
algorithm [9]; (d) and the corresponding skeleton superimposed on the skeleton determined
in the noise-less map.

significantly less sensitive to the change of the resolution and the number of junction places
and leaves remains almost the same according to the change in the thinning algorithm.
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(a) (b)

(c) (d)

Fig. 5.23 Determined skeletons and topological maps with highlighted junction places and
leaves in the map potholes with the noise level σ = 5 for the scaled map with 1600×1600
grid points: (a) RD-based Voronoi diagram; (b) and its corresponding skeleton superimposed
on the skeleton determined in the noise-less map (in red); (c) Pruned GVG representing
skeleton of the map determined by the thinning algorithm [9]; (d) and the corresponding
skeleton superimposed on the skeleton determined in the noise-less map.
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(a) (b)

(c) (d)

Fig. 5.24 Determined skeletons and topological maps with highlighted junction places and
leaves in the map cube with the noise level σ = 5 for the scaled map with 478×698 grid
points: (a) RD-based Voronoi diagram; (b) and its corresponding skeleton superimposed on
the skeleton determined in the noise-less map (in red); (c) Pruned GVG representing skeleton
of the map determined by the thinning algorithm [9]; (d) and the corresponding skeleton
superimposed on the skeleton determined in the noise-less map.
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Fig. 5.25 The noise sensitivity indicator JPDM (5.1) in the scaled noisy maps of the potholes
environment
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Fig. 5.26 The noise sensitivity indicator JPDM (5.1) in the scaled noisy maps of the cube
environment
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Fig. 5.27 The noise sensitivity indicator JPDM (5.1) in the scaled noisy maps of the cube
environment



Chapter 6

Conclusions and future work

The outcomes of the research done in this thesis can be divided into numerical and experi-
mental results.

6.0.5 Numerical results

The numerical results are related to the study of the behaviour of RD systems. Particularly,
the special properties exhibited by frontwaves in bistable asymmetric nullcline configurations
have been study. All these types of waves with strong non-linear character are commonly
known as autowaves, as they do not share the properties of standard waves, like the conser-
vation of energy. Although herein the FHN model is used, without loss of generality any
other RD model can be used to reproduce similar results, as the dynamics of RD systems are
general.

There is no standard method for solving the RD equations in order to study analytically
the behaviour of the frontwaves. Despite this, the associated nullclines determined by the
particular values of the model variables, along with the standard stability analysis provide
some clues about the model dynamics at the neighborhood of a fixed point. A set of
simulation results illustrate the behaviour of such frontwaves when the FHN undergoes an
extensive modification of its variables, though only the ones that have the highest impact
in the frontwaves propagation, i.e. α and β , are shown in this work. Based on that, a basic
algorithm that relies on the switch-of-phase mechanism in asymmetric bistable nullcline
configurations has been proposed as the core algorithm for developing RD based computation.
The combination of this procedure with the new properties of the frontwaves propagation
found in the aforementioned simulations, lead to exhibit some behaviours of the FHN
dynamics that somehow are able to mimic geometric operations, in a two-dimensional
computational grid. And hence, logical operations can be encapsulated in its spatio-temporal
dynamics.
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Moreover, due to the computational burden associated with the spatial integration of
the RD models, a new technique to speed up the computations has been developed. Taking
advantage of the system stability in the sense of Lyapunov, only the grid nodes in which the
frontwave that separates both stable states is actually evolving are considered for the spatial
integration. This hardware-agnostic optimization dramatically decreases the computation
times, specially for big matrix.
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6.0.6 Experimental results

The main contribution of this thesis in the experimental area is the realization of a RD based
software architecture that allows to develop algorithms capable of compete with their standard
counterparts. Based on the techniques used for developing the path planning algorithm,
i.e. the switch-of-phase mechanism in a bistable nullcline configuration, in combination
with I/O operations performed by means of the so-called "external forcing", constitutes a
novel strategy for the use of RD systems in general purpose computation. The results of the
research have materialized into the following software components:

Robot exploration task

The mobile robot exploration refers to an algorithm where a mobile robot is requested to
autonomously cover all reachable regions by its sensory system, creating a map of the
unknown environment. A RD-based approach has been successfully implemented for solving
the exploration task. The following properties of the exploration task define the achieved
results in this field:

• Single robot exploration task: the proposed RD based exploration strategy does not
explicitly consider information gain, and therefore, it can be considered as a pure
distance cost strategy. Two standard approaches have been select for comparison
purposes, the greedy exploration and the TSP based approach with the TSP distance
cost for the comparison presented. Additionally, two variants of both algorithms have
been used for the comparison.

• Utility function: the performance of the frontier-based exploration can be improved
using the so-called utility function. It aims to consider an expected benefit of the
frontiers to select the most suitable frontier in order to fulfill the mission objective.
Two basic implementations of the utility function have been presented, leading to
two different behaviors with respect to how robots cover the available space. An
open-space preference vs a wall-following preference.

• Multi robot exploration task: the proposed computational model has been extended
for performing the exploration mission by a team of mobile robots. The extension
can be considered as a semi-centralized approach, where the robots are considered
independently while they shared a common map of the environment being explored.

Although the presented results are preliminary, they indicate feasibility of the proposed
RD based exploration and provide a premise for at least a competitive performance with the
current state-of-the-art methods.
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Voronoi diagrams

Having a set of seeds, the Voronoi diagram can be imagined as partitioning of a plane into
a set of cells, where each cell is originated from a particular seed, and the cell represents
the region for which the seed of the cell is the closest seed. In other words, the boundary of
the regions is formed from points that are equidistant to the two closest seeds. In robotics,
the generalized Voronoi graphs (GVG) are used to create a navigational roadmap and a
topological representation of the environment. Herein, the equidistant property of the
boundary of the Voronoi regions is utilized to find a path that maximizes the clearance from
the obstacles. Moreover, the junction places, i.e., locations where the boundary of the cells
are connected, represent topologically important places of the environment, like corridor
intersections.

The exact problem addressed in this thesis is the determination of the junction places in
a grid map of the environment by generation of the Voronoi diagram in the grid map. The
proposed RD-based computational model is employed in the generation of such Voronoi
diagrams from which the junction places are extracted. The approach has been compared
with an state-of-the-art algorithm. The following properties of the Voronoi diagram define
the achieved results in this field:

• Final stable states: the exploitation of the newly found behavior that leads to Voronoi-
like concentration patterns as the final stable states of the model spatiotemporal
evolution. This feature not only overcomes previous limitation os RD-based computa-
tion, but also allows to recover the system to its original state by means of the Voronoi
diagram inversion.

• Noise sensitivity: from the comparison point of view, is remarkable the lack of
sensitiveness to the added noise that presents the RD algorithm. It makes unnecessary
any pruning technique for removing poor junction places as it is required in the case of
the considered thinning algorithm for the comparison. This advantage comes from the
stability, in the Lyapunov sense, of the FHN system. The dynamics of the system drive
it to the stable state, so that the spatiotemporal evolution is resistant to the inclusion of
external information, which in the present case is interpreted as noise.

Regarding these observations, the proposed RD-based computational model seems to
be a suitable technique to process real sensor data and provides more robust solutions than
purely geometrical-based approaches.
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6.1 Future works

There are two main lines of further work, on the one hand on the numerical side:

• Stability analysis: it would be desirable to dig deeper in the stability analysis of the
various nullclines configurations used in this work. Also, once the Turing wavelength
is ruled out as the possible underlying reason for the studied frontwave penetration
properties (in regard to the Slit experiment), as the system is not in the Turing regime,
such penetration properties should be further investigated with regard to the well
known frontwave curvature properties.

• Frontwave properties: all the developed algorithms rely in some frontwave properties
that have been studied in advance by means of the Slit and Square experiments,
respectively. Therefore, further studies of the possible frontwave behaviours could
disclose new properties that later on would be applied in the design of new RD based
algorithms.

• Non-bistable systems: since in the computational grid is possible to set up a specific
nullcline configuration for each cell, it becomes possible to mix different model config-
urations in the same integration grid. This feature enables the combination of excitable
systems (that traditionally have been the cornerstone of RD-based computation) with
unstable systems (interpreted as biological clocks) and with bistable systems. This
could led to the development of more complex algorithms.

• CNN templates: in a previous work the path planning algorithm has already been
implemented through a CNN class 1 template. The easy of implementation of CNN
templates by means of commonly available hardware for specialized computation like
FPGA’s, in combination with the fact that no additional memory is needed per cell in
the current implementation beyond the model parameters (all the info is transferred
to the model spatiotemporal dynamics), makes the CNN a suitable candidate for
re-implementing all the properties used in this work. This could lead to real-time
implementations for the developed algorithms.

• Optimizations: a hardware-agnostic optimization has already been developed to speed
up the computations. The optimization is also suitable for accelerating computations
in any kind of RD model, because it was designed in base of a common RD dynamical
property, as it is the associated stability in the sense of Lyapunov. Although this
optimization has been combined with an OpenMP parallelization, it would be desirable
to explore more specific parallelization techniques (like using GPU’s or Xeon Phi’s)
or even low level optimizations (as the use of vectorial instructions).

and, on the other hand, in the experimental results:
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• Exploration task: to further develop the exploration algorithm in order to perform
quantitative comparisons with other state-of-the-art methods. This also includes a
further elaboration of the proposed concept of utility function, and to address its
computational requirements in order to evaluate the performance in real tasks. In
general, an in deep comparison with state of the art algorithms will shed more light on
whether to continue with the development of these algorithms would be interesting for
the robotics community or not.

• 3D models: so far only two dimensional approaches have been developed. Never-
theless, the spatial integration of the model can be trivially extended to cover 3D
environments. Reproducing Voronoi diagrams, or the simple path planning algorithm
in a 3D environment is an interesting problem to solve that can be useful, for instance
in path planning strategies for UAVs navigation.

• RD computational core: putting together all the developed algorithms, i.e. path plan-
ning, exploration (single and collaborative) and Voronoi diagrams, set the foundations
of a RD-based computational framework suitable for addressing geometrical problems,
up to now particularly tailored to face the challenges associated with navigational prob-
lems in robotics. This premise provides a ground for a further development towards a
complete computational model for robotic tasks solely based on RD principles.
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Appendix A

Stability analysisis overview

A.1 Solving a linear system

Let’s suppose a linear system of differential equations in the matricial form:

˙⃗x = A⃗x (A.1)

the solutions we are looking for are in the form: x⃗(t) = eλ tV⃗ where V⃗ are the eigenvectors
of the matrix X⃗ . Replacing x⃗(t) in A.1 we get

(
A− λ⃗ I

)
= 0 and the general condition for a

non trivial solution is det |A−λ I|= 0. Thus, we have the system∣∣∣∣∣ a−λ b
c d −λ

∣∣∣∣∣= 0 (A.2)

which gives a quadratic polinomia

λ
2 −λ (a+d)+(ad −bc) = 0 (A.3)

whose roots

λ1,2 =
(a+d)±

√
(a+d)2−4(ad−bc)

2 = τ±
√

τ2−4∆

2 (A.4)

provides the well known solution

−→x (t) = c1eλ1t−→V1 + c2eλ2t−→V2 (A.5)

And finally, regarding the problem of initial condition:

x(t = 0) = x0 = c1v1 + c2v2 (A.6)
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A.2 Linearization around a fixed point

We are going to linearize the system at fixed points in such case To do this, a straightforward
technique will be applied. Assuming that (x0,y0) represent a fixed point, a small perturbation
around this point can be represented by: (x0 +u,y0 + v)<< ∥u,v∥. Our interest is to study
the system in the area described by this perturbation. For this we only need to linearize
the system in that region and study its behaviour. Since we are interested in the evolution
of the variables (u,v) which represent the surroundings of the fixed point, the following
transformation will be used:

u = x− x0

v = y− y0
and

u̇ = ẋ
v̇ = ẏ.

