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ABSTRACT

Worldwide, there has been increasing interest in the use of Autonomous Underwater Vehicles
(AUVs) to drastically change the means available for ocean exploration and exploitation. These
vehicles are becoming ubiquitous due in part to the flexibility and versatility that a number of them
display in the execution of individual and cooperative tasks. These characteristics, coupled with the
fact that their use avoids placing human lives at risk, makesthem quite attractive in a number of
missions that include pipeline inspection, seabed surveying, and archaeological research, to name
but a few. Central to the operation of some classes of AUVs is the availability of good underwater
positioning systems to localize one or more vehicles simultaneously based on information received
on-board a support ship or a set of autonomous surface vehicles. In an interesting operational
scenario the AUV/s is/are equipped with an acoustic pinger and the set of surface vehicles carry a
network of acoustic receivers that measure the ranges between the emitter and each of the receivers.

Motivated by these considerations, in this work we address the problem of determining the
optimal geometric configuration of sensor networks, in 2D and 3D, that will maximize the
range/bearing-related information available for single or multiple target positioning. It is assumed
that the range/bearings measurements are corrupted by white Gaussian noise, the variance of which
is distance-dependent. Furthermore, we also assume that aninitial estimate of the target position
is available, albeit with uncertainty. The Fisher Information Matrix and the maximization of its
determinant or the minimization of the trace of the CRLB matrix are used to determine the sensor
configuration that yields the most accurate “expected” positioning of the target, which is expressed
by a probabilistic distribution. It is shown that the optimal configurations lend themselves to
interesting geometrical interpretations and that the “spreading” of the sensor configuration depends
explicitly on the intensity of the measurement noise, and onthe probabilistic distribution that defines
the target position. The scenario of underwater target positioning by a surface sensor network is
studied along this work as an example of application of the methodology developed. Moreover, the
special and particular scenario of a single surface sensor is studied separately due to the growing
importance of this problem in the last few years.





RESUMEN

Actualmente, existe un creciente interés en el uso de vehı́culos autónomos submarinos (AUVs) para
cambiar de forma drástica los medios disponibles para la exploración y explotación de los océanos.
Esta clase de vehı́culos está presente en múltiples aplicaciones debido a la flexibilidad y versatilidad
que éstos demuestran en la ejecución de numerosas tareas,tanto individuales como colectivas. Estas
caracterı́sticas, junto con el hecho que su uso evita poner vidas humanas en peligro, hacen que
su uso resulte muy atractivo en múltiples actividades, como pueden ser la inspección de tuberı́as,
el estudio del fondo marino, la investigación arqueológica, por nombrar algunas. Para el correcto
funcionamiento de diferentes clases de AUVs es fundamentalla disponibilidad de buenos sistemas
de posicionamiento submarinos con los que localizar uno o m´as vehı́culos de forma simultánea
mediante información recibida a bordo de un barco de soporte o de un conjunto de vehı́culos
autónomos de superficie. En un escenario operacional interesante, el AUV o AUVs pueden estar
equipados con un emisor acústico de modo que el conjunto de vehı́culos de superficie, que transporta
una red de sensores acústicos, mida las distancias entre emisor o emisores y cada uno de los sensores.

De acuerdo a estas consideraciones, en este trabajo se estudia el problema de determinar la
configuración geométrica óptima de una red de sensores, tanto en 2D como en 3D, que maximice
la información existente en medidas de distancias o ángulos para realizar el posicionamiento de uno
o varios objetivos. Se asume que las medidas de distancias y ´angulos están corruptas por ruido
blanco Gausiano cuya varianza es dependiente de la distancia. Además, se asume que la posición
del objetivo se conoce inicialmente, aunque con incertidumbre. La Matriz de Información de Fisher
(FIM) y la maximización de su determinante o la minimizaci´on de la traza del CRLB se usarán
para determinar las configuraciones de los sensores que proporcionan una estimación de la posición
de los objetivos más precisa. La posición de estos objetivos vendrá expresada por una distribución
de probabilidad. Se muestra a lo largo del trabajo cómo las configuraciones óptimas permiten una
interesante interpretación geométrica y cómo la distribución de los sensores depende explı́citamente
de la intensidad del ruido de medida y de la distribución de probabilidad que define a cada uno de
los objetivos. El escenario de posicionamiento de objetivos submarinos por una red de sensores
de superficie se ha estudiado a lo largo del trabajo como ejemplo de aplicación de la metodologı́a
desarrollada. Es más, el caso especial y particular de un único sensor de superficie se estudia de
forma separada debido al creciente interés en este problema a lo largo de los últimos años.
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Chapter 1

INTRODUCTION

Water is the largest component of the surface of our planet sothat 70 per cent of the planet is covered
by this liquid element that appears in different forms like rivers, lakes and, mainly, oceans. Despite
the above, the oceans are the least known part of the surface of our planet, and they harbour the
most important mineral, energy, and food resources, and play a key role in the regulation of the
climate. For this reason, in recent years, the way in which the oceans are explored and exploited is
changing drastically to afford new methods and tools for sampling and interacting with the marine
environment in scientific and commercial areas. Recent advances in marine robotics, sensors,
computers, communications, and information systems are being applied to develop sophisticated
technologies that will lead to safer, faster, and far more efficient ways of exploring the ocean
frontier, especially in hazardous conditions. As part of this trend, there has been a surge of interest
worldwide in the development of autonomous underwater vehicles (AUVs) capable of roaming the
oceans freely, collecting relevant data at an unprecedented scale and reacting to on-line detected
events. The areas in which the marine robots are spreading their use, due to the versatility and
good performance they show in many demanding tasks at sea, cover a wide range of applications
that goes from gas and oil pipeline inspection to biologicalinvestigation, and even in a number of
areas pertaining to the preservation of the underwater cultural heritage. Namely, in the detection
and mapping of shipwrecks or submerged human-made structures. One of the most interesting and
challenging applications of marine robots its their use in collaborative tasks between a number of
robots, even in interaction with humans. In the latter case the robots play the role of guardians in
charge of guiding humans underwater and/or acting as carriers of equipment to be delivered upon
request. It is indeed the moment in which the oceans and theirresources can be understood and
exploited as never before and at the same time afford policy makers the instruments that are needed
for a holistic governance of the oceans.

The technical requirements for the marine robots, and thus the requirements to the developers
of these systems, together with the mission that they must carry out, are very demanding. These
technical challenges are determined by multitude of factors such as operation over extended periods
of time in hazardous conditions, tasks on harsh environments, stringent communication constraints,
to name but a few. The latter is one of the most important problems because the common
communication systems are useless, and the important task of finding out a robot or a diver in a 3
dimensional space while they are carrying a mission becomesone of the hardest problems to solve.
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The problem at hand is coupled with the fact that nowadays there has been a significant change in the
paradigm of marine robot operations because the emphasis isno longer on the operation of single,
bulky robots equipped with a multitude of sensors, but rather on the deployment and cooperation of
relatively light and easy to deploy robots acting in cooperation towards the execution of common
tasks at sea, and even interacting with humans during these demanding tasks.

The extremely fast development of Global Positioning Systems (GPS) related technologies
and their common use in multitude of consumers products as GPS receivers, compasses, and
accelerometers in mobile phones, cars, or computer gaming controls may drive to think that the
positioning problem is almost solved and it may be only a realproblem in very reduced cases.
However, as abovementioned, there exist many practical scenarios where the common GPS systems
are useless:

• Indoor: GPS signals are usually blocked inside buildings, [47], [73].

• Urban: GPS signals are not reliable and usually blocked by surrounding buildings or totally
lost in tunnels, [20].

• Caves: Either on land or underwater, [27] .

• Space: Although there has been some experimental work on using GPS signals on extra-
terrestrial navigation, GPS signals are usually not available in space, [60].

• Underwater: where GPS signals are blocked by the water surface, [51], [46].

From the above, it is clear that the problem of source localization in those areas in which the
common GPS systems are useless has become increasingly important in the recent years. The
localization of a source (or sources) is done through given signals obtained by a sensor array
conveniently designed. Our aim is to determine the sensor positions of the array for which the
information obtained about the source or sources is maximized, it is, the sensor placement for
which the positioning accuracy is the largest possible. Thesource position will be defined with
the information received by the sensor nodes. There may exist some constraints that the sensor
positions must achieve, for example, in a surface sensor placement for underwater target positioning
the sensors are restricted to lie at the sea surface, or the sensor may need to keep a safe distance with
respect to the target to avoid sensor or target damage, to name but a few.

The importance of an accurate target positioning is clear inseveral application scenarios such as
radar, sonar, mobile wireless communications, radio astronomy, seismology, acoustics, geophysics,
to name some examples. The accuracy of the estimation of the target or source position can be
tested considering the closeness of the estimated positionwith respect to the actual one. There exist
multitude of algorithms to estimate this source position. Localization techniques depend on the
information available for the sensor network and this information could be power-level information
that consists in measuring the power-level of a signal sent between sensors and source, known as
Received Signal Strength (RSS) [71], [18], Time Difference of Arrival (TDOA) and Time of Arrival
(TOA) [58], [46], [88], [3], [11]; Angle of Arrival (AOA) [10], Bearings Information (BI) [36], [53],
[64], or Range Measurements (RM) [4], [42], [6], [61], [62].These localization techniques require
an accurate knowledge of the sensor positions, since any error on these positions is directly translated
to errors on the source estimated position.

In this work, as in most of the works available in literature,the optimal sensor placement is
determined by minimizing the Cramer-Rao Lower Bound (CRLB), that is a lower bound on estimate
variance that provides a gauge of source position estimatoraccuracy, or equivalently, optimizing any
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indicator of the Fisher Information Matrix (FIM), becauseCRLB= FIM−1. Stated in simple terms
the Fisher information is a way of measuring the amount of information that an observable random
variable, in this work range or bearing, carries about an unknown parameter, the target position, upon
which the probability of the observable random variable depends. Therefore, the sensors must be
placed in positions such that the information recovered by them maximizes as much as possible the
accuracy with which the target position is estimated. Thereexist some optimality criteria constructed
over the FIM to maximize such information, [85]:

• Maximization of log|FIM | (also called D-optimum design).

• Minimization of tr(FIM−1) (also called A-optimum design).

• Maximization of the smallest eigenvalue of the FIM (also called E-optimum design).

The optimization of any of the above criteria is an effective tool to determine the appropriate
location of the sensor nodes to maximize the accuracy of the target position estimation.

This Ph.D. thesis is focused on the problem of underwater target positioning. This problem is of
the utmost importance for the development of positioning systems with which multiple underwater
targets may be positioned with large accuracy. These sensornodes must be able to track the
targets movements to keep the large positioning accuracy required for many demanding tasks at
sea. For the sake of simplicity, the determinant of the FIM isused for the computation of an
indicator of the performance that can be achieved (by properchoice of an estimator) with a given
sensor configuration. Maximizing this indicator, as proposed in the so-called theD-optimum design
strategy [85], yields the most appropriate sensor formation geometry for the single target positioning
problem. The D-optimality criteria for the design of optimal sensor placement is commonly used
in the literature of 2D designs. The A or E-optimality indicators are also very popular. The D-
optimality criteria minimizes the volume of the uncertainty ellipsoid for the target estimate, whereas
the A-optimality criteria, that consists in minimizing thetrace of the CRLB matrix, suppresses the
average variance of the estimate, and the E-optimality design, that consists in minimizing the largest
eigenvalue of the CRLB matrix, minimizes the length of the largest axis of the same ellipsoid, [85].

An important advantage of D-optimality is that it is invariant under scale changes in the
parameters and linear transformations of the output, whereas A-optimality and E-optimality are
affected by these transformations. However, if the global optimal is not obtained the D-optimality
criteria can yield to some errors, because the information in one dimension can be improved rapidly,
while we can have no information in others. This problem can be avoided with the A-E-optimality
criteria, [80]. Despite the above, the D-optimality criteria will be used in this work due to simplicity
reasons because the A-E-optimality criteria imply the inverse of the FIM. Furthermore, we search for
global optimal sensor configurations, that imply the best possible estimate, and the global optimal
solutions must optimize any of the above optimality indicators as it will be seen throughout this
work. This is true with the exception of Chapter 6 in which theminimization of the trace of the
CRLB matrix will be used instead of the determinant of the FIMbecause the AE-measurements
enter the FIM in such a way as to render its determinant extremely large for certain trigonometric
configurations. However, the large value of the determinantis misleading since it corresponds to
close-to-singular configurations of the network for the reason mentioned above.

1.1 Underwater acoustic navigation and positioning systems

Applications of underwater acoustic navigation and positioning systems include a wide range of
scientific and commercial activities, such as biological and archaeological surveys, marine habitat
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mapping, gas and oil pipeline inspections, to name but a few.Central to the operation of some
classes of AUVs is the availability of reliable underwater positioning systems capable of positioning
one or more vehicles/divers simultaneously, based on information received on-board a support ship
or an autonomous surface vehicle. The info thus obtained canbe used to follow the state of progress
of a particular mission or, if reliable acoustic modems are available, to relay it as a navigation aid
to the navigation systems existent on-board the AUV. Identical comments apply to a new generation
of positioning systems to aid in the tracking of one or more human divers, as proposed in the
context of the EC CO3AUVs project [9]. There is a great diversity of systems, suited for different
tasks and navigation accuracies, most of them based on computing ranges or bearings (azimuth and
elevation angles) to acoustic sources with known positionsby measuring the times of arrival (TOA)
or time differences of arrival (TDOA) of acoustic signals [58], [46], [88] , [3], [11]. For the sake of
completeness the most common systems are commented.

• Ultra Short Baseline System, USBL.

