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ABSTRACT

Worldwide, there has been increasing interest in the use ubrfomous Underwater Vehicles
(AUVs) to drastically change the means available for ocegiogation and exploitation. These
vehicles are becoming ubiquitous due in part to the flexjbélind versatility that a number of them
display in the execution of individual and cooperative taskhese characteristics, coupled with the
fact that their use avoids placing human lives at risk, makem quite attractive in a number of
missions that include pipeline inspection, seabed sunggyand archaeological research, to name
but a few. Central to the operation of some classes of AUVBéasavailability of good underwater
positioning systems to localize one or more vehicles siamébusly based on information received
on-board a support ship or a set of autonomous surface eshidh an interesting operational
scenario the AUY5 igare equipped with an acoustic pinger and the set of surfdueles carry a
network of acoustic receivers that measure the ranges batthie emitter and each of the receivers.

Motivated by these considerations, in this work we addrbssproblem of determining the
optimal geometric configuration of sensor networks, in 20 &D, that will maximize the
ranggbearing-related information available for single or npltitarget positioning. It is assumed
that the rangearings measurements are corrupted by white Gaussias tioésvariance of which
is distance-dependent. Furthermore, we also assume thaitiahestimate of the target position
is available, albeit with uncertainty. The Fisher InforinatMatrix and the maximization of its
determinant or the minimization of the trace of the CRLB nixaéire used to determine the sensor
configuration that yields the most accurate “expected”tposng of the target, which is expressed
by a probabilistic distribution. It is shown that the optint@nfigurations lend themselves to
interesting geometrical interpretations and that the¢agding” of the sensor configuration depends
explicitly on the intensity of the measurement noise, antherprobabilistic distribution that defines
the target position. The scenario of underwater targettiposig by a surface sensor network is
studied along this work as an example of application of ththodology developed. Moreover, the
special and particular scenario of a single surface sessstudied separately due to the growing
importance of this problem in the last few years.






RESUMEN

Actualmente, existe un creciente interés en el uso deukld autonomos submarinos (AUVs) para
cambiar de forma drastica los medios disponibles paragioeacion y explotacion de los océanos.
Esta clase de vehiculos esta presente en multiplesajaites debido a la flexibilidad y versatilidad
que éstos demuestran en la ejecucion de numerosas targasndividuales como colectivas. Estas
caracteristicas, junto con el hecho que su uso evita padas wumanas en peligro, hacen que
su uso resulte muy atractivo en miltiples actividades,@poeden ser la inspeccion de tuberias,
el estudio del fondo marino, la investigacion arqueatagpor nombrar algunas. Para el correcto
funcionamiento de diferentes clases de AUVs es fundamientééponibilidad de buenos sistemas
de posicionamiento submarinos con los que localizar uncas wehiculos de forma simultanea
mediante informacion recibida a bordo de un barco de sepmrtle un conjunto de vehiculos
autobnomos de superficie. En un escenario operacionaésaste, el AUV o AUVs pueden estar
equipados con un emisor acUstico de modo que el conjuntetdewlos de superficie, que transporta
unared de sensores aclsticos, mida las distancias ens@@emisores y cada uno de los sensores.

De acuerdo a estas consideraciones, en este trabajo s@aedtpdoblema de determinar la
configuraciobn geométrica 6ptima de una red de sensame® én 2D como en 3D, que maximice
la informacion existente en medidas de distancias o @sqadra realizar el posicionamiento de uno
0 varios objetivos. Se asume que las medidas de distan@aguylds estan corruptas por ruido
blanco Gausiano cuya varianza es dependiente de la dstafdemas, se asume que la posicion
del objetivo se conoce inicialmente, aunque con incertlthemLa Matriz de Informacion de Fisher
(FIM) y la maximizacion de su determinante o la minimizacide la traza del CRLB se usaran
para determinar las configuraciones de los sensores querpi@pan una estimacion de la posicion
de los objetivos mas precisa. La posicion de estos obgtrendra expresada por una distribucion
de probabilidad. Se muestra a lo largo del trabajo comodafiguraciones dptimas permiten una
interesante interpretaciobn geomeétricay como la distion de los sensores depende explicitamente
de la intensidad del ruido de medida y de la distribucion médabilidad que define a cada uno de
los objetivos. El escenario de posicionamiento de objstaxtomarinos por una red de sensores
de superficie se ha estudiado a lo largo del trabajo como &edepaplicacion de la metodologia
desarrollada. Es mas, el caso especial y particular denioo 8ensor de superficie se estudia de
forma separada debido al creciente interés en este pralddolargo de los Gltimos afios.
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Chapter 1

INTRODUCTION

Water is the largest component of the surface of our planttzs#@0 per cent of the planet is covered
by this liquid element that appears irflérent forms like rivers, lakes and, mainly, oceans. Despite
the above, the oceans are the least known part of the surfam@ @lanet, and they harbour the
most important mineral, energy, and food resources, and ®lkey role in the regulation of the
climate. For this reason, in recent years, the way in whiehoiteans are explored and exploited is
changing drastically tofford new methods and tools for sampling and interacting viighrharine
environment in scientific and commercial areas. Recentramdsin marine robotics, sensors,
computers, communications, and information systems airegtsgpplied to develop sophisticated
technologies that will lead to safer, faster, and far mafeient ways of exploring the ocean
frontier, especially in hazardous conditions. As part @ thend, there has been a surge of interest
worldwide in the development of autonomous underwateralegi(AUVs) capable of roaming the
oceans freely, collecting relevant data at an unprecedestigle and reacting to on-line detected
events. The areas in which the marine robots are spreadaigube, due to the versatility and
good performance they show in many demanding tasks at see;, aawide range of applications
that goes from gas and oil pipeline inspection to biologioaéstigation, and even in a number of
areas pertaining to the preservation of the underwateur@llheritage. Namely, in the detection
and mapping of shipwrecks or submerged human-made stesct@ne of the most interesting and
challenging applications of marine robots its their useataborative tasks between a number of
robots, even in interaction with humans. In the latter caserpvbots play the role of guardians in
charge of guiding humans underwater gmmdacting as carriers of equipment to be delivered upon
request. It is indeed the moment in which the oceans and tésiurces can be understood and
exploited as never before and at the same tiffrd policy makers the instruments that are needed
for a holistic governance of the oceans.

The technical requirements for the marine robots, and thesgquirements to the developers
of these systems, together with the mission that they musy cait, are very demanding. These
technical challenges are determined by multitude of factach as operation over extended periods
of time in hazardous conditions, tasks on harsh environspstringent communication constraints,
to name but a few. The latter is one of the most important gmbkl because the common
communication systems are useless, and the important tdsiding out a robot or a diver in a 3
dimensional space while they are carrying a mission became®f the hardest problems to solve.
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The problem at hand is coupled with the fact that nowadaye ti@s been a significant change in the
paradigm of marine robot operations because the emphasisl@ger on the operation of single,
bulky robots equipped with a multitude of sensors, but natimethe deployment and cooperation of
relatively light and easy to deploy robots acting in coofieratowards the execution of common
tasks at sea, and even interacting with humans during treeantling tasks.

The extremely fast development of Global Positioning SystdGPS) related technologies
and their common use in multitude of consumers products aS (&eeivers, compasses, and
accelerometers in mobile phones, cars, or computer ganaingats may drive to think that the
positioning problem is almost solved and it may be only a prablem in very reduced cases.
However, as abovementioned, there exist many practicabsites where the common GPS systems
are useless:

e Indoor: GPS signals are usually blocked inside buildingg],[[73].

e Urban: GPS signals are not reliable and usually blocked bysunding buildings or totally
lost in tunnels, [20].

e Caves: Either on land or underwater, [27] .

e Space: Although there has been some experimental work oy @&PS signals on extra-
terrestrial navigation, GPS signals are usually not alldla space, [60].

e Underwater: where GPS signals are blocked by the watercayiffal], [46].

From the above, it is clear that the problem of source loatibn in those areas in which the
common GPS systems are useless has become increasinglstantpio the recent years. The
localization of a source (or sources) is done through givignads obtained by a sensor array
conveniently designed. Our aim is to determine the senssitipos of the array for which the
information obtained about the source or sources is magihii is, the sensor placement for
which the positioning accuracy is the largest possible. 3twrce position will be defined with
the information received by the sensor nodes. There may saige constraints that the sensor
positions must achieve, for example, in a surface sensoepiant for underwater target positioning
the sensors are restricted to lie at the sea surface, orrtsersmay need to keep a safe distance with
respect to the target to avoid sensor or target damage, te hanha few.

The importance of an accurate target positioning is cleaeugral application scenarios such as
radar, sonar, mobile wireless communications, radio astry, seismology, acoustics, geophysics,
to name some examples. The accuracy of the estimation oftlyettor source position can be
tested considering the closeness of the estimated posgittbmespect to the actual one. There exist
multitude of algorithms to estimate this source positiorocalization techniques depend on the
information available for the sensor network and this infation could be power-level information
that consists in measuring the power-level of a signal setwéden sensors and source, known as
Received Signal Strength (RSS) [71], [18], Timef®ience of Arrival (TDOA) and Time of Arrival
(TOA) [58], [46], [88], [3], [11]; Angle of Arrival (AOA) [10], Bearings Information (BI) [36], [53],
[64], or Range Measurements (RM) [4], [42], [6], [61], [62]hese localization techniques require
an accurate knowledge of the sensor positions, since aoy@rthese positions is directly translated
to errors on the source estimated position.

In this work, as in most of the works available in literatutiee optimal sensor placement is
determined by minimizing the Cramer-Rao Lower Bound (CRLBat is a lower bound on estimate
variance that provides a gauge of source position estinaatarracy, or equivalently, optimizing any
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indicator of the Fisher Information Matrix (FIM), becauS®LB= FIM L. Stated in simple terms
the Fisher information is a way of measuring the amount afrimation that an observable random
variable, in this work range or bearing, carries about amonk parameter, the target position, upon
which the probability of the observable random variableate}s. Therefore, the sensors must be
placed in positions such that the information recoveredileynt maximizes as much as possible the
accuracy with which the target position is estimated. Tlegist some optimality criteria constructed
over the FIM to maximize such information, [85]:

e Maximization of logFIM| (also called D-optimum design).
e Minimization oftr(FIM~1) (also called A-optimum design).

e Maximization of the smallest eigenvalue of the FIM (alsde@&E-optimum design).

The optimization of any of the above criteria is afieetive tool to determine the appropriate
location of the sensor nodes to maximize the accuracy ofttget position estimation.

This Ph.D. thesis is focused on the problem of underwatgetguositioning. This problem is of
the utmost importance for the development of positionirgfeays with which multiple underwater
targets may be positioned with large accuracy. These sermies must be able to track the
targets movements to keep the large positioning accurapyired for many demanding tasks at
sea. For the sake of simplicity, the determinant of the FIMised for the computation of an
indicator of the performance that can be achieved (by propeice of an estimator) with a given
sensor configuration. Maximizing this indicator, as pragbi the so-called thB-optimum design
strategy [85], yields the most appropriate sensor formageometry for the single target positioning
problem. The D-optimality criteria for the design of optinsansor placement is commonly used
in the literature of 2D designs. The A or E-optimality indices are also very popular. The D-
optimality criteria minimizes the volume of the uncertgietlipsoid for the target estimate, whereas
the A-optimality criteria, that consists in minimizing thace of the CRLB matrix, suppresses the
average variance of the estimate, and the E-optimalitygdetiat consists in minimizing the largest
eigenvalue of the CRLB matrix, minimizes the length of thrgésst axis of the same ellipsoid, [85].

An important advantage of D-optimality is that it is invarfaunder scale changes in the
parameters and linear transformations of the output, vésefeoptimality and E-optimality are
affected by these transformations. However, if the globalnoglis not obtained the D-optimality
criteria can yield to some errors, because the informati@me dimension can be improved rapidly,
while we can have no information in others. This problem camwoided with the A-E-optimality
criteria, [80]. Despite the above, the D-optimality crigewill be used in this work due to simplicity
reasons because the A-E-optimality criteria imply the isgef the FIM. Furthermore, we search for
global optimal sensor configurations, that imply the besisfile estimate, and the global optimal
solutions must optimize any of the above optimality indicatas it will be seen throughout this
work. This is true with the exception of Chapter 6 in which thaimization of the trace of the
CRLB matrix will be used instead of the determinant of the Hicause the AE-measurements
enter the FIM in such a way as to render its determinant exahetarge for certain trigonometric
configurations. However, the large value of the determimantisleading since it corresponds to
close-to-singular configurations of the network for thessmamentioned above.

1.1 Underwater acoustic navigation and positioning system

Applications of underwater acoustic navigation and positig systems include a wide range of
scientific and commercial activities, such as biological anchaeological surveys, marine habitat
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mapping, gas and oil pipeline inspections, to name but a f€entral to the operation of some
classes of AUVs is the availability of reliable underwatesipioning systems capable of positioning
one or more vehiclgdivers simultaneously, based on information received oartha support ship
or an autonomous surface vehicle. The info thus obtainetbearsed to follow the state of progress
of a particular mission or, if reliable acoustic modems as&lable, to relay it as a navigation aid
to the navigation systems existent on-board the AUV. l@@htomments apply to a new generation
of positioning systems to aid in the tracking of one or morenhn divers, as proposed in the
context of the EC CO3AUVs project [9]. There is a great diitgrsf systems, suited for éierent
tasks and navigation accuracies, most of them based on ¢mgpanges or bearings (azimuth and
elevation angles) to acoustic sources with known positignsieasuring the times of arrival (TOA)
or time diferences of arrival (TDOA) of acoustic signals [58], [4618]8 [3], [11]. For the sake of
completeness the most common systems are commented.

e Ultra Short Baseline System, USBL.

Ultra Short Baseline (USBL) systems are one of the most wideiployed underwater tracking
systems. This system is based on a transceiver mounted drulihef a ship and a transponder
attached to an underwater target to be followed. An acoystise is emitted by the transceiver
and received by the transponder that replies back to theeioome. It is possible to measure the
elapsed time, TOA, and compute the respective range. TheWSBL is due to the fact that the
transceiver is composed by an array of three or more tramessltitat are separated by short distances
from each other (less than 10cm). By measuring the phasgsdefahe acoustic signals arriving
at the transceiver, the bearing and elevation of the trardgroccan also be computed. The accuracy
with which the transponder position can be obtained is ligl@pendent on the installation and
calibration of the transceiver, as well as on the accuradly which the inertial position of the ship
can be determined using for example a GPS system.

In this sense, advanced signal processing techniquesguieae in these systems. The actual
position and attitude of the USBL transducer head must be/kiazcurately to compute the absolute
position of the target. Typically these units contain an IN®jether with the input of a GPS
receiver, whose antenna position with respect to the traresdhead is known in advance. The
correct calibration of the system is a crucial element bseany error due to a bad calibration is
automatically translated into the target position estiamagrrors.

There is an alternative configuration named inverted USBitith the vehicle carries the USBL
transducer head, and navigates by using an acoustic pirthekmown position, [65], [89].

USBL systems are widely used because they are simple totegard have relatively moderate
prices as compared to other systems. The resulting posisitmation errors are usually greater that
in other longer baseline systems, very sensible to attibudes on the transducer head, and increase
with the slant range. One can achieve relatively good négigand repeatability, for instance when
several pingers are tracked simultaneously or if one pifrgyesed as a homing reference for the
other, but the system can generate big absolute positiorserr

e Short Baseline System, SBL.

The hydrophones of this kind of systems are separated bylimesef 1-100meters rigidly
mounted on the hull of a ship and a pinger carried by the unalentarget, [81]. The hydrophones
emit an acoustic pulse that reaches the pinger and travekstbahe hydrophones. The ranges are
calculated and the relative position of the target is deitgech The baseline on this kind of systems
is much smaller than the distance from the hydrophones ttatiget. An exact positioning of the
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hydrophones leads to better localization results. In lesb#ps it is possible to have bigger baselines
between the hydrophones and therefore to improve the TOAunement quality.

This kind of systems provides only relative position estigsebetween the SBL hydrophones
and the vehicle. For absolute position estimates, the atespbsition and orientation of the structure
(usually a support vessel) where the hydrophones are mmmist be known accurately in advance.

e Long Baseline System, LBL.

These classical positioning systems yield to the most ateumderwater acoustic positioning
system from the three yet mentioned. Moreover, this syssdimei most widely used for underwater
target positioning and it is composed by a set of beaconstieafixed at the bottom of the ocean
separated by long baselines (a few kilometres). The taggaes a transponder that interrogates the
beacons sequentially, the beacons reply to the target anelapsed time is measured, [38], [13].
Typically, LBL systems are used for relatively long range ande area coverage navigation and the
position of the target can be estimated from the TOA measemnént he precision is dependent on the
operation frequency, although a precision of a few metendesobtained. The typical interrogation
cycles are of 10 seconds or longer. There are, however, sghébquency LBL systems employed
for short range precision positioning such as the EXACT [982], that are claimed to provide
centimetric accuracy. These high frequency systems haae lged for drilling operations as well
as precise archaeological mapping. As in the USBS systeensdtiibration errors of the beacon
position are translated directly on estimation errors @f tdwrget position. The operational costs
of a mission involving a LBL system are considerable, inglgdthe deployment, calibration and
recovery of the beacons, which stresses the need for imgroweerwater navigation solutions.

e GPS Intelligent Buoys System, GIB.

The most important features of a common GPS system are itsaveh coverage, the capability
of providing navigation data seamlessly to multiple veddcirelatively low power requirements,
miniaturization of receivers, and environmental frienilyhe sense that its signals do not interfere
significantly with the ecosystem. Typical acoustic undeengositioning systems are quite the
opposite: reduced area coverage, do not usually scale sviellserve for multiple vehicle navigation,
high power requirements, and moderated to high impact ortlkéonment in terms of acoustic
pollution. Thus the search for a GPS-like underwater systeajuite active research area.

It was against this backdrop of ideas that the GPS Inteltig&roys (GIB) was developed
commercially. The brief explanation that follows is essaht adapted from [4] and the original
idea was introduced in [97]. The GIB system consists of a sstidace buoys with GPS receivers,
submerged hydrophones, and radio modems. The times o&laofithe acoustic signals emitted
by a pinger installed on-board an underwater target (symshed with GPS time prior to system
deployment) are recorded by the buoys and sent in real timoeigih the radio link to a control
unit[5], (e.g. on-board a support vessel, where the datpraessed and a position fix is computed).
Note that, unlike in a LBL system, the position informatigronly available at the control unit and
therefore the system cannot be directly applied for vemalégation. The GIB and alike systems are
basically used to track underwater platforms. If one widloagse them as a real-time underwater
vehicle navigation aid, the need arises to use an acoustitemdo inform the vehicle about its
own position. This type of systems is also referred as amriede BL since, in this case, the sea
bottom fixed transponders have been replaced by surface lamolthe information now is somehow
opposite as compared to a classic LBL. The advantage ofitidsdf systems is that the operational
costs are reduced because they eliminate the need to deplibyate and recover a set of sea bottom
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transponders, while providing good accuracy on the order fefiv meters. Typically, the surface
buoys are free drifting or moored, but there are also systeithsself propelled buoys which allow
for the execution of basic station keeping and underwatgfgrim tracking without the need of a
mooring line or when operating at large depths.

1.2 State of the art and report outline

Next we will give a brief overview of the topics addressed hiistPh.D. thesis, the contents of
its chapters, and the papers in which the results were ddis The reader is referred to the
introductions at the beginning of each chapter for moreildethibliographical references, and
precise problem formulations.

1.2.1 Sensor networks for single target localization with @oustic range
measurements

Inspired by similar developments in ground robotics, weradsl the problem of single target
positioning based on measurements of the ranges betweésrdgiee and a set of sensors, obtained
via acoustic ranging devices in 2D and 3D scenaridgShapter 2 andChapter 4, respectively. In
particular, and speaking in loose terms, we are interestel@termining the optimal configuration
(formation) of a sensor network that will, in a well definechse, maximize the range-related
information available for target positioning, with espd@mphasis ilfChapter 4 for the application
scenario of underwater target positioning. To tHi®et, we assume that the range measurements
are corrupted by white Gaussian noise the covariance ofhwhiay be distance-dependent. The
application scenario studied focuses on a system for uraterwarget localization that is similar to
GIB, whereby the Autonomous Surface Vessels (ASVs) playdheeof surface buoys. However, in
order to overcome the problem of having to synchronize tbekd of all acoustic systems involved,
the underwater unit only broadcasts an acoustic signal ywehempted to do so upon interrogation
by one of the ASVs. This renders the system far more robusttamgplementation cheaper. The
actual computation of the target position may be done byrtiegdo trilateration algorithms. See for
example [4], [3], [7], and the references therein for anadtrction to this circle of ideas, covering
both theoretical and practical aspects.

Given a target positioning problem, the optimal sensor goméition can be ascertained by
examining the corresponding Cramer-Rao Bound (CRB) ordfififormation Matrix (FIM), [87].

In the present work, the FIMs corresponding to 2D and 3D siesiare computed to derive
the sensor configurations that yield the best precision witlich the position of a target can
possibly be estimated, considering a distance-dependéatee of the noise model. To thiffect,

the determinant of the FIM is used as an indicator of the perémce that is achievable with a
given sensor configuration. Maximizing this quantity yettie most appropriate sensor formation
geometry. Moreover, in striking contrast to what is custpma the literature, where zero mean
Gaussian processes with fixed variances are assumed farthe measurements, the variances are
now allowed to depend explicitly on the ranges themselvéss dllows us to capture the fact that
measurement noise may increase in a non-linear mannerhettistances measured.

For a given target positioning problem, the optimal geoynetthe sensor configuration depends
strongly on the constraints imposed by the task itself {@aximum number and type of sensors that
can be used) and the environment (e.g. ambient noise). thalaénadequate sensor configuration
may yield large positioning errors. It is interesting to \kthat in spite of the importance and
relevance of the optimal sensor placement problem, the tefiar from being studied exhaustively.




1.2. STATE OF THE ART AND REPORT OUTLINE

At this point, it is important to point out that following whas commonly reported in the
literature, we start by addressing the problem of optimaseeplacement given an assumed position
for the target. It may be argued that this assumption defibatgpurpose of devising a method
to compute the target position, for the latter is known inathe. The rationale for the problem
at hand stems from the need to first fully understand the gmgituation where the position of
the target is known and to characterize, in a rigorous marhertypes of solutions obtained for
the optimal sensor placement problem. In a practical sttoathe position of the target is only
known with uncertainty and this problem must be tackleddaiye However, in this case it is
virtually impossible to develop a general analytical cletggzation of the optimal solutions, and
one must resort to numerical search methods. At this stag@-@epth understanding of the types
of solutions obtained for the ideal case is of the utmost irgree to compute an initial guess for
the optimal sensor placement algorithm adopted. Thesessae rarely discussed in the literature,
notable exceptions include [39]. The organization of theatars reflects this circle of ideas in
that it éfectively establishes the core theoretical tools to addaadssolve the case when there is
uncertainty in the position of the target.

Therefore inChapter 2 andChapter 4 we address the problem of finding the optimal geometric
configuration of a sensor formation for the positioning ofaaget in 2D and 3D scenarios
respectively, based on target-to-sensor range measutgmely. In contrast to what has been
published so far in the literature, @hapter 4 we address explicitly the positioning problem in 3D
with the sensor array in 3D. The special scenario where theosarray is located in a plane (2D)
is studied as a particular example of the methodology deeelpthis application scenario arises for
example in the case where an underwater target is positiop@th ocean surface sensor network.
Moreover with the solutions obtained, the relationshipreen 3D and 2D scenarios (commonly
exploited in land robotics) where the target and the senstwark lie in the same plane becomes
clear.

Some of the results in these chapters appear in the authblisgtions [61] and [62].

1.2.2 Sensor networks for multiple target localization wih acoustic range
measurements

Once the solution for single target positioning is well bfithed, themultiple target positioning
problemin Chapter 3 for 2D scenarios and i@hapter 5for 3D scenarios is studied. This problemis
of the utmost importance because it is easy to envisifiareéint practical situations in which several
AUVs andor divers are working in collaborative and cooperative sagid they must be localized
with the largest possible accuracy. Clearly, there will iz@lédts involved in the precision with
which each of the targets can be localized; to study themesert to techniques that borrow from
estimation theory and Pareto optimization. For the latiteryeader is referred to [45], [22], [90]. See
also Appendix B for a very short review of some key conceptbrasults. Stated briefly, we avail
ourselves of concepts on Pareto-optimality and maximineeocombinations of the logarithms of
the determinants of the FIMs for each of the targets in ordepmpute the Pareto-optimal surface
that gives a clear image of the tradésoinvolved in the multiobjective optimization problem. We
thus obtain a powerful tool to determine the sensor configardhat yields, if possible, a proper
tradedt for the accuracy with which the position of thefférent targets can be computed.

It is important to remark that, for the multiobjective optzation problem, the logarithms of
the determinants of the FIMs will be used instead of the dateants themselves. This makes the
functions to be maximized jointly convex in the search patenspace, thus justifying the use of
scalarization techniques in the computation of the Paoptonal surface, as described in Appendix
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B. For a discussion of the convexity of the functions adopded for example [12], Chapter 3 and the
work in [85] on the D-optimality criterion. This issue wilkebstudied in depth in the corresponding
Chapters.

For a multi-target localization problem, similarly to thiagle target positioning problem, the
optimal geometry of the sensor configuration depends styangthe constraints imposed by the
task itself (e.g. maximum number and type of sensors thatbeansed), the environment (e.g.
ambient noise), the number of targets and their configuratind the possibly dierent degrees of
precision with which their positions should be estimated.i®adequate sensor configuration may
yield large localization errors for some of the targetsf giery important to determine the tradiso
involved in the multi-target positioning problem.

Therefore inChapter 3 and Chapter 5 the multiple target positioning problem with range
measurements is studied in 2D and 3D scenarios, respgctidelalytical solutions are derived
for the 2-dimensional scenario, and numerical solutionsttie 3-dimensional scenario. In this
latter case the application scenario of a surface sensapriethat must localize several underwater
targets is studied in detail. The range measurements arsidevad to be corrupted by white
Gaussian noise, the variance of which is distance-depéndéareover the results obtained for
the 2D and 3D scenarios are extended to the situation in vithechositions of the targets are known
with uncertainty that is described by a probabilistic diattion function.

These results appear in the authors publication [63].

1.2.3 Sensor networks for single target localization with eoustic bearings
measurements

In Chapter 6 the problem of single target positioning based on measuren& the azimuth
(bearings, in 2D scenarios) and elevation angles betweemaarwater target and a set of sensors
at the sea surface is studied as a natural extension of th@pseanalysis. In what follows we
will refer to these measurements in 3D as AE (azimuth-elempmeasurements or, for simplicity,
with an obvious abuse of notation, simply as bearings measemts. \We assume again that the AE
measurements are corrupted by white Gaussian noise, tlmeanf which is distance-dependent.
The computation of the target position may be done by resptti triangulation algorithms, based on
the nature of the measurements. We recall that the triatignlproblem has been widely studied in
the computer vision field, and that there exist many exangflefgorithms to compute the position
of a target using angle measurements; see for instance fi84l&] for an example of the design
of motion-planning and sensor assignment strategies ¢& traltiple targets with a mobile sensor
network by resorting to triangulation.

The problem of determining the optimal sensor placementtdaget localization with AE-
only measurements is of special interest because its gplutdbes not require the exchange of
information between the target and the sensor network. ,TAEsonly measurements allow for
the sensor network to observe without being detected .itselproblem of this type was studied
in [57] for an unmanned underwater vehicle tracking an uwdéesr target while avoiding detection.
Given a localization strategy, the optimal sensor confifjomacan be ascertained by examining
the corresponding Fisher Information Matrix (FIM) or itv@rse, the so-called Cramer-Rao Bound
(CRB) matrix. InChapter 6, the trace of the CRB matrix is used as an indicator of thegperdnce
that is achievable with a given sensor configuration. Mizing this quantity yields the most
appropriate sensor formation geometry. It is importanteimark that in many studies published
in the literature on ground and marine robots, as well asémtievious Chapters of this work, the
determinant of the FIM is often used as an indicator of the typpositioning performance that can
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be achieved. For the problem that we tackl€mapter 6 this indicator is not adequate, as it will be
shown. This is a simple consequence of the fact that the ABunements enter the FIM in such a
way as to render its determinant extremely large for cett@jonometric configurations. However,
the large value of the determinant is misleading for it cepmnds to close-to-singular configurations
of the network. This issue does not arise in 2D applicatises,[10]. Related

The results appear in the authors publication [64].

1.2.4 Single tracker for single target localization with aoustic range mea-
surements

The systems previously commented exploit the geometrifigraration of acoustic sensors in order
to define the position of an underwater target from range aribgs measurements. These ranges
or bearings are measured aftdient locations that make it possible to determine the taasgtion.
However, inChapter 7, an alternative approach is used, a single sensor that gaipdeh the spatial
and temporal diversity in order to extract position infotioa.

There is a great interest in reducing the number of beacmo$vied in the acoustic navigation
systems, as they usually involve deployment, calibratimmhracovery time which is money and time
consuming. A recurrent question arises: what is the minimumber of beacons that can be used
to perform a navigation task? A single range measuremerst miatecontain enough information to
uniquely determine a position, but instead, it defines a w/itokle (in 2 dimensions) or a sphere
(in 3 dimensions) of possible positions. This does not me&rcourse, that this information is
not useful, but rather that this information alone is notwgioto compute a position fix. If the
vehicle carries an on-board navigation system capable idoimeing DR (Dead Reckoning) one
can use the ranges collected over a time interval in ordeotiect the DR navigation errors. The
locations at which the ranges are acquired act as elemeatsidiial beacon array. This suggests
the name of Virtual Baseline (VBL) navigation. Of courserthare several limitations of this
method, including the need of rich and spatially diverseislehtrajectories, and the need of an
accurate DR navigation system. The concept of underwatggai#on using ranges to a single
beacortransponder has received increasing attention in the maoibotics community. An early
reference can be found in [8] where the target motion ara({ld¥lA) with unknown marine systems
using sonar measurements is discussed, i.e., the estmudtibe position and velocity of a target
ship, given a sequence of measurements, is studied; or [B8leamthe observability requirements
are obtained for three-dimensional maneuvering targekimg with bearings-only measurements.
Another early work on this trend is the work of Larsen who campeavith the term Synthetic Long
Baseline navigation [49], [50].

A dual to this problem is the tracking of an underwater tasgith a single range measuring
device. Instead of a static surface sensor network, onedciirik of a surface vehicle that,
by moving in convenient trajectories, exploits its spatialersity while measuring ranges to the
underwater platform in order to determine its position. Tinenber of ranges needed to determine
the position of a target is of the utmost importance, in thestngeneral scenario, 3 non-collinear
ranges in 2 dimensional scenarios, and 4 non-coplanarsam@elimensional scenarios, are needed
to determine a position fix. In a practical situation, as thdarwater target positioning with surface
sensors, the target is known to be under the sea surface, sn-8oflinear range measurements
are enough. Therefore i@hapter 7 the study of the optimal trajectories that a single sensastmu
follow, in order to maximize the accuracy with which a targgetocalized, is tackled. The problem
is studied with two dterent approaches with which the trajectory of the surfaneass planned in
order to maximize the FIM determinant and thus the positigrsiccuracy. The éierence between
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these approaches lies in how the sensor trajectory is piaiyestudying just the next movement of
the sensor or by planning a given number of future measuresagid then following a preplanned
trajectory.

1.3 Report main contributions

It is interesting to comment at this point that all chapteasénha similar structure and that the
contents are explained in a way such that each of the chapteedf contained and it can be read
independently of the rest. This allows the reader to payttte to the chapters in which fghe is
interested. The main contributions corresponding to e&tieocchapters are:

Chapter 2: Single target positioning in 2D scenarios.

Derivation and definition of the optimal Fisher Informatibtatrix, with distance-dependent
covariance error, that maximizes the logarithm of the FINgdainant.

Derivation of the design conditions that the optimal serfisonation must achieve to provide
the maximum logarithm of the FIM determinant.

Description of analytical and numerical methods to compptémal sensor configurations.

Extension to the more realistic problem where the targeitiposs known with uncertainty.
This uncertainty can be defined by any probabilistic distidn function, and the kind of
function used determines in high degree the optimal sesordtion.

Chapter 3: Multiple target positioning in 2D scenarios.

Initial study of the multiple target positioning problenrfoonstant covariance measurement
error. An analytical solution that provides the maximum Filgterminant for each of the
targets is presented for simple target configurations.

Use of Pareto optimization techniques for the maximizatibeonvex combinations of the
logarithms of the determinants of the FIMs for each of thgets because for complex
target configurations ayia distance-dependent covariance error an analyticatisnloannot
be computed and the optimal sensor configuration must beedefesorting to numerical
optimization methods.

Extension of previous results to the more realistic problehere the target positions are
known with uncertainty.

Chapter 4: Single target positioning in 3D scenarios with noisy rangasurements.

Characterization of the solutions to the problem of optimedustic sensor placement for
target positioning in 3D space, with special emphasis omuttterwater target positioning by
a surface sensor network.

Derivation of conditions under which a sensor network maz&s the range-related informa-
tion available for positioning.

The core result obtained is an analytic characterizatidgh@tonditions that must be met by
a generim sensor network in 3D in order for it to be optimal.

10
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e It is further shown that the optimal sensor configurationdkertself to an interesting
geometrical interpretation and that the spreading of the@econfiguration depends explicitly
on the intensity of the range measurement noise and the fpitisiia distribution that defines
the prior uncertainty in the target position.

Chapter 5: Multiple target positioning in 3D scenarios with acousdoge measurements.

e The localization problem in 3D using a sensor array locate®BD space is explicitly
addressed. The special scenario of a surface sensor neg@@yks studied as an application
scenario.

e Definition of optimal configurations of sensor networks thalt, in a well defined sense,
maximize the range-related information available for mplétunderwater target positioning.

e In depth study of the traddi@ that are inherent to a multiple target localization proble

e The situation in which the target positions are known withusicertainty described by a
probabilistic distribution is again studied.

Chapter 6: Surface sensor networks for underwater vehicle positgpmiith bearings-only
measurements.

e The problem of determining the optimal configuration of assemetwork that maximizes the
AE (azimuth-elevation)-related information available farget positioning is addressed. The
application scenario of surface sensor networks is studiddtail.

e The Fisher Information Matrix and the minimization of thade of the CRB matrix are used
to determine the optimal sensor configuration.

e Presentation of explicit analytical results for both dista-dependent and distance-independent
noise.

e Extension to the more realistic scenario in which the tgpgsttion is known with uncertainty.
Chapter 7: Single tracker for underwater vehicle positioning with astic range measurements.

e The problem of determining the optimal trajectory of a scefsensor that maximizes the
range-related information available for underwater tepgsitioning is addressed forftérent
speedd/(t) and sampling timeat between measurements.

e Use of the Fisher Information Matrix and the maximizationtefdeterminant to determine
the optimal sensor trajectory.

e This scenario is only studied for a constant covariance.erro

e Explicit analytical and numerical results are obtainedtfev different approaches. The first
one when we already have a number of measurements and weonaemiw the immediate
next range measurement (or measurement point) that maesrttie accuracy, considering a
limited memory, so as the oldest range measurement is ndtfas¢he computation of the
new FIM. The second one when a trajectory to follow by the seissplanned for the next
measurement points and the FIM determinant is maximizethfsen points, so an optimal
trajectory is preplanned.

e Extension to the situation in which the target moves in girgline with constant velocity.

11






Chapter 2

SINGLE TARGET POSITIONING IN
2D SCENARIOS WITH RANGE MEA-
SUREMENTS

2.1 Introduction

Motivated by multiple developments in ground robotics,histchapter we address the problem of
single target positioning in two-dimensional scenariasgobon measurements of the ranges between
the target and a set of sensors obtained via acoustic rauigiviges. The optimal configuration
(formation) of a sensor network that will, in a well definechse, maximize the range-related
information available for single target positioning is ided. To this éfect, we assume the range
measurements are corrupted by white Gaussian noise, ttaeaf which is distance-dependent.
The computation of the target position may be done by rasptt trilateration algorithms, [4], [3],
[7]. This chapter can be seen as an introductory step for tive complex problem of single target
positioning in 3-dimensional scenarios studied in Chagpter

Given a target positioning problem, the optimal sensor goméition can be ascertained by
examining the corresponding Cramer-Rao Bound (CRB) ordristiformation Matrix (FIM). See
[87] for a lucid presentation of this subject in the contektestimation theory. In the present
chapter, the FIM corresponding to a 2D scenario is computeetive the sensor configuration that
yields the best precision with which the position of a target possibly be estimated considering
a distance-dependent variance of the noise model. In the sy in [84] the Cramer-Rao Bound
is derived for a distance-dependent error model for TimeroivAl (TOA) based localization in the
two-dimensional (2D) space, showing that an error modéi @istance-dependent covariance has
an important impact on the geometric configuration of nodethe localization accuracy. To this
effect, the determinant of the FIM is used as an indicator of #réopmance that is achievable with
a given sensor configuration. Maximizing this quantity ggelhe most appropriate sensor formation
geometry. The work in this chapter is greatly inspired bywhek reported in [55] and in [11] on
optimal ranging sensor placement to improve the accurattheitocalization of ground robots.
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Interesting results in the area go back to the work of [1], relibe Cramer-Rao Bound is used as
an indicator of the accuracy of source position estimatiwh @ simple geometric interpretation of
this bound is &ered. In the same reference, the authors describe a solatibe problem of finding
the sensor arrangements that minimize the bound, subjedmetric constraints. In particular,
“Carter’s optimal arrays yielding minimum range, bearinmgl gosition bound variance subject to
the constraint that the sensors lie along a line segmentetezrdined without tedious algebraic
manipulations”. In [52], the problem of target positioniimgtwo-dimensional (2-D) scenarios is
examined. The author shows explicitly what is the lowessiiids geometric dilution of precision
(GDOP) attainable from range or pseudo-range measureneitoptimally located points and
determines the corresponding regular polygon-like sensofiguration. In [6] the authors study
optimal sensor placement and motion coordination strasefyir mobile sensor networks. For a
target tracking application with range sensors, they itigate the determinant of the FIM and
compute itin the 2D and 3D cases. They further characterzglobal minimum in the 2D case. In
[42], an iterative algorithm that places a number of senso@s to minimize the position estimation
error bound is developed, yielding configurations for theéiral formation subject to several
complex constraints. [10] and [11] characterize the netasiensor-target geometry for positioning
problems that exploit bearing-only, time-of-arrival, aide-difference-of-arrival strategies R2.
Finally, in [39], the authors address the problem of lodatiza source iffR? from noisy time-of-
arrival measurements by seeking an extreme of the FIM forctited, radially-symmetric source
distributions that characterize prior uncertainty in target location. Similar conclusions are found
in other interesting works such as [25] and [44], where theénwgdity conditions for the sensor
placementin 2D are derived for TDOA.

Some other interesting works that deal with the problem tifiegd sensor placement forfegrent
application areas are [98] or [59]. In [98] seismic netwaokfigurations are derived to maximize the
precision with which the location of earthquakes is deteadi The maximization of the logarithm
of the FIM determinant is used as optimality criteria. In][%8 swarm of sensors is employed in
a health monitoring system for structures like bridges, ngtike optimal placement of the sensors
is defined using a swarm intelligence technique called @ar@warm Optimization (PSO). Another
interesting reference is [16], in which a sensor networkhwitlarge number of nodes is used for
surveillance.

Motivated by previous works, we address the problem of figdihe optimal geometric
configuration of a sensor formation for the localization dfiagle target, based on target-sensor
range measurements only. The expression of the optimadiHisformation Matrix that provides the
maximum possible information about a target is defined, aoih fits analytical form, the optimal
sensor configurations are derived. Moreover, in contrasthat is customary in the literature of
ground robotics, where Gaussian error with constant camaé is considered, we consider the
measurement error to be distance-dependentin a non-limeaner.

At this point, it is important to point out that following whé commonly reported in the
literature, we start by addressing the problem of optimaseeplacement given an assumed position
for the target. It may be argued that this assumption detbatpurpose of devising a method to
compute the target position, for the latter is known in adeanThe rationale for the problem at
hand stems from the need to first fully understand the singiteation where the position of the
target is known and to characterize, in a rigorous mannerfythes of solutions obtained for the
optimal sensor placement problem. In a practical situatiom position of the target is only known
with uncertainty and this problem must be tackled directfowever, in this case it is virtually
impossible to develop a general analytical charactednatf the optimal solutions, and one must
resort to numerical search methods. At this stage, an ithdeperstanding of the types of solutions
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Figure 2.1: Target localization problem set-up.

obtained for the ideal case is of the utmost importance topedenan initial guess for the optimal
sensor placement algorithm adopted. These issues arg digselissed in the literature, a notable
exception being [39]. The organization of the chapter r&dléds circle of ideas in that itfeectively
establishes the core theoretical tools to address and gw@vease when there is uncertainty in the
position of the underwater target.

The present chapter is divided in the following sections. Skttion 2.2 the FIM is derived
considering distance-dependent measurement error. tin8&c3 the optimal sensor configurations
are defined for Gaussian error with constant covariance. offtienal sensor configurations for
Gaussian error with distance dependent covariance (a nealistic assumption for large sensor
networks) are studied in Section 2.4. In Section 2.5 the maicgy in the target location is
considered, and optimal sensor configurations for arlyitpaobabilistic distributions are defined.
Conclusions are commented in Section 2.6.

2.2 Fisher Information Matrix with range-only measurements

Let {I} be an inertial reference frame with unit axis}, {y|}, and letq = [qx, gy]" be the position

of the target to be positioned {h}. Further denote by = [pix, py]™; i = 1,2, .., n, the position of

thei — th acoustic ranging sensor, also{in. Letr;(q) = |q— pi| (abbv.r;) be the distance (range)

between the targetand the — th sensor, wherg: | denotes the Euclidean norm. The variables and

the set-up that will be used are illustrated in Figure 2.1tiercase of one target and three sensors.
We denote by, the measurement of the actual ramgdg), corrupted by additive noise;. With

the above notation, the measurement model adopted is given b

z =9~ pil + wi = ri(Q) + wi (2.1)

Range measurements between two objects are plagued vtk #rat depend on a multitude of
effects: speed of propagation of sound, physical propagatamelns, ambient noise, and degrading
signal-to-noise ratio as the distance between the two tbjacreases, to name but a few. For
analytical tractability, it is commonly assumed that theasw@ement errors can be captured by
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Gaussian, zero mean, additive noise with constant cowaigédee for example [99], wherdldirent
noise covariances are taken foffdrent sensors, but the covariances are constant. Clelidy, t
assumption is artificial in view of the simple fact that thevil of noise” is distance dependent. In
an attempt to better capture physical reality, we assunmeltbaneasurement noise can be modelled
by a zero-mean Gaussian process where the covariance depertide distance between the two
objects that exchange range data. A similar error modelisidered in [42]. Stated mathematically,

w = (I +n6(r()")) - wo (2.2)

wherer(q) is the vector of actual rangeg,andy are the modelling parameters for the distance-
dependent noise component, and= [w; ---w,]" IS measurement noise assuming that all noise
sourcesy; are independent, and the vectay is a zero mean Gaussian procég®, o) with Xy =

o? -1, wherel is the identity matrix. In the abov, is the operatodiag, that either converts a
square matrix into a vector consisting of its diagonal eletsieor converts a vector into a square
diagonal matrix whose diagonal components are the arragegles. With these assumptions, the
measurement noise covariance matrix is given by

T = o (1 +n5(r(g)))? = 6(0’2 . (1 + nr{)z ool (1 + nr%)z) (2.3)

In what follows, we assume that the reader is familiar with toncepts of Cramer-Rao Lower
Bound (CRLB) and Fisher Information Matrix (FIM); see foraarple [87]. Stated in simple terms,
the FIM captures the amount of information that measureal plavide about an unknown parameter
(or vector of parameters) to be estimated. Under known gssans, the FIM is the inverse of the
Cramer-Rao Bound matrix (abbv. CRB), which lower boundsthnariance of the estimation error
that can possibly be obtained with any unbiased estimataors T‘minimizing the CRB” may yield
(by proper estimator selection) a decrease of uncertaintlyd parameter estimation. Formally, let
(2) be any unbiased estimator@fthat is, a mapping ¢ R" — R? between the observatiomsind
the target position space such tié} = g for all g € R?, whereE{-} denotes the average operator.
Let py(2) be the likelihood function that defines the probability btaining the observationgiven
that the true target position & It is well known that under some regularity conditionsmy(z) the
following inequality holds:

CoMq} > FIM(g)™ = CRE(Q) (2.4)

where
Covd) = E{@-a)@-a)'), (2.5)
FIM (q) (often abbreviated simply as FIM) is the Fisher Informatiatrix defined as

FIM(q) = E{(Vqlog pa(2))(Vqlog pa(2)'} (2.6)

andCRHE(q) is the Cramer-Rao Bound matrix. In the aboVgl|og py denotes the gradient of the log
of the likelihood function with respect to the unknown pagdenq. Taking the trace of both sides
of the covariance inequality yields

var() := tr(Cov@)) = tr(E{(G - a)(@-a)"}) > tr(FIM(q)) ™ (2.7)

that sets a lower bound on the mean-square error of any wtbéssimator.

Equipped with the above notation and tools of estimatiotpeve now address the optimal
sensor placement problem by solving a related equivaleimhgation one: given the FIM for the
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problem at hand, maximize its determinant by proper chofct® acoustic sensor coordinates.
This strategy for sensor placement underlies much of theiqare work available in the literature;

see for example [55] , [39] and the references therein. watlg standard procedures, the FIM
corresponding to the problem of range-based single tamggtigning can be computed from the
likelihood functionpg(2) given by

Py(2) = exp{—% z-r(@) = (z- r(q))} (2.8)

(2m)]z)?
wheren is the number of receiverg,= [z, 2, ..., z,]" consists ofh measured ranges, anl) are
the actual ranges. Taking the logarithm of (2.8), computsderivative with respect tq, and then
its expected value, the FIM is defined as

FIM = C(5(r)zs(r))*CT (2.9)

whereC = (q1] - p) € B?", 1, ¢ R™ is a vector of 1s, ang is the vector of sensor positions,
the latter being defined iR >". For more details about the computation of the FIM see Append
A. The FIM is constructed by allowing the measurement ewwdrd distance-dependent. Note that
¥ depends on the actual range distances, not the measuredortsderivative with respect to the
estimation parameters gf must not be computed in (2.9). Once the FIM is defined, the €ram
Rao Bound matrix is computed &RB = FIM™L. In this context, the optimal sensor placement
strategy for a single vehicle localization problem is oh¢ai by maximizing the determinant of the
FIM, which must be computed explicitly. To thiffect, we start by expanding (2.9) to obtain

N W)? () (Us)

FIM = 2 (2.10)
i=1 (uix) (uiy) (Uiy)
where .
U = [ uy] " = [ 2R, AR ] (2.11)

andl; = 1/ (1 + r;riy) fori € {1,...n}. Clearly, the expression of the FIM considering a distance-
dependence covariance error is well defined.

Actually, the 2D problem is a particular case of the more galproblem of target positioning in
3D scenarios, but it is adequate to introduce the 2D problestté shed light on the more complex
target positioning problem in 3D. There is a wide number ofkgahat deal with the 2D target
positioning problem as commented in 2.1. The optimal sohgigiven in these works are recovered
in this chapter with a novel methodology, and the resultsextended for distance-dependent
covariance error and uncertainty in the target locationrtHemmore, the optimal formations are
not explicitly defined, the optimality conditions that tharihation must achieve to minimize the
measurement error are defined instead, so any possibleadmiimfiguration may be derived from
them. Some examples of optimal sensor placement are shawa end of each section to illustrate
the methodology developed.

2.3 Gaussian error with constant covariance

In this section the optimal sensor placement problem witistant covariance measurement error is
studied. The aim of this section is to recover the resultsgimal sensor placement defined in the
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literature but with a novel methodology with which the opaiity conditions for the optimal sensor
configurations can be defined in a fast and simple manner.

2.3.1 Optimal Fisher Information Matrix

It was introduced that the FIM captures the amount of infdromethat measured data provide about
an unknown parameter (or vector of parameters) to be egtiipand that the determinant of the FIM
is used for the computation of an indicator of the perfornegthat is achievable with a given sensor
configuration.

As abovementioned, l&f = [dy, q,]" be the position of an arbitrary targes, = [pix piyl";
i =1,2,..,n, the position of thé-th acoustic ranging sensor, aagthe corresponding measurement
noise defined in (2.2) with = 0. Further let; be the actual distance between targend thei-th
sensor. For the sake of simplicity and without loss of gdlitgithe target is considered to be placed
at the origin of the inertial coordinate frame. Therefoe10) becomes

1 ¢ cog () cos(ai) sin(a;)

FIM = ?Z}( cos(a)sina;)  Sirt (@) ) (2.12)
whereq; is the angle that theth range vector forms with thgx } axis of the inertial coordinate
frame. At this point, it is convenient to introduce the vest®, andY in R" (wherenis the number
of sensors involved in the target positioning task) defireed a

X:[ulx Unx]z[’?_ll>< F:’_”r:(]

(2.13)
T=[uy ... ouy|=[ B2 2

As a consequence, the FIM is parametrized by 2 vecto®"iinstead ofn vectors inR2. It is
also convenientto view these vectors as elements of theHBpace with elements R", endowed
with an inner product structure. The latter, as it is well\kngallows for computation of the length
of a vector and also for the angle between two vectors. Themaluct between two vectors can be
rewritten as the product of the norms of those vectors tihesbsine of the angle between them.
Simple computations allow us to rewrite (2.12) as

1 (XX o x-r)_o 1 IX|? IX]17] cos(Bxr)
FIM = 02( X-T *-r )‘ 0'2( IXI17] cos(éixr) TP (2.14)
The determinant of (2.14) yields
IFIM| = i4|X|2|T|2(1— co< () (2.15)
a

whered is the angle formed by vectors X afid
To determine the conditions for whi¢RIM| is maximum (and consequently the optimal sensor
configuration), one simply computes the derivatives of tgatithm of (2.15) with respect to the
norms of the vectors and with respect to the angle that appeaicitly in [FIM| and equals the
result to 0. Setting this derivative with respecttequal to 0 yields the first necessary condition of
optimality.
dlog(IFIM|) _ 8IFIM| _ 2cos(@)sin(6) _

96 ~ IFIM|  1-cog(0) (2.16)
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2.3. GAUSSIAN ERROR WITH CONSTANT COVARIANCE

Clearly sin(9) = 0 provides an indetermination, that from the L'Hopital rutee limit of (2.16)
tends to infinite (moreovefi-IM| = 0), so this solution can be discarded. Then the only feasible
solution is cogd) = 0. This solution implies that = k- 7/2 wherek is any odd number, and then the
vectors X andr’ are orthogonal. Hence, a necessary condition (to obtaiogtimal sensor network
that maximizes the FIM determinant) is that these two veataust form an orthogonal system. This
condition leads to a diagonal FIM.

1(X? 0
FIM:;(lol I‘I’Iz) 2.17)

Now the focus is on the derivatives of the logarithm of (2.4h respect to the norms of the
vectors. Because

2
pi piy
i i
it follows that
QLR e
X2+ 72 = Z L Z — =n (2.19)
e
S0 (2.17), together with (2.19), can be rewritten as,
1 ({n-r? O
FIM = ;( 0 P (2.20)
The logarithm of the determinant of the FIM can be written resv
log (FIM) = log( = ¥ (n— TP 2.21
og (IFIMI) = log| = [T (n - 'F?) (2.21)

Thus, the derivative of (2.21) with respect to the norm ofuéetorY’, after some simplifications,
yields

dlog(FIM[) 5 3 > N
31| =11 (n =) = 1P =0 1P = 5 (2.22)

and it is clear from (2.19) thakK[> = n/2, so|X|?> = |Y|°>. Therefore the expression of the Fisher
Information Matrix that provides the maximum (logarithmtbé) determinant possible yields,

n
1
FIMopt = P[ g ] (2.23)

NIDS O©

and the value of the determinant of (2.23) is
n2
[FIMop| = 7 (2.24)

It is interesting enough to comment that (2.24) providesapeémal FIM determinant defined
in [11] and [55]. Comparing the optimal FIM in (2.23) with tlyeneric one in (2.10) gives an
implicit characterization of the conditions that must bés$ed by the sensor network in order for it
to be optimal:
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(2.25)

Thus, all the possible optimal sensor configurations do epedd on the distance between target
and sensors, the angles that the range vectors formed retiaera define the optimality conditions
(2.25) and thus, these angles characterize the optimalgeoafions. From (2.23) it is obvious
that the optimaFIM (2.24) is diagonal and its eigenvalues are equal. Therefbesoptimality
conditions derived maximize not only the determinant of i@ but also its minimum singular
value. In the forthcoming sections some examples of optaoafigurations are shown.

It is important to remark at this point that it is possible &fide configurations with equivalent
FIM determinant which in practice provideftirent measurement accuracy. To avoid this problem,
it is useful to study the condition number of the FIM to chotse sensor configuration for a given
determinant that provides the minimum condition numbers Phnoblem does not arise with optimal
configurations, because these always provide the minimurditton number (it is clear from the
fact that the optimal FIM is a diagonal matrix with all eigahves being equal).

2.3.2 Optimal sensor configurations

The optimal formations can be obtained analytically frora ystem (2.25). It is interesting to
notice that this problem, as it will be seen in the next seci®equivalent to the distance-dependent
covariance problem when sensors are constrained to bedpétiee same distance from the target,
it is, they are placed over a circumference centred at tlgetgosition. The analysis and solution
of the latter problem is equivalent to the global analysid aaolution for the constant covariance
problem. The only dference between the solutions of both scenarios is that &distance-
dependent covariance case the sensors must be placed a&nadiitance, as close as possible to
the target, whereas in the constant covariance case thersara be placed at any distance from
the target while the optimal angles be kept, i.e., the dstdretween target and sensors does not
condition the optimal solution. This issue is studied int&ec2.4

For the problem at hand the system (2.25) can be rewrittenlar poordinates as follows:

n pﬁ( B n N n

Igl? = iglcog(aﬂ) = E

Py n 2.26
Y — = Y sinf(a) = 5 (2.26)
= =] 2

N Pix Piy

g

Py _ 5 sin) cosgs) = 0
r i=1

=1 i
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2.3. GAUSSIAN ERROR WITH CONSTANT COVARIANCE

The two first conditions of (2.26) can be combinedir(co§ (ai) — sir? (ai)) = 0, and therefore the
i=1

sensor formation must achieve:

5. (c0% (ar) — sirP (@) = 3. cos(2ar) = 0
=1 i=1

i (2.27)
Zn: COS(Gi)Sin(a’i) = Zn: Sln(zai) -0
i=1 iz1

Using by now classical terminology, the sensor formatiosthe first and second moment balanced.
Then, from (2.27) all the necessary conditions to deterraimeptimal formation are defined.