(A.7)

Introducing it in 3.17 gives

u̇ = f (x0 +u,y0 + v)
v̇ = g(x0 +u,y0 + v)

. (A.8)

Now considering the Taylor expansion at first order

f (x− x0) =
∞

∑
k=0

f k (x0)(x− x0)

k!
≈ f (x0)+ f

′
(x0)(x− x0)+o

(
x2)

an introducing the previous transformation x = (u+ x0) whilst taking into account f (x0) = 0,
the Taylor expansion can be rewritten as:

f (x− x0)≈ f
′
(x0)u. (A.9)

Trivially in a two-variables system:

f (x− x0,y− y0)≈ ∂u f(x0,y0)u+∂v f(x0,y0)v+0
(
x2,y2,xy

)
. (A.10)

Finally, let’s rename ∂i f(x0,y0) as f ∗i , leading 3.17 to adopt the following expresion:

u̇ = f ∗u u+ f ∗v v
v̇ = g∗uu+g∗vv

(A.11)

that in matricial form turns out to be:

(
u̇
v̇

)
=

(
f ∗u f ∗v
g∗u g∗v

)(
u
v

)
, (A.12)
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or in a more compact form:

wt = Aw. (A.13)

For solving the system A.13 the prototypical solution is wαveλ t . Where v is the asso-
ciated eigenvector and λ represents the growing rate of the perturbation. Our interest is
concerned with values of λ < 0 (exponential decay), otherwise the perturbation grows away
from the fixed point. In view of this, a solution different of nontrivial must accomplish the
following condition:

0 = |A−λ I|= λ
2 −λ trA+ |A| , (A.14)

that provides the solutions:

λ1,2 =
1
2

(
trA±

√
(trA)2 −4 |A|

)
= 1

2

(
( fu +gv)±

√
( fu +gv)

2 −4( fugv − fvgu)

) (A.15)
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A.3 Linearization with diffusion

Adding the diffusion term brings to the the equation:

ẋ = f (x,y)+Du△x
ẏ = g(x,y)+Dv△y

(A.16)

and using the same Taylor expansion than in previous section:(
u̇
v̇

)
=

(
f ∗u f ∗v
g∗u g∗v

)(
u
v

)
+

(
Du 0
0 Dv

)(
u
v

)
(A.17)

or in the compact form:

wt = (A+D△)w. (A.18)

Now the system posses spatial dependence, hence the possible solutions must reflect this
fact: w ∝ eλ t+i⃗k⃗r (in a spatially extended system in two dimensions −→r = xî+ y ĵ). Again, for
obtaining non trivial solutions:

0 =
∣∣λ I−A+Dk2∣∣

=

∣∣∣∣∣
(

λ 0
0 λ

)
−

(
f ∗u f ∗v
g∗u g∗v

)
+

(
Du 0
0 Dv

)
k2

∣∣∣∣∣
=

∣∣∣∣∣ λ − f ∗u +Duk2 f ∗v
gu λ −g∗v +Dvk2

∣∣∣∣∣
= λ

2 +λ
(
(Du +Dv)k2 − ( f ∗u +g∗v)

)
+h
(
k2) ,

where

h
(
k2)= DuDvk4 − k2 (Dv f ∗u +Dug∗v)+ |A| . (A.19)

Therefore, the eigenvalues can be written as function of h(k2):

λ1,2 =
1
2

(
−
(
k2 · trD− (trA)

)
±
√
(k2 · trD− (trA))2 −4h(k2)

)
. (A.20)



Reaction-Diffusion Process Based Computational Model for Mobile
Robot Exploration Task
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Abstract— This paper presents an exploration algorithm
based on properties of reaction-diffusion models. The approach
is based on our previous work on this topic, in which a novel
path planning algorithm was developed providing competitive
paths to standard approaches like smoothness of the found
solution. In this paper, it is shown how the developed principles
can be applied in exploration of unknown environment with
a mobile robot. The presented approach represents a novel
exploration strategy where the main decision logic is based on
principles arising from the underlying dynamics of the reaction-
diffusion systems.

I. INTRODUCTION

A robotic exploration can be defined as a process of
building a map of unknown working environment, where
a mobile robot is requested to autonomously cover all
reachable regions by its sensory system. Many approaches
have been proposed since the first frontier-based approach
introduced by Yamauchi [1]. A frontier represents a part of
the known reachable environment that is incident with the not
yet explored regions. Using an occupancy grid approach [2]
to integrate new sensor measurements into a probabilistic
map, frontiers can be found as freespace cells incident with
an unknown cell, e.g., found using 8-neighborhoods, in a
navigation grid map generated from the occupancy grid
by thresholding the probability values into three classes:
freespace, obstacle, and unknown.

The frontiers are suitable candidates to be a next robot
goal towards which the robot can be navigated because they
represent a reasonable expectation that unknown parts of the
environment will be covered from them. Hence, the problem
of exploration can be defined as an iterative procedure in
which the next robot goal is determined (by selecting from all
frontiers according to the considered optimization criterion)
and then the robot is navigated to that goal while collecting
new sensoric information.

Beside the greedy approach [1] that simply selects the
closest frontier to the current robot’s position as the next
goal, more advanced exploration strategies have been pro-
posed [3], [4], [5]. In [6], authors consider an expected
information gain of goal candidates generated within a sensor
range vicinity of the frontiers. Then, such candidates are
selected in the next-best-view manner according to an ad-
hoc defined utility function in which an expected area of

1 The authors are with the Department of Computer
Sciences and Automatic Control, UNED, 28040 Madrid,
Spain. Alejandro.vazquez@ieee.org, {nduro,
raquel}@dia.uned.es

2J. Faigl is with the dept. of Computer Science and En-
gineering, Czech Technical University in Prague, Czech Republic
faiglj@fel.cvut.cz

the unknown environment being covered by the candidate is
taken into account. On the other hand, authors of [7] consider
an explicit on-line segmentation of the map into a set of
clusters that have to be explored to avoid repeated visits of
the same area, e.g., to explore particular rooms.

In this paper, we address the exploration task using a new
algorithm based on dynamics and underlying principles of
Reaction-Diffusion (RD) models. Although it is similar in
many aspects with a regular frontier-grid-based approach,
it provides a new way to generate the goal candidates.
Moreover, we define the main decision logic as well as nec-
essary supporting algorithms using principles arising from
the spatial evolution of state variables described by the
nonlinear RD model. Based on this effort, we can introduce
computational building blocks that provide a groundwork
for the definition of a computational model based on RD
processes to address various robotic navigation problems.
Such a computational model may provide a mechanism by
which a hardware solution of the computation can be realized
in a practical deployment within real robots.

II. REACTION-DIFFUSION PROPERTIES OF THE
COMPUTATIONAL MODEL

The considered computational model is based on an
RD process, where a diffusive process responsible for the
spreading of the substances out in the space and a reactive
process, in which the substances are transformed into each
other [8], [9], [10]. In particular, herein the FitzHugh-
Nagumo (FHN) [11] model is considered, which adopts the
basic form:

u̇ = ε
(
u− u3 − v + φ

)
+Du4u

v̇ = (u− αv + β) +Dv4u
, (1)

where α, β, ε, and φ are parameters of the model.
The so-called bistable configuration is used, where null-

clines (for u̇ = 0 and v̇ = 0 in the absence of diffusion)
represent the shape depicted in Fig. 1, where intersections of
both curves define the fixed points of the system, classified
in stable (in green, towards which the concentration levels
of the state variables (u, v) evolve naturally) and unstable
(in red). Asymmetric configurations that constitute a simple
method for modulating the relative stability of both stable
states are depicted in Fig. 1c and Fig. 1b, where SS+ and
SS− represent more and less stable states, respectively.

An interesting feature is that a system in a default config-
uration SS− has a natural tendency to evolve towards SS+

(the most stable state) if a small perturbation is introduced
to the system. In addition, the frontwave driving this shift



(a) General symmetric configuration for
a bistable system. Both stable states are
equally stable.

(b) propagation

(c) contraction

Fig. 1. Nullcline configuration, the green disks represent stable states (SS)
and the red disk represents unstable state.

exhibits different properties than standard waves, an attribute
of the strong nonlinear character of the underlying model.
Another remarkable feature is the possibility of regulating
its behavior in such a way that can reproduced frontwaves
that annihilates after a collision, or conversely frontwaves
that do not interfere after a collision, and therefore, remain
static at the collision point.

This behaviour is one of the fundamental principles used
for the path planning algorithm introduced in [10] and in the
proposed exploration algorithm described in the following
section.

III. EXPLORATION STRATEGY BASED ON AUTOWAVES

The proposed exploration strategy is motivated by the
idea to exhibit a similar behaviour as regular frontier-based
approaches; however, our intention is to use different under-
lying principles based on features of the autowaves, which
allows us to propose a new concept of utility function.
Thus, the proposed approach follows standard exploration
procedure with the main loop consisting of the steps:

1) Integrate new sensor measurements into a map;
2) Determine goal candidates;
3) Select the next goal;
4) Navigate the robot towards the goal.

In the first step, a common approach based on the occupancy
grid is considered. The second step is solved in a new
way by using the frontwave propagation. Also the next
steps are based on principles of autowaves. In particular,
the next goal is selected using the same principles of the
frontwave propagation. Finally, the step four is solved using
the autowaves-based path planning [10] to determine the path
to the goal along which the robot is then navigated.

Prior a description of the proposed candidates’ generation
and goal selection methods, particularities of the exploring
units and working environment in the proposed autowaves-
based approach are exposed:

• The environment being explored is considered as a set
of objects and boundaries represented by their edges,
all treated as binary information.

• The exploring unit shapes the environment within its
sensor range without any awareness about the corre-
spondence between objects or boundaries.

• Since all is treated as binary information, the operational
space is split into reachable and unreachable locations.

The goal candidates are determined as a border of the
currently known space of the environment; hence the current
map is used as a medium for exhibiting the RD model dy-
namics. A frontwave (triggered from a bistable configuration
with annihilation) starts at the robot position and evolves as
an ordinary fluid, covering all the available space, which
provides the boundary of the reachable area for the stable
state of the system. Then, superimposing obstacles detected
by the sensor system (e.g., laser range scanner) results in the
reachable border to the robot, as depicted in the red profile
shown in Fig. 2, where a complete obstacle is drawn just for
an illustration because only edges of obstacles are sensed by
the scanner.

Fig. 2. A wavefront evolution in determination of the goal candidates. The
light gray circular area corresponds to an omnidirectional sensor data (laser
range scanner), whilst the dark gray rectangle in the top of the scene is an
obstacle, which is completely drawn to improve clarity of the figure as only
its edges can be sensed by the laser scanner. The green wavefront evolves
from the robot position, covering all the discovered area till it reaches a
static situation. The rightmost figure represents the final border reachable
by the robot (depicted in red).

Once the border is determined, the next goal is selected
using the autowaves-based path planning approach [10]. The
border does not distinguish the unknown cells from the
obstacles. An advantage of this planning is an ability to deal
with noisy data (e.g., due to imperfect sensor measurements),
see the referenced work for details.

A concept of utility functions for evaluating goal candi-
dates aims to consider an expected benefit of the candidates
to select the most suitable goal in order to improve perfor-
mance of the exploration strategy according to the mission
objective, e.g., to collect the map of the whole environment
as quickly as possible. Such approaches usually combine the
distance cost with expectations of exploring new areas [6],
[3]. Contrary to these approaches, herein a different concept
based on features of the frontwave propagation is proposed.