Ultra Short Baseline (USBL) systems are one of the most widely employed underwater tracking
systems. This system is based on a transceiver mounted on thehull of a ship and a transponder
attached to an underwater target to be followed. An acousticpulse is emitted by the transceiver
and received by the transponder that replies back to the former one. It is possible to measure the
elapsed time, TOA, and compute the respective range. The term USBL is due to the fact that the
transceiver is composed by an array of three or more transducers that are separated by short distances
from each other (less than 10cm). By measuring the phase delays of the acoustic signals arriving
at the transceiver, the bearing and elevation of the transponder can also be computed. The accuracy
with which the transponder position can be obtained is highly dependent on the installation and
calibration of the transceiver, as well as on the accuracy with which the inertial position of the ship
can be determined using for example a GPS system.

In this sense, advanced signal processing techniques are required in these systems. The actual
position and attitude of the USBL transducer head must be known accurately to compute the absolute
position of the target. Typically these units contain an INS, together with the input of a GPS
receiver, whose antenna position with respect to the transducer head is known in advance. The
correct calibration of the system is a crucial element because any error due to a bad calibration is
automatically translated into the target position estimation errors.

There is an alternative configuration named inverted USBL inwhich the vehicle carries the USBL
transducer head, and navigates by using an acoustic pinger with known position, [65], [89].

USBL systems are widely used because they are simple to operate and have relatively moderate
prices as compared to other systems. The resulting positionestimation errors are usually greater that
in other longer baseline systems, very sensible to attitudeerrors on the transducer head, and increase
with the slant range. One can achieve relatively good navigation and repeatability, for instance when
several pingers are tracked simultaneously or if one pingeris used as a homing reference for the
other, but the system can generate big absolute position errors.

• Short Baseline System, SBL.

The hydrophones of this kind of systems are separated by baselines of 1-100meters rigidly
mounted on the hull of a ship and a pinger carried by the underwater target, [81]. The hydrophones
emit an acoustic pulse that reaches the pinger and travels back to the hydrophones. The ranges are
calculated and the relative position of the target is determined. The baseline on this kind of systems
is much smaller than the distance from the hydrophones to thetarget. An exact positioning of the
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hydrophones leads to better localization results. In larger ships it is possible to have bigger baselines
between the hydrophones and therefore to improve the TOA measurement quality.

This kind of systems provides only relative position estimates between the SBL hydrophones
and the vehicle. For absolute position estimates, the absolute position and orientation of the structure
(usually a support vessel) where the hydrophones are mounted must be known accurately in advance.

• Long Baseline System, LBL.

These classical positioning systems yield to the most accurate underwater acoustic positioning
system from the three yet mentioned. Moreover, this system is the most widely used for underwater
target positioning and it is composed by a set of beacons thatare fixed at the bottom of the ocean
separated by long baselines (a few kilometres). The target carries a transponder that interrogates the
beacons sequentially, the beacons reply to the target and the elapsed time is measured, [38], [13].
Typically, LBL systems are used for relatively long range and wide area coverage navigation and the
position of the target can be estimated from the TOA measurement. The precision is dependent on the
operation frequency, although a precision of a few meters can be obtained. The typical interrogation
cycles are of 10 seconds or longer. There are, however, some high frequency LBL systems employed
for short range precision positioning such as the EXACT [96], [92], that are claimed to provide
centimetric accuracy. These high frequency systems have been used for drilling operations as well
as precise archaeological mapping. As in the USBS systems the calibration errors of the beacon
position are translated directly on estimation errors of the target position. The operational costs
of a mission involving a LBL system are considerable, including the deployment, calibration and
recovery of the beacons, which stresses the need for improved underwater navigation solutions.

• GPS Intelligent Buoys System, GIB.

The most important features of a common GPS system are its wide area coverage, the capability
of providing navigation data seamlessly to multiple vehicles, relatively low power requirements,
miniaturization of receivers, and environmental friendlyin the sense that its signals do not interfere
significantly with the ecosystem. Typical acoustic underwater positioning systems are quite the
opposite: reduced area coverage, do not usually scale well as to serve for multiple vehicle navigation,
high power requirements, and moderated to high impact on theenvironment in terms of acoustic
pollution. Thus the search for a GPS-like underwater systemis a quite active research area.

It was against this backdrop of ideas that the GPS Intelligent Buoys (GIB) was developed
commercially. The brief explanation that follows is essentially adapted from [4] and the original
idea was introduced in [97]. The GIB system consists of a set of surface buoys with GPS receivers,
submerged hydrophones, and radio modems. The times of arrival of the acoustic signals emitted
by a pinger installed on-board an underwater target (synchronized with GPS time prior to system
deployment) are recorded by the buoys and sent in real time through the radio link to a control
unit [5], (e.g. on-board a support vessel, where the data areprocessed and a position fix is computed).
Note that, unlike in a LBL system, the position information is only available at the control unit and
therefore the system cannot be directly applied for vehiclenavigation. The GIB and alike systems are
basically used to track underwater platforms. If one wishesto use them as a real-time underwater
vehicle navigation aid, the need arises to use an acoustic modem to inform the vehicle about its
own position. This type of systems is also referred as an inverted LBL since, in this case, the sea
bottom fixed transponders have been replaced by surface buoys and the information now is somehow
opposite as compared to a classic LBL. The advantage of this kind of systems is that the operational
costs are reduced because they eliminate the need to deploy,calibrate and recover a set of sea bottom
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transponders, while providing good accuracy on the order ofa few meters. Typically, the surface
buoys are free drifting or moored, but there are also systemswith self propelled buoys which allow
for the execution of basic station keeping and underwater platform tracking without the need of a
mooring line or when operating at large depths.

1.2 State of the art and report outline

Next we will give a brief overview of the topics addressed in this Ph.D. thesis, the contents of
its chapters, and the papers in which the results were published. The reader is referred to the
introductions at the beginning of each chapter for more details, bibliographical references, and
precise problem formulations.

1.2.1 Sensor networks for single target localization with acoustic range
measurements

Inspired by similar developments in ground robotics, we address the problem of single target
positioning based on measurements of the ranges between thetarget and a set of sensors, obtained
via acoustic ranging devices in 2D and 3D scenarios inChapter 2 andChapter 4, respectively. In
particular, and speaking in loose terms, we are interested in determining the optimal configuration
(formation) of a sensor network that will, in a well defined sense, maximize the range-related
information available for target positioning, with especial emphasis inChapter 4 for the application
scenario of underwater target positioning. To this effect, we assume that the range measurements
are corrupted by white Gaussian noise the covariance of which may be distance-dependent. The
application scenario studied focuses on a system for underwater target localization that is similar to
GIB, whereby the Autonomous Surface Vessels (ASVs) play therole of surface buoys. However, in
order to overcome the problem of having to synchronize the clocks of all acoustic systems involved,
the underwater unit only broadcasts an acoustic signal whenprompted to do so upon interrogation
by one of the ASVs. This renders the system far more robust andits implementation cheaper. The
actual computation of the target position may be done by resorting to trilateration algorithms. See for
example [4], [3], [7], and the references therein for an introduction to this circle of ideas, covering
both theoretical and practical aspects.

Given a target positioning problem, the optimal sensor configuration can be ascertained by
examining the corresponding Cramer-Rao Bound (CRB) or Fisher Information Matrix (FIM), [87].
In the present work, the FIMs corresponding to 2D and 3D scenarios are computed to derive
the sensor configurations that yield the best precision withwhich the position of a target can
possibly be estimated, considering a distance-dependent variance of the noise model. To this effect,
the determinant of the FIM is used as an indicator of the performance that is achievable with a
given sensor configuration. Maximizing this quantity yields the most appropriate sensor formation
geometry. Moreover, in striking contrast to what is customary in the literature, where zero mean
Gaussian processes with fixed variances are assumed for the range measurements, the variances are
now allowed to depend explicitly on the ranges themselves. This allows us to capture the fact that
measurement noise may increase in a non-linear manner with the distances measured.

For a given target positioning problem, the optimal geometry of the sensor configuration depends
strongly on the constraints imposed by the task itself (e.g.maximum number and type of sensors that
can be used) and the environment (e.g. ambient noise). In fact, an inadequate sensor configuration
may yield large positioning errors. It is interesting to remark that in spite of the importance and
relevance of the optimal sensor placement problem, the topic is far from being studied exhaustively.
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At this point, it is important to point out that following what is commonly reported in the
literature, we start by addressing the problem of optimal sensor placement given an assumed position
for the target. It may be argued that this assumption defeatsthe purpose of devising a method
to compute the target position, for the latter is known in advance. The rationale for the problem
at hand stems from the need to first fully understand the simpler situation where the position of
the target is known and to characterize, in a rigorous manner, the types of solutions obtained for
the optimal sensor placement problem. In a practical situation, the position of the target is only
known with uncertainty and this problem must be tackled directly. However, in this case it is
virtually impossible to develop a general analytical characterization of the optimal solutions, and
one must resort to numerical search methods. At this stage, an in-depth understanding of the types
of solutions obtained for the ideal case is of the utmost importance to compute an initial guess for
the optimal sensor placement algorithm adopted. These issues are rarely discussed in the literature,
notable exceptions include [39]. The organization of the Chapters reflects this circle of ideas in
that it effectively establishes the core theoretical tools to addressand solve the case when there is
uncertainty in the position of the target.

Therefore inChapter 2 andChapter 4 we address the problem of finding the optimal geometric
configuration of a sensor formation for the positioning of a target in 2D and 3D scenarios
respectively, based on target-to-sensor range measurements only. In contrast to what has been
published so far in the literature, inChapter 4 we address explicitly the positioning problem in 3D
with the sensor array in 3D. The special scenario where the sensor array is located in a plane (2D)
is studied as a particular example of the methodology developed; this application scenario arises for
example in the case where an underwater target is positionedby an ocean surface sensor network.
Moreover with the solutions obtained, the relationship between 3D and 2D scenarios (commonly
exploited in land robotics) where the target and the sensor network lie in the same plane becomes
clear.

Some of the results in these chapters appear in the authors publications [61] and [62].

1.2.2 Sensor networks for multiple target localization with acoustic range
measurements

Once the solution for single target positioning is well established, themultiple target positioning
problemin Chapter 3 for 2D scenarios and inChapter 5 for 3D scenarios is studied. This problem is
of the utmost importance because it is easy to envision different practical situations in which several
AUVs and/or divers are working in collaborative and cooperative tasks, and they must be localized
with the largest possible accuracy. Clearly, there will be tradeoffs involved in the precision with
which each of the targets can be localized; to study them, we resort to techniques that borrow from
estimation theory and Pareto optimization. For the latter,the reader is referred to [45], [22], [90]. See
also Appendix B for a very short review of some key concepts and results. Stated briefly, we avail
ourselves of concepts on Pareto-optimality and maximize convex combinations of the logarithms of
the determinants of the FIMs for each of the targets in order to compute the Pareto-optimal surface
that gives a clear image of the tradeoffs involved in the multiobjective optimization problem. We
thus obtain a powerful tool to determine the sensor configuration that yields, if possible, a proper
tradeoff for the accuracy with which the position of the different targets can be computed.

It is important to remark that, for the multiobjective optimization problem, the logarithms of
the determinants of the FIMs will be used instead of the determinants themselves. This makes the
functions to be maximized jointly convex in the search parameter space, thus justifying the use of
scalarization techniques in the computation of the Pareto-optimal surface, as described in Appendix
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B. For a discussion of the convexity of the functions adopted, see for example [12], Chapter 3 and the
work in [85] on the D-optimality criterion. This issue will be studied in depth in the corresponding
Chapters.

For a multi-target localization problem, similarly to the single target positioning problem, the
optimal geometry of the sensor configuration depends strongly on the constraints imposed by the
task itself (e.g. maximum number and type of sensors that canbe used), the environment (e.g.
ambient noise), the number of targets and their configuration, and the possibly different degrees of
precision with which their positions should be estimated. An inadequate sensor configuration may
yield large localization errors for some of the targets, so it is very important to determine the tradeoffs
involved in the multi-target positioning problem.

Therefore inChapter 3 and Chapter 5 the multiple target positioning problem with range
measurements is studied in 2D and 3D scenarios, respectively. Analytical solutions are derived
for the 2-dimensional scenario, and numerical solutions for the 3-dimensional scenario. In this
latter case the application scenario of a surface sensor network that must localize several underwater
targets is studied in detail. The range measurements are considered to be corrupted by white
Gaussian noise, the variance of which is distance-dependent. Moreover the results obtained for
the 2D and 3D scenarios are extended to the situation in whichthe positions of the targets are known
with uncertainty that is described by a probabilistic distribution function.

These results appear in the authors publication [63].

1.2.3 Sensor networks for single target localization with acoustic bearings
measurements

In Chapter 6 the problem of single target positioning based on measurements of the azimuth
(bearings, in 2D scenarios) and elevation angles between anunderwater target and a set of sensors
at the sea surface is studied as a natural extension of the previous analysis. In what follows we
will refer to these measurements in 3D as AE (azimuth-elevation) measurements or, for simplicity,
with an obvious abuse of notation, simply as bearings measurements. We assume again that the AE
measurements are corrupted by white Gaussian noise, the variance of which is distance-dependent.
The computation of the target position may be done by resorting to triangulation algorithms, based on
the nature of the measurements. We recall that the triangulation problem has been widely studied in
the computer vision field, and that there exist many examplesof algorithms to compute the position
of a target using angle measurements; see for instance [34] and [43] for an example of the design
of motion-planning and sensor assignment strategies to track multiple targets with a mobile sensor
network by resorting to triangulation.