Clearly, in order for the information about the optimal cguofiations to be useful, one must
check if the logarithm of the determinant of the FIM meetsmekspecifications. To thigkect, and
for comparison purposes, the determinant of the FIM obthfnea number of hypothetical target
points (based on a fixed optimal sensor configuration cooredipg to a well-defined scenario) will
at times be computed by allowing these points to be on a gradfinite spatial regioD. This will
allow us to evaluate how good the sensor formation is in tevhyselding accurate localization of
the real target, in comparison with the performance loa#iim accuracy that is possible for any
hypothetical target (dierent from the real one) positioned anywhereln For the sake of clarity,
and with an obvious abuse of notation, we will refer to thaedminant, viewed as a function of its
argument inD, simply agFIM|y,. In this chapterpD will always be a rectangle iR?2.

One simple and intuitive configuration arises noticing thagonality relations for sines and
cosines from Fourier analysis [37].

n-1
2, —
EO coZ ( = n)

NI S

i”g;sinZ(%-i)zg

n-1

ngocos(z—gr -i)sin(Z-i)=0 (2.28)
E}lcos(z—rjr [i)=0

i=0

Ssin(2 i) =0

i=0

Thus, a maximum FIM determinant is achieved with the senstwork regularly distributed
around the target projection. Obviously, an infinite numbfesolutions are obtained by rotating
the sensors rigidly along the circumferences, that is, bgwéhg the above angles to become
2ri/n+ agi = 0,1,...,n— 1, whereas is a fixed but arbitrary angle in [@x]. In the following
examples we have considered a regular formation aroundtbettposition and- = 0.1 m. It is
important to remark on one important feature of the optimaltioons that can be computed based on
the analysis explained above. If two disjoint setsi@hdm sensors each are optimally placed, the
resulting formation ofi + m sensors is also optimal. Therefore, new higher order opsoiations
can be obtained by combining reduced order optimal conftgurs
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Example 2.1

In Figure 2.2 an optimal sensor formation of 5 sensors retyulistributed around the target is
shown, witho- = 0.1 mandzn = 0 (constant covariance). It can be noticed how the maximuvh FI
determinant is obtained at the target position (lighteiamsg), larger accuracy), taking the theoretical
maximum valuep?/(c* - 4) = 6.25- 10* m™. In Figure 2.2 (b) it is shown the value taken at each
point by the FIM determinant im.

4

e
o
(oo
i

CRB trace

Y (meters)

Y (meters)

2 0
X (meters) X (meters)

Figure 2.2: Optimal sensor placement for 5 sensors. InNkaM|, is shown (lighter regions, larger accuracy)
and in (b) the FIM determinant value #. In (c) tr(CRB)y is shown (lighter regions, larger accuracy) and in
(d) the value of the trace of the CRB iD.

In Figure 2.2 (c) and (d) the level curvestofCRBy (lighter regions, larger accuracy) and the
representation of its magnitude in 3D fBrare shown, respectively. This shows the correspondence
between maximum determinant and minimum CRB trace. It canheeked how the minimum
trace of the CRB is obtained at the target position achieitsgheoretical minimum value too,
tr(CRB = o2 - 4/n = 0.08 n?. This correspondence between the minimum trace of the CRIB an
the maximum FIM determinant is clear from the fact that théroal FIM is a diagonal matrix with
all the eigenvalues being equal.

Example 2.2
An optimal sensor formation for 3 sensors regularly disiiglol around the target position is

shown in Figure 2.3. The theoretical maximum FIM determin@md minumum CRB trace,
tr(CRB = o - 4/n n?) is obtained at the target positigi|M| = n?/(c* - 4) = 2.25- 10* m™.
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Y (meters)

-6 X (meters)

-0.015
-0.016
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-0.018
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—-0.021
-0.022
—0.023
-0.024
—-0.025

Y (meters)
CRB trace

X 't
X (meters) (meters)

Figure 2.3: Optimal sensor placement for 3 sensors. INEdM|,, is shown (lighter regions, larger accuracy)
and in (b) the FIM determinant value . In (c) tr(CRBp is shown (lighter regions, larger accuracy) and in
(d) the value of the trace of the CRB 1.

Itis interesting enough to notice in Figure 2.3 (a) and (a} there exist three more points where
the design conditions (2.27), and then the maximum FIM deteant and minimum CRB trace, are
achieved. These points are located outside the equildtenadjle formed by the sensors and placed
in symmetric positions. Therefore, if another target wobokdplaced in any of these points, it will
be positioned with the maximum accuracy. This fact is vergontant to define alternative optimal
formations, and in forthcoming chapters, to define optirmatfations for multiple target positioning.
It is also important to notice that these alternative powith maximum FIM determinant only
exist in the constant covariance scenario. If we considestime example for distance-dependent
covariance error in which the sensors are limited to be plateéhe positions shown in Figure 2.3
then there exists only one point with maximum determinart ians placed at the centre of the
formation (the target position). This issue is studied mlext sectionm

Example 2.3

It is important to remark on one important feature of the mjlisolutions that can be computed
based on the analysis explained above. As aforementioiteeh idisjoint sets oih andm sensors
each are optimally placed, the resulting formatiomef m sensors is also optimal. Therefore, new
higher order optimal solutions can be obtained by combingulyiced order optimal configurations.
It is a consequence of considering the measurements to bpendent. It can be seen in Figure 2.4
how the combination of the 5 sensor regular formation of Egan2.1. with the 3 sensor regular
formation of Example 2.2. provides another optimal formiatin which the theoretical maximum
accuracy for 8 sensors is obtained at the target locati@s)/RIM| = 16- 10 m™. m
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b)

|FIMm|
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'/H"l"n,
H
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CRB trace
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0
X (meters)

Figure 2.4: Optimal sensor configurations with the combination of a Seenegular formation and a 3 sensor
regular formation. In (a)FIM|,, is shown (lighter regions, larger accuracy) and in (b) thel Beterminant
value in®D.

As abovementioned, if we consider these same examples $tandie-dependent covariance
error in which the sensors are constrained to not lie clas¢he target than the positions shown
in the above figures, then the optimal solutions are the sammeations. Moreover, with distance-
dependent covariance error, there exists only one poiitit maximum determinant (or minimum
CRB trace) and it is placed at the centre of the regular faonmgthe target position).

2.4 Gaussian error with distance-dependent covariance

In this scenario the dependence of the measurement errbe idistance ffects dramatically the
optimal sensor configurations that may be defined. It can be &t (2.10) depends explicitly on
the distance between target and sensors, and then to maximeizieterminant of (2.10) the sensors
tend to collapse over the target position to reduce therttistalependent measurement error as much
as possible. Therefore, some constraints must be imposheé wensors and the solution must be
searched by some optimization algorithm.

There is a particular scenario in which an analytical soluttan be derived following the same
procedure explained in Section 2.3.1. This scenario cporeds to the case in which the sensors are
placed at the same distance from the target, i.e., they aceglover a circumference centred at the
target position and then the optimal solution only depemdthe angles that the range vectors form
between them, as defined in the constant covariance casepibtilem is studied next.
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2.4. GAUSSIAN ERROR WITH DISTANCE-DEPENDENT COVARIANCE

2.4.1 Sensors placed at the same distance from the target

Following the same procedure of Section 2.3.1glet[qx, gy] " be the position of an arbitrary target,
pi = [Pix Piyl"; i = 1,2,..,n, the position of thé-th acoustic ranging sensaw; the corresponding
measurement noise defined in (2.2) with# 0, andr; the distance between targgtind thei-th
sensor. Therefore, expanding (2.10) we find
1 cod (i) T? cos(a;) sin(ai) T?

FIM =" le( cos(a)sin(@) 2 sir? () I? ) (2.29)
whereq; is the angle that theth range vector forms with thgx } axis of the inertial coordinate
frame. It must be noticed at this point that the sensors anstr@ined to be placed at the same
distance from the target and thgn=r fori = 1,--- ,n. Moreover[; is constant and has the same
value for all sensors, 99 =I'pfori =1,---,n. Thus, (2.29) can be rewritten as,

? COS(a'i) sin (ai) Sil’l2 (ai)

FIM:rgZ”:( cog (ai)  cos(ai)sin(ai) (2.30)
i=1

that is very similar to (2.12), but multiplied d‘)ﬁo. Therefore, at this point, the vectors X, aiidn
R" (wheren is the number of sensors involved in the target positionasi) are introduced again
and the same theoretical analysis of Section 2.3.1 is pegfdywhere it is found that vectors X, and
T must be both equal to/2.

If we define now the vectd as,
S:[Fl rn]z[ro Fo]

then the expression of the Fisher Information Matrix thawvtes the maximum (logarithm of the)
determinant possible yields,

2
FIM = = == 31
o? 0 g o2 0 E-I% ( )
> 2

And the value of the determinant of (2.31) is

4
IS n®

FIMI= 407 = 202 10

(2.32)

Itis interesting enough to comment at this point, that themhginant (2.32) defines the maximum
FIM determinant when the covariance noise is distance{tiigre and the sensors are placed over
a circumference centred at the target position. If we carsadconstant covariance measurement
noise, itis,;y = 0 and therly = 1, (2.32) provides the optimal determinant defined in [11 Fb],
and computed in (2.24).

Comparison of the optimal FIM in (2.31) with the generic ome(2.10) gives an implicit
characterization of the conditions that must be satisfiedhieysensor network in order for it to
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be optimal, that yield:

n p%( 5 n Fiz

X2 =y L
igl rz ! El 2

2 2

n piy n I

212 =y L (2.33)
iz r2 ! igl 2
n pon
Z plxzplyriz -0
i=1 I

n pIX 5 n Fiz n p%( n

= .I2=y = —= = ¥ cof(ai) = =
i=1 riz : |§l 2 - i=1 ri2 igl (Q’|)

2 2 2
n piy 2 ri piy no. n

.12y L 2 = Ysirka) = = 2.34
igl riz : -1 2 - i=1 riz igl (al) 2 ( )

PixPy |2 Pix Piy noo

=5 — = ) sin(@;) cosg;) =0

=1 r? : igl 2 % or? igl (@) costr)

It is important to remark that this analytical solution idyfeasible when the sensor are placed
at the same distant from the target. For more complex canslré is necessary to resort to
optimization tools, as it will be seen in the following exalem

2.4.2 Optimal sensor configurations with arbitrary constrants

From (2.18) it is clear that the FIM is inversely proportibt@the range distance between target
and sensors. Therefore, it is necessary to reduce thahdésts much as possible to increase the
determinant, something not possible to do at will, due tosptal constraints and to avoid singular
configurations that are clearly non-optimal, for exampke ¢ime in which the sensors lie over the
target position. In this scenario it is imperative to impasastraints for the design of optimal
sensor configurations to avoid the sensor to collapse oedatiyet position (to reduce the distance-
dependent error). The existence of constraints in the isol#pace limits the search space and
makes it more diicult to define the solution since the optimality criteriorfided by (2.27) may
be impossible to achieve, i.e., some of the positions thieéhe theoretical optimal configuration
may be unreachable.

On the one hand, if the problem has equality constraints i bepossible to use gradient
optimization methods. The Lagrange method, in which a nest'femction is constructed including
these equality constraints, allows to find the optimal camfition. An example of this kind of
problems is the one studied in the previous subsection, ichwifie sensors must be placed at a
given distance from the target. In this particular case jitdssible to resort to the analytic solution
defined above or to optimization methods to obtain the féasiptimal sensor configurations. The

26



2.4. GAUSSIAN ERROR WITH DISTANCE-DEPENDENT COVARIANCE

problem formulation can be cast in the following form:

p* = argmaxslog(IFIM|)
st. (2.35)
Ok (X%, y1)—bi =0

whereg;i(X;, yi) can be any kind of function ang is a constant. The cost function now becomes:
n —
L =log (IFIM) + > A (i (%, yi) - by) (2.36)
i=1

Equation (2.36) is now the function to maximize, wheei = 1,---,n, are the Lagrange
Multipliers that must be determined (considering a comstiger sensor). The optimal solution is
obtained from the system:
oL oL oL
— =0 — = — =0

0% Y oA

Therefore, by using the gradient (or Newton) optimizaticetinod it is easy to define the optimal
sensor formation that provides the maximum logarithm ofRHd determinant. In the following
examples it is assumed that= 0.1 m, 5 = 0.05, andy = 1.

0 (2.37)

Example 2.4

In Figure 2.5 an optimal formation of 4 sensors for a distashependent measurement error is
shown. The only constraint imposed to the design is thatéhsas cannot be placed closer than
3 meters with respect to the target position. The maximunuracy, given by a maximum FIM
determinant or a minimum CRB trace, is obtained at the tgrgsition. It can be seen in detail in
Figure 2.5 (b) and (d), respectively. Itis easy to checkttiatensors are placed at the limit distance,
because, as abovementioned, the accuracy is inverselgnitoyal to the distances between sensors
and target, and thus, the sensors are placed as close ada@tsseduce this error. In this particular
example, the same solution is obtained both with the aralyprocedure and the above optimization
algorithm.

Table 2.1: Optimal sensor positions fer = 0.1 m, 5 = 0.05, andy = 1.

P1 P2 Pz P4
{X;} — coordinate(m) | —2.1213 | -2.1213 | 21213 | 2.1213

{yi} — coordinate(m) | 21213 | —-2.1213| -2.1213| 21213

In Figure (2.5) (a) and (c) the target and sensor positioaslaown, the latter are listed in Table
21.m

On the other hand, if we have equality and inequality coimgsathen we have to resort to non-
lineal programming techniques to solve the problem, andK#reish-Kunt-Tucker conditions must
be achieved to find the optimal solution. The problem forroiebecomes:

p* = argmaxslog(IFIM|)
st. (2.38)
0i (%,yi)—bi =0
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Figure 2.5: Optimal sensor placement for a 4 sensor formation with déstadependent measurment noise.
In (a) IFIM|, is shown (lighter regions, larger accuracy) and in (b) thiel Beterminant value iD. In (c)
tr(CRB)p is shown (lighter, regions larger accuracy) and in (d) tHaevaf the trace of the CRB if.

The residual variables; must be introduced to convert the inequality constraints equality
constraints.

gi(%.y)+s-bi=0
Then, the optimization problem and the cost function asdediyields

n

L =log(FIM) + " i (g (%, i) + S — by) (2.39)
i=1

And the optimality conditions are,
oL 0 oL 0 oL oL

ot _ ot _ Z -0 =25 2.40
9% ay; on; s o (2.40)

where the last equation implies eithgr= 0 and.l; # 0, ors # 0 and; = 0. This last condition is
the complementary slackness. Thus, again, by using théegitamt Newton optimization method it
is easy to find the optimal sensor formation that providesrihgimum FIM determinant.

Example 2.5
In this example, 3 sensors are forced to lie in the upper damgdimited by the ling/ = 3 m,

with the target placed at the origin of the inertial coordéntame. It is possible to check from
Figure (2.6) how this scenario could be studied as a problémequality constraints because the

28



2.5. UNCERTAINTY IN THE TARGET LOCATION

optimal positions for the sensors are over the {ire3 m. However, the optimization procedure run
is the one described in (2.40). The optimal sensor positoastated in Table 2.2.

Table 2.2: Optimal sensor positions fer = 0.1 m, 5 = 0.05, andy = 1.

P1 | P2 P3
{x/} — coordinate(m) | 3.69 | 0 | —3.69
{yi} — coordinate(m) 3 3 3

In Figure (2.6) it is shown how the optimal formation for th@plem at hand does not provide
the best accuracy possible because the accuracy that cdntdireal is limited by the additional
constraint and the measurement error.

b)

2

y 0
4 -3 =2 -1 0 1 2 3 4 Y (meters) -4

X (meters) X (meters)

Figure 2.6: Optimal sensor placement for a 3 sensor formation that tsice=d to lie in the upper semiplane
limited by the liney = 3 m. In (a) [FIM|, is shown (lighter regions, larger accuracy) and in (b) thigl FI
determinant value iD. In (c) tr(CRB)» is shown (lighter regions, larger accuracy) and in (d) tHeevaf the
trace of the CRB irD.

Figure 2.6 (a) and (c) show the positions that the sensoesdalas to maximize the logarithm
of the FIM determinant. In Figure 2.6(b) it is shown the vataileen by the FIM determinant at each
pointin D and in (d) the value taken by the CRB trace at each poif.im

2.5 Uncertainty in the target location

Now it is addressed the situation where the target to beiposit is known to lie in a well defined
uncertainty region. The objective is to obtain an expeditaerical solution for the problem at hand.
Inspired by the work in [39], it is assumed that the uncetiaiim the target position is described by
a given probability distribution function and we seek to lin@ze, by proper sensor placement, the
average value of the determinant of the FIM for the target.

In what follows, pis ; i = 1,2,...,n; £ = X,y denotes th&-th coordinate of sensarlocated at
positionp; andp = [p], ..., pi]". We further denote by (q) ; q € R? a probability density function
with supportD e R? that describes the uncertainty in the position of the tairge¢gionD. With
this notation, the problem of optimal sensor placement eacalst in the form of finding a vectr —
such that

p = argmax f logIFIM(p. o)l - ¢ (6) dg (2.41)
D
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where we used the notati¢ll M (p, g)| to clearly show the dependence of the FIM on the target and
sensor locations. However, in the followitfgl M (p, g)| will often be denoted simply d§1M|. In a

real situationy (g) will depend on the type of mission carried out by the targehd target operates
mostly in the centre of the working area(q) can for example assume the form of a truncated,
radially-symmetric probabilistic Gaussian distributioentred at an appropriate point. On the other
hand, if only the work area is known and the target can operaterhere inside ity (g) can be taken

as the unity function inside that area.

To proceed, one must compukd M (p, g)| in the equation above. At this point it is important to
remark that, given the complexity of the optimal sensor @aent problem at hand, the only viable
solution is a numerical one. It now remains to solve the ojation problem defined above. As
explained later, we opted to use a gradient-based methoal $0.dTo this &ect, it is important to
compute the derivatives of the integral in (2.41) with retpe the sensor coordinates, that is,

0 _
e Dflog (IFIM(p.9))) ¢ (q)dq (2.42)

fori = 1,2,..,nand¢ = x,y. To proceed with the computations, the integral and devigat
operations are interchanged: the derivatives are eXglidittermined first and the integration over
regionD is performed afterwards. The derivatives finally look like,

dlog(FIMl) _aIFIM| 1

ape  Ope  IFIM] (2.43)
whereé = x,y and
A|FIM] 2 cos(e) sir’ (@) ., < /.
o - I ; (sir? (as) — cog (as)) T2+
2 n n
i g;i (co§ (as) Y sin? (as) T2 + sir? (@) ) co$ (s 3|~
. s=1 s=1 (2.44)
6pix
Lor? (sinii(ai) cog (cy.r)I sm(a.)) Z cos(as) sin(ag) T2
AIFIM|  2sin(ai)co (@) . » </ .
Gy " - I ; (sir (as) — cof (as)) T2+
2 n n
+ 2% (cos’ (ar) ) sir? () T3 + sir? (@) ) cos (as) rg] -
v ) s-1 =1 (2.45)

ZdaFi cos(a;) sin( )Zn:cos( ) sin(as) T2+
—-2d— Qi i a @
apiy S, S, S

cos (ai)  sin’ (ai) cos(a.))

+ 2ri2( Z cos(asy) sin(as) T2
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with
C')Fiz Znyriy_l
= cos(ai) ———
9P (L)
or? ) Zr]yriy_l
— =sin(a) ——
Py (L)

These derivatives will be studied in depth in the next chafate multiple target positioning.
Regarding the computation of the double integral over tlygoreD of interest, it is impossible
to do it analytically. For this reason, the integral is conggunumerically with the Monte Carlo
method. Finally, the solution is obtained using a gradi@tinsization method with the Armijo rule,
details are omitted. To overcome the possible occurrentcaf maxima or the divergence of the
algorithm, the initial guess in the iterative algorithm rnloe chosen with care. In the examples that
we studied we found it useful and expedite to adopt as amligitiess the solution for the single target
positioning problem described in previous sections, withhiypothetical single target placed at the
centre of the work area. It is important to stress that thetsmi to (2.41) depends strongly on the
probability density function adopted for the target pasiti (e.g., a truncated, radially-symmetric
probabilistic Gaussian distribution or a radially-symriestep distribution, [39]).

2.5.1 Simulation examples with unknown source position

Different situations and possible optimal sensor configuratidmen the target position is known
with uncertainty are shown next. For the examples a stepdiktribution is used as probability
distribution function to define the target position. Theyokhowledge about the target is that it is
placed inside a square area ok 2 n¥ centred at the origin of the inertial coordinate frame. Ehre
simple examples corresponding to the three main problenwsrigle target localization are shown
for the case of uncertain target location. In the first prohléhe scenario in which the covariance
error is constant, witlr = 0.1 m, is studied. In the second example, it is considered a distan
dependent measurement error with= 0.1 m, v = 1 andn = 0.05 and no constraints. Finally in

the third example, it is studied a distance-dependent meamnt error witho- = 0.1 m, y = 1 and

n = 0.05 with the sensors constrained to lie in the region definegd vy mandy < -3 m.

Example 2.6: Constant covariance error and no constraints.

In the problem at hand it is possible to design sensor cordtguns that provide large accuracy
over well defined regions, close to the optimal one that wbeldbtained for a single target working
in isolation at a known position because distance doesffesttahe measurementerror. The practical
interest of this problem is the design of the smallest netyossible that provides an accuracy close
to the maximum for all the points inside the work area, thatifie problem at hand will be of2 n?.
The formation size will be, of course, mission-dependent.

The probability distribution function that defines the &trgosition in the work area is a step-
like distribution, it is, the onlya priori knowledge is that the target operates inside a certain area.
In Figure 2.7 (a) it is possible to check that the FIM detergmnits obtained inside the work area are
very close to theoretical maximum, with the 4 sensors platé¢ie points listed in Table 2.3.

In Figure 2.7 (c) the trace of the CRB is shown. Its minimunuealfall over the area of interest
and are close to the theoretical minimutr(CRB) = o2 - 4/n n?. Figure 2.7 (b) shows the level
curves of|[FIM|p, and (d) the level curves of the CRB trace. It is possible foregiate how the
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Table 2.3: Optimal sensor positions for constant covariance.

P1 P2 P3 P4
{x } — coordinate(m) | —5.1066 | —5.1066 | 5.1066 | 5.1066
{y} — coordinate(m) | 5.1066 | —5.1066 | —5.1066 | 5.1066

d

Figure 2.7: Optimal sensor formation to obtain the maximum averagerltiga of the FIM determinant inside
the work area of X 2 n? with a step-like distribution, constant covariance erma ao constraints. On the left
(a)IFIM|,, is shown (lighter regions, larger accuracy) and on the rfighthe FIM determinant values iB. In
(c) tr(CRB)y, is shown (lighter regions, larger accuracy) and in (d) tHeesof the trace of the CRB iD.

0
meters)

Y (meters)

0
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determinant (and the CRB trace) over all the region is alritestheoretical maximum, providing a
very large accuracy inside the work area.

One important feature to remark about this example, is the consider a very large region and
there is no constraints for the sensor placement, then issiple to design sensor configurations
that provide a very large accuracy inside the area of intéexsause the distance does ndéet the
measurementa

Example 2.7:Distance-dependent covariance error and no constraints.

In this example, shown in Figure 2.8, the optimal formatisrguite smaller than the one of
the previous example because the distance between tardetemsors dramaticallyffects the
measurement error and the formation becomes smaller taceetthis distance-dependent added
error. In 2.4.2 it was commented that some constraints mashposed to the design of the optimal
formation so that the sensor formation does not collapse thwetarget position in an attempt to
reduce this distance-dependent added error as much ablpodsiis problem does not arise in the
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Table 2.4: Optimal sensor positions fer = 0.1 m, y = 1 andn = 0.05.

P1 P2 P3 P4
{x } — coordinate(m) | 0.69 | -0.69 | 0.69 | —-0.69
{yi} — coordinate(m) | 0.69 | 0.69 | -0.69 | —-0.69
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Figure 2.8: Optimal sensor formation for a 4 sensor network, distareyeddent covariance error and
uncertainty in the target location defined by a step-likerittistion over a region of X 2 n?. On the left
(&) IFIM|, is shown and on the right (b) the FIM determinant valu@inin (c) tr(CRB)y, is shown and in (d)
the value of the trace of the CRB .

problem at hand because the measurement accuracy must aireakover a region, not for an
isolate point, so the distance cannot be reduced to the mimifor all the points of the work area
and a tradefd solution must be adopted. The uncertainty in the targetipogs itself the necessary
constraint for a correct design. The optimal sensor postare shown in Table 2.4.

In Figure 2.8 (a) the average FIM determinant is maximizedrdhe area of interest; and
the magnitude of the determinants can be checked in 2.8 (b)rigure 2.8 (c) the CRB trace
corresponding to this sensor network is shown, and in Fi@uee(d) its value over the area of
interest can be checked. It can be noticed how the maxiroizati the determinant over the work
area provides a minimum CRB trace as well.

In this example a small area of interest has been considestdyq illustrate the methodology
developed to determine optimal sensor configurations. &ael areas, the formation will be
conditioned by the distance-dependent added error and dor harge areas the measurement
accuracy will be drastically reduced. In a practical scenéne accuracy will be mission-dependent
so this accuracy will determine the number of sensors to leel asid their configuration. The
problem of a large area of interest shows clearly its pratticterest for the multiple target

33



Optimal Sensor Placement for Target Localization

8000

Y (meters)

7000

6000

5000

Y (meters)
Lol e =

|
w

-3 -2 -1 0 1 2 3 Y (meters,
X (meters) ( ) X (meters)

Figure 2.9: Optimal sensor formation for a 3 sensor network with distadependent measurement noise. The
sensors must be placed in the regign- 3JU{y < —3} m. On the left (a)FIM|,, is shown and on the right (b)
the FIM determinant value if. In (c) tr(CRBy is shown and in (d) the value of the trace of the CRBIn

Table 2.5: Optimal sensor positions for = 0.1 m, y = 1 andn = 0.05.

P1 P2 Ps3
{x;} — coordinate(m) | —-3.4749| 0 | 3.4749
{yi} — coordinate(m) 3 -3 3

positioning problem, that will be studied in detail in Cheip and Chapter T
Example 2.8: Distance-dependent error with constraints

This last example tackles with the more complex problem d¢émheining the optimal sensor
configuration when the sensor network is subject to comgreand the measurement error is
distance-dependent. A 3 sensor network that must be pladbeé iregion defined bfy > 3jU{y <
-3} mis considered. We can notice in Figure 2.9 (a) how the serm@Placed at the limit
of the design area to increase the average FIM determinaitteinhe work area by reducing as
much as possible the distance-dependent measuremenaaion Figure 2.9 (b) we can check the
magnitude of these FIM determinants inside the work ared&idare 2.9 (c) and (d) similar plots
to (a) and (b), respectively, are shown but considering tR8 @ace. It can be noticed how the
minimum values of the CRB trace belong to the work area. Thiengbsensor positions are stated
in Table 2.5. This is only a simple example on optimal sensanétion with constraints, because
any constraint may be imposed to the design, and its cormekipg optimal sensor network must be
obtained via optimization tools
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2.6 Conclusions

The problem of optimal sensor placement for single targsitipming in 2D scenarios has been
studied in this chapter. Previous to the study of this pnobe optimal Fisher Information Matrix,
with distance-dependent covariance error, that maxintieekogarithm of the FIM determinant was
well defined. This optimal FIM defines the design conditidrat the optimal sensor formation must
achieve so that the maximum logarithm of the FIM determirnbbtained at the target position.
The optimality conditions were defined by (2.25).

The first problem studied was the one in which the measureereot is Gaussian with its
covariance being constant. This situation has been widediiexd in the ground robotics field, where
the distances are not so large and the covariance can belemgtsiconstant. From the study of the
optimality conditions (2.25) the analytical solution in ieh the sensors must be first and second
moment balanced to obtain the maximum FIM determinant wénetk

This study was extended to a second and more complex probieem the distancefiects to the
measurement error and then the covariance of the measuremenis distance-dependent. In this
kind of problems it is necessary to impose constraints ts#msor formation, because the sensors
tend to converge at the target position to reduce the distdependent measurement error. The
most simple constraint, that corresponds to the case inhathie sensors lie in a circumference
centred at the target position, was initially studied. Tbkison for this problem was the same
analytical solution defined for the constant covariancergeroblem. After this simplest case, the
more general problem with any number and any kind of congsavas studied. The impossibility
to define an analytical solution drove to employ optimizatiethods to define the optimal sensor
configurations, and it was shown that a simple method likgytlhdient or the Newton method are
much more than satisfactory tools to find the optimal sensofigurations.

Finally, the above results were extended to the more reafisbblem where the target position
is known with uncertainty. This uncertainty can be definedadmy probabilistic distribution
function, and the kind of function used determines in highrde the optimal sensor formation.
An optimization method similar to the one previously defivems used to determine the optimal
sensor configurations. The main problem to overcome waseb@ution of the integrals of the
gradient equations, to determine the necessary gradieimsrease the average FIM determinant
over the work area. These integrals were solved numeribglithe Monte Carlo method because
of the impossibility to solve them analytically. foérent design scenarios and their corresponding
optimal solutions were studied.
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Chapter 3

MULTIPLE TARGET POSITIONING IN
2D SCENARIOS WITH RANGE MEA-
SUREMENTS

3.1 Introduction

In the present chapter, inspired by developments in groahdtics for single target positioning,
we tackle themultiple target positioning problemClearly, there will be tradefs involved in the
precision with which each of the targets can be localizedfudy them, we resort to techniques that
borrow from estimation theory and Pareto optimization. therlatter, the reader is referred to [45],
[22], [90]. See also Appendix A for a very short review of sokay concepts and results. Stated
briefly, we avail ourselves of concepts on Pareto-optimalitd maximize convex combinations of
the logarithms of the determinants of the FIMs for each ot#ingets in order to compute the Pareto-
optimal surface that gives a clear image of the traf$giavolved in the multiobjective optimization
problem. We thus obtain a powerful tool to determine theecsnfiguration that yields, if possible,
a proper tradefd for the accuracy with which the position of theferent targets can be computed.
In what follows, and with an obvious abuse of notation, wewftefer to Pareto-optimal solutions
simply as optimal.

It is important to remark that for the multiobjective optiation problem, the logarithms of the
determinants of the FIMs must be used. This makes the furetim be maximized jointly convex
in the search parameter space, thus justifying the use ta#r&gation techniques in the computation
of the Pareto-optimal surface, as described in Appendix &.ddiscussion of the convexity of
the functions adopted, see for example [12], Chapter 3 a@dvtirk in [85] on the D-optimality
criterion.

For a multi-target localization problem, the optimal getmyeof the sensor configuration
depends strongly on the constraints imposed by the tadk (isg. maximum number and type
of sensors that can be used), the environment (e.g. am&®)nthe number of targets and their
configuration, and the possiblyftérent degrees of precision with which their positions stidd
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estimated. An inadequate sensor configuration may yietgelarcalization errors for some of the
targets. Even though the problem of optimal sensor placefoemange based localization is of
great importance, not many results are available on thig tgt, even more, the results are only
for single target positioning. Some exceptions includevibek of [91], that although it deals with
the problem of single target positioning, the problem fraumik is the design of sensor networks
for the maximization of the accuracy for a preplanned ttajgcto be followed by the target,
moreover, uncertainty in the target position along theetrigjry is considered. This problem can
be seen as a multiple target positioning problem in whichatt®uracy of some fixed points must
be maximized, where these points belong to the desired gepll trajectory. An incremental
optimization algorithm is defined to increase the likelidaaf the vehicle following its intended
trajectory. Another interesting work is [2], in which thegtem of detecting and locating subsurface
objects by using a manoeuvring array that receives scdtsgismic surface waves is considered.
The goal is to minimize the number of distinct measuremeartsy movements) needed to localize
objects, such as buried landmines, while maximizing therdghant of the FIM. The scenario in
which two targets must be localized is studied too.

The key contributions of the present chapter are twofoldwe) fully exploit concepts and
techniques from estimation theory and multiobjective mjation to obtain a numerical solution
to the optimal sensor configuration problem for multipley&s, and ii) in striking contrast to what
is customary in the literature, where zero mean Gaussiarepses with fixed variances are assumed
for the range measurements, the variances are now alloweegend explicitly on the ranges
themselves. This allows us to capture the fact that measmenoise increases in a non-linear
manner with the distances measured.

The chapter is organized as follows. Section 3.2 definesithielgm formulation and the set-
up for multiple target positioning. In Section 3.3 this pleh is studied when the measurement
error is Gaussian with constant covariance. The extenditimsoproblem to tackle with Gaussian
error with distance-dependent covariance is explaineckti@ 3.4, in which the optimal sensor
configurations are defined from concepts on Pareto optimnizatn Section 3.5 the maximization
of the average value of the logarithms of the FIM determis@nstudied when a static fixed sensor
network surveys a certain working area or when there is taicgy in thea priori knowledge about
the target positions. Finally, in Section 3.6 the conclasiare commented.

3.2 Problem formulation: multiple target in a 2D scenario

The problem of multiple target positioning in 2D scenar®saickled as an introductory step for the
multiple target positioning problem in 3D scenarios, whieili be studied in Chapter 5. For the

problem at hand the FIM is characterized for a two-dimeradi¢2D) scenario, following the same

procedure shown in Chapter 2.

Thus let{l} be an inertial reference frame with unit axis}, {y;}, and letq = [Qkx, qky]T; k =
1,2,..,m, be the position of thk—th target to be positioned ifi}. Further denote bp; = [pix, py] "
i =1,2,..,n, the position of the — th acoustic ranging sensor, also{li. Letry(q) = |gx — pi| (abbv.
ri) be the distance (range) between the taggeind thd —th sensor, wherg | denotes the Euclidean
norm, andw; the corresponding measurement noise as explained in Cl2apibe variables and the
set-up that will be used are illustrated in Figure 3.1 fordhse of one target and three sensors.
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Figure 3.1: Target localization problem set-up.

With this notation, the FIM for th& — th target becomes

W)® (uy) (Ui

FIMy = 2 (3.1)
; (uix) (Uiy) (Uiy)
where T
Ui = [Uix, Uy] " = [ %Ti, ﬁm{';TfymTi ] ; (3.2)

andlj = 1/ (1 + r]rzi) forie{l,..,njandke {1,...m}.

As explained, the determinants of the FIMs for each of thgesrare used in the computation
of an indicator of the performance that is achievable witlivargsensor configuration. Maximizing
this indicator (which, as a consequence of the Pareto-afititconditions described in Appendix
B, is a convex combination of the logarithms of the determis®f the diferent FIMs) yields the
most appropriate sensor formation geometry for the meltipfget positioning problem:

m
p' = arg méaxz log|FIM| (3.3)
k=1

wherem s the number of targets involved in the multiple target fiosing task, andis the vector
of sensor positions.

In the ground robotics field it is widely assumed that the memwent noise belongs to a
Gaussian distribution with constant covariance. This kifhdoise is considered for a first analysis
of the multiple target positioning problem. Starting frohistinitial analysis, a deeper study is
carried out next considering that the covariance can vagynon-linear manner with the distance
between sensors and targets, to overcome all the posdilégisns and application problems in a
2D scenario.

The optimal sensor configuration that maximizes the FIM mheiteant of each of the targets is
searched from Pareto-optimality conditions and conveintipation tools, so the convexity for the
problem at hand should be demonstrated. It is important tat poit at this moment that although
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we speak of convexity, we actually search for the concavityhe log determinant of the FIM
since we deal with a maximization problem. In this sense,sihglest problem of a 2 sensor
network is studied because it is possible to demonstratgtazdly the convexity (concavity) of the
optimality criterion, and thus that a global unique solntinay be obtained with numerical methods.
For a larger number of sensors the complexity of the funstidmes not allow to demonstrate the
convexity (concavity) of the criterion. For a discussiorited convexity of the functions adopted, see
for example [12], Chapter 3 and the work in [85] on the D-oatiity criterion. For this purpose the
notation introduced in [6] for the FIM determinant is usduttfor a distance-dependent covariance
error becomes

n . . 2 n n2 .
FIMI= = W UI)Z o2 1])2 Ly 2(0") ; (3.4)
TR @) (L)) T (L)) (L))

where

dla-pil  dla-pjl T,
uj = [upo Uy, 0] = | 2 SEE 0 | (3.5)

j € {1,...,n}; identical definitions apply to the indéxande; is the angle formed by the vectaug
andu,. The optimal sensor configuration will be defined as the onielwimaximizes the logarithm
of (3.4).

For the sake of simplicity and clarity in the exposition,ibstenarios with constant covariance
and distance-dependent covariance are studied separdtbly main reason is that for constant
covariance the demonstration of concavity is easy andgiifarward. Moreover, in this scenario
it is possible to achieve an accuracy close to the optimatleaiewould be obtained for one single
target working in isolation for each of the targets involethe positioning task. Thus, this simpler
problem is dealt with first.

Equation (3.4) for; = 0 and =2 becomes
1.
IFIM| = = sin? (12) (3.6)
g

It is important to remark that the concavity of the logaritbfthe FIM determinant is restricted
to positive definite matrices, therefore the domain of thgatdhm of (3.6) cannot contain FIM
determinants equal to zero, i.e., the sensors and targetstdae collinear and thug;, € 10, n[. For
the domainyy; € |x, 27[ the solutions are equivalent and define the same formatiolydy rotating
them the adequate angle. We compute the first derivativeeolotparithm of (3.6) with respect to

the anglex;,, that yields
dlog|FIM| _ 2sin(a;2) cos(ai?)

= 3.7
Oaip o4 - sir? (a12) ( )
The second derivative yields
8%log|FIM| =2 sirf (a12) — 2 sirf (212) coF (a12) _ -2 (3.8)
das, o4 - sin* (1) o4 - sir? (a12) '

that is negative for all the domain, therefore (3.6) is a @emedunction and we can employ Pareto
optimization tools to determine the optimal sensor confians. The analysis for a larger number
of sensors is not undertaken due to the complexity of thetfong, but we assume that we can
employ these optimization tools to determine the optim&ltgmns in the scenarios in which an
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analytical solution is not feasible.

For the distance-dependent covariance case the demamsisahot straightforward because it
depends on the constraints imposed to the sensor networlexBmple, if the sensors are placed
at a fixed distance from the target, the previous demonsiratlds. For each fferent constraint,
it is necessary to test if the criterion is concave or not,thetprevious analysis, and the results
commented in [12], Chapter 3 and the work in [85] on the D+optity criterion, give us reasons to
employ convex optimization tools. For this latter case,ittigal guess will be chosen with care to
avoid possible local maxima due to the concavity of the ddtefor distance-dependent covariance
has not been demonstrated analytically.

3.3 Gaussian error with constant covariance

In this scenario, as seen in Chapter 2, the distances betvegmsors and targets do not condition
the optimal solutions. Only the angles that the range vedtinm between them characterize the
optimal solutions. If the covariance error is constgnt, 0, then (3.1) becomes

n 2
1 Z (Usx) (Usy) (Usx) (3.9)

FIMg = =

TR o U (uy)  (us)
whereus = [Usx usy]T = [ % ‘mngyp' T, forse {1,....,n} andk € {1, ..., m}. For the sake of
clarity in the notations and demonstrations of the forthitgmanalysis the indeg is used instead
the index in the summations.

As abovementioned, the summation of the logarithms of tid &éterminants is used as an
indicator of the performance that is achievable with a gsemsor formation. Therefore, the solution
for (3.3) defines the optimal sensor configuration. To shglat lon this problem the simplest case
of two targets and an arbitrary number of sensors (but at B2asnsors) is studied first. Then this
solution is extended to an arbitrary number of targets.

3.3.1 Two targets positioning

In Section 3.2 we have seen that the problem at hand is cormral/¢he optimal solution can be
searched with convex optimization techniques. Howevethénspecial scenario of localizing only
two targets in 2D it is possible to define an analytical solutiEquation (3.3) becomes

p* = argmgx(log|FlM1| + log|FIM3|) (3.10)

The summation of logarithms in (3.10) is equivalent to:
log|FIM,| + log|FIMg| = log (IFIM4] - |[FIM2]) = log (IFIM+]) (3.11)

where the meaning dfIM+ is clear from the context. Moreover, the determinant of &8y be
written as

FIM 1(n 3(09. - )" cos(e sin(a) o7 312

= —| 2, c0s (as), — ) cos(as)sin(as)[-| n = '

IFIMI = -3 ; ; S/ S > cos(as) sin(as) o
=1
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Thus, from (3.11) and (3.12), (3.10) yields

1 m n n Zn: sin2 (ask)
p* = arg méa\xlog — l_[ [; cog (asy), — ; cos(as) sin(ask)) q o st

k=1 Zl coS(ask) Sin(ask)
S=
(3.13)
wherek = 1,--- ,mare the number of targets involved in the task. In this paldiccasem = 2.

Equation (3.13) can be written in the following compact form

IFIM1| = Iog[o_—im ]_[ ﬁk-dk] (3.14)
k=1
with
n T
D cos (ask)
F‘)’k — s=1

_ 3 cos(as) sin(as)
s=1

3, Sir? (s
s=1

3 cos(s Sin (@)
s=1

Q=

The optimal solution must be computed from the derivatiig¢8.d 4) with respect to each sensor
position coordinatepix and py, withi = 1,---,n. The derivative of a dot product is defined by
A(P- Q) = 9P- G+ P-4, and the derivative of a vector is defined by the derivatie=agh of its
elementsgP = [ P, --- AP, |, so the derivatives of each vector element with respectdh ea

sensor position coordinate must be defined.
Therefore, it is necessary to compute these derivativegddfie complete derivatives of (3.14)
with respect to the sensors position coordinates may beatkfirhe vector element derivatives with

respect to théx } coordinate of sensarare (for thek — th target):

0 2,008 508 () | 2cos{ay) sir? ()

9pix -~ 9pi Fik (3:19)
0 g‘l Sif (@) _ 9sirf (ai) _ 2 cos{aik) Sir (i) (3.16)
9pix 0P - lik .
OB NI ) costun)sin(en)) __sir @) | 08 @sinfen) 5 1

Opix Opix Fik Fik
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The vector element derivatives with respect to{th¢ coordinate of sensarare now computed,
(for thek — th target):

9 sgl cos (aSk) o cog (aik) 2cog (aik) sin (aik)
= = (3.18)
Jdpiy 0pix lik
9 sgl Sin2 (a,Sk) 0 sin2 (aik) 2cog (aik) sin(aik)
- __ (3.19)
Jopiy Jpix lik
PHOAIIOD  cos(an)sin(en)) _ costansit ) o8 @) 5 500
py - dpy - ik Fik '

From the above equations we can compute the derivative @fi\3vith respect to théx;}
coordinate of sensar that yields

2 cos( i)SinZ( i1) no.
dlog|FIMy| - alril o SngInz(a’sl) FIM s
APix | sin® (@) _ cos’ (aiz) sin(aia) i cos(ea) sin(ae) 1
li1 ria s=1
3 602 (aa) T 2 cod{aiy) sir? (ai1)
s=1 lia -1
2 costaa)sinaa) | | ST | cof(amsiny) |7V
s=1 M My
: 2 COS(aizr?ZSirlz (ai2) il sir? (22) )
sin?;r (ai2) cos (aii) sin(aio) il cos(ag) sin(ae) IFIMf ™+
i2 i2 S=
3, cof (a<) ! 2 cos(ai) sint (aiz)
n St - liz . [FIM,| ™2
_ glcos(asz) sin(ee) _Sir (aiz) co¥ (aiz) sin(aiz)

li2 li2

Similarly, the derivative of (3.14) with respect to thg} coordinate of sensaryields

T

2 co% (@i1) sin(ai1) no
dlog|F M| _ i 2,8 o) FIML+
Jdpy _COS(CVil) Sir? (aiy) + cos (ai1) Zn: cos(as) sin(as)
li1 li1 s=1
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n ! ai1) Sin(a;
gl cos (as1) _2co8( rlz sin(ai) )
+ +COS((l’i1) sinz(a'il) ~ co$ (ain) [FIMq| ™"+

n
-2 COS(asl) Sm(a’sl)
s=1 ri1 riz

. T n
2 cog (afz sin(aiz) ngi 7 (e0) }
_COS(CVizism2 (@i2) | co§r (ai2) ilCOS(asz) sin(eg) IFIM2[™ +
i2 i2 S=
3 cog (ag) i _2c08 (ai2) sin(aiz)

N s=1 ] lio |F| le_l
- ¥ cos(ag) sin(as) cos(aip) SiF (ai2) _ cos (i)
=1 li2 o

Straightforward computations allow to rewrite the abovevdives as

dloglFIMr|  2cos(air) sir? (i) < /. )
o L alril @i1 ;(smz(asl)—cos"(asl))IFIM1| 1,

2 (Sin3 (@i1) _ co (ai1) Sin(ail)) i cos(asy) sin(as) [FIM[ ™t -
=1

li1 li1
(3.21)
2 cos(aizr)izsmz (2i2) ; (Sir? (a) - cOS (@) ) IFIM[ ™+
2 (Sinii(zaiZ) B cos (aiii)ZSin(aiz)) ; cos(ag) sin(asg) [FIMo[™
dlog|FIM1|  2cos(ai1) sir? (ai1) < /. _
6piy T = ]}il ! ; (S|n2 (cxsl) - COS2 (cxsl)) |F| M1| 1 +
Z(COS:i(lail) B COS(ail)riinz (ail)) ; cos(es) sin(as) [FIMg] ™t +
(3.22)
2 Cos(aizr?:mz (a2) ; (sif? (@) - 0 () IFIMz ™ +

2(co§ (@i2)  cos(aiz) sir? (ai2)

n
) Z cos(as) sin(ag) [FIMy ™
li2 li2

s=1
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Making these equations be equal to 0 the optimal sensor emafign may be defined. Equations
(3.21) and (3.22) can be rewritten again as

9logIFIMy] _ sin(ai) [sin(Zail) Z cos(20<) — COS(2ai1) Z sin(2a51)} IFIMa+

8pix B i1 s=1 s=1
(3.23)
sin(aip) : :
S [Sin(Zaiz) Z cos(2ag) — cos(2ai) Z sin(zasz)] IFIMy| =
i2 s=1 s=1
dlog|FIMt|  cos(ai1) L L
L E {- sin(2ai1) ) CoS(2as1) + C0S(2ai1) ) sin(2a) | IF1M3| +
apiy li1 s=1 s=1
(3.24)
cos(aip) : .
2 [— sin(2a;2) Z cos(2as) + cos(2aip) Z sin(ag)||IFIM. =0
2 =1 =1
Now (3.23) and (3.24) can be seen as dot products:
H . H § 1
9logIFIMr] = ( sin(ain) Vi1 sin(aiz) - Vi2 )( IFIMl )= 0 (3.25)
0Pix li1 li2 FTMa|
) ) 1
dlog|FIMy| =( _ cos(ai1) Vi _cos(aiz) Vi )( [FING] )= 0 (3.26)
Ipy ri1 li2 TETMGI

wherevi, = sin(2ai) Z cos(2asK) — cos(2aik) Z sin(2agy) for k = 1, 2. Itis easy to check that if
the dot products are equal to zero, then the vectors aregwottad, and therefore the vectors

i1

vy :( sin(ai1) v sin(aiz) i )

li1 li2
Cos(ai Cos(ai
VZ:(_M'VH. _M.Viz)
li1 li2

are equivalent, and than (1)/V2(1) = Va1(2)/V2(2), itis,

—sin(ai1) - rig - Vit —sin(aiz) - ri2 - Viz
cos(aiz) - fi1 - Via cos(aiz) - fiz * Viz

— tan(aj1) = tan(aiy) (3.27)

Equation (3.27) holds whed; = «j2 +t - 7 with t being any natural number. This condition
means that all the sensors must lie in the line joining thetlwgets since (3.27) must hold for all
sensors; therefore this solution can be discarded becawgrugly it is not an optimal solution.

It is important to notice from (3.25) and (3.26) that the wedt Frir. v ]T is always

different from zero and positive, so the only possible solutsathat vectord/; andV, be equal to
zero. A closer look to these vectors shows that the conditiothem to be zero is thafx be equal
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to zero. N N
Vik = Sin(2ai) Z cos(2as) — COS(2ai) Z sin(2as) = 0 (3.28)
s=1 s=1

with k = 1,2. Now (3.28) can be seen again as a dot product between twarsec
n n
( > cos(2ag) Y sin(2asy) )-( sin(2ei)  —cos(2ai) ) =0 (3.29)
s=1 s=1

This equation must hold for each sensor and each targetclias that if both vectors areftirent
from zero, (3.29) means that the vectors are orthogonahisgrcase, the first array of the dot product
of (3.29) is constant for each target and for a given sensofiguration, thus the second array of
(3.29) that defines the orientation of the seriswith respect to a given targ&tmust be the same
for all sensors, something that is not optimal for a singtgedand that is impossible to achieve for
more than one target. Hence, this solution is discardedrandirtly valid solution is the one in which
one of the vectors of (3.29) is the null vector. A simple 100K3.29) shows that

( cos(2ei) sin(2ai) )#( 0 0)

and then, the optimality condition is

( 3. cos(20s) 3, sin(2as) ):( 0 0) (3.30)
s=1 s=1

Therefore, the sensor network must be second moment balaviterespect to both targets to
obtain the maximum accuracy possible in the positionindpeftivo targets:

3, cos(2as) = 3, (cof (as) — Sirf () = 0
s=1 s=1
(3.31)
3, sin(2as) = 3, 2c08(@s) Sin(@s) = 0
s=1 s=1

Conditions (3.30) are valid for any number of sensors. Meegothe previous solution provides
an optimal sensor formation that achieves the theoretieaimmum accuracy for both targets at the
same time and it is not necessary to define a tratisadution. For more than two targets (3.30)
is not the only valid solution, as it will be studied in the herction, moreover, it is possible that
the maximum accuracy for all the targets cannot be obtaimed then a traddébsolution must be
adopted.

3.3.2 Multiple target positioning

Once the analytical solution for the two target positionprgblem has been defined, the above
analysis can be extended for an arbitrary number of targetsm (3.11) we can obtain again the
equations (3.23) and (3.24) that define the optimal sensdigeoations. In this scenario (3.23) and
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(3.24) must be rewritten for thm targets:

dlog|FIMy|  sin(ai1)

[sin(Zail) Z cos(2ag) — cos(2ai1) Z sin(2ag) | +
s=1 s=1

OPix iz [FIMy]
(3.32)
sin(aim) . .
+ =" 1sin(2aim) Z cos(2asm) — COS(2im) Z sin(2asm) | =
Fim [FIMp| ~ ~
n n
9logIFIMy| _ cos(ai) ~sin(2ai1) ) cos(20) + cos(2aiz) Y sin(2asr) | +
Ipiy ria [FIM;] ~ ~
(3.33)
cos(aim) : .
+ —— |_ sin(2aim) Z cos(2asm) + cos(2aim) Z sin(Qasy)| = 0
Fim [FI M| ) )
Again (3.32) and (3.33) can be written as dot products betvwee vectors:
1
. . IFIMy4]
dlog|FIM1| =( sin(ai1) Ny - sin(aim) e ) : o (3.34)
9Pix i1 Fim i
[FIMp|
1
' ‘ IFIMq|
dlog|FIM+| :( _ cos(ai1) Ny _ cos(aim) i ) ) _0 (3.35)
Opy li1 Fim 1
[FIMp|

with vik = sin(2aik) Z cos(2asK) — cos(2aik) Z sin(2as. Equations (3.34) and (3.35) must hold

for all the sensors of the network. It should be noticed thatthove system of equations could have
multiple tradedf solutions. Nevertheless, the solution (3.30) is one of #i&l\solutions for (3.34)
and (3.35) that also provides the theoretical maximum Flkéeinant for each target. Thus if it is
possible to obtain a sensor configuration where (3.30) htiiés the minimum covariance error (or
maximum FIM determinant) for each target is obtained. Tipignoal configuration will provide the
maximum FIM determinam?/o*2?, as defined in [11] and [55].

However, (3.30) can be or not a solution for a given multiegét localization problem,
depending on the configuration of the targets and the numbseresors. If it is not possible to
define a sensor configuration with which (3.30) be true fottedl targets, then a trad@&solution
must be adopted. The trad&solutions are obtained by resorting to an optimization @allym that
will be explained in detail in the following section for distce-dependent covariance error because
for this latter case it is not possible to determine the oatisolution analytically. It is important
to remark at this point that when the covariance is constastpossible to obtain accuracies for
each of the targets which are very close to the optimal ortertbald be obtained for a single target
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working in isolation. For distance-dependent covariatius, situation changes drastically and the
tradedts involved are clear. These tradisare mission-dependent.

It can also be noticed that one possible optimal solutiorterproblem at hand is a regular
distribution of sensors around the centre of mass of thetsrwith the sensors placed at an infinite
distance from the centre of mass. Mathematically, thistgmius feasible because for constant
covariance the distance does nfieat the measurement error. In this unrealistic solutiorséresor
network would be regularly distributed around all the tasgand all the FIM determinants would be
maximum. However, it is clear that it is not possible to refurce this solution in a real environment
due to physical constraints, moreover, this solution shibaunrealistic assumption of a constant
covariance error for the measurements, so a more realisticraodel must be defined and used.

3.3.3 Simulation examples

Some examples on optimal sensor placement for a multittaggmario are studied to illustrate the
methodology developed.