Fig. 3. Visualization of the utility introduction in the frontwave propagation
for selecting the next goal. The gray circle represents a reachable area. The
absence of obstacles allows the emerging frontwave to freely evolve from
the robot position (slightly displaced downward relatively to the center of
the circle) till the borders of the gray area, which in this particular case
represents the boundary between explored and unexplored regions.

The dynamics of the underlying RD model allows to
add an extra term representing additional information that
is considered in the model evolution. Such an extra term is
numerically represented as a matrix (an extra background
with values from the range bck ∈ 〈−2, 0〉) that selectively



introduces delays in the wavefront propagation, and there-
fore, it can prioritize (bck=0) some regions over others,
bck ∈ 〈−2, 0). Thus, a local modifications of nullclines for
the particular cells of interest allow to adapt a configuration
that inhibits the wavefront propagation.

Considering a general background that introduces a gen-
eral delay in the propagation, its reduction around object
(obstacle) cells turns out into an increase of the wave-
front propagation velocity around those places, leading to a
basic boundary-follower exploring unit, which significantly
reduces the tendency to perform multiple-visit to the same
regions. A demonstration of such modified evolution of the
frontwave is shown in Fig. 3, where the growth of the
frontwave in the vicinity of the wall is clearly faster than
in any other direction.

IV. RESULTS

The proposed autowaves-based exploration strategy has
been employed in an exploration of a simple circular envi-
ronment to verify the proposed concept. An example of the
robot exploration path from which the whole environment
is explored (covered) using an omnidirectional laser scanner
with the sensing radius ρ=5 m is depicted in Fig. 4.

(a) open-space preference (b) wall-following preference

Fig. 4. An example of exploration strategies based on different settings of
the computational model.

Based on these results, two additional environments are
considered to verify feasibility of the proposed approach.
In addition, the greedy exploration [1] approach (using
all frontiers cells as goal candidates) and the TSP based
approach [5] are used to provide a preliminary overview of
the proposed strategy behaviour. In these strategies, the next
goal is determined after performing 7 navigational primitives
as it is recommended in [12].

(a) Autowaves,
ρ=7 m, L=110 m

(b) Greedy,
ρ=7 m, L=93 m

(c) Autowaves,
ρ=5 m, L=332 m

(d) TSP, ρ=5 m,
L=315 m

Fig. 5. An example of found solutions using different exploration
approaches. The length of the final exploration path is denoted as L.

Selected exploration paths are shown in Fig. 5. Here, it
should be mentioned that in these exploration scenarios,
the proposed autowaves-based exploration approach has not

been specifically tuned; hence, there is a possibility for an
improvement of its performance. Regarding these prelimi-
nary results, it seems that the proposed exploration strategy
provides competitive solutions to the standard approaches.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a novel exploration algorithm based on
underlying principles of a reaction-diffusion model is pre-
sented. The proposed approach can be considered as a
direct extension of our previous work, which introduced
an autowaves-based path-planning method, and was found
to exhibit interesting properties in comparison to standard
approaches. Although the presented results can be considered
as preliminary, they indicate feasibility of the proposed
autowaves-based exploration and provide a premise for at
least a competitive performance with the current state-of-the-
art exploration methods. Moreover, the algorithm provides
basic building blocks of a computational model for a mobile
robot exploration solely based on an RD process, which is a
subject of our future work.
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This paper introduces a computational model in which the main deci-
sion logic is based on principles arising from the dynamics of reaction-
diffusion systems. The approach is an extension of our previous work
where similar principles were used to develop a path planning algo-
rithm. In this work, we select a mobile robot exploration task as a plat-
form for exhibiting the core properties of the proposed computational
framework. The functionalities represent particular building blocks that
provide decision-logic capability of the exploration strategy. Beside a
single mobile robot exploration, the proposed principles can also be
generalized for multi-robot exploration, which is supported by the pre-
sented results.

Keywords: Reaction-diffusion equations, autowaves, exploration, mobile robots

1 INTRODUCTION

When surfing the rich tapestry of patterns arising when playing with non-
linear systems, a persistent idea comes to mind: there is a huge amount of
decision-logic taking place in the background as the pattern develops [3].
By means of a simple Reaction-Diffusion (RD) system, a wide range of
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behaviors can be reproduced: from simple excitations waves [19] to a more
complex stable pattern formation through the so called Turing instability [23].

Beyond this, different instabilities or combinations of them [5, 24] have
given rise to very intriguing static and dynamic structures. Moreover, the
nuances found in the resulting concentration profiles reveal a mechanism
that can be summarized in a single word: self-organization. A local transfer
of information originates self-organize complex structures in a larger scale.
Regarding this, it would be desirable to find out how to integrate this complex
behavior into a conventional algorithm in order to take advantage of such
implicit decision-logic as well as the nonlinear properties that RD systems
exhibit.

Computationally, these concentration profiles are identified as simple geo-
metric information, not surprisingly early works in this topic have already
emphasized this point of view [11, 12, 14, 17, 19, 20, 26], subsequently
extended by the motivation of introducing information into the system dur-
ing the execution. This approach allows to codify such external information
within the spatio-temporal dynamics, and constitutes the cornerstone of the
present work. Here, it is used to solve the specific problems arising from a
practical deployment of mobile robots.

In short, the approach relies in a computer algorithm based on a RD-core
whose different configurations encapsulate the necessary logic to perform
suitable decisions during the execution. The basis of the computation consists
of a set of independent blocks each one holding a different model configura-
tion designed to exhibit a particular decision-logic capability. Upon this, an
algorithm can be built putting together several of these blocks in sequence,
being the output information of each stage the input of the next one. The com-
munication with the rest of the algorithm takes place through the exchange of
2D geometric information as a set of I/O operations. It can be understood in
terms of “black box”, where some inputs deliver some outputs and where the
main benefit is the ability to deal with complexity in a natural way, constitut-
ing an RD-based computational approach to decision-solving algorithms.

There is a vast amount of properties that can be extracted from the general
dynamics of an RD system, though those described below provides a satis-
factory framework for designing algorithms focused on robotic applications:

� Natural parallelism of the model evolution.
� Natural resistance to isolated damaged cells, interpreted as noise resis-

tance.
� The possibility of choosing annihilation or non-annihilation of front-

waves upon a collision. Therefore the information can be mixed or not
at any time during the execution.
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� Absence of pattern formation during the frontwave evolution that is
spread out like an ordinary fluid, which leads to a background recog-
nition inside the algorithm, after covering all available space.

� Change of relative stability in a bistable configuration leading to a
switch of the direction of the fronts propagation.

Each one of these properties encapsulates a different decision-logic capa-
bility. For instance, the non-annihilation provides information about front-
wave collisions, where the particular location of that collision remains a part
of the system evolution. Although the inclusion of additional properties can
extend the scope of applicability, we restrict to the aforementioned ones,
which have been successfully applied to the robotic exploration.

The mobile robot exploration refers to an algorithm to create a map of an
unknown environment, i.e., a problem, where a mobile robot is requested to
autonomously cover all reachable regions by its sensory system. Although
such an algorithm can be considered as tailored to accomplish a very specific
mission, it provides a basis for decision-making principles throughout this
work. Thus, it represents a special case of more general methods. Therefore
herein is also used as a platform for introducing several capabilities of the
proposed computational framework.

Beyond the basic feature of exploring an unknown area, a desired quality
of the exploration algorithms relies upon the generation of a minimal-cost
path by the exploring unit. This property can be specified by a distribution of
the possible observation points, resulting in a set of points that minimizes the
path length through the environment. In other words, this set of observation
points guarantees an optimized route that a robot must follow to uncover
with its sensory system the unknown environment, leading to an efficient
exploration.

Therefore, measuring the performance of the exploration task is based on
the strategy for determining the next goal. And consequently, the characteri-
zation of the exploration strategy is based on the optimizations used for the
selection of such goals.

The basic exploration approach was introduced by Yamauchi in a semi-
nal paper [28], along with the concept of frontier based exploration strategy.
In Yamauchi’s approach, the robot is navigated towards the closest location
(the so-called frontier) in the limit between the known/unknown area. This
approach provides a feasible solution of the exploration task and it forms a
fundamental approach for more advanced exploration strategies [18], where
additional improvements are in two streams. First stream focuses on deter-
mination of candidates from which next robot goal is selected. The second
stream deals with the evaluation of navigation cost towards such goals. Thus,
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not only the distance cost is used, but also additional aspects can be consid-
ered like localization issues [22] or expected utility of the next goal [1], e.g.,
a combination of the distance cost with an expected information gain [8].

In this work, a new robot exploration algorithm fully based on RD pro-
cesses is introduced and used for presenting a set of operations over the RD
core. Although it is similar in many aspects to a regular frontier-grid-based
approach, it provides a new way to generate goal candidates and to select
the next goal. The approach is based on our previous work on computational
autowaves applied to the path planning problem [25]. By considering the path
planning method in the exploration task a new way to deal with multi-criteria
cost function is provided.

The paper is organized as follows. A brief introduction to the underly-
ing principles of the considered RD model and computational autowaves
involved in the proposed approach are presented in Section 2 and Section 3.
The proposed autowaves based exploration strategy is introduced in Sec-
tion 4, evaluation of such strategy is presented in Section 5 together with
a comparison with two standard exploration strategies. Besides, early results
of the proposed computational principle applied to multi-robot exploration
are presented. Concluding remarks are presented in Section 6.

2 BASIC AUTOWAVES BACKGROUND

The fundamental principles of the RD dynamics considered with the basic
methods for triggering frontwaves in particular configurations are already
published in our previous work [25, 26] together with introduction of the
nullcline configurations that characterize the model dynamics. Nonetheless,
we shall provide an overview of such RD-based computation principles to
increase the overall readability of this paper. Therefore, this section is a
roundup of pillars for RD based computation model, followed by a more
detailed description of specific properties used in the exploration task.

2.1 Reaction-Diffusion Computational Core Properties
A reaction-diffusion system stands for an evolution of one or more sub-
stances, spatially distributed, by means of two processes. The diffusive pro-
cess is responsible for spreading of the substances out in the space while in
the reactive process the substances are transformed into each other. The con-
sidered mathematical model for describing the RD system is the FitzHugh-
Nagumo (FHN) [7, 15] model, which adopts the basic form:

u̇ = ε
(
u − u3 − v + φ

) + Du�u
v̇ = (u − αv + β) + Dv�v

, (1)

where α, β, ε, and φ are parameters of the model.
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(a) General symmetric configuration for a bistable
system. Both stable states are equally stable.

(b) propagation

(c) contraction

FIGURE 1
Nullcline configurations, the green discs represent stable steady states (SS) and the red disc
represents the unstable state.

The reactive process has a local character and it is responsible for the
dynamics of the model, which can be characterized by the associated null-
clines (the geometric shape for which u̇ = 0 and v̇ = 0 in the absence of dif-
fusion). Thus, in the so-called bistable configuration, the nullclines represent
the shape depicted in Figure 1, where intersections of both curves define the
fixed points of the system. These fixed points can be classified in stable states
(in green, states towards which the concentration levels of the state variables
(u, v) evolve naturally) and an unstable state (in red).

Asymmetric configurations that constitute a simple method for modulat-
ing the relative stability of both stable states (the larger area under the curve
defines a bigger stability) are depicted in Figure 1(c) and Figure 1(b). There-
fore, it is possible to differentiate between SS+ and SS− for each asymmetric
configuration. Which represent a particular case for a more stable state and
less stable state, respectively.