The problem of determining the optimal sensor placement fortarget localization with AE-
only measurements is of special interest because its solution does not require the exchange of
information between the target and the sensor network. Thus, AE-only measurements allow for
the sensor network to observe without being detected itself. A problem of this type was studied
in [57] for an unmanned underwater vehicle tracking an underwater target while avoiding detection.
Given a localization strategy, the optimal sensor configuration can be ascertained by examining
the corresponding Fisher Information Matrix (FIM) or its inverse, the so-called Cramer-Rao Bound
(CRB) matrix. InChapter 6, the trace of the CRB matrix is used as an indicator of the performance
that is achievable with a given sensor configuration. Minimizing this quantity yields the most
appropriate sensor formation geometry. It is important to remark that in many studies published
in the literature on ground and marine robots, as well as in the previous Chapters of this work, the
determinant of the FIM is often used as an indicator of the type of positioning performance that can
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be achieved. For the problem that we tackle inChapter 6 this indicator is not adequate, as it will be
shown. This is a simple consequence of the fact that the AE measurements enter the FIM in such a
way as to render its determinant extremely large for certaintrigonometric configurations. However,
the large value of the determinant is misleading for it corresponds to close-to-singular configurations
of the network. This issue does not arise in 2D applications,see [10]. Related

The results appear in the authors publication [64].

1.2.4 Single tracker for single target localization with acoustic range mea-
surements

The systems previously commented exploit the geometric configuration of acoustic sensors in order
to define the position of an underwater target from range or bearings measurements. These ranges
or bearings are measured at different locations that make it possible to determine the target position.
However, inChapter 7, an alternative approach is used, a single sensor that employs both the spatial
and temporal diversity in order to extract position information.

There is a great interest in reducing the number of beacons involved in the acoustic navigation
systems, as they usually involve deployment, calibration and recovery time which is money and time
consuming. A recurrent question arises: what is the minimumnumber of beacons that can be used
to perform a navigation task? A single range measurement does not contain enough information to
uniquely determine a position, but instead, it defines a whole circle (in 2 dimensions) or a sphere
(in 3 dimensions) of possible positions. This does not mean,of course, that this information is
not useful, but rather that this information alone is not enough to compute a position fix. If the
vehicle carries an on-board navigation system capable of performing DR (Dead Reckoning) one
can use the ranges collected over a time interval in order to correct the DR navigation errors. The
locations at which the ranges are acquired act as elements ofa virtual beacon array. This suggests
the name of Virtual Baseline (VBL) navigation. Of course there are several limitations of this
method, including the need of rich and spatially diverse vehicle trajectories, and the need of an
accurate DR navigation system. The concept of underwater navigation using ranges to a single
beacon/transponder has received increasing attention in the marine robotics community. An early
reference can be found in [8] where the target motion analysis (TMA) with unknown marine systems
using sonar measurements is discussed, i.e., the estimation of the position and velocity of a target
ship, given a sequence of measurements, is studied; or [83] where the observability requirements
are obtained for three-dimensional maneuvering target tracking with bearings-only measurements.
Another early work on this trend is the work of Larsen who cameup with the term Synthetic Long
Baseline navigation [49], [50].

A dual to this problem is the tracking of an underwater targetwith a single range measuring
device. Instead of a static surface sensor network, one could think of a surface vehicle that,
by moving in convenient trajectories, exploits its spatialdiversity while measuring ranges to the
underwater platform in order to determine its position. Thenumber of ranges needed to determine
the position of a target is of the utmost importance, in the most general scenario, 3 non-collinear
ranges in 2 dimensional scenarios, and 4 non-coplanar ranges in 3 dimensional scenarios, are needed
to determine a position fix. In a practical situation, as the underwater target positioning with surface
sensors, the target is known to be under the sea surface, so 3 non-collinear range measurements
are enough. Therefore inChapter 7 the study of the optimal trajectories that a single sensor must
follow, in order to maximize the accuracy with which a targetis localized, is tackled. The problem
is studied with two different approaches with which the trajectory of the surface sensor is planned in
order to maximize the FIM determinant and thus the positioning accuracy. The difference between
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these approaches lies in how the sensor trajectory is planned, by studying just the next movement of
the sensor or by planning a given number of future measurements and then following a preplanned
trajectory.

1.3 Report main contributions

It is interesting to comment at this point that all chapters have a similar structure and that the
contents are explained in a way such that each of the chaptersis self contained and it can be read
independently of the rest. This allows the reader to pay attention to the chapters in which he/she is
interested. The main contributions corresponding to each of the chapters are:

Chapter 2: Single target positioning in 2D scenarios.

• Derivation and definition of the optimal Fisher InformationMatrix, with distance-dependent
covariance error, that maximizes the logarithm of the FIM determinant.

• Derivation of the design conditions that the optimal sensorformation must achieve to provide
the maximum logarithm of the FIM determinant.

• Description of analytical and numerical methods to computeoptimal sensor configurations.

• Extension to the more realistic problem where the target position is known with uncertainty.
This uncertainty can be defined by any probabilistic distribution function, and the kind of
function used determines in high degree the optimal sensor formation.

Chapter 3: Multiple target positioning in 2D scenarios.

• Initial study of the multiple target positioning problem for constant covariance measurement
error. An analytical solution that provides the maximum FIMdeterminant for each of the
targets is presented for simple target configurations.

• Use of Pareto optimization techniques for the maximizationof convex combinations of the
logarithms of the determinants of the FIMs for each of the targets because for complex
target configurations and/or distance-dependent covariance error an analytical solution cannot
be computed and the optimal sensor configuration must be defined resorting to numerical
optimization methods.

• Extension of previous results to the more realistic problemwhere the target positions are
known with uncertainty.

Chapter 4: Single target positioning in 3D scenarios with noisy range measurements.

• Characterization of the solutions to the problem of optimalacoustic sensor placement for
target positioning in 3D space, with special emphasis on theunderwater target positioning by
a surface sensor network.

• Derivation of conditions under which a sensor network maximizes the range-related informa-
tion available for positioning.

• The core result obtained is an analytic characterization ofthe conditions that must be met by
a genericn sensor network in 3D in order for it to be optimal.
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• It is further shown that the optimal sensor configuration lends itself to an interesting
geometrical interpretation and that the spreading of the sensor configuration depends explicitly
on the intensity of the range measurement noise and the probabilistic distribution that defines
the prior uncertainty in the target position.

Chapter 5: Multiple target positioning in 3D scenarios with acoustic range measurements.

• The localization problem in 3D using a sensor array located in 3D space is explicitly
addressed. The special scenario of a surface sensor network(2D) is studied as an application
scenario.

• Definition of optimal configurations of sensor networks thatwill, in a well defined sense,
maximize the range-related information available for multiple underwater target positioning.

• In depth study of the tradeoffs that are inherent to a multiple target localization problem.

• The situation in which the target positions are known with anuncertainty described by a
probabilistic distribution is again studied.

Chapter 6: Surface sensor networks for underwater vehicle positioning with bearings-only
measurements.

• The problem of determining the optimal configuration of a sensor network that maximizes the
AE (azimuth-elevation)-related information available for target positioning is addressed. The
application scenario of surface sensor networks is studiedin detail.

• The Fisher Information Matrix and the minimization of the trace of the CRB matrix are used
to determine the optimal sensor configuration.

• Presentation of explicit analytical results for both distance-dependent and distance-independent
noise.

• Extension to the more realistic scenario in which the targetposition is known with uncertainty.

Chapter 7: Single tracker for underwater vehicle positioning with acoustic range measurements.

• The problem of determining the optimal trajectory of a surface sensor that maximizes the
range-related information available for underwater target positioning is addressed for different
speedsV(t) and sampling times∆t between measurements.

• Use of the Fisher Information Matrix and the maximization ofits determinant to determine
the optimal sensor trajectory.

• This scenario is only studied for a constant covariance error.

• Explicit analytical and numerical results are obtained fortwo different approaches. The first
one when we already have a number of measurements and we want to know the immediate
next range measurement (or measurement point) that maximizes the accuracy, considering a
limited memory, so as the oldest range measurement is not used for the computation of the
new FIM. The second one when a trajectory to follow by the sensor is planned for the nextn
measurement points and the FIM determinant is maximized forthesen points, so an optimal
trajectory is preplanned.

• Extension to the situation in which the target moves in straight line with constant velocity.
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Chapter 2

SINGLE TARGET POSITIONING IN
2D SCENARIOS WITH RANGE MEA-
SUREMENTS

2.1 Introduction

Motivated by multiple developments in ground robotics, in this chapter we address the problem of
single target positioning in two-dimensional scenarios based on measurements of the ranges between
the target and a set of sensors obtained via acoustic rangingdevices. The optimal configuration
(formation) of a sensor network that will, in a well defined sense, maximize the range-related
information available for single target positioning is derived. To this effect, we assume the range
measurements are corrupted by white Gaussian noise, the variance of which is distance-dependent.
The computation of the target position may be done by resorting to trilateration algorithms, [4], [3],
[7]. This chapter can be seen as an introductory step for the more complex problem of single target
positioning in 3-dimensional scenarios studied in Chapter4.

Given a target positioning problem, the optimal sensor configuration can be ascertained by
examining the corresponding Cramer-Rao Bound (CRB) or Fisher Information Matrix (FIM). See
[87] for a lucid presentation of this subject in the context of estimation theory. In the present
chapter, the FIM corresponding to a 2D scenario is computed to derive the sensor configuration that
yields the best precision with which the position of a targetcan possibly be estimated considering
a distance-dependent variance of the noise model. In the same way, in [84] the Cramer-Rao Bound
is derived for a distance-dependent error model for Time of Arrival (TOA) based localization in the
two-dimensional (2D) space, showing that an error model with distance-dependent covariance has
an important impact on the geometric configuration of nodes on the localization accuracy. To this
effect, the determinant of the FIM is used as an indicator of the performance that is achievable with
a given sensor configuration. Maximizing this quantity yields the most appropriate sensor formation
geometry. The work in this chapter is greatly inspired by thework reported in [55] and in [11] on
optimal ranging sensor placement to improve the accuracy inthe localization of ground robots.
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Interesting results in the area go back to the work of [1], where the Cramer-Rao Bound is used as
an indicator of the accuracy of source position estimation and a simple geometric interpretation of
this bound is offered. In the same reference, the authors describe a solutionto the problem of finding
the sensor arrangements that minimize the bound, subject togeometric constraints. In particular,
“Carter’s optimal arrays yielding minimum range, bearing and position bound variance subject to
the constraint that the sensors lie along a line segment are determined without tedious algebraic
manipulations”. In [52], the problem of target positioningin two-dimensional (2-D) scenarios is
examined. The author shows explicitly what is the lowest possible geometric dilution of precision
(GDOP) attainable from range or pseudo-range measurementsto N optimally located points and
determines the corresponding regular polygon-like sensorconfiguration. In [6] the authors study
optimal sensor placement and motion coordination strategies for mobile sensor networks. For a
target tracking application with range sensors, they investigate the determinant of the FIM and
compute it in the 2D and 3D cases. They further characterize the global minimum in the 2D case. In
[42], an iterative algorithm that places a number of sensorsso as to minimize the position estimation
error bound is developed, yielding configurations for the optimal formation subject to several
complex constraints. [10] and [11] characterize the relative sensor-target geometry for positioning
problems that exploit bearing-only, time-of-arrival, andtime-difference-of-arrival strategies inℜ2.
Finally, in [39], the authors address the problem of localizing a source inℜ2 from noisy time-of-
arrival measurements by seeking an extreme of the FIM for truncated, radially-symmetric source
distributions that characterize prior uncertainty in the target location. Similar conclusions are found
in other interesting works such as [25] and [44], where the optimality conditions for the sensor
placement in 2D are derived for TDOA.

Some other interesting works that deal with the problem of optimal sensor placement for different
application areas are [98] or [59]. In [98] seismic network configurations are derived to maximize the
precision with which the location of earthquakes is determined. The maximization of the logarithm
of the FIM determinant is used as optimality criteria. In [59] an swarm of sensors is employed in
a health monitoring system for structures like bridges, where the optimal placement of the sensors
is defined using a swarm intelligence technique called Particle Swarm Optimization (PSO). Another
interesting reference is [16], in which a sensor network with a large number of nodes is used for
surveillance.

Motivated by previous works, we address the problem of finding the optimal geometric
configuration of a sensor formation for the localization of asingle target, based on target-sensor
range measurements only. The expression of the optimal Fisher Information Matrix that provides the
maximum possible information about a target is defined, and from its analytical form, the optimal
sensor configurations are derived. Moreover, in contrast towhat is customary in the literature of
ground robotics, where Gaussian error with constant covariance is considered, we consider the
measurement error to be distance-dependent in a non-linearmanner.

At this point, it is important to point out that following what is commonly reported in the
literature, we start by addressing the problem of optimal sensor placement given an assumed position
for the target. It may be argued that this assumption defeatsthe purpose of devising a method to
compute the target position, for the latter is known in advance. The rationale for the problem at
hand stems from the need to first fully understand the simplersituation where the position of the
target is known and to characterize, in a rigorous manner, the types of solutions obtained for the
optimal sensor placement problem. In a practical situation, the position of the target is only known
with uncertainty and this problem must be tackled directly.However, in this case it is virtually
impossible to develop a general analytical characterization of the optimal solutions, and one must
resort to numerical search methods. At this stage, an in-depth understanding of the types of solutions
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Figure 2.1: Target localization problem set-up.

obtained for the ideal case is of the utmost importance to compute an initial guess for the optimal
sensor placement algorithm adopted. These issues are rarely discussed in the literature, a notable
exception being [39]. The organization of the chapter reflects this circle of ideas in that it effectively
establishes the core theoretical tools to address and solvethe case when there is uncertainty in the
position of the underwater target.

The present chapter is divided in the following sections. InSection 2.2 the FIM is derived
considering distance-dependent measurement error. In Section 2.3 the optimal sensor configurations
are defined for Gaussian error with constant covariance. Theoptimal sensor configurations for
Gaussian error with distance dependent covariance (a more realistic assumption for large sensor
networks) are studied in Section 2.4. In Section 2.5 the uncertainty in the target location is
considered, and optimal sensor configurations for arbitrary probabilistic distributions are defined.
Conclusions are commented in Section 2.6.