Clearly in order for the information about the optimal configtions to be useful, one must check
if the determinants of the individual FIMs for each targeetndesired specifications. To thifect,
and for comparison purposes, the determinant of the FIMaitdd for a number of hypothetical
target points (based on a fixed optimal sensor configuratoresponding to a well-defined multi-
target scenario) will at times be computed by allowing thgsiats to be on a grid in a finite spatial
region . This will allow us to evaluate how good the sensor formai®im terms of yielding
accurate localization of the real targets, in comparisah wie performance localization accuracy
that is possible for any hypothetical targetffeient from the real targets) positioned anywhere in
D. For the sake of clarity, and with an obvious abuse of natatice will refer to that determinant,
viewed as a function of its argument i, simply as|FIM|,. In this chapterD will always be a
rectangle inR2. The same comments applyttdCRB) .

Example 3.1:4 sensor network, 2 targets.

This example tackles the case of a 4 sensor network for thitigpusg of two targets with
no constraints in the sensor placement, with= 0.1 m. The optimal solution for both targets
can be designed through the design condition (3.30). Thyetsiare considered to be placed at
g1 = [2, 0]" mandg, = [-2, 0]" m. It must be noticed that the distance between targets isathyr
important and does nofffect the sensor configuration. The same solution, in a ge@ssnse,
would be obtained for any distance between targets by orglyaqy the adequate scalarization to
the sensor configuration, because the measurement eristanck-independent.

Table 3.1: Target positions and optimal sensor positions.

Qi | 02 P1 P2 P3 P4
{x} — coordinate(m) | 2 | -2 | —-3.8435| -3.8435| 3.8435 | 3.8435
{y} — coordinate(m) | O | O 3.2861 | —3.2861 | —3.2861 | 3.2861

One of the feasible optimal sensor formations may be defigedépositions listed in Table 3.1
and shown in Figure 3.2 (a), which provides the maximum FIk&dainan{FIM| = n?/(c*-4) m™*
for each target. In Figure 3.2 (c), we can notice how the fdiongrovides also the minimum CRB
trace,tr(CRB = ¢ - 4/n n?. The solution shown in this example is not unique, it is pulssio
design several optimal sensor configurations.
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Figure 3.2: Optimal 4 sensor formation for 2 target positioning with stamt covariance error. In (&I1M|,
in R2is shown and in (b) its magnitude R2. Similarly, in (c)tr(CRB, is shown and in (d) its magnitude for
each point inR2.

We can appreciate in Figure 3.2 (b) and (d) how the maximunnevaf the FIM determinant and
the minimum value of the CRB trace, respectively, are ovetdinget positions. We can notice how
the design condition (3.30) is achieved by the present fiaméor both targets. Fay; = [2, 0]" m
we have:

n

Z (cos2 (air) — Sir? (a )) (—3.8435_ 2)2 N (_3.8435_ 2)2 N (3.8435_ 2)2
i)~ i1)) =
i=1 6.7041 6.7041 3.7679

38435-2)\* (-3.8435 (-38435)
37679 6.7041) | 6.7041

_(38435° (38435°

37679 \3.7679
~38435-2) (38435 (-38435-2) (-3843
67041 )\ 6.7041 6.7041 )\ 6.7041

3.8435-2)(3.8435 N 3.8435-2)(3.843 _0
3.7679 J\3.7679 3.7679 )\3.7679

3" 2c08(a) sinan) = (
i=1
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and for the target, = [-2, 0]" m:

3.8435+ 2)2 (3.8435+ 2)2 (—3.8435+ 2)2

> (o< a) - it (a) =( 6.7041 6.7041 3.7679

N ~3.8435+2\° [3.8435° [3.8435\°
3.7679 6.7041) \6.7041

_(-38435° (-38435°
37679) \37679)

izco Sy sin(ayy) - 38435+ 2| (38435 | (384354 2) (3843
— 2 =\ 767041 )\6.7041) "\ 6.7041 )\6.7041

-3.8435+ 2\ (-3.843 . —-3.8435+ 2\ (-3.8435| _ 0
3.7679 3.7679 3.7679 3.7679)
Therefore it is easy to check that an optimal formation thravjoles the theoretical maximum

FIM determinant, and also the theoretical minimum CRB tra&@chieved when (3.30) holds for
each targetm

Example 3.2:5 sensors, 3 targets.

A more complex example is now defined, with 5 sensors and &tsrgAgain with (3.30) it
is possible to define an optimal configuration with which thaximum measurement accuracy is
obtained for each target. The target and sensor positienstated in Table 3.2, and in Figure 3.3
the optimal configuration is shown.

Table 3.2: Target positions and optimal sensor positions.

01 92 | 93| Pu p2 P3 P4 Ps
{x/} — coordinate(m) | -25 | -25| 5 | 6.01 | -312| -8 | -235| 691
{yi} — coordinate(m) | 1.7 | -35| 0 | 311 | 631 | 1.37 | -6.17 | —-3.76

In Figure 3.3 (a) and (b) it can be seen how the theoreticalrmam FIM determinant is obtained
at the target position$ IM| = n?/(40%) = 6.25- 10* m™. In Figure 3.3 (c) and (d) we can see how
the theoretical minimum CRB trace is obtained at the targsttipns tootr(CRB = o2 - 4/n =
0.08 n?.

The optimality condition (3.30), that holds with this configtion, is not computed in this
example to avoid tedious repetition of the same previousragnts, but it is easy for the reader
to check, in a similar way as the previous example, that tbggh condition is kept for each target.
|

Example 3.3:5 sensors and 3 targets in a wide area.
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Figure 3.3: Optimal sensor formation for 5 sensors and 3 targets. 1fF@)l|, in &2 is shown and in (b) its
magnitude irfR2. Similarly, in (c)tr(CRB)y is shown and in (d) its magnitude for each poinfdA.

The optimal positioning of 3 targets with a sensor networkiposed by 5 elements is how
studied maintaining the relative positions of the targémas in Example 3.2 but increasing the
distances between them. The targets positions keep the feamation of Example 3.2 but their
position coordinates are 50 times larger. The procedurdtaimthe optimal formation consist in
solving the design condition (3.30) for all the targets, Balgle 3.3.

Table 3.3: Target positions and optimal sensor positions.

O o7) 03 P1 P2 P3 P4 Ps
{x;} —coord (m) | =125 | -125 | 250 | 30043 | -15617 | -400 | -117.28 | —-30852
{yi} — coord (m) 85 | -175| O | 15588 | 31537 | -6848 | —-30852 | —18781

In Figure 3.4 an optimal formation is shown. We can notice lilogrgeometric configuration
of the sensors is the same obtained in Example 3.2, but inrtit#gm at hand the resultant sensor
formation has a size 50 times larger than the above exampéetalthe new target formation. In
Figure 3.4 (a) and (b) it can be seen how the maximum posséikrminant is obtained over the
target positions againFIM| = n?/(40%) = 6.25- 10* m*, and in Figure 3.4 (c) and (d) we can
see how the minimum CRB trace is obtained over the targetipositoo,tr(CRB = o2 - 4/n =
0.008n7.

Hence it is possible to design optimal sensor networks talibe multiple targets where
the distance between them is not significant, the geometrifiguration of the target formation
determines the optimal sensor placement. However thest saime complex configurations of
targets for which the maximuff M| cannot be achieved for all the targets and therefore a tfhdeo
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Figure 3.4: Optimal sensor network for 5 sensors and 3 targets for a wigke an (a)FIM|, in R2 is shown

and in (b) its magnitude itR2. Similarly, in (c)tr(CRB), is shown and in (d) its magnitude for each point in

R2.

solution must be adoptes.

Example 3.4:10 sensors and 7 targets.

In this example it is studied the problem in which there is rgédanumber of targets whose
configuration does not allow to obtain the maximum FIM deieant for each target. The optimal
configuration, when an analytical solution is not possiblé¢ defined with (3.30), is computed
by resorting to optimization algorithms. We omit the detaif these optimization algorithms, the

reader is referred to the next section in which these alyostare explained in depth.

The targets positions, that were generated with a pseweddeay algorithm, and the optimal

sensor formation are listed in Table 3.4.

Table 3.4: Target positions and optimal sensor positions.

O 02 02 G4 Js Je gz P1
{x} —coord (m) | 153 | -1064 | 1235 | -1506 | -156 | -261 | 392 | 17.75
{yi}—coord (m) | —249 | 1603 | -230 | -4.45 2.76 443 | -125 | 1248

P2 P3 P4 Ps Ps p7 Ps Po
{x} —coord (m) | 1491 | 6.33 | -1517 | -1674| -1385| -653 | 1.77 | 1537
{yi}—coord (m) | 1867 | 2421 | 1199 | 1053 | -7.87 | -1411 | -132 | -129
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In Figure 3.5 (a) and (b) it is shown how the maximum FIM deteants are defined at the
targets positions, and in Figure 3.5 (c) and (d) how the satners with the minimum CRB trace.

Y (meters)

0

X p
-15 -10 -5 0 5 10 15
X (meters)

v o
L v o h N

Y (meters)
CRB trace

IS

-10
-15 -10 -5 0 5 10 15 Y (meters) X (meters)
X (meters)

Figure 3.5: Optimal formation for 10 sensors and 7 targets. In|EM|, in R? is shown and in (b) its
magnitude irfR2. Similarly, in (c)tr(CRBy is shown and in (d) its magnitude for each poinfdA.

The FIM determinants obtained with this formation for eatthe targets are stated in Table 3.5.
It is easy to check that the FIM determinants are very clogegoptimal onelF IM| = n?/(0%-4) =

107/(0.12- 4) = 2.5- 10° mr4,

Table 3.5: FIM determinant for each of the targets.

(o] (0] 03 04 (013 O6 07
[FIM| | 2498-10° | 25-10° | 2.499-10° | 25-10° | 2.499-1(° | 2.499-10° | 25-1C°

Therefore, when the error measurement has its covariamstand, it is possible to design sensor
configurations that provide the theoretical maximum FIMedetinant for each target, or a value very

close to the maximum ona

3.4 Gaussian error with distance-dependent covariance

For a wide range of robotics applications, for example arodamdenvironment, the error can
be considered Gaussian with constant covariance sincendestdoes not significantlyffact the
measurements. This approach may be erroneous for sensarkgthat cover a wide area, because
the distance between sensors and targets rfiagtadramatically the measurement error. For this
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reason, the previous analysis is now extended for the doeimawhich the covariance error is
distance-dependent, and thus the FIM is defined by (3.3).

It is important to remark that for the problem at hand it is possible to achieve the theoretical
maximum accuracy for all the targets. This can be seen glbgrioticing that the accuracy increases
when the distance between sensors and targets is reduosethsing that cannot be achieved for all
the targets at the same time. This fact is coupled with thetcaint that the sensors cannot lie at the
target positions, they must keep a safe or limit distanck mispect to the targets. This limit distance
between sensors and targets cannot be reduced due to plgsistraints antbr limitations for a
correct positioning and tracking strategy.

Therefore there will be tradéis involved in the precision with which each of the targets can
be localized; to study them, as abovementioned, technifpa¢®orrow from estimation theory and
Pareto optimization are used. For the latter, the readesfesred to [45], [22], [90]. Therefore,
concepts on Pareto-optimality are employed to maximize@ornombinations of the logarithms of
the determinants of the FIMs for each of the targets in ordeompute the Pareto-optimal surface
that gives an image of the trad&oinvolved in the multiobjective optimization problem. Ehuve
seek to determine the sensor configuration that yields,séibde, a proper tradédfor the accuracy
with which the position of the dlierent targets can be computed.

3.4.1 Gradient optimization algorithm for optimal sensor placement

The logarithms of the FIM determinants for each of the tar@eé used in the computation of the
indicator of the performance that is achievable with a gsensor configuration,

p* = argmax(log|FIMy| + - - - + log|FIMy|) = argmaxlog|FIM+| (3.36)
p p

One simple method to find the optimal formation is the gradaptimization method. Thus
the derivative of the logarithm of the FIM determinant of ledarget with respect to all sensor
coordinates must be computed. It is necessary to expan@)(&3Xompute its derivatives, and
similarly to the analysis of Section 3.3, from (3.11) and.@,|FIM+]| yields

n
i 2
1 m n n . 2 SIr'I2 ((l’sk) Fsk
IFIMy| = — 1_[ Z cos (as) T2, — Z cos(as) Sin(@sk) Fik) o, st _ ,
T [\ =1 Zl cos(ask) sin(ask) I'g,
S=
(3.37)
Therefore the cost function can be rewritten as a productbprbducts:
1 m
log|FIM| = |og(ﬁ [_[ = (ij (3.38)
k=1
where
n n
Y, cos (as) T2, 3, Sir (@s) T2,
|3k — " s=1 Q"k — N s=1
- Y cos(asy) sin(as) T2, Y, cos(asy) sin(asi) T2,
s=1 s=1
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The derivative of a vector is defined by the derivatives ofheat its elements, 0P =
[ 4B, --- B, |, so the derivatives of each vector element with respect¢h sansor position

coordinate must

e defined. These derivatives were compuitdee previous section in (3.15),

(3.16), (3.17), with respect to tHey} coordinate, and in (3.18), (3.19), (3.20), with respect® t

{yi} coordinate. In

the distance-dependent covariance scawarimust also compute the following

additional derivatives:

(3.39)

Thus the derivatives of (3.38) with respect to each senssitipo coordinate yield

dlog|FIMT| <

8pix

dlog|FIMy| <

Jdpiy

. T
_ 2cos{ay) sir? (ai) g

KT cog (aik)

P 12 — —X cos(ai) sin(ai)

I 0 ix
Z sin® (aik) cog (ant) sin(aik) \ arg
( - ) apix

Ik Ik

n n
>, sir? (as) T2, 1 m Y, co¥ (as) T2,
n s=1 + n s=1

Y, cos(asi) sin(as) T, IFIMd | &1 - 3 cos(es sin(asd) 2
s=1 s=1

2 cos(a) Sin? (@) . o,
2 +sir? (i
., §fik _ O ;i:) OPix 1
_(sin’(ei1)  cos (ai1) sin(aiz) 12 + 2K cos(ay) sin(ai) [FIMy]
My Fi1 " Opix

Yein(o: 2 T
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y

ik Fik api

n . 2 . n >
g‘l sin? (ask) s, 1 gl cos (asy) I,
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Some straightforward computations over the above devesiield

dloglFIMy| & 1 [ 2 cos(aik) Sir? (i)

apx L4 FIM Ik (Sinz(ask)—cosz(ask))rgk+

ik =1
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Once the gradients have been computed for each target, thepmbined to update the sensor
configuration so as to yield an increase in the specified coowmbination of the logarithms of
the FIM determinants. This computation is recursive, uht# optimal position is found. For the
single target positioning problem, an adequate initiakgder the solution is for example any regular
distribution around the target. Checking that this algmwnibehaves well for single target positioning
is easy, for an analytical solution to the optimal sensoitjpos is available in Chapter 2. For the
multiple target localization problem, the initial guessynie a regular distribution around the mass
centre of the target group, with all the targets inside tmsseformation, or the solution that would
be obtained for the constant covariance case. Moreoveb@@mentioned, trad€tsolutions must
be adopted for the problem at hand so Pareto optimizatiols #r@ employed to determine the
optimal sensor configurations depending on the missiont@ints and requirements. Therefore,
(3.4) is rewritten as

m
p* = arg mng Adog|FIMy| (3.42)
P i

wherek = 1,--- ,mwith m being the number of targets, and is the Pareto weight for targét
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andl; + --- + 4n = 1. The Armijo rule is used for the sensor placement updateghaelding the
following iterative gradient optimization algorithm.

1. For each target, (3.42) is computed for the current seosaration at iteratiort, from which
[FIM,|, the convex combination of the logarithms of the determisiagiven bylFIM,|[t] =

m

> A log|FIM|[t], follows for a specific choice alx; k= 1,2,.m; A3 + ... + Ay, = 1, where
k=1

mis the number of targets.

2. Using (3.40) and (3.41) the gradient|BfiM,|[t] is computed, yieldingv; ¢ |FIM,| [t] with
E=xyandi=1,..,n.

3. The sensor positions are updated according to the gtadigmg[t+1] = pis[t] +
pl9V; IFIMI[t], with € 0,1,£[0] = 1, andZ [t] = £ [t - 1] + 1.

4. If [FIM| [t + 1] > [FIM,|[t], thenp; [t + 1] becomes the new set of sensor positidts} =
£[t] + 1, and the iteration goes back to step 1, witfit + 1] = [pi[t + 1], piy [t + 1]].

5. If [FIM | [t + 1] < [FIM,]|[t], then there is no improvement in the convex combinatioref t
determinants [t] = 0, the iterative algorithm stops, ampd[t] is considered to be the optimal
configuration for the current target positions.

The above cycle is only run once if the targets are statiordmyice the unrealistic assumption,
also made in many of the publications available in this atieat the positions of the targets are
known in advance. This is done to simplify the problem andrst fully understand its solution
before the realistic scenario where the positions of thgetarare known with error can be tackled.
In this respect, see Section 3.5, which is largely inspinethke work in [39].

Clearly, in order for the information about the Pareto-wyati configurations to be useful, one
must check if the determinants of the individual FIMs for leé@arget meet desired specifications.
To evaluate how good the sensor formation is in terms of yigldccurate localization of the real
targets the determinalit| M p| previously introduced is used.

In a practical situation where the targets are in motionstesor network must adapt its optimal
configuration as the mission unfolds in thre&elient intertwined processes:

i) multiple target position estimatioalbeit with a possibly large error, using the current
sensor configuration and resorting to a dedicated nonlifikar (e.g. Extended
Kalman filter);

i) optimal sensor configuration computatidrased on the data provided by the previous
process and the algorithm described above or its modifitatiGection 3.5;

iii) coordinated motion controlo actually drive the moving sensors to the optimal
positions determined in ii).

We thus envision the situation where the algorithm desdriserun during each cycle of the
positioning system in ii). Interestingly enough, we caroatsnk of a situation where the fierent
iterates of process ii) can be used to yield set points foathenomous sensor network to move to,
effectively guiding them collectively to the optimal configtioa that is being computed.

The advantage of using a gradient optimization method &intglicity. As it will be seen later,
based on the simulations done so far, the method has provee tpite satisfactory. However,
should there be a need for a more refined method, the sensmrketositions given by the gradient
algorithm can be used as initial estimates in the new method.
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The rest of this section contains the results of simulatithe illustrate the potential of
the method developed for optimal sensor placement whenipteutiargets are involved. As an
introductory step, only the case where the targets havd €gueto weights, thatisl; = 4, = ... =
Am is considered. The case where the targets hdterdnt weights is addressed after the following

examples.
Example 3.5:4 sensors and 2 targets.

This example deals with the problem of 2 targets positioniiln a 4 sensor network and
distance-dependent error defineddy= 0.1 m, ¥ = 1, andnp = 0.05. The optimization method
described above is used to determine the optimal sensomgcoation. The targets are placed at
g1 = [-5, 0]" mandg, = [5, 0]" m. The additional constraint that the sensors cannot be ghlace
closer than 2 meters from the targets has been imposed tetigndbecause if no constraints are
taken into account then the sensor would be too close to thettsaand would provide an unrealistic
solution. In this sense, we can notice in Figure 3.6 and ineTals how the sensors are placed over
this constraint to reduce as much as possible the distagpendent added error.

Table 3.6: Target positions and optimal sensor positionsdfes 0.1 m, y = 1, andy = 0.05.

qu | Q2 P1 P2 Ps3 P4
{x}-coord (m) | -5 | 5 | =397 | -3.973| 3.973 | 3.973
{w}—-coord(m) | O | O | 173 | =173 | -1.73 | -1.73
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Figure 3.6: Optimal sensor placement for 2 targets with 4 sensors,y0.05 ando- = 0.1 m. In (a) [FIM|,
in &2 is shown and in (b) its magnitude R2. Similarly, in (c)tr(CRB)p is shown and in (d) its magnitude for

each point inRk?2.
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The optimal formation is the one shown in Figure 3.6 (a) andvhere we can see how the
maximum FIM determinant and minimum CRB trace are obtainethea target positions. The
sensors lie just at the limit distance of 2 meters. The FIMedeinants for this example are
[FIM|; = 1.6823 10" m™* and|FIM|, = 1.6823 10* m™. It can be noticed that the FIM determinant
for each target is lower than in the previous situation, beeanow the solution space is limited by
the design constraints, and the distance-dependent adaed Ehus a trade® solution is adopted

so that the largest accuracy possible is achieved for bogktam

Example 3.6:6 sensors and 3 targets.

In this second example with equal Pareto weights the prolofetargets positioning by a 6
sensor network is studied, with the constraint that the@snsannot lie closer than 2 meters from
the targets and a distance-dependent error modelled £y0.1 m, y = 1, andy = 0.05. In Table
3.7 the positions of the targets and the sensors are shoaviattar providing the maximum possible

accuracy for the problem at hand.

Table 3.7: Target positions and optimal sensor positionsdfes 0.1 m, y = 1, andy = 0.05.

Qx 02 | 93| P P2 Ps P4 Ps Ps
{x;}—coord (m | -25| -25 | 5 | 412 | =057 | -222 | -3.46 | -053 | 4.46

{y}—-coord (m | 1.7 | -35| 0 | 1.75| 213 | -0.23 | -1.76 | -3.73 | —1.90
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Figure 3.7: Tradedt solution for a 6 sensor network and 3 targets with 0.05. In (a)|FIM|, in R? is shown
and in (b) its magnitude ifR?. Similarly, in (c)tr(CRB) is shown and in (d) its magnitude for each point in

R2,
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In Figure 3.7 (a) and (b) it can be seen how the maximum FIMrdetents in the regioD
are over points that ffer from the target positions. This is due to the constraimizosed to the
problem at hand that make that a traffsolution must be adopted. For the traffamlution defined
an equivalent accuracy, as large as possible, is obtainmeelafth target. The FIM determinants
obtained for each of the targets afFdM|; = 4.0799- 10* m™, |[FIM|, = 4.01-10* m™, and
[FIM|s = 3.6359- 10* m™. The three determinants are as large as the constrainis afloan be
also seen in Figure 3.7 (c) and (d) how an equivalent accusamytained for the targets in terms of
the CRB tracem

Example 3.7:6 sensors and 3 targets in a wide area.

In this third example the problem of 3 targets positioningaly sensor network is studied when
the targets are placed in a wide area, with the constraihtlleasensors cannot lie closer than 20
meters from the targets and with a distance-dependent@wdelled byo = 0.1 m, y = 1, and
n = 0.05. The targets are placed such that the geometric configuraft Example 3.6 is kept but
the distances between targets are larger, in fact the teogedinates are 50 times larger, as it can be
seen in Table 3.8, where the optimal sensor positions aveshsyn.
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—100 =50 0 50 100 150 200 250 Y (meters) X (meters)
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Q) d)
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Figure 3.8: Tradedt solution for a 6 sensor network and 3 targets with 0.05. In (a)|FIM|,, in R? is shown
and in (b) its magnitude ifR?. Similarly, in (c)tr(CRB) is shown and in (d) its magnitude for each point in
R2,

In Figure 3.8 (a) and (b) it can be seen how the maximum FIMrdetents in regiorD are at
the target positions and how the sensors are close to theetdtme the distance-dependent added
error. The FIM determinants obtained for each of the target-|M|; = 6036742m™4, |[FIM|, =
6635002m™4, and|FIM|3 = 6530239 m™. These small values compared with those obtained in
Example 3.6 are due to the constraints imposed to the prodtieand, and the wide area considered,
that make more evident the importance of considering artistalependant measurement error. It
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Table 3.8: Target positions and optimal sensor positionsdfes 0.1 m, y = 1, andy = 0.05.

01 02 Os P1 P2 Ps P4 Ps Ps
{x;} —coord (m) | -125| -125| 25| 2343 | -1062 | -1252 | —-1054 | 2379 | 45
{yi} — coord. (m) 85 -175| O 12.3 785 65 -1711 | -158 | -1.9

can be seen in Figure 3.8 (c) and (d) the accuracy that isr@atan O in terms of the CRB trace.

This example shows clearly the importance of the size of the&kvarea because the distance
dramatically #ects the measurement accuracy and consequently the ogémsdr configurations
that can be defineda

Itis not hard to envision situations wherégtdrent “levels of importance” and therefordfdrent
localization accuracies are required for the elements roamof targets. For example, in a 2 target
scenario one of the targets may be executing a very demanadithgisky task, while the other is
carrying out an easy, routine task. In this situation, thesee network should “focus its attention”
on the first target, ffectively imposing strict requirements on the accuracy witfich its position
must be estimated, while relaxing the level of localizatmeuracy required for the second target.
This situation may be inverted during the mission, so thengion should be able to accordingly
reconfigure itself.

It is obvious that the geometry of the sensor network will &oipon the accuracy with which
the position of each target can be computed. In the case dipteufargets, improving the accuracy
in the estimate of one target may at times be done only inrdetrt of the accuracy of the other
estimates. There are therefore trafi®ohat must be examined carefully. An example of a multi-
target localization problem can be briefly described aofedt “given m targets anch sensors,
determine, if possible, a geometric configuration for thesses that will maximize the accuracy
with which the position of targatcan be estimated, while keeping the accuracy of the othgetar
estimates above a desired threshold level”. It is at thigesthat the power of multi-objective Pareto
optimization must be brought into the picture. Clearly, ider to fully understand the problem, the
corresponding set of Pareto-optimal points must be condparied make decisions accordingly. See
the presentation in Appendix B. As explained before, thistoadone by computing

p* = arg m§x|FI M,| = arg mg\xlog|FI M| (3.43)

over all possible sensor positions, and foralk [11, Ay, ..., Am] Such thatl; + ... + An = 1. In
practice a grid of points is adopted for vectiorThe maximization above is done by resorting to the
gradient optimization algorithm previously introduced.

For simplicity of explanation, a 2-target positioning plerin with 6 sensors is studied although
the procedure would be the same for more targets anflexelit number of sensors. This particular
problem is studied in detail in Example 3.8, here we simplg@i brief overview of the problem of
Pareto optimization. Since only two targets are involvad, Pareto-optimal curve is parametrized
by a single parameter € [0, 1]. For simplicity of notation, we use the same symbol fos thtalar
as well as for vecton. The meaning will be clear from the context. We assume that 1 and
A2 = 1 - 1. Whena varies from 0 to 1, the weight on one of the targets changesrdicgly.
Thus, in the extreme cases of 0 and 1 the solutions degenetatose two of the single target
localization problems for target 2 and 1, respectively. Tifterent curves that show the tradisan
the determinants of the Fisher Information Matrices folheafthe targets (with the sensor geometry
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Figure 3.9: Pareto curve (solid line) for a 2 target localization probjeising 6 sensors foy = 0.2, and the
corresponding FIM determinants (dotted line) foffelient values of the Pareto scalarization weights.in

obtained by running the gradient optimization algorithmg alotted in Fig. 3.9. The left plot
corresponds to the Pareto curve for the maximizatiofirof ,|, whereas the right plot shows the
corresponding FIM determinants. The two curves are nomadlbetween 0 and 1.

Notice in Fig. 3.9 how the cost functidrIM,| = log|FIM+| provides a concave Pareto curve
(solid line), as expected for a maximization problem. Aslaxgd before, this is a consequence
of the fact that in this case the criterion for each targenieed concave. The right plot shows the
corresponding evolution of the FIM determinants. Noticat tthe curve shown is concave for this
particular example because the distance between targeteil as will be detailed in Example 3.8,
however in multitude of scenarios it will not be concave (glegting on the targets configuration),
thus supporting the statement that the determinants of tis BEre not adequate criteria to be
maximized jointly (in the Pareto-optimal sense).

Fig. 3.9 shows how the accuracy of the measurements chaogdgtérent values oft. At
this point it is important to remark that if the measurementredoes not depend on the distance
between targets and sensors, thapis; 0, it is possible to obtain sensor locations for which the
accuracies obtained for each of the targets simultaneawslglose to the optimal ones that would
be obtained if the targets were operating in isolation. Tbi®ws from the shape of the Pareto
curve whenp = 0, not shown here. For example, with= 0.5 the performance achievable in
the localization of targets 1 and 2 simultaneously does egratle when compared to the best
performance achievable for the two targets isolated. Ofsmthe acceptable level of degradation
in performance is problem-dependent (for more than 2 taygétvhen the measurement error is
distance-dependent, the situation changes drasticatjuse of the “steepness” of the Pareto curve.
For example, when = 0.5 the performance that can be simultaneously achieved fibr thogets
degrades substantially. The tradisanvolved are clear.

Now some examples of Pareto optimization are shown féeint number of targets and
sensors. For the sake of clarity in the exposition of the ipresyarguments, the distances between
targets are considered small to show clearly the evolutidgheooptimal formation when the Pareto
weights are modified. For larger distances the changes wmmildss evident, as it can be deduced
from Example 3.7, and the problem understanding less dieail the examples the sensors cannot
lie closer than 2 meters from the targets and the noise medigfined by = 0.1,y = 1, and
n = 0.05, therefore the error depends on the distance in a lineanena

Example 3.8:6 sensors and 2 targets.

In this example a 6 sensor formation is used to localize twgeta with diferent values of the
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Figure 3.10: Optimal sensor formation fot = 0.2. In (a)|[FIM|, in R? is shown and in (b) its magnitude in
R2. Similarly, in (c)tr(CRB) is shown and in (d) its magnitude for each pointAR.

Pareto weights that illustrate how the sensors must ch&egreconfiguration to achieve the accuracy
requirements imposed to each target. The targets are piged [-5, 0]" manda, =[5, 0]" m.

As mentioned above, as only two targets are involved, thetBaptimal curve is parametrized by
a single parametet € [0,1]. We assume in this example that = 1 andA, = 1 — 1. Whena
varies from 0 to 1, the weight on one of the targets changesrdicgly. The Pareto curve is shown
in Figure 3.9.

Some optimal configurations forftérent Pareto weights are now shown to illustrate the above
comments. For example in Figure 3.10 the optimal sensorar&tier 4 = 0.2 is shown. The sensors
are placed at the positions listed in Table 3.9. Itis cleav tiee formation is focused on target 2, but
maintaining a minimum accuracy for target 1.

Table 3.9: Target positions and optimal sensor positionsdfes 0.1,y = 1, andp = 0.05.

1=02 u | 2| P P2 Ps Pa Ps Ps
{x;}—coord (m) | -5| 5 | 231 | -367| =379 | -3.79 | -3.67 | 231
{yij—coord(m) | O | O | 357 | 144 | 159 | 159 | —1.44 | —357

In Figure 3.10 (a) and (b) the FIM determinantsZinare shown, which arg=IM|; = 4.6693-
10* m* and|FIM|; = 2.1355- 10* m at the target positions. In Figure 3.10 (c) and (d) the
CRB traces forD are shown too, which in the target positions becdnj@RB); = 0.0093n¥ and

tr(CRB, = 0.0153n?.
In Figure 3.11 it can be seen that for= 0.5 the formation is symmetric and therefore both

targets are localized with the same accuracy. The sensiiiopssare shown in Table 3.10.
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Table 3.10: Target positions and optimal sensor positionsdfet 0.1,y = 1, andy = 0.05.

1=05 Qu | 2| P P2 Ps Pa Ps Ps
{x;} —coord (m) | -5 | 5 | 4.20 0 -4.20 | -4.20 0 4.20
{yj}—coord (m) | O | O | 1.79| 322 | 179 | -1.79 | -3.21 | -1.79
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Figure 3.11: Optimal sensor formation fot = 0.5. In (a)|FIM|,, in R? is shown and in (b) its magnitude in
R2. Similarly, in (c)tr(CRB)y is shown and in (d) its magnitude for each poinfiA.

In Figure 3.11 (a) and (b) the FIM determinants are shown Bxexhich in the target positions
arelFIM|; = 3.5458 10* m™* and|FIM|, = 3.5458 10* m™4, that imply the same accuracy for both
targets. In Figure 3.11 (c) and (d) the CRB trace®iare plotted, which at the target positions are
tr(CRB; = 0.0106n7? andtr(CRB), = 0.0106n?. It can be noticed from these results, with respect
to the previous case with = 0.2, how the accuracy of one target increases while the othgetta
accuracy decreases to provide an equivalent accuracy fortémets. It is important to remark at
this point that if the distance between targets was to bestathe optimal configuration would be
such that the 6 sensors are split into two formations of 3@sngach of these formations focused
on one of the targets.

Another interesting situation is when the sensor netwoltkdased on target 1 but the importance
of target 2 is large too, it is, when = 0.7. Figure 3.12 shows how the formation is split into a 4
sensor network close to target 1 and a 2 sensor network ddaeget 2 (in fact the sensors are over
the limit distance), see Table 3.11.

It is clear how the formation is focused on target 1, but naimhbg a minimum accuracy for
target 2, larger than the one obtained for target 1 whea 0.2. In Figure 3.12 (a) and (b) the
FIM determinants are shown i®, which at the target positions ajfelM|; = 3.1202- 10* m™ and
[FIM|, = 4.4533- 10 m™. In Figure 3.12 (c) and (d) the CRB traceszinare shown, which at the
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Table 3.11: Target positions and optimal sensor positionsdfet 0.1,y = 1, andy = 0.05.

1=0.7 0 | Q2 P1 P2 ps P4 Ps Pe
{x;}—coord (m) | -5 | 5 | 425 | 340 | -4.37 | —-4.37 | 3.40 4.25

{yj}—coord (m) | O | O | 1.85| 1.20| 188 | -1.88 | -1.20 | -1.85
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Figure 3.12: Optimal sensor network fot = 0.7. In (a)|FIM|, in R2 is shown and in (b) its magnitude in
R2. Similarly, in (c)tr(CRB)y, is shown and in (d) its magnitude for each pointAg.

target positions artr(CRB); = 0.0114n¥ andtr(CRB), = 0.0095n?.
Finally, Figure 3.13 shows the optimal formation when thesses are focused on the localization
of target 1 but a minimum accuracy must be maintained onta&rgeis, whent = 0.9. The sensors

positions are stated in Table 3.12.

Table 3.12: Target positions and optimal sensor positionsdfet 0.1,y = 1, andy = 0.05.

1=07 O | G2 | P1 p2 P3 Pa Ps Pe
{x}—coord (m) | =5 | 5 | 425 | 340 | -0.88 | —0.88 | 3.40 | 4.25

{yj}—coord(m) | O | O | 1.85| 1.20| 330 | -3.30 | -1.20| -1.85

In Figure 3.13 (a) and (b) the FIM determinants are showf,imhich in the target positions are
|[FIM|; = 1.4283 10* m* and|FIM|, = 4.8898 10* m™*, showing a larger accuracy for the second
target as it was expected. In Figure 3.13 (c) and (d) the CR&:# for all the points ib are shown,
which in the target positions atgCRB); = 0.0221n? andtr(CRB), = 0.0090n?. From the above
figures we can notice how the formation adapts its shape dioggy to the required accuracy for
each of the targets
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Figure 3.13: Optimal sensor network fot = 0.9. In (a)|FIM|, in R? is shown and in (b) its magnitude in
R2. Similarly, in (c)tr(CRB), is shown and in (d) its magnitude for each poinfiA.

Example 3.9:6 sensors and 3 targets.

In this example the problem of 3 targets positioning with moek composed by 6 sensors is
studied. The increasing in the problem complexity is clezrduse the 6 sensors must adapt their
configuration to achieve the accuracy requirements andtreoms while they must deal with an

additional target compared with the previous example. &hgets are placed g = [4, —3]" m,
o = [-4, -3]" mandgz = [5, 0]" m. These target positions have been chosen arbitrarily.r8eve

scenarios for dferent values of thas and their trade®solutions are shown next.
For example, in Figure 3.14 the tradBsolution ford; = 2, = 13 = 0.333 is shown. After the
optimization process the sensors are in the positions sioable 3.13.

Table 3.13: Target positions and optimal sensor positionsdet 0.1,y = 1, andy = 0.05.

A123=033033033| g1 | 02 | Gz | P1 P2 p3 P4 Ps Ps
{X;} — coord (m) 4 | -4| 5 |406| 176| -1.76 | -0.99 | —2.18 | 2.20

{yi} — coord (m) -3|-83| 0| -1 |405| 405 | -403| -384 | -361

It is easy to check how the formation is placed adequatelyr¢wige similar accuracy for all
targets and as large as possible. In Figure 3.14 (a) andg[#) tM|,, and its representationin 3D are
shown, respectively. The FIM determinants obtained fottdngets ar¢FIM|; = 3.4681- 10* m,
[FIM|; = 3.463510* m™, and|FIM|s = 3.3637-10* m™. In a similar way in Figure 3.14 (c) and (d)
thetr(CRB)p and the representation of its magnitude in 3D are shown. &hees of the CRB trace
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Figure 3.14: Tradedf solution ford; = 2, = 13 = 0.333. In (Q)|FIM|, in R2 is shown and in (b) its magnitude
in R2. Similarly, in (c)tr(CRB), is shown and in (d) its magnitude for each poinfAs.
at the targets position atgCRB); = 0.0108n? tr(CRB), = 0.0108n?, andtr(CRB3 = 0.0110n?.

In Table 3.14 and in Figure 3.15 the optimal solution is shdwrthe Pareto weights given by
A1 =04,1, =04, andiz = 0.2.

Table 3.14: Target positions and optimal sensor positionsdet 0.1,y = 1, andy = 0.05.

A123=04,04,02 | g | 02 | Gz | Pr | P2 Ps3 P4 Ps Ps
{x/} — coord (m) 4 | -4| 5 4 | 269 | -269 | -3.02 | -224 | 224

i}—coord(m) | -3|-3| 0 |-1]|292| 292 -1 -3.96 | -3.95

In Figure 3.15 (a) and (b) we can see how the formation is feds targets 1 and 2, providing
a larger accuracy (FIM determinant) than for target 3. Theterminants arg=1M|; = 3.5962-
10* m™, [FIM|; = 3.6034- 10* m™, and|FIM|3 = 2.8334- 10* m™. In Figure 3.15 (c) and
(d) the trace of the CRB matrix is shown 1, taking at the target positions the following values,
tr(CRB; = 0.0106n7, tr(CRB) = 0.0105n?, andtr(CRB3 = 0.0123n?.

The situation shown in Figure 3.16 corresponds to the casehinh the Pareto weights are
A1 = 02,2, = 0.2, andAz = 0.6. The sensor positions for the corresponding trétemlution are
listed in Table 3.15.

In Figure 3.16 (a) and (b) the FIM determinants/inare shown, which for the target positions
are|FIM|; = 2.9083- 10* m™4, [FIM|, = 2.8385- 10* m™, and|FIM|3 = 4.1533- 10° m™. In
Figure 3.16 (c) and (d) the trace of the CRB matrixZinis also shown, which for the targets are
tr(CRB; = 0.0121n?, tr(CRB), = 0.0124n7¥, andtr(CRB3 = 0.0098n?.
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Figure 3.15: Tradedt solution ford; = 0.4, 1, = 0.4, 23 = 0.2. In (a)|FIM|, in R? is shown and in (b) its
magnitude irfR2. Similarly, in (c)tr(CRB), is shown and in (d) its magnitude for each poinfds.
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Figure 3.16: Tradedt solution ford; = 0.2, 1, = 0.2, 13 = 0.6. In (a)|FIM|, in R? is shown and in (b) its
magnitude irfR2. Similarly, in (c)tr(CRB) is shown and in (d) its magnitude for each poinfiA.
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Table 3.15: Target positions and optimal sensor positionsdfet 0.1,y = 1, andy = 0.05.

A123=02,0206 | g1 | 02 | 3| P1 P2 Ps P Ps Pe
{x;} — coord (m) 4 | -4 | 5 |222|179| -179| -219 | -223| 2.16

{yif—coord (m) | -3 | -3 | O | 254 | 41 | 41 | 254 | -393| -36

Finally the situation in which the targets must be positibméth a diferent accuracy each is

studied. Therefore the Pareto weights are maw= 0.1, 1, = 0.3, andAz = 0.6. The tradeff

solution provides a network with the sensors placed at tiséipns shown in Table 3.16.

Table 3.16: Target positions and optimal sensor positionsdet 0.1,y = 1, andy = 0.05.

A123=01,03,06 | g1 | O | Oz | P2 P2 p3 P4 ps Pes
{x} — coord (m) 4 | -4 5 |425|180| -179| -1.30| 0.27 2

{y}—coord (m) | -3|-3| 0| 055|414 | 411 | 349 | -430| -3

As in the previous situations, in Figure 3.17 (a) and (b) the Eeterminants are shown,
which for the targets arg=IM|; = 2.3052.- 10* m*, |[FIM|, = 3.3721- 10* m™, and|FIM|3 =
4.0629- 10* m. In Figure 3.17 (c) and (d) the traces of the CRB matriceslaoea, which for the

targets arér(CRB) = 0.0142n%, tr(CRB), = 0.0111n?, andtr(CRB3 = 0.0099n¥. m
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Figure 3.17: Tradedt solution ford; = 0.1, 1, = 0.3, 13 = 0.6. In (a)|FIM|y, in R2 is shown and in (b) its
magnitude irfR2. Similarly, in (c)tr(CRBy is shown and in (d) its magnitude for each poinfdA.
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Therefore from the two examples above, and thedent situations studied forfeérent Pareto
weights, it is clear that there exist tradisoin the design of optimal sensor configurations that must
be kept. Depending on the accuracy with which each of thetamust be localized, and depending
on the number of sensors, number of targets, and their owfigooation, the sensors must adapt
their configuration accordingly to the accuracy requiredaath moment for each target. Of course,
these accuracies can change during a mission, so the fornmatist be able to adapt its configuration
for the different possible situations in a similar way as in thedént situations seen in the previous
examples.

3.5 Uncertainty in the target location

Now it is addressed the situation where the targets to beiposd are known to lie in well defined
uncertainty regions. Inspired by the work in [39] and simyldo Chapter 2, it is assumed that the
uncertainty in the target positions is described by givarbpbility distribution functions and we
seek to maximize, by proper sensor placement, the averdge whthe log determinants of the
FIMs for the targets.

In what follows, pis ; i = 1,2,...,n; ¢ = X,y denotes th& — th coordinate of sensarlocated
at positionp;, p = [p}, ... pt]", andq = [q], ..., qT]". We further denote by (q) ; g € R™2 the
probability density functions with suppdit € R? that describe the uncertainty in the position of the
targets in regiorD, whereD = D; + --- + Dy,. With this notation, the problem of optimal sensor
placement can be cast in the form of finding a vegtosuch that

p = argmax [ IFIM(P. .l -¢ (@ da (3.44)
D

where we used the notati¢fl M (p, g),| to clearly show the dependence of the FIM on the target and
sensor locations. However, in the followiifgl M (p, g).| will often be denoted simply a&1M .

In a real situationy (q) will depend on the type of mission carried out by the targdtserefore,
different distributions can be taken fofférent targets and fierent scenarios.

To proceed, one must compuid M (p, 0),| in the equation above. At this point it is important to
remark that, given the complexity of the optimal sensor @taent problem at hand, the only viable
solution is a numerical one.

It now remains to solve the optimization problem defined & @onceptually, the procedure to
determine the optimal sensor configuration is similar td #xplained in the previous sections, that
is, one must compute the derivatives of (3.44) with respettié sensor coordinates

0

ail%Dflog(lFlM(ﬁﬁ)Tl)¢(d)dﬁ=a—melFlM(ﬁ%lwo(ﬁ)dG (3.45)

fori=1,2,..,nandé = x,y.
To proceed with the computations, the integral and dexigatperations are interchanged: the
derivatives are explicitly determined first, and the in&igm over regioD is performed afterwards.
The derivatives can be computed in a recursive way usin@)&#dd (3.41) for any number of
targets. In what regards the computation of the double iateger the regiom of interest, however,
this is virtually impossible to do analytically. For thisason, the integral is computed numerically
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with a Monte Carlo method. Finally, the solution of (3.449i#ained using the gradient optimization
method detailed in Section 3.4.1. Again, to overcome theiptesoccurrence of local maxima or the
divergence of the algorithm, the initial guess in the it@ealgorithm must be chosen with care. In
the examples that we studied we found it useful and expegladdpt as an initial guess the solution
for the single target positioning problem described in Gaag, with the hypothetical single target
placed at the centre of mass of the work area, or the solutibtesned in the previous sections of
this chapter. It is important to stress that the solutior3td4) depends strongly on the probability
density function adopted for the target positiops

3.5.1 Simulation examples

Some examples for multiple target positioning when thegpgsitions are known with uncertainty
are studied now. In these examples we consider an error ndefiaked byo = 0.1 m, 8 = 1 and

n = 0.1 orn = 0. In these examples we only know the region in which the targperate instead
of the target positions themselves. We deal with equal Pawveights for all the targets, but the
procedure would be exactly the same fdfelient Pareto weights.

Example 3.10:Constant covariance error, 2 targets and 6 sensors.

In this first example the scenario with 2 targets and 6 seris@tidied. The only knowledge
about the target positions is that the targets operatedrssicertain area, therefore the probability
distribution functions are step-like distribution furaris because the targets can be placed at any
point inside their corresponding work areas. The areas ictwie targets operate are squares of
2 x 2 m? whose vertices are given by the poilig= [-5 1; -5 — 1; -3 1; -3 - 1] mfor target
1,andD; = [51; 5 —1; 31; 3 — 1] mfor target 2. After the optimization process commented
above the optimal formation is defined by the sensor formadiescribed in Table 3.17 and shown
in Figure 3.18.

Table 3.17: Optimal sensor positions for constant covariance.

P1 P2 P3 Pa Ps Pe
{x;} —coord (m) | 413 | O | -4.16 | -4.15 0 413

{yi} —coord (m) | 2.90 | 358 | 2.89 | —-2.89 | -3.57 | —2.89

We can check in Figure 3.18 (a) and (b) how a large average Ftdrohinant, close to the
optimal one, is obtained over the work areas. In fact, theimam and minimum determinant
that this optimal formation provides inside the areas ofriest argFIM|nax = 9 - 10° m™ and
[FIM|min = 8.8672- 10 m™*. We can notice how the maximum determinant is the theoileiive,
[FIMlopt = n?/(4c*) m™4, and how the minimum determinant is very close to this optivatue
too, given a large accuracy in all the points if the uncetyaiagions. In a similar manner, in Figure
3.18 (c) and (d) the CRB trace i is shown, and it can be seen how inside the work areas a small
average CRB trace is obtained. The minimum and maximum C&® tinside the areas of interest
aretr(CRBmin = 0.0067 n? andtr(CRBmax = 0.0068 m?. The minimum CRB trace is again the
theoretical minimum for constant covarian¢g(CRBop: = 40-2/n ¥, and the maximum is very
close to this minimum.

Thus, from this example it is clear that when a distancepeddent measurement error is
considered it is possible to define optimal sensor confignmatfor which the accuracy inside the
work areas is very close to the maximum accuracy that woulddteined for a single target with
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Figure 3.18: Optimal sensor placement for 2 target positioning with utaiety and constant covariance error.
In (@) |FIM|, in R2? is shown and in (b) its magnitude W2. Similarly, in (c)tr(CRB)p is shown and in (d) its
magnitude for each point iR 2.

known position working in isolatiorm
Example 3.11:Distance-dependent covariance error, 2 targets and 6rsenso

The above example is now studied with distance-dependeasunement error, for which =
0.1 andy = 1. Again the targets operate inside two square areas«dt 8¢ defined by the vertices
Dy =[-51; -5 -1; -3 1; -3 —1]" mfortarget1l,and>, =[51; 5 -1; 31; 3 -1]"m
for target 2. The only knowledge about the target positisribat the targets operate inside a certain
area, they can be placed at any point of their correspondarg area and therefore the probability
distribution functions are step-like distribution furaris. Once the optimization process is finished,
the sensor positions that define the optimal formation atediin Table 3.18.

Table 3.18: Optimal sensor positions fer = 0.1,y = 1, andy = 0.1.

P1 P2 P3 P4 Ps Ps
{x}—coord (m) | 391 | -3.22 | -4.41 | -391 | 321 | 442
{yy}—coord (m) | 0.97 | 113 | 115 | -095| -1.11 | -1.13

It is interesting enough to notice how in this example the iisse formation is split into two
formations of 3 sensors, which are focused on the work aedga@independent formations.

In Figure 3.19 (a) and (b) the FIM determinants forare shown. The accuracy inside the
work areas has been substantially reduced with respeat forélvious example, due to the distance-
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Figure 3.19: Optimal sensor placement for 2 target positioning with uradety and distance-dependent
covariance error. In (8FIM|, in R? is shown and in (b) its magnitude BR2. Similarly, in (c)tr(CRBy
is shown and in (d) its magnitude for each poinfAA.

dependent added error, and we can see how the sensor famneties a configuration in which
this added error is reduced as much as possible to keep adamgacy over the regions of
interest. This fact can be seen as well in Figure 3.19 (c) aiydn(terms of the trace of the
CRB for ©. The maximum and minimum FIM determinants obtained insidework areas are
IFIM|max = 2.9941- 10* m* and|FIM|min = 1.5577- 10 m#, respectively, and the minimum
and maximum CRB trace arg(CRBmin = 0.0116n? andtr(CRBmax = 0.0208n%, respectively.
Although the global accuracy is reduced, we can observe moadaquate design can optimize the
accuracy over the areas of interast.

Example 3.12:Constant covariance error, 3 targets and 6 sensors.

The problem of 3 target positioning with a 6 sensor netwoitkwonstant covariance is tackled.
In this example the sensors can be placed in a wide area andhtleetainty regions are larger. The
uncertainty regions where the targets operate are squeae af 40< 40 n¥ defined by the vertices
D; = [-100 - 20; —100 20; -60 — 20; —60 20] mfor target 1,D, = [100 — 20; 100 20; 60—
20; 60 20] m for target 2, andDs = [-20 100; —20 140; 20 100; 20 14®]m for target 3.
The only knowledge about the target positions is again treatdrgets are inside these areas, thus the
probability distributions are step-like distributionsh&@'sensor formation that maximizes the average
logarithm of the FIM determinant is defined by the sensortpmss in Table 3.19.

Again it is possible to notice in Figure 3.20 how a large aacyiis obtained inside the areas of
interest when a constant covariance error is considered.

In Figure 3.20 (a) and (b) the FIM determinants ov@rare shown. The maximum and
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Table 3.19: Optimal sensor positions for constant covariance.

P1 P2 P3 P4 Ps Ps
{x;} —coord (m) | 15336 | —-43.31 | -19092 | -16680 | 31.02 | 13809

{yi} —coord (m) | 12336 | 7543 | 17683 | -19448 | -86.92 | —60.13
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Figure 3.20: Optimal sensor placement for 3 target positioning with utaiety and constant covariance error.
In (@) |FIM|, in R2? is shown and in (b) its magnitude W2. Similarly, in (c)tr(CRB)p is shown and in (d) its
magnitude for each point iR 2.

minimum FIM determinants obtained inside the work areas|Bi|nax = 9 - 10 m™* and
IFIM|min = 8.7849- 10* m™, respectively. The average value inside the regions oféstes
|FIM|a = 8.9760- 10* m™*. We can notice how the maximum FIM determinant correspomdiset
theoretical maximum FIM determinant that can be obtaineéfsingle target working in isolation,
IFIMlopt = N?/(40*) m™, and that the minimum FIM determinant is very close to thiotietical
optimal value, so that the accuracy inside the regions efré@st is very close to the optimal one.
Similarly, in Figure 3.20 (c) and (d) the trace of the CRB fack point inD is shown. The minimum
and maximum CRB trace arg(CRBmin = 0.0067 n? andtr(CRBmax = 0.0068n¥, respectively,
with the minimum value equal to the theoretical ott§CRB)op: = 452/n m?, and the maximum
very close to it, as commented for the FIM determinant plmts.

Example 3.13:Distance-dependent covariance error, 3 targets and 6rsenso
The above problem is studied now considering a distancerdigmt error modelled withh= 0.1

andy = 1. The uncertainty regions are the same square areas>ofi@0’ defined by the vertices
D; = [-100 — 20; —100 20; —-60 — 20; —60 20] mfor target 1,D, = [100 — 20; 100 20; 60—

74



3.5. UNCERTAINTY IN THE TARGET LOCATION

Y (meters)

Y (meters)
“100 50 0

0
X (meters) X (meters)

Figure 3.21: Optimal sensor placement for 3 target positioning with utasety and distance-dependent
covariance error. In (8FIM|, in R? is shown and in (b) its magnitude 2. Similarly, in (c)tr(CRBjp
is shown and in (d) its magnitude for each poinfAA.

20; 60 20] m for target 2, andDs = [-20 100; —20 140; 20 100; 20 14®]m for target 3.
The probability distributions for the uncertainty areas step-like distributions, as in the previous
examples. The sensor formation that maximizes the aveoageithm of the FIM determinant is
defined by the sensor positions in Table 3.20.

Table 3.20: Optimal sensor positions fer = 0.1,y = 1, andy = 0.1.

P1 P2 Ps Pa Ps Ps
{x} —coord (m) | 7961 | —2310 | -79.77 | -77.65 | 1964 78.59

{yi}—coord (m) | 1552 | 12196 | 1644 | -1341 | 12310 | -1262

In Figure 3.21 (a) and (b) the FIM determinant<inare shown. In this case the accuracy with
which each of the targets (actually its associated areapedncalized is reduced with respect to
Example 3.12 due to the distance-dependent added erroretdnithe accuracy obtained inside the
work areas is large and homogeneous for all the areas, pngvédsimilar accuracy for the three
uncertainty areas. This fact can be seen too in Figure 3)24n@ (d) in terms of the trace of the
CRB in . The maximum and minimum FIM determinants obtained insite work areas are
|FIM|max = 1.8616- 10° m™* and|FIM|min = 1460117 m4, respectively, with an average value of
[FIM|avg = 5889221 m~*. The minimum and maximum CRB trace at§CRBmin = 0.0648n?
andtr(CRBmax = 0.2553n?, respectively.