As the natural tendency of the system is evolving towards the concen-
tration level of SS+. A default configuration in SS− causes the system to
move to SS+ when a small perturbation is introduced. The frontwaves driv-
ing this shift are well known for exhibiting different properties from standard
waves, which is an attribute of the strong nonlinear character of the under-
lying model. Its behavior can be regulated by means of the nullcline con-
figuration, it is possible to reproduce either frontwaves that annihilates after
a collision, or conversely frontwaves that do not interfere after a collision,
remaining static at the collision point. This fact contains a fundamental result
from the information processing point of view: as long as collisions turns out
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in an active part of the model evolution, tracking of such collisions becomes
unnecessary.

2.2 The Computational Model
The computation of the RD model itself takes place within a Cartesian grid in
which the FHN model is discretized following the forward in time centered
in space scheme (FTCS), i.e., the model evolution is performed within the
integration grid. The discretization is bounded by Dirichlet conditions aimed
to stop any wavefront propagation in the limits of the integration grid. There-
fore, all computations rely on the dynamics of the spatially coupled cells
endowed with the FHN model, where the short cell connectivity provided by
the Laplacian term (coming from the associated diffusion process and which
is responsible for the frontwaves propagation) is also the key allowing a sim-
ple hardware implementation.

The output of the model calculations consists of the concentration profiles
for both variables: u and v. The employed process for the proposed decision
logic is based on the dynamics of u; however, v provides a similar behavior.

Finally, the model allows us to consider additional constraints to the
dynamics, which stands for an extra (point dependent) term aimed to rep-
resent the environmental information. Thus, the final expression to be dis-
cretized becomes a sum of the FHN model and the map grid containing infor-
mation about the environment.

Note about the Computational Model – The proposed approach aims to
use the evolution of the underlying RD model as much as possible for avoid-
ing explicit computation, e.g., using computer graphics methods. The main
interest of transferring as many operations as possible to the RD framework
is because of possibility to use a hardware implementation for the underlying
numerical models. This has been already discussed in [16] and some exam-
ples of practical realizations can be found in [2, 10, 27] providing a real time
environment for the used operations. The particular techniques related to the
exploration task are presented in Section 4.

3 PROPERTIES OF THE RD BASED COMPUTATIONAL
MODEL

The underlying RD model provides the basic computational model exhibit-
ing evolution of state variables u and v, which are used to build a decision-
making logic for a particular problem. On top of this, we can exploit the
model by considering its specific parameters and its behaviour after introduc-
ing additional information into the computational grid model. The following
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sections are dedicated to the particular properties that are used in the RD
based computational framework for mobile robot exploration.

3.1 RD based Path Planning with Binary Forcing
The path planning problem is the problem of finding a shortest collision free
path starting from some initial location and ending at the desired location,
while a robot navigated along the path will avoid a collision with obstacles.
A path planning algorithm based on the discussed RD computational princi-
ples has been introduced in [25] and the key point of the method is a consid-
eration of the obstacles in a form of grid map used for forcing the RD model.
The concept of the RD based planning is visualized in Figure 2.

The planning algorithm consists of two phases: propagation and contrac-
tion. The dynamics of the propagation phase is ruled by the nullcline con-
figuration depicted in Figure 1(b), whilst the contraction phase is governed
by the configuration shown in Figure 1(c). The algorithm works as follows.
First, the system is initially set in SS− and a small perturbation is introduced
at the robot location, which triggers a frontwave to move the system towards
SS+, see the upper-left picture in Figure 2. When the frontwave reaches the
goal area (i.e., changing the concentration values to SS+), which can be

FIGURE 2
An example of the system evolution in the path planning problem; upper: propagation phase;
bottom: contraction phase. The free space is in white and obstacles are in brown; values of the u
state variable are in gray; the final solution is shown in red.
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easily detected to constitute the termination condition for the propagation,
the contraction phase is activated. During the contraction phase, the start and
goal locations are simultaneously kept at the concentration levels of SS− in
opposition to the system tendency of evolving towards SS+.

The result of combining the changing of phase together with forcing the
start and goal locations in the contraction phase is shown in the bottom row
in Figure 2. The contraction of the domain

(
SS−)

contract over itself in benefit
of the more stable domain

(
SS+)

contract leads to a final single path linking
the start and goal locations, which corresponds to the requested shortest path.

3.2 Gradient-like Forcing: Modifying the Frontwave Velocity
In the previous section, a binary grid in the form of the grid map of the
environment has been introduced as external information into the integration
grid through the local modification of the nullclines of the particular point
of interest (the obstacles). It means that at each point of the grid represent-
ing an obstacle the nullcline configuration is replaced by other that inhibits
the wavefront propagation. This inhibition is suitable for introducing binary
information into the integration grid and thus any propagating will stop at
reaching any of these locations. However, it is also possible to introduce
gradient-like information by means of an extra matrix (point dependent) F
that is added to the model. Considering this term, the final form of the com-
putational model is:

u̇ = ε
(
u − u3 − v + φ

) + F + Du�u

v̇ = (u − αv + β) + Dv�u
. (2)

Equation (2) is a common procedure for introducing different types of
spatial or even temporal forcing in the model evolution. Based on this for-
mulation, we can establish an effective range from zero to a specific value to
gradually generate an increasing delay in the frontwave advance till the com-
plete inhibition of the propagation. Therefore, environmental information can
be introduced by means of the above described matrix, which slows down the
frontwave propagation according to the predefined strength. An example of
such a behavior is depicted in Figure 3, where a planar frontwave evolves
according to a different values of F along the vertical axis: a maximum delay
in the upper part of the front regarding the lower part where the value F = 0
means no forcing at all. Therefore, we can generate a profile that exhibits a
gradient of velocities in the wavefront propagation along the vertical axis.
This result is compatible with other RD properties used in the framework,
like the annihilation upon a collision, and hence opens up a wide range of
possibilities.
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FIGURE 3
A profile of velocities in a wavefront propagation in 2D (300×700 grid size) under the influence
of the F matrix, where the abscissa represents four states of the same evolving front at differ-
ent times. The forcing matrix F is introduced along the vertical axis, with values in the range
〈0, −0.035〉.

4 EXPLORATION STRATEGY BASED ON AUTOWAVES

Although the proposed exploration strategy exhibits similar behaviour as reg-
ular frontier-based approaches, it is based on different underlying principles.
That is why we split the description into a formal characterization of the
algorithm, features of the autowaves applied in the exploration task, and pro-
posed concept of utility consideration in the selection of the next goal for a
mobile robot. The proposed approach follows standard exploration procedure
in which the main loop can be defined by the following steps:

1. Integrate new sensor measurements into a map;

2. Determine goal candidates;

3. Select the next goal;

4. Navigate the robot towards the goal.

For the first step, we consider a common approach based on the occupancy
grid [4]. However, the next three steps are based on principles of autowaves.
In particular, instead of explicit Yamauchi’s frontiers search, we use propa-
gation of the frontwave to determine the possible goal candidates. The can-
didates correspond to frontiers; however, we can take advantages of the RD
model dynamics and consider the determination of the candidates in a com-
pletely new way, see Section 4.1. The next goal is then selected by using the
same principles used in the propagation of the frontwave. Finally, we employ
the autowaves-based path planning [25] to determine the path to the goal
along which the robot is then navigated. A detailed description of these three
steps is presented in Section 4.1. Moreover, the new concept of dealing with
utility of the goal candidates is proposed in Section 4.2.
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The following assumptions need to be considered to expose the partic-
ularities of the exploring units and working environment in the proposed
autowaves-based exploration approach:

� The map being explored consists of a series of objects and boundaries,
all treated as binary information.

� Objects and boundaries are both represented by their edges.
� Each object or boundary within the sensor range is interpreted as

an object–edge. Therefore, the exploring unit shapes the environment
without any awareness about the correspondence between objects or
boundaries.

� Since everything is treated as binary information, the discovered area is
simply split into reachable and unreachable locations.

4.1 Determination of the Next Goal
The goal candidates are determined as a border of the currently known space
of the environment. Here, the current map of the environment is used as a
medium for exhibiting the RD model dynamics. The principle of the pro-
cess is visualized in Figure 4. A frontwave (triggered from an excitable null-
cline configuration) starts at the robot position and evolves as an ordinary

FIGURE 4
Calculation of the frontier using autowaves. Four left pictures represent a wavefront evolution.
In particular, the light gray circular area corresponds to an omnidirectional sensor data (laser
scanner), whilst the black rectangle in the top is an obstacle. The gray wavefront evolves from
the robot position, covering all the discovered area till it reaches a static situation. The rightmost
pictures represent the complete profile of the wavefront (top), and the final border reachable to
the robot depicted in red (bottom).
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fluid, covering all the available space (freespace in the integration grid) while
adopting the shape of the space, and therefore, providing the boundary of
the reachable area after reaching a static situation. Then, superimposing the
obstacles (unreachable positions) results in the reachable border to the robot,
as depicted in the red profile shown in Figure 4∗ .

The determined border corresponds to the frontier; however, the main dif-
ference is that we consider only reachable and unreachable parts of the space
and all the logic of getting the contour is provided by the underlying dynam-
ics of the RD system.

Once the border is determined, the next goal can be selected. Even though
any path planning algorithm can be eventually used, we rather consider
autowaves based approach [25]. The border does not distinguish the unknown
cells from the obstacles. However, the frontwave propagation within the
determined area given by the border takes advantage of the superimposing
obstacles because autowaves preserved a distance (according to the wave-
length of the frontwave) from the obstacles, see [25] for a more detailed dis-
cussion. An example of determining the next robot goal together with the
determination of the path using the propagation and contraction phases is
depicted in Figure 5. Another example of the goal determination is shown in
Figure 9.

4.2 Utility Function
The aforementioned algorithm provides a basic approach for the exploration
task and can be considered similar to the greedy frontier-based approach. The
performance of the frontier-based exploration can be improved using the so-
called utility function. It aims to consider an expected benefit of the frontiers
to select the most suitable frontier in order to fulfill the mission objective,
e.g., to collect the map of the whole environment as quickly as possible. Such
approaches usually combine the distance cost with expectations about new
areas, e.g., based on entropy [1]. Contrary to these approaches, we propose a
different concept based on features of the frontwave propagation.

The dynamics of the underlying RD model allows to add an extra term
representing additional information that is considered in the model evolu-
tion. This is numerically represented as a matrix (point dependent) term that
can selectively introduce delays in the wavefront propagation, and therefore,
it can prioritize some regions over others. This means that gradient-like infor-
mation, rather than a binary map, can be used to represent the working envi-
ronment. Consequently, the shortest-path technique for determination of the
next goal can be switched into a more interesting lower-cost-path technique.

∗ Notice, the rectangular obstacle is drawn only for the visualization purpose as only its bottom edge is
detected by the sensor system.
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FIGURE 5
An example of determination of the next goal and the particular path towards the goal in a cir-
cular shaped environment. The already explored area is in white while the gray denotes not yet
explored areas; the black color is the shape of the environment and the obstacles are superim-
posed only for a visualization purpose as they are not known during the exploration.

For example, we can establish a range 〈−2, 0〉 to the computational grid.
Then, the range can discriminate states from the complete stop of the front-
wave propagation (the value −2) over successively decreasing resistance till
the effect vanishes (the value 0). In this sense, a very simple yet surprisingly
useful utility function can be defined as follows:

1. Introduce an extra background (−0.35) within the explored area at
every cell point, which in general slows down the wavefront evolution.

2. Remove the extra background from all cells representing objects as
wells as their neighboring cells in the radius of 25 cells.

3. Change the value of the extra background from −0.35 to −0.25 for
all cells at the border (frontiers-like cells) and their neighboring cells
with the same radius 25 cells; thus, decreasing the resistance to the
frontwave propagation.