2.2 Fisher Information Matrix with range-only measurements

Let {I } be an inertial reference frame with unit axis{xI }, {yI }, and letq = [qx, qy]T be the position
of the target to be positioned in{I }. Further denote bypi = [pix, piy]T ; i = 1, 2, .., n, the position of
the i − th acoustic ranging sensor, also in{I }. Let r i(q) = |q− pi | (abbv. r i) be the distance (range)
between the targetq and thei − th sensor, where| · | denotes the Euclidean norm. The variables and
the set-up that will be used are illustrated in Figure 2.1 forthe case of one target and three sensors.

We denote byzi the measurement of the actual ranger i(q), corrupted by additive noiseωi . With
the above notation, the measurement model adopted is given by

zi = |q− pi | + ωi = r i(q) + ωi (2.1)

Range measurements between two objects are plagued with errors that depend on a multitude of
effects: speed of propagation of sound, physical propagation barriers, ambient noise, and degrading
signal-to-noise ratio as the distance between the two objects increases, to name but a few. For
analytical tractability, it is commonly assumed that the measurement errors can be captured by
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Gaussian, zero mean, additive noise with constant covariance. See for example [99], where different
noise covariances are taken for different sensors, but the covariances are constant. Clearly, this
assumption is artificial in view of the simple fact that the “level of noise” is distance dependent. In
an attempt to better capture physical reality, we assume that the measurement noise can be modelled
by a zero-mean Gaussian process where the covariance depends on the distance between the two
objects that exchange range data. A similar error model is considered in [42]. Stated mathematically,

ω = (I + ηδ(r(q)γ)) · ω0 (2.2)

wherer(q) is the vector of actual ranges,η andγ are the modelling parameters for the distance-
dependent noise component, andω = [ω1 · · ·ωn]T is measurement noise assuming that all noise
sourcesωi are independent, and the vectorω0 is a zero mean Gaussian processN(0,Σ0) with Σ0 =

σ2 · I , whereI is the identity matrix. In the above,δ is the operatordiag, that either converts a
square matrix into a vector consisting of its diagonal elements, or converts a vector into a square
diagonal matrix whose diagonal components are the array elements. With these assumptions, the
measurement noise covariance matrix is given by

Σ = σ2 (I + ηδ(r(q)γ))2
= δ

(

σ2 ·
(

1+ ηrγ1
)2
, · · · , σ2 ·

(

1+ ηrγn
)2
)

(2.3)

In what follows, we assume that the reader is familiar with the concepts of Cramer-Rao Lower
Bound (CRLB) and Fisher Information Matrix (FIM); see for example [87]. Stated in simple terms,
the FIM captures the amount of information that measured data provide about an unknown parameter
(or vector of parameters) to be estimated. Under known assumptions, the FIM is the inverse of the
Cramer-Rao Bound matrix (abbv. CRB), which lower bounds thecovariance of the estimation error
that can possibly be obtained with any unbiased estimator. Thus, “minimizing the CRB” may yield
(by proper estimator selection) a decrease of uncertainty in the parameter estimation. Formally, let
q̂(z) be any unbiased estimator ofq, that is, a mapping ˆq : ℜn→ ℜ2 between the observationszand
the target position space such thatE{q̂} = q for all q ∈ ℜ2, whereE{·} denotes the average operator.
Let pq(z) be the likelihood function that defines the probability of obtaining the observationz given
that the true target position isq. It is well known that under some regularity conditions onpq(z) the
following inequality holds:

Cov{q̂} ≥ FIM(q)−1 = CRB(q) (2.4)

where
Cov{q̂} = E{(q̂− q)(q̂− q)T}, (2.5)

FIM (q) (often abbreviated simply as FIM) is the Fisher Information Matrix defined as

FIM(q) = E
{

(∇q log pq(z))(∇q log pq(z))T
}

, (2.6)

andCRB(q) is the Cramer-Rao Bound matrix. In the above,∇q log pq denotes the gradient of the log
of the likelihood function with respect to the unknown parameterq. Taking the trace of both sides
of the covariance inequality yields

var{q̂} := tr(Cov{q̂}) = tr(E{(q̂− q)(q̂− q)T}) ≥ tr(FIM(q))−1 (2.7)

that sets a lower bound on the mean-square error of any unbiased estimator.
Equipped with the above notation and tools of estimation theory we now address the optimal

sensor placement problem by solving a related equivalent optimization one: given the FIM for the
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2.3. GAUSSIAN ERROR WITH CONSTANT COVARIANCE

problem at hand, maximize its determinant by proper choice of the acoustic sensor coordinates.
This strategy for sensor placement underlies much of the previous work available in the literature;
see for example [55] , [39] and the references therein. Following standard procedures, the FIM
corresponding to the problem of range-based single target positioning can be computed from the
likelihood functionpq(z) given by

pq(z) =
1

(2π)
n
2 |Σ| 12

exp

{

−1
2

(z− r(q))T Σ−1 (z− r(q))

}

(2.8)

wheren is the number of receivers,z = [z1, z2, ..., zn]T consists ofn measured ranges, andr(q) are
the actual ranges. Taking the logarithm of (2.8), computingits derivative with respect toq, and then
its expected value, the FIM is defined as

FIM = C(δ(r)Σδ(r))−1CT (2.9)

whereC = (q1T
n − p) ∈ ℜ2xn, 1n ∈ ℜnx1 is a vector of 1s, andp is the vector of sensor positions,

the latter being defined inℜ2xn. For more details about the computation of the FIM see Appendix
A. The FIM is constructed by allowing the measurement error to be distance-dependent. Note that
Σ depends on the actual range distances, not the measured ones, so its derivative with respect to the
estimation parameters ofq must not be computed in (2.9). Once the FIM is defined, the Cramer
Rao Bound matrix is computed asCRB = FIM−1. In this context, the optimal sensor placement
strategy for a single vehicle localization problem is obtained by maximizing the determinant of the
FIM, which must be computed explicitly. To this effect, we start by expanding (2.9) to obtain

FIM =
n

∑

i=1

















(uix)2
(

uiy

)

(uix)

(uix)
(

uiy

) (

uiy

)2

















(2.10)

where
ui = [uix, uiy]

T =
[

∂|q−pi |
∂qx
Γi ,

∂|q−pi |
∂qy
Γi

]T
; (2.11)

andΓi = 1/
(

1+ ηrγi
)

for i ∈ {1, ..., n}. Clearly, the expression of the FIM considering a distance-
dependence covariance error is well defined.

Actually, the 2D problem is a particular case of the more general problem of target positioning in
3D scenarios, but it is adequate to introduce the 2D problem first to shed light on the more complex
target positioning problem in 3D. There is a wide number of works that deal with the 2D target
positioning problem as commented in 2.1. The optimal solutions given in these works are recovered
in this chapter with a novel methodology, and the results areextended for distance-dependent
covariance error and uncertainty in the target location. Furthermore, the optimal formations are
not explicitly defined, the optimality conditions that the formation must achieve to minimize the
measurement error are defined instead, so any possible optimal configuration may be derived from
them. Some examples of optimal sensor placement are shown atthe end of each section to illustrate
the methodology developed.

2.3 Gaussian error with constant covariance

In this section the optimal sensor placement problem with constant covariance measurement error is
studied. The aim of this section is to recover the results on optimal sensor placement defined in the
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literature but with a novel methodology with which the optimality conditions for the optimal sensor
configurations can be defined in a fast and simple manner.

2.3.1 Optimal Fisher Information Matrix

It was introduced that the FIM captures the amount of information that measured data provide about
an unknown parameter (or vector of parameters) to be estimated, and that the determinant of the FIM
is used for the computation of an indicator of the performance that is achievable with a given sensor
configuration.

As abovementioned, letq = [qx, qy]T be the position of an arbitrary target,pi = [pi,x, pi,y]T ;
i = 1, 2, .., n, the position of thei-th acoustic ranging sensor, andωi the corresponding measurement
noise defined in (2.2) withη = 0. Further letr i be the actual distance between targetq and thei-th
sensor. For the sake of simplicity and without loss of generality the target is considered to be placed
at the origin of the inertial coordinate frame. Therefore, (2.10) becomes

FIM =
1
σ2

n
∑

i=1

(

cos2 (αi) cos(αi) sin(αi)
cos(αi) sin(αi) sin2 (αi)

)

(2.12)

whereαi is the angle that thei-th range vector forms with the{xI } axis of the inertial coordinate
frame. At this point, it is convenient to introduce the vectors X, andΥ inℜn (wheren is the number
of sensors involved in the target positioning task) defined as

X =
[

u1x . . . unx

]

=
[ p1x

r1
. . .

pnx

rn

]

Υ =
[

u1y . . . uny

]

=
[ p1y

r1
. . .

pny

rn

]

.

(2.13)

As a consequence, the FIM is parametrized by 2 vectors inℜn instead ofn vectors inℜ2. It is
also convenient to view these vectors as elements of the Hilbert space with elements inℜn, endowed
with an inner product structure. The latter, as it is well known, allows for computation of the length
of a vector and also for the angle between two vectors. The dotproduct between two vectors can be
rewritten as the product of the norms of those vectors times the cosine of the angle between them.
Simple computations allow us to rewrite (2.12) as

FIM =
1
σ2

(

X · X X · Υ
X · Υ Υ · Υ

)

=
1
σ2

(

|X|2 |X| |Υ| cos(θXΥ)
|X| |Υ| cos(θXΥ) |Υ|2

)

(2.14)

The determinant of (2.14) yields

|FIM | = 1
σ4
|X|2 |Υ|2

(

1− cos2 (θ)
)

(2.15)

whereθ is the angle formed by vectors X andΥ.
To determine the conditions for which|FIM | is maximum (and consequently the optimal sensor

configuration), one simply computes the derivatives of the logarithm of (2.15) with respect to the
norms of the vectors and with respect to the angle that appears explicitly in |FIM | and equals the
result to 0. Setting this derivative with respect toθ equal to 0 yields the first necessary condition of
optimality.

∂ log(|FIM |)
∂θ

=
∂ |FIM |
|FIM | = −

2 cos(θ) sin(θ)
1− cos2 (θ)

= 0 (2.16)
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2.3. GAUSSIAN ERROR WITH CONSTANT COVARIANCE

Clearly sin(θ) = 0 provides an indetermination, that from the L’Hopital rule, the limit of (2.16)
tends to infinite (moreover,|FIM | = 0), so this solution can be discarded. Then the only feasible
solution is cos(θ) = 0. This solution implies thatθ = k ·π/2 wherek is any odd number, and then the
vectors X andΥ are orthogonal. Hence, a necessary condition (to obtain theoptimal sensor network
that maximizes the FIM determinant) is that these two vectors must form an orthogonal system. This
condition leads to a diagonal FIM.

FIM =
1
σ2

(

|X|2 0
0 |Υ|2

)

(2.17)

Now the focus is on the derivatives of the logarithm of (2.15)with respect to the norms of the
vectors. Because

p2
ix

r2
i

+
p2

iy

r2
i

= 1 (2.18)

it follows that

|X|2 + |Υ|2 =
n

∑

i=1

p2
ix

r2
i

+

n
∑

i=1

p2
iy

r2
i

= n (2.19)

so (2.17), together with (2.19), can be rewritten as,

FIM =
1
σ2

(

n− |Υ|2 0
0 |Υ|2

)

(2.20)

The logarithm of the determinant of the FIM can be written nowas

log(|FIM |) = log

(

1
σ4
|Υ|2

(

n− |Υ|2
)

)

(2.21)

Thus, the derivative of (2.21) with respect to the norm of thevectorΥ, after some simplifications,
yields

∂ log(|FIM |)
∂ |Υ| = |Υ|

(

n− |Υ|2
)

− |Υ|3 = 0→ |Υ|2 = n
2

(2.22)

and it is clear from (2.19) that|X|2 = n/2, so |X|2 = |Υ|2. Therefore the expression of the Fisher
Information Matrix that provides the maximum (logarithm ofthe) determinant possible yields,

FIMopt =
1
σ2





















n
2

0

0
n
2





















(2.23)

and the value of the determinant of (2.23) is

∣

∣

∣FIMopt

∣

∣

∣ =
n2

4σ4
(2.24)

It is interesting enough to comment that (2.24) provides theoptimal FIM determinant defined
in [11] and [55]. Comparing the optimal FIM in (2.23) with thegeneric one in (2.10) gives an
implicit characterization of the conditions that must be satisfied by the sensor network in order for it
to be optimal:
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n
∑

i=1

p2
ix

r2
i

=
n
2

n
∑

i=1

p2
iy

r2
i

=
n
2

n
∑

i=1

pix piy

r2
i

= 0

(2.25)

Thus, all the possible optimal sensor configurations do not depend on the distance between target
and sensors, the angles that the range vectors formed between them define the optimality conditions
(2.25) and thus, these angles characterize the optimal configurations. From (2.23) it is obvious
that the optimalFIM (2.24) is diagonal and its eigenvalues are equal. Therefore, the optimality
conditions derived maximize not only the determinant of theFIM but also its minimum singular
value. In the forthcoming sections some examples of optimalconfigurations are shown.

It is important to remark at this point that it is possible to define configurations with equivalent
FIM determinant which in practice provide different measurement accuracy. To avoid this problem,
it is useful to study the condition number of the FIM to choosethe sensor configuration for a given
determinant that provides the minimum condition number. This problem does not arise with optimal
configurations, because these always provide the minimum condition number (it is clear from the
fact that the optimal FIM is a diagonal matrix with all eigenvalues being equal).