Comparing these results with the results obtained in Exa®dll, we can see that the accuracies
are smaller in the problem at hand because the formationchaskimize the FIM determinant
over three wide regions that are separated by a larger destéian the two areas of Example 3.11.
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Although the accuracy is reduced for this case, we can obdew with an adequate design it is
possible to optimize the accuracy over the areas of intemest

3.6 Conclusions

The problem of optimal sensor placement for multiple tapgeditioning in 2D scenarios has been
studied in this chapter. Clearly, there exist trafieinvolved in the precision with which each of
the targets can be localized; to study them, we resortecctntgues that borrow from estimation
theory and Pareto optimization. Stated briefly, we availe@delves of concepts on Pareto-optimality
and maximized convex combinations of the logarithms of thieiinants of the FIMs for each of
the targets in order to compute the Pareto-optimal surfaaiedives a clear image of the tradiso
involved in the multiobjective optimization problem.

The first problem studied was the one in which the measureereot was Gaussian with its
covariance being constant. This situation has been widedjed in the ground robotics field, where
the distances are not large and the covariance can be coatsictenstant. Despite this, most works
in the literature deal with single target positioning, se #xtension to multiple target positioning
has been done in this chapter. It has been studied that umger @onditions, an analytical solution
can be defined and that this solution provides the maximum é#&kérminant for each target. In
other situations with complex target configurations, timalgtical solution cannot be achieved, and
then the optimal sensor configurations have been definedavgtadient optimization method. The
examples shown in this chapter with constant covarianegstithted that this approach is correct and
that the accuracy obtained for each target is very closeddheoretical maximum that would be
obtained for a single target working in isolation.

Then this study was extended to a second and more complebeprplvhen the distancefacts
the measurement error and then the covariance of the measoterror is distance-dependent.
In this problem it is necessary to resort to optimizatiorhteques to define an optimal formation
because it is not possible to define an analytical solutiorthis sense Pareto optimization is used
for the maximization of convex combinations of the logarithof the determinants of the FIMs
for each of the targets. The optimal solution has been obds&ain via a gradient optimization
method. It has been reported that depending on the errorlpméhe targets configuration, and
on the Pareto weights assigned to each of the targets, sepémal configurations may be defined.
These optimal configurations are clearly mission-dependen

Finally, the previous results were extended to the moreistgalproblem where the target
positions are known with uncertainty. This uncertainty daa defined by any probabilistic
distribution function, and the kind of function used detares in high degree the optimal sensor
formation. An optimization method similar to the previouslefined was used to determine the
optimal sensor configurations. The main problem to overcaaeethe resolution of the integrals of
the gradient equations, to determine the necessary gtadieeincrease the average FIM determinant
over the work area in the optimization algorithm. Thesegraés were solved numerically by a
Monte Carlo method because of the impossibility of solvihngm analytically. Diferent design
scenarios were studied.

Therefore, in this chapter, a methodology to define optireaker configurations for multiple
target positioning in 2D considering constant and distadegendent covariance error has been
defined and the well behaviour of this methodology has beewegr through several illustrative
examples.
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Chapter 4

SINGLE TARGET POSITIONING IN
3D SCENARIOS WITH RANGE MEA-
SUREMENTS

4.1 Introduction

The use of autonomous underwater vehicles (AUVSs) ffedent research and commercial areas has
been increasing in the last few years. For reasons that lagte with autonomy, flexibility, and
the new trend in miniaturization, AUVs are steadily emeggas tools par excellence to replace
ROVs and also humans in the execution of many demanding &tskea that include pipeline
inspection, seabed surveying, and archaeological rdsemrcname but a few. Furthermore, their
use in collaborative tasks allows for the realization of pter missions, often with relatively simple
systems; see [32].

Central to the operation of some classes of AUVs is the avititha of good underwater
positioning systems to localize one or more vehicles siamgbusly based on information received
on-board a support ship or an autonomous surface systemnfbht@us obtained is at times used to
follow the state of progress of a particular mission or, lfatele acoustic modems are available, to
relay it as a navigation aid to the navigation systems exigte-board the AUV. Identical comments
apply to a new generation of positioning systems to aid irtrédoeking of one or more human divers,
as proposed in the context of the EC CO3AUVSs project [9].

Inspired by similar developments in ground robotics, irs tthhapter we address the problem of
single target positioning in 3D scenarios based on measmenof the ranges between the target
and a set of sensors, obtained via acoustic ranging deviceparticular, and speaking in loose
terms, we are interested in determining the optimal conditiom (formation) of a sensor network
that will, in a well defined sense, maximize the range-rel@érmation available for underwater
target positioning. To thisfeect, we assume that the range measurements are corruptelitey w
Gaussian noise the variance of which is distance-dependéet actual computation of the target
position may be done by resorting to trilateration alganth See for example [4], [3], [7], and the
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references therein for an introduction to this circle ofaslecovering both theoretical and practical
aspects.

Given a target positioning problem, the optimal sensor goméition can be ascertained by
examining the corresponding Cramer-Rao Bound (CRB) ordfighformation Matrix (FIM).
See [87] for a lucid presentation of this subject in the ceintd estimation theory. To this
effect, the determinant of the FIM is used as an indicator of #dopmance that is achievable
with a given sensor configuratin. Maximizing this quantitiglgls the most appropriate sensor
formation geometry. Thus, the FIM corresponding to a 3D adenis computed to derive the
sensor configuration that yields the best precision withcivtihe position of a target can possibly
be estimated considering a distance-dependent variarite ofoise model. In this sense, in [84]
the Cramer-Rao Bound is derived for a distance-dependemtm@iodel for Time-Of-Arrival based
localization in the two-dimensional (2D) space, showirag in error model with distance-dependent
covariance has an important impact on the geometric corigur of nodes on the localization
accuracy. The underwater target positioning problem wdsssded by the authors previously in [61]
and [62].

For a given target positioning problem, the optimal geoynefithe sensor configuration depends
strongly on the constraints imposed by the task itself {@aximum number and type of sensors that
can be used) and the environment (e.g. ambient noise). thaflaénadequate sensor configuration
may Yyield large positioning errors. It is interesting to athat in spite of the importance and
relevance of the optimal sensor placement problem, the tsffar from being studied exhaustively.

Interesting results in the area go back to the works comrdeartghe introduction of Chapter 2.
Some interesting works that deal with the problem of targsitfpning in 3D can be found in [94]
and [95], where the authors derive some properties of the &fBstate conditions that the optimal
formations must satisfy. In addition, several solutionsht® 2D and 3D positioning problems are
proposed. In [66] a method for optimal sensor placementrttiaimizes the condition number of
a matrix involved in a linear least squares (LLS) solutioprisposed and it exploits the use of an
iterative linearized model (LM) estimator. The authordffer derive the analytical form of some
optimal sensor configurations. In [61] and [62] an initialugimn for the problem of underwater
target positioning with a surface sensor network was intced for the scenarios where the target
position is knowre priori and when it is known with uncertainty, respectively.

Motivated by previous work, in this chapter we address treblem of finding the optimal
geometric configuration of a sensor formation for the positig of a target, based on target-to-
sensor range measurements only. In contrast to what has seda published in the literature,
we address explicitly the positioning problem in 3D with thensor array in 3D. The special
scenario where the sensor array is located in a plane (2)déesl as a particular example of the
methodology developed; this application scenario arises¥ample in the case where an underwater
target is positioned by an ocean surface sensor network.oBlgm of this type was previously
studied in [99], where a method to determine the optimal tivoensional spatial placement of
multiple sensors participating in a robot perception taak derived. One of the scenarios considered
was that of localizing an underwater vehicle, the acougtieivers being constrained to lie on a
horizontal plane.

The key contributions of the present chapter are fivefolda Qeneral solution is obtained
analytically for the problem of optimal sensor placemenéewkhe sensors are allowed to be placed
freely in 3D space. Thus, depending on the mission at hamdgXample for underwater target
positioning, the sensor network may be completely undeama@tat the surface, or even configured
such that a sub-group of sensors is at the surface and thenieghaub-group close to the sea-
bottom, ii) it is shown that the optimal configuration lentlIf to an interesting intuitive geometric
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characterization of all possible (optimal sensor placejrsaiutions that can be obtained in 3D, iii)
a solution is also fiered for the important case where the depth of the targetngpuated directly,
thus dispensing with the need to estimate it using acoustige measurements; with the solution
obtained, the relationship between 3D and 2D scenarios rfamty exploited in land robotics)
where the target and the sensor network lie in the same pkweames clear; iv) the solutions
derived are extended to the case wheey@iori knowledge about the target in 3D is given in terms
of a probability density function, and finally, v) the var@as are allowed to depend explicitly on
the ranges themselves. This allows us to capture the factrteasurement noise increases in a
non-linear manner with the distances measured.

It is important to point out that, as commented in previouaptars, it may be argued that
considering an assumed position for the target defeatsutpope of devising a method to compute
it, for the latter is known in advance. The rationale for tmelgpem at hand stems from the need
to first fully understand the simpler situation where theit@s of the target is known and to
characterize, in a rigorous manner, the types of solutitiained for the optimal sensor placement
problem. In a practical situation, the position of the tangeonly known with uncertainty and
this problem must be tackled directly. However, in this ciase virtually impossible to a general
analytical characterization of the optimal solutions, and must resort to numerical search methods.
At this stage, an in-depth understanding of the types oftiswols obtained for the ideal case is of
key importance to compute an initial guess for the optimalkee placement algorithm adopted.
These issues are rarely discussed in the literature, ale@ateption being [39]. Thus, this chapter
establishes the core theoretical tools to address and gw@vease when there is uncertainty in the
position of the underwater target

For the sake of completeness similar definitions and demetitsts to those given in Chapter
2, i.e., the problem formulation, information inequalitydeoptimal FIM, are stated again for three-
dimensional scenarios. This repetition of arguments seakske the present chapter self-contained
and more readable, since the optimal solutions are far nidrend complex.

The chapter is organized as follows. Section 4.2 deriveElkidor the optimal sensor placement
problem when the measurement noise is Gaussian, with dest@@pendent variance. The optimal
FIM that provides the maximum determinant at the targettfmwsis analytically defined in Section
4.3. Section 4.4 characterizes all the possible optimaa@econfigurations in 3D space when the
error covariance is constant. Moreover the applicatiomade in which the sensors are placed
in a plane is tackled. Both situations where the target déptknown and unknown are also
studied. Section 4.5 contains the derivation of optimaseenonfigurations with distance-dependent
covariance error. The particular case where the sensofsegalaced on a sphere centred at the target
position in 3D space is tackled, and the results are thexaemed for the application scenario
where an sensor formation is located on a plane. For the latter cadle dituations where the target
depth is known and unknown are studied again. In Sectiorh4.6ptimal sensor placement problem
is solved for the case where the prior knowledge about tlgetas given in terms of a probability
density function, and several simulation examples arauged. Finally, Section 4.7 contains the
conclusions and a brief discussion of topics.

4.2 Information Inequality with distance-dependent measue-
ment noise

Let {I} be an inertial reference frame with unit axis}, {yi}, {z} and letq = [dx, 0y, q]" be the
position of the target to be positioned {h}. Further denote by = [pix, Piy, Pzl i = 1,2,..,n,
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Figure 4.1: Target localization problem set-up.

the position of the — th acoustic ranging sensor, also{ii. Letri(q) = |q— pil (abbv. r;) be the
distance (range) between the targeind thei — th sensor, wherg- | denotes the Euclidean norm.
The variables and the set-up that will be used are illusdraté-igure 4.1 for the case of one target
and three sensors. We denotezbthe measurements of the actual rangg), corrupted by additive
noisew;. With the above notation, the measurement model adoptedda by

z =1q- pil+wi =ri(Q) + wi (4.1)

Range measurements between two objects are plagued waiis &nat depend on a multitude
of effects: depth-dependent speed of propagation of sound im,vpdigsical propagation barriers,
ambient noise, and degrading signal-to-noise ratio asiti@te between the two objects increases,
to name but a few. For analytical tractability, it is commpatsumed that the measurement errors
can be captured by Gaussian, zero mean, additive noise wtitstant covariance. Clearly, this
assumption is artificial in view of the simple fact that thevél of noise” is distance-dependent. In
this chapter we assume again that the measurement noise caodelled by a zero-mean Gaussian
process where the covariance depends on the distance betvessvo objects that exchange range
data. Stated mathematically,

w = (I +n6(r(0)”)) - wo (4.2)

wherer(q) is the vector of actual ranges,andy are the modelling parameters for the distance-
dependent noise component, and= [w; ---w,]" is measurement noise assuming that all noise
sourcesy; are independent, and the vectay is a zero mean Gaussian procége, ¥p) with %y =

o? -1, wherel is the identity matrix. In the above, is the operatodiag, that either converts a
square matrix into a vector consisting of its diagonal eletsieor converts a vector into a square
diagonal matrix whose diagonal components are the arrayezies. With these assumptions, the
measurement noise covariance matrix is given by

S = 2 (1 + no(r(Q)")? = 5(02 (2ear]) e o? (14 nr%)z) 4.3)

Stated in simple terms, the FIM captures the amount of inédion that measured data provide
about an unknown parameter (or vector of parameters) totimaged. Under known assumptions,
the FIM is the inverse of the Cramer-Rao Bound matrix (abb®RBY; which lower bounds the
covariance of the estimation error that can possibly beiobtawith any unbiased estimator. Thus,
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“minimizing the CRB” may vyield (by proper estimator select) a decrease of uncertainty in the
parameter estimation.

Formally, letd(z) be any unbiased estimator @fthat is, a mapping °~ R" — RS between the
observationg and the target position space such tB&d} = q for all g € K3, whereE{-} denotes
the average operator. Lej(2) be the likelihood function that defines the probability dtaining
the observatioz given that the true target positionds It is well known that under some regularity
conditions onpy(2) the following inequality holds:

Covq} > FIM(q)™ = CRE(Q) (4.4)

where
Covd) = E{@-a)@-9a", (4.5)
FIM (q) (often abbreviated simply as FIM) is the Fisher Informatiatrix defined as

FIM(q) = E{(Vqlog pa(2))(Vqlog pe(2)'} (4.6)

andCRHE(q) is the Cramer-Rao Bound matrix. In the aboVglog py denotes the gradient of the log
of the likelihood function with respect to the unknown paedenq. Taking the trace of both sides
of the covariance inequality yields

var(d) := tr(Cou@)) = tr(E{(G - a)(@-a)")) > tr(FIM(e) ™ (4.7)
that sets a lower bound on the mean-square error of any w@théstimator.

Equipped with the above notation and tools of estimatiommheve now address the optimal
sensor placement problem by solving a related equivaletimh@ation one: given the FIM for the
problem at hand, maximize its determinant by proper chofct® acoustic sensor coordinates.
This strategy for sensor placement underlies much of theiqare work available in the literature;
see for example [55] , [39] and the references therein. watlg standard procedures, the FIM
corresponding to the problem of range-based single taag@tipning in 3D can be computed from
the likelihood functionpq(2) given by

Py(2) = exp{—% Z-r@)' =t (z- r(q))} (4.8)

(2m)fjz)?
wheren is the number of receiverg,= [z, 2, ..., z,]" consists o measured ranges, anl) are
the actual ranges. Taking the logarithm of (4.8), computsderivative with respect tq, and then
its expected value, the FIM is defined as

FIM = C(5(r)=s(r))iCT (4.9)

whereC = (q1] - p) € R¥", 1, ¢ R™ is a vector of 1s, ang is the vector of sensor positions,
the latter being defined iR>". The FIM is constructed by allowing the measurement errdreto
distance-dependent. Note tHatdepends on the actual range distances, not the measured ones
so its derivative with respect to the estimation paramebdérg must not be computed in (4.9).
Once the FIM is computed, the Cramer Rao Bound matrix is défasCRB = FIML. In this
context, the optimal sensor placement strategy for a sivegtécle localization problem is obtained

by maximizing the determinant of the FIM, which must be cotepexplicitly. To this &ect, we
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start by expanding (4.9) to obtain

p_§< FZ pixzpiy r2 p|x_2p|2 FZ
1 n re sl r.& | ri !
FIM = > | Brz Bypz BuPep? (4.10)

Pix Piz 12 Piy Piz (-2 & 2
ferz Bperz R

wherel; = 1/ (1+ nriy) fori € {1,...,n}, and without loss of generality, the target is considered to

be placed at the origin of the inertial coordinate frampe, [0, 0, 0]". Clearly, the expression of the
FIM considering a distance-dependence covariance ervezllglefined.

As explained before, the determinant of the FIM is used fer ¢cbmputation of an indicator of
the performance that can be achieved (by proper choice ofsimaor) with a given sensor
configuration. Maximizing this indicator, as proposed ie tho-called theD-optimum design
strategy [85], yields the most appropriate sensor formagepmetry for the single target positioning
problem.

It is important to remark that is crucial the imposition oist&nce of constraints in the design
of an optimal sensor network when a variable error covadgasiconsidered. It can be seen that the
determinant of (4.10) is inversely proportional to the meament error, so it depends explicitly
on the distance between sensors and target. Hence if therseren be placed freely in the
3D space they will tend to concentrate over the target mosit reduce as much as possible the
distance-dependent added error. Therefolféemint optimal formations may be defined depending
on the constraints imposed by the environment, by the tadky the sensor network itself. In the
forthcoming sections we study some of the more usual peatenarios, but the procedure would
be similar for any alternative scenario.

4.3 Optimal Fisher Information Matrix

To compute the determinant of the FIM it is convenient toddtrce the following three vectors in
R

X:[F:,—T-Fl ’iinx-l“n]
r=| 2.y . Rory (4.11)
Z:[':—f-l“l ':—:Z~Fn]

The latter should be viewed as vectors of a Hilbert space alé¢gments infk", endowed with
an inner product structure, >. This allows for the computation of the length of a vector atsb
for the angle between two vectors. Namely, given X ahdh R", then|X|? =< X, X > and<
X, T >= |X]||T| cosPxy), from which it follows that the angléxy between vectors X ani is given
by 6xy = cost(< X, T > /(IX|[T])).

With this notation, the FIM for a distance-dependent cavace error becomes

X-X X-7r X-Z IX|? X[ cos(Bxy) |1X]|Z| cos(Oxz)
FIM:[X-‘Y‘ T ‘r~z]= IX| 7] cos(xr) 172 1'1]1Z| cos(6+z) |,
X-Z Y-Z Z-Z IX|1Z| cos(bxz) |Y]1Z| cos(6vz) 1Z)?

(4.12)
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from which it follows that
IFIM| = X272+ 1217 - ©, (4.13)

where
O = 1+ 2 cos(fyz) coS(fxz) coS(Bxr) — oS (6z) — cOF (xz) — COS (Ox) (4.14)

where Oxy, Oxz and 6y are the angles defined by vectors X aifd X and Z, andY and Z,
respectively, an¢F1M| denotes the determinant of the FIM.

Notice how|FIM| has been expressed in terms of the norms of vector¥,>gnd Z and the
anglestx, Oxz, anddyz between them. The latter depend @n= [pix, Piy. pz]"; i = 1,2,..n, that
define the positions of the sensors with respect to the taxgibtthe target placed at the origin of the
reference frame. Formally, in order to seek conditions thatoptimal sensor configurations must
satisfy in order to maximizg=1M|, one could compute the derivatives|Bi M| with respect topix,
piy, and pi;, and equate them to zero. This task is tedious and will nad §gat on the form of
the optimal sensor configurations. We therefore followfedént approach. From the expression of
|[FIM| it is easy to check that the maximum value®fs 1. In fact, suppose that a larger value can
be obtained, which clearly requires that

1+2 COS(Q'rz) COS(@xz) COS(@XT) - cog (9'1’2) - cos (sz) - cog (Hx'r) >1 (4.15)

The above inequality is equivalent to
0<2 COS(HTz) COS(sz) COS(@XT) - cog (9’1’2) - cog (sz) - cog (9)('1') . (4.16)

Notice, however that because &z )+cos (6xr) > 2 co(fxz) cos(fx+) and 0< |cos(fyz)| <
1, it follows that
cos (Oxz) + €O (Bxr) > 2 cos(0yz) cos(fxz) COS(Bx-r)

and then is clear that,
cog (Oxz) + €0 (Oxy) + coS (Brz) > 2 cos(fyz) COS(Uxz) cOS(bxr)
which contradicts (4.16). Therefore,
1 + 2 cos(0yz) cos(6xz ) cos(fxy) — COF (fyz) — €O (Uxz) — cOS (Oxr) < 1 (4.17)

and its maximum value of 1 is obtained when all the anglesgualdok - /2, with k an odd natural
number and then,
COS(@XT) = COS(@xz) = COS(@TZ ) =0. (4.18)

We now define the auxiliary cost function

fX(FIM) = |X?- T - 1Z)? (4.19)
Consider now the problem of maximizirfg(FIM) by proper choice op = [p1,---, pn]", and
let p*; i = 1,2,...,n, be a maximizing solution. LetXY*, and Z be the corresponding vectors in
R". Suppose also that the corresponding anges ;. , ande;., satisfy
cos(fy) = cos(6y,) = cos(fy, ) = 0. (4.20)
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Thenp®; i = 1,2,...,n maximize also (4.13), the FIM is a diagonal matrix and it ifeplthat its
determinant is the global maximum. Under the assumptiatedit the optimal FIM is a diagonal
matrix, that is,

XX XT XZ X 0 0
FIM=| XY YY YZ |=| 0 |TY® O (4.21)
XZ Yz 27 0 0 |z7

With the above assumption on the general form that the sfiregliFIM matrix will take, we now
introduce a simple general procedure to derive condition®ptimal sensor placement that lend
themselves to clear geometric interpretations. The pmlaehand can be converted into that of
computing

p" = arg m§x|F|M| = X272 |22 (4.22)

wherep = [p], ..., pi]T, andp are the optimal sensor positions. Notice that the sensatiqusp*
must satisfy the additional constraintimposed by inedué&i.20), i.e., the angle®y, 0xz, anddyz
must be equal t& - /2 for some odd natural numblervhich, as explained, makes th&-diagonal
elements of (4.21) equal to 0.

Formally, the conditions that an optimal sensor configorathust satisfy may now be obtained
by computing the derivatives of (4.22) with respectpig, py, andpi; i = 1,2,...,nand equating
them to 0. The candidate solutions must also satisfy (41t will naturally yield multiple optimal
sensor configurations for single target positioning if ner&xonstraints are placed on the sensor
configuration. To make the problem tractable, it is therefionportant to impose configuration
constraints rooted in operational considerations. In wbHdbws, the methodology adopted is
illustrated with two representative scenarios: i) for danscovariance error, as commonly reported
in the literature of the area, to first fully understand th@metric configuration of the optimal
sensor array, and ii) with distance-dependent covariamoe, ¢o illustrate how a dierent and more
realistic measurement error model can modify and conditieroptimal sensor configurations. The
methodology adopted for both scenarios will be analysealidin several simulation examples.

4.4 Gaussian error with constant covariance

In the existent literature it is commonly assumed that thgyeameasurement error has constant
covariance. Therefore it is important to study this problesfore a distance-dependent covariance
error may be considered. It is shown that the optimal conditiom lends itself to an interesting
intuitive geometric characterization of all possible (ol sensor placement) solutions that can
be obtained in 3D. This characterization yields a simplengetrically based procedure to choose
an optimal sensor placement strategy in situations of jgadnterest. In this sense the situation
in which a surface sensor network computes the position afraterwater target is studied, and a
solution is also ffered for the important case where the depth of the targetipated directly, thus
dispensing with the need to estimate it using acoustic ramegesurements. Thus, with the solution
obtained for this latter scenario, the relationship betw&ie and 2D scenarios (commonly exploited
in land robotics) where the target and the sensor netwoik lige same plane, becomes clear.

4.4.1 The optimal Fisher Information Matrix for constant covariance error

In this context, the optimal sensor placement strategy feingle vehicle localization problem is
obtained by maximizing the determinant of (4.10), which thescomputed explicitly for the case
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in which the covariance error is constant. To thi®et, making; = 0, (4.10) becomes

Lo @ (uy) (U)  (Uz) (U
FIM=—> Z W) (uy)  (uy)  (ug)(uy) (4.23)
() (U) (uy) (W) (ui)?

where

—Di D _nl 1T .
Ui = U, Uy, U] " = | 251, SRl Gl e, ). (4.24)

As explained before, the optimal FIM is defined by (4.21), aadeterminant is function of the
vectors XY, and Z inR" (wheren is the number of sensors involved in the target positionas)
that for the constant covariance scenario become

X:[ulx unx]Tz[’?—f ’?—]T
T=[uy o oy | =[2 B (4.25)
Z:[ulz unz]Tz[’;—f ’?—:Z]T

Formally, the conditions that an optimal sensor configorathust satisfy may be obtained by
computing the derivatives of (4.22) with respecig, py, andpi;; i = 1,2,...,nand equating them
to 0. The candidate solutions must also satisfy (4.20), agioreed above.

It is interesting to notice that we can focus our attentiorttes computation of the derivatives
of (4.22) with respect to the norms of the above vectors austd computing these derivatives with
respect tix, Py, andpi; i = 1,2,...,n. Since

p|y

Ph Pz
2 + —= 2 + — 2 = 1, (4.26)

it follows that
X2 =n—|T]-|Z]? (4.27)

Replacing (4.27) in the equation of the determinant of (1.22e determinant of the FIM

becomes 1
IFIM| = = (n= 77 = |2) |7 22
a

and therefore

J|FIM| 2 2

= n-21P -1z = 0 4.28
3 T - 12 = 0, (4.28)
J|FIM| 2 2

=n-|T"-2|Z*=0. 4.29
iz T - 212] (4.29)

The last two equations yield'|? = |Z[2. Using (4.27) and (4.29) it now follows thi¢|? = |Z[%.
As a consequenc|? = || = |Z|2. Furthermore, from (4.27) it is easy to check that

IXP = TP =12 = 5 (4.30)
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Therefore, the optimal Fisher Information Matrix is

10 0
FIMopt= — | O (4.31)
7l o

owls
wis O

Comparing the optimal FIM in (4.31) with the generic one inl1@) gives an implicit
characterization of the conditions that must be satisfiedhieysensor network in order for it to

be optimal:
n 2 n n 2
i pw pi n
§ _r;x = § 2= E _r; =3 (4.32)
i | i | i |

5 Pix Py 5 PPz X0 PP

PR prf =), =0 (4.33)

i=1 1 i=1 1 i=1 I
where (4.32) maximizes (4.22). Equation (4.33) satisfies @tiditional constraint imposed by
inequality (4.20), i.e., the anglés-, 6xz, andfyz must be equal tk - 7/2 for some odd natural
numberk which, as explained, makes th&-diagonal elements of (4.21) equal to 0. Therefore
any sensor configuration that satisfies (4.32) and (4.33h ispdimal formation that implies the
global maximum FIM determinant. It is also interesting hdwg tsolution defined by the optimality
conditions (4.32) and (4.33) implies the orthogonalityatiens for sines and cosines from Fourier
analysis [37].

From (4.31) it is obvious that the FIM is diagonal and its eigdues are equal. Therefore, the
optimality conditions derived maximize not only the detaramt of the FIM (D-optimum design)
but also its minimum singular value (E-optimum design), aridimize the trace of its inverse too
(A-optimim design).

4.4.2 Optimal sensor placement solutions

The contribution of this section is twofold: i) ifiers a general characterization of the optimal sensor
configurations for the problem of single target positionmgD and ii) it illustrates the computation
of specific optimal configurations via three design examples

4.4.2.1 A general characterization of optimal sensor configations

Letoix, oy, ando; be the direction angles that ti¢h range vector forms with the vectdps }, {y},
and{z} of {I} and let cosfix) = pix/fi, COSEy) = piy/ri, and cosgiz) = piz/ri be the corresponding
direction cosines. Clearly, (4.32) and (4.33) can be wrilteterms of the direction cosines as

i cof(oix) = Zn: co(oy) = Zn: co(oi) = g (4.34)
i=1 i=1 i=1

2, C0S(rix) COSry) = ) COSErix) COSEr) = ), COSEriz) COSEry) =0 (4.35)
i=1 i=1 i=1

The above equations show clearly that all optimal sensofigurations are characterized in
terms of the angles that the range vectors form with the wist af the inertial frame. Therefore,
there is no explicit dependence on the ranges themselvésisTdecause in the formulation adopted
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it was tacitly assumed that the covariance of the range meants is distance-invariant. For this
reason we will henceforth assume, without any loss of gdibhertnat the target is located at the
origins of the inertial coordinate frame and that the optisensor formations are such that the
sensors are placed on a sphere centred at the target. Iraiés @sftix) = pix, COSCy) = Piy,
and cosfi;) = piz- Once an optimal solution on a sphere is found in terms of itextion cosines
referred to above, an infinite number of optimal solutions ba generated by: i) multiplying the
range of each sensor to the target by an arbitrary positiveben (as will be explained later, the
scaling of the ranges is dependent on the practical consriaposed by physical considerations),
and ii) rotating the sensor formation rigidly in terms of abiary axis. The first statement is
trivial to prove. To prove the second statement, let anah#&ensor formation on the unit sphere be
described by vectorg;;i = 1,2,..,nand letg; = Rp;i = 1, 2,..,n be the formation that is obtained
by applying the same rotation mattixto all vectors. Withr; = 1, straightforward computations
show that equations (4.32) and (4.33) can be written in catfpam as

n
n
> i =3 (4.36)
i=1
wherel is the identity matrix. It then follows that
n n n
soxT Tl _
;p.pi —;RnpiR =3/ (4.37)

becaus®R' = |; thus, the new sensor positions verify (4.36) and thergf#@2) and (4.33).

Letog = p1 + ... + pn; N > 2 denote the geometric centre of an optimal sensor formaiioh
letrq denote the vector directed from the originatg. Clearly, in view of the comments above, the
formation that is obtained by moving the sensor rigidly wituntil the latter vector is aligned with
the {z} axis of the inertial coordinate frame is also optimal. Thatoe of the resulting formation
will be denoted byz,. We will therefore assume, again without loss of generatlitgt the sensor
positions satisfy the equations

Tiva

n n
pix =0 ‘Zl py =0 Zl Piz =Nz (4.38)
i= i=

wherep; = [pix, Py, Piz]" is thei —th sensor position. At this pointit is important to remark teegn
with the assumptions stated above it does not seem to bebfssiclassify all optimal solutions
to the target localization problem in 3D in a simple mannehisTis in striking contrast with the
case of 2D, where all optimal solutions are obtained by itisting the sensors at equal angles
along a circumference centred at the target, see [55] or t€hdp Once a solution is chosen, all
solutions are simply generated by rotating the completsaeformation rigidly about the target
by an arbitrary angle € [0, ]. The 3D case is far more complex, and therefore, in whabovas|
we restrict ourselves to presenting a method to generatéiaisntly rich set of solutions, which,
as explained later, is appropriate to solve a number of problof practical interest. To thistect,
we start by restraining the types of solutions to lie not amythe unit sphere but also on a general
quadratic surface (also called quadric) that interse@sfthere. As will be seen, the choice of the
quadric @ords the designer a very convenient “tuning knob” to “bide® placement of the sensors
towards regions of interest determined by practical carsitions. We consider quadrics defined by
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the equation

aj; A2 13 ai4
a: a a a
(x y z 1) 12 A2 A3 ax
i3 dpz azz Az
g A4 A3 Ay

= 11X + QaY” + 8gaZ + Aua + 281Xy

P N< X

+ 2a33XZ+ 28p3yZ+ 2a14X + 2804y + 28342 =0
(4.39)
where .y, 2" are the coordinates of the points that belong to the quadtie.unit sphere, where
all optimal sensor configurations lie, corresponds to the degenerate quadric surface given by

1 0 0 0)(x
010 0lly| o ~

(x y z1) 001 ollz]=x% +yY+72-1=0 (4.40)
0 00 -1J){1

To determine the quadrics that are allowed we simply notiaefor an optimal sensor formation
that belongs to the intersection of a particular quadric thiedunit sphere, the coordinates of each
sensor must satisfy (4.39) and (4.40), together with (4.3233) , and (4.38). Adding equations
of the type (4.39), one for each sensor, yields the equality

n n n n n
aiy le pﬁ + apo Zl: pi, + aggzll pizz + Nayq + 2a1221: Pix Piy + 2alsz Pix Piz
1= I= I= 1=

i=1

n n n n
+23232 Piy Piz + 2a14z Pix + 23242 Py + 2a34z pz =0
i1 i-1 i1 i-1

Using now (4.40) together with (4.32), (4.33) , and (4.38wj = 1 gives the constraint

a1+ axe + azs
3

This concludes the presentation of all the equations thawdbr the computation of a solution
to the optimal sensor placement problem. Granted, therg@lisus infinite number of degrees of
freedom in the choice of a particular solution. The examftiasfollow show how this problem can
be dealt with. Before we do so, however, it is important to aggon one important feature of the
optimal solutions that can be computed based on the analysiained above. If two disjoint sets of
n andm sensors each are placed optimally, the resulting formatiort- m sensors is also optimal.
Therefore, new higher order optimal solutions can be obthlyy combining reduced order optimal
configurations.

+ agq + 2a34zq =0 (441)

4.4.2.2 Examples of optimal sensor placement

We now give three examples that illustrate the steps ineblivethe computation of optimal
sensor configurations for the single target localizatioobpgm in 3D. We assume that all range
measurements are corrupted by additive zero mean Gausssnwith variance-? = 0.01 nm?. We
impose the restriction that the maximum distance betweeséhsors and the target be ¥80This
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Figure 4.2: Intersection between the unit sphere and a hyperboloid ®@fsbeet (a), and intersection between
the unit sphere and a hyperbolic cylinder (b).

constraint can be easily accommodated by solving the opseresor placement problem with the
assumption that the sensors lie on the unit sphere centtled &trget and multiplying their distance
to the origin by 100 at the end. As explained before, in ordemake the problem tractable we
consider that the sensors lie on the intersection of thegphiere and a quadric, the ¢beients of
which must satisfy (4.41). In the examples, two quadricsarsidered: an hyperboloid of one sheet
defined by 2% + 2y? — 72 = 1 and an hyperbolic cylinder defined by?4-y? = 1. Their intersections
with the unit sphere are shown in Fig. 4.2 (a) and Fig. 4.2rspectively. In the first two examples,
the number of sensorsis= 4. Example 4.1 refers to Fig. 4.2 (a), while Example 4.2 eferFig.
4.2 (b). Thus, the only dlierence between them are the loci where the sensors shoubddted.
Without any loss of generality, the design procedure isa@red by referring to Example 4.1.

Example 4.1: The system of equations used to compute the possible optiomigurations
consists of the equations

co(oix) + cof(aiy) + cog(oip) = 1;i = 1,2,...,n (4.42)
that restrict each sensor to lie on the unit sphewditional equations
2 cog(0ix) + 2 cog(oy) — cof(oiz) = 1;i = 1,2,...,n (4.43)

that express the fact that the sensors lie also on the quadopted, and an additional set
of 6 equations derived directly from (4.34) and (4.35). THmowe equations were solved
numerically using the Newton-Raphson method. As is wellvkmoif F is the vector of
equations to be solvedjF is the Jacobian of with respect to the sensor coordinates, and

T . . L.
SO = [ P P, P, - P Py PR ] is an arbitrary initial vector that belongs to the
intersection of the sphere and the quadric, a solution iginét via the iteration

SkeD) = gM _ (5F®)1. F® (4.44)

T. .
whereS® = [ SV P <SR « SV Y ] is the vector of sensor coordinates at step
The process finalizes when an appropriate stop criterioreis 8ee for example [24] for complete
details.
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In the case of Example 4.1, a solution was obtained that sporeds to placing the sensors at
the positions stated in Table 4.1. It is easy to check thatabinfiguration satisfies conditions (4.34)
and (4.35), thus making the determinant of the FIM maximurthattarget position. In this case
IFIM| = n®/(c®- 3% =2.3704- 10° m™®.

Table 4.1: Optimal sensor positions.

Example 4.1 P1 P2 Ps P4
{x;} —coord (m) | 81497 | -81497 0 0
{y} — coord (m) 0 0 —-81497 | 81497
{z} - coord (m) | -57.735| -57.735| 57.735 | 57.735

For the sake of completeness, and to better understandfibacg of the solution obtained, it
was judged appropriate to evaluate how good the sensor fiommia in terms of yielding accurate
positioning of the real target, in comparison with the gosing accuracy that is possible for any
hypothetical target (dlierent from the real target) positioned anywhere in a finitgtiapregion®
centred at the target. To thiffect, the determinant of the FIM obtained for a number of higptical
target points (based on the optimal sensor configuraticairodd) was computed by allowing these
points to be on a grid iD. With an obvious abuse of notation, we refer to that deteamiiof the
FIM, viewed as a function of its argument ), simply as|FIM|,. In the example, in order to
enable a graphical representatignconsists of the three orthogonal planes in Fig. 4.3 (a) aed th
magnitude of FIM|,, is indicated in a gray scale, lighter points correspondintatger values of
the|FIM|. The figure supports the fact that with the sensor placendnyted the position of the
target can be determined with optimal accuracy. Shouldatget move to a dierent location, the
precision with which it can be localized degrades. Thisamihe interesting practical problem of
optimal sensor placement in the presence of target unagrtan issue that will be resolved later in
the chapterm

Example 4.2: This second example is analogous to Example 4.1 but the iquadiopted is
the hyperbolic cylinder depicted in Fig. 4.2 (b). The forioatobtained with the above numerical
procedure is the one in which the sensors are placed at tt@®psshown in Table 4.2. Equations
(4.34) and (4.35) are achieved and the maximum FIM detemmbinabtained withFIM| = n®/(o®-

3% = 2.3704- 10° m8. Notice that the FIM determinant is the same of the previouwsele,

as expected. This illustrates the fact that by choosifigdint quadrics one may generate a set of
possible solutions to the single target localization peanl In Fig. 4.3 (b)|FIM|, is mapped for
the three orthogonal planes referred to above.

Table 4.2: Optimal sensor positions.

Example 4.2 P1 P2 Ps P4
{x}—coord (m) | 57.735 | -57.735 | —57.735 | —-57.735
{yi} - coord (m) | -57.735 | 57.735 | -57.735 | -57.735
{z/} —coord (m) | -57.735 | —57.735 | 57.735 | -57.735

Example 4.3:Finally, in this third example the number of sensors is rediton = 3. Using the
quadric of Fig. 4.2 (b), a solution was found with the sengtaised at the positions listed in Table
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Figure 4.3: Plot of |[FIM|, in the three main planes, using 4 sensors. Lighter regionggumond to larger
values oflFI M|; solutions obtained using a hyperboloid of one sheet (a)pamgperbolic cylinder (b).

4.3. In this casgFIM| = n®/(c® - 3%) = 1-10° m®. Note that the determinant of the FIM is smaller
than that of Examples 4.1 and 4.2 due to the lower number aiosenThe sensor arrangement and
the plot of[FIM|4, ; D for three orthogonal planes are shown in Fig. 44.

504
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50

20 40
Y (meters)

Figure 4.4: Plot of |[FIM|, in the three main planes, using 3 sensors; solution obtaisewy a hyperbolic
cylinder.

The above examples illustrate the fact that a large numbsslafions exists for the single target
positioning problem in 3D and how a subset of them can be fdyndonstraining the sensors to
lie on the intersection of a quadric with a sphere. In thisec&®wever, this constraint is purely
artificial and is simply used as a “tuning knob” in the seamidiptimal solutions. In a great number

of situations, however, there are practical issues thabsapphysically sound constraints on the
possible sensor loci. One of these situations is studiet! nex
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Table 4.3: Optimal sensor positions.

Example 4.3 p1 p2 Ps3
{x;} —coord (m) | -59.45 | -50.69 | —-62.42
{yi} — coord (m) | 64.31 16.63 | -74.75
{z7} —coord (m) | 4827 | -8458 | 2271

4.4.3 Sensors lying in a plane: an application in underwatetarget position-
ing

This section addresses the problem of optimal sensor platEior underwater target positioning in
3D, subject to the condition that the sensors lie in a plahés problem is of the utmost importance
for underwater target positioning applications where ttwuatic ranging devices are either located
at the sea surface or on the seabed. A solution to this probéemnbe obtained using the results
derived in the previous section and casting it in the follogwequivalent form: given a target at the
origin of an inertial reference franié}, an unit sphere centred at the target, and a horizontal féane
special case of a quadric), compute the distagéem the plane to the target such that a solution to
the unconstrained single target localization problemdieshe intersection between the unit sphere
and that plane. Once a solution to the latter problem is foitnsla simple matter to scale it while
preserving the direction cosines of the range vectors @atvihe target and the sensors). Clearly,
the scaling factor isk/z;, whered; is the target depth.

We start by characterizing the solutions for which the getimeentre of the sensors is located
at [0,0,z]". The computation of a solution unfolds in two steps: theoordinate of the plane
is computed; the geometric formation of the sensors on taeepis then derived. The first step is
straightforward: because = z, = ... = 7, = z, it follows from (4.32) that

P1z= ... = Pz =2 = +1/ V3 (4.45)

The above solutions correspond to two horizontal planeditersect the unit sphere along two
circumferences of radii’, as depicted in Fig. 4.5. Becausé + zg =1, it follows that the optimal

radii are equalto’ = /1 - z= \/g These results yield straightforward solutions to the featof

underwater target positioning, as follows. ldebe the depth of the target, and assume that the array
of nsensors to be used for target positioning is constraindd &t the surface. An optimal solution

to the problem of sensor placement corresponds to disimiipthie sensors along a circumference of
radiusrs = V2d,. In an analogous manner, if the target is at a distanceu@éjh, above the seabed,
and the array ofh sensors to be used for target positioning is constraintéd &i the seabottom, an
optimal solution to the problem of sensor placement coordp to distributing the sensors along a
circumference of radius; = V2h. In the two cases, the centre of the circumferences is posidi
either directly above or under the target.

It now remains to determine the geometric configuration efgbnsors on the circumferences.
To this dfect, rewrite their positions in polar coordinatesms = r’ cosg), py = r’ sin(w), and
Piz = g, Whereg; is the angle that the projection of the th range vector on thegy; } plane forms
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Figure 4.5: Intersection between two horizontal planes and the unigigph

with the(x } axis,r’ = V2/ V3, andzy = 1/ V3. With this notation, (4.32) and (4.33) yield

:i 12 cod(a) = g = ; co(ay) = g
i r2 sz(al) = g :_i i mz(a’l) =3
n B n n 1 2 3 n
SE=3-3(%) =3

(4.46)

r'2cosg) sin(;) = 0 — Z cos@;) sin() =

M:

i=1

Z4 i r' cosg;) =0 — i cosgi) =0
i=1 i=1

2 3,1 sin(a) = 0 3 sinas) = 0
i=1 i=1

Using by now classical terminology, the sensor formatiorsirhe first and second moment
balanced. A simple and elegant solution is obtained by imgfithe orthogonality relations for sines

and cosines from Fourier analysis [37]

NI S

n-1 N _
EO cos’-(z—;r : |) = EO smz(% i) =
(4.47)

IQ’

nZlcos( [i)sin(Z i) = nZlcos;( D Zsm( [i)=0

i=0 i=0
From (4.46) and (4.47) it follows that optimal solutions atgained by distributing the sensors
uniformly along the circumferences, the vectors from thresses to the centre of the circumferences
making angles@/n;i = 0,1,...,n— 1 with the{x } axis. Obviously, an infinite number of solutions
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Rotated Original pyramid
configuration configuration

Target

Figure 4.6: Target localization with sensors on a plane: two equivasahitions obtained by rotation about
one axis.

are obtained by rotating the sensors rigidly along the onfewences, that is, by allowing the above
angles to becomen2/n+ ag;i = 0,1,...,n— 1, wherexs is a fixed but arbitrary angle in [@x]

The results obtained in above sections imply that, once atisal to the above positioning
problem is obtained, an infinite number of solutions can beegated in three steps: i) compute
the vectors from the target to the sensor positions, iijtedtaem rigidly about a same axis, and iii)
find (if they exist) the intersections of the extensions efitbtated vectors with the horizontal plane.
This is illustrated in Fig. 4.6 where two equivalent solagare presented for the special case of 4
sensors placed on a horizontal plane at the surface. Indlis, ¢he initial solution corresponds to
the case where the 4 sensors are placed on the corners oftheftaaregular pyramid with the apex
at the target, the latter being directly under the geometitre of the sensor formation. Another
solution is obtained by rotating the pyramid about a setkatés while holding its apex fixed, and
finding the new sensor locations at the intersection of thersled pyramid edges with the horizontal
plane.

4.4.3.1 Example of target localization with sensors lyingi a plane

The example in this section illustrates the methodologygatbfor optimal sensor placement when
the sensors are restricted to lie in a horizontal plane.dreitample, for the sake of simplicity on the
computation of the optimal solution, the origin of the in&rframe{l} is considered to be placed at
the target’s projection on the horizontal plane, and thgetigplaced at a depth of 100 A network

of 5 sensors is considered.

Based on the theoretical analysis presented before, aesiogilmal sensor configuration is
derived that consists of placing the sensors regularlyridiged on a circumference of radius
r' = 100- V2 mcentred at the target’s projection on the horizontal plafieis formation yields
the maximum value of the FIM determinaff| M| = 02—333 = 4.6296- 10° m®. Figure 4.7 shows
|[FIM|yp, that is, the evolution o IM| as a function of the position of an hypothetical target pdiace
arbitrarily in the regionD := {(x,y,2)" : =150m < x < +150m,-150m <y < +150m,z =
100 m}. Part (a) of the figure shows the level curvegroifM|, with lighter colours corresponding
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Figure 4.7: Optimal sensor formation for underwater target positignim 3D with 5 sensors placed in a
horizontal plane: (a) level curves BfIM|, in region®; (b) [FIM|,; (c) CRB trace inD.

to larger values ofFIM|. Part (b) shows thg=IM| in 3D. Both figures show thanaxFIM| is
attained when the target is placedogt= gy = 0 m, that is, directly under the geometric centre of
the sensor network. The determinant of the FIM decreasdsealsypothetical target moves away
fromagx = gy = 0 m, g, = 100 m. Part (c) shows the evolution of the CRB trace. As expectsd, i
minimum value is attained at the actual target position.

The plots in Fig. 4.8 are similar to those in Fig. 4.7 and cgpond to a dferent optimal sensor
placement problem solution that corresponds to rotatigiglsi the pyramid (with apex at the target
and a pentagonal base defined by the sensor positions in Fijaldout thex;} axis of {I} by an
angle of-20deg The figure illustrates the fact that the optimal valugrdiM| is again obtained at
Ox = gy = 0 m g, = 100m. However, the general evolution |5fI M|, is substantially dterent from
that in Fig. 4.7. This raises the interesting problem of sibess of the optimal solutions against
uncertainty in the target position, a subject that will baltiwith later.

4.4.3.2 Underwater target positioning with known target deth

This section explores an interesting connection betwemetgositioning in 2D and 3D. We start
by observing that in the 3D solution studied so far, if thettey the underwater target tends to O,
then an optimal sensor formation at the surface is suchliegtasitions of all the sensors collapse
on top of the target, that is, they tend tq [@ 0]". Clearly, this limit solution lacks realism and fails
to degenerate into the solution that would be obtained haalssemed that the target and the sensors
were exactly in the same horizontal plane. The reason ferdiscrepancy arises from the fact that
in the pure 3D approach the depth of the target must be estilveatplicitly. In many practical
applications of interest, however, the target depth can easored directly with small error, thus
dispensing with the need to estimate it using acoustic rangasurements. In this case, only the
0x andagy target position coordinates should be determined, beagtis&known. This positioning
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Figure 4.8: Optimal sensor formation for underwater target positignim 3D with 5 sensors placed in a
horizontal plane - an alternative solution obtained bytrotaabout one axis: (a) level curves |6fIM|,, in
region®; (b) [FIM|,; (c) CRB trace inD.

problem is studied next.

We assume that all sensors lie on a horizontal plane. Failptie procedure adopted to derive
(4.10) yields the Fisher information matrix

n

FIM = = Z G? () (1) (4.48)
o (uIX) u|y (Uiy)

whereu; = [ %, ‘9'q p" ] forie{1,..,n}.

Itis now necessary to find the sensor positions that maxitrilad|. For the sake of conciseness
and to avoid a tedious repetition of the arguments presentite previous sections, the details of
the computation are eschewed. For reasons that will becteae later, we restrict the maximum
range of the target to the sensorgtax > 0 m. With this constraint, an optimal sensor geometry
corresponds to placing all the sensors on a circumferemtesckon the projection of the target on
the plane. The distribution of the sensors on the circumfaexhibits the symmetry that is implied
by conditions similar to those in (4.46). We assume, foritglaof exposition, that the reference
frame adopted has its origin at the centre of the circumfarelhe resulting optimal FIM is

FIMopt = —5 (4.49)

We now examine the relationship between the above 3D tamggtigning problem and the
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purely 2D one. The latter, commonly studied in land robott@sresponds to the case where the
target and the sensor network lie in the same plane. Fromrhlyss presented, it follows from
(4.49) that when the target depth equals 0 tHeiM| = n?/(c* - 22) m™. This is equal to the
maximum possible FIM determinant in 2D, as explained in @rid [55]. Furthermore, for anyyax
the corresponding regular sensor formation satisfies thditons obtained in [55] for the pure 2D
case. Thus, if the target depth is known, then a 2D soluti@assly obtained from the 3D one by
simply letting the target depth equal O.

It is interesting to notice that if the sensors and the taagetot placed in the same plane, the
optimal formation is the one in which the ranges (betweeridhget and the sensors) are as large as
possible. In fact, the larger the tempaxin (4.49), the closer the eigenvalues of the optimal FIM are
to the optimal ones in 2D scenarios, thatig?. Finally, it is important to comment on and compare
the best estimation accuracy that can be obtained in théymibepositioning case and in the case
where the target depth is known. Notice that in the caseestiitiie determinant of (4.31), computed
asn3/(c® - 3% mr®, is larger than the determinant of (4.49), which at mostigc* - 22) m™.
This may be misinterpreted as implying that the pure 3D smhutields better estimation accuracy,
a conclusion that would be counter-intuitive.To clarifystlissue, it is convenient to examine for
both cases the inequality in (4.4) that sets a lower boundhemtean-square error of any unbiased
estimator. The lower bound is (82)/n n¥ for the purely 3D positioning case and has the minimum
value of (4- ?)/n n? for the case where the depth is known. Thus, fdfisiently largermay or,
equivalently, for a sfficiently large radius of the circumference on which the senace placed, the
solution that relies on knowledge about the target deptldyieetter estimation accuracy.

4.5 Gaussian error with distance-dependent covariance

It is important to remark that is crucial the imposition oisg&nce of constraints in the design of
an optimal sensor network when a variable error covariamo®nsidered. It can be seen that the
determinant of (4.10) is inversely proportional to the meament error, so it depends explicitly
on the distance between sensors and target. Thus, if seceotse placed freely in the 3D space
they will tend to concentrate over the target position toumdas much as possible the distance-
dependent added error. Thereforefetient optimal formations may be defined depending on the
constraints imposed by the environment, by the task, or bysémsor network itself. To make the
problem tractable, it is therefore important to impose apnition constraints rooted in operational
considerations. In what follows, the methodology adoptedlustrated with two representative
design examples: i) first, by considering that the sens@sestricted to lie at the same distance
from the target, that is; = r foralli = 1,---,n, and ii) second, by considering that the sensors
are restricted to lie in a horizontal plane, i. @,— pi; = 74 is the target depth whegg = 0 and

pi; = —Z4. The latter example captures the very important situatibere the sensors are placed at
the sea surface. The procedure adopted can of course beoudeal tvith other types of constraints
on sensor placement.

4.5.1 Sensors placed on a sphere around the target

This section shows how the incorporation of physical or raisselated constraints on the positions
of the sensors leads to a methodology to determine a soltgidhe optimal sensor placement
problem that eschews tedious computations and lends ftselfsimple geometric interpretation.

To this dfect, we consider the situation where all the sensors areglae a sphere centred at the
target position, that is, the distances from the sensotsettarget are equal. With this assumption,
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ri =r;i =1,---,n, wherer is the radius of the sphere. In this situation the distancesdwt
condition the solution and the angles that the range vefbons with the axis of the inertial frame
characterize the solution. The solution of this scenaremjisivalent to find all the possible solutions
for constant covariance measurement error becguseconstant for all sensors and the FIM (4.10)
can be rewritten as,
Pix PixPy  PixPiz
n i i

FIM 5 [ (4.50)

0-2 " :

whereli =To =1/ (1 +nr?),andr =rj, foralli = 1,--- ,n. Thus the FIM (4.50) is the same matrix
defined by (4.23) for the constant covariance error case baseelements are scaled with a factor
given byT.

In this case, the simplified optimal Fisher Information Nta{#t.21) can be written as

FZ
_'o . .
FIM = —3 s( A B C) (4.51)
n n
with A = _Z ':2 Z p'y ,andC = Z P . The above equations show clearly that all optimal sensor

conﬂguratlons are characterlzed |n terms of the angleslieatange vectors form with the unit axis

of the inertial frame (division of each sensor coordinateh®/range distance). Therefore, there is
no explicit dependence on the ranges themselves. This &ibedn the formulation adopted it was

tacitly assumed that the covariance of the range measutsisatistance-invariant.