Removing the extra background at the cells containing information about
objects (obstacles) turns out into an increase of the wavefront propagation
velocity around those places, and therefore, we get a basic boundary-follower
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FIGURE 6
Demonstration of the utility introduction in the autowaves-based exploration approach. The cir-
cle represents a reachable area. The absence of obstacles allows the emerging frontwave to freely
evolve from the robot position (slightly displaced downward relatively to the center of the circle)
till the borders of the gray area, which in this particular case represents the boundary between
explored and unexplored regions. Notice how the frontwave is not evolving to directly follow the
circular shape since in the vicinity of the boundary, the forcing values have been deleted, which
locally increases the speed of the frontwave.

exploring unit, which significantly reduces the tendency to perform multiple-
visit to the same regions. A demonstration of such modified evolution of the
frontwave is shown in Figure 6, where the growth of the frontwave in the
vicinity of the wall is clearly faster than in any other direction.

5 RESULTS

The proposed building blocks of the RD core of the studied computational
model have been verified in a series of exploration problems. The main inten-
tion of the presented results is to demonstrate feasibility of the proposed com-
putational techniques and to provide an initial overview of the expected per-
formance of the RD based exploration strategy. A natural performance met-
ric for the exploration is the total time required to explore the environment,
which can be estimated by the total traveled path. However, the real required
time can be different according to the particular navigation strategy and low-
level motion control. Thus, due to very high computational complexity of the
underlying RD model implemented using a regular CPU the presented results
focus on the travelled path† .

The section is divided into three subsections to show particular proper-
ties of the proposed RD based computational model. A demonstration of the
alternative approach to the so-called utility based exploration is presented in
Section 5.1, where the proposed concept of introducing preferences of areas
to be explored by adding extra background is employed in a simple environ-
ment. In Section 5.2, the proposed computational principles of the selection

† The real-time factor is dedicated to our next work where a hardware parallelization will provide the
required computational power.
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of the next robot goal and the consecutive path planning (both based on the
RD model) are employed in the exploration task by a single robot. In this
case, the computational principles are integrated to the exploration frame-
work introduced in [6]. The proposed computational model can be easily
extended for multi-robot exploration, which is demonstrated in Section 5.3.
A discussion of the achieved results is dedicated to Section 5.4.

5.1 Demonstration of Introducing Preferences of Areas to be
Explored

The introduction of the extra background as the gradient like forcing allows
to modify the velocity of the frontwave propagation; hence, it provides a
mechanism to prefer exploration of specific parts of the environment, i.e., a
kind of the utility function (see Section 4.2). This proposed concept has been
verified in an exploration of a simple circular environment. In this simulation,
the robot is equipped with an omnidirectional laser scanner with the sensing
radius 5 m.

Two basic implementations of the utility function are visualized in Fig-
ure 7, which leads to two different behaviors. In the left case, the function
is designed to prefer unexplored areas, this is achieved by decreasing the
extra background along regions of the frontier that do not represent obsta-
cles, therefore these regions become candidates for the next goal. As a con-
sequence, the robot prefers to explore the open-space first. Conversely, in the
right sub-figure, the background is especially decreased along detected obsta-
cles, which increases the frontwave velocity along these regions. Therefore,

(a) open-space preference (b) wall-following preference

FIGURE 7
Visualization of the exploration behaviour for two different settings of the RD based computa-
tional model using extra background for modifying velocity of the frontwave propagation. The
blue curve represents the traveled path of the robot to explore the whole environment.
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once the robot discovers an obstacle, the next goal is naturally selected close
to the already known obstacles, which provides a wall-following behaviour.

5.2 Performance of the RD based Exploration and Standard
Approaches

The proposed principles of the selection of the next robot goal and planning a
path to the goal by means of propagation of the frontwave in the known reach-
able environment have been integrated into the exploration framework [6].
The integration provides an initial overview of the performance of RD based
exploration strategy in comparison to standard approaches. The considered
performance indicator is the path length of the robot to explore the whole
environment.

The proposed RD based exploration strategy does not explicitly consider
information gain, and therefore, it can be considered as a pure distance cost
strategy. Therefore, we select the greedy exploration [28] and the TSP based
approach [13] with the TSP distance cost for the comparison presented. How-
ever, a direct comparison of the approaches is not an easy task. It is because
the proposed approach is based on a different computational model, where
some properties directly accessible in regular frontier-based approaches are
not straightforwardly and easily tunable. For example, a filtration of small
frontier groups, which can significantly improve performance [9], and espe-
cially the planning horizon [6], i.e., a period of new goal determination. Thus,
a direct comparison of the results would not be fair, and therefore, we include
two variants of the greedy and TSP exploration strategies.

In the first variant, denoted by a subscript 1 (i.e., greedy1 and TSP1),
the next goal is determined after the robot reaches its current goal (like in
the RD based exploration), while in the second variant (greedy2 and TSP2),
the next goal is determined after performing 7 navigational primitives, as it
is suggested in [6]. In all these approaches, selected representative of the
frontiers are considered as goal candidates using K-means algorithm, which
decreases the computational burden of the TSP solution and also improves
the exploration performance. A further description of this selection can be
found in [13].

The RD based and greedy strategies are deterministic while the TSP based
strategy is a stochastic method (due to the used approximate solution of the
TSP). Despite that, we consider a single trial for each problem in this feasi-
bility study and thus the presented results have only an indicative importance.

Two environments denoted as autolab and potholes are considered for the
evaluation. The autolab environment represents an office like environment
with dimensions 35 × 30 meters, and the potholes environment is a large
open space (40× 40 meters) with several obstacles, see Figure 8.
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(a) autolab (b) potholes

FIGURE 8
Environments considered in the feasibility evaluation of the RD based exploration.

An example of the frontwave propagation during the selection of the next
robot goal and the consecutive contraction phase of the used RD based path
planning [25] is shown in Figure 9.

Indicative results are presented in Table 1, where the columns represent
the length of the total traveled path (in meters) for the particular sensor range
ρ. Notice, how a faster replanning period improves the exploration perfor-
mance. On the other hand, for replanning after reaching the current goal,

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 9
Propagation of the frontwave towards goal candidates, selection of the next goal (a-d), an evo-
lution of the RD model for the determination of the path to the selected goal (e-g) and the final
found path is shown in green in the bottom rightmost picture; (h) the current travelled path is in
blue.
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autolab potholes

Algorithm ρ =3 m ρ =5 m ρ =7 m ρ =3 m ρ =5 m ρ =7 m

RD based 256.1 196.4 141.1 570.7 375.7 271.1
Greedy1 262.5 232.5 182.9 545.8 398.8 320.4
TSP1 263.0 222.8 174.9 543.9 342.5 283.0
Greedy2 223.6 183.7 118.2 552.6 349.0 276.8
TSP2 219.1 159.4 107.8 466.5 345.6 243.1

TABLE 1
Length of the Exploration Path

the RD based exploration provides competitive results to other approaches.
Selected exploration paths for particular exploration strategies are depicted
in Figure 10.

5.3 An Extension of the Proposed RD based Computational Model
for Multi-Robot Exploration

The proposed computational model can be easily extended for explo-
ration by a team of mobile robots. The extension can be considered as a

(a) autolab, RD, ρ=7 m (b) autolab, Greedy1, ρ=7 m

(c) potholes, RD, ρ=5 m (d) potholes, TSP1, ρ=5 m

FIGURE 10
Final exploration paths, the edges of the detected obstacles are in black while the unexplored
areas (“inside the obstacles”) are in gray.
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semi-centralized approach, where the robots are considered independently
while they shared a common map of the environment being explored. The
proposed demonstration of the multi-robot exploration works as follows:

� Prior the determination of the next robot goal, each robot makes a local
copy of the common map.

� The position of the other robots is introduced to the local map as solid
objects; thus, robot considers the remaining robots as simple obstacles.

� A single step of the exploration algorithm is performed and new infor-
mation is gathered from the environment.

� The local maps are merged into the common map (e.g., using the notion
of occupancy grid and Bayes’ rule like in [21]) and the process of deter-
mination of the robot goals is repeated.

The termination condition of the exploration is identical as in the single
exploration algorithm, i.e., the exploration is terminated if all goal candidates
(frontiers) have been covered. Examples of selected steps of the multi-robot
exploration are visualized in Figure 11.

5.4 Discussion
The presented results indicate the proposed RD computational model
based on the underlying dynamics of the highly non-linear system can be
employed in the mobile robot exploration problem and it also seems the
RD based exploration provides competitive exploration paths to the standard
approaches.

Regarding the computational requirements of the proposed computational
model based on the evolution of the RD model, it should be noted that it
can take an advantage of the implicit parallel propagation; hence, it can be
computed in parallel, and therefore, pruning all the possible solutions to the
most adequate ones in parallel as well. This makes us optimistic about future
implementation using massive parallel computation and a practical deploy-
ment of the method in real exploration problems.

Based on the presented results, we shall split our future work in two dif-
ferent streams. The first stream is to elaborate a detailed stability analysis of
the diverse nullcline configurations used along this work to provide theoreti-
cal foundations for building blocks of the proposed RD based computational
core. The second stream is to develop the exploration algorithm in order to
perform quantitative comparisons with other state-of-the-art methods. This
also includes study of the proposed concept of the utility towards exhibi-
tion of the benefits arising from a different computational model used for the
decision-logic in the exploration missions.
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(a) (b) (c)

(d) (e) (f)

FIGURE 11
Examples of selected steps of the multi-robot exploration: (a) frontwave propagation during
determination of the possible goal candidates (frontiers) superimposed to the map of the envi-
ronment; (b) determined goal candidates (part of the map is enlarged for the sake of clarity); (c)
final exploration paths for all robots; (d), (e), (f) same step of the exploration algorithm from the
perspective of each robot (notice that all robots share the same map, corresponding to the whole
discovered area in this particular step).

6 CONCLUSIONS

We present particular building blocks of a new computational model based
on underlying principles of a reaction-diffusion model. The approach bears
a huge potential for formalization due to its flexibility to be specialized and
ease to incorporate new properties coming from the general dynamics of RD
systems. In particular, herein, the approach has been successfully employed
for solving the exploration task studied in mobile robotics. The approach con-
stitutes a direct extension of our previous work where an autowaves-based
path-planning was introduced, exhibiting interesting properties in compari-
son to standard approaches.

Although the presented results are preliminary, they indicate feasibility
of the proposed RD based exploration and provide a premise for at least
a competitive performance with the current state-of-the-art methods. The
premise provides a ground for a further development towards a complete
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computational model for robotic tasks solely based on RD principles; thus, an
approach where the decision logic is transfered to the RD core, which consis-
tently provides ability of hardware implementation for real-time operations.
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Abstract: In this paper, a new method to solve computational problems using reaction
diffusion (RD) systems is presented. The novelty relies on the use of a model configuration
that tailors its spatiotemporal dynamics to develop Voronoi diagrams (VD) as a part of the
system’s natural evolution. The proposed framework is deployed in a solution of related
robotic problems, where the generalized VD are used to identify topological places in a
grid map of the environment that is created from sensor measurements. The ability of the
RD-based computation to integrate external information, like a grid map representing the
environment in the model computational grid, permits a direct integration of sensor data into
the model dynamics. The experimental results indicate that this method exhibits significantly
less sensitivity to noisy data than the standard algorithms for determining VD in a grid. In
addition, previous drawbacks of the computational algorithms based on RD models, like the
generation of volatile solutions by means of excitable waves, are now overcome by final
stable states.