2.3.2 Optimal sensor configurations

The optimal formations can be obtained analytically from the system (2.25). It is interesting to
notice that this problem, as it will be seen in the next section, is equivalent to the distance-dependent
covariance problem when sensors are constrained to be placed at the same distance from the target,
it is, they are placed over a circumference centred at the target position. The analysis and solution
of the latter problem is equivalent to the global analysis and solution for the constant covariance
problem. The only difference between the solutions of both scenarios is that for the distance-
dependent covariance case the sensors must be placed at a given distance, as close as possible to
the target, whereas in the constant covariance case the sensors can be placed at any distance from
the target while the optimal angles be kept, i.e., the distance between target and sensors does not
condition the optimal solution. This issue is studied in Section 2.4

For the problem at hand the system (2.25) can be rewritten in polar coordinates as follows:

n
∑

i=1

p2
ix

r2
i

=
n
∑

i=1
cos2(αi) =

n
2

n
∑

i=1

p2
iy

r2
i

=
n
∑

i=1
sin2(αi) =

n
2

n
∑

i=1

pix piy

r2
i

=
n
∑

i=1
sin(αi) cos(αi) = 0

(2.26)
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The two first conditions of (2.26) can be combined in
n
∑

i=1

(

cos2 (αi) − sin2 (αi)
)

= 0, and therefore the

sensor formation must achieve:

n
∑

i=1

(

cos2 (αi) − sin2 (αi)
)

=
n
∑

i=1
cos(2αi) = 0

n
∑

i=1
cos(αi) sin(αi) =

n
∑

i=1

sin(2αi)
2

= 0

(2.27)

Using by now classical terminology, the sensor formation must be first and second moment balanced.
Then, from (2.27) all the necessary conditions to determinean optimal formation are defined.

Clearly, in order for the information about the optimal configurations to be useful, one must
check if the logarithm of the determinant of the FIM meets desired specifications. To this effect, and
for comparison purposes, the determinant of the FIM obtained for a number of hypothetical target
points (based on a fixed optimal sensor configuration corresponding to a well-defined scenario) will
at times be computed by allowing these points to be on a grid ina finite spatial regionD. This will
allow us to evaluate how good the sensor formation is in termsof yielding accurate localization of
the real target, in comparison with the performance localization accuracy that is possible for any
hypothetical target (different from the real one) positioned anywhere inD. For the sake of clarity,
and with an obvious abuse of notation, we will refer to that determinant, viewed as a function of its
argument inD, simply as|FIM |D. In this chapter,D will always be a rectangle inℜ2.

One simple and intuitive configuration arises noticing the orthogonality relations for sines and
cosines from Fourier analysis [37].

n−1
∑

i=0
cos2

(

2π
n · n

)

=
n
2

n−1
∑

i=0
sin2

(

2π
n · i

)

=
n
2

n−1
∑

n=0
cos

(

2π
n · i

)

sin
(

2π
n · i

)

= 0

n−1
∑

i=0
cos

(

2π
n · i

)

= 0

n−1
∑

i=0
sin

(

2π
n · i

)

= 0

(2.28)

Thus, a maximum FIM determinant is achieved with the sensor network regularly distributed
around the target projection. Obviously, an infinite numberof solutions are obtained by rotating
the sensors rigidly along the circumferences, that is, by allowing the above angles to become
2πi/n + αs; i = 0, 1, ..., n − 1, whereαs is a fixed but arbitrary angle in [0, 2π]. In the following
examples we have considered a regular formation around the target position andσ = 0.1 m. It is
important to remark on one important feature of the optimal solutions that can be computed based on
the analysis explained above. If two disjoint sets ofn andm sensors each are optimally placed, the
resulting formation ofn+m sensors is also optimal. Therefore, new higher order optimal solutions
can be obtained by combining reduced order optimal configurations.
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Example 2.1

In Figure 2.2 an optimal sensor formation of 5 sensors regularly distributed around the target is
shown, withσ = 0.1 m andη = 0 (constant covariance). It can be noticed how the maximum FIM
determinant is obtained at the target position (lighter regions, larger accuracy), taking the theoretical
maximum value,n2/(σ4 · 4) = 6.25 · 104 m−4. In Figure 2.2 (b) it is shown the value taken at each
point by the FIM determinant inD.
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Figure 2.2: Optimal sensor placement for 5 sensors. In (a)|FIM |D is shown (lighter regions, larger accuracy)
and in (b) the FIM determinant value inD. In (c) tr(CRB)D is shown (lighter regions, larger accuracy) and in
(d) the value of the trace of the CRB inD.

In Figure 2.2 (c) and (d) the level curves oftr(CRB)D (lighter regions, larger accuracy) and the
representation of its magnitude in 3D forD are shown, respectively. This shows the correspondence
between maximum determinant and minimum CRB trace. It can bechecked how the minimum
trace of the CRB is obtained at the target position achievingits theoretical minimum value too,
tr(CRB) = σ2 · 4/n = 0.08 m2. This correspondence between the minimum trace of the CRB and
the maximum FIM determinant is clear from the fact that the optimal FIM is a diagonal matrix with
all the eigenvalues being equal.�

Example 2.2

An optimal sensor formation for 3 sensors regularly distributed around the target position is
shown in Figure 2.3. The theoretical maximum FIM determinant (and minumum CRB trace,
tr(CRB) = σ2 · 4/n m2) is obtained at the target position,|FIM | = n2/(σ4 · 4) = 2.25 · 104 m−4.
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Figure 2.3: Optimal sensor placement for 3 sensors. In (a)|FIM |D is shown (lighter regions, larger accuracy)
and in (b) the FIM determinant value inD. In (c) tr(CRB)D is shown (lighter regions, larger accuracy) and in
(d) the value of the trace of the CRB inD.

It is interesting enough to notice in Figure 2.3 (a) and (c) that there exist three more points where
the design conditions (2.27), and then the maximum FIM determinant and minimum CRB trace, are
achieved. These points are located outside the equilateraltriangle formed by the sensors and placed
in symmetric positions. Therefore, if another target wouldbe placed in any of these points, it will
be positioned with the maximum accuracy. This fact is very important to define alternative optimal
formations, and in forthcoming chapters, to define optimal formations for multiple target positioning.
It is also important to notice that these alternative pointswith maximum FIM determinant only
exist in the constant covariance scenario. If we consider the same example for distance-dependent
covariance error in which the sensors are limited to be placed at the positions shown in Figure 2.3
then there exists only one point with maximum determinant and it is placed at the centre of the
formation (the target position). This issue is studied in the next section.�

Example 2.3

It is important to remark on one important feature of the optimal solutions that can be computed
based on the analysis explained above. As aforementioned, if two disjoint sets ofn andm sensors
each are optimally placed, the resulting formation ofn+m sensors is also optimal. Therefore, new
higher order optimal solutions can be obtained by combiningreduced order optimal configurations.
It is a consequence of considering the measurements to be independent. It can be seen in Figure 2.4
how the combination of the 5 sensor regular formation of Example 2.1. with the 3 sensor regular
formation of Example 2.2. provides another optimal formation in which the theoretical maximum
accuracy for 8 sensors is obtained at the target location, itis, |FIM | = 16 · 104 m−4. �
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Figure 2.4: Optimal sensor configurations with the combination of a 5 sensor regular formation and a 3 sensor
regular formation. In (a)|FIM |D is shown (lighter regions, larger accuracy) and in (b) the FIM determinant
value inD.

As abovementioned, if we consider these same examples for distance-dependent covariance
error in which the sensors are constrained to not lie closer to the target than the positions shown
in the above figures, then the optimal solutions are the same formations. Moreover, with distance-
dependent covariance error, there exists only one point with maximum determinant (or minimum
CRB trace) and it is placed at the centre of the regular formation (the target position).

2.4 Gaussian error with distance-dependent covariance

In this scenario the dependence of the measurement error in the distance affects dramatically the
optimal sensor configurations that may be defined. It can be seen that (2.10) depends explicitly on
the distance between target and sensors, and then to maximize the determinant of (2.10) the sensors
tend to collapse over the target position to reduce the distance-dependent measurement error as much
as possible. Therefore, some constraints must be imposed tothe sensors and the solution must be
searched by some optimization algorithm.

There is a particular scenario in which an analytical solution can be derived following the same
procedure explained in Section 2.3.1. This scenario corresponds to the case in which the sensors are
placed at the same distance from the target, i.e., they are placed over a circumference centred at the
target position and then the optimal solution only depends on the angles that the range vectors form
between them, as defined in the constant covariance case. This problem is studied next.
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2.4.1 Sensors placed at the same distance from the target

Following the same procedure of Section 2.3.1, letq = [qx, qy]T be the position of an arbitrary target,
pi = [pi,x, pi,y]T ; i = 1, 2, .., n, the position of thei-th acoustic ranging sensor,ωi the corresponding
measurement noise defined in (2.2) withη , 0, andr i the distance between targetq and thei-th
sensor. Therefore, expanding (2.10) we find

FIM =
1
σ2

n
∑

i=1

(

cos2 (αi)Γ2
i cos(αi) sin(αi)Γ2

i
cos(αi) sin(αi)Γ2

i sin2 (αi)Γ2
i

)

(2.29)

whereαi is the angle that thei-th range vector forms with the{xI } axis of the inertial coordinate
frame. It must be noticed at this point that the sensors are constrained to be placed at the same
distance from the target and thenr i = r for i = 1, · · · , n. Moreover,Γi is constant and has the same
value for all sensors, soΓi = Γ0 for i = 1, · · · , n. Thus, (2.29) can be rewritten as,

FIM =
Γ2

0

σ2

n
∑

i=1

(

cos2 (αi) cos(αi) sin(αi)
cos(αi) sin(αi) sin2 (αi)

)

(2.30)

that is very similar to (2.12), but multiplied byΓ2
0. Therefore, at this point, the vectors X, andΥ in

ℜn (wheren is the number of sensors involved in the target positioning task) are introduced again
and the same theoretical analysis of Section 2.3.1 is performed, where it is found that vectors X, and
Υmust be both equal ton/2.

If we define now the vectorS as,

S =
[

Γ1 · · · Γn

]

=
[

Γ0 · · · Γ0

]

then the expression of the Fisher Information Matrix that provides the maximum (logarithm of the)
determinant possible yields,

FIM =
1
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(2.31)

And the value of the determinant of (2.31) is

|FIM | = |S|
4

4σ2
=

n2

4σ2
· Γ2

0 (2.32)

It is interesting enough to comment at this point, that the determinant (2.32) defines the maximum
FIM determinant when the covariance noise is distance-dependent and the sensors are placed over
a circumference centred at the target position. If we consider a constant covariance measurement
noise, it is,η = 0 and thenΓ0 = 1, (2.32) provides the optimal determinant defined in [11] and [55],
and computed in (2.24).

Comparison of the optimal FIM in (2.31) with the generic one in (2.10) gives an implicit
characterization of the conditions that must be satisfied bythe sensor network in order for it to
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be optimal, that yield:
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(2.33)

Equations (2.33), withΓi = Γ0 andr i = r, become the optimality conditions defined in (2.25):
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(2.34)

It is important to remark that this analytical solution is only feasible when the sensor are placed
at the same distant from the target. For more complex constraints it is necessary to resort to
optimization tools, as it will be seen in the following examples.

2.4.2 Optimal sensor configurations with arbitrary constraints

From (2.18) it is clear that the FIM is inversely proportional to the range distance between target
and sensors. Therefore, it is necessary to reduce that distance as much as possible to increase the
determinant, something not possible to do at will, due to physical constraints and to avoid singular
configurations that are clearly non-optimal, for example the one in which the sensors lie over the
target position. In this scenario it is imperative to imposeconstraints for the design of optimal
sensor configurations to avoid the sensor to collapse over the target position (to reduce the distance-
dependent error). The existence of constraints in the solution space limits the search space and
makes it more difficult to define the solution since the optimality criterion defined by (2.27) may
be impossible to achieve, i.e., some of the positions that define the theoretical optimal configuration
may be unreachable.

On the one hand, if the problem has equality constraints it may be possible to use gradient
optimization methods. The Lagrange method, in which a new cost function is constructed including
these equality constraints, allows to find the optimal configuration. An example of this kind of
problems is the one studied in the previous subsection, in which the sensors must be placed at a
given distance from the target. In this particular case it ispossible to resort to the analytic solution
defined above or to optimization methods to obtain the feasible optimal sensor configurations. The
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problem formulation can be cast in the following form:

p̄∗ = argmaxp̄ log(|FIM |)
s.t.
gk (xi , yi) − bi = 0

(2.35)

wheregi(xi , yi) can be any kind of function andbi is a constant. The cost function now becomes:

L = log(|FIM |) +
n

∑

i=1

λ̄i (gi (xi , yi) − bi) (2.36)

Equation (2.36) is now the function to maximize, whereλ̄i , i = 1, · · · , n, are the Lagrange
Multipliers that must be determined (considering a constraint per sensor). The optimal solution is
obtained from the system:

∂L
∂xi
= 0

∂L
∂yi
= 0

∂L

∂λ̄i
= 0 (2.37)

Therefore, by using the gradient (or Newton) optimization method it is easy to define the optimal
sensor formation that provides the maximum logarithm of theFIM determinant. In the following
examples it is assumed thatσ = 0.1 m, η = 0.05, andγ = 1.

Example 2.4

In Figure 2.5 an optimal formation of 4 sensors for a distance-dependent measurement error is
shown. The only constraint imposed to the design is that the sensors cannot be placed closer than
3 meters with respect to the target position. The maximum accuracy, given by a maximum FIM
determinant or a minimum CRB trace, is obtained at the targetposition. It can be seen in detail in
Figure 2.5 (b) and (d), respectively. It is easy to check thatthe sensors are placed at the limit distance,
because, as abovementioned, the accuracy is inversely proportional to the distances between sensors
and target, and thus, the sensors are placed as close as possible to reduce this error. In this particular
example, the same solution is obtained both with the analytical procedure and the above optimization
algorithm.