Following the same analytical procedure to that explaime8dction 4.4.1 and that after simple
computations, the relationship betwe&rB, andC yields

A:B:C:% (4.52)
Therefore, the optimal Fisher Information Matrix is
FZ % 0 O
FIMopi=—2| 0 5 0 (4.53)
{0 0 1

Comparing the optimal FIM in (4.53) with the generic one in5@) gives an implicit
characterization of the conditions that must be satisfiedhieysensor network in order for it to

be optimal:
n 2 n 2 n 2
Pix piy Piz n
PFx N My N Hz_ N (4.54)
PPy _ X PPz _ N0 PP
|x2 y _ plelz _ '22 Y _0 (4.55)
. r ¢ r 4 r
i=1 i=1 i=1

Let nowoiy, oy, ando, be the direction angles that tih range vector forms with the vectors
{xi},{yi}, and{z} of {I} and let cosfix) = pix/ri, COS(ry) = Py/ri, and cosgiz) = piz/ri be the
corresponding direction cosines. Clearly, (4.54) and5}can be written in terms of the direction
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cosines as

) co(on) = D cod(ey) = Y cod(er) = g (4.56)
i1 i1 i1

2, C0S(rix) COSry) = ) COSErix) COSET) = ), COSEriz) COSEry) =0 (4.57)
i=1 i=1 i=1

The above equations show clearly that all optimal sensdigurations of this particular case are
characterized in terms of the angles that the range veaorsWith the unit axis of the inertial frame.
Moreover, the optimal configurations of this particulareasply the same optimality conditions
derived in Section 4.4.1 for constant covariance. It is beedor the problem at hand, as commented
above, it has been asummed a constant covariance error theedensors are all placed at the same
distance from the target. Therefore, the same analysis m&kstion 4.4.2 holds for this particular
scenario, and once an optimal solution on the unit sphem@uisd in terms of the direction cosines
referred to above, an infinite number of optimal solutions ba generated by: i) multiplying the
range of each sensor to the target by an arbitrary positingbeu that will depend on the practical
constraints imposed by physical considerations, andtiétiry the sensor formation rigidly in terms
of an arbitrary axis.

45.1.1 Example of optimal sensor configuration design

This example addresses the problem of optimal sensor pkweor target positioning in 3D, subject
to the condition that the sensors lie on the intersectiongghere and a plane, i.e., the sensors are
placed at a fixed distance from the target and in the same lhedarget cannot belong to that
plane). Thus, the sensor configuration has to achieve t@Werent constraints. The importance
of this example resides in that this problem is equivalerth® case where the error covariance
is constant and the sensors are placed in the same planeu(faeesplane), as it will be seen
next. The added interest lies in the comparison of the swiuif this particular example with the
solution obtained when the sensors are restricted to lieptaae. Thus we can state their main
differences, and the importance of the constraints imposedteehsor formation and the noise
model considered.

A solution to this problem can be obtained using the reswdtived previously and casting it
in the following equivalent form: given a target at the onigif an inertial reference frami¢}, a
unit sphere centred at the target, and a horizontal plarmapute the distancg, from the plane
to the target such that a solution to the unconstrainedssitagtet localization problem lies on the
intersection between the unit sphere and that plane. Onckitios to the latter problem is found,
it is scaled while preserving the direction cosines of thegeavectors (between the target and the
sensors). The scale factor is the radius of the sphere,

The same arguments commented in Section 4.4.3 holds farabkés and then the computation of
a solution unfolds in two steps: tlzg coordinate of the plane is computed; the geometric formatio
of the sensors on the plane is then derived. The first stepaigstforward: becausge =z = ... =
Zy = Z, it follows from (4.56) that

P1z= ... = Pnz=2Z = +1/ V3 (4.58)

Two horizontal planes that intersect the unit sphere alevg dircumferences of radii’ are
defined from the above solutions. Becaunge+ 25 = 1, it follows that the optimal radii are equal
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tor = J1- z = \/g An optimal solution to the problem of sensor placementesponds to

distributing the sensors along a circumference of radius \/grs, wherers is the radius of the

sphere, or similarly, a circumference of raditis= V2d;, whered is the distance of the target to the
horizontal plane.

It now remains to determine the geometric configuration efgnsors on the circumferences.
A simple and elegant solution is again obtained by noticivegdrthogonality relations for sines and
cosines from Fourier analysis [37]. It follows that optinsalutions are obtained by distributing
the n sensors uniformly along the circumferences, the vectors fhe sensors to the centre of the
circumferences making angle&i2n;i = 0,1,...,n — 1 with the{x} axis. Obviously, an infinite
number of solutions are obtained by rotating the sensoidlyiglong the circumferences, that is, by
allowing the above angles to becomd /A + as;i = 0, 1,...,n— 1, whereas is a fixed but arbitrary
angle in [Q 2x].

It is important to notice how the solution defined satisfies tptimality conditions of the
simplified FIM (4.21), in particular (4.54) corresponds tee tmaximization of the norms of the
vectors X,T, and Z, i.e., it maximizes (4.19), and (4.55) makes tfiel@mgonal elements of the FIM
equal to O, i.e, it satisfies (4.20). Thus the solutions ddfimplies a global maximum on the FIM
determinant for the case of study. The similarity with thestant covariance case is evident.

4.5.2 Underwater target positioning: sensors lying on a plae

This problem is of the utmost importance for underwateragappsitioning applications where the
acoustic ranging devices are either located at the seacswfan the seabed. The previous analysis
is not valid for this scenario in which the sensors are cairstd to lie on the sea surface and the
covariance error is distance-dependent, i.e. for the prolat hand’, i = 1,---,n are not constant

in the solution space, their values depend explicitly ongbasor positions, and thus the range
distances are now a key element to define the optimal sensoafion.

The problem at hand will show the importance of considerimgosie complex error model to
determine the optimal sensor configuration. The sensorgaced in the plane = 7y, thusp;; = z,
and the target is at the origin of the inertial coordinatenfeaq = [0, 0,0]". The Fisher Information
Matrix is the one defined in (4.10), and following the prooesgslained in Section 4.3 we can define
the simplified optimal FIM given by (4.21).

For the sake of simplicity the notation is changed to cylindoordinates where; is the angle
that the projection of the— th range vector in the surface plane forms with thg axis; andg; is
the angle that thé — th range vector forms with the surface plapgy,}. It must be noticed that
Bi € [0, /2] because the sensors are placed on the surface plane thbdaeget position. With this
notationpix = rj COsf3;) cosg), Py = ri CosB) sinfai), andp;; = zg, with r; = z4/ sin(3;), and (4.51)
becomes,

FIM = (4.59)

Llo
771l o

o w

0
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where |
Z cog(B;) cos(ai)I2
=§ COL(B) Sirt(a: )T
=Zn: mz(ﬂl)rz
with
r=e—
' 1+ n(z/ sing))”
Then the determinant of (4.59) yields,
|F|M|=i6A-B-c (4.60)
a

In this caseA, B andC, depend orj and then, on the distance between target and sensors.
Hence, we cannot proceed as in Section 4.4 and we cannot teitnguderivatives of (4.60) with
respect toA, B, andC explicitly. Therefore, we must compute the derivativesbo60) with respect
to a; andg;. Itis straightforward to compute the derivative of (4.6G)wespect tay;,

= 2 cog(B;) cos) sin(@)I'’C (A- B) = (4.61)

SIFIM|
E

aj

and the derivative of (4.60) with respect@oyields,

JIFIM|
Pi

[ 2 cos(B) sin(B) cog (i) I'Z + cog (B;) cos (a.) ] BC
. _ _ ar?
+ (—2 cos(B;) sin(B;) sir? (a;) T? + co (8;) sir? (i) 6—[3"]AC (4.62)

. _ ar?
+ (2 cos(Bi) sin(B) T? + sir? (8;) 6—[3")AB =0

with
arz _ 2yn(z/ sin)) S8

Bi (14 n(zg/ sinG)))’

Clearly, (4.61) is satisfied if at least one of the followingnditions holds: i) co&y;) = 0; ii)
sin(w;) = 0; iii) A = B. If cos(a;) = 0 for each sensor in the formation then this means that all
sensors are placed in the same vertical pléne,}, target and sensors are in the same plane and
[FIM| = 0, therefore the solution is not optimal and it is discardBioe same occurs if sif;) = 0
for each sensor in the formation but in this case the senserdaced in the plang z}, [FIM| =
again and this solution is discarded too. If ¢@9 = O or sin(a;) = O for each sensor in the
formation, (4.62) implies that the only feasible solutigrthatA = B. Therefore A = B is one of
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the conditions that an optimal surface sensor network naistfg. In what followsE can beA or B
without any loss of generality due fo= B. Analysing the derivative (4.62) witA = B = E yields,

IFIM| Zcos)(Bi)ri3 [ (Slnz(ﬂl)+n(

B sin@)

(&)) (sirP(8) - ycogwi»)+

(4.63)

(smz(,B.)+n( ) smzw.xlw))

in(si)

Straightforward computations give,

sinf(;) + (555 ) Siff(B)(1 +7)
C=E — — (4.64)
SIrP(B) + 1 (gmigy) (SINP(B;) — ¥ coS(8)

Equation (4.64) must be satisfied for all the derivatives406Q) with respect to eagh with
i =1,---,n. Moreover,A, B, andC are constant for a given optimal configuration so it must be
studied if (4.64) is hold for more than one valueggfi.e., if the sensors can havdigrent angles;
or all of them must be equal, it & = B for all i. Equation (4.64), after some computations, may be
rewritten as,

1
where .
_ nZyy
©si2(8) + nzg i) (L +y) (4.66)

with B; € [0,7/2]. The functionQ is strictly decreasing in the above domaingpf and we must
focus on the positive values d¢{g)) = 1/(1 - Q), i.e, when 1> Q, sinceA, B, andC are always
positive. Therefore the analysis of the possible solutionst take into account the variation Qf
fromQ = 1 toQ wheng; = /2. In this domain is always positive and smaller than 1, moreover,
the functionf (8;) = 1/(1 - Q) is strictly decreasing. Thus (4.65) only holds for one eadi3; for a
given optimal sensor configuration since (4.65) is stridgreasing in the considered domain, and
A, B, andC are constant for a given optimal formation. Therefere gandr; =rfori=1,---,n
From the previous analysis all the sensors must be placedacsiecumference centred on the

n n
target projection on the surface plane ahet cos(8)I'2 gl cos(ei), B = cog(B)I' El siré(e;), and

C = nsirf(B)I2, withT; = Ty foralli = 1,--- , n, because all sensors are at the same distance from
the target.

To defineB regardless of the sensor distribution over the resultinguonferences, we proceed
by adding (4.64) wittE = Ato (4.64) withE = B, itis 2C = (A + B)/(1 - Q). When doing so, all
the terms iny; are cancelled and one obtains

2(sin*2(8) + 1z, P (B)(1 +y) — nZyy) = coS(B) (i (B) + nZy(1+7)) (4.67)

This expression can be rewritten to avoid the use of angléscadetermine the range distance
of the optimal formation explicitly. It is clear that sp)(= z,/r and cos§) = ,/r2 - zé/r, so (4.67)

yields,
3Z + 3(L+y)nZr” = 3nyr’ 2 —r? —prrt2 = 0 (4.68)
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R ¢

Figure 4.9: Optimal formation size for a 4 sensor network on a plane wigtadce dependent covariance. The
intersection sphere-plane defines the optimal formatiocdastant covariance

The solution of (4.68) defines the optimal formation sizat thepends on the error model and
on the target depth. Itis interesting to notice that if theaz@ance error is distance independent, i.e.,
n = 0, then (4.68) implies thatZ3 - r? = 0, that is the solution obtained in Section 4.5.1 when the
sensors are restricted to lie on a horizontal plane and oherspand also equivalent to the surface
sensor placement problem with constant covariance.

It now remains to determine the geometric configuration efgbnsors on the circumferences.
Comparing the optimal FIM (4.59) with the generic one in ().@ives an implicit characterization
of the conditions that must be satisfied by the sensor netimarkder for it to be optimal. From the
conditionA = B and that all sensors have the same elevation aggke 3, it is straightforward to
obtain that the optimal formation must hold

Zn: (co(ai) - sinf(e)) = 0 (4.69)

i=1

with Z cog(a;) andz sir’(«;) as large as possible. From th@ diagonal elements we find that the

optlmal conflguranon must hold too

Zn: DuxPIyFZ 0= Z COS@)SIH(&|) =
1

3 Bz - g — Z cos@) = (4.70)

n no
> ’%Fg =0= Y sin(@) =0
i i=1

Thus the sensor formation must be first and second momentdeslaand a solution can be
obtained by noticing the orthogonality relations for simesl cosines from Fourier analysis [37].
Therefore we can define an optimal sensor formation by digirig uniformly the sensors around
the circumference where the sensors must stay. It can beeddtow the solution defined satisfies the
optimality conditions of the simplified FIM (4.21); (4.68)@ (4.69) correspond to the maximization
of the productA - B - C and thus to the maximization of (4.19), and (4.70) makes ftheiagonal
elements of the FIM equal to 0, i.e, it satisfies (4.20). Tlhiis,solution implies a global maximum
of the FIM determinant for the considered constraints.

In Figure 4.9 an optimal configuration for 4 sensors is showrcan be seen how the ideal
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formation considering a Gaussian noise with distance-ugg® covariance has a smaller size than
the optimal formation with constant covariance error. Hmwller formation size searches to reduce
the distance from sensors to target and therefore to mieithie distance-dependent measurement
errors. Thus, a trad@iosolution may be defined analytically between the optimalesgnd the
optimal distances.

Notice the unrealistic assumption made until this poirgpahade in many of the publications
available in this area, that the position of the target isvkman advance. This is done to simplify
the problem and to first fully understand its solution befii@realistic scenario where the position
of the target is known with error can be tackled. In this respgee Section 4.6, which is largely
inspired by the work in [39].

4.5.2.1 Underwater target positioning with known target deth

This section explores an interesting connection betwergetgositioning in 2D and 3D similarly
as it was done in Section 4.4.3.2. We start by observing th#té 3D solution studied so far, if
the depth of the underwater target tends to 0, then an opserador formation at the surface is
such that the positions of all the sensors collapse on topeofarget, that is, they tend to,[@0]".
Moreover, the FIM determinant equals to O if the sensors argkt are on the same plane, so an
optimal solution cannot be derived. Clearly, this limituidn lacks realism and fails to degenerate
into the solution and FIM determinant that would be obtainad we assumed that the target and the
sensors were exactly in the same horizontal plane. Thisgfiaocy arises from the fact that in the
pure 3D approach the depth of the target must be estimatédididypDespite this, in many practical
applications of interest, the target depth can be measurectlgt with small error, thus dispensing
with the need to estimate it using acoustic range measurisménthis case, only thex and gy
target position coordinates should be determined, beagus&nown. This positioning problem is
studied next.

We assume that all sensors lie on a horizontal plane. Failpttie procedure adopted in Section
4.2 to derive (4.10), it yields the Fisher Information Matri

P -2 Pix Piy -2
1 n[ A _r_ZyFi]

FIM:FZ

. : (4.71)
Itis now necessary to find the sensor positions that maxitfild|. For the sake of conciseness
and to avoid a tedious repetition of the arguments presémtled previous sections, the details of the
computation are eschewed. Following the same proceduteiezd for (4.59), an optimal sensor
geometry corresponds to placing all the sensors on a cienemée centred on the projection of the
target on the plane. The distribution of the sensors on tleeiiference exhibits the symmetry that
is implied by conditions similar to those in (4.69) and (4.70/e assume, for clarity of exposition,
that the reference frame adopted has its origin at the ceiffitiiee circumference. The resulting

% riZ
FIM = §

We now examine the relationship between the above 3D tamggtigning problem and the
purely 2D one. The latter, commonly studied in land robet@sresponds to the case where the
target and the sensor network lie in the same plane. Fromrhlyss presented, it follows from

(4.72)
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(4.72) that when the target depth is equal to O and we consmlestant covariance;(= 0) then
[FIM| = n?/o* - 22, This makes the maximum FIM determinant possible in 2D, aéaéxed in [11]
and [55]. Furthermore, for anythe corresponding regular sensor formation satisfies thditons
obtained in [55] for the pure 2D case. Thus, if the targetldépknown, then a 2D solution is easily
obtained from the 3D one by simply letting the target deptire¢q.

If the covariance error is distance-dependent then it isiptesto check, by an analysis similar
to the previous one, that when the target depth becomes @|thés equivalent to the one of the
pure 2D case and that we must impose constraints on the clistesm sensors to target to avoid
that the sensors collapse over the target position to reitheécdistance-dependent covariance error
as much as possible. It is interesting to notice that if tiisees and the target are not placed in the
same plane, the optimal formation is placed on a circumfer@mound the target projection on the
horizontal plane and we can define again an optimal radiuth#®formation. The FIM computed
this way yields

EIM = %5([ ”'Fé'grzz—zé)z. ni3(r2-2)° ]) (4.73)

) 2,r2

Computing the determinant of (4.73) and its derivative wibpect ta' yields

P2@+n) = (2= Z)A+nr7 (1+7) =0 (4.74)

Thus solving (4.74) the optimal radius can be defined easily.

Finally, it is important to comment on and compare the besinasion accuracy that can be
obtained in the purely 3D positioning case and in the caseeuie target depth is known. Notice
that the determinant of (4.60) is larger than the determin&(4.72). This may be misinterpreted
as implying that the pure 3D solution yields better estioraticcuracy, a conclusion that would be
counter-intuitive. In fact, from the Cramer-Rao inequatfte right comparison should be between
the eigenvalues of the FIMs for the 2D and 3D cases, whichnélte- 7;/r*)Io/2 andnl/3,
respectively. Thus, for an adequate radius of the circusnigg on which the sensors are placed,
the solution that relies on the knowledge about the targethdgelds better estimation accuracy, as
can be deduced from the larger eigenvalues of the FIM.

4.5.2.2 Examples of optimal sensor placement

Three examples of underwater target positioning with a agtveomposed of 4 sensors are now
studied to show the dierences between optimal formations for both constant astdrdie-dependent
covariance. The first example shows the optimal formatianofo= 0.1 andnp = 0 (constant
covariance); the second example studies the same probleim this case withp = 0.1 andy = 1
(distance-dependent covariance); both examples wittatigetat a depth of 50 meters. For the third
example the same set-up of the latter scenario is studietthétarget depth is known by additional
Sensors.

Clearly, in order for the information about the configuratto be useful in a practical situation,
one must check if the determinant of the FIM meets desiredifpegtions. To this &ect, and for
comparison purposes, the determinant of the FIM obtainea fember of hypothetical target points
in D is again computedFIM|4. Similarly, the CRB trace will be computed for the same redid
and named a€RBy.
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Example 4.4:1n Figure 4.10 we can see the optimal formation when the ¢awee is constant,
n = 0. We can notice in Figure 4.10 (a) how the radius of the foionails the one defined in
Section 4.4.3 and Section 4.5r1,= V27, = 70.71 m, wherer? = 2 + Z2. In Figure 4.10 (b)
we can observe how this configuration implies the theorktieimum determinant over the target
position,|FIM| = n®/(c®-3%) = 2.3704 10° m™®. In Figure 4.10 (c) and (d) the CRB trace is shown,
we can notice how the minimum value is also over the targetiposm
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Figure 4.10: Constant covariance errdf|M|, around the target position (a). Value of the FIM determinant
around the target position (b:RB;, trace around the target position (c). Value of the CRB arcanodind the
target position (d)

Example 4.5: In the distance-dependent covariance case with unknowettadepth, we can
determine the optimal radius by means of (4.68) that, with1, becomes:

—4nr® —r? + 6yrzg + 3%, =0 (4.75)

Equation (4.75) provides the optimal radius for the forimatiepending on the target depth and
on the noise parametgr This equation can be rewritten as
3+ 6nr
Notice that (4.76) has the form of a closed loop characteregfuation with the square of the
depth as a gain; thus, the evolution of the roots can be aedlyging the root locus tool. The root
locus plotis shown in Fig. 4.11.
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Imaginary Axis

Real Axis

Figure 4.11: Graphical representation of the solutions of the third degrquation to determine the radius of
the optimal surface sensor network witk= 1 andn # 0.

Clearly, two roots have negative real part and can be disdard he third root, however is
positive and its magnitude increases with the gain. Hemeeplot shows clearly how the optimal
radius varies with respect to the target depth; its valuebearomputed by solving (4.75). In Figure
4.12 (a) we can see the optimal formation and how its radius,37.34 m, becomes smaller (almost
the half) than in the previous example to reduce as much aslpeshe added distance-dependent
measurement error. In Figure 4.12 (b) the value of the détenmbof the FIM is plotted around the
target position. We can notice how the maximum value fallsrdkie target position but how the
accuracy is reduced dramatically due to the error modelidered in this example. Similarly, in
Figure 4.12 (c) and (d) the CRB trace is shown. It can be notaev the CRB trace is larger than
in the previous example due to the added measurement emtbhav the minimum CRB trace is
over the target position agaim.

Example 4.6:Finally if the target depth is known and= 1 we can determine the optimal radius
from:
3+ 2rq2 + 2 = 0 (4.77)

Analyzing (4.77) the same way as (4.75) we find again that whati®ons are always negative
and the other one positive and depending on the square okfita,dso the optimal radius is again
well defined and can be computed from (4.77). In Figure 4.1 8écan see the optimal formation
and how its radius;’ = 5331 m, becomes larger than in the previous example because tiet tar
depth is now known. In Figure 4.13 (b) the value of the detaemt of the FIM is plotted around the
target position. We can notice how the maximum value falkr dlive target position again. The value
of the determinant is smaller than in the previous examptabse the FIM is now 2x2, however the
value of the CRB trace is smaller, shown in Figure 4.13 (c) @)dand therefore its covariance is
smaller too providing a better estimation of the parameiénsterest.m

Therefore with this method and the adequate noise model wedesign optimal sensor
formations for underwater target positioning.
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Figure 4.12: Distance-dependent covariance errérl M|, around the target position (a). Value of the FIM
determinant around the target position (8RB, trace around the target position (c). Value of the CRB around
around the target position (d)

4.6 Optimal sensor placement with uncertain target locatia

At this point, following what is commonly reported in thediature, we have started by addressing
the problem of optimal sensor placement given an assumatignofor the target. In a practical
situation, the position of the target is only known with urtaaty and this problem must be tackled
directly. However, in this case it is virtually impossibterhake a general analytical characterization
of the optimal solutions, and one must resort to numericaictemethods. At this stage, an in-depth
understanding of the types of solutions obtained for thalidase is of the utmost importance to
compute an initial guess for the optimal sensor placemegotiéhm adopted.

For the above reason, we now address the situation wherartiet to be positioned is known to
lie in a well defined uncertainty region. The objective is bdain an expedite numerical solution for
the problem at hand. Inspired by the work in [39], we assureautitertainty in the target position
is described by a given probability distribution functiamdave seek to maximize, by proper sensor
placement, the average value of the determinant of the Fihitarget.

In what follows, pis; i = 1,2, ...,n; & = X, Yy, zdenotes the — th coordinate of sensarocated at
positionp; andp = [p], ..., pi]". We further denote by (q) ; q € R* a probability density function
with supportD e R3 that describes the uncertainty in the position of the tairge¢gionD. With
this notation, the problem of optimal sensor placement eacalst in the form of finding a vectpr —
such that

p' = argmax [ IFIM(p.0) ¢ (@da (4.79)
D
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Figure 4.13: Distance-dependent covariance error with known targethd@pl M|,, around the target position
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where we used the notati¢il M (p, )| to clearly show the dependence of the FIM on the target and
sensor locations. However, in the followitigl M (p, g)| will often be denoted simply a&1M|. In

a real situationy (g) will depend on the type of mission carried out by the undeewttrget. If the
target operates mostly in the centre of the working apég) can for example assume the form of a
truncated, radially-symmetric probabilistic Gaussiastritution centred at an appropriate point. On
the other hand, if only the work area is known and the targetagerate anywhere inside i,(q)

can be taken as the unity function inside that area.

To proceed, one must compute M(p, g)| in the equation above. At this point it is important
to remark that, given the complexity of the optimal sens@cpment problem at hand, the only
viable solution is a numerical one. For this reason, in @stiwith the methodology adopted in the
previous sections, the derivatives of tikd M| are computed explicitly with respect to the sensor
position coordinates, i.epi = [pix, Py, Piz]. The computations are straightforward but lengthy, so
details are omitted.

It now remains to solve the optimization problem defined @&@d\s explained later, we opted to
use a gradient-based method to do so. To thiecg it is important to compute the derivatives of the
integral in (4.78) with respect to the sensor coordinates, s,

4] _
o Df IFIM(B. Dl (@d @79)

fori =1,2,...,nand¢é = x,y,z To proceed with the computations, the integral and thevdtive
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operations are interchanged: the derivatives are deterdh@rplicitly first, see Appendix C, and the
integration over regio® is performed afterwards.

In what concerns the computation of the triple integral dlierregionD of interest, we opted to
do it numerically using a Monte Carlo method. Finally, a $ioln of (4.78) can be obtained using
a gradient optimization method with the Armijo rule. Howeuhe details are omitted (see [12]
and the references therein). To overcome the occurrencealf inaxima or the divergence of the
algorithm, the initial guess in the iterative algorithm rhioe chosen with care. In the examples that
we studied we found it useful and expedite to adopt as araimgtiess the solution for the single
target positioning problem described in previous sectiaith an hypothetical single target placed
at the centre of the work area. It is important to stress tiesolution to (4.78) depends strongly on
the probability density function adopted for the targetifios q (e.g. a truncated, radially-symmetric
probabilistic Gaussian distribution or a radially-symriestep distribution, [39]).

4.6.1 Simulation examples with unknown source location

The methodology developed is now illustrated with the hedigwn examples that address the
problem of optimal surface sensor placement for uncertagtetwater target positioning. In the
design of both examples, 4 sensors are placed in the sanmohi@liplane at the sea surface. The
target is known to operate at a constant depte 50 m, in an area delimited by a circumference
of 50 mradius. Therefore, the probabilistic distribution of theget position is a step-like function,
taking the value 1 inside and on the circumference and theev@loutside. Through a gradient
optimization method with the Armijo rule, the ideal fornatiis searched, using as an initial guess
the ideal configuration when the target position is knownexslained previously. Because the
sensors lie on the same plane, the algorithm must be modifiggdig. The relevant dierence is

in the computation of the derivatives of (4.78), becauseHemproblem at hand only the derivatives
with respect to theix andpy, coordinates of each sensamust be computed. The computation of
these derivatives is straightforward and details about tdoenputation are in Appendix C.

Example 4.7: This example corresponds to the case where the covariamueigrconstant,
n = 0. The optimization process results in a regular formatghogwn in Fig. 4.14) of radius
r’ = 82.2 msimilar to the one that would be obtained for the case whexéaiget position has no
uncertainty. However, the optimal formation raditus= 82.2 m of the first is larger than that of the
latter, given by’ = g,- V2 = 70.71m. This has thefect of increasing the average FIM determinant
inside the work area. As a consequence, the shape of thig-phMty, in Fig. 4.14 (b) is flatter over a
larger area. The obvious interpretation is that in the presef uncertainty the sensors are placed in
such a way as to tradém@ptimal performance at a point against slightly reducefiyperance, albeit
uniformly over a large area around that point. The maximuM Beterminant is 3230- 10° m®
that is very close to the optimal value3Z - 10° m®. Thus in in Fig. 4.14 (aFIM|p, D € R?
shows that the largest accuracy is obtained inside the wokiea. In Fig. 4.14 (b) we can observe
the magnitude of the FIM determinant for each point in theelavhere the target lies. The average
determinant inside the working area maintains a large vadae to the theoretical maximum. Fig.
4.14 (c) and Fig. 4.14 (d) show similar plots to Fig. 4.14 (adl &ig. 4.14 (b), respectively, but
considering the CRB trace. We can notice how the CRB tracataiaia small value inside the
working area and therefore a minimum global variance forténget positioning is obtained in the
area of interestm

Example 4.8: In this second example the covariance error is distancertmt, withy = 0.1
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Figure 4.14: [FIM|,, D € R? (a), FIM determinant for each point in the plane where thgethlies for the
optimal sensor formation for an unknown source location@H B, trace around the target position (c). Value
of the CRB around around the target position (¢)=(0)

andy = 1. The same optimization process as before results in aaefuimation of radius
r’ = 48.04 m. This formation shown in Fig. 4.15 is again larger than thnogl one that would be
obtained when the target position has no uncertairity 37.35m). Fig. 4.15 (a)FIM|p, D € R?,
shows how the largest accuracy is obtained inside the wgikiea. In Fig. 4.15 (b) we can observe
the magnitude of the FIM determinant for each point in theelavhere the target lies. The average
determinant inside the working area maintains a large vadae to the maximum obtained when the
target position has no uncertainty, but in this case theedser of the determinant is faster due to
the dependence on distance of the noise. In a similar way the iprevious example, Fig. 4.14 (c)
and Fig. 4.14 (d) show equivalent plots to Fig. 4.14 (a) arnd Eil14 (b), respectively, but with the
CRB trace. We can notice how the CRB trace maintains a smialévaside the working area but
larger than in the previous example due to the distancertkpe covariance error. Despite of this,
the minimum global variance for the target positioning isaitied in the area of intereg.

Similar results can also be obtained for other radially syt probability density functions. In
fact, using the procedure proposed here, optimal sensdigooations can be obtained for arbitrary
probability density functions. Depending on the knowledbeut the target or the application, the
optimal sensor configuration will change.
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Figure 4.15: [FIM|,, D € R? (a), FIM determinant for each point in the plane where thgeglies for the
optimal sensor formation for an unknown source location@3 B, trace around the target position (c). Value
of the CRB around around the target position ¢g}(0.1)

4.6.2 Simulation examples when the sensors can be placed imat different
planes

An interesting problem arises when the target is known t@tigwhere in a volume in the water
column and one is free to distribute the sensors at the séacswand on the sea-bottom. At this
point, an interesting question arises: given the experiat@onditions, should we place all the
sensors in one plane (sea surface or sea-bottom), or digttibem between the two planes? In what
follows we show, via a design example, how the circle of idegsoited in the previous section can
be used to solve this problem.

Suppose that the underwater target operates inside a getdaparallelepiped with dimensions
60x 60x 40 m® and geometrical centre at 8depth. The sea bottom is 10@deep. We consider
two possible arrangements for a 6 sensor network. In thedase, depicted in Figure 4.16 (a),
all sensors are placed at the sea surface. In the secondleesigted in Figure 4.16 (b), 3 of the
sensors are placed at the surface, while the others aredgladbe sea-bottom.

Example 4.9:Firstly we consider a constant covariance emos, 0.

In the first scenario, Figure 4.16 (a), a solution was founénehy the sensors are distributed
regularly on a circumference with radius = 7457 m, centred at the projection of the
parallelepiped’s centroid on the sensor plane. The intedthe FIM determinant over the volume
of interest was found to be.0483- 10'> m™® and the maximum and minimum FIM determinants
obtained inside this region were-80° m™® and 55856- 10° m® respectively. The maximum
determinant is the theoretical maximuni/(c®3%) m. Comparing the maximum and minimum
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Figure 4.16: Maximization of the average FIM determinant inside a volumi¢h all the sensors placed in the
same plane (a), or with the sensors distributed among ttierent parallel planes (b).

CRB trace, they were.0197 n? and 00150 respectively. Again, this last one is the theoretical
minimum CRB trace.

In the second scenario, Figure 4.16 (b), 3 sensors were placeéhe sea surface and the
remaining ones on the sea-bottom. A solution was found infdh@ of two regular formations
in circumferences with equal radif = 71.62 m, centred at the projection of the parallelepiped’s
centroid on the two sensor planes. The integralFoM| is now 11379 102 m® and the maximum
and minimum FIM determinants are-80° m® and 73103- 10° m®, respectively. Notice how
the integral is larger in the latter case. Furthermore, themum FIM determinant obtained inside
the working area is larger, providing a more homogeneousagbn accuracy inside the volume
of interest. In terms of the CRB trace, we found that the mimmand maximum values were
0.0150n? and 001597, respectively. The minimum theoretical CRB trace is agahmeved and
the maximum CRB trace is lower than in the previous situatibere the sensors are placed in only
one planem

Example 4.10:Secondly we consider a distance-dependent covarianaesed.1 andy = 1,
and proceed as above.

In the first scenario, Figure 4.16 (a), the solution is agaegalar formation around the origin but
with radiusr’ = 34.88 m. The integral of the FIM determinant over the volume of ietlis 57394
10° m® and the maximum and minimum FIM determinants are.2@67 m° and 16311 m™®
respectively. These values are lower than in the previoss dae to theféect of distance on the
measurement noise.

In the second scenario, Figure 4.16 (b), 3 sensors were placeéhe sea surface and the
remaining ones on the sea-bottom. A solution was found infdhm of two regular formations
in circumferences with equal radii = 32.08 m, where the integral is now.8570- 10° m8, and the
maximum and minimum FIM determinants are@848m° and 166552m . We can notice how
in the latter case the average FIM determinant is smallett@dhaximum determinant is reduced
too, so the largest accuracy in the volume is smaller. Howaeminimum FIM determinant is in
this case larger providing a more homogeneous estimaticuracy. The adequate solution will be
mission-dependenia

Therefore, for an unknown target location it is clear thatdkierage accuracy inside the working
area is improved if we can place the sensors in twietgnt parallel planes.
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4.7 Conclusions

This chapter ffered a characterization of the solutions to the problem ¢ifrag acoustic sensor
placement for target positioning in 3D space, with speciaplkeasis in the underwater target
positioning by a surface sensor network. By assuming theatrdange measurements between the
target and the acoustic sensors were corrupted by whitesiaausoise, the variance of which is
distance-dependent, conditions were derived under wh&dnaor network maximizes the range-
related information available for positioning. This wasnddoy exploiting tools from estimation
theory whereby the problem to be solved was converted irtbdhmaximizing the determinant of
a conveniently defined Fisher Information Matrix (FIM). Tbere result obtained was an analytic
characterization of the conditions that must be met by am@neensor network in 3D in order for
it to be optimal. This result was instrumental in derivingagtgies to deal with practical situations
where, depending on the mission at hand, the sensor netwaykom completely underwater or at
the surface, or even configured such that a sub-group of seissat the surface and the remaining
sub-group is close to the sea-bottom. The relationshipdstwptimal solutions in 2D and 3D space
was clarified. It was further shown that the optimal sensaofigaration lends itself to an interesting
geometrical interpretation and that the spreading of tms@econfiguration depends explicitly on
the intensity of the range measurement noise and on the lpitistia distribution that defines the
prior uncertainty in the target position. Examples illastd the application of the methodology in a
number of applications-relevant scenarios.
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Chapter 5

MULTIPLE TARGET POSITIONING IN
3D SCENARIOS WITH RANGE MEA-
SUREMENTS

5.1 Introduction

It has been studied until this point that many AUV missionmsg@s call for the availability of good
underwater positioning systems to localize one or moreckesisimultaneously based on acoustic-
related range information received on-board a supportshgn autonomous surface system (e.g.
a number of autonomous surface vehicles equipped with Hicaaseivers, moving in formation).
The information obtained can be used to follow the state ofprss of a particular mission or to
relay it as a navigation aid to the navigation systems existe-board the AUVs. Similar comments
apply to a future envisioned generation of positioningeyst to aid in the tracking of one or more
human divers.

In this chapter, based on the results of the previous chgptee address the problem of
computing the optimal geometric configuration of a mobilesse network that will maximize the
range-related information available fowultiple target localizatiorin three-dimensional space. In
contrast to what has so far been published in the literatueeaddress explicitly the localization
problem in 3D using a sensor array located in a finite spatgion (3D). Furthermore, we
incorporate directly into the problem formulation the féleat multiple targets must be localized
simultaneously. The particular scenario in which the seas@y is located at the sea surface (2D)
for multiple underwater target positioning (3D) will be died in depth as an interesting application
scenario, in a similar manner as in Chapter 4. We assumehbathge measurements are again
corrupted by white Gaussian noise, the variance of whichsigce-dependent. The computation
of the target positions may be done, as usual, by resortitrgateration algorithms [3], [4], [7].

Clearly, there will be traddts involved in the precision with which each of the targets lsan
localized; to study them, we resort to techniques that lofrom estimation theory and Pareto
optimization. For the latter, the reader is referred to [482], [90]. See also Appendix B for a
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very short review of some key concepts and results. Stateflyhwve avail ourselves of concepts on
Pareto-optimality and maximize convex combinations ofltdgarithms of the determinants of the
FIMs for each of the targets in order to compute the Paretorabsurface that gives a clear image
of the tradeds involved in the multiobjective optimization problem. Wei obtain a powerful tool
to determine the sensor configuration that yields, if pdsstbproper tradedfor the accuracy with
which the position of the dlierent targets can be computed. In what follows, and with asools
abuse of notation, we often refer to Pareto-optimal sohstgimply as optimal.

Itis important to remark that for the multiobjective optiration problem at hand, the logarithms
of the determinants of the FIMs will be used instead of therinants themselves. This makes the
functions to be maximized jointly convex in the search patanspace, thus justifying the use of
scalarization techniques in the computation of the Paoptonal surface, as described in Appendix
B. For a discussion of the convexity of the functions adopsee for example [12], Chapter 3 and
the work in [85] on the D-optimality criterion.

For a multi-target localization problem, the optimal getmeof the sensor configuration
depends strongly on the constraints imposed by the tadk (ssg. maximum number and type
of sensors that can be used), the environment (e.g. amlo&#)nthe number of targets and their
configuration, and the possiblyfterent degrees of precision with which their positions stidd
estimated. An inadequate sensor configuration may yietgelarcalization errors for some of the
targets. It is interesting to remark that even though thélera of optimal sensor placement for
range based localization is of great importance, not masylte are available on this topic yet.
Even more, the results are only for single target positignikxceptions include the works [63]
and [74].

The key contributions of the present chapter are twofoldwe) fully exploit concepts and
techniques from estimation theory and multiobjective mjtation to obtain a numerical solution
to the optimal sensor configuration problem for multiplegs in 3-dimensional space, and ii)
in striking contrast to what is customary in the literatunéhere zero mean Gaussian processes
with fixed variances are assumed for the range measurenteatgriances are allowed to depend
explicitly on the ranges themselves. This allows us to a@ptbe fact that measurement noise
increases in a non-linear manner with the distances maasure

The chapter is organized as follows. Section 5.2 summattizesomputation of the FIMs that are
necessary to solve the optimal sensor placement problesr gndsideration. The demonstration of
concavity of the logarithm of the FIM determinant for a glbs@nsor placement in 3D with constant
and distance-dependent covariance is shown in SectionTh8.gradient optimization algorithm
used to compute the optimal sensor configurations is summathim Section 5.4; and the multiple
localization problem for the case in which the targets hatfeient importance weights during the
mission, changing accordingly the sensor formation, ie atadied. This same problem is studied
in Section 5.5 for the application scenario of multiple undser target positioning with surface
sensor networks. Finally, in Section 5.6 the maximizatibthe average value of the logarithms of
the FIM determinants is studied when a static fixed sensevarktsurveys a certain working area
or when there is uncertainty in tteepriori knowledge about the target positions. The conclusions
are included in Section 5.7.
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Figure 5.1: Target localization problem set-up.

5.2 Information Inequality with distance-dependent measte-
ment noise

For the sake of completeness, we proceed to summarize thiésrebtained in Chapter 4 for the
computation of the FIM for a 3-dimensional scenario. Ugtbe an inertial reference frame with
unit axis{x}, {yi},{z} and letgx = [Okx. Oky Okd " be the position of the targétto be positioned
in {l}, withk = 1,--- ,mwherem s the number of targets. Further denotehy= [pix, pi. pi]";

i =1,2,..,n,the position of the — th acoustic ranging sensor, also{ln. Letri(q«) = |ak — pil (abbv.
rvi) be the distance (range) between the taggeind the —th sensor, wherp | denotes the Euclidean
norm. The variables and the set-up that will be used aretrifited in Figure 5.1 for the case of one
target and three sensors. We denotepthe measurements of the actual rangex), corrupted by
additive noisevyj. With the above notation, the measurement model adopteddn by

Zi = |0k — Puil + wki = 1i(Gk) + wi (5.1)

We assume that the measurement naigecan be modelled by a zero-mean Gaussian process
where the covariance depends on the distance between thebjects that exchange range data.
Stated mathematically,

wi = (I +76(r(a)”)) - wo (5.2)

wherer(qy) is the vector of actual ranges,andy are the modelling parameters for the distance-
dependent noise component, and= [wk; - - - wkn] | IS Measurement noise assuming that all noise
sourceswy; are independent, and the vectay is a zero mean Gaussian procéis, Xo) with X, =
o2 -1, wherel is the identity matrix. The measurement noise covariandexrfar targetk is given
by

2 = o (I +76(r(q)”))* (5.3)

Following standard procedures, the FIM corresponding éptoblem of range-based single
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target positioning can be computed from the likelihood tiorcpg(z) given by

1 1
o) = | (- (a0 5 a1 54)

wheren is the number of receivers = [z, Zeo. ..., Zn] T consists oh measured ranges for tardet
andr(qgk) are the actual ranges. Taking the logarithm of (5.4), cainguts derivative with respect
to gk, and then its expected value, the FIM is defined as

FIMy = C(6(r)Zs(r))CT (5.5)

whereC = (g1} - p) € R¥", 1, € R™ is a vector of 1s, ang is the vector of sensor positions,
the latter being defined i®>". This FIM was introduced in Chapter 4 for single target gosing

in 3D scenarios, and for each of the targets its correspgrfdid will be computed to evaluate the
accuracy with which the target is localized. Expanding) 8.5 obtained:

(qur—pix)z r2 (Ghoc Pungqky Py) r2 @ plx)(ka P2
1 n ki
Fle — ? Z (Gx— Plx:EQky ply) FZ (Qky Ply) FZ (Qky plyr):ka p|z)r2 (56)
i=1 (Qux— Plx)z(qkz plz)r2_ (qky Ply)(ka Piz) r2 (Qz— 2P|z) FZ_
T ki [ T

ki

wherely = 1/(1+pr};) fori € {1,...n} andk = 1,--- ,m. Clearly, the expression of the FIM
considering a distance-dependence covariance error islefeled.

5.3 Convexityconcavity for a 3 sensor network

The optimal sensor configuration that maximizes the sunamaif the logarithms of the FIM de-
terminants of the targets is searched from the Pareto-apitinconditions and convex optimization
tools, so it is imperative to demonstrate the convexityyalty concavity as pointed out in Chapter
3, of the log determinant function. In this sense, the sistppeoblem of a 3 sensor network is
studied because it is possible to analytically demonsth&eonvexity (concavity) of the optimality
criterion, and thus that a global unique solution may beiabthwith numerical search methods.
For this purpose the notation introduced in [6] for the FIMatminant is used, that for a distance-
dependent covariance error becomes

n ((Uj X Uk) . LI|)2 1 <& sin? (aik) cog (,Bij)
IFIM| = = 5 5 5= 5 5 > 5 (5.7)
I jaal (1 + r]ri’) (1 + nrz) (1 + nr,’) 77 (1 + nrjy) (1 + r]rz) (1 + r]rr)
where
) = [ Uy, )T = [ 2R1 2RL 2Rl T (5.8)

j € {1,...,n}; identical definitions apply to the indicésl; «j is the angle formed by the vectaug
andug, andBj, is the angle that the vectok forms with the resultant vector of the cross product
betweeru; andu,. The optimal sensor configuration is the one which maximikedogarithm of
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(5.7).

For the sake of simplicity and clarity in the exposition, lbetenarios with constant covariance
and distance-dependent covariance are studied separBieynain reason is because for constant
covariance the demonstration of concavity is easy andg$tifairward. Moreover, it is possible to
achieve an accuracy close to the optimal one that would teeredat for one single target working in
isolation for each of the targets involved in the positi@niask. Thus, this simpler problem is dealt
with first.

5.3.1 Gaussian error with constant covariance

In this case, (5.7) becomes
1 1
|F| Ml = F ((Ul X U2) . U3)2 = F SII'"I2 (a’lz) COS2 (BlZ,S) (59)

It was demonstrated in Chapter 4 that, in 3D positioning [@wis with constant covariance error,
the distance or orientation of the sensor network does nadition the optimal solution, only the
angles that the range vectors form between them determéneptimal configuration. Therefore,
without loss of generality, we can consider that vectorsd 2are always in an arbitrary plane, so
that anglesr;, andgiz3 are independent and we can compute their derivatives imdieply. This
assumption is also valid for multiple targets.

We must compute the second derivatives of the logarithm .8 (sith respect to angles;, and
B123 to construct the Hessian matrix. It is important to remagk the concavity of the logarithm of
the FIM determinant is restricted to positive definite ntasi, therefore the domain of the logarithm
of (5.9) cannot contain values ef, andpi23 for which the determinant becomes equal to zero,
it is, sensors and target cannot lie in the same plane. Tdrerei, € 10,x[ andB123 € 10, xl.
For the domainsvi, € ]x, 2x[ and Bi23 € ]x, 2x[, together or in combination with the domains
commented above, the solutions are equivalent and definsatine formations only by rotating
them the adequate angle. We compute first the Jacobian obdgfaeithm of (5.9), that after some
simplifications becomes:

dlog|FIM| 2 cog(a12)
80’12 S|n(a’12)
Vlog|FIM| = = (5.10)
dlog|FIM| —2sin(B123)
0B123 COS(B123)
The Hessian matrix yields
d%log|FIM|  9?log|FIM| ) 0
daz, Oa120P123 Sir? (a12)
Hiog|Fim| = = (5.11)
d%log|FIM|  9?log|FIM| 0 -2
0B1230a12 Bz, q co¥ (B123)

Therefore it is clear that the Hessian matrix (5.11) is definegative, and thus the logarithm
of (5.9) is a concave function and we can employ Pareto opétinn tools to define optimal sensor
networks of 3 sensors for multiple target positioning.

As abovementioned, in the multiple target positioning feobthe maximum log determinant
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Figure 5.2: Example of optimal sensor networks for two targets and feasers.

cannot be achieved for all targets at the same time, so adffagtdution must be adopted. This
is true except for the special case of two targets and no @n& in the sensor placement. This
case allows for optimal sensor configurations that provigemaximum accuracy possible for both
targets. From the results of Chapter 4 it is easy to checktligabptimal sensor configuration for
single target positioning with 3 sensors is the one in whighange vectors form an orthogonal
axis system. For the two target problem, the most simpldisalis trivial, since one of the possible
optimal sensor formations corresponds to a circular foionaif radiusr = V2 -d/2, whered is the
distance between targets, in which the sensors are regdiattibuted, and where the centre of the
sensor formation is over the mid point of the segment thatjboth targets. Moreover, the sensors
are placed in the plane that is orthogonal to this segmenis,the range vectors form an orthogonal
system with respect to each of the targets and then the Flbtrdétants at the target points are the
theoretical maximumFIM| = n3/(3%3) m™®. An equivalent solution would be obtained if the
pyramids formed by the sensor positions and each targebtated an arbitrary angle around the
target positions, with the new sensor positions defined byctht of the horizontal plane with the
edges of the pyramids. These cuts determine the new sensitiops similarly as it was studied in
Chapter 4. All these infinite solutions will provide the m@aim accuracy for both targets too. Itis
clear that these solutions are optimal for 2 targets and ambier of sensors, not only 3, for constant
covariance and no constraints. A graphical example for 4@srand 2 targets is shown in Figure
5.2. ltis important to remark that for this solution it is essary to have some prior knowledge about
the target positions because if all the sensors are in the gdane it is not possible to distinguish
which target is above or under the sensor network.

5.3.2 Gaussian error with distance-dependent covariance

In the distance-dependent covariance error scenario sonstraints must be imposed on the sensor
placement so that the sensors do not collapse over the tpogéion to reduce the distance-
dependent added error as much as possible. It is importargntark at this point that if no
constraints are imposed on the sensor network and the sesmobe placed freely in the 3D space,
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Figure 5.3: Notation adopted for the 3 sensor network problem.

the optimality criteria of the logarithm of the FIM deterraimt is not concave, and some numerical
and stochastic methods must be used together with the gtatkscendent algorithm to find the
optimal solutions, which could not be considered globalimat solutions. Thus only specific
scenarios with well defined constraints can be analysechioptoblem at hand. For example, if
the sensors are placed at the same (or a fixed) distance feotartiet, i.e., the sensors are placed
over a sphere centred at the target position, then the soligithe same commented above for the
constant covariance scenario. In the following analysis,doncavity of the logarithm of the FIM
determinant is studied when the sensors must be placed ame,@s it is usual for the application
scenario of underwater target positioning by a surfacesaretwork.

Equation (5.7) for 3 surface sensors and distance-depeoadkariance error yields

IFIM| = i SII’]2 ((112) cog (B12,3)

o® (1 + r]q)z (1 + r]rg)z (1 + r]rg)z

For the sake of simplicity we rewrite (5.12) with the notatg&hown in Figure 5.3. We must take
into account that the sensors lie in a plane, and therefereathge distances can be rewritten as a
function of the angles shown in the set-up of Figure 5.3. Thteamlogarithm of (5.12) becomes

(5.12)

log [FIM| = log : Zsinz(a) cog (B) 0052562 : (5.13)
\/1+tar? 4/ 1L+tar?
(1+’i(2qclo#l>(¢)) ) (1“7(%%»(@) ) (147 (czmamn) )

with sin(e12) = sin(e1 + a2) = sin(a), cosfi23) = cosB) cosp), and

V1 + tar? (¢) _ V1 + tar? (¢) ; z4

cos(a) cos(ay) 3 cos(d) sin(B + ¢)

I =
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To demonstrate the concavity of (5.13) we must compute theside matrix with respect to
each of the angles shown in Fig. 5.3. If the Hessian matrixefinde negative then (5.13) is a
concave function with respect to the set-up adopted and wasmgradient descendent optimization
tools to determine the optimal sensor configuration. MoegoW it is possible to demonstrate the
concavity of the function log~IM| then we can use these techniques to determine the optimal
sensor configuration for multiple target positioning. Eivge compute the Jacobian, that after some
simplifications yields

dlog|FIM| dlog|FIM| dlog|FIM| dlog|FIM| dlog|FIM|
oaq Oap op 00 0¢

.
V log|FIM| = ) (5.14)

where

dloglFIM|  2cosp)  2rn(zav1+1arf (9)) ol

Oay Sin(a’) 1+n(zq \/m))’

coay)

dloglFIM|  2cosp)  2rn(zav1+1arf (9)) oot

Oay sin(a@) VI+tark(9) v
1+n (Zq cogay)
_ Z_\Y _cos+o)
dlog|FIM| _ -2sin(3) . 27’7(cose)) ST L(B+9)
= - .
% ©s0) 1+ 1 (coqrerEa)
Y sin@)

. Z
dloglFIM| _ -2sing) 2 (sm) st

- oY
50 cosf) 1+ U(Win(ﬁw))

dloglFIM|  2r1(zaV1+1a?(9)) g

5(15 V1+tarf(¢) 7
1+n (Zq coga1) )

v zy \Y _cosB+¢)
2yn(zaV1+1ar? (9)) s N 2 (p) ST (B+9)

o \Y Zy Y
147 (Zq%f)@) L+ (cozeres)

For the simplifications done in the computation of the Jaamoiimust be noticed that siw) # O,
cosf3) # 0, and cos{) # 0, because two sensors cannot be placed at the same poirgresmisand
target cannot be placed all in the same plane. The Hessiaixnadter some lengthy computations
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that are omitted, yields

Hiq ﬁfm) 0 0

sinz(zm) Hoz O 0
H = 0 0 Hzz Haza
0 0  Haz Haa

Hsy  Hsz Hsz Hsa

where

2

His
Hos
Has
Has

Hss

2yn (Zq v1+tar? (qﬁ))y (1 +ysirf(a1) + 7 (Zq

sinf(a)

2y% (2 1+ tar? (9))’ )

4/ 1+tar?(¢)
coS+2(ay) (1 +7 (zq odaD)

tan(@)

15 =

cogay)

o]

2 2yn (Zq 1+ tar? (qﬁ))y (1 +ysinf(a) + 1 (Zq

4/ 1+tar?(¢)
coS+2(ay) (1 +7 (zq oday)

2Pn(z I+ a7 @) gt

tan(p)

2
Virar@)
(1 +n (Zq coay)

2 2 (14 ycoS(6+ 9) + 0 (i) )

Haz = " co2(B)

2y*nz, cos + ¢) sin(o)

cos (6) s *2(8 + 9) (1 + 1 (s ) )

Hza =

sit* (8 + ¢) cos+1(6) (1 +1 (my)

2ynz (1 +ycoS(B+¢)+n (m)y)

35 =~

cos(0) si (8 + 6) (1 + 1 (soqmaray) )

Haz = Hza

(5.15)
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oo 2 2TALY SO 1 (i) )
, co<(9) cos+2(0) Si”y(ﬁ+¢)(1+ﬂ(m)y)2
2y*nz, cos + ¢) sin(9)
Has = S
sin 18 + ¢) cos ™ 1(6) (1 + 0 (gratzrs) )
Hs1 = Has
Hs2 = Has
Hsz = Hzs
Hsa = Has
2 (@ VT T ) 150+ 1-5250) )
Hss =~

Y\ 2
st eosto 1 )

2 (VT T @) (1o st (a0 )
i 2
cos'(az) coS () (1 +7 (zq Vi+ar(p) )7)

cogaz)

B 2ynz, (1 +ycog(B+¢)+n (WM)}I)
cos (6) sin (8 + ¢) (L +1 (W;n(m))y)2

For the analysis of concavity we have to take into account dhaa, € [-n/2,7/2], B €
[-7/2,7/2], and¢,0 € [0,7/2], as it can be seen in Fig. 5.3. For negative definite matriak
principal minors have to be in alternation of signs, i.eg tipper left 1 by 1 corner of (5.15) must
be negative, the upper left 2 by 2 corner of (5.15) must betipesthe upper left 3 by 3 corner of
(5.15) must be negative, and so on. We can check easily that

Ml 27'{1,1 <0

Mz = Hya- Hap — Hip > 0;
Mz = Hia- Hoz- Haz— H,  Haz = Haz- Mz < 0;
My = (7{1,1 “Haz— 7{122) ' ('7’(3,3 “Haa— 7’@4) >0

M5=|(}'{|<O

Therefore (5.15) is definite negative and |BgM| for a three sensor formation is a concave
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function, so we can use convex optimization tools to deteentihe sensor formation that provides
the maximum determinant possible over the target positioh @moreover, to use Pareto optimization
techniques to determine the optimal sensor configuratioa foultiobjective problem.

Similarly to the constant covariance scenario, in a mudtifgrget positioning problem the
maximum log determinant cannot be achieved for all targetseasame time, so a trad@&solution
must be adopted. Again, this is true except for the speciss od two targets when the sensors
are placed in the horizontal plane that is perpendiculahéosegment that joins both targets in
its mid point. In this case an unique optimal sensor configpmgrovides the maximum possible
accuracy for both targets. Thus the FIM determinant at thgetgooints is the maximum possible.
As abovementioned, this solution is optimal for 2 targetsamy number of sensors, not only 3. Itis
important to remark again that for this solution it is neeeg4o have some prior knowledge about
the target positions because if all the sensor are in the géame it is not possible to distinguish
which target is above or under the sensor network.