Keywords: reaction diffusion; FitzHugh–Nagumo; path planning; navigation; exploration;
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1. Introduction

Many systems in nature show organization. For example, think about the prenatal development of
human embryos or the resource tracking in a population of insects. However, as this organization
happens in a spontaneous, way we usually talk about self-organization. General rules under which
such structures appear or predictions of their changes are some of the interests of the self-organization
field. An approach to model these behaviors relies in the so-called reaction diffusion (RD) processes [1],
the Turing instability [2] being a classical method for a stable pattern formation. The study of the
complex phenomena modeled by such RD systems has been in the spotlight of the scientific community
for a long time, becoming an endless source of attempts for finding out how to take advantage of their
rich behavior [3–6]. Computationally, the apparent decision-logic exhibited by the model dynamics
can be seen as an abstraction layer for problem solving, allowing one to embed the complexity of a
real problem into the model spatiotemporal evolution. This analogy confers the RD model the status
of a computational framework in which geometrical operations can be performed. In this paper, we
introduce a model setup that exhibits a construction of the Voronoi diagram, considered as a fundamental
geometrical structure that can be used to computationally reproduce many natural formations, like soap
bubbles [7], bone cells [8] and pattern formation in some mammalian models [9].

Having a set of seeds, the Voronoi diagram can be imagined as partitioning of a plane into a set of
cells, where each cell is originated from a particular seed, and the cell represents the region for which
the seed of the cell is the closest seed [10]. In other words, the boundary of the regions is formed from
points that are equidistant to the two closest seeds. In robotics, the generalized Voronoi graphs (GVG)
are used to create a navigational roadmap and a topological representation of the environment [11].
Herein, the equidistant property of the boundary of the Voronoi regions is utilized to find a path that
maximizes the clearance from the obstacles. Moreover, the junction places, i.e., locations where the
boundary of the cells are connected, represent topologically important places of the environment, like
corridor intersections.

The problem being addressed in this paper is to determine the junction places in a grid map of
the environment by generation of the Voronoi diagram in the grid map. The proposed RD-based
computational model is employed in the generation of such Voronoi diagrams from which the junction
places are extracted. We also compare the proposed approach with the state-of-the-art algorithm
introduced by the authors of [12]. Based on the presented results, it can be observed that the proposed
RD-based computational model is less sensitive to noise than the thinning approach [12]. This new
feature also extends the applicability range of our previous works [13–15], where a modelization for
tackling robotics problems, like path planning and the exploration task, has been developed.

The paper is organized as follows. The next section provides the theoretical basis of the RD
systems and, more particularly, an explanation about how the external (i.e., sensory) information can
be introduced into the model dynamics. Section 3 introduces a standard Voronoi algorithm, intended to
provide a suitable comparison method for the RD-based approach. Sections 4 and 5 present experimental
results and the discussion about the insights found. This paper concludes in Section 7 with a summary
of the contributions and conclusions, as well as our future directions.
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2. Reaction Diffusion Computational Model

2.1. The Reaction Diffusion Model of FitzHugh–Nagumo

One of the first reaction diffusion (RD) models was introduced in a seminal work of Hodgkin and
Huxley [16] in 1952, where the authors model the electric signaling of firing of individual neurons.
Later on, a simplified model was introduced by FitzHugh and Nagumo (FHN) [17,18]. This model
adopts the basic form of a coupled system described by:

u̇ = g(u, v) +Du4u
v̇ = f(u, v) +Dv4v

(1)

where g(u, v) = ε (u− u3 − v + φ) and f(u, v) = (u− αv + β). Computationally, it describes the
evolution of the states variables u and v for each point over an integration grid, the remaining parameters
being constants of the model. The grid points (also called grid cells) are spatially coupled with their
neighbors by means of the Laplacian component, which is also responsible for spreading out information
along the integration domain. A standard method for analyzing the associated dynamics of Equation (1)
involves plotting the nullclines (sometimes called zero-growth isoclines) that describe the dynamics of
a zero-dimensional system or a single cell. Thus, for a system characterized by the FHN model, the
dynamics of each cell is governed by its associated nullcline configuration, plus the spatial interactions
with other cells due to the diffusive coupling. The possible nullcline combination regarding the FHN
model is depicted in Figure 1. In particular, Figure 1a corresponds to the aforementioned excitable
system in which the nullclines define one single point that is stable. Any initial configuration far from
this point will decay to the stable state by means of an excitable wave. The next figure represents an
oscillating system that leads to an oscillatory regime. For the purpose of this work, we are interested
in the bistable regime depicted in Figure 1c showing a symmetric nullcline configuration. In this
configuration, the nullclines define two stable points (drawn as green discs) that are equally stable.
Consequently, the concentration levels of the state variables can be found along the integration domain
in any of both stable states, where even a heterogeneous combination of both steady states is feasible.
Conversely, asymmetric configurations as depicted in Figure 2a lead to one of the stable states possessing
a higher stability than the other. In this case, as the natural tendency of the system is evolving towards
the concentration level of the most stable state, any initial configuration that is far from this point will
inevitably move the whole system to the more stable point. This change is driven by a wavefront,
characterized by its strong nonlinear properties. Wavefronts with radically different behaviors can be
reproduced in a bistable configuration while maintaining the global behavior of evolving towards the
more stable state only by a slight change of the FHN model parameters.

Examples of such a behavior can be found in [13,14], where a non-annihilation behavior
for wavefronts was introduced. This property of non-annihilation of the wavefronts allows an
implementation of a path planning algorithm that is solely based on theRDmodel to perform the required
computations. Later on, a fluid-like behavior was successfully applied in different stages of a robot
exploration task [15]. In this paper, we present a behavior of the RD model that provides a computation
of Voronoi diagrams.
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(a) (b) (c)

Figure 1. An overview of different nullcline configurations. The green discs represent stable
states. Notice that the oscillatory configuration does not have any stable point. The red lines
indicate the associated trajectories in the phases space for the particular initial condition.
(a) Excitable system; (b) oscillatory system; (c) bistable system.

(a) (b)

Figure 2. Asymmetric nullcline configurations for a bistable system. The green discs
represent stable states. In a spatially extended system, the stable states drive the system to
spatially distributed steady states. (a) Two possible asymmetric configurations for a bistable
system; (b) Superposition of both asymmetric configurations.

2.2. The Switch-of-Phase Strategy

The nullcline configuration depicted in the left part of Figure 2a characterizes a system with a
tendency to evolve towards the stable point (SS+)a, while for the right diagram in the same figure,
the tendency is towards (SS+)b. From a superimposition of the both figures, as is shown in Figure 2b,
it is evident that the stable points are relatively close in both nullclines, i.e., (SS−)a ≈ (SS+)b and
(SS+)a ≈ (SS−)b. The fact that their concentration levels are so close enables a smooth transition
from the nullcline configuration depicted in the left part of Figure 2a to the configuration depicted in the
right part of the figure, and vice versa. Therefore, if the parameters of the model are slightly modified,
after a short period of conditioning in which (SS−)a becomes (SS+)b and (SS+)a becomes (SS−)b, the
model evolves according to the new nullcline configuration. It is because the system dynamics can be
tailored to reproduce different behaviors using diverse nullcline configurations that geometric operations
like the Voronoi reconstruction can be encapsulated in the model spatiotemporal evolution using this
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switch-of-phase mechanism. Hence, the problem boils down to finding proper nullcline configurations
capable of reproducing the desired behaviors. In the present study, such a behavior is the computation of
the Voronoi diagram.

2.3. Sensory Information and the External Forcing

It has been shown in the literature that some natural phenomena can be explained in terms of
the RD systems, e.g., a pattern formation where self-organization plays a key role. An intriguing
characteristic of such natural processes is how their development becomes fairly robust against the
unavoidable imbalances that arise in every living system. This behavior is consistently reproduced by the
RD dynamics, which exhibits a strong capacity to deal with external perturbations, either overcoming
them or adapting its internal behavior to accommodate them. The so-called external forcing has
been systematically studied as a mechanism for interacting with RD systems. It comprises both the
spatial [19,20] and the spatiotemporal [21] domains, and it can consist of a weak influence that barely
affects the dynamics or a strong perturbation that determines its behavior. For perturbing the FHN
model as it is defined in Equation (1), the main technique consists of the local modification of the
nullcline configuration for a few cells of interest. The effect of this modification on the dynamics is
an inhibition of the wavefront propagation at these points; hence, it is equivalent to the introduction of
binary information into the system, which can be used to represent obstacles in robot path planning, as
was shown in [14]. Besides, the model allows one to consider an additional constraint in the form of an
extra (point dependent) term, the final expression to be discretized being:

u̇ = g(u, v) +Du4u
v̇ = f(u, v) + F +Dv4v

(2)

For our interest, the F term (Fij for a cell at the coordinates ij in the computational grid) represents
the environmental information coming from sensors, and the main difference with regards to the previous
method (the local nullcline modification) is that it allows one to introduce gradient-like information. In
other words, the FHN dynamics is determined by a combination of the nullcline configuration plus the
diffusive term, and such a behavior is somehow resistant to a set of values that can be introduced through
Fji at each cell. For example, it can establish an effective range Fji ⊂ [0,max), which introduces a
gradual delay in the wavefront propagation, reaching complete inhibition. An intensive use of this feature
is shown in [15], where the RD model is employed for planning a path in the robotic exploration task.

An example of an environment representation created from raw sensor measurements is shown in
Figure 3a. The map shown is created by integration of the sensors’ measurements into an occupancy grid,
where each cell denotes a probability that the cell is occupied by an obstacle. New sensor measurements,
in this case, a scan from a laser ranger finder, are integrated into the occupancy grid using Bayes’
rule [22]. Then, a grid map of the environment is created from the occupancy grid by thresholding
the probability value of each cell into one of three states: occupied, free and unknown.

A wavefront evolution in a grid map is shown in Figure 3b,c, where it can be noticed how the
wavefront covers the available space during its evolution, while stopping at the edges of the grid map,
which represent obstacles. This feature allows one to integrate the external (environmental) information
into the RD computational grid in a straightforward way.
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(a) (b) (c) (d) (e)

Figure 3. A visualization of sensor measurements transferred to the integration grid of
the FHN model for the environment called cube and examples of conventional Voronoi
diagrams: (a) occupancy grid with integrated sensor measurements where detected obstacles
are in black, identified freespace is in white, and unknown parts of the environment
are in gray; (b,c) the occupancy grid that represents the map of the environment is
transferred (merged) to the integration grid of the model, where a wavefront is triggered;
(d) conventional Voronoi diagram in the rough map; (e) conventional Voronoi diagram in the
map after removing noisy measurements by application of dilation and erosion operations of
the mathematical morphology.

3. Voronoi Diagram

3.1. Conventional Computation of Voronoi Diagrams

A computation of a Voronoi diagram (VD) is a basic problem studied in computational geometry.
One of the simplest cases of a Voronoi diagram is a division of a plane with n points (called generating
points) into a set of convex cells, where each cell contains exactly one generating point. For all points
inside a cell, the distance to its generating point is smaller than to any other [10]. An example of this
ordinary Voronoi diagram is shown in Figure 4a,b.

(a) (b) (c) (d)

Figure 4. Examples of the ordinary Voronoi diagram for k generating points in a plane and
generalized Voronoi graph in walled environment: (a) random points, k = 25; (b) four points
forming a rectangle, k = 4; (c) four walls forming a rectangular environment; (d) rectangular
environment with fives polygonal obstacles with pruned parts of the Voronoi diagram outside
the freespace of the polygonal environment.
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Many applications of the Voronoi diagram can be found. We are interested in an identification of the
topology of the environment to improve the navigation of a mobile robot that is not solely based on metric
information, but rather on identification of important places, e.g., crossings and rooms. In our case,
the environment is represented by a discrete cell lattice called a grid map. The map can be created
from the occupancy grid in which new sensor measurements of the robot’s surroundings taken by sonar
or laser-based ranger finder are integrated using Bayes’ rule [22]. A cell in the occupancy grid has
associated probability that the cell is occupied, and thus, a grid map is created from the occupancy grid
by thresholding the value of the probability, e.g., all cells with the probability of being occupied higher
than 0.5 are considered as obstacles.