Table 2.1: Optimal sensor positions forσ = 0.1 m, η = 0.05, andγ = 1.

p1 p2 p3 p4

{xI } − coordinate(m) −2.1213 −2.1213 2.1213 2.1213
{yI } − coordinate(m) 2.1213 −2.1213 −2.1213 2.1213

In Figure (2.5) (a) and (c) the target and sensor positions are shown, the latter are listed in Table
2.1.�

On the other hand, if we have equality and inequality constraints, then we have to resort to non-
lineal programming techniques to solve the problem, and theKarush-Kunt-Tucker conditions must
be achieved to find the optimal solution. The problem formulation becomes:

p̄∗ = argmaxp̄ log(|FIM |)
s.t.
gi (xi , yi) − bi ≥ 0

(2.38)
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Figure 2.5: Optimal sensor placement for a 4 sensor formation with distance-dependent measurment noise.
In (a) |FIM |D is shown (lighter regions, larger accuracy) and in (b) the FIM determinant value inD. In (c)
tr(CRB)D is shown (lighter, regions larger accuracy) and in (d) the value of the trace of the CRB inD.

The residual variablessi must be introduced to convert the inequality constraints into equality
constraints.

gi (xi , yi) + si − bi = 0

Then, the optimization problem and the cost function associated yields

L = log(|FIM |) +
n

∑

i=1

λ̄i (gi (xi , yi) + si − bi) (2.39)

And the optimality conditions are,

∂L
∂xi
= 0

∂L
∂yi
= 0

∂L

∂λ̄i
= 0

∂L
∂si
= 2si λ̄i (2.40)

where the last equation implies eithersi = 0 andλ̄i , 0, or si , 0 andλ̄i = 0. This last condition is
the complementary slackness. Thus, again, by using the gradient or Newton optimization method it
is easy to find the optimal sensor formation that provides themaximum FIM determinant.

Example 2.5

In this example, 3 sensors are forced to lie in the upper semiplane limited by the liney = 3 m,
with the target placed at the origin of the inertial coordinate frame. It is possible to check from
Figure (2.6) how this scenario could be studied as a problem with equality constraints because the
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optimal positions for the sensors are over the liney = 3 m. However, the optimization procedure run
is the one described in (2.40). The optimal sensor positionsare stated in Table 2.2.

Table 2.2: Optimal sensor positions forσ = 0.1 m, η = 0.05, andγ = 1.

p1 p2 p3

{xI } − coordinate(m) 3.69 0 −3.69
{yI } − coordinate(m) 3 3 3

In Figure (2.6) it is shown how the optimal formation for the problem at hand does not provide
the best accuracy possible because the accuracy that can be obtained is limited by the additional
constraint and the measurement error.
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Figure 2.6: Optimal sensor placement for a 3 sensor formation that is restricted to lie in the upper semiplane
limited by the liney = 3 m. In (a) |FIM |D is shown (lighter regions, larger accuracy) and in (b) the FIM
determinant value inD. In (c) tr(CRB)D is shown (lighter regions, larger accuracy) and in (d) the value of the
trace of the CRB inD.

Figure 2.6 (a) and (c) show the positions that the sensors take so as to maximize the logarithm
of the FIM determinant. In Figure 2.6(b) it is shown the valuetaken by the FIM determinant at each
point inD and in (d) the value taken by the CRB trace at each point inD. �

2.5 Uncertainty in the target location

Now it is addressed the situation where the target to be positioned is known to lie in a well defined
uncertainty region. The objective is to obtain an expedite numerical solution for the problem at hand.
Inspired by the work in [39], it is assumed that the uncertainty in the target position is described by
a given probability distribution function and we seek to maximize, by proper sensor placement, the
average value of the determinant of the FIM for the target.

In what follows,piξ ; i = 1, 2, ..., n; ξ = x, y denotes theξ-th coordinate of sensori located at
positionpi and p̄ = [pT

1 , ..., p
T
n ]T . We further denote byϕ (q) ; q ∈ ℜ2 a probability density function

with supportD ∈ ℜ2 that describes the uncertainty in the position of the targetin regionD. With
this notation, the problem of optimal sensor placement can be cast in the form of finding a vector ¯p∗

such that

p̄∗ = argmax
p̄

∫

D

log |FIM(p̄, q)| · ϕ (q) dq (2.41)
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where we used the notation|FIM(p̄, q)| to clearly show the dependence of the FIM on the target and
sensor locations. However, in the following|FIM (p̄, q)| will often be denoted simply as|FIM |. In a
real situation,ϕ (q) will depend on the type of mission carried out by the target. If the target operates
mostly in the centre of the working area,ϕ (q) can for example assume the form of a truncated,
radially-symmetric probabilistic Gaussian distributioncentred at an appropriate point. On the other
hand, if only the work area is known and the target can operateanywhere inside it,ϕ (q) can be taken
as the unity function inside that area.

To proceed, one must compute|FIM(p̄, q)| in the equation above. At this point it is important to
remark that, given the complexity of the optimal sensor placement problem at hand, the only viable
solution is a numerical one. It now remains to solve the optimization problem defined above. As
explained later, we opted to use a gradient-based method to do so. To this effect, it is important to
compute the derivatives of the integral in (2.41) with respect to the sensor coordinates, that is,

∂

∂piξ

∫

D

log(|FIM (p̄, q)|) ϕ (q)dq (2.42)

for i = 1, 2, ..., n and ξ = x, y. To proceed with the computations, the integral and derivative
operations are interchanged: the derivatives are explicitly determined first and the integration over
regionD is performed afterwards. The derivatives finally look like,
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with
∂Γ2

i

∂pix
= cos(αi)

2ηγrγ−1
i

(

1+ ηrγi
)3

∂Γ2
i

∂piy
= sin(αi)

2ηγrγ−1
i

(

1+ ηrγi
)3

These derivatives will be studied in depth in the next chapter for multiple target positioning.
Regarding the computation of the double integral over the region D of interest, it is impossible
to do it analytically. For this reason, the integral is computed numerically with the Monte Carlo
method. Finally, the solution is obtained using a gradient optimization method with the Armijo rule,
details are omitted. To overcome the possible occurrence oflocal maxima or the divergence of the
algorithm, the initial guess in the iterative algorithm must be chosen with care. In the examples that
we studied we found it useful and expedite to adopt as an initial guess the solution for the single target
positioning problem described in previous sections, with the hypothetical single target placed at the
centre of the work area. It is important to stress that the solution to (2.41) depends strongly on the
probability density function adopted for the target position q (e.g., a truncated, radially-symmetric
probabilistic Gaussian distribution or a radially-symmetric step distribution, [39]).

2.5.1 Simulation examples with unknown source position

Different situations and possible optimal sensor configurations when the target position is known
with uncertainty are shown next. For the examples a step-like distribution is used as probability
distribution function to define the target position. The only knowledge about the target is that it is
placed inside a square area of 2× 2 m2 centred at the origin of the inertial coordinate frame. Three
simple examples corresponding to the three main problems for single target localization are shown
for the case of uncertain target location. In the first problem, the scenario in which the covariance
error is constant, withσ = 0.1 m, is studied. In the second example, it is considered a distance-
dependent measurement error withσ = 0.1 m, γ = 1 andη = 0.05 and no constraints. Finally in
the third example, it is studied a distance-dependent measurement error withσ = 0.1 m, γ = 1 and
η = 0.05 with the sensors constrained to lie in the region defined byy < 3 m andy < −3 m.

Example 2.6:Constant covariance error and no constraints.

In the problem at hand it is possible to design sensor configurations that provide large accuracy
over well defined regions, close to the optimal one that wouldbe obtained for a single target working
in isolation at a known position because distance does not affect the measurement error. The practical
interest of this problem is the design of the smallest network possible that provides an accuracy close
to the maximum for all the points inside the work area, that for the problem at hand will be of 2×2 m2.
The formation size will be, of course, mission-dependent.

The probability distribution function that defines the target position in the work area is a step-
like distribution, it is, the onlya priori knowledge is that the target operates inside a certain area.
In Figure 2.7 (a) it is possible to check that the FIM determinants obtained inside the work area are
very close to theoretical maximum, with the 4 sensors placedat the points listed in Table 2.3.

In Figure 2.7 (c) the trace of the CRB is shown. Its minimum values fall over the area of interest
and are close to the theoretical minimum,tr(CRB) = σ2 · 4/n m2. Figure 2.7 (b) shows the level
curves of|FIM |D, and (d) the level curves of the CRB trace. It is possible to appreciate how the
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Table 2.3: Optimal sensor positions for constant covariance.

p1 p2 p3 p4

{xI } − coordinate(m) −5.1066 −5.1066 5.1066 5.1066
{yI } − coordinate(m) 5.1066 −5.1066 −5.1066 5.1066
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Figure 2.7: Optimal sensor formation to obtain the maximum average logarithm of the FIM determinant inside
the work area of 2× 2 m2 with a step-like distribution, constant covariance error and no constraints. On the left
(a) |FIM |D is shown (lighter regions, larger accuracy) and on the right(b) the FIM determinant values inD. In
(c) tr(CRB)D is shown (lighter regions, larger accuracy) and in (d) the values of the trace of the CRB inD.

determinant (and the CRB trace) over all the region is almostthe theoretical maximum, providing a
very large accuracy inside the work area.

One important feature to remark about this example, is that if we consider a very large region and
there is no constraints for the sensor placement, then it is possible to design sensor configurations
that provide a very large accuracy inside the area of interest because the distance does not affect the
measurements.�

Example 2.7:Distance-dependent covariance error and no constraints.

In this example, shown in Figure 2.8, the optimal formation is quite smaller than the one of
the previous example because the distance between target and sensors dramatically affects the
measurement error and the formation becomes smaller to reduce this distance-dependent added
error. In 2.4.2 it was commented that some constraints must be imposed to the design of the optimal
formation so that the sensor formation does not collapse over the target position in an attempt to
reduce this distance-dependent added error as much as possible. This problem does not arise in the
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Table 2.4: Optimal sensor positions forσ = 0.1 m, γ = 1 andη = 0.05.

p1 p2 p3 p4

{xI } − coordinate(m) 0.69 −0.69 0.69 −0.69
{yI } − coordinate(m) 0.69 0.69 −0.69 −0.69
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Figure 2.8: Optimal sensor formation for a 4 sensor network, distance-dependent covariance error and
uncertainty in the target location defined by a step-like distribution over a region of 2× 2 m2. On the left
(a) |FIM |D is shown and on the right (b) the FIM determinant value inD. In (c) tr(CRB)D is shown and in (d)
the value of the trace of the CRB inD.

problem at hand because the measurement accuracy must be maximized over a region, not for an
isolate point, so the distance cannot be reduced to the minimum for all the points of the work area
and a tradeoff solution must be adopted. The uncertainty in the target position is itself the necessary
constraint for a correct design. The optimal sensor positions are shown in Table 2.4.

In Figure 2.8 (a) the average FIM determinant is maximized over the area of interest; and
the magnitude of the determinants can be checked in 2.8 (b). In Figure 2.8 (c) the CRB trace
corresponding to this sensor network is shown, and in Figure2.8 (d) its value over the area of
interest can be checked. It can be noticed how the maximization of the determinant over the work
area provides a minimum CRB trace as well.

In this example a small area of interest has been considered just to illustrate the methodology
developed to determine optimal sensor configurations. For larger areas, the formation will be
conditioned by the distance-dependent added error and for very large areas the measurement
accuracy will be drastically reduced. In a practical scenario, the accuracy will be mission-dependent
so this accuracy will determine the number of sensors to be used and their configuration. The
problem of a large area of interest shows clearly its practical interest for the multiple target
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Figure 2.9: Optimal sensor formation for a 3 sensor network with distance-dependent measurement noise. The
sensors must be placed in the region{y > 3}U{y < −3} m. On the left (a)|FIM |D is shown and on the right (b)
the FIM determinant value inD. In (c) tr(CRB)D is shown and in (d) the value of the trace of the CRB inD.

Table 2.5: Optimal sensor positions forσ = 0.1 m, γ = 1 andη = 0.05.

p1 p2 p3

{xI } − coordinate(m) −3.4749 0 3.4749
{yI } − coordinate(m) 3 −3 3

positioning problem, that will be studied in detail in Chapter 3 and Chapter 5.�

Example 2.8:Distance-dependent error with constraints

This last example tackles with the more complex problem of determining the optimal sensor
configuration when the sensor network is subject to constraints and the measurement error is
distance-dependent. A 3 sensor network that must be placed in the region defined by{y > 3}U{y <
−3} m is considered. We can notice in Figure 2.9 (a) how the sensorsare placed at the limit
of the design area to increase the average FIM determinant inside the work area by reducing as
much as possible the distance-dependent measurement error, and in Figure 2.9 (b) we can check the
magnitude of these FIM determinants inside the work area. InFigure 2.9 (c) and (d) similar plots
to (a) and (b), respectively, are shown but considering the CRB trace. It can be noticed how the
minimum values of the CRB trace belong to the work area. The optimal sensor positions are stated
in Table 2.5. This is only a simple example on optimal sensor formation with constraints, because
any constraint may be imposed to the design, and its corresponding optimal sensor network must be
obtained via optimization tools.�
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2.6 Conclusions

The problem of optimal sensor placement for single target positioning in 2D scenarios has been
studied in this chapter. Previous to the study of this problem, the optimal Fisher Information Matrix,
with distance-dependent covariance error, that maximizesthe logarithm of the FIM determinant was
well defined. This optimal FIM defines the design conditions that the optimal sensor formation must
achieve so that the maximum logarithm of the FIM determinantbe obtained at the target position.
The optimality conditions were defined by (2.25).

The first problem studied was the one in which the measurementerror is Gaussian with its
covariance being constant. This situation has been widely studied in the ground robotics field, where
the distances are not so large and the covariance can be considered constant. From the study of the
optimality conditions (2.25) the analytical solution in which the sensors must be first and second
moment balanced to obtain the maximum FIM determinant was defined.