Once the concavity for a 3 sensor network problem is definechust tackle the general problem
of an arbitrary number of sensors and targets. In this $itnitis not possible to prove the convexity
(concavity) of the problem due to the complexity of the finsti@econd derivatives of the logarithm
of the FIM determinant, but from the above result togetheéhhe discussion on the convexity of
the functions adopted for the problem at hand in [12], Chaptand the work in [85] on the D-
optimality criterion, we can think of extending the condgvesult for 3 sensors to a formation with
an arbitrary number of sensors, so that Pareto optimizatiohconvex optimization techniques can
be used to determine the optimal sensor configuration fotiphelitarget positioning.

It is important to remark at this point that although the poeg analysis shows the concavity
of the logarithm of the FIM determinant with respect to thelas that the range vectors form
between them, for more than 3 sensors and multiple targetsgtimization process using these
variables becomes so complex. For this reason, the optiimizarocedure of the following sections
will be done in the Cartesian space considering the Carntegiardinates of each sensor as the
design variables. The logarithm of the FIM determinant isaneoncave function with respect to
these variables, but with the knowledge that the maximunnigue, and that this maximum is well
defined for a single target, we have tools to determine if thet®n provided by the optimization
process achieves desired conditions and if it is close toptienal value that would be obtained for
a single target.

5.4 Gradient optimization algorithm for sensor placement

In this section the gradient optimization algorithm withiefhthe optimal sensor formations are
computed is presented.

Maximizing a convex combination of the logarithms of theettetinants of the dierent FIMs,
as a consequence of the Pareto-optimality conditions ibestin Appendix B, yields the most
appropriate sensor formation geometry for the multipleamater target positioning problem:

m
p* = arg mng log|FIMy| (5.16)
Pica

wheremis the number of targets involved in the multiple target posing task|FIM,]| is the FIM
determinant of targek, andp is the vector of sensor positions.
One simple method to find the optimal formation is the gradignimization method. To use it,
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we compute the derivative of the logarithm of the FIM deteramt of each target with respect to all
sensor coordinates. For the sake of simplicity, the contjutaf the derivatives is not shown here.
For details on the computation of these partial derivatisee Appendix C.

Once the gradients have been computed for each target, thepmbined to update the sensor
configuration so as to yield an increase in the specified coowmbination of the logarithms of
the FIM determinants. This computation is recursive, uh#é optimal position is found. For the
single target positioning problem, an adequate initiakgder the solution is for example any regular
distribution around the target. Checking that this aldwnibehaves well for single target positioning
is easy, for an analytical solution to the optimal sensoitjprs is available in Chapter 4. For the
multiple target localization problem, the initial guesdlWwe a regular distribution around the mass
centre of the target group, with all the targets inside tmsseformation. The Armijo rule is used for
the sensor placement update phase, yielding the follow@ngtive gradient optimization algorithm.

1. For each target, (5.6) is computed for the current semsardtion at iteratiort, from which
|[FIM,|, the convex combination of the logarithms of the determisgiven by|FIM,|[t] =

m

> A log|FIM| [t], follows for a specific choice oly; k = 1,2,.m, A3 + ... + 4 = 1, where
k=1

mis the number of targets.

2. The gradient ofF 1M, [t] is computed, yielding; « [FIM,|[t] with £ = x,y,zandi = 1,...,n.

3. The sensor positions are updated according to the gtadigm[t+1] = pis[t] +
pV; IFIMI[t], with w € 0,1,£[0] = 1, andZ [t] = ¢ [t - 1] + 1.

4. IFIFIM,I[t+ 1] > [FIMI[t], thenpi [t + 1] = [pix[t+ 1], piy [t + 1], pio[t + 1]]T becomes
the new set of sensor positiodt + 1] = /[t] + 1, and the iteration goes back to step 1.

5. If [FIM,|[t + 1] < [FIM,|[t], then there is no improvement in the convex combinatiorhef t
determinants [t] = 0, the iterative algorithm stops, amp[t] is considered to be the optimal
configuration for the current target position.

The above cycle is only run once if the targets are statiordoyice the unrealistic assumption
that the positions of the targets are known in advance. Bhilwne to simplify the problem and to
first fully understand its solution before the realisticrsmeo where the positions of the targets are
known with error can be tackled, in this respect, see Seétién

In a practical situation where the targets are in motionstivéace sensor network must adapt its
optimal configuration as the mission unfolds. Clearly, tieiguires that three fierent, intertwined
processes be activated as follows:

i) multiple target position estimatioalbeit with a possibly large error, using the current
sensor configuration and resorting to a dedicated non+lifiléer (e.g. Extended
Kalman filter);

i) optimal sensor configuration computatidrased on the data provided by the previous
process and the algorithm described above;

iii) coordinated motion controlo actually drive the moving sensors to the optimal
positions determined in ii).

We thus envision the situation where the algorithm desdr{beits modification in Section 5.6)
is run during each cycle of the positioning system in i). tagingly enough, we can also think of a
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situation where the élierent iterates of process ii) can be used to yield set painthi&é autonomous
sensor network to move toffectively guiding them collectively to the optimal configtica that is
being computed.

The advantage of using a gradient optimization method sintplicity. As it will be seen later,
based on the simulations done so far, the method has provee tpite satisfactory. However,
should there be a need for a more refined method, the sensmrketositions given by the gradient
algorithm can be used as initial estimates in the new method.

Itis not hard to envision situations wherdfdrent “levels of importance” and therefordfdrent
localization accuracies are required for the elements inoaof targets. It is obvious that the
geometry of the sensor network will impact on the accuradi which the position of each of the
targets can be computed. In the case of multiple targetsovmy the accuracy in the estimate of
one target may at times be done only in detriment of the acgus&the other estimates. There
are therefore tradéls that must be examined carefully. An example of a multig¢algcalization
problem can be briefly described as follows: “givartargets anch sensors, determine, if possible,
a geometric configuration for the sensors that will maxintiee accuracy with which the position
of targeti can be estimated, while keeping the accuracy of the othgettastimates above a desired
threshold level”.

5.4.1 Simulation examples on optimal sensor placement

The rest of this section contains the results of simulattbasillustrate the potential of the method
developed for optimal sensor placement when multiple targes involved.

Example 5.1: 3 targets, 6 sensors and constant covariance.

As an introductory step, only the case where the targets égual Pareto weights, that i%, =
A2 = ... = Am, is considered. All the targets have the same importanceijen the mission so
they must be localized with the largest global accuracyiptesst is, 4; = 1/mwithi = 1,---,m
wherem is the number of targets. To determine the optimal configamahe algorithm explained
above is run for a stationary group of targets. Once the @tiormation is obtained, the accuracy
with which each of the targets is positioned is compared thighone that would be obtained for the
corresponding target working in isolation to check if theytds are positioned with correct accuracy.
The error is modelled with- = 0.1 m, andn = 0.

We consider a formation composed of 6 sensors and 3 targdte pmsitioned. The target
positions have been generated with a pseudo-random dlggrand they are listed in Table 5.1
together with the sensor positions of the optimal configarat

Table 5.1: Target positions and optimal sensor positionsffipe 1, = 13 = 1/3.

01 02 Os P1 P2 Ps P4 Ps Ps
{x;}(m) | 2922 | -464 | 1787 | 16538 | —1497 | —-18329 | —-1841 | -220 | 18269

{yi}(m) | 4595 | 3491 | -257.7 | 13651 | 1299 12165 -642 | -2137| -7641
{z}(m) | 1557 | 434 | -2431 | -1400| 7975 | -14256 | 17547 | -1757| 17573

With this formation the determinants dfed M|; = 7.8386- 10° m™6, |[FIM|, = 7.8284- 10° m 6,
and|FIM|; = 7.9015- 10° m®. We can notice how a large accuracy is obtained for eachttarge
and how the FIM determinants are very close to the optimatioaewould be obtained for a single
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Figure 5.4: Optimal sensor configurations for 6 sensors and 3 targeltept0, (a) withA; = 0.33,1, = 0.33,
and; = 0.33 and (b) with1; = 0.05, 1, = 0.05, andi; = 0.9.

target working in isolationFIM|op: = n3/(3% - ) = 8- 10° m™. Their corresponding CRB traces
aretr(CRB1 = 0.0152n?, tr(CRB), = 0.0152n7?, andtr(CRB)3 = 0.0151n?, being the theoretical
minimumtr(CRBpt = 0.015 . In Figure 5.4 (a) it is shown this optimal formation (red mpis)
and the targets (green points).

Therefore it is possible to obtain large FIM determinantsdib the targets at the same time,
so for most of the dierent Pareto weights that could be defined (for the 3 targleéspptimal
formation is the one shown in Figure 5.4 (a). The formatioly changes slightly for extreme cases,
for example, in Figure 5.4 (b) one target must be localizeti Weirge accuracy while the accuracies
of the others can be degraded. In this example the Paretdtseagel; = 0.05, 1, = 0.05, and
Az = 0.9. Therefore it must be defined a formation that provides tarimum accuracy possible for
two targets while keeping the very large accuracy of targéefts formation can be seen in Table

5.2 and in Figure 5.4 (b)

Table 5.2: Target positions and optimal sensor positionsfpe 0.05, 2, = 0.05, andiz = 0.9.

01 02 O3 P1 P2 P3 P4 Ps Ps

{x/}(m) | 2922 | -464 | 1787 | 16025 | -144 | —-18365 | -1929 -381 1869
{yi}(m) | 4595 | 3491 | -2577 | 12071 | 1132 | 10964 | -8064 | —21426 | —-826
{z}(m) | 1557 434 | -2431 | -1437 | 5406 | -12566 | 17311 | —17483 | 1744

The determinants aiEIM|; = 7.7807- 10° m®, [FIM|, = 7.5883- 10° m® and|FIM|; =
7.9822- 10° m™. It can be noticed how the determinant of target 3 is almostaptimal one,
IFIM|opt = 8- 10° m~®, while the determinants of targets 1 and 2, although lowerlzage and close
to the optimal one too. The traces of the CRB matricestg@RB; = 0.0153 n?, tr(CRB), =
0.0155n¥, andtr(CRB)3 = 0.015n7, being the theoretical minimutn(CRB)op; = 0.015n7.

Thus, for constant covariance it is possible to achievegelaccuracy for all the targets at the
same time if there are no constraints on the sensor place®@&oburse, the accuracy required for
each target will be mission-dependent. It is important toaek at this point that for the multiple
target positioning problem with constant covariance tis¢agice between targets does not condition
the optimal sensor configuration. As it was commented in @&ref) the optimal sensor formation
only depends on the geometric configuration of the targefsthe distance between targets is
increased while its geometric configuration is kept, thendhptimal sensor formation will be the
same with the appropriate change of scale. This issue wdiedtin detail in Chapter 3 where some
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examples were shown to illustrate this behaviour. In theadise-dependent covariance scenario the
distance ffects dramatically the resultant sensor formatmn.

Example 5.2: 3 targets, 6 sensors and distance-dependenveoiance.

The tradeffs are clearer in the distance-dependent covariance sodrerause the increase in
the accuracy of one target only can be done in detriment odticeracy of the other targets. This
fact is studied in detail in Section 5.5 for surface sensawaokks, because in this latter case the
optimality criteria is concave, as it was demonstrated ictiSe 5.3.2. In the problem at hand, the
criterion is not concave because of the distance-depeadded error; and the gradient descendent
method detailed in Section 5.4 must be combined with nurakaicd stochastic methods to find an
optimal configuration, that can or not be the global one. Res¢ reasons, the study of the trafiteo
related with the variation of the Pareto weights is done fowfaxe sensor networks. The aim of this
example is to shed light on the tradEsoinvolved in a multiple target positioning task in 3D space.

The same situation of 6 sensors and 3 targets is studieddaatbe in which the error covariance
is distance-dependent, with= 0.01 andy = 1. The targets are placed at the same points of the
above example to compare thdtdrent solutions obtained forféerent weights and ferent error
models. The target positions and the optimal sensor coratligur, for the case in which the weights
are the same for all the targets, are shown in Table 5.3.

Table 5.3: Target positions and optimal sensor positionsffpe 1, = 13 = 0.33.

qdu 02 O3 P1 P2 P3 Pa Ps Ps
{x/}(m) | 2922 | -464 | 1787 271 | —-445| 1195 | -4435 | 266 178
{yj}(m) | 4595 | 3491 | -257.7 | 4206 | 3599 | —2035 | 3358 | 4506 | —-2129
{z}(m) | 1557 | 434 | —2431 | 1651 | 4255 | -2161 | 4316 | 1251 | -190

With the defined formation the determinants &M |; = 4.8148- 10° m®, |[FIM|, = 1.5542.
10° m8, and|FIM|3 = 2309 m8. Their corresponding CRB traces ar¢CRB; = 0.5059 n¥,
tr(CRB, = 2.2319 n¥, andtr(CRB3 = 2.8021 m?. We cannot compare these determinants
with an optimal value because with distance-dependentrizow@e the optimal value for a single
target depends on the constraints imposed to the sensaatiormand when several targets must be
positioned the accuracy degrades substantially. The setrgdo reduce the distance to the targets
as much as possible to minimize the distance-dependentiader, and it is clear that this is not
possible for all the targets at the same time. Thus, a tfédelution must be adopted. Moreover, in
the example the distance between targets and sensorsteditni20m to avoid that the sensors be
placed so close from a target. In Figure 5.5 (a) it is showsdptimal formation (red points) and the
targets (green points) where the sensor formation is spéitpairs of sensors focused on one target
each.

A second scenario is studied in which two targets must bdilmzhwith large accuracy (one
with larger accuracy than the other) and the third one doésetuire a large accuracy. Thus, the
weights arel; = 0.1, 1, = 0.4, andA3 = 0.5. The optimal sensor positions are stated in Table 5.4.

The FIM determinants for each of the targets|&M|, = 101m®, [FIM|, = 0.1034- 10* m®
and|FIM|3 = 2.1955- 10* m™®. We can notice how targets 2 and 3 are positioned with larger
accuracy than target 1, and how the accuracy of target 3ged#énan the accuracy of target 2. Their
corresponding CRB traces angCRB); = 1.6446 n?, tr(CRB, = 1.5314 n¥, andtr(CRBs =
0.1245m?. Moreover, the FIM determinant of target 1 is significantygluced with respect to the
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Table 5.4: Target positions and optimal sensor positionstfpe 0.1, 2, = 0.4, andi; = 0.5.

(o1 02 O P1 P2 Ps P4 Ps Ps
{x;}(m) | 2922 | -464 | 1787 241 -425 | 1766 4237 266 1351

{yi}(m) | 4595 | 3491 | -2577 | —2206 | 3599 | —2088 | 3157 | 4336 | —2257
{z}(m) | 1557 | 434 | -2431 | -1651 | 4255 | —-2496 | 4316 | 1251 | -165
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Figure 5.5: Optimal sensor configuration for 3 targets and 6 sensors, distance-dependent covariance and
A1 =0.33,1, = 0.33, andi3 = 0.33 in (a), andl; = 0.1, 1, = 0.4, andAz = 0.5in (b).

previous example to increase the determinant of target Bigare 5.5 (b) this optimal formation is
shown and it is possible to notice how 3 sensors are closegettd, 2 sensors are close to target 2,
and 1 sensor is close to target 1, to obtain the desired agearfar each of the targetm.

From the previous examples we can conclude that it is p@sgibhchieve a large accuracy for
all the targets at the same time in a constant covarianc@soeile can notice how in the solution
for the distance-dependent covariance case the sensa®see to the targets to reduce the added
error. Alternative and dierent examples could be obtained foffelient weights, number of sensors
andor number of targets. It is important to notice that the sesitake positions close to the targets
because of the large distances between targets.

5.5 Gradient optimization algorithm for surface sensor plae-
ment

In many situations of interest, a number of human divers oVélhay be required to work scattered
over a certain area, executindgiérent tasks or cooperating towards the execution of a contasén

It is not hard to envision situations wherdtfdrent “levels of importance” and thereforefdrent
localization accuracies are required for the elements irnagof underwater targets. In the case
of human divers, for example, in a 2 diver scenario one of tlrerd may be executing a very
demanding and risky task, while the other is carrying out asyeroutine task. In this situation,
the surface sensor network should “focus its attention’nafirst target, fectively imposing strict
requirements on the accuracy with which its position musest@mated, while relaxing the level
of localization accuracy required for the second targetis Fituation may be inverted during the
mission, so the formation should be able to reconfigurefisetordingly. It is obvious that the
geometry of the sensor network will impact on the accuradit which the position of each of the
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targets can be computed.

The sensors are constrained to lie in the plare0, at the sea surface. One simple method to
find the optimal formation is the gradient optimization nathused until this point. To use it, we
compute the derivative of the logarithm of the FIM determinaf each target with respect to the
sensor coordinates in thg y,} plane. Then, the computation of the derivatives of the libigar of
(5.6) is carried out with respect to tipg andp;, coordinates of a generic sengohe computation
of these derivatives is shown in Appendix C.

It is at this stage that the power of multi-objective Paregptirnization must be brought into
the picture, because, as explained in Section 5.3, (5.1&)cisncave function for surface sensor
networks. Clearly, in order to fully understand the probleemust compute the corresponding set
of Pareto-optimal points and make decisions accordinghe tBe presentation in Appendix B. As
explained before, this can be done by computing

p* = arg max|F1M,| (5.17)

over all possible sensor positions, and foralk [11, Ay, ..., Am] such thatl; + ... + An = 1. In
practice a grid of points is adopted for vecfiorThe maximization above is done by resorting to the
gradient optimization algorithm introduced before.

For simplicity of explanation, a theoretical 2 target piosiing problem with 6 sensors and
distance-dependent covariance is studied although tleeg@uoe would be the same for more targets
and a dfferent number of sensors. The computation of the optimatisolsiof this particular case
is studied in detail in Example 5.4.

Because only two targets are involved, the Pareto-optimelecis parametrized by a single
parameten € [0, 1]. For simplicity of notation, we use the same symbol fos #galar as well as for
vectord. The meaning will be clear from the context. We assumethat 1 andi, = 1 - 1. When
A varies from 0 to 1, the weight of one of the targets changesrdowly. Thus, in the extreme
cases of 0 and 1 the solutions degenerate into those two airige target localization problems
for target 2 and 1, respectively. Two normalized curves shatv the tradef@s in the determinants
of the Fisher information matrices for each of the targetgh(the sensor geometry obtained by
running the gradient optimization algorithm) are plottad=ig. 5.6. The solid line corresponds to
the Pareto curve for the maximization|6flM,|, whereas the dotted line shows the corresponding
FIM determinants. The two curves are normalized betweerddan

Notice in Fig. 5.6 how the cost functidh I M| provides a concave Pareto curve (solid line), as
expected for a maximization problem. As explained befdris,is a consequence of the fact that in
this case the criterion for each target is indeed concave. dbtted line shows the corresponding
evolution of the FIM determinants. Notice that the curve @& noncave, thus supporting the
statement that the determinants of the FIMs are not adeguitéeia to be maximized jointly (in
the Pareto-optimal sense).

Fig. 5.6 shows how the accuracy of the measurements chaogdgférent values ofl. At
this point it is important to remark that if the measuremanbredoes not depend on the distance
between targets and sensors, thahis; 0, it is possible to obtain sensor locations for which the
accuracies obtained for each of the targets simultaneawslglose to the optimal ones that would
be obtained if the targets were operating in isolation. Tbi®ws from the shape of the Pareto
curve whenp = 0, not shown here. For example, with= 0.5 the performance achievable in
the localization of targets 1 and 2 simultaneously does egtatle substantially when compared
to the best performance achievable for the two targetstestlaOf course the acceptable level
of degradation in performance is problem-dependent. Whenrteasurement error is distance-
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Figure 5.6: Pareto curve (solid line) for a 2 target localization probjeising 6 sensors for = 0.05, and the
corresponding FIM determinants (dotted line) foffelient values of the Pareto scalarization weights.in

dependent, the situation changes drastically becauseedfsthepness” of the Pareto curve. For
example, whem = 0.5 the performance that can be simultaneously achieved ftr taogets
degrades substantially. The tradfisanvolved are clear.

5.5.1 Simulation examples on optimal sensor placement

This subsection contains the results of simulations tHastiiate the potential of the method
developed for optimal surface sensor placement when neitipgets are involved. The initial guess
for the gradient optimization algorithm is of great imparta to avoid local minima or divergence.
Experience has shown that a regular formation around thigecefimass of the group of targets,
keeping the targets inside the formation, is an appropimdti@al guess. Starting from this initial
guess, several examples of multi-target positioning aocsvamext. In the forthcoming examples
we consider that all the targets are placed in the same ptasgat the same depth. The reason to
adopt this condition is to be able to show graphically thded#s involved with the representation
of [FIM|p, D € R? as in Chapters 2 and 3, and to be able to analyse the accurdcwkich each
target is positioned. The approach would be exactly the $andifferent target depths.

Example 5.3: 4 sensors, 2 targets and constant covariance.

In this example the targets are placed at a depth of 100 matethe positionsg; =
[150, 0, —100]" mandg, = [-15Q 0, —100]" m. In Figure 5.7 it is shown the optimal sensor
formation when the targets have equal Pareto weightss 1, = 0.5. In this case the distance
between sensors and targets does not condition the sqlstidhe sensors can be placed such that a
large accuracy is obtained for both targets. The formasgiaced according to Table 5.5.

The FIM determinants obtained for each target|&iM|; = 2.2722- 10° m™® and|FIM|, =
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Table 5.5: Target positions and optimal sensor positionsffipe 1, = 0.5.

o i 02 p1 p2 P3 P4
{x}(m) | =150 | 150 | 1913 0 -1913 0
{y1 }(m) 0 0 0 3004 0 -3004
{z}(m) | =100 | -100 0 0 0 0
a) x10° b)
1.8

|FIm|
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Figure 5.7: Optimal sensor configurations with= 0 for 4 sensors and 2 targets, ahe 0.5. [FIM|,, D € R?
(a); FIM determinant for each point in the plane where thgdt lie (b);CRB, (c); and Value of the CRB in
the targets plane (d). Sensors in red and targets in green.

2.2722- 10° m™®, that are very close to the optimal onEJM|ep = n®/(3B0®) = 2.37- 10° m®.
Therefore it is possible to achieve large accuracy for baxtipets at the same time.
This same example is studied when the Pareto weights fiezetit,1; = 0.9 and1, = 0.1, and

the optimal sensor formation is shown in Figure 5.8 and in€ats.

Table 5.6: Target positions and optimal sensor positionsffipe 0.9 andl, = 0.1.

O 02 P1 P2 Ps3 P4
{x}(m) | =150 | 150 | 1086 | -1014 | —-1014 | 1086
{y) }(m) 0 0 904 | 1143 | -1143 | -904
{z7}(m) | =100 | -100 0 0 0 0

The FIM determinants af€IM|; = 2.3688- 10° m® and|FIM|, = 2.2712- 10° m™%. We can
notice how the FIM determinant of target 1 is almost the optiome. However the FIM determinant
of target 2 is close to the optimal one too, and thereforedbigys possible to obtain large accuracy
for multiple targets in the constant covariance scenario.
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Figure 5.8: Optimal sensor configurations with= 0 for 4 sensors and 2 targets, ahée 0.9. [FIM|,, D € R?
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Example 5.4: 6 sensors, 2 targets and distance-dependenveoance.

In this second example we consider a 6 sensor formation f@odarget positioning problem in
which the targets are again at positiaps= [150, 0, —100]" mandg, = [-15Q0 0, —100]" m
In Figure 5.9 and in Table 5.7 it is shown the optimal sensonédion when the targets have equal
Pareto weights; = 1, = 0.5.

Table 5.7: Target positions and optimal sensor positionstfpe 1, = 0.5.

O 02 P1 P2 Ps Pa Ps Ps
{x;}(m) | =150 | 150 | 1938 | 91.3 | -1505 | —1938 | —-91.3 | 1505
yim [ o 0 40 |575| 671 | -40 | -575]| —67.1
z}(m) | —=100 | -100 0 0 0 0 0 0

In this case, in contrast to what was seen in the previous pbarnthe distance fiects the
optimal sensor configuration and the accuracy with whicl ¢aget can be localized is substantially
degraded. We can notice how the 6 sensors are split into twoations of 3 sensors, each
formation close to one of the targets. The FIM determinanés|RIM|; = 8.4030 m® and
[FIM|, = 8.4030m®, that are quite smaller than in the previous example duestadded distance-
dependent error.

Now it is studied the case in which the Pareto weights afferdint,1; = 0.8 and1, = 0.2,
and the optimal sensor formation is shown in Figure 5.10 antable 5.8. We can see how the
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sensor formation is focused on target 1 to increase its acgurThe FIM determinants are now
[FIM|; = 14.0237m % and|FIM|, = 4.5465mS.

Table 5.8: Target positions and optimal sensor positions#fpe 0.8 andl, = 0.2.

o i 02 Py P2 P3 Pa Ps Pe
{x}(m) | =150 | 150 | 1952 | 1061 | -1484 | -1488 | 1041 | 1936
{y) H(m) 0 0 512 | 589 584 -578 | -57.1 | -532
z}(m) | -100 | -100 0 0 0 0 0 0

Therefore it is clear that for distance-dependent covagagrror a trade® solution must be
adopted because the distanékeets dramatically the precision with which each target éalized.

Now some more examples are shown briefly for more than 2 wrget

In Fig. 5.11 (a),|FIM|p; D € R? is mapped for a 6 sensor network, 3 targets, and 0
(constant covariance error). The maximum values of thetfonare over the target positions, close
to the optimal values that would be obtained in a single tgsgsitioning problem, as seen in Fig.
5.11 (b). We can notice how the sensors are spread arouncttitiee ©f mass of the targets. In
Fig. 5.11 (c) the same formation of 6 sensors is used for agétgositioning problem. Again the
maximum values are over the target positions and their sauoe close to the optimal ones, Figure
5.11 (d). Thus for constant covariance error it is possibletitain a sensor formation that provides
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for all the targets an accuracy close to the one that wouldltesreed for a single target working in
isolation, as it was seen in detail in Example 5.3.

In Fig. 5.12 (Q)FIM|y,;D € R? is mapped for a 6 sensor network, 3 targets, and 0.1
(distance-dependent covariance error). In this case, dsgign where the maximum dFIM|,,
occurs is strongly fected by the distance-dependent added error. It is possibtetice how
the accuracy is similar for the three targets, Fig. 5.12 o}, the FIM determinant obtained is
dramatically &ected by the distance-dependent added noise. In Fig. S)1E |y, ;D € R?
is mapped for a 7 sensor formation and 4 targets, wite 0.1. Again, the maximum values
of the function are close to the targets, Fig. 5.12 (d), amdsansors spread themselves in an
organized manner around the targets. For the choice ofic@émieights adopted, the most adequate
configuration with 7 sensors and 4 targets is such that theracg with which two of the targets
can be located is larger than the others because it is nobj$s obtain the same good accuracy
for all the targets and a trad€solution must be chosen. Should such a solution prove w&aidait
a complete analysis of the tradEoinvolved using the set-up withftiérent target weights would be
required.

5.6 Optimal sensor placement with uncertain target locatio

We now address the situation where the targets to be positiare known to lie in well defined
uncertainty regions. The objective is to obtain an expeditmerical solution for the problem
at hand. We assume the uncertainty in each target positidessribed by a given probability
distribution function and we seek to maximize, by propesseplacement, the average value of the
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Figure 5.11: Optimal sensor configurations with= 0 for 6 sensors and 3 targets, (a) and (b), and 4 targets,
(c) and (d).IFIM|, around the target positions in (a) and (c). Value of the FIedwrinant in the plane of the
target positions in (b) and (d). Sensors in red and targegsgen. Lighter regions correspond to larger values
of [FIM| .

determinant of the FIM for the targets.

In what follows, pis ; i = 1,2,...,n; £ = X,y,zdenotes th& — th coordinate of sensadrlocated
at positionp; andp = [p],... pi]", O ; k = L, 2,...,m; & = x,y,z denotes th& — th coordinate
of targetk located at positiomy andd = [q], ..., q]T. We further denote by (@) ; g € R™S the
probability density functions with suppaltg € R3 that describe the uncertainty in the position of
the targets in regio®. With this notation, the problem of optimal sensor placehoam be cast in
the form of finding a vectop” such that

5 = arg mgxflogmM(ﬁ, Q-0 @dg (5.18)
D

where we used the notati¢il M (p, q)| to clearly show the dependence of the FIM on the target and
sensor locations. However, in the following g M (p, g)| will often be denoted simply d§1M |,

as mentioned on the previous sections. In a real situati¢g), will depend on the type of mission
carried out by the targets. If the tardedperates mostly in the centre of its working areéqgx) can

for example assume the form of a truncated, radially-symmptobabilistic Gaussian distribution
centred at an appropriate point. On the other hand, if ordyatbrk area is known and the tardet
can operate anywhere insidegt(qx) can be taken as the unity function inside that area. Depgndin
on the knowledge about the targets, eadbk), k = 1,--- ,m, may be a dferent probability density
function. In the most general set-up, the regidbmust be taken as the union of a number of disjoint
regionsDy; k = 1, 2, .., m, whereDy is the work area of targét
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Figure 5.12: Optimal sensor configurations with= 0.1 for 6 sensors and 3 targets, (a) and (b), and 7 sensors
and 4 targets, (c) and (d)FIM|, around the target positions in (a) and (c). Value of the FiItedainant in

the plane of the target positions in (b) and (d). Sensorsdrarel targets in green. Lighter regions correspond
to larger values ofF IM|,,.

It now remains to solve the optimization problem defined @&@\s explained later, we opted to
use a gradient-based method to do so. To thiect it is important to compute the derivatives of the
integral in (5.18) with respect to the sensor coordinates, s,

7o [ FIMAe @da (5.19)
Pis
D
fori=1,2,..,nandé = xy,z

To proceed with the computations, the integral and dexigatperations are interchanged: the
derivatives are explicitly determined first and the intéigraover regiorD is performed afterwards.
The derivative can be computed in a recursive way using theteans of Appendix C for any
number of targets. In what regards the computation of th@etiintegral over the regiod of
interest, however, this is virtually impossible to do anialglly. The computation of the triple integral
was obtained numerically using a Monte Carlo method. Rn#ile solution of (5.18) is obtained
using the gradient optimization method detailed in Secigh Again, to overcome the possible
occurrence of local maxima or the divergence of the algorjtthe initial guess in the iterative
algorithm must be chosen with care. In the examples thatwebest we found it useful and expedite
to adopt as an initial guess the solution for the multiplgéapositioning problem described in this
chapter, with the hypothetical targets placed at the cagftteeir corresponding work areas. It is
important to stress that the solution to (5.18) dependsigtycon the probability density function
adopted for each of the target positions (e.g. a truncadelifliy-symmetric probabilistic Gaussian
distribution or a radially-symmetric step distributioB9]).
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5.6.1 Optimal sensor placement solutions in 3D

In this section an optimal sensor configuration scenaridusdisd to illustrate the methodology
developed to define optimal sensor networks for multiplgggpositioning when the target positions
are described by probability density functions. The singdamples studied search to shed light on
the problem at hand, it does not pretend to be an exhaustidy siut an explanation on how to
apply the methodology developed in this chapter. For trasaa the most simple scenario of two
target positioning is considered although the procedungldvbe exactly the same for any number
of sensors and targets.

In the problem at hand it is considered that the prior knoggeabout the target positions is that
they are placed inside two given volumes, so that the prdibadistribution functions that define
the target positions inside these volumes are step-likelzisions. Once the sensors are placed on
the optimal positions that maximize the average log deteanti the target positions are known with
larger accuracy than the prior one and then the sensors traakdthe movements of the targets to
improve and to maintain large accuracy over the targetiposit

We can think of a dferent problem with the same statement and solution. If we laastatic
sensor network and the work areas of the targets are kagwiori, then the optimal sensor network
is the one that maximizes the average logarithm of the FIMrd@&hants inside these work areas.
This problem is equivalent to position a single target todbfvs a known preplanned trajectory with
a static sensor network.

The constant and distance-dependent covariance errar agesstudied. The uncertainty regions
for the two targets are defined by parallelepipeds whosermkinas are 8& 80 x 80 n?® defined by
the limitsA; = [-25Q0 -170; —40, 40; —40, 40l mandA; = [170, 250; —40, 40; -40, 40] m,
whereA = [Xmin, Xmax Ymin, Ymax Zmin, Zmax M.

Example 5.5: Constant covariance.

In this first example it is possible to define a sensor netwloak provides a very large accuracy
inside the volumes of interest. The optimization proceswiges the optimal formation defined in
Table 5.9.

Table 5.9: Target positions and optimal sensor positions for constavariance.

P1 P2 P3 P4 Ps Pe
{x/}(m) | 2898 0.2 -2907 | —2908 | -2.6 2901

{y(m) | —20 | 4565 | -186 | —1431 | -5908 | —144
{z)(m) | 2617 | —1172 | 2633 | —2221 | 1516 | -2205

This formation providegF | M|max = 8 - 10° m™® and|FIM|mi, = 7.8037- 10° m® as maximum
and minimum FIM determinants inside the volumes of interesgpectively. We can notice how
the maximum is the theoretical optimal FIM determinant aod lthe minimum is very close to
this optimal value too. The average FIM determinant in thekwareas is given byFIM|ayg =
7.9467- 10° m®, showing how the average accuracy is very close to the optine providing a
very good positioning of the targets inside the areas ofé@ste The maximum and minimum CRB
trace aretr(CRBmax = 0.0153 m? andtr(CRBmin = 0.015 ¥, respectively, being the latter the
theoretical optimal CRB trace.

Therefore it is possible to define optimal sensor configaratihat provide large accuracy, close
to the optimal one, inside the volumes of interest for camstavariance errom
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Example 5.6: Distance-dependent covariance.

In this second example, whete= 0.05 andy = 1, the sensor network that provides the largest
accuracy inside the volumes of interest is defined by thetp@inrable 5.10.

Table 5.10: Target positions and optimal sensor positionsjfer 0.05 andy = 1.

P1 P2 Ps3 P4 Ps Pe
{x}(m) | 2087 | -0.2 | —-2091 | -2096 | -2.4 | 2088
{yym | 46 | 3706 | 51 -5 | —4741| -47
{z}(m) 28 | -929 | 277 -271 | 1201 | -27.7

This formation provides as maximum and minimum FIM detelamis inside the volumes of
interestiFIM |max = 270.6958m° and|FIM |min = 2.6213m™5, respectively. We can notice how the
FIM determinants are quite smaller than the ones obtain&kample 5.5, and how theftirence
between the maximum and minimum value is large because dafistence-dependent added error.
The average FIM determinant inside the work areas is givelff byl |ayq = 3.2662 m°, showing
how the average accuracy is serioudiieated by the error model considered. The maximum and
minimum CRB trace ar&r (CRBmax = 6.0312n7 andtr(CRBmi, = 2.2129n%, respectively.

Therefore it is possible to define optimal sensor configonatithat provide an homogeneus
accuracy inside the volumes of interest, maximizing as nasghossible the average log determinant.
Of course, the accuracy required for each target will beiorisdependenm

5.6.2 Sensors lying on a plane: Underwater target positiong

In Chapter 4 it was commented that an interesting problesesanivhen the targets are known to lie
anywhere in one or several volumes in the water column andfree to distribute the sensors
at the sea surface and at the sea-bottom. At this point, anesting question arises: given the
experimental conditions, should we place all the senscoa@plane (sea surface or sea-bottom), or
distribute them between the two planes? In what follows wenslvia a design example, how the
circle of ideas exploited in the previous section can be tsadlve this problem.

Suppose that 2 underwater targets operate inside a rettargarallelepiped each, the two
volumes with dimensions 80x60x60 meters and geometricgteat 100m depth. The limits of
the areas ard; = [-120 —-40; —30, 30; —30, 30] mandA; = [40, 120; —30, 30; —30, 30] m,
where the areas are defined Ay [Xmin, Xmax Ymin» Ymax Zmin» Zmaxy M. The sea bottom is 20
deep. We consider two possible arrangements for a 6 senseonke In the first case, depicted in
Figure 5.13 (a), all sensors are placed at the sea surfattee $econd case, illustrated in Figure 5.13
(b), 3 of the sensors are placed at the surface, while thes#ine placed at the sea-bottom.

Example 5.7: Constant covariance

We have seen in the examples along this chapter that foraminsbvariance it is possible to
obtain sensor configurations that provide large accuracglfthe points in the region of interest. In
this example we determine the surface sensor network thenmres the average log determinant
over the above areas and then we compare the accuracy abhajrtbe latter formation with the
accuracy that provides the network for which 3 of the sena@placed at the sea surface, while the
others are placed on the sea-bottom.
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Figure 5.13: Maximization of the average FIM determinant inside a volumi¢h all the sensors placed in the
same plane (a), or with the sensors distributed among ttierent parallel planes (b).

The first scenario tackles the arrangement of Figure 5.13a(ajrface sensor network. The
resultant sensor formation is placed at points shown ineTadl1.

Table 5.11: Target positions and optimal sensor positions for constavariance.

P1 P2 P3 P4 Ps Pe
{x;}(m) | 1354 | -1.5 | -1349 | -1355 1 134

{yi}(m) | 337 | 4056 | 331 -336 | -4067 | —-329
{z}(m) | 100 100 100 100 100 100

This resultant configuration provides inside the work ar@asaximum and minimum FIM
determinants given byF IM|max = 8 - 10 m™® and|FIM|min = 5.7 - 10° m™®, respectively, with
an average value gF IM|ayg = 7.5241. 10° m™. We can notice how the maximum determinant
corresponds to the theoretical optimal value and how thémuim determinant is large and close to
the optimal value, providing a large average accuracy éid volumes of interest. The maximum
and minimum CRB trace ate(CRBmax = 0.0193n? andtr(CRBmin = 0.015n7?, respectively.

Now we consider the arrangement depicted in Figure 5.13T(bg. optimal sensor is shown in
Table 5.12.

Table 5.12: Target positions and optimal sensor positions for constavariance.

P1 P2 Ps3 P4 Ps Ps
{x;}(m) | 1222 | -0.6 | 1227 | -1229 -0.2 1221
{yiy(m) | 274 373 273 27 -3714 | -269
{z}(m) | 100 | -100| 100 -100 100 -100

The maximum and minimum FIM determinant are nfWM |max = 8- 108 m™8 and|FIM|mi, =
7.6994- 10° m5, respectively, with an average value|BfM|ayg = 7.8979- 10° m®. We can notice
how the maximum determinant is again the theoretical optaeterminant, but in this case the
minimum determinant is very close to this theoretical opliwalue providing a very large accuracy
over the work areas. The maximum and minimum CRB tracerd@RB)max = 0.0154 n? and
tr(CRBmin = 0.015n7, respectively.

Therefore, for the constant covariance case, it is clearifitais possible to place the sensor
network in two diterent parallel planes the accuracy over the volumes ofdatés improved in a
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great manner.
Example 5.8: Distance-dependent covariance
The same two scenarios of Example 5.7 are now studied coimgjdhat the measurement error

is distance-dependent and modelled by the paramgtei@05 andy = 1.

The first scenario studies the optimal surface sensor faomat Figure 5.13 (a). After the
optimization process the resultant optimal formation esdihe shown in Table 5.13.

Table 5.13: Target positions and optimal sensor positionsjfer 0.05 andy = 1.

P1 P2 Ps Pa Ps Ps
{x}(m) | 1076 | 219 | —-887 | —-89.8 | 201 | 1061

yi}(m) | 439 | 616 | 478 | —469 | 618 | —456
{z}(m) | 100 | 100 | 100 | 100 | 100 | 100

This resultant configuration provides inside the work vodigsna maximum and minimum FIM
determinants given biF IM|max = 87.2283 m™ and|FIM|min = 1.3473 mr®, respectively, with
an average value oFIMlag = 195355 m® The maximum and minimum CRB trace are
tr(CRBmax = 3.9155n7 andtr (CRBmin = 0.6920n?, respectively. We can notice how the accuracy
over the areas of interest is seriousfieated by the distances involved in the problem.

The second scenario of Figure 5.13 (b) in which 3 sensorstdhe @ea surface and the other 3
sensors are at the sea-bottom is studied now. The optimsdstarmation is listed in Table 5.14.

Table 5.14: Target positions and optimal sensor positionsffer 0.05 andy = 1.

P1 P2 Ps Pa Ps Ps
{x; (M) 6 182 | -244 | -3.7 | -159 | 184

y)m) | 54 | 731 717 | 24 | —712 | —-717
{z)(m) | =100 | 100 | —100 | 100 | —100 | 100

This resultant configuration provides inside the work vadsna maximum and minimum FIM
determinants given byF IM|nax = 427823 m® and|FIM|min = 6.1053 m8, respectively, with
an average value dFIMlag = 204632 m®. The maximum and minimum CRB trace are
tr(CRBmax = 2.1255 n? andtr(CRBmin = 0.9682 n¥, respectively. We can check how the
maximum determinant is smaller in this latter case, howth@minimum FIM determinantis larger
and the average determinant is larger too. Therefore,@wdinthe maximum accuracy is reduced,
the average accuracy and the minimum accuracy are largegowver, the FIM determinant inside
the volumes of interest is more homogeneous than in thequisgcenario.

Therefore, for distance-dependent covariance, the opfionaation will be clearly mission-
dependent. If the maximum accuracy possible for some giventpis searched then the first
scenario is the correct one, but if we need an homogeneousaaycfor all the points inside the
work volumes then the second scenario is the appropriate one
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5.7 Conclusions

We studied the problem of determining the optimal configarabf a sensor network that will,
in a well defined sense, maximize the range-related infaomatvailable for multiple underwater
target positioning. To thistBect, we assumed that the range measurements were corrypidutée
Gaussian noise with distance-dependent covariance. nashio what has so far been published in
the literature, we explicitly addressed the localizatiooljpem in 3D using a sensor array located at
the sea surface (2D). Furthermore, we incorporate diréctty the problem formulation the fact
that multiple targets must be localized simultaneously. th¥ core of the techniques used are
key concepts and methods from Pareto optimization and agtimtheory. From a mathematical
standpoint, the key problem that we solved was that of maimgj by proper choice of the sensor
geometric configuration, convex combinations of the |lagams of the determinants of the Fisher
Information Matrices corresponding to estimation proldeior each target separately. This was
done by resorting to an iterative optimization algorithnmeTmethodology developed allows for an
in depth study of the traddls that are inherent to a multiple target localization probl&imulation
examples show clearly how the optimal sensor location dépen the size of the area in which the
targets operate, on the type of measurement noise, and tlievwbEof importance” attached to each
of the targets; the latter aims to capture the fact that béisl@re inevitable, and thereforeldirent
levels of accuracy may be required in the localization ofdifierent targets.
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Chapter 6

SINGLE TARGET POSITIONING IN
3D SCENARIOS WITH BEARING-ONLY
MEASUREMENTS

6.1 Introduction

In previous chapters the general problem of single and pleltiarget positioning with range
measurements in 2D and 3D scenarios has been studied, ayticahand numerical solutions
of optimal sensor placements have been derived, payindgad@tention to the practical scenario
of underwater target positioning by surface sensors. Ichiagter at hand this analysis is extended
to single underwater target positioning with noisy angleswements. The chapter is focused on
the underwater target positioning problem because thistiped scenario allows for a well defined
analytical solution.

As it has been explained along this work, a key element in freration of some classes of
AUVs is the availability of reliable underwater positiogisystems to localize one or more vehicles
simultaneously based on information received on-boardppa@t ship or an autonomous surface
system. The info thus obtained is at times used to follow tiagesof progress of a particular
mission or, if reliable acoustic modems are available, l@yré as a navigation aid to the navigation
systems existent on-board the AUV. In this sense, we adtireggsoblem of single target positioning
based on measurements of the azimuth (bearing, in 2D soshamd elevation angles between
an underwater target and a set of sensors, obtained viatacdasices. In what follows we will
refer to these measurements in 3D as AE (azimuth-elevatieasurements or, for simplicity, with
an obvious abuse of notation, simply as bearing measuresm&pteaking in loose terms, we are
interested in determining the optimal configuration (fotim@) of a sensor network that will, in a
well defined sense, maximize the AE-related informatiorilalske for underwater target positioning.
To this @fect, we assume that the AE measurements are corrupted by @hiissian noise, the
variance of which is distance-dependent. The computatidheotarget position may be done by
resorting to triangulation algorithms, based on the natdirthe measurements.We recall that the
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triangulation problem has been widely studied in the compuision field, and that there exist
many examples of algorithms to compute the position of aetanging angle measurements; see
for example [34] and [43] for an example of the design of muo{anning and sensor assignment
strategies to track multiple targets with a mobile senstwaokk by resorting to triangulation.

When compared with other possible techniques commonly issathderwater target position-
ing, the problem of determining the optimal sensor placerf@rarget localization using AE-only
measurements is of special interest because no informédias from the sensor network to the
target, and therefore its solution does not require the @axgé of information between the target
and the sensor network. Thus, AE-based strategies allothéosensor network to observe without
being detected itself. A problem of this type was studied5i][for an unmanned underwater
vehicle tracking an underwater target while avoiding dis@c Given a localization strategy, the
optimal sensor configuration can be ascertained by examihacorresponding Fisher Information
Matrix (FIM) or its inverse, the so-called Cramer-Rao Bo@&RB) matrix. In this chapter, we use
the trace of the CRB matrix as an indicator of the performahatis achievable with a given sensor
configuration. Minimizing this quantity yields the most appriate sensor formation geometry. It
is important to remark that in many studies published in itieedture on ground and marine robots,
the determinant of the FIM is often used as an indicator ofype of positioning performance that
can be achieved. For the problem that we tackle in this chalpi® indicator is not adequate, as
will be shown in Section 6.5. This is a simple consequencaeffact that the AE-measurements
enter the FIM in such a way as to render its determinant exdletarge for certain trigopnometric
configurations. However, the large value of the determinamhisleading since it corresponds
to close-to-singular configurations of the network. Thsuis does not arise in 2D applications,
see [10]. For interesting related work, the reader is al&rmed to [56], [15], [36], [53] and [61].

Motivated by previous results published in the literatuve,address the problem of finding the
optimal geometric configuration of a sensor formation fa lihcalization of an underwater target,
based on AE-only measurements. The optimality conditi@nsafgeneric sensor formation are
defined, and the explicit optimal geometric configuratiormafensor formation based on AE-only
measurements is studied for twdfdrent scenarios:

e The case in which the sensors lie on a sphere centred at ted [osition, which provides a
simple example of how to define optimal sensor configurationa given set of (physical or
mission-related) constraints imposed on the sensor faemat

e The application scenario in which a surface-based sensonaton is defined for the
localization of an underwater target. Notice that in thisrsrio the sensors are restricted to lie
at the sea surface. A problem of this type was previouslyistlich [99], where a method to
determine the optimal two-dimensional spatial placeméntutiple sensors participating in
a robot perception task was introduced. One of the sceneuitsidered was that of localizing
an underwater vehicle, with the locations of the acoustteikers constrained to lie in a
horizontal plane.

The key contributions of the present chapter are threefpldiobal solutions to the optimal
sensor configuration problem in 3D are obtained analytigalthe cases where the sensor network
is restricted to lie on a sphere centred at the target positis on a plane the latter capturing
the situation where the sensors are deployed at the seaeyuiifain striking contrast to what is
customary in the literature, where zero mean Gaussian ggeseawith fixed variances are assumed
for the measurements, tivariances are now allowed to depend explicitly on the distsrbetween
target and sensorsThis allows us to address explicitly the important faciofeal in first physics
principles) that the measurement noise may increase in dimegr manner with distance; finally,
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iii) the solutions derived are extended to the case whgugori knowledge about the target in 3D
is given in terms of a probability density function. In thadter case it is virtually impossible to
make a general analytical characterization of the optimlat®ns, and one must resort to numerical
search methods. At this stage, an in-depth understandititedf/pes of solutions obtained for the
ideal case in which the target position is known in advana# the utmost importance to compute
an initial guess for the optimal sensor placement algor#iopted.

The document is organized as follows. Section 6.2 derivesHiM for AE-measurements
when the measurement noise is Gaussian, with distancexdepevariance. The optimal Fisher
Information Matrix that minimizes the trace of the corresgimg CRB matrix is computed in Section
6.3. The optimal sensor configuration is defined explicitiythe case in which the sensors lie on a
sphere centred at the target position in Section 6.4. In@e6t5, the optimal sensor placement is
computed in the context of a sensor network restricted torlia plane and two illustrative scenarios
are shown as examples. In Section 6.6, the optimal sensmemlent problem is solved for the case
where the prior knowledge about the target in 3D is giveniimgeof a probability density function.
Finally, the conclusions are included in Section 6.7.

6.2 The Fisher Information Matrix and the Cramer-Rao Lower
Bound

The same notation of previous chapters is adopted. In whHaw®, {I } denotes an inertial frame with
unit axis{x;}, {yi}, and{z} defined according to the notation that is customary in masystems,
see Fig. 6.1. Leq = [gx, Gy, 0] " be the position of the target to be positionedlin Further denote
by pi = [Pix: Piy> Pizl™; | = 1,2,..,n, the position vector of the - th acoustic sensor, also i},
wheren is the number of sensors. Definég) as the range vector from the- th sensor to the target
located afg, and letri(q) = |q — pi| (@bbv. r;), where| - | denotes the Euclidean norm, denote the
corresponding vector length (that is, range between theosemd the target).

To each of the acoustic sensors at the surface we attachleepaamslation of{l }. Furthermore,
for each sensor = 1,2,..,n we definez(q) = (a;,8)", wherea; andg; are the AE angles that
define the direction of the target with respect to the sermation. As is customary, the elevation
B is the angle between the range vector and {thg } plane, while the azimutlr is the angle
between the projection of the range vector in theg, } plane and the¢x,} axis; see Fig. 6.1. Stated
mathematically,

«a; = atan? (Qy — Piy> dx — pix)
(6.1)

Bi = atan2 (qZ - Piz, \/ (ax - pix)2 + (Qy - piY)Z)

whereatar? is a variation of the arctangent function to distinguishwzen diametrically opposite
directions. We denote by the measurements of the actual AE angleandg; in z(q), corrupted
by additive noisdw,i, i)'

For analytical tractability, it is commonly assumed tha&asierement errors can be described as
Gaussian, zero mean additive noise with constant covariédme for example [99], wherefidirent
noise covariances are taken foffdrent range sensors, but the covariances are constantlyClea
the latter assumption is artificial, in view of the simpletféltat the “level of noise” is distance
dependent. We can assume that the measurement noise cardékechby a zero-mean Gaussian
process with an added term that depends on the distancesjraetyveen the sensor and the target.
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p=lpepy,pel’

o] {x}

v}

Figure 6.1: Elevation and azimuth angles measured in the inertial ¢oatel frame used in marine systems.

A similar error model is considered in [42] for range meamgnts. Stated mathematically, for an
arbitrary sensorthe associated measurement naeisé given by

or = (i o) = (00 (L0 (L4017 (62)

where w, and wg are noises associated with the azimuth and elevation angksumements,
respectivelywg, andw,, are zero mean Gaussian processes described by the priybdéilsity
function N(0, Zo) with g = ¢ - |, | is the identity matrixy is range, and; andy are modelling
parameters of the distance-dependent noise componensirkplicity of exposition, and without
loss of generality, the noises in the measurements;adnd g; are assumed to have identical
distributions. We further assume tpat the distributipresidentical for all sensors.

Definez(q) = (z(q)". ... z(A)T) , 2= (Z.....Z}) , andw = (w]. ..., w) . With this notation,
the collection of all AE angle measurements obtained frdrthalsensors can be written as

z=70q) +w (6.3)

or equivalently, in component form

7 = (@1.8)" + (woir i) (6.4)

wherew is a Gaussian process with covariance matrix
2 72 2 7)? 2 72 2 7\
Y= (5((0'Ck . (1 + nrl) N (1 + nrl) ) (o-a . (1 + nrn) NrE (1 + nrn) )) (6.5)

with T € R2™" ands is the operatodiagthat converts a vector into a square diagonal matrix whose
diagonal components are the array elements.

Stated in simple terms, the FIM captures the amount of inédion that measured data provide
about an unknown parameter (or vector of parameters) totreated. Under known assumptions,
the FIM is the inverse of the Cramer-Rao Bound matrix (abb®BE, which lower bounds the
covariance of the estimation error that can possibly beiobtawith any unbiased estimator. Thus,
“minimizing the CRB” may yield (by proper estimator select) a decrease of uncertainty in the
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parameter estimation.

Formally, letd(2) be any unbiased estimator gfthat is, a mapping * R" — R3 between the
observationg and the target position space such tB&j} = q for all q € R, whereE{-} denotes
the average operator. Let(2) be the likelihood function that defines the probability dt@ining
the observatioaz given that the true target positionds It is well known that under some regularity
conditions onpy(2) the following inequality holds:

Cou@} > FIM(g)™ = CREQ) (6.6)
where
Co\d) = E{(G-a@-a)'). (6.7)
FIM (q) (often abbreviated simply as FIM) is the Fisher Informatiatrix defined as

FIM(0) = E{(Vqlog pa(2))(Vqlog pa(2)'} (6.8)

andCRHE(q) is the Cramer-Rao Bound matrix. In the aboVgl|og py denotes the gradient of the log
of the likelihood function with respect to the unknown paedenq. Taking the trace of both sides
of the covariance inequality yields

var{@} := tr(Cova}) = tr(E{(G - o)(@—q)"}) > tr(CREQ)) (6.9)

that sets a lower bound on the mean-square error of any wtbéssimator.
From the above notation, following standard procedures, iV is computed from the

likelihood function

() = {3 - 20" = - 29 (6.10)

—_z°¢
(2m)z|2|2

wheren is the number of receiverg,s the vector of measured angles, ag) the vector of actual
angles. From (6.8),
FIM = E{Vqlogpy - Vqlogpg| = FTZ7'F, (6.11)

with

—sin(aq) cogay) 0
oS oSy —coxsy

ry r 1

F= : : : (6.12)
— sin(ay) cogay) 0
b ey s oy —coss)

n n

n

whereF € 2™ andCRB= FIM~. In this context, the optimal sensor placement strategyfor
single vehicle localization problem is obtained by minimgthe trace of the CRB.