Regarding the navigation, a generalized Voronoi graph (GVG) has been introduced in [11] to identify
topological places and also to determine paths between the places. A formal definition of the GVG
can be found in [23], but basically, the GVG is a one-dimensional set of points that are equidistant to
the n closest obstacles in n dimensions. For a walled environment [12], for example as visualized in
Figure 4c,d, the GVG results in a set of points equidistant from two or more obstacles. It is known that
Voronoi diagrams are sensitive to noise, which can be seen in Figure 3d,e. That is why Beeson et al.
introduced an additional pruning technique to remove poor junction places [12]. In this paper, we
consider RD-based computation of the Voronoi diagram to determine a skeleton of the grid map that
represents the topology of the robot environment. The method is described in the next section.

3.2. RD-Based Computation of Voronoi Diagrams

The pioneering work of developing algorithms for computing planar Voronoi diagrams (PVD) using
RD models (to the best of our knowledge) deals with the cellular automaton (CA) modelizations of
RD systems [24,25] in which some of the well-known RD behaviors were successfully reproduced.
In particular, a type of excitable wave that travels and interacts with others, annihilating after a collision,
constituted the early pillars for developing RD-based computation. These waves in a cellular automaton
lattice spread with a constant velocity, whereby two wavefronts starting from two different sources meet
at equidistant points at the same time. The result of the mutual wavefront annihilation at those points is a
series of bisectors that separate the wavefront sources. Therefore, it provides a generation of the Voronoi
diagram of the sources.

On the experimental side, the so-called RD computers are implemented in a spatially-extended
chemical medium, where diffusive or excitation waves propagate and interact. In this way, the results of
the computations are represented by spatial distributions of reagent concentrations. Some interesting,
yet computationally-limited experimental realizations can be found in [26,27]. These are based on
the palladium processor and on a supersaturated solution of sodium acetate, commonly called hot ice.
Systematic studies have highlighted the drawbacks of such implementations, like the impossibility of
inverting a VD using an RD chemical processor. This characteristic has been shared by all subsequent
implementations of experimental RD processors. For instance, VD irreversibility is found in [28].

Although the RD computation is the common substrate for most of these prototypes of processors,
they are better contextualized as unconventional computing approaches. These approaches do not
only cover RD systems, but they also include a wider scope, like the true slime mold Physarum
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polycephalum [29], a single-celled organism visible to the naked eye that in the plasmodium stage grows
up to the square meter scale in size. A comprehensive description of such unconventional methods,
including gas discharge, can be found in [30].

3.3. FHN-Based Voronoi Diagrams

The technique for generating VD by means of the FHN model uses the switch-of-phase mechanism
described in Section 2.2, in addition to the way of introducing information in the integration grid as
described in Section 2.3. Firstly, an expansion phase that uses the fluid-like behavior (a comprehensive
description of this behavior can be found in [15]) triggers a wavefront that evolves till it covers the
whole domain. This mechanism is exemplified in the first row of pictures depicted in Figure 5. Then, the
second stage based on a contraction phase recovers the wavefront over itself, as is shown in the second
row of pictures in Figure 5. The resulting concentration profile coincides with a planar Voronoi diagram.
Therefore, all of the logic required for a computation of the diagram is transferred to the spatiotemporal
dynamics of the FHN model. The set of required values for the used FHN model are presented in
Table 1. Notice that the termination condition for both stages is trivially implemented by measuring the
total amount of u (or v) summing over all grid points. A constant value within two different iterations
means the system has reached a static situation; hence, the next phase can be triggered.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Steps of the RD-based Voronoi algorithm applied to the potholes environment:
(a–d) expansion phase, a wavefront using the fluid-like behaviour evolves over the integration
domain; (e–h) contraction phases, the resulting concentration profile of the previous stage
evolves till generating a VD of the environment.
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Table 1. Set of values for the FHN model to reproduce the desired behavior in both phases:
expansion and contraction.

FHN Parameters
α β ε Du Dv

Phase
expansion 4 −0.5 40 0.45 2

contraction 3.8 0.1 10 0.1 1.5

4. Experimental Results

4.1. Comparison Method

One of the expected advantages of the proposed RD-based computational model is that it has less
sensitivity to spatially noisy data. This is particularly interesting in the application of the Voronoi
diagram to compute a skeleton of the grid map of the robot’s operational environment that can be
used to create a topological representation of the environment. A map of the environment created
from the sensor measurements can be noisy, e.g., because of a poor localization, which can lead to a
misalignment of the range measurements and a noisy grid map. Regarding the topology, the Voronoi
diagram is a graph (skeleton) describing the topology of the environment, where the nodes of the graph
represent topologically important places in the environment. The nodes with a degree higher than three
are junction places that represent crossings in the environment, while the nodes with a degree of one are
the leaves of the skeleton and represent particular areas in the environment, like rooms. A skeleton of a
walled environment computed as the Voronoi diagram (by means of the thinning alrotithm [12]) in the
grid map of the environment called jh is shown in Figure 6, together with the highlighted junction places
and leaves that represent rooms.

If we consider a static environment, its topology is fixed, and thus, the number of junction places
and leaves should be the same even for an imperfect reconstruction of the map using noisy sensor
measurements. Based on this observation, we propose the following methodology to study the sensitivity
of the computational model to the noisy sensor data and compare the proposed RD-based Voronoi
diagram computation with the thinning algorithm for finding a skeleton of the grid map [12].

The evaluation of the sensitivity is based on adding a noise to the map, where the noise is added as
small discs with the radius r at all boundary cells (i.e., obstacle cells that are incident with at least one
free space cell). The radius r is drawn from a normal distribution with zero mean and variance σr ≤ 10.
For each map, we considered 10 values of σr, and because the determination of the map skeleton (using
the thinning algorithm [12], as well as the proposed RD-based computational model) is deterministic,
we create 20 noisy maps with added noise for each original map and a particular value of σr. Then, the
studied parameters of the skeleton according to the level of noise σr are considered as average values and
standard deviations computed from 20 trials of each algorithm run on these 20 noisy maps. Having four
environments, called autolab, jh, cube, and potholes, the number of performed trials for two algorithms
in this evaluation is 1600. An example of the maps with added noise is shown in Figure 7. Moreover,
we also performed additional evaluation for scaled maps for the jh, cube and potholes environments
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enlarged by four different scale, which gives 4800 additional trials, which gives 6400 performed trials
in total.

(a) (b)

Figure 6. Example of the topology representation of the walled environment jh computed
as the GVG of the grid map. The computed Voronoi diagram is transformed into a graph,
where nodes with the degree (number of incident edges) higher than 2 represent junction
places and nodes with the degree 1 are the leaves representing particular rooms. (a) junction
places; (b) leaves.

(a) (b) (c)

Figure 7. Environment jh: (a) without added noise; and with added noise for (b) σr = 2;
and (c) σr = 5.
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The influence of the added noise is studied as the change of the number of detected junction places
and the number of leaves according to the reference numbers computed from the noise-less map. The
change in the number of junction places is measured as the percentage deviation from the reference value
denoted as JPDM. Let J0 be the number of junction places detected in the noise-less map and Jσ be the
number of detected junction places in the map with added noise according to σ. Then, the JPDM is
computed as:

JPDM =
Jσ − J0
J0

· 100% (3)

where Jσ is the average number of the detected junction places over all trials for the particular value σ
and map. The number of leaves is computed as the average number of the detected leaves in the topology
graph of the Voronoi diagram that is accompanied by the standard deviation.

A value of the JPDM around zero indicates that the particular method is not sensitive to noise. A
negative value indicates that the number of junction places in the noisy map is lower than the reference
value J0. Notice that this does not necessarily mean a worse result. A lower number of junction places
is usually related to a lower number of leaves (e.g., detected rooms), and with increasing level of noise,
an entrance to a particular room can be more and more narrow. Hence, a robot cannot safely navigate to
such a location, and therefore, the room is unreachable; the corresponding leaf is not part of the skeleton,
and also, the number of junction places is lower. On the other hand, if the method of the determination
of the Voronoi diagram is sensitive to noise, many small branches can be part of the skeleton, and thus,
also, the number of junction places is increased.

4.1.1. Determine Topology Graph for the RD-Based Voronoi Diagram

In Figure 5, it can be seen that the skeleton of the map determined by the proposed RD-based
computational model is not a set of single pixel width paths, and therefore, there can be various ways to
determine the studied indicators.

For simplicity and also with regard to the used thinning algorithm [12], we considered the RD-based
skeleton as a simple polygon (or a set of simple polygons) and determine a single-pixel width skeleton
in this polygon using the thinning algorithm. This allows us to consider the identical procedure to
compute the indicators for determination of the skeleton based solely on the thinning algorithm and on
the RD-based computational model. Such a skeleton of the determined RD-based Voronoi diagram is
shown in Figure 8. An example of superimposed Voronoi diagrams determined in the map with and
without the added noise in the environment autolab is shown in Figure 9.

It can be noticed that the thinning algorithm prunes branches of the skeleton that would go to the
corners of the particular rooms. On the other hand, this is not exactly the case of the RD-based
computation of the skeleton, which splits the skeleton according to the space around the propagated
wavefront. Therefore, instead of direct comparison of the RD-based skeleton with the thinning algorithm
accompanied by advanced pruning of branches, we study how the determined skeletons differ with
increasing σr for each particular method, and thus, we study the algorithms’ sensitivity to the level
of noise.
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(a) (b)

Figure 8. Example of found skeleton (Voronoi diagram) by the RD-based computational
model for the pothole environment: (a) light gray structure; (b) and its one pixel width
skeleton shown in red.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Determined Voronoi diagrams by the thinning and RD-based algorithms in a map
of the autolab environment for σr = 4 and σr = 7. The skeleton determined in noise-less
map is in red while the skeleton found in the noisy map is in blue. (a) Thinning algorithm,
σr = 4; (b) RD-based algorithm, σr = 4; (c) Thinning algorithm, σr = 7; (d) RD-based
algorithm, σr = 7.

4.1.2. Results

The proposed statistical indicators of the noise sensitivity, i.e., JPDM Equation (3), and the average
number of the detected leaves are depicted in Figures 10 and 11, respectively. The results show that
the proposed RD-based computation of the Voronoi diagram is less sensitive to the added noise, as the
number of junction places is usually lower than the number of junction places for the map without the
noise. The lowest value of the JPDM is −100% for the cube environment, where none of the junction
places have been detected in the environment, see Figures 12 and 13. On the other hand, the thinning
algorithm is a more sensitive to the noise as the number junction places is quickly increasing, and for the
autolab, jh and potholes environments, the maximal number of the junction places is for the noise level
σ = 4; see the example in Figure 14.

The number of leaves significantly changes with the noise level for the thinning algorithm, while for
the proposed RD-based computation of the skeleton, it changes only slightly and typically decreases
with a higher level of the noise σ, as can be seen in Figure 11. The only exception is the environment
potholes, where the initial skeleton for σ = 0 does not contain any leaves; see Figure 15, while with
increasing σ, some parts become unreachable for the robot (wavefront propagation), which is visualized
in Figure 16.
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Figure 10. The noise sensitivity indicator JPDM Equation (3) in the noisy maps created
for the particular value of the noise level σ. (a) environment autolab; (b) environment jh;
(c) environment cube; (d) environment potholes.
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Figure 11. Cont.
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Figure 11. Average numbers of the leaves detected in the noisy maps created for the
particular value of the noise level σ. (a) environment autolab; (b) environment jh;
(c) environment cube; (d) environment potholes.