This study was extended to a second and more complex problem,when the distance affects to the
measurement error and then the covariance of the measurement error is distance-dependent. In this
kind of problems it is necessary to impose constraints to thesensor formation, because the sensors
tend to converge at the target position to reduce the distance-dependent measurement error. The
most simple constraint, that corresponds to the case in which the sensors lie in a circumference
centred at the target position, was initially studied. The solution for this problem was the same
analytical solution defined for the constant covariance error problem. After this simplest case, the
more general problem with any number and any kind of constraints was studied. The impossibility
to define an analytical solution drove to employ optimization methods to define the optimal sensor
configurations, and it was shown that a simple method like thegradient or the Newton method are
much more than satisfactory tools to find the optimal sensor configurations.

Finally, the above results were extended to the more realistic problem where the target position
is known with uncertainty. This uncertainty can be defined byany probabilistic distribution
function, and the kind of function used determines in high degree the optimal sensor formation.
An optimization method similar to the one previously definedwas used to determine the optimal
sensor configurations. The main problem to overcome was the resolution of the integrals of the
gradient equations, to determine the necessary gradients to increase the average FIM determinant
over the work area. These integrals were solved numericallyby the Monte Carlo method because
of the impossibility to solve them analytically. Different design scenarios and their corresponding
optimal solutions were studied.
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Chapter 3

MULTIPLE TARGET POSITIONING IN
2D SCENARIOS WITH RANGE MEA-
SUREMENTS

3.1 Introduction

In the present chapter, inspired by developments in ground robotics for single target positioning,
we tackle themultiple target positioning problem. Clearly, there will be tradeoffs involved in the
precision with which each of the targets can be localized; tostudy them, we resort to techniques that
borrow from estimation theory and Pareto optimization. Forthe latter, the reader is referred to [45],
[22], [90]. See also Appendix A for a very short review of somekey concepts and results. Stated
briefly, we avail ourselves of concepts on Pareto-optimality and maximize convex combinations of
the logarithms of the determinants of the FIMs for each of thetargets in order to compute the Pareto-
optimal surface that gives a clear image of the tradeoffs involved in the multiobjective optimization
problem. We thus obtain a powerful tool to determine the sensor configuration that yields, if possible,
a proper tradeoff for the accuracy with which the position of the different targets can be computed.
In what follows, and with an obvious abuse of notation, we often refer to Pareto-optimal solutions
simply as optimal.

It is important to remark that for the multiobjective optimization problem, the logarithms of the
determinants of the FIMs must be used. This makes the functions to be maximized jointly convex
in the search parameter space, thus justifying the use of scalarization techniques in the computation
of the Pareto-optimal surface, as described in Appendix A. For a discussion of the convexity of
the functions adopted, see for example [12], Chapter 3 and the work in [85] on the D-optimality
criterion.

For a multi-target localization problem, the optimal geometry of the sensor configuration
depends strongly on the constraints imposed by the task itself (e.g. maximum number and type
of sensors that can be used), the environment (e.g. ambient noise), the number of targets and their
configuration, and the possibly different degrees of precision with which their positions should be
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estimated. An inadequate sensor configuration may yield large localization errors for some of the
targets. Even though the problem of optimal sensor placement for range based localization is of
great importance, not many results are available on this topic yet, even more, the results are only
for single target positioning. Some exceptions include thework of [91], that although it deals with
the problem of single target positioning, the problem framework is the design of sensor networks
for the maximization of the accuracy for a preplanned trajectory to be followed by the target,
moreover, uncertainty in the target position along the trajectory is considered. This problem can
be seen as a multiple target positioning problem in which theaccuracy of some fixed points must
be maximized, where these points belong to the desired preplanned trajectory. An incremental
optimization algorithm is defined to increase the likelihood of the vehicle following its intended
trajectory. Another interesting work is [2], in which the problem of detecting and locating subsurface
objects by using a manoeuvring array that receives scattered seismic surface waves is considered.
The goal is to minimize the number of distinct measurements (array movements) needed to localize
objects, such as buried landmines, while maximizing the determinant of the FIM. The scenario in
which two targets must be localized is studied too.

The key contributions of the present chapter are twofold: i)we fully exploit concepts and
techniques from estimation theory and multiobjective optimization to obtain a numerical solution
to the optimal sensor configuration problem for multiple targets, and ii) in striking contrast to what
is customary in the literature, where zero mean Gaussian processes with fixed variances are assumed
for the range measurements, the variances are now allowed todepend explicitly on the ranges
themselves. This allows us to capture the fact that measurement noise increases in a non-linear
manner with the distances measured.

The chapter is organized as follows. Section 3.2 defines the problem formulation and the set-
up for multiple target positioning. In Section 3.3 this problem is studied when the measurement
error is Gaussian with constant covariance. The extension of this problem to tackle with Gaussian
error with distance-dependent covariance is explained in Section 3.4, in which the optimal sensor
configurations are defined from concepts on Pareto optimization. In Section 3.5 the maximization
of the average value of the logarithms of the FIM determinants is studied when a static fixed sensor
network surveys a certain working area or when there is uncertainty in thea priori knowledge about
the target positions. Finally, in Section 3.6 the conclusions are commented.

3.2 Problem formulation: multiple target in a 2D scenario

The problem of multiple target positioning in 2D scenarios is tackled as an introductory step for the
multiple target positioning problem in 3D scenarios, whichwill be studied in Chapter 5. For the
problem at hand the FIM is characterized for a two-dimensional (2D) scenario, following the same
procedure shown in Chapter 2.

Thus let{I } be an inertial reference frame with unit axis{xI }, {yI }, and letq = [qkx, qky]T ; k =
1, 2, ..,m, be the position of thek− th target to be positioned in{I }. Further denote bypi = [pix, piy]T ;
i = 1, 2, .., n, the position of thei − th acoustic ranging sensor, also in{I }. Let rki(q) = |qk− pi | (abbv.
rki) be the distance (range) between the targetqk and thei− th sensor, where| · | denotes the Euclidean
norm, andωi the corresponding measurement noise as explained in Chapter 2. The variables and the
set-up that will be used are illustrated in Figure 3.1 for thecase of one target and three sensors.
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ri=|q-pi|

p2=[p2x,p2y]

pi=[pix,piy]

p1=[p1x,p1y]

q=[qx,qy]

T

T

T

T

O {xI}

{yI}

Figure 3.1: Target localization problem set-up.

With this notation, the FIM for thek− th target becomes
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where
ui = [uix, uiy]T =

[

∂|qk−pi |
∂qx
Γi ,

∂|qk−pi |
∂qy
Γi

]T
; (3.2)

andΓi = 1/
(

1+ ηrγki

)

for i ∈ {1, ..., n} andk ∈ {1, ...,m}.
As explained, the determinants of the FIMs for each of the targets are used in the computation

of an indicator of the performance that is achievable with a given sensor configuration. Maximizing
this indicator (which, as a consequence of the Pareto-optimality conditions described in Appendix
B, is a convex combination of the logarithms of the determinants of the different FIMs) yields the
most appropriate sensor formation geometry for the multiple target positioning problem:

p̄∗ = argmax
p̄

m
∑

k=1

log |FIMk| (3.3)

wherem is the number of targets involved in the multiple target positioning task, and ¯p is the vector
of sensor positions.

In the ground robotics field it is widely assumed that the measurement noise belongs to a
Gaussian distribution with constant covariance. This kindof noise is considered for a first analysis
of the multiple target positioning problem. Starting from this initial analysis, a deeper study is
carried out next considering that the covariance can vary ina non-linear manner with the distance
between sensors and targets, to overcome all the possible situations and application problems in a
2D scenario.

The optimal sensor configuration that maximizes the FIM determinant of each of the targets is
searched from Pareto-optimality conditions and convex optimization tools, so the convexity for the
problem at hand should be demonstrated. It is important to point out at this moment that although
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we speak of convexity, we actually search for the concavity of the log determinant of the FIM
since we deal with a maximization problem. In this sense, thesimplest problem of a 2 sensor
network is studied because it is possible to demonstrate analytically the convexity (concavity) of the
optimality criterion, and thus that a global unique solution may be obtained with numerical methods.
For a larger number of sensors the complexity of the functions does not allow to demonstrate the
convexity (concavity) of the criterion. For a discussion ofthe convexity of the functions adopted, see
for example [12], Chapter 3 and the work in [85] on the D-optimality criterion. For this purpose the
notation introduced in [6] for the FIM determinant is used, that for a distance-dependent covariance
error becomes

|FIM | = 1
σ4

n
∑

j≤l

((

u j × ul

)

· [0, 0, 1]
)2

(

1+ ηrγj
)2 (

1+ ηrγl
)2
=

1
σ4

n
∑

j≤l

sin2
(

α jl

)

(

1+ ηrγj
)2 (

1+ ηrγl
)2

(3.4)

where
u j = [u jx, u jy, 0]T =

[

∂|q−pj |
∂qx

∂|q−pj |
∂qy

0
]T

; (3.5)

j ∈ {1, ..., n}; identical definitions apply to the indexl; andα jl is the angle formed by the vectorsu j

andul . The optimal sensor configuration will be defined as the one which maximizes the logarithm
of (3.4).

For the sake of simplicity and clarity in the exposition, both scenarios with constant covariance
and distance-dependent covariance are studied separately. The main reason is that for constant
covariance the demonstration of concavity is easy and straightforward. Moreover, in this scenario
it is possible to achieve an accuracy close to the optimal onethat would be obtained for one single
target working in isolation for each of the targets involvedin the positioning task. Thus, this simpler
problem is dealt with first.

Equation (3.4) forη = 0 and n=2 becomes

|FIM | = 1
σ4

sin2 (α12) (3.6)

It is important to remark that the concavity of the logarithmof the FIM determinant is restricted
to positive definite matrices, therefore the domain of the logarithm of (3.6) cannot contain FIM
determinants equal to zero, i.e., the sensors and targets cannot be collinear and thusα12 ∈ ]0, π[. For
the domainα12 ∈ ]π, 2π[ the solutions are equivalent and define the same formationsonly by rotating
them the adequate angle. We compute the first derivative of the logarithm of (3.6) with respect to
the angleα12, that yields

∂ log |FIM |
∂α12

=
2 sin(α12) cos(α12)

σ4 · sin2 (α12)
(3.7)

The second derivative yields

∂2 log |FIM |
∂α2

12

=
−2 sin4 (α12) − 2 sin2 (α12) cos2 (α12)

σ4 · sin4 (α12)
=

−2

σ4 · sin2 (α12)
(3.8)

that is negative for all the domain, therefore (3.6) is a concave function and we can employ Pareto
optimization tools to determine the optimal sensor configurations. The analysis for a larger number
of sensors is not undertaken due to the complexity of the functions, but we assume that we can
employ these optimization tools to determine the optimal solutions in the scenarios in which an
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analytical solution is not feasible.
For the distance-dependent covariance case the demonstration is not straightforward because it

depends on the constraints imposed to the sensor network. For example, if the sensors are placed
at a fixed distance from the target, the previous demonstration holds. For each different constraint,
it is necessary to test if the criterion is concave or not, butthe previous analysis, and the results
commented in [12], Chapter 3 and the work in [85] on the D-optimality criterion, give us reasons to
employ convex optimization tools. For this latter case, theinitial guess will be chosen with care to
avoid possible local maxima due to the concavity of the criterion for distance-dependent covariance
has not been demonstrated analytically.

3.3 Gaussian error with constant covariance

In this scenario, as seen in Chapter 2, the distances betweensensors and targets do not condition
the optimal solutions. Only the angles that the range vectors form between them characterize the
optimal solutions. If the covariance error is constant,η = 0, then (3.1) becomes

FIMk =
1
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whereus = [usx, usy]T =
[

∂|qk−ps|
∂qx
,
∂|qk−ps|
∂qy

]T
, for s ∈ {1, ..., n} andk ∈ {1, ...,m}. For the sake of

clarity in the notations and demonstrations of the forthcoming analysis the indexs is used instead
the indexi in the summations.

As abovementioned, the summation of the logarithms of the FIM determinants is used as an
indicator of the performance that is achievable with a givensensor formation. Therefore, the solution
for (3.3) defines the optimal sensor configuration. To shed light on this problem the simplest case
of two targets and an arbitrary number of sensors (but at least 2 sensors) is studied first. Then this
solution is extended to an arbitrary number of targets.

3.3.1 Two targets positioning

In Section 3.2 we have seen that the problem at hand is concaveand the optimal solution can be
searched with convex optimization techniques. However, inthe special scenario of localizing only
two targets in 2D it is possible to define an analytical solution. Equation (3.3) becomes

p̄∗ = argmax
p̄

(

log |FIM1| + log |FIM2|
)

(3.10)

The summation of logarithms in (3.10) is equivalent to:

log |FIM1| + log |FIM2| = log(|FIM1| · |FIM2|) = log(|FIMT |) (3.11)

where the meaning ofFIMT is clear from the context. Moreover, the determinant of (3.9) may be
written as

|FIM | = 1
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(3.12)
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Thus, from (3.11) and (3.12), (3.10) yields

p̄∗ = argmax
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wherek = 1, · · · ,mare the number of targets involved in the task. In this particular casem= 2.

Equation (3.13) can be written in the following compact form:
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The optimal solution must be computed from the derivatives of (3.14) with respect to each sensor
position coordinate,pix and piy, with i = 1, · · · , n. The derivative of a dot product is defined by
∂(~P · ~Q) = ∂~P · ~Q+ ~P · ∂ ~Q, and the derivative of a vector is defined by the derivatives of each of its
elements,∂~P =

[

∂~P1 · · · ∂~Pn

]

, so the derivatives of each vector element with respect to each
sensor position coordinate must be defined.