6.3 Optimal Fisher Information Matrix

To compute the trace of the CRB matrix it is convenient toddtrce the following three vectors in
RN
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3 F(L1) FR1 . Fn-11 F(n1)
X = [ o-i l+qqi o-i l+qqi o-i l+7]rﬁi U'i 1+qr§i ]’
T = F(1,2) F(2,2) . F(n-1,2) F(n,2) 6.13
- [ o’i l+77rzi o’i l+77rzi o’i l+77r;<i o’i l+77r%i ]’ ( . )
7 - F(1,3) F23) .. F(n-13) F(n,3)
- [ (r(1+r]r1) (r(1+r]r1) (r(1+r]r%) (r(1+r]r%) ] .

The latter should be viewed as vectors of a Hilbert space &iments ifkR?", endowed with
an inner product structure, >. This allows for the computation of the length of a vector alsb
for the angle between two vectors. Namely, given X ahéh R?", then|X|? =< X,X > and
< X, T >= |X]||T|cosfxy), from which it follows that the angléxy between vectors X ant is
given byfyy = cost(< X, T > /(IX[IY])).

With this notation, the FIM becomes

X-X X-°T X-Z IX[? X[ cos(éxy) IXI[ZIcos(bxz)
FMA:{X~T T T-Z]: X1 cos(fx) T2 1711Z] cos(f+z) |,
X-Z Y-z z2-Z IX|1Z| cos(6xz)  |Y|1Z| cos(b+z) 2|2
(6.14)

from which it follows that

2 2 _ 52
tr (CRB = tr(FIm-) =L 12 (|1F|JT (6+2))

(6.15)
X127 (1 - cof (6xz)) [T IX* (1 - co (b))
IFIM]| - IFIM]| :

where 0xy, Oxz and 6¢; are the angles defined by vectors X aifid X and Z, andY and Z,
respectively, andFIM| denotes the determinant of the FIM. Straightforward comapens show
that

IFIM| = |X]?- 7] - 12) - ©, (6.16)

where

®=1+2 COS(9T2) COS(sz) COS(HXT) - cos (H'rz) - cog (9)(2) - cog (Hx'r) (6.17)

Notice howtr (CRB has been expressed in terms of the norms of vectofs, Xdnd Z and the
anglex-, xz, anddyz between them. The latter depend on the variadlgs, ri;i = 1,2, ...n, that
define the positions of the sensors with respect to the taFgetmally, in order to seek conditions
that the optimal sensor configurations must satisfy in ai@erinimizetr (CRB), one could compute
the derivatives ofr (CRB) with respect tay;, 8i, andr; and equate them to zero. This task is tedious
and will not shed light on the form of the optimal sensor camfégions. We therefore follow a
different approach. To thidfect, we rewrite (6.15) as

(1 —cog (H'rz)) (1 - cog (9)(2)) (1 - cog (Hx'r))

+ + 618
IX|?© NERC) 1Z?© (6.18)

tr(CRB = fhy + fém + fiw =

where the definitions of?,,,, f2,,, andf3,,, are obvious. We also define the auxiliary cost function
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1 N 1 N 1
X (2
Consider now the problem of minimizin§*(CRB) by proper choice ofy, gi, andri;i =
1,2,..,n, and letej, g;, andr;i = 1,2,...,n, be a minimizing solution. Let XY*, and Z be

the corresponding vectors lR?". Suppose also that the corresponding angjes 6., andé:,,
satisfy

f*(CRB = fiiy + féw + fdw = (6.19)

cos(fy) = cos(6y,) = cos(fy, ) = 0. (6.20)

Then, as will shown nexty!, 8, andr;i = 1,2, ...,nminimize also (6.18). To see this, consider
each of the three functions in (6.18) independently. Takekample the functioriFllM. Clearly, if
the angle#;.., 6., andé,., are equal t- /2, wherek is any odd natural number, then they satisfy
(6.20) and the above function takes the vaifig, = 1/ [X[>. We now show that this is its minimum
possible value. In fact, suppose that a smaller value camtaén@d, which clearly requires that

(1- cog (¢r2))
A (6.21)

The above inequality is equivalent to

0<2 cos(6yz) cos(Bxz) cos(fxy) — coF (Oxz) — cOS (Hxr) . (6.22)

Notice, however that because &z )+cos (6xr) > 2 cos(fxz) cos(fxr) and 0< |cos(fyz)| <
1, it follows that

co (Oxz) + coF (Oxr) > 2 co(6yz) cos(fxz) COS(Bxr)
which contradicts (6.22). Therefore,

(1- cog (612))

5 > 1, (6.23)

and its minimum value of 1 is obtained when all the angles quaktok - /2, with k being an odd
natural number. By applying the same reasoning to the o¢herstin the trace of the CRB in (6.18)
it follows, under the assumptions stated, that the optiridliE a diagonal matrix, that is,

XX XY XZ n| A O O
FIM=| XY TT YZ |= 0 B O (6.24)
XZ YzZ ZZ i=1| O 0 G
with
Ai — Siﬂz((l/i) + sinz(ﬁi)cosz(ai)
r2 <:0§(ﬁi)-o-2~(1+qri7)2 riz-o-2~(1+qri7)2 ’
B — co(a) Sire(;) sirf(a;)
! r COSZ(,Bi)»O'Z-(l+r]riY)2 ri2»0'2»(1+r]riy)2 ’
C = —056)

- riz-(rz»(lﬂyriy)z ’

With the above assumption on the general form that the siiegli-IM matrix will take, we now
introduce a simple general procedure to derive condition®ptimal sensor placement that lend
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themselves to clear geometric interpretations. To tfiexé defineA = Z A,B= Z B, C = Z Ci.
With this notation, the problem at hand can be convertedthrabof computlng

1 1 1
_— , _ - -1y _ i 2
P’ =argmintr (CRB = arg mintr (FIM™) = arg mpm(A tgt C) (6.25)

wherep = [p],..., pi]T, andp™ are the optimal sensor positions expressed in sphericatliraes,
that is, p] = [ai,Bi,1i]. Notice that the sensor positioms must satisfy the additional constraint
imposed by inequality (6.20), i.e., the anggs, 6xz, anddyz must be equal t&- /2 for some odd
natural numbek which, as explained, makes th&-diagonal elements of (6.24) equal to 0.

Formally, the conditions that an optimal sensor configorathust satisfy may now be obtained
by computing the derivatives of (6.25) with respectitpg;, andr;;i = 1,2, ..., nand equating them
to 0. The candidate solutions must also satisfy (6.20). Wihllsnaturally yield multiple optimal
sensor configurations for single target positioning if ner&xonstraints are placed on the sensor
configuration. To make the problem tractable, it is therefionportant to impose configuration
constraints rooted in operational considerations. In wbHdbws, the methodology adopted is
illustrated with two representative design examples: Btfiby considering that the sensors are
restricted to lie at the same distance from the target, $hat+ r foralli = 1,--- ,n, and ii) second,
by considering that the sensors are restricted to lie in &dotal plane, i. e.q, — pi; = g, where
0. is the target depth angi; = 0. The latter example captures the very important situatibare
the sensors are placed at the sea surface. The proceduteddap of course be used to deal with
other types of constraints on sensor placement.

6.4 Sensors placed at a fixed distance from the target

This section shows how the incorporation of physical or laisselated constraints on the positions
of the sensors leads to a methodology to determine a solitithre optimal sensor placement that
eschews tedious computations and lends itself to a simmmggic interpretation. To thisfiect,
we consider the situation where all the sensors are placedsphere centred at the target position,
that is, the distances from the sensors to the target ard.eWith this assumptionr; = r;i =
1,---,n, wherer is the radius of the sphere. In this case, the diagonal elesoéthe optimal Fisher
Information Matrix (6.24) can be written as

1 z(smz(m +S|n2(,8.)co§(a.)) TA",

= g2 (1)? cog(5)

B= iy 2 Z (‘;‘;ﬁﬁ‘;@ + sir? () sir? (a)) = I'B", (6.26)
C= Zcos’-(,B.) =IC*,

r2.g2. (l+1]rV)2

wherel” = W is constant and the same for all sensors in the formationAing*, C*
are defined in the obvious manner. With the notation intredyt¢he problem of optimal sensor
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placement can be cast in the form of finding a vegtosuch that

1 1 1
p*= argmmtr(CRa argm|n(K+§ 5) (6.27)

It is important to notice that for this scenario the optimalligions corresponding to constant or
distance-dependent measurement noise covariances atieddleln fact, the solutions depend only
onthe azimuth and elevation angles of each sensor withecegpthe target location, and the distance
between target and sensors does figtch the solutions (distance is the constraint parametdiis T
fact does not hold true in the practical scenario of surfaressr networks, as will be shown in
Section 6.5, where the optimal solutions depend explioilyhe range distances between target and
sensors and on the noise model. At this point, the deriv&t¥€6.27) with respect ta; ands; must
be computed and equated to 0. Straightforward manipukagizeid

%ZRB» = 2 cos(i) sin(a;) - ( o2 (3) ~sir? ('3')) (A*Z - B*Z) =0, (6.28)
%ZRB) =2sin(B;) ((sz ((C;I; COS(,Bl)COSZ (m))
(6.29)
(25t (20 o

where the definition o is clear from the context. By examining (6.28) and (6.293 ipossible to
define several configurations. For this reason, and bechageurpose of this section is to derive
a general methodology to obtain optimal sensor configuratimder suitable constraints on sensor
placement we will illustrate the procedure by examiningisohs that are relatively easy to obtain.
Clearly, (6.28) is satisfied if at least one of the followingnditions holds: i) co&y) = 0; ii)
sin(e;) = 0; iii) A2 = B*2. Similarly, (6.29) is satisfied if i}p = 0 or ii) sin(8;)) = 0. The last
condition is not studied in detail because, if all the semswe placed such that g)) = 0, it can
be shown that the condition yields a local maximumtf€ RB).Thus, in what follows, we consider
that the optimality condition for (6.29) i® = 0. However, it is important to keep in mind that
alternative optimal solutions could be defined by combaratf different optimal formations. Let
us now examine the conditions corresponding to (6.28).

If cos(a;) = O for all sensors in the formation, then this means that albses are placed in the
same vertical plangy, z }, and therefore (6.29) becomes:

C*2 B*Z

COé1 (ﬁ|) m

(6.30)

The above equation only holds for a single value of¢63 sinceA*?, B*2, andC*? are constant
for a given optimal configuration and (6.30) must be satidfieévery sensor in the formation. Thus,
(6.30) implies that the elevation angle for all elementshaf sensor network must kg8 which,
together with cogy) = 0; i = 1,---,n, defines 4 feasible optimal points for sensor placement.
Clearly, this solution cannot be generalized for an arbjitraumber of sensors. Furthermore, the
analysis oftr (CRB) with the previous conditions shows that this solution g$eh local maximum
and is equivalent to having sf{f;) = 0 fori = 1, --- , n; thus, the solution is discarded.

Consider now the case where &if)) = 0 for each sensor in the formation. In this case, the
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sensors are placed in the vertical pldrg } and (6.29) yields

C*ZA*Z

COé1 (B|) = m

(6.31)

A similar reasoning to that used in the previous case allowiie conclusion that this solution must
also be discarded.

Finally if cos(a;) = 0 or sin(a;) = 0 holds for every sensor, the solution only defines a small
number of optimal points for the sensor placement, so theatisol cannot be generalized for an
arbitrary number of sensors. Moreover, for this solutfén= B*. Therefore A* = B* is one of
the conditions that an optimal sensor network must satisfgreover, this solution can be easily
generalized for an arbitrary number of sensors. Analyzég8Q) withA* = B* = D* for someD*
yields
.o cos(B)

%2 _
c=b 1+ cod (B)

(6.32)

It must be noticed that (6.32) must hold for each and evergasior a given optimal formation,
sinceA*, B*, andC* are constant for that given formation. Equation (6.32) candwritten as,

1

C*Z — D*Z
1+Q

(6.33)
whereQ = CO§ ConS|der|ng that an arbitrary sens@an be under or above the target, the angle
Bi can take va ues betweenst/2,7/2]. In the interval Fr/2,0], Q is strictly decreasing and thus
ﬁ is strictly increasing, so that (6.33) only holds for a senghlue of the elevation ange= 7, the
same angle for all the sensors placed under the targetguusiti the interval [0r/2], Q is strictly
increasing and thu§j—Q is strictly decreasing, so that, in the same way as beforg3)®nly holds

for a single value of the elevation angle- 5;, the same for all the sensors placed above the target
position. Furthermore, sinc&’, B*, andC* are fixed for a given sensor formation theh= —£;.

Itis clear that a given value ¢f defines a circumference on the sphere where the sensorstlie, w
the radius (and heighti; — pi;) depending on the given angbe Thus, froms; = -3, the sensors
are placed in two parallel planes over two circumferencagred at the target projections over these
planes.

To defineB regardless of the sensor distribution over the resultinguonferences, we proceed
by adding the square root of (6.33), wiili = A*, to the square root of (6.33) with* = B*. When
doing so, all the terms ia; are cancelled and one obtains

cos ()
2nco () = § @ +nsirf (ﬂ)) A [m (6.34)

Equation (6.34) has a single valid solutigh= 42.40 degrees, and thus the radius of the two
parallel circumferences is equalitaos(s). From the above, the values of A, B and C, and therefore
the norms of the vectors X; and Z, are well defined. Once these values of the norms of tttense
are well defined, the extra conditions to be specified are Ahat B* and that the fi-diagonal
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elements of the FIM are equal to O (or equivalently @gg) = cos(fxz) = cos(fyz ) = 0), thatis:

: sin(e;) cos(a;) 5 sin? (8;) cos(a;) sin ()
Fl M12 = > + > =

1 r2co@ (B)- o2 (1+qr])” = r2oo?-(1+ nr7)

B 1 Sir? (B) B

- (r2 P AR Ty nry)z) Z cos(a;) sin(a;) =

N . . (6.35)
FiMps = 5 sin(B;) cos(Bi) cos(ai) ~ sin(B) cos(p) n Z cos(ar) =

i=1 ri2.0- (1+nrly) I’2 0'2 (1+7]r7)

_Dosin(@i) cos(B) sin(ei)  sin(B)cos(B) 1 N

FIM23 = E‘l ri2 o2 (1 N nriy)Z T r2.02. (L+nr7)2 51 2 sin(ai) =

A simple and elegant solution that satisfies the two abovaexinditions is obtained by noticing
the orthogonality relations for sines and cosines from leo@analysis [37],

i cos(aj) = i sin(aj) = i sin(aj) cos(ai) =0
i=1 i=1 i=1

(6.36)
i§100§ (ai) = Elsinz (ai) = g

so we can take a regularly distributed formation on the airfarences, with the sensors placed along
one or both of them. Using classical terminology, the sefi@onation must be first and second
moment balanced. Therefore, with this configuration theimmimm trace of the CRB is obtained for
this scenario.

6.5 Surface sensor network for underwater target positiomg

In real situations, the sensors cannot be placed at witleelue to physical or mission constraints.
As an interesting application scenario, we tackle the caserevthe sensors are restricted to lie in
the horizontal plane = 0 and search for the minimum of the trace of the CRB. It will bewsn

an explicit result that lends itself to an intuitive geonetnterpretation without constraint in the
number of sensors used for the network.

It is clear that the angle&, with i = 1,..,n, must take values between 0 an(R2, because the
sensors lie in the horizontal plane, above the target. Isis @asy to check that the value of egch
determines the distancgbetween the target and the th sensor because = q,/sin(3;), whereq,
is the target depth. Thus, depends directly ofi;, and therefore the derivatives of the trace of the
CRB with respect ta;; andB; must be computed. Straightforward manipulations yield

o (tr (CRB)

Sa - 2coslai)sin(ai) Sirt (8;) -

§(B.) smz(ﬂ.))( -B%) =0 (6.37)
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d(tr CRB) _(SiP(B)si(a) . .o . . sin@)sir? (ar)) 1
8Bi = ( oS (BI) +2 S|r? (B|) COS(,8|) CO§ (Q’|) +T(ﬂl)) E

1 (sin3 (8i) coZ (ai) .\ sin(B) co¥ («)

B2 co$ (5) cos(3) +25sir? (8;) cos(B;) sir? (a’i)) +

—sin® (8;) cos(B)) + sin(5;) cos (B;) 17y (Qz/ sin(B;))” co< (B;)
( C? )+ tan(s;) (1 + (g/ sin(6))") [ o

Sil’]2 (ai)
cog (Bi)

+(Sin2(ai)

: 1
03 (,3|) + sir? (ﬂ,) cos (ai)) E+(

+ sir? (ﬂ,) cog (ai)) é] =0
(6.38)

We now examine (6.37) and (6.38). From (6.37) it is easy takhieat one of the following
conditions must hold: i) ca;) = 0; ii) sin(a;) = O; iii) A— B =0.

Following a similar procedure to that of the previous settithe analysis of (6.38) with the
previous conditions shows that if c@g) = 0 for each sensor in the formation the solution is
not optimal, so this solution is discarded. The same ocdwsi®m{e;) = 0 for each sensor in the
formation, and so this solution is discarded too. If @@% = O or sin(a;) = 0 for each sensor in the
formation, (6.38) implies that the only feasible solutiertiatA = B. ThereforeA = Bis one of the
conditions that an optimal surface sensor network mustfgatAnalysing (6.38) withA = B = D
yields

Nl + N2
Cc?= DZ(Ml " Mz) (6.39)
where
Ny = cog! (8)) sir® (8)) - sin(8;) cos’ ()
_ _ 1y (Qz/ sin(B;))”
N2 = =008 () o) v (@ sin@))

M; = sin® (8;) + 2 cod (8) sin® (8;) + co< (B;) sin(B:)

w (cos(B) + cos (8) sir? (1)) (q/ sin(8:))”
o tan() (1 + (a/ sin(8))")
and A, B, and C (and therefore D) are constant for a given seasdiguration. This equation allows

us to determine the optimal sensor configuration for undemtarget positioning when the sensors
are placed on the same plane. An in-depth analysis of

_ N1+N2
f(ﬁi)-(Ml+M2)

reveals that (6.39) can be satisfied for a maximum of twterint values of; at the same time,
for given values of A, B, and C. An equivalent angiefor a group of sensors indicates that they
are placed at points belonging to a circumference arounthtiget projection on the plare= 0.
Therefore, the sensors are placed on a circumference atbardrget projection if the solution is

(6.40)
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only oneg; or on two concentric circumferences around the target ptiojeif the optimal formation

is defined by two dterent values o8;. A numerical analysis of these two possible solutions shows
that the minimum trace is obtained if the sensors are allgglét the same circumference, therefore
Bi = B. The value of3, and therefore the radius of the circumference where thsossemust be
placed, can be obtained by solving (6.39). Then the senseilgplaced at the same distance from
the target, i.e.;j = r fori = 1,---,n, and the two extra conditions defined By= B and (6.35)
are satisfied, as in the previous example, with the orthdggmelations for sines and cosines from
Fourier analysis (6.36), so the formation must be first armdrsg@ moment balanced. Clearly, the
solution depends oy, g,, and the noise measurement model.

6.5.1 Simulation examples with known target position

Based on (6.39) we now study twofidirent scenarios that illustrate the potential of the method
developed for optimal sensor positioning. In the first scenane wishes to find the sensor
configuration that yields the minimum CRB trace when the@odsvariance is distance-independent,
that is,n = 0. The second scenario shows how the optimal formation dsgmgdien the noise
covariance is distance-dependent, thatjist 0. In the second scenario, the optimal formation
depends directly on the modelling parametgi@ndy, and on the target deptly. The values of
0. = 50 mando = 0.05 n? will be constant in the forthcoming examples. Clearly, idarfor the
information about the optimal configurations to be usefak must check if the trace of the CRB
matrix meets the desired specifications. To tifiee, and for comparison purposes, the trace of the
CRB matrix obtained for a number of hypothetical target pifbased on a fixed optimal sensor
configuration corresponding to a well-defined scenarid)atiimes be computed by allowing these
points to be on a grid in a finite spatial regigh This will allow us to evaluate how good the sensor
formation is in terms of yielding accurate localization b&treal target, in comparison with the
performance localization accuracy that is possible forlaypothetical target (dierent from the real
target) positioned anywhere . For the sake of clarity, and with an obvious abuse of natatice
will refer to that trace of the CRB, viewed as a function ofatgument inD, simply astr(CRB)p.

In this chapterD will always be a rectangle iR 2.

Example 6.1:Distance independent covariance error.

Analysing (6.39) withy = 0 gives

_D? cod (B) sir? (B) — co (B)
N 1+ 2 cod (B) sir? ()

c? (6.41)

The value ofg, and therefore the radius of the circumference where theosemmust stay is
obtained from (6.41). The sensors are placed in a circuméereentred at the target projection on
the planez = 0, therefore all the radii are the same, thatris= r fori = 1,...,n. To defines
irrespective of the sensor distribution over the resulttiygumference, we proceed by adding the
square root of (6.41), witlh = A, to the square root of (6.41) with = B, all the terms im; are
cancelled and one obtains

2C = (A+B) cod (B) sir? (8) — cos (B)
1+ 2 cod (B) sir? (B)

(6.42)
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Straightforward computations yield

2cog (B) \/1 +2cod (B) sir? (B) = (1 + cog (B) sin? ([3)) +/Sir? (8) — cog (B) (6.43)

whose only valid solution i = 54.86 degrees. At this point, we can compare this optimal elavat
angle with the one obtained in Section 6.4 for a sensor n&twtaced over a sphere, that was
equal to 4240 degrees. We can check how the optimal elevation angl&eselt depending on the
constraints imposed to the sensor network. Thigedence on the two optimal elevation angles can
be negligible or very important depending on the targetldepthe limit distance considered in the
mission scenario. For example, for a limit distance or degftB0 meters, the optimal formation

of Section 6.4 has a radius of 56 meters, and the surface network of the example at hand, a
radius of 3269 meters. In this case thefidirence between formations can be considered not so
important for a practical situation. However if we considelimit distance or target depth equal
to 500 meters, the radius are 580 and 32804 meters, and the fierence between formations

is almost 220 meters, a very significanffdience. Moreover, for the scenario of Section 6.4 the
optimal elevation angle is the same for constant and distaliependent covariance error. In the
problem at hand, the noise model is a crucial factor to detexithe optimal configuration, and the
solution will change depending on the noise model consije&®shown next.

Clearly, the optimal elevation angsas not enough to specify the optimal location of the sensors.
The extra conditions to be specified are that B and (6.35). As abovementioned these conditions
are met if the sensors are first and second moment balanced, san take a regularly distributed
formation around the circumference. This is exactly thefigomation obtained in [10] for 2D, under
the explicita priori condition that all sensors be placed at the same distancetfretarget. We thus
examine the example where the sensors are regularly ditdiaround a circumference centred at
the target projection on the surface plane. This solutionlmobserved in Fig. 6.2 a) where the
optimal formation and the CRB trace for each poinfiA at the target depthr(CRB)p) are shown
on the left-hand side (lighter regions correspond to hyginthl target points with lower values of
the trace of the corresponding CRB matrices). On the riginEiside of Fig. 6.2 a) it is possible to
observe the value of the trace and how its minimum is reachiedtbe target position.

In Fig. 6.3 we show a comparison between the FIM determinaditiae trace of the CRB for
the different possible values @f with 8; = g for all sensors, for a regular distribution of sensors
around the target projection. Notice that there are corditpms that yield very large values of the
determinant of the FIM but that fier from the one which provides the minimum trace of the CRB, as
introduced in Section 6.1. Moreover, these large valuesspond to configurations of the network
that are clearly inadequate, e.g., they are close to comfigms where all the sensors are placed at
the same point, coincident with the target projection onsiindace plane. It is for this reason that
the trace of the CRB is used as indicator to analyse the pedioce of an arbitrary formation for
AE-only measurements in 3D spaae.

Example 6.2: Distance-dependent covariance error.

Following the reasoning of the previous example, the raglitise circumference can be obtained
easily by adequately manipulating (6.39). We can define @amapformation where the sensors are
regularly distributed around the target projection.

The only valid solution of (6.39) yields the size of the opinformation for single target
positioning. In Fig. 6.2 b), the optimal formation is showor fa value ofy different from 0,

n = 0.05, andy = 2. The optimal radius is defined by an angle- 63.18 degrees. Notice how
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Figure 6.2: Optimal surface sensor formations for a target depth of 5@ragr = 0.05 n¥ and diferent values
of n. @)n = 0, b)y = 0.05. Lighter regions indicate higher accuracy in the 2D ptdts (CRB) .
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Figure 6.3: FIM determinant versus Cramer-Rao Bound fbbetween 0 andr/2 considering a circular
formation centred at the target projection on the surfaaael
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the formation size becomes smaller when the noise betweget @nd sensors increases, to reduce
the distance-dependent measurement noise component.ofirhation tends to concentrate itself
around the projection of the target on the surface planenftneasing values of andy to reduce
the impact of the distance-dependent measurement noise.siibws that it is critical to have an
adequate noise model, for the optimal sensor formatiomasigly noise-dependens.

6.6 Uncertainty in the target location

At this point, following what is commonly reported in thediature, we have started by addressing
the problem of optimal sensor placement given an assumatignofor the target. In a practical
situation, the position of the target is only known with urtaaty and this problem must be tackled
directly. However, in this case it is virtually impossibterhake a general analytical characterization
of the optimal solutions, and one must resort to numericacemethods. At this stage, an in-depth
understanding of the types of solutions obtained for thalidase is of key importance to compute
an initial guess for the optimal sensor placement algoritttopted. The objective is to obtain a
numerical solution when the target is known to lie in a welfimed uncertainty region, and we
assume the uncertainty in the target position is descrigeddiven probability distribution function
and seek to minimize, by proper sensor placement, the av@edge of the trace of the CRB matrix
for the target.

Inwhat follows,pi¢ ;i = 1,2,...,n; € = @, 8,1, denotes the AE-measurements and range of sensor
i located at positiorp” = [ai,5i,1i], andp = [pl, ..., pi]T. We further denote by (g);q € R*a
probability density function with suppoR € R*3 that describes the uncertainty in the position of
the target in regio. With this notation, the problem of optimal sensor placehwam be cast in
the form of finding a vectop” such that

P = argmin [ it CREP.Q) - ¢(@) dg (644)

D

where we used the notati@REp, q) to clearly show the dependence of the trace of the CRB on
the target and sensor locations. However, in the follov@iRR p, q) will often be denoted simply as
CRB. In areal situationy (g) will depend on the type of mission carried out by the undeewtarget.
If the target operates mostly in the centre of the workingas€q) can for example assume the form
of a truncated, radially-symmetric probabilistic Gaussiastribution centred at an appropriate point.
On the other hand, if only the work area is known and the targebperate anywhere insidegt(q)
can be taken as the unity function inside that area.

To proceedir (CRBp, g)) must be computed in the equation above. At this point it isartgnt
to remark that, given the complexity of the optimal sens@cpment problem at hand, the only
viable solution is a numerical one. It now remains to sohedptimization problem defined above.
As explained later, and similarly to the approach followedrevious chapters, we opted to use
a gradient-based method to do so. To thied, it is important to compute the derivatives of the
integral in (6.44) with respect to the sensor coordinates, s,

0 _
o Df tr (CRE(P, ) ¢ (q)dq (6.45)

fori =1,2,..,nand¢ = a,B,r. To proceed with the computations, the integral and thevdtive
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operations are interchanged: the derivatives are eXglidétermined first and the integration over
regionD is performed afterwards. After lengthy computations, teevétives oftr (CRBp, q)) are
well defined, see Appendix D for details.

The seemingly complex form of the derivatives, shown in Apfie D stems from the fact that
tr(CRB) is defined explicitly and from the complexity of the FIM ergsion, (6.11). However, with
the notation adopted, each of the derivativety (€ RB) with respect to the coordinates of a specific
sensor can be computed in a recursive manner.

In what concerns the computation of the triple integral dherregionD of interest, we opted
to do it numerically using a Monte Carlo method. Finally, dusion of (6.44) can be obtained
using a gradient optimization method with the Armijo rule€412] and the references therein). To
overcome the occurrence of local minima or the divergend¢bealgorithm, the initial guess in the
iterative algorithm must be chosen with care. In the exashiat we studied we found it useful and
expedite to adopt as an initial guess the solution for thglsitarget positioning problem described
in previous sections, with an hypothetical single targacpt at the centre of the work area. It is
important to stress that the solution to (6.44) dependsigtycon the probability density function
adopted for the target positian

6.6.1 Simulation examples with uncertain target location

The methodology developed is now illustrated with the hdlgeveral examples that address the
problem of optimal surface-sensor placement for uncettaderwater target positioning. Therefore
the main constraintimposed to the problem is that the raigg@rttes depend explicitly on the angles
Bi, withi =1,---,n,i.e,r = g/ sin@;), whereq, is the target depth. Eerent problem scenarios
are studied both for constant and distance-dependentianearerror.

Scenario 1: In this first scenario the target is known to be working insatiearea defined by a
circumference of a 5thradius, at a constant depth of 50 meters. A 5 sensor netwodeis for the
positioning task and the sensors are restricted to lie istiniace plane.

Example 6.3The first example of this scenario corresponds to a constaatiance positioning
problem witho- = 0.1 m. After the optimization method described above it is foumat the optimal
surface formation is the one described in Figure 6.4. We aditenin Figure 6.4 (a) how the
formation keeps a regular distribution around the work aviga an optimum radius of 39 m; and
in Figure 6.4 (b) how an homogeneous trace of the CRB matdktained inside the area of interest,
keeping an equivalent accuracy for all the points insideattea. The sensors are placed regularly
around the target projection forming a regular pentagone Miaximum and minimum values of
the CRB trace inside the area of interest are&s53r? and 3133 n?, respectively. Despite of the
difference between the maximum and minimum values of the CRB,tthe average value inside
the working area is 381 n?, so the average accuracy is close to the optimal one, anddhosost
points the accuracy is closer to the minimum value of the CRRBet

Example 6.4:This example corresponds to a distance-dependent coearganblem, withy =
0.05 andy = 1. We can notice in Figure 6.5 (a) thetéirence of this optimal formation with respect
to the optimal one of Example 6.3 shown in Figure 6.4 (a). Tpeénwal formation is defined by
a radius of 362 m with the sensors distributed regularly around the targejegtion. We can
notice in Figure 6.5 (b) how the values of the trace of the CRErives are larger due to the added
distance-dependent error. The maximum and minimum valithe €RB trace inside the work area
are 32694 n? and 12805 nv¥, respectively. However an homogeneous accuracy over teeddr
interest is obtained, with an average value of 180r?, that shows that for most of the points of the
area of interest an accuracy close to the minimum one isroddaa
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Figure 6.4: Optimal surface sensor formations for a target depth of 5@ragr? = 0.01 m? andy = 0. Lighter
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Figure 6.5: Optimal surface sensor formations for a target depth of 5&regr? = 0.01 n? andn = 0.05.
Lighter regions indicate higher accuracy in the 2D plots (€RB),.

Scenario 2:In this second scenario the target is placed inside an a®@-060x 60 m® centred
at the origin of the inertial coordinate frame, but thereasadditional knowledge about the target
position so the distribution function is a step-like distriion. The target is positioned by a 6 sensor
network at the sea surface as shown in the set-up of Figuréa®.6Again both situations with
constant and distance-dependent covariance are studied.

Example 6.5This example deals with a constant covariance error with 0.05 m. No figures
are shown because it is not possible to show adequately thezay in a figure when a volume is
studied. The optimal sensor formation that maximizes tlcei@cy inside the working volume takes
a shape similar to a circumference, with an approximateisadli 41 meters. The sensor positions,
in Cartesian coordinates, are shown in Table 6.1.

Table 6.1: Optimal sensor positions for constant covariance.

Py P2 P3 P4 Ps Pe
{x}(m) | 3548 | 0.07 | -3533 | -35.3 0.07 35.48
{yj}(m) | 20.37 | 4080 | 2037 | -20.52 | —-40.96 | —20.52
{z}(m) 50 50 50 50 50 50

The minimum and maximum CRB trace values obtained insidevttheme aretr(CRBmin =
2.44 ? andtr(CRBmax = 18.62 n?, respectively, with an average valuetofCRBayq = 8.11 n?,
providing a large accuracy for most points inside the reginterest.
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Figure 6.6: Sensor formations for an uncertainty volume o660 x 60 n¥®, (a) surface sensor network, and
(b) sensor network split into two formations, one at the sgtase and another at the sea bottom.

Example 6.6:In the second example of this scenario the error is congidierde distance-
dependent, withr = 0.05,7 = 0.1 andy = 1. After the gradient optimization the optimal sensor
network is placed at the positions listed in Table 6.2.

Table 6.2: Optimal sensor positions fer = 0.05,7 = 0.1 andy = 1.

P1 P2 P3 P4 Ps Ps
{x/}(m) | 3276 | 0.04 | -3269 | -3268 | 0.04 3276

{yi{(m) | 1891 | 37.80 | 1891 | -1887 | —37.77 | -18.87
{z)(m | 50 | 50 50 50 50 50

We can notice how the formation is smaller than that of Ex&népb to reduce the impact of the
distance-dependent added error, with the network keepiagraation similar to a circumference of
an approximate radius of 37 meters. The minimum and maximif €ace inside the volume of
interest ardr (CRBmin = 49.39 n? andtr(CRBmax = 2.17- 10° n?, respectively, with an average
value oftr(CRBayg = 59105 n?, that shows that, in this example, the accuracy is dranistica
affected by the added distance-dependent error compament.

Scenario 3:We now tackle the same situation of Scenario 2 but the semsanonk can be placed
in two different planes, it is, one subnetwork on the sea surface, atdearsubnetwork on the sea
bottom, shown in the set-up of Figure 6.6 (b).

Example 6.7:This example is again with constant covariange; 0 ando- = 0.05 m. After
the optimization process, in which 3 sensors are constldmbe at the sea surface, i.e., 50 meters
above the centre of the volume of interest, and the other Sossrare constrained to lie at the sea
bottom, at 50 meters under the centre of the volume of intettes optimal formation is such that
the sensor are placed, in Cartesian coordinates, at thiégmssstated in Table 6.3.

Table 6.3: Optimal sensor positions for constant covariance.

P1 P2 Ps Pa Ps Ps
{x}(m) | 2198 | -0.04 | —2215 | -2223 | -0.08 | 2214

{y{(m) | 12841 | 2568 | 1284 | —127 | —2538 | —12.74
{z)m | =50 | 50 | -50 50 -50 50

We can notice that the formation shape, although split infvmations, is very similar to the
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one obtained in the previous scenario but with an approxamaatius of 26 meters. However, in this
case the minimum and maximum CRB trace (€ RB) i, = 2.23 n? andtr(CRBmax = 7.27 N7,
respectively, with an average valuetofCRBayg = 5.13 n¥, that shows how the accuracy, for the
constant covariance case, increases when the formatiaist®nf two formations, one at the sea
surface and another at the sea bottom. We can check how thenomaxalue of the CRB trace is
smaller with respect to Example 6.5 and how the average C&f fis very close to the minimum
value.

Example 6.8:Finally, this one tackles the distance-dependent covegigmoblem, witho =
0.05m, n = 0.1, andy = 1. In this case the optimal formation is the one in which thesees take
the positions shown in Table 6.4.

Table 6.4: Optimal sensor positions fer = 0.05m, = 0.1, andy = 1.

P1 P2 P3 P4 Ps Pe
{x}(m) | 1974 | 0.14 | -1928 | -1941| 0.21 19.70

(y)(m) | 1116 | 2266 | 1114 | 1116 | —2266 | —1114
{z}(m) | =50 | 50 | -50 50 ~50 50

Again the formation shape is similar to that obtained in Egbn®.6, but with an approximate
radius of 22 meters. The minimum and maximum CRB trace aretn@RB)min = 39.36 n? and
tr(CRBmax = 41477 n?, respectively, with an average valuetofCRBayg = 21409 n?. We can
notice how the maximum CRB trace is significantly reducedhwéspect to the value obtained in
Example 6.6. The average value is again smaller, showirtgativary good average accuracy is
obtained inside the volume of interest. Finally, the minimualue of CRB trace is also smaller.
Thus a more homogeneous accuracy inside the area with &icagutily smaller error is obtained for
this example with the sensors split in two formations, onthatsea surface and the other at the sea
bottom.m

Therefore, for an unknown target location it is clear thatdkierage accuracy inside the working
area is improved if we can place the sensors in tvietént parallel planes.

6.7 Conclusions

We studied the problem of determining optimal configuratiohsensor networks that will, in a well
defined sense, maximize the AE-related information avigl&tr underwater target positioning.
To this dfect, we assumed that the measurements were corrupted by @hitssian noise, the
variance of which is distance-dependent. The Fisher Inftion Matrix and the minimization of
the trace of the CRB matrix were used to determine the optseasor configurations. Explicit
analytical results were obtained for both distance-depenand distance-independent noise. In the
application scenario of underwater target positioning tsyidace sensor network, we have shown
that the optimal formation lies on a circumference arourdénget projection and that a “regularly
distributed formation” around this target provides an wyati configuration, the size of which
depends on the measurement noise model and the target @ibptmethodology was then extended
to deal with uncertainty in the target location, because pmaectical situation the target position is
only known with uncertainty. Simulation examples illusé@ the concepts developed irffdrent
application scenarios, showing that the optimal configonadf the sensors depends explicitly on
the intensity of the measurement noise, the constraintssexbto the sensor configuration, the target
depth, and the probabilistic distribution that defines therpuncertainty in the target position.
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Chapter 7

UNDERWATER TARGET POSITION-
ING WITH A SINGLE SURFACE SEN-
SOR

7.1 Introduction

The developments studied in previous chapters exploit #mmgtric configuration of acoustic
sensors in order to define the position of an underwatertfnge range or bearings measurements.
These ranges or bearings are measuredfigrdnt locations that make it possible to determine the
target position. However, in this chapter an alternatiyerapach is used, a single sensor that employs
both the spatial and temporal diversity in order to extraxgifion information. In particular, and
speaking in loose terms, we are interested in determiniagfitimal movements or trajectory of
a single mobile sensor that will, in a well defined sense, maeé the range-related information
available for underwater target positioning. To thifeet, we assume that the range measurements
are corrupted by white Gaussian noise. The actual computafithe target position may be done
by resorting to trilateration algorithms as mentioned ieiwus chapters.

There is a great interest in reducing the number of beacomdvied in the acoustic naviga-
tion/positioning system, as they usually involve deploymentipcation and recovery time which
is money and time consuming. The concept of underwater atwig using ranges to a single
beacortransponder has received increasing attention in the maoibotics community. An early
reference can be found in [8] where the target motion ara({ld¥A) with unknown marine systems
using sonar measurements is discussed, i.e., the estmudtibe position and velocity of a target
ship, given a sequence of measurements, is studied, or [B8jenthe observability requirements
are obtained for three-dimensional maneuvering targekimg with bearings-only measurements.
Another early work on this trend is the work of Larsen who campevith the term Synthetic Long
Baseline navigation [49], [50]. Observability is the kegue, and several works have addressed
this [82], [86], [30], [68], [31], [75], [41], [19], [29]. Mwme recently, several works have addressed
the problem from diverse perspectives, and pointed outitionship with the multiple vehicle
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navigation problem.

Some interesting examples are [35] in which the author d@geh computer algorithm based
on least squares and a Kalman Filter for single beacon ni@miggéhat can be integrated in
the architecture of an AUV, [48] where multiple asynchrosganges from a transponder are
manipulated to create a long baseline of virtual transpmitedifferent locations at a single point
in time so that an underwater vehicle can compute its glazatlon in the same way that it would
do using multiple transponders, [23] in which a continudnnetadaptive localization algorithm that
permits a mobile agent to estimate the location of a statjosaurce is developed, or [26] where
the simultaneous navigation of multiple underwater vedfsiéé done using a surface-ship acting as
a moving transponder with a maximum likelihood frameworknother interesting work can be
found on [76] where the estimation of an underwater vehiokdtipn with a single beacon is studied
in the presence of unknown ocean currents. The idea behismidvtirk is the combination of DR
information with a sequence of range measurements takeff@taht instants of time to determine
the target position, target velocity and current velocitthva Kalman Filter. Note that this problem
is also closely related to the classic source localizatioblem in underwater acoustics [40].

A dual to this problem is the tracking of an underwater targith a single range measuring
device. An important question in positioning with sensaweegks is about the minimum number
of beacons that can be used to perform an underwater targétoping task. A single range
measurement does not contain enough information to deterthe target position, so we cannot
compute a position fix. Instead of a static surface senswmarkt one could think of a surface vehicle
that, by moving in convenient trajectories, exploits itati diversity while measuring ranges to the
underwater platform in order to determine its position. rEfiere, in this chapter the study of the
optimal trajectories that a single sensor must follow, idesrto maximize the accuracy with which
a target is localized, is tackled. Some previous works g b@the work of [70] where optimal
control theory is used to determine the course of a consfa#dsobserver by minimization of a
criterion based on the FIM with a mixed analytical and nuedrprocedure. In [69] a fixed target
location is estimated from a sequence of noisy bearingsuneaents, and the optimal trajectories
for bearings-only target localization are based on the mezdtion of the determinant of the FIM
subject to some constraints. The optimal solutions areé@ted numerically. In [77] a single LBL
acoustic transponder is used for AUV positioning. The lzegion algorithm is based on a least
square root method that estimates the AUV position and ontiwedocity. In [14] a navigation system
to remove the accumulated position errors of an underwgites is described. Finally, in [78]
some algorithms to position an AUV based on one moving beacerescribed. The navigation
systems are composed of AUV on-board reckoning systemsraadaustic positioning system with
LBL with a moving beacon. The AUV position is computed with alian Filter and the algorithm
for mobile beacon trajectory is presented.

The key contributions of the present chapter are threefoldwo different approaches to
determine the optimal sensor trajectories are studied,fitee one when only the next best
measurement of the current trajectory is computed, andettensl one when the whole trajectory is
optimized to maximize the positioning accuracy, ii) a gahsplution is obtained analytically and
numerically for the positioning of a static underwater &rgith the above approaches, and finally
i), the results are extended to the scenario in which thgeetamoves at a constant speed.

The chapter is organized as follows. In Section 7.2 the agitsensor trajectory problem is
formulated and the assumptions made for the computatidreadptimal trajectories are established.
In Section 7.3 the three first optimal range measurementdetegmined analytically, so that the
initial target estimation be defined with the maximum polssédccuracy. Section 7.4 contains the
derivation of optimal sensor trajectories for twdfdrent approaches, i) when only the next best
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measurement point for the current sensor trajectory mustebermined and ii) when the whole

trajectory must be optimized, both for the case where thgetds static. Simulation examples are
included. In Section 7.5 the above analysis is extendedet@tknario in which the target moves at
a constant speed, and some simulation examples are indloleBinally, Section 7.6 contains the

conclusions.

7.2

Problem formulation

For a given target positioning problem, the optimal sensajettory depends strongly on the
constraints imposed by the task itself (e.g. maximum nundiemeasurements used for the
computation of the FIM and type of sensor that can be used)tenénvironment (e.g. ambient
noise). In fact, an inadequate sensor trajectory may yagel positioning errors. Therefore it is of
the utmost importance to define the constraints and assongatonsidered for the problem at hand:

The variance of the measurement ewas constant and equal te.
The USV must localize a single static target or a mobile tangth constant speed.

The target position is priori known and it is considered to be placed at the origin of the
inertial coordinate frame.

The initial USV position is arbitrary because it actuallyedanot condition the final optimal
solution.

The target is positioned with a fixed number of measuremeeatsthe amount of memory used
to storage the measurements is limited and the FIM is cordwité a fixed given number of
range measurements.

The acoustic signals are emitted at constant intervalsnoé it and there exists a delay
between the emission by the pinger on board the USV and theeasrfisom the target, so
the reception of the answer is at @fdrent point from the emission point, see Fig 7.1.

The sensor, or USV, moves with constant speéjl = V.

It is considered that the range measured by the sensor isstamck between the target and
the position of the sensor at the moment of the receptioneoétioustic signal.

Some of the above issues can be observed in Figure 7.1. Weotiae how the sensor (red)
emits the acoustic signal at the momegtand the answer from the target (green) is received by the
sensor aR, with dy being the distance between the two above points. This adistdepends on
the velocity of sound in water, on the sensor spégand on the range distanagsandry that define
the go and back way travel of the acoustic signal. The entigsant Ex defines the poinp, the
reception poinR defines thék — th measurement poirgy, and the range distance measured for the
FIM computation is considered to Iog i.e., the distance between the target positj@md the point
Pk In this theoretical framework it is considered thaandry, and thereforgy, andpy, are known,
so we can define analytically the distartkghat separates the emission and reception points. If we
consider thats is the speed of sound in water we can write:

O _ Mo, M

_ 71
Voc e (7.1)
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Figure 7.1: Problem set-up: the acoustic signal is emitted at the p&p@nd received by the sensor at the
pointsRy. The range distance measured to define the FIM is the rangadésof the way back of the acoustic
signal from the target to the sensny,

Moreover, ify is the angle defined by} anddy, from the theorem of the cosine we can express
g as

r2 =2+ d2 + 2dyr; cos(y) (7.2)
with ( )( )
{a=Pe) (P — Pr-1))

y= arcco{ TN -0 (7.3)

where<> denotes the inner product between its operands, see Figl'ieh we can rewrite (7.1) as

de T \/r’ﬁ + dZ + 2dyr; cos(y)

= 7.4
V  Cs Cs (7.4)
Now taking the square of both sides and rewriting the eqoatie find,
2r; (cos(y) 1\(1 1\
== [—=Z-Z|l=-= 7.5
“ Cs( Cs V)(C% V2) 7o

so the measurement points may be explicitly defined coriaiglenly the orientation angles taken
by the surface sensor at tRg points and the already known information.

Given a target positioning problem, the optimal sensorettajry can be ascertained by
examining the corresponding Cramer-Rao Lower Bound (CRaBJFisher Information Matrix
(FIM). We focus on the computation of the CRLB (or, equivélgithe FIM) for the problem at
hand. In particular, the determinant of the FIM is used asnalicator of the performance that
is achievable with a given sensor trajectory. Maximizinig tuantity yields the most appropriate
sensor movements.
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The FIM is defined as the expected value of the logarithm ofdésévative of the maximum
likelihood function, that yields

13 (Ui,x)2 (Ui,y) (Uzi,x) (Ui2) (Ui %)
FIM = 72 Z (Uix) (Ui,y) (Ui,y) (Uiz) (Ui,y) (7.6)
U U) (b)) (W)

whereu;; = 29 Ip'” fori € {1,..,n}andj € {x,y, 7}, pi = R, andq; corresponds to the target position
at the moment in which the measuremenitaken i.e, the position in which the target sends the
acoustic signal to the surface sensor, that could be a podik or not depending on the scenario
studied.

7.3 Initial target estimation: Three first range measuremens

The number of ranges needed to determine the position ofjattar of the utmost importance, in
the most general scenario, 3 non-collinear ranges in tweedsional scenarios, and 4 non-coplanar
ranges in three-dimensional scenarios are needed to deeearposition fix. In a practical situation,
such as the underwater target positioning with surfaceosenthe target is known to be under the
sea surface, so 3 non-collinear range measurements arghenou

In this section the three first measurement points that geoan initial target position estimation
and that maximize the FIM determinant given a constant atvapeed and a constant sample time
are determined analytically. For this initial scenario tieation introduced in [6] for the FIM
determinant is used for simplicity reasons, that becomes,

n

1 .
FIM = = i i -
FIMI = — Z Uj X Ug) - u| = Z sir? (evjc) co$ (B (7.7)
j<k<l j<ksl
where
do-pyl  dla-pyl  dla-pyl
Uj = [Ujx, Uy, U] " = [ T aqyJ 7, ] (7.8)

j € {1,...,n}; identical definitions apply to the indicésl; ¢ is the angle formed by the vectaug
anduyg, andgj is the angle that the vector forms with the resultant vector of the cross product
betweeru; andu. The optimal sensor configuration is the one which maximikedogarithm of
(7.7).

We consider 3 range measurements, constant covariancéhertarget placed at the origin of
the inertial coordinate frame, so that (7.7) can be rewritte

1 ((p1 % P2) - pa)?
riror

IFIM| = (7.9)

whereps, p2, p3 are the three points in which the range measurements are gkdefined in Section
7.2. The pointp; is an arbitrary point, the sensor velociyis constant, and the time between two
consecutive emissions of acoustic signals by the surfatssAt is also constant, so poings and
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ps can be rewritten as

Py + (VAt — d; + d2) sin(az)
(o}
{ Pix + (VAL — d; + d2) cosgy) + (VAL — dy + d3) cos(rs) }T
ps =

{ Pix + (VAL — i + dp) COS{r2) }T
p2 =

Py + (VAt —dy + d2) sin(az) + (VAt —dy + d3) Sin(ag)
0z

wherea, andas are the angles that line that joipg and p, and the line that joing, and ps form
with respect to théx, } axis, respectively, and; andd, are the distances between the point in which
the acoustic signal is emitted by the surface sensor anddim ip which the response from the
targetis received, as it was defined in Figure 7.1. As meatd@bove, the point in which the signal
is received is considered to be the measurement point. Fmlisity reasons, and without loss of
generality, we consider that the initial measurement peiatich thapix = piy.

The anglesr, andaz must be chosen so that their values maximize the logarith(d.8j. To
define these angles the cross and dot product of (7.9) candameéad as

(P1 X P2) - P3 = Gz(P1yPax — P2yPax + PaxPay — P1xPay + PaxPzy — PaxP1y) =
= qz . ((VAt - d]_ + dz)(VAt — d2 + d3) + (VAt - d]_ + dz)d3+
+(VAt — dy + d3)dz + d2ds) (cosgrz) sin(as) — Sin(wz) coss))

The range distancesg andr; can be written in terms of; and the angles; andas,

r3 =r2 + (VAt — dy + dp)? + 2p1x(VAL — di + dp)(coSgr2) + Sin(az))

r§ =rf + (VAt—d; + d2)2 + 2p1x(VAt —d; + dy)(cosgry) + sin(ay))
+ 2p1x(VAL — dp + dg)(cosgrs) + sin(a3)) + 2(VAt — dy + dy)
- (VAt — dz + d3)(cosrz) cosfs) + sin(az) sin(as))

Moreover, we have that

2 > 2 _ .2
Pix + Py + 0z =7 = Pix = Py =

With the above notation the derivatives of (7.9) with resgeca, and a3 can be computed
analytically to obtain the optimality conditions for thengle target positioning problem with 3
range measurements by a single mobile surface sensor. déestives, after some straightforward
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computations, yield,

AIFIM| _ 2((p1 X P2) - P3) - A((P1 X P2) - P3)rérara
Oa; rirars
(7.10)
(P2 P2) - Pa)?r2 (93 - 13+ 13- or2)
" rarars -
1°'2°3

withi = 2,3, and

W 0y - (VA= dy + db)(VAt = dp + da) + (VAL — cy + dp)da+
2

(VAt — dz + d3)d; + d2ds) (- sin(a) sin(as) — coSkrz) COS(r3))

IPLX P2) P3) _ (VAL — dy + dy) (VAL - dp + ds) + (VAL — dy + dp)ds

(9&’3
+(VAt — dy + d3)d, + d2d3) (COS@z) CoS(3) + Sin(a?) Sin(a’g))
ar3 ,
—= = 2p1x (AtV — dy + dy) (cos(a) - sin(az))
(9(!2
os
daz
or3 ,
E =2P1x (AtV —dy + d2) (COS(Q’z) - Sln(a’z)) + 2(AtV —di + d2) .
2
(AtV — d; + d3) (cos) sin(as) — sin(az) cos(s))
or3 ,
E =2pP1x (AtV —do+ d3) (COS(Q’g) - Sln(a’g)) + 2(AtV —di + d2) .
3

(AtV — dz + d3) (sin(a2) cosgz) — cosgz) sin(as))
If we now combine (7.10) for both; andeas it implies that

(VAL — dy + dp)(COS(r2) — Sin(@2))(r5 + r3) + r5(VAt — di + dp)(cosgrs) — sin(s)) =0 (7.11)

Therefore, with (7.11), we can compute the 2 next measurepants to maximize the FIM
determinant.
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7.4 Static target positioning

In this section we define the points or the trajectory that aingpsurface sensor must follow in
order to maximize the accuracy with which a static underntargyet is localized. The computation
of the optimal trajectory is done with two fiierent approaches: i) when the immediate best next
measurement point for the current sensor trajectory is cbewpto update the FIM after the
elimination of the oldest one, and ii) when the whole trajegt for a given number of range
measurements, is optimized. As commented in Section 7.8, ¢onsidered that the FIM is
computed with a limited and constant number of range measents, i.e., in the first scenario
the new measurement substitutes the oldest one af theasurement points with which the FIM
is computed, and in the second scenario the optimal trajectocomputed recursively for the
measurement points considering that the initial point efrtbw trajectory is the last point of the old
one.

7.4.1 Next optimal range measurement

Once the mission is running and we have an initial estimadfahe target position, it is necessary
to determine the next measurement point, i. e., the dired¢hat the single tracker must take in
order to maximize the FIM determinant and thus to minimize plositioning error. If we have a
given number of measurements and we want to know the nexfama given velocity and sample
time, it is easy to define the analytical expression that ides/this optimal value because the new
FIM determinant will have only one unknown parameter, the aagleay,; that defines the sensor
movement direction. As mentioned above, the single traoieputes the FIM with a given number
of measurements, therefore it is necessary to delete tlestalteasurement to be able to update the
FIM. The sensor speed and the sampling timat are known, so the new measurement p@nt
can be written as:
P+ (VAL = Ok + dii1) COS@is1) |
Prer =] Pk + (VAL — di + dir1) Sin(ks1)
0z

wheredy anddy,; are defined according to Section 7.2.