(a) RD-based (b) RD-based (c) Thinning (d) Thinning

Figure 12. Skeletons and the determined topological maps with highlighted junction places
and leaves in the map cube with the noise level σ = 7: (a) RD-based Voronoi diagram;
(b) and its corresponding skeleton (shown in green) that is superimposed on the skeleton
determined in the noise-less map (in red); (c) Pruned GVG representing skeleton of the map
determined by the thinning algorithm [12]; (d) and the corresponding skeleton superimposed
on the skeleton determined in the noise-less map.
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(a) RD-based (b) RD-based (c) Thinning (d) Thinning

Figure 13. Determined skeletons and topological maps with highlighted junction places and
leaves in the map cube with the noise level σ = 8: (a) RD-based Voronoi diagram; (b) and
its corresponding skeleton (shown in green) that is superimposed on the skeleton determined
in the noise-less map (in red); (c) Pruned GVG representing skeleton of the map determined
by the thinning algorithm [12]; (d) and the corresponding skeleton superimposed on the
skeleton determined in the noise-less map.

(a) RD-based (b) RD-based

Figure 14. Cont.
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(c) Thinning (d) Thinning

Figure 14. Determined skeletons and topological maps with highlighted junction places
and leaves in the map jh with the noise level σ = 4: (a) RD-based Voronoi diagram;
(b) and its corresponding skeleton superimposed on the skeleton determined in the noise-less
map (in red); (c) Pruned GVG representing skeleton of the map determined by the thinning
algorithm [12]; (d) and the corresponding skeleton superimposed on the skeleton determined
in the noise-less map.

(a) RD-based (b) RD-based

Figure 15. Cont.
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(c) Thinning (d) Thinning

Figure 15. Determined skeletons and topological maps with highlighted junction places
and leaves in the map potholes with the noise level σ = 0: (a) RD-based Voronoi diagram;
(b) and its corresponding skeleton superimposed on the skeleton determined in the noise-less
map (in red); (c) Pruned GVG representing skeleton of the map determined by the thinning
algorithm [12]; (d) and the corresponding skeleton superimposed on the skeleton determined
in the noise-less map.

(a) RD-based (b) RD-based

Figure 16. Cont.
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(c) Thinning (d) Thinning

Figure 16. Determined skeletons and topological maps with highlighted junction places
and leaves in the map potholes with the noise level σ = 4: (a) RD-based Voronoi diagram;
(b) and its corresponding skeleton superimposed on the skeleton determined in the noise-less
map (in red); (c) Pruned GVG representing skeleton of the map determined by the thinning
algorithm [12]; (d) and the corresponding skeleton superimposed on the skeleton determined
in the noise-less map.

4.1.3. Influence of the Map Resolution

The resolution of the grid map may influence both computational techniques to determine the Voronoi
diagram, and therefore, its influence has been studied for the potholes, cube and jh environments for
which all the maps have been scaled 1.2, 1.5, 1.7 and 2 times. Particular results of the JPDM indicator
are shown in Figures 17–19. Examples of the determined skeletons for both algorithms using different
map resolutions are shown in Figures 20–22. Although a higher resolution increases the computational
burden of both techniques, it can be noticed that the proposed RD-based computation is significantly less
sensitive to the change of the resolution, and the number of junction places and leaves remains almost
the same according to the change in the thinning algorithm.
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Figure 17. The noise sensitivity indicator JPDM Equation (3) in the scaled noisy maps of
the potholes environment. (a) potholes, 960× 960; (b) potholes, 1200× 1200; (c) potholes,
1360 × 1360; (d) potholes, 1600 × 1600.
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Figure 18. Cont.
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(d)

Figure 18. The noise sensitivity indicator JPDM Equation (3) in the scaled noisy maps of the
cube environment. (a) cube 283 × 419; (b) cube, 354 × 524; (c) cube, 401 × 593; (d) cube,
472 × 698.
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Figure 19. The noise sensitivity indicator JPDM Equation (3) in the scaled noisy maps of
the jh environment. (a) jh, 768 × 863; (b) jh, 960 × 1079; (c) jh, 1088 × 1222; (d) jh,
1280 × 1438.
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(a) RD-based (b) RD-based

(c) Thinning (d) Thinning

Figure 20. Determined skeletons and topological maps with highlighted junction places and
leaves in the map potholes with the noise level σ = 5 for the scaled map with 1600 × 1600
grid points: (a) RD-based Voronoi diagram; (b) and its corresponding skeleton superimposed
on the skeleton determined in the noise-less map (in red); (c) Pruned GVG representing
skeleton of the map determined by the thinning algorithm [12]; (d) and the corresponding
skeleton superimposed on the skeleton determined in the noise-less map.
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(a) RD-based (b) RD-based

(c) Thinning (d) Thinning

Figure 21. Determined skeletons and topological maps with highlighted junction places and
leaves in the map jh with the noise level σ = 10 for the scaled map with 1280 × 1438 grid
points: (a) RD-based Voronoi diagram; (b) and its corresponding skeleton superimposed on
the skeleton determined in the noise-less map (in red); (c) Pruned GVG representing skeleton
of the map determined by the thinning algorithm [12]; (d) and the corresponding skeleton
superimposed on the skeleton determined in the noise-less map.
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(a) RD-based (b) RD-based (c) Thinning (d) Thinning

Figure 22. Determined skeletons and topological maps with highlighted junction places and
leaves in the map cube with the noise level σ = 5 for the scaled map with 478 × 698 grid
points: (a) RD-based Voronoi diagram; (b) and its corresponding skeleton superimposed on
the skeleton determined in the noise-less map (in red); (c) Pruned GVG representing skeleton
of the map determined by the thinning algorithm [12]; (d) and the corresponding skeleton
superimposed on the skeleton determined in the noise-less map.

5. Discussion

The presented evaluation of the Voronoi diagram generation for the maps with added noise
demonstrates that one of the main advantages of the RD-based computation is a lower sensitivity to
the noise level in comparison to the thinning algorithm. This advantage comes from the stability, in the
Lyapunov sense, of the FHN system. The dynamics of the system drive it to the stable state, so that the
spatiotemporal evolution is resistant to the inclusion of external information, which in the present case
is interpreted as noise. This is mainly visible in the skeleton of the environment, where the RD-based
skeleton does not include new branches for small “pockets” created as a result of the added noise. As
a consequence, the number of junction places slowly decreases with the increasing noise level, which
means that some parts of the environment become unreachable for the robot. On the other hand, the
thinning algorithm is sensitive to the added noise, and additional pruning techniques are necessary.

Regarding these observations, the proposed RD-based computational model seems to be a suitable
technique to process real sensor data and provides more robust solutions than purely geometrical-based
approaches. The RD-based computational model works on a computational grid, where the underlying
non-linear dynamics model exhibits its behavior based on the particular system properties. One of the
important properties is the resolution of the computational grid itself, which is related to the ability of
the wavefront propagation into a narrow passage in the environment. Thus, it is related to the dimension
of the robot, and it guarantees finding a safe path. Although an additional pruning of the determined
skeleton can be used to guarantee the required clearance of the topological roadmap (i.e., generated
skeleton of the environment), the relation is an indivisible part of the RD-based model.
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It is noteworthy that this approach takes advantage of the common and well-known properties
inherent to RD systems, like the natural parallelism of the computation and fault tolerance to damaged
cells, interpreted as noise resistance. Besides, it is possible to physically implement this model by
means of already existing technologies, such as CNN [31] via a VLSIchip, a feature that enables
real-time computations.

6. Comments on the Stability of the RD System and Reduction of Computational Requirements

A computation of the RD-based model evolution can be significantly sped up based on the observation
of the system stability in the sense of Lyapunov. The wavefronts whose propagation leads to the shift
from one stable state to the other define the only regions in the environment that are actually evolving.
In the computational grid, this means that as the evolution of the grid cells reaches the new stable
state, these nodes remain in this state unchanged. Hence, this observation can be utilized to decrease
the computational burden of the spatial integration of the model by performing computations only for
these grid cells. Notice that although this approach can restrict the propagation of the wavefronts in the
boundaries of evolving areas, the values of u and v tend to a stable level, and therefore, the restrictions
only limit the velocity of the propagation. Moreover, the velocity of the underlying physical model is
also limited and constant, and therefore, using the knowledge of the propagation behavior, one can set
suitable parameters without affecting the propagation. These parameters have been experimentally set
for the particular developed approach.

The proposed routine can be exemplified as follows: after several computational steps, cells are
examined to see if their value of the concentration level u has changed after the selected period Tactive,
i.e., testing the value uactivation = |u(k) - u(k+Tactive)| of the computational steps k and k+Tactive. Then,
the cells for which the difference uactivation is above a certain limit (e.g., > 10−3) are denoted as active
for the next batch of the computational steps. Besides, a small neighborhood of each such active cell is
also marked as active to further support a propagation of the wavefronts. The herein used discretization
of the FHN model is a simple finite difference method on a Cartesian grid: a simple forward in time
centered in space (FTCS) scheme that facilitates the manipulation of the integration loop for including
the described optimization.

Although a detailed comparison is out of the scope of the present work, a basic comparison for the
two environments potholes and jh is shown in Table 2. Using a grid resolution of 800 × 800 points as a
baseline for the potholes environment and 840 × 960 for the jh environment, four additional resolutions
have been computed for the propagation phase of the Voronoi problem. The results show that the
proposed optimization technique scales well with the increasing grid resolution. Moreover, since this
optimization is hardware-agnostic, it can be ported to specialized platforms.
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Table 2. Computational time (in minutes) spent in the expansion phase of the Voronoi
computation for the environments potholes and jh. For both variants of the RD-based
algorithm: the original, named naive, and the optimized version according to Section 6,
named optimized. The size of the baseline is 800 × 800 grid points for the potholes and
840 × 960 grid points for the jh. The computational times have been collected using a
workstation with an Intel iCore7 3770 processor, Debian jessie (64-bit), 16 GB RAM and
C++ implementation compiled by the GCC 4.9.2 with the O3 enabled.

Resolution Factor
1 1.2 1.5 1.7 2

potholes
naive 8.49 15.3 27.4 44.4 69.3

optimized 1.3 2.1 2.5 3.3 5.2

jh
naive 12.5 20.7 44.5 65.8 103.4

optimized 1.4 2.2 4.1 5.2 7.2

7. Conclusions and Future Work

Computational geometry is concerned with the study of algorithms for solving geometrical problems,
and the Voronoi diagram arises as a data structure that underlies the geometry of seemingly different
ones. An example of this, in a discrete cell lattice, is the generalized Voronoi graph, which identifies
topological places and also determines paths between the places. In that context, the Voronoi diagram
can be used for addressing the robot navigation problem.

In this paper, we consider RD-based computation of the Voronoi diagram to determine a skeleton of
the grid map that represents a topology of the robot’s operational environment. The herein presented
approach binds robotics and the Voronoi diagram under a computational umbrella of RD systems, which
allows a direct integration of raw sensor data into the computational grid.

The discovered findings are clearly split into two distinctive features: first is the exploitation of the
newly-found behavior that leads to Voronoi-like concentration patterns as the final stable states of the
model’s spatiotemporal evolution, also allowing one to recover the system to its original state by means
of the Voronoi diagram inversion; the second feature is the lack of sensitivity to the added noise that
makes any pruning technique unnecessary for removing poor junction places, as is required in the case
of the considered thinning algorithm.

Furthermore, the presented results are an extension of our previous studies, where different
behaviors were successively included in the RD-based computational core and successfully applied
to decision-planning and motion-planning in robotics. Therefore, the addition of the Voronoi diagram
pattern sets the foundation of a reaction diffusion-based computational framework suitable for addressing
geometrical problems, up to now particularly tailored to face the challenges associated with navigational
problems in robotics.
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