Therefore, it is necessary to compute these derivatives before the complete derivatives of (3.14)
with respect to the sensors position coordinates may be defined. The vector element derivatives with
respect to the{xI } coordinate of sensori are (for thek− th target):

∂
n
∑
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r ik
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(3.16)
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∂pix
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(3.17)
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The vector element derivatives with respect to the{yI } coordinate of sensori are now computed,
(for thek− th target):
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From the above equations we can compute the derivative of (3.14) with respect to the{xI }
coordinate of sensori, that yields
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Similarly, the derivative of (3.14) with respect to the{yI } coordinate of sensori yields
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Straightforward computations allow to rewrite the above derivatives as
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sin2 (αs1) − cos2 (αs1)
)

|FIM1|−1+

2

(

sin3 (αi1)
r i1

− cos2 (αi1) sin(αi1)
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(3.21)
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(3.22)
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Making these equations be equal to 0 the optimal sensor configuration may be defined. Equations
(3.21) and (3.22) can be rewritten again as

∂ log |FIMT |
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(3.23)
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(3.24)

Now (3.23) and (3.24) can be seen as dot products:

∂ log |FIMT |
∂pix

=

(

sin(αi1)
r i1

· vi1
sin(αi2)

r i2
· vi2

) ( 1
|FIM1 |

1
|FIM2 |

)

= 0 (3.25)

∂ log |FIMT |
∂piy

=

(

−cos(αi1)
r i1

· vi1 −cos(αi2)
r i2

· vi2

) ( 1
|FIM1 |

1
|FIM2 |

)

= 0 (3.26)

wherevik = sin(2αik)
n
∑

s=1
cos(2αsk) − cos(2αik)

n
∑

s=1
sin(2αsk) for k = 1, 2. It is easy to check that if

the dot products are equal to zero, then the vectors are orthogonal, and therefore the vectors

V1 =

(

sin(αi1)
r i1

· vi1
sin(αi2)

r i2
· vi2

)

V2 =

(

−cos(αi1)
r i1

· vi1 −cos(αi2)
r i2

· vi2

)

are equivalent, and thenV1(1)/V2(1) = V1(2)/V2(2), it is,

− sin(αi1) · r i1 · vi1

cos(αi1) · r i1 · vi1
=
− sin(αi2) · r i2 · vi2

cos(αi2) · r i2 · vi2
→ tan(αi1) = tan(αi2) (3.27)

Equation (3.27) holds whenαi1 = αi2 + t · π with t being any natural number. This condition
means that all the sensors must lie in the line joining the twotargets since (3.27) must hold for all
sensors; therefore this solution can be discarded because obviously it is not an optimal solution.

It is important to notice from (3.25) and (3.26) that the vector
[

1
|FIM1 | ,

1
|FIM2 |

]T
is always

different from zero and positive, so the only possible solution is that vectorsV1 andV2 be equal to
zero. A closer look to these vectors shows that the conditionfor them to be zero is thatvik be equal
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to zero.

vik = sin(2αik)
n

∑

s=1

cos(2αsk) − cos(2αik)
n

∑

s=1

sin(2αsk) = 0 (3.28)

with k = 1, 2. Now (3.28) can be seen again as a dot product between two vectors:
(

n
∑

s=1
cos(2αsk)

n
∑

s=1
sin(2αsk)

)

·
(

sin(2αik) − cos(2αik)
)

= 0 (3.29)

This equation must hold for each sensor and each target. It isclear that if both vectors are different
from zero, (3.29) means that the vectors are orthogonal. In this case, the first array of the dot product
of (3.29) is constant for each target and for a given sensor configuration, thus the second array of
(3.29) that defines the orientation of the sensori with respect to a given targetk must be the same
for all sensors, something that is not optimal for a single target and that is impossible to achieve for
more than one target. Hence, this solution is discarded and the only valid solution is the one in which
one of the vectors of (3.29) is the null vector. A simple look to (3.29) shows that

(

cos(2αik) sin(2αik)
)

,

(

0 0
)

and then, the optimality condition is
(

n
∑

s=1
cos(2αsk)

n
∑

s=1
sin(2αsk)

)

=
(

0 0
)

(3.30)

Therefore, the sensor network must be second moment balanced with respect to both targets to
obtain the maximum accuracy possible in the positioning of the two targets:

n
∑

s=1
cos(2αsk) =

n
∑

s=1

(

cos2 (αsk) − sin2 (αsk)
)

= 0

n
∑

s=1
sin(2αsk) =

n
∑

s=1
2cos(αsk) sin(αsk) = 0

(3.31)

Conditions (3.30) are valid for any number of sensors. Moreover, the previous solution provides
an optimal sensor formation that achieves the theoretical maximum accuracy for both targets at the
same time and it is not necessary to define a trade-off solution. For more than two targets (3.30)
is not the only valid solution, as it will be studied in the next section, moreover, it is possible that
the maximum accuracy for all the targets cannot be obtained,and then a tradeoff solution must be
adopted.

3.3.2 Multiple target positioning

Once the analytical solution for the two target positioningproblem has been defined, the above
analysis can be extended for an arbitrary number of targets.From (3.11) we can obtain again the
equations (3.23) and (3.24) that define the optimal sensor configurations. In this scenario (3.23) and
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(3.24) must be rewritten for them targets:
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Again (3.32) and (3.33) can be written as dot products between two vectors:
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with vik = sin(2αik)
n
∑

s=1
cos(2αsk) − cos(2αik)

n
∑

s=1
sin(2αsk). Equations (3.34) and (3.35) must hold

for all the sensors of the network. It should be noticed that the above system of equations could have
multiple tradeoff solutions. Nevertheless, the solution (3.30) is one of the valid solutions for (3.34)
and (3.35) that also provides the theoretical maximum FIM determinant for each target. Thus if it is
possible to obtain a sensor configuration where (3.30) holds, then the minimum covariance error (or
maximum FIM determinant) for each target is obtained. This optimal configuration will provide the
maximum FIM determinantn2/σ422, as defined in [11] and [55].

However, (3.30) can be or not a solution for a given multiple target localization problem,
depending on the configuration of the targets and the number of sensors. If it is not possible to
define a sensor configuration with which (3.30) be true for allthe targets, then a tradeoff solution
must be adopted. The tradeoff solutions are obtained by resorting to an optimization algorithm that
will be explained in detail in the following section for distance-dependent covariance error because
for this latter case it is not possible to determine the optimal solution analytically. It is important
to remark at this point that when the covariance is constant it is possible to obtain accuracies for
each of the targets which are very close to the optimal one that would be obtained for a single target
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working in isolation. For distance-dependent covariance,this situation changes drastically and the
tradeoffs involved are clear. These tradeoffs are mission-dependent.

It can also be noticed that one possible optimal solution forthe problem at hand is a regular
distribution of sensors around the centre of mass of the targets, with the sensors placed at an infinite
distance from the centre of mass. Mathematically, this solution is feasible because for constant
covariance the distance does not affect the measurement error. In this unrealistic solution thesensor
network would be regularly distributed around all the targets, and all the FIM determinants would be
maximum. However, it is clear that it is not possible to reproduce this solution in a real environment
due to physical constraints, moreover, this solution showsthe unrealistic assumption of a constant
covariance error for the measurements, so a more realistic error model must be defined and used.

3.3.3 Simulation examples

Some examples on optimal sensor placement for a multi-target scenario are studied to illustrate the
methodology developed.

Clearly in order for the information about the optimal configurations to be useful, one must check
if the determinants of the individual FIMs for each target meet desired specifications. To this effect,
and for comparison purposes, the determinant of the FIMs obtained for a number of hypothetical
target points (based on a fixed optimal sensor configuration corresponding to a well-defined multi-
target scenario) will at times be computed by allowing thesepoints to be on a grid in a finite spatial
regionD. This will allow us to evaluate how good the sensor formationis in terms of yielding
accurate localization of the real targets, in comparison with the performance localization accuracy
that is possible for any hypothetical target (different from the real targets) positioned anywhere in
D. For the sake of clarity, and with an obvious abuse of notation, we will refer to that determinant,
viewed as a function of its argument inD, simply as|FIM |D. In this chapter,D will always be a
rectangle inℜ2. The same comments apply totr(CRB)D.

Example 3.1:4 sensor network, 2 targets.

This example tackles the case of a 4 sensor network for the positioning of two targets with
no constraints in the sensor placement, withσ = 0.1 m. The optimal solution for both targets
can be designed through the design condition (3.30). The targets are considered to be placed at
q1 = [2, 0]T mandq2 = [−2, 0]T m. It must be noticed that the distance between targets is not really
important and does not affect the sensor configuration. The same solution, in a geometric sense,
would be obtained for any distance between targets by only applying the adequate scalarization to
the sensor configuration, because the measurement error is distance-independent.

Table 3.1: Target positions and optimal sensor positions.

q1 q2 p1 p2 p3 p4

{xI } − coordinate(m) 2 −2 −3.8435 −3.8435 3.8435 3.8435
{yI } − coordinate(m) 0 0 3.2861 −3.2861 −3.2861 3.2861

One of the feasible optimal sensor formations may be defined by the positions listed in Table 3.1
and shown in Figure 3.2 (a), which provides the maximum FIM determinant|FIM | = n2/(σ4 ·4) m−4

for each target. In Figure 3.2 (c), we can notice how the formation provides also the minimum CRB
trace,tr(CRB) = σ2 · 4/n m2. The solution shown in this example is not unique, it is possible to
design several optimal sensor configurations.
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Figure 3.2: Optimal 4 sensor formation for 2 target positioning with constant covariance error. In (a)|FIM |D
inℜ2 is shown and in (b) its magnitude inℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for
each point inℜ2.

We can appreciate in Figure 3.2 (b) and (d) how the maximum value of the FIM determinant and
the minimum value of the CRB trace, respectively, are over the target positions. We can notice how
the design condition (3.30) is achieved by the present formation for both targets. Forq1 = [2, 0]T m
we have:

n
∑
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and for the targetq2 = [−2, 0]T m:
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Therefore it is easy to check that an optimal formation that provides the theoretical maximum
FIM determinant, and also the theoretical minimum CRB trace, is achieved when (3.30) holds for
each target.�

Example 3.2:5 sensors, 3 targets.

A more complex example is now defined, with 5 sensors and 3 targets. Again with (3.30) it
is possible to define an optimal configuration with which the maximum measurement accuracy is
obtained for each target. The target and sensor positions are stated in Table 3.2, and in Figure 3.3
the optimal configuration is shown.

Table 3.2: Target positions and optimal sensor positions.

q1 q2 q3 p1 p2 p3 p4 p5

{xI } − coordinate(m) −2.5 −2.5 5 6.01 −3.12 −8 −2.35 6.91
{yI } − coordinate(m) 1.7 −3.5 0 3.11 6.31 1.37 −6.17 −3.76

In Figure 3.3 (a) and (b) it can be seen how the theoretical maximum FIM determinant is obtained
at the target positions,|FIM | = n2/(4σ4) = 6.25 · 104 m−4. In Figure 3.3 (c) and (d) we can see how
the theoretical minimum CRB trace is obtained at the target positions too,tr(CRB) = σ2 · 4/n =
0.08 m2.

The optimality condition (3.30), that holds with this configuration, is not computed in this
example to avoid tedious repetition of the same previous arguments, but it is easy for the reader
to check, in a similar way as the previous example, that this design condition is kept for each target.
�

Example 3.3:5 sensors and 3 targets in a wide area.
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Figure 3.3: Optimal sensor formation for 5 sensors and 3 targets. In (a)|FIM |D in ℜ2 is shown and in (b) its
magnitude inℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.

The optimal positioning of 3 targets with a sensor network composed by 5 elements is now
studied maintaining the relative positions of the targets shown in Example 3.2 but increasing the
distances between them. The targets positions keep the sameformation of Example 3.2 but their
position coordinates are 50 times larger. The procedure to obtain the optimal formation consist in
solving the design condition (3.30) for all the targets, seeTable 3.3.

Table 3.3: Target positions and optimal sensor positions.

q1 q2 q3 p1 p2 p3 p4 p5

{xI } − coord. (m) −125 −125 250 300.43 −156.17 −400 −117.28 −308.52
{yI } − coord. (m) 85 −175 0 155.88 315.37 −68.48 −308.52 −187.81

In Figure 3.4 an optimal formation is shown. We can notice howthe geometric configuration
of the sensors is the same obtained in Example 3.2, but in the problem at hand the resultant sensor
formation has a size 50 times larger than the above example, due to the new target formation. In
Figure 3.4 (a) and (b) it can be seen how the maximum possible determinant is obtained over the
target positions again,|FIM | = n2/(4σ4) = 6.25 · 104 m−4, and in Figure 3.4 (c) and (d) we can
see how the minimum CRB trace is obtained over the target positions too,tr(CRB) = σ2 · 4/n =
0.008m2.

Hence it is possible to design optimal sensor networks to localize multiple targets where
the distance between them is not significant, the geometric configuration of the target formation
determines the optimal sensor placement. However there exist some complex configurations of
targets for which the maximum|FIM | cannot be achieved for all the targets and therefore a tradeoff
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Figure 3.4: Optimal sensor network for 5 sensors and 3 targets for a wide area. In (a)|FIM |D inℜ2 is shown
and in (b) its magnitude inℜ2. Similarly, in (c) tr(CRB)D is shown and in (d) its magnitude for each point in
ℜ2.

solution must be adopted.�

Example 3.4:10 sensors and 7 targets.

In this example it is studied the problem in which there is a large number of targets whose
configuration does not allow to obtain the maximum FIM determinant for each target. The optimal
configuration, when an analytical solution is not possible to be defined with (3.30), is computed
by resorting to optimization algorithms. We omit the details of these optimization algorithms, the
reader is referred to the next section in which these algorithms are explained in depth.

The targets positions, that were generated with