The derivative of the FIM determinant with respect to the rdivection angleay,; can be
obtained easily and quickly. We consider tRaM is the FIM computed with the currektknown
range measurements except the oldest one that has beesddatedF | My, ; the updated FIM that
has been computed with the new range measurement obtaomedfpoint to be defined. This new
and unknown FIM yields,

* ’
FIMy.1 = FIM; + FIM/, (7.12)
where ,
pk+1.>< Pr+1.x pk+1.y Pr+1.x Pr+1.2
r2 r2 r2

1 k+1 é<+1 k+1
F I M 4 _ Pr+1.x Pr+1y pk+1.y Pr+1y Pr+1z
k1T 2| T, L,

k+1 k+1 i«-l

Par1xPeitz  PrrlyPhelz P12

2 2 2
M1 M1 M1

Thus, the problem to solve can be defined as,

@y, = arg Tkix|Fl Mi1] (7.13)
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The derivative of (7.13) with respect ta,1 can be computed by decomposing the determinant
by its adjoints:

D (=1)*IAd i (F M)l - O, j) (7.14)
ij

AIF M| _
Oays1

where (i, ) = 310D and |Adj j(FIMy.1)| is the determinant of the adjoint matrix of
FIMy,1 with respect to the element, {). The derivatives of eackIMy,, element with respect
to ax.1 are actually the derivatives of each element of the méttid, ,, with respect tay,1. With

this clarification, these derivatives are defined next:

AFIMi1(L, 1) =2 (Pt v COS@rs)) v sin@i)rZ,; — (Pux+ v COS(i1))? (rﬁ+1)
= =
k+1

a1

. ) 2
IFIM1(2,2) —Z(pky + USIﬂ(ak+1)) U COS@is)IE,; — (pky + USIﬂ(ak+1)) 0 (rﬁﬂ)
r£+1

a1

OIFIMa(33) _ ~%B2 ()
r£+1

a1

AF M1 (L.2)] (— (pky Yy sin(ak+1)) sin(@is1) + (Px + U COS@is1)) cos(ak+1)) ur2,,

Oarky1 rﬁﬂ
(Pc + v COS(r1)) Py + v Sin(@i)) 8 (12,
ré+l

AFIMa(1,3) v SiN@k)erE,; — (Pox+ v COS@e)) G (1,4 )
r¢+1
OFIMia(2,3)  —V COS@I)0el i, — (Pry + vsin(e)) a9 (12, )

4
rk+l

Ot

Ot
where

or2 ,
0 (rﬁﬂ) = 8a_l:;11 = 2(— Prx Sin(k+1) + —Pry COS@k+1))

v = (VAL — di + dis1)

Making (7.14) equal to O we can find the angle that makes trexid@tant ofF | My, 1 maximum.
It can be seen that although (7.14) depends only,qn and an analytical solution may be defined
from this equation, the computation of the optimal solui®not immediate. In a practical situation,
the optimal value ofy.; can be obtained by using the gradient of the FIM determinamni,to use
(7.14) at the current sensor position to define the movenigsttibn. In fact, the solution that the
gradient provides is very close to the one given by the aitalyprocedure.

Some examples of optimal sensor trajectories for a statgetgosition are now studied for
different values of the velocity of the single tracker, the sémggime or the number of points with
which the FIM is constructed.
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Figure 7.2: (a) Trajectory followed by the sensor to reach the optimgkettory that provides the maximum
FIM determinant. In the lower right corner, the final optinvajectory is shown in detail. (b) FIM determinant
computed at each iteration of the algorithm, i.e., for eamli measurement point.

7.4.2 Simulation examples

For each of the following examples we consider that the agitinajectories are computed for= 5
range measurements but the procedure will be very simifaarig number of measurements. The
sensor starts at the positign = [170,170 200]" m and the target is placed at the origin of the
inertial coordinate frame, so that the target is placed &tpahdof 200m.

Example 7.1:V = 3m/sandAt = 3 s

In this first example the constant spaéé- 3 m/sand the sampling timat = 3 sare considered.
In Figure 7.2 (a) the trajectory followed by the sensor dgitine simulation is shown. It can be
noticed how the sensor describes circumferences whilgétiing closer to the target position. In the
lower right corner of Figure 7.2 (a) we can see the last 100tpaif the simulation that correspond to
the stationary of the optimal trajectory, i.e., the tragegtthat the sensor is repeating if we continue
simulating because this trajectory provides the largestiracy possible for the approach adopted.
The values ofV and At determine the number of points (or equivalently, time) reektb reach
the optimal trajectory, as it will be seen in the forthcom&@mples. The optimal trajectory is a
circumference of 15 meters of radius around the target gtiojeon the horizontal plane, moreover,
the size of this circumference depends directly on the sespmedv, the sampling timet, and the
number of points used for the computation of the FIM. It is interesting to coemty although it is
not shown, that the radius of the optimal trajectory incesasith the number of measurements used
for the computation of the FIM. In Figure 7.2 (b) the FIM detémant computed at each iteration of
the algorithm is shown. Itis easy to notice how the accuracseiases during the simulation because
the sensor describes a trajectory closer to the optimalAiter. 7000 iterations the FIM determinant
has a constant value that means that the sensor has reacbptirtal trajectorym

Example 7.2:V =5m/sandAt=5s
For this example the velocity = 5 m/s and the sampling timat = 5 s are considered. In

this case 2000 points are simulated because the vallésniiAt are larger, and then the optimal
trajectory is reached in less iterations than in the prevexample.
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Figure 7.3: (a) Trajectory followed by the sensor to reach the optimgjetitory that provides the maximum
FIM determinant. (b) FIM determinant computed at each fienaof the algorithm, i.e., for each new
measurement point.

In Figure 7.3 (a) we can observe the trajectory followed lgygbnsor until the optimal trajectory
and the maximum FIM determinant are defined. In this case wencgice how this optimal
trajectory is reached in less iterations than in the previexample, in around 1000 iterations.
Again we can check how this final trajectory is a circumfeeeacound the target projection on
the horizontal plane, but the circumference has around 3emnef radius, in contrast to the 15
meters of the previous example. Thus, with larger valueg ahd At the final trajectory follows
a larger circumference and it is computed with less iteratiof the algorithm. In Figure 7.3 (b)
the FIM determinant computed at each iteration of the aloriis shown again. The accuracy
increases during the simulation because the sensor desdréjectories closer to the optimal one.
After approximately 1000 iterations, the FIM determinaatfits maximum value, i.e., the sensor
has reached its optimal trajectory. In this example, the B8W&rminant obtained is quite larger than
in the previous example, around 50 times larger, so it shbasit is adequate that and At be
large enough so that the optimal trajectory can be followghl &lower number of iterations and it
provides larger positioning accuracy (FIM determinant) cQurse, the election of, At andn will
be mission-depender.

7.4.3 Optimal trajectory

In this approach, we now determine the optimal trajectoryddollowed by the sensor so that the
nextn range measurements maximize the positioning accuracyeafridlerwater target. Therefore,
in contrast to the previous approach, the whole trajectbny points is optimized and we have a
new target position estimate eaghAt seconds. The same assumptions about the sensor¢peed
sampling timeAt, targetq, and noisew still hold for the scenario at hand, the onlyfdrence is that
the optimization procedure deals wittrange measurements to be computed, not just one.

The solution may be computed analytically from the derxediof the FIM determinant with

respect to the anglesg, i = 2,---,n, that determine the distance and relative orientation of tw
consecutive measurements. It is clear that, consideratghie initial sensor position is known, we
haven — 1 variablesy;, i = 2,---,n, andn — 1 derivatives with respect to these anglgsso that

we have an equation system with the same number of equatiwhar&nowns. The complexity
of this approach resides in the fact that the process torolitai solution of this equation system
is complex and tedious. Moreover, we must resort to numlemieghods to solve it. Therefore,
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the commented derivatives are used for a gradient optiraizatgorithm. These derivatives can be
defined, similarly to the previous section, as follows,

JFIM|
oai

AFIM(j, K)

Oa;

Z( 1A jik(FIM)] - (7.15)

where|Ad j;k(FIM)| is the determinant of the adjoint matrix of tRéM with respect to the element
(j, k). Details are omitted but the procedure is very similar tat #xplained in Section 7.4.1. The
optimal solution is obtained with a gradient optimizatidgaithm with the Armijo rule. As it
will be explained in the forthcoming examples, it is inteigg to notice that this approach provides
optimal trajectories very similar to those obtained in thievipus examples. The fiérence lies
in that, for the approach at hand, the optimal trajectoriesdafined in quite less iterations of the
algorithm, and then, in a practical situation, the optimajtctory would be reached faster.

At this point, it is interesting to mention that if the valuesV, At andn are the optimal ones
for the target depth so that the maximum theoretical FIM mheirgant can be obtained, the same
solution defined in Chapter 4 for surface sensor networkedswered.

7.4.4 Simulation examples

Now some examples of optimal sensor trajectories are studior comparison purposes with
Section 7.4.2, the number of range measurements with whéhRIM is computed will b = 5, but
the procedure would be very similar for any number of measerds. The initial sensor position
is p1 = [170,170,200] m and the target is placed at the origin of the inertial cocatéirframe,
at a depth of 200m. For each iteration of the algorithm explained above, thst fioint of the
new trajectory of 5 points is the last one of the previousaiien, so for each iteration the next 4
measurement points are planned. The algorithm is reclysxecuted 30 times, so 120 points are
computed. Although this algorithm needs less iterationtopute the optimal trajectory, and this
trajectory is reached with less measurement points, theuatation of the solution is more complex.

Example 7.3:V = 3 m/sandAt =

A constant speed = 3 m/sand a sampling timat = 3 sare considered. In Figure 7.4 (a) the
trajectory followed by the sensor is shown. In this case te frajectory is reached faster compared
to the result obtained in Example 7.1. We can notice how ttiena trajectory is not exactly a
circumference, the optimal measurement points are coratedtin two concentric circumferences
around the target projection, and the sensor moves betWeanih the optimal trajectory. However,
their size is very close to that of the circumference of Exanpl. In the left upper corner of Figure
7.4 (a) the optimal trajectory is shown for the last 80 measient points.

In Figure 7.4 (b) the FIM determinant computed for each of3@dterations of the algorithm
is shown. We can notice how the maximum FIM determinant olethis the same of Example 7.1,
but it is obtained with less iterations, and in a practicalaion, the optimal trajectory would be
reached fastem

Example 7.4:V = 5 m/sandAt =

For this second example the velocity of the sensor and thelsagime are both considered to
be equal to 5, being the dual of Example 7.2. In Figure 7.5t(@)shown the trajectory followed
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Figure 7.4: (a) Trajectory followed by the sensor to reach the optimgjetitory that provides the maximum
FIM determinant. (b) FIM determinant computed at each fienaof the algorithm, i.e., for each new 5
measurement points.
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Figure 7.5: (a) Trajectory followed by the sensor to reach the optimgjetitory that provides the maximum
FIM determinant. (b) FIM determinant computed at each fienaof the algorithm, i.e., for each new 5
measurement points.

by the sensor. We can notice again how the final trajectorpisarcircumference, and the sensor
moves between 2 circumferences. Again, this optimal ttaigdés computed in less iterations than in
Example 7.2, so in a practical scenario the maximum accwvacyd be obtained faster and with less
iterations of the optimization algorithm. Compared to thewe Example 7.3, the final trajectory
defines circumferences of a larger radius, similarly to wiegipened in the examples of Section
7.4.1. In Figure 7.5 (b) The FIM determinant obtained forteideration of the algorithm is shown.
We can notice how the FIM determinant is larger than in theiptes example, so for larger values
of V andAt the determinant of the FIM increases too. Moreover, the mari FIM determinant is
obtained in less iterations of the algorithm. Again the aacwyis similar to that obtained in Example
7.2, but the optimal trajectory is computed with a very digant less number of algorithm iterations
and measurement points.

Therefore we can conclude that, for a static target, altholbigth approaches provide the
same maximum FIM determinant and therefore the same puoisitiaccuracy for similar mission
constraints, the latter approach computes the optimadi@ajy in less iterations, and the optimal
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trajectory is reached with a few sensor movements and lessumement points. Despite of this,
this algorithm is more complex to implement and the compartadf the optimal solution may take
more time than in the first approach, whose implementatiouite easier and faster.

7.5 Moving target positioning

The previous scenario is now extended to the problem ofipogilg an underwater target that is not
static. The target is considered to be moving in a straiglet\With a constant velocity, which must
be slower than that of the sensor. The latter assumption écassary condition so that the sensor
be able to track the target correctly. The two abowEedent approaches are studied, i) when the
next best measurement is computed and then the FIM is updétethis new range measurement
deleting the oldest one, and ii) when the trajectory for &gimumben of future measurements is
planned to be optimal.

7.5.1 Next optimal range measurement

In this approach the immediate next measurement that magémihe accuracy is computed,
considering a limited number of range measurements witlthvtiie FIM is computed, similarly
as it was studied in Section 7.4.1 for a static target. Toinkdagood positioning accuracy the
sensor speed must be quite larger than the target one, neoyas\t will be studied in Section 7.5.3,
planning the trajectory for a given number of measuremémgtead of just the next one, provides a
much better solution.

The target position is now defined loy= [V; - At,0,0]" m, whereV, is the target speed. With
this assumption the FIM becomes,

13 (Uix) (Ui,y) (Uzi,x) (Ui.z) (Uix)
FIM = 72 Z (Uix) (Ui,y) (Ui,y) (Ui.z) (Ui,y) (7.16)
S U ) (Uy) Uo) (Ui)?

whereu;; = BHET_,M fori € {1,...,n}andj € {x,v, z}, andq; corresponds to the target position at the
moment in which the measuremeérns taken, i.e, the position in which the target sends the sttou
signal to the surface sensor. The next measurement poiefireed as in previous sections:

Pk + (VAL — di + dks1) COSErke1) !
Per1 =| Pk + (VAL = di + Oii1) Sinaisa)
(o74

Again, we opted for a recursive procedure to compute theadre of the new FIM determinant
with respect to the new direction anglg 1. The matrixFIM; is the FIM computed with the current
n known range measurement except the oldest onef-ékfid,; is the FIM computed by adding the
new range measurementfdM;. Then the updated and unknown optimal FIM yields,

FIMy1 = FIM; + FIM,, (7.17)

178



7.5. MOVING TARGET POSITIONING

where
1 n (Ui,x)2 (Ui,y) (uzi,x) (Ui,z) (Ui,x)
FIMy, = o2 Z (Ui %) (Ui,y) (Ui,y) (Uiz) (Ui,y) (7.18)
=1 (Uix) (Uiz) (Ui,y) (uiz2) (Ui,z)2

with i = k+ 1. Thus the problem to solve can be cast as

a1 = argmax|FIMy,] (7.19)
Qk+1
The derivative of (7.19) with respect tq,; can be computed by decomposing the determinant
by its adjoints:
OIF M4

o = 2 CDMIAd(FIMG)! - 06, ) (7.20)
+ ¥

where®(i, j) = %kll('” and|Ad j ;(FIMy.1)| is the determinant of the adjoint matrix B1 M, 1

with respect to the element, (). The derivatives of eack|My,; element with respect tay,,
are actually the derivatives of each elemenFol,,, with respect tax,;. These derivatives are
computed as explained in Section 7.4.1, so the details aittedinto avoid tedious repetition of the
same arguments. An analytical solution may be defined butptedao use the gradient (7.20) to
define the sensor movements for simplicity reasons.

It is important to remark that this approach is useful and/jokes good results when the sensor
speedV is quite larger than the target velocity, If the difference is not significant enough, then the
present approach will not be adequate, and planning thenaptiajectory would be a much better
approach, as it is studied in the next examples.

7.5.2 Simulation examples

Different examples are now studied to show the performance abitnve algorithm when a moving
target must be localized. Similarly to the examples seerenti®n 7.4, a constant spe¥d= 5 m/s
and a sampling timat = 5 sare considered. The initial sensor positiomis= [170,170,200]" m
and the target is initially placed at the origin of the ina@rtoordinate frame, at a depth of 2@0
The algorithm is run for the next 5000 points, so 5000 iteraiare carried out.

Example 7.5:V; = 0.1 m/s,V =5m/sandAt=5s

The target moves with a constant sp&ed 0.1 m/salong the{x, }-axis. In Figure 7.6 (a) we can
see the trajectory described by the sensor to maximize thiéiguing accuracy and how the sensor
tracks the target movements describing circumferencesdribs projection on the horizontal plane.
It is interesting how the optimal trajectory described by sensor is very similar to that shown in
Example 7.2 for a static target, with thef@rence that in the example at hand, the optimal trajectory
is moving accordingly to the target displacement. In thewagpof the upper right corner of Figure
7.6 (a), the trajectory for the last 100 simulated pointshisven to demonstrate how the sensor is
moving around the target position. As aforementioned,gbizd result is possible due Yois much
larger thanv;. In Figure 7.6 (b) the FIM determinant obtained for eachsitien of the algorithm is
shown. We can notice how the FIM determinant is very closbeo/alue obtained for a static target
in Example 7.2, but in this case the final value is not a fix vailLis within a range of values due to
the target and sensor movements. We can see how the optajeatary is reached in around 2000
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Figure 7.6: (a) Trajectory followed by the sensor to reach the optimgkettory that provides the maximum
FIM determinant. (b) FIM determinant computed at each itencof the algorithm.

iterations of the optimization algorithrm
Example 7.6:V; =1m/s,V =5m/sandAt=5s

This example aims at showing the problem presented by tipigoaph when the target velocity
increases, so theftiérence between target and sensor speeds is reduced. Nasgbiespeed is ten
times larger than in the previous example, but five times lemtdan that of the sensor. There is still
a great diference between speeds but the sensor does not behave whkaso reaction margin to
compensate the target movements, so it cannot follow acdregectory. Henceforth, this approach
is not adequate for this particular case.

In Figure 7.7 (a) we can see the trajectory described by theoseln the upper right corner of
Figure 7.7 (a) the last 100 measurement points are shownai.déeis interesting how the trajectory
described by the sensor diverges from the target trajectotyhow it becomes very fiierent from
what it could be expected, or what it was obtained in the previexample. The solution obtained
comes from the fact that the target speed is very large (oditference between speeds small) for
the approach adopted so that planning only the next measumtésmot enough to describe a correct
trajectory to track and localize the underwater target.ré&foee this approach gives a non-optimal
trajectory because the sensor is not able to track the target

In Figure 7.7 (b) the FIM determinant is shown for each iterabf the algorithm. The FIM
determinant has a large initial value compared to the final oks already mentioned, the sensor
trajectory diverges from that of the target, reducing glyicke FIM determinant. Thus, we can
conclude that this approach, for the mission constraintsicdered, is not adequate.

Therefore, it is clear that if the target speed is much sm#ikn the sensor speed this approach
provides satisfactory results, but if thetdrence between those velocities is not significant, the final
trajectory is not as accurate as it should be. For this lattenario, planning the trajectory for the
nextn future measurements provides a better result, close toptiraal one that would be obtained
for a static target.

Example 7.7:V; =1 m/s,V = 5m/sandAt = 5 sand 15 measurements.

If we cannot increase the sensor speed or decrease thegspeget, and our design constraints
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Figure 7.7: (a) Trajectory followed by the sensor trying to obtain thexmaum FIM determinant. (b) FIM
determinant computed at each iteration of the algorithm.
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Figure 7.8: (a) Trajectory followed by the sensor to reach the optimgkettory that provides the maximum
FIM determinant. (b) FIM determinant computed for eachaition of the algorithm.

with respect to the target and sensor velocities are sindlétose seen on the previous example, a
simple manner to (partially) avoid the abovementioned fgmolis to compute the FIM with a large
number of range measurements. By doing so the sensor carba@estarger trajectory and a larger
FIM determinant can be obtained. For the example at hand owsider that the FIM is computed
with the last 15 range measurements.

In Figure 7.8 (a) the optimal trajectory is shown. It can b&asal how the trajectory described
by the sensor is a sequence of circumferences followingtigettrajectory. Although this trajectory
implies a good positioning accuracy and the sensor is alttadk the target, the fierence of speeds
is still large for this approach and the tracking of the taigeot adequately performed. The latter
can be seen on the capture of the upper left corner of Fig8r@y,.where the last 100 measurement
points are shown. It can be seen how the sensor is alwaysdttdriarget and the circumferences
described are not around the target projection on the hatatplane. The maximum positioning
accuracy would be obtained if the sensor was turning arceddrget, so the target is not tracked
with the largest accuracy that could be obtained for 15 rangasurements, moreover, this is a
very large number of range measurements for the computatithe FIM. In Fig. 7.8 (b) the FIM
determinant obtained at each iteration of the optimizadigorithm is shown. The accuracy obtained
is large and the value is kept within a margin of accuracyrdytie tracking of the target, although
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a large number of measurements is required to obtain thidtr&f course, if the variability on the
accuracy shown in Fig. 7.8 (b) is tolerable or not will be riuasdependent

Therefore, from the three examples shown it is clear thatdapproach is only valid when the
target moves much slower than the sensor or when the numimeasurements used to compute
the FIM is very large. In any other case, other strategiesname adequate.

7.5.3 Optimal trajectory

In this scenario we find again an equation systenm ef 1 equations andh — 1 unknowns if an
analytical solution for the set of orientation angtggo be defined is searched in a similar manner
as in Section 7.4.3. These equations may be easily definedrhypwing the derivatives of the
determinant of (7.16) with respect to the anglesi = 2,--- ,n, in the same way as it was defined
in (7.15). Therefore an analytical solution may be definéttipagh the procedure is complex and
it is necessary to resort to numerical methods to find thetisolu For the above reason we opted
again for a gradient optimization method for the computatibthe optimal trajectories. Details are
omitted to avoid tedious repetition of the same argumentsneented in previous sections and we
proceed to the study of some examples.

7.5.4 Simulation examples

The same examples of Section 7.5.2 are now studied for casopgrurposes of both methodologies.
For this reason, a constant sp&ge 5 m/sand a sampling timat = 5 sare considered. The initial
sensor position ip; = [170, 170, 200]" mand the target is initially placed at the origin of the inairti
coordinate frame, at a depth of 260

Example 7.8:V; =0.1m/s,V =5m/sandAt=5s

For this first example the target velocity\s = 0.1 m/s. In Figure 7.9 (a) the optimal trajectory
followed by the sensor to track the target is shown. Simjiléml Example 7.6, the sensor tracks
adequately the target since there is a grefiedince of speeds and the trajectory can be planned
without problems. In the lower right corner of Figure 7.9 (@@ last 100 measurement points are
shown in detail, so we can see how the sensor is describingeferences around the target position
in a similar manner as if the target was in a position fix. Inuf&g7.9 (b) the FIM determinant is
shown and it can be noticed that the accuracy obtained igfdhgn in Example 7.5, and it is
very close to the one obtained for a static target in Examg@e Although for both examples the
trajectory followed by the sensor is correct and provides@d positioning accuracy, in this case the
FIM determinant is larger because the trajectory is op#aifor a given number of measurements,
not just one. Moreover, the optimal trajectory is reachdeés iterations than in Example 7.

Example 7.9:V; =1m/s,V =5m/sandAt=5s

This second example shows the advantage of using this agipwdeen the target speed is larger,
i.e., the diference between target and sensor speeds is smaller. IreHdL0 (a) the trajectory
described by the sensor to track the target is shown. We darerfow in this example, in contrast
to the result of Example 7.6, the sensor adequately traekathet describing circumferences around
the target projection on the horizontal plane, similarlyhat obtained in the previous example. In
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Figure 7.9: (a) Trajectory followed by the sensor to reach the optimgjetitory that provides the maximum
FIM determinant. (b) FIM determinant computed at each itenaof the algorithm, i.e., for each new 5
measurement points.

2150 B)1 1000
1601 10000
— 140}
B 9000
3 1200
£ 100} . 8000
'g .
S 80l . = 7000}
c - s
5 60r . -0 340 350 360 370 380 390 400 — 6000
R o3 5000
T 20/l T i ‘}a‘lb‘" |
> oo o0z bl '3' taee s *¥e ol gl 4000 |
ofe % . |
& e l'o .';,4 )
IPTIECE gﬂ" ""'. | 3000
oo l" BYpe Fetortd, o,...f'g'-o.
-40 2000 w w w w
0 50 100 150 200 250 300 350 400 0 20 40 60 80 100

X—position coordinate (m) iterations

Figure 7.10: (a) Trajectory followed by the sensor to reach the optimgjettory that provides the maximum
FIM determinant. (b) FIM determinant computed at each fienaof the algorithm, i.e., for each new 5
measurement points.

the upper right corner the last 30 measurement points averstamd these circumferences described
by the sensor around the target can be seen in detail. We tiae imoFigure 7.10 (b) how the FIM
determinant obtained is very similar to the one obtainechefrevious example and the one of
Example 7.4. Moreover, we can see how the accuracy is mugérldran in Example 7.6a

Therefore when the target is moving, it is clear that plagramumber of future measurement
points is a better strategy than planning just the next anthat a good positioning accuracy can be
obtained.

7.6 Conclusions

In this chapter the problem of single underwater targettjppsng by a single surface sensor has
been studied. The analysis of optimal sensor trajectorip®its the spatial and temporal diversity
of the measurements taken by the surface sensor and it haslbee for two diferent scenarios,

183



Optimal Sensor Placement for Target Localization

initially i) for a static target placed at a known positiongdathen ii) for a mobile target that is moving
in a straight line with constant velocity. Twoftérent approaches for the computation of the optimal
trajectories have been tested considering a fixed numibérange measurements with which the
FIM is computed. The first approach deals with the computaifdhe next measurement point that
maximizes the current FIM determinant, and once this ogtpoat is determined, the sensor is
driven to this position in which a new range measuremenkisrt@and the FIM is updated, deleting
the oldest range measurement. The second approach ogtitheze/hole trajectory for the number
of range measurements considered, so in contrast to thépsegpproach, the sensor trajectory
is computed each measurements, instead of recomputing it after each newerargasurement.
The examples showed that for a static target both approacbeisle similar accuracies and optimal
trajectories. However, for a mobile target, it was cleat tha second approach was more reliable,
providing a similar solution to that defined for a static &ttg@nd with so much larger accuracy than
the first approach.
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Chapter 8

CONCLUSIONS

This work has addressed several estimation problems reléwathe positioning of underwater
targets. The problems however, are also of practical inapeg in other dferent fields such as
indoor, urban, and space navigation, whenever GPS measntgigre not available, or unreliable,
and one wants to use an alternative range-based local maviggystem. Therefore, the sensor
configurations that maximize the estimation accuracy haenltheoretically defined to be applied
in a practical scenario.

This work dfered a characterization of the solutions to the problem tifregd acoustic sensor
placement for single target positioning in 2D and 3D spawéh,special emphasis on the application
scenario of underwater target positioning in 3D by a surfaresor network.

By assuming that the range measurements between the tadj¢he acoustic sensors were
corrupted by white Gaussian noise, the variance of which diagnce-dependent, conditions
were derived under which a sensor network maximizes theeraglgted information available
for positioning. This was done by exploiting tools from esttion theory whereby the problem
to be solved was converted into that of maximizing the deiteant of a conveniently defined
Fisher Information Matrix (FIM). The core result obtainedsvan analytic characterization of the
conditions that must be met by a genarisensor network in order for it to be optimal. This result
was instrumental in deriving strategies to deal with pcadtsituations where, depending on the
mission at hand, the sensor network should satisfy sevenst@ints.

One of the practical scenarios studied was an underwatgttpositioning, in which the sensor
network might be completely underwater or at the surfacegven configured such that a sub-
group of sensors is at the sea surface and the remainingreup-gs close to the sea-bottom.
The relationship between optimal solutions in 2D and 3D spawas clarified. It was further
shown that the optimal sensor configuration lends itselitinéeresting geometrical interpretation
and that the spreading of the sensor configuration depergdigilx on the intensity of the range
measurement noise and the probabilistic distribution dedines the prior uncertainty in the target
position. Examples illustrated the application of the melblogy in a number of applications-
relevant scenarios.

The previous analysis was extended to the problem of det@rgthe optimal configuration
of a sensor network that will, in a well defined sense, maxinilze range-related information
available for multiple underwater target positioning. Tistefect, we assumed again that the
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range measurements were corrupted by white Gaussian nitlisgistance-dependent covariance. In
contrast to what has so far been published in the literatueesxplicitly addressed the localization
problem both in 2D and 3D using a sensor array located in 2D3h@paces too. The special
scenario of a surface sensor network (2D) was studied foemwvater target positioning in the 3D
positioning problems. Furthermore, we incorporated dlyen to the problem formulation the fact
that multiple targets must be simultaneously localized.

At the core of the techniques used are key concepts and neefhae Pareto optimization
and estimation theory. From a mathematical standpointkélyeproblem that we solved was that
of maximizing, by proper choice of the sensor geometric goméition, convex combinations of
the logarithms of the determinants of the Fisher InformmaMatrices corresponding to estimation
problems for each target separately. This was done by negotd an iterative optimization
algorithm. The methodology developed allowed for an in Hegitidy of the trades that are
inherent to a multiple target localization problem. Sintidla examples showed clearly how the
optimal sensor location depends on the size of the area iohathie targets operate, the type of
measurement noise, and the “level of importance” attachezhth of the targets; the latter aims
to capture the fact that trad@e are inevitable, and thereforefidrent levels of accuracy may be
required in the localization of the filerent targets. The analysis was extended to the situation in
which the prior knowledge about the targets is describedrblability distribution functions and it
was shown that the spreading of the sensor configuratiomdespexplicitly on the intensity of the
range measurement noise and the probabilistic distribukiat defines the prior uncertainty in the
target positions.

The special scenario in which the target positioning isgrened by angle measurements in 3D
was studied as a natural extension of the previous methggolthe measurements of the azimuth
and elevation angles were considered to be corrupted by @atissian noise, the variance of which
was distance-dependent, and conditions were derived umdieh a sensor network maximizes
the angle-related information available for positioninghe optimal formations and conclusions
obtained for this problem were very similar to those of thegexmeasurement problem, so only a
brief analysis has been developed to avoid tedious repetifithe same arguments exploited in the
range-measurement problems.

Finally the problem of underwater target positioning usrgingle surface sensor was addressed.
For this problem two dferent approaches were studied. The first one i) when just éxé n
measurement point, and thus the next sensor movement, raushdsen so as the new FIM
determinant be maximum considering the past measuredsangd the second one ii) in which
the nextn measurements are planned so as they maximize the FIM detarmiBoth approaches
were studied for a static and a moving target, showing that &tatic target both approaches provide
similar optimal trajectories; however, for the second apph the optimal trajectory is reached faster.
In the case of a moving target, the examples showed that iplgutime trajectorya priori is a much
better alternative that implies similar results to thostaoted for a static target. For the next best
measurement approach, the results were not as accuratecasdtbe expected, and this approach
only provides satisfactory results if the sensor speed ishmarger than the target one, or if the
FIM is computed with a large number of range measurementssé&pently, it was clear that for a
moving target it was necessary to plan the trajectory toiolst@ood positioning accuracy.

To sum up, in this work the problem of single and multiple &rgcalization has been studied
both in 2D and 3D. Analytical and numerical solutions foriop@l sensor placement and optimal
sensor trajectory, depending on whether a sensor netwqusia single sensor is used, have been
defined. Moreover, the problem in which the covariance ezaor be distance-dependent has been
tackled as well. The potential of the methodology developasl been illustrated with multiple
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examples for the dlierent problems and scenarios, with special emphasis opflieation scenario
of underwater target localization by acoustic sensors.
There are several topics that were not addressed in thet mapmbwarrant further research.

8.1 Future Work: Multiple Target Tracking and Cooperative
Navigation

In the last few years there has been an increasing interést inse of multiple underwater vehicles
to work in cooperative missions and tasks. The use of maltyghicles presents many potential
advantages compared with a single vehicle. For instan@atipns such as searching or surveying
can be developed in less time, in addition the area coveragée increased depending on the
number of vehicles employed. In this sense, fleets of undengdiders have started to be used to
gather oceanographic data, and groups of AUVs have beertapedorm surveying and de-mining
missions successfully, showing the potential on usingiplelvehicles simultaneously.

Central to these kind of tasks are the navigation capaslitif each vehicle and its navigation
systems, that in a classical scenario can be possibly aided@me underwater acoustic positioning
system. This scenario can be improved in a great mannerdf wehicle communications and
ranging are used in order to increase the overall group a#wig performance. A group of
underwater robots might be able to navigate with higheripi@t, as compared to each individual
vehicle navigation system, if they can communicate certdormation with all the vehicles or with
their neighbours.

This leads to the concept of cooperative navigation, whieegetis a synergy between the
navigation systems of the multiple vehicles operating siameously, allowing them to navigate
better than they would do on their own. There has been sonoedtieal and experimental works
on this direction but it is expected to see many more in the futare, see for example [21], [17],
[28], [72], [93]. There are many fundamental theoreticad @nactical questions that still need to
be addressed. Particularly important in the underwateir@mwent is the characterization of the
communication requirements in terms of bandwidths and conication topologies that are needed
in order to achieve a certain navigation performance [33].
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Appendix A

THE INFORMATION INEQUALITY

In this Appendix it is computed the Fisher Information Matwhen the measurement error is
modelled by Gaussian, zero mean additive noise with an atktedthat depends on the distance
between the two objects that exchange range data.

Letq = [gx Q. 0] in 3D, orq = [dx q,]" in 2D, be the position of an arbitrary targes; =
[pix> Py.]" or pi = [Pix Piy,» Piz] T, with i = 1,2, .., n, the position of thé-th acoustic ranging sensor,
andwj the corresponding measurement noise. Stated matherhatical

w = (I +n6(r()")) - wo (A.1)

wherew is measurement noisey is a zero mean Gaussian procbgs, Xo) with o = o?-1, | is the
identity matrix,r(q) is the vector of actual ranges (ablby, andp andy are the modelling parameters
for the distance-dependent noise component. In the abav#e operatodiag, that either converts
a square matrix into a vector consisting of its diagonal elets, or converts a vector into a square
diagonal matrix whose diagonal components are the arraeglts. With these assumptions, the
measurement noise covariance matrix is given by

T=Ef{w- o'} = E{(l +76(r(@") wo- wg (I +no(r(@)'} =
= (1 +76(r(@)") E fwo - wo ) (1 +n8(r(@)")" = (A2)
= (L+75((@") D (1 +no(r(@)”) = o (1 +n6(r(@)"))
0

We denote by; the measurements of the actual rangg), corrupted by additive noise;. With
the above notation, the measurement model adopted is gjven b

z =|q- pil+wi =0 + wi (A.3)

Stated in simple terms, the FIM captures the amount of inftion that measured data provide
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about an unknown parameter (or vector of parameters) totimaged. Under known assumptions,
the FIM is the inverse of the CRLB, which lower bounds the ci@rece of the estimation error that
can possibly be obtained with any unbiased estimator. Thirgmizing the CRLBnay vyield (by
proper estimator selection) a decrease of uncertaintyeipéinameter estimation. We therefore focus
on the computation of the CRLB (or, equivalently the FIM) foe problem at hand.

Formally, letd(z) be any unbiased estimator @fthat is, a mapping °~ R" — RS between the
observationg and the target position space such tB&i} = q for all g € R3, whereE{-} denotes
the average operator. Leg(2) be the likelihood function that defines the probability dt@ining
the observatioz given that the true target positionds It is well known that under some regularity
conditions onpy(2) the following inequality holds:

CoMq} > FIM(g)™ = CRE() (A.4)

where
Covd) = E{@-a)@-a)'), (A.5)
FIM (q) (often abbreviated simply as FIM) is the Fisher Informatiatrix defined as

FIM(q) = E{(Vqlog pa(2))(Vqlog pa(2)'} (A.6)

andCRHE(q) is the Cramer-Rao Bound matrix. In the aboVglog py denotes the gradient of the log
of the likelihood function with respect to the unknown paedenq. Taking the trace of both sides
of the covariance inequality yields

var() := tr(Cov@)) = tr(E{(@ - a)(@-a)"}) > tr(FIM(q)) ™ (A.7)

that sets a lower bound on the mean-square error of any w@théstimator.

Equipped with the above notation and tools of estimatiorotpeand following standard
procedures, the FIM corresponding to the problem of raraged single target positioning in 2D
or 3D can be computed from the likelihood functipg(z) given by

(2 = exp| -3 @~ @) = - @)} (n8)

(2n)3]z)2

wheren is the number of receivers,= [z, 2, ..., z,]" consists o measured ranges, an(h) are
the actual ranges. Taking the logarithm of (A.8) yields

10 pe = ~log (2?1212 - 2 (z— r(@) = (2~ r(a)) (A.9)

At this point it is necessary to introduce some concepts irtrid®ifferential Calculus and
Derivations to derive (A.9) with respect tp For this purpose it is necessary to determine the
gradient of the functiorf : R" — R given by

f(x) = % (r=r()" = -r(x) (A.10)

whereX is taken as a constant am@x) = [ ri(x) ... mix ] € R" is the vector of range
measurements betweenand the landmarks whose coordinates are definedpbyi.e., with
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components;(x) = ||x - pill, with i € {1,---, n}. The first diferential off yields

df (x) = %d r=r)" =r-rX)+ % r=r)" = -rx)=

(A.11)
= —%dr Q"= r-r(x) - % r—r()"=%dr(x) = = (r —r (x))" = %dr (x)
The diferential ofr (x) is given by the dierential of its componentdr (x) = [ dry(x) -+ dr(x) ]T,
dri () = d||x — pil| where
dlix—pill = d((x— p)" (x— pi))% = %((X— )T (x- pi))_% d((x=p)' (x=p)) =
(A.12)
_ 1 2(x—p)" dx= 1 (x—p)" dx
B EIC I R A R
Then,
=5 (x=p1)T dx w0 (x=po)'
dr(x) = : =l .. : dx=6(r (x)1CTdx (A.13)
r%x)(x_pn)TdX 0o - T%X) (X_pn)T
and
df () =-(r-rX)" = rdr(x)=-( -r(x))" =% (r (x)CTdx (A.14)

which has the forna f (x) = a"dx. According to theFirst Identification Theorerim [54], the gradient
of the MLR cost function is given by

VEX) = -Cos(r (X)) 121 (r —r(x). (A.15)

From the above results and considering ¥igt(q) = [Vqra(q) . . . Vra(0)],

L

@ @-p)" =6 a1y, - p)" =6(r)"'CT

1 1
vri(a) = 5(a'a-2p/a+pp) (29" - 2p)) =

whereC = (q1], - p) € R™™M nis the number of sensons) = 3 in 3D problems andh = 2 in 2D
problems, and is the vector with the sensor positions, the latter beingnéefin R"™™. Making
x~1 = B?, the derivative of (A.9) with respect tpyields

Valog pg = 3V (@ (@) = (2 1(@)] =
(A.16)
= (z- (@) = 4r(d) = (- 1(Q)" B-B-5(r) CT

It is not necessary to deriv@ with respect tay because the noise model depends on the actual
range, not the measured one. The FIM is computed from thectegbegalue of the covariance matrix
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of (A.16);

FIM =1(6) = E{Vylog py - Vlog pj } = E{C5(r)B? (- 1(®)) (z— r(q))" B(r)"'CT} =
= C5(r) B2 E{(z-r(@) - r(@)'}- B%(r)C" =
= Co(r)*B?- (I + no(r"))E {wowg } - (1 + no(r*)) T B6(r)'CT =

=Cos(r)™IB?- o2 - | - (I + ns(rf))? - B?5(r)"1CT = C(s(r)=s(r))~*CT

Then the expression of the FIM yields,
FIM = E{Vqlog pgVqlog pg} = C (8(r)za(r)) ™ C" (A.17)

Thus the expression of the FIM with distance-dependentraavee is well defined and it has an
structure very similar to the one with constant covariance.
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Appendix B

PARETO-OPTIMALITY

For the sake of completeness, this Appendix contains a vesfjibtroduction to some key concepts
and results on multiobjective optimization and Paretaroality. The exposition is largely based on
the summary in [45].

Because we are interested in the problem of multi-targetiposg, we are naturally led to adopt
a multiobjective optimization strategy. We adopt the cquicé Pareto optimality introduced below.
Let X be an arbitrary non-empty setand fet X — R, : i = 1,2, ..., nben nonnegative functionals
defined onX. A pointx° € X is said to be Pareto-optimal with respect to the vectoradlriterion
f := (f1, f2, ..., fp) if there does not exist € X such that

fi(x) < f(0) forall i=1,2,...n

and
fi(X) < fil(X®) forsomeke1,2,..n

From the above it follows that if one wishes to find poirts X such that, in some sensejointly
minimizes all the components 6f then one must examine the Pareto-optimal points. Itisestang
to pointthat in the literature on economics a Pareto-odtimecome is one such thab person could
be made betterfwithout having someone else worgg o

When Pareto-optimal solutions do exist, in general theyateinique. The determination of the
Pareto-optimal set for a given multiobjective problem glayey role in that it allows for a thorough
study of the tradelds involved in the problem at hand. The next scalarizationltes [22] is of
crucial importance in characterizing this set.

Scalarization result Suppose thak is a normed linear space and that each componeht: ef
(f1, fa, ..., fn) is @ convex function oi. Let

A={1eR": A4 >0+ +.. .+, =1}
and for eachlt € A consider the following scalar-valued optimization praobie

infAT f(x) : X° € X} (B.1)
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Suppose that® € X is Pareto-optimal with respect to the vector-valued dotef := (fy, f, ..., ).
Then, there existd € A such thatxy is a solution to the scalar optimization problem above.
Conversely, given € A if the scalar optimization problem has at most one solutfba X, thenx?

is Pareto-optimal with respect f{x).

The above result yields a powerful methodology to computePateto-optimal points. In
this work, the scalar function§ are related to the logarithms of the determinants of thedfish
Information Matrices corresponding to each of the targeiadplocalized (notice that we wish to
maximize the determinants jointly, rather than minimizent in this case, however, an obvious
modification of the result above applies).
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Appendix C

GRADIENT OF THE FIM DETERMI-
NANT

This Appendix contains the derivatives of the logarithmhe EIM determinant with respect to the
position coordinates of the-th sensor used in Chapter 4 and Chapter 5 for the gradient aatiioin
algorithm. For the sake of completeness the FIM is definethaga

FIM = C(5(r)=s(r))*CT (C.1)

whereC = (q1] — p) € B¥", 1, € R™ is a vector of 1s, ang is the vector of sensor positions, the
latter being defined iR3", and with

% = o2 (1 + 75(r(@)")? = 5(02 () o? (1 nrg)z) (C.2)

Expanding (C.1) we find,

(@—P)® 12 @—P)(—Py) 2 (A= P (C=Pir) T2
Lol o Eh @ L @l
(@x—pix)( Gy~ Ppi —py ) —Piy ) (@~ Piz)
FIM = ;Z %P g% py)riz (qyrgy) r2 (% pyr)zq o2 (C.3)
i=1 y -\ ' ' 2
(@P)@P) 2 (B=Py)(@Pa) 2 (@-po)? 2
r2 Iﬁi yy? Iﬁi ri2 Iﬁi

wherel; = 1/ (1+nr}) fori € {1,...,n). For the sake of simplicity the FIM described in (C.3) is
rewritten as,
FIM1; FIM1y, FIMq3
FIM =| FIMi> FIMz FIMgs (C.4)
FIMi3 FIM23 FIM33

where the meaning of each FIM element is clear from the contex
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The FIM determinant can be written now,

[FIM]| =FIM11FIM22F IM33 + 2FIM12F IM13F IM23

(C.5)
~ FIM3;FIMy1 — FIMZFIM2; — FIMZ,FIM33
and the derivative of its logarithm with respecttovheres = pix, py. piz, becomes
dlog|FIM 1 HFIM
gIFIM| _ FIM| C6)
0&i [FIM]| 9§
where
FIM| 6FIM FIM FIM
IFIMI_9 “F||\/|22F||\/|33+‘9 22FIM11FIM33+6 33FIM22FIM11+
8§i 8§|
AFIM AFIM FIM
26—6HFIM23FIM13+2 a§i13F|M23F|M12+2 (9§|23’|=|M12|:||\/|13
(C.7)
OFIMu_ o OFIMas F 1My
- FIM FIMosFIMyq — FIM13—
afi 23~ af, 23 11 af, 13
FIM AFIM FIM
22 “CFIMisFIMz, — 33F||\/|12—2‘9 12F||\/|12F|M33

To finalize with the analysis of the derivatives of the log Ftidterminant with respect to the
sensor position coordinates it only remains to define thiwakires of the elements of the FIM with
respect to these variables, so that the whole derivativeefieed! explicitly. We define next the
derivative of each FIM component with respeciig, piy, piz, respectively.

2
AFIMy; ~ -2 (0x — Pix) ((qy - piy) + (0, - piz)z) 2 (O — pix)2 . ariZ

pry i +
6pix ri4 I ri2 6pix
OF M1 _ 2(dx — pix)° (Qy - piy) 2 (A — P)* ary
(9piy ri4 I ri2 8piy

OF M1 _ (20— P)® (%= P) ) o, (Gx—pi)® OI7
6piz - I’-4 I I’-2 8piz

2
OF 1Mz, [2(ay = Py) (@ = Pw)
ik ré ' r2 9Pix

2
OF 1Mz _(=2(% — Py) ((Gx— P + (G2 - Pi)?) 2, (- py)" ar?
dpy rd ' rz dpy
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OFIM,  [2(ay - piy)2 @-pd)| . (ay - piy)2 or?

pz ré ' r2 P
OFIMg3 _ 2 (0 — Pir)? (O — Pix) T2 4 (Qz - piz)2 ) ariz
6pix ri“ : ri2 apix
OFIM33 2(0 — pi)? (Qy - piy) 2, (02 — pi)? . 6_F|2
py rf ' 2 opy
2
oM, (20~ P (@ P + (6 - 1)) o, @-p)? OTF
Pz ré ' r2 9Pz
2
OFIM1y (Qy - piy) ((QX — pi)? - (Qy - piy) - (G- piz)z) 2 (ax — Pix) (qy - piy) ari2
oo 2 S 2 ' Opix

dpyy rd r2 (9_p|y

OFIMsz _ [(qx ~ Pix) (— (G~ Pw)? + (6~ Py) — (@ p.z)z)] o, @@ -py) a2

OFIM1,
8piz -

2 (o= pix) (ay — Py) (G — piz)) 2, P (- py) ar2

OFIMyz
apix

(9x = Pix) (G — piz) L7
I'i2 apix

.Fz+
rd :

(G — Pio) ((qx — P = (o~ py) — (G - p.z)z)]

OFIMss _ (20— P (O = Py) @ = Pe) |, (G= p) (G = P) 17
Ipy ri ' r2 apy

OFIMys
apiz

ri r2 op;

(qx - piX) (_ (qx - piX)z B (qy - piy)z ’ (qz _ pIZ)Z)] : Fz + (qx - pix) (QZ - piz) . ariz

Jpix r4 ' r2 " Opix

OFIMo3 {2 (Ox — Pix) (Qy - piy) (9 - piz)] 24 (Qy - piy) (Gz— piz)  or2

205



Optimal Sensor Placement for Target Localization

2 2 2
OFIMos _ (qz - piz) (_ (QX - pix) + (qy - piy) - (QZ - piz) ) 2. (qy - piy) (qZ - piz) . or2
Jdpiy r4 i ri2 opy

AF M3 ~ (qy - piy) (— (ax - pix)2 - (Qy - piy)2 +(Qz - piz)z) 2 (qy - piy) (9;— pi) o2
0piz B r it riz . 3_p|z

and finally,

a2 2y (ax = pi)
OPix o2 (1+qr7)3
arz  2nyr*(ay - py)

5_piy a2 (1+nr7)®
oz 2] (6 - pw)
p,  o2(L+qr)3

Therefore the derivatives of the logarithm of the FIM detierant with respect t@i, py, pi; are

well defined and can be used explicitly for the gradient opat&tion algorithm of Chapter 4 and
Chapter 5.
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Appendix D

GRADIENT OF THE TRACE OF THE
CRLB MATRIX

This Appendix contains the derivatives of the trace of theBORith respect to the angles;
andB; of thei — th acoustic sensor. These derivatives are used in Chapter thdogradient
optimization algorithm to determine the optimal sensocefaent for single target positioning with
AE-measurements with uncertainty in the target locatiar.tke sake of completeness the FIM for
AE-measurements is defined again,

FIM = E{Vqlogpy- Vqlogpg| = FTX7'F, (D.1)

with T
T=6 ((ag (@49, 0% (L4 ) ) (D.2)
and .
—sin(ay) coqai) 0
o R ) (o
ry r 1

F= : : : (D.3)
— sin(an) cogan) 0

b ) s Sy —cospy)
' M n

whereF € R?™3 ¥ ¢ R2™2" andCRB= FIM~. The sensors are considered to be placed at the sea
surface so that the range distamcef thei — th sensor can be rewritten gs= g,/ sin(3;), whereq,

is the target depth ang is the elevation angle, as described in Chapter 6. For treaakmplicity

the FIM described in (D.1) is rewritten as,

FIMi1 FIMy FIMgs
FIM =| FIM; FIMy FIMgs (D.4)
FIMiz FIMy FIMag
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where

EIMq4 = Zn: sin? (a’i)sm2 Bi) + sin’ (,Bi)C052 (i)
11—': & VY A o VYV
i=1 | g2 co2 (B;) - o2 (1+r](sm(ﬁi)) ) qs - o (1+ r](sm(ﬁi)) )

ElMo» = Zn: cog (a’i)sm2 (BI) + sin® (,Bi)SiI"I2 (a'i)
22_: 2 N . 2. _QZ 7\2 2. 2. .qz 7\2
1 gcog (B) o2 (L+n(z5)) @02 (1+n(55))

n [ cosz(ﬁi)sinz(ﬁi))y) }

FIM3s3 =
33 ; qg‘o.Z.(l'Fn(sir?(zﬁi)

FIMi =

n [ sin(op) cos(a)sir? (B) __ sir (8) cos(ar) sin(an) ]
i=1 qz COS?(ﬁ) o? (1+7](sir?(2’i))y)2 q% (1_'_7](5'”(&))7)2

{ cos(B;) sin® (8;) cos(a;) ]
FIMy3 = N2
BT (1+'7(sm(6|)) )

[ cos(B) sin® (8;) sin () ]
FIMogs = o~
202 (140 (sme) )

With the above notation, the trace of the CRB matrix yields

FIM2oFIMaz— FIMZ,  FIMyFIMaz— FIMZ,  FIM11FIMy; — FIMZ,

r(CRB = IFIM| " IFIM| " IFIM| (0:5)

and its derivatives with respectfowhere¢ = «;, 8j, become

otr(CRB (GFIMZZ 0FIM33 c’)FIMgg
= FIM FIMgy -2 FIM
o8, o 33+ o9&, 22 23
OFIM 11 0F M3z 0FIM13 0FIM11
FIM FIM1; -2 FIM FIM D.6
+ o0& 33+ o 11 o 13+ 0 22 (D.6)
8FIM22 0FIM12 1 JFIM| 1
FIMq; -2 FIM||[FIM tr(CR FIM
o 11 o 12)| I +tr(CRB - o | I
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where

JIFIM|  9FIM AFIM AFIM
IFIMI _ Y EIMyoF Mg + ZEIMy;FIMg3 + BEIMaFIM
8§i 8§i i i
FIM FIM FIM
+ 20Tz FiMs + 22E M e M, + 22 z 2EIM1FIM13
i i I
OFIMy_ 5 . OFIMas aFlM22
- FIMZ2, -2 FIMasFIMyq — FIM
o8, 23 o8, 23 11 13
FIM FIM FIM
0 3 13FIM13FIM22—8 33|:||\/| 2—26 2EIM,F IMa3
1

i
(D.7)
To finalize with the analysis of the derivatives of the tratéhe CRB matrix with respect to the
anglese; andg; it only remains to define the derivatives of the elements effhiM with respect
to these angles, so that the whole derivatives be definedcgkplWe define next the derivative of
each FIM component with respect#pandp;, respectively.

FIM11 [ 2sin@) cos) Sirf(5:) - R
da ( co2(Bi) — 2sin() cosgy) sin (Bl)) T

OFIM1y  (2sin@)sir(ai)  2sir(5) sin(a) s | |
9Bi _( cosB)  cos(8) “‘45"’?(&)003(3')0032(0.))'Fiz

. ' . 2
+ (—szc(:(;g?ﬁ?; () +sin* (8) cog (i) | - Z%

6Fé:C|::|22 _ (_ 2 sin(ai)cc;oszs(e;:; SIPED) , 5 singy) costx) Sm4(ﬂi)) T2

IF al l;\i/lzz :(2 sinfé)sz?)sz(ai) _ ZSiﬁC(fg(‘;‘i’;z @) , 4sir?(ﬁi)cos(8i)sin2(ai)) 7
cog (ai) sir? (1) or
(o e s ) 5
OFIMg3
om0
2
aFaI;E.A 2 = (2sin@) cos(8) — 2 cos) sin’(8)) - TZ + (cod (8) sir? (87)) - 8_2.
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+ (coS(e) — sin(e)) sin“(,Bi)] -T2

OFIMy, [ (coS(ai) - sin(e)) sin’(8)
dai co2(8)

OFIMiz2 _ o, (2 Sin) Sin(i) COSE) 4 i35 cosfsr) cos) sinar)

g ! cosfi)

2

aBi

2 sif(B) sin() cos@)| . S’ (8)
- oS )+ sin(a;) cos@) (co§ (ﬂl) sin (,8.))

OF M1 _ —sin’(8) cosfB) sin(;) - T?
Oa

2
6':;[3'\'/'13 = cos) (3sirf(8) cog(8;) - sir(8)) - I? + sin’(8) cosf;) cosx) - 3_;'

% = —sin’(8;) cos) cosg) - 2
PINZ _ inta) (38irf(8) cod(6) - sirf(4) - T2 + sir(s) cosf) sina) - -
B i i i i ' ' Yop;

and finally,

are 21y (siy)’
opi q§0'2 tan@i) (1 +n (sm(B.) )7)3

Therefore the derivatives of the CRB trace with respeatitandg; are well defined and can
be used explicitly for the gradient optimization algorittehChapter 6 to define optimal sensor
networks for underwater positioning with uncertain talgegtion.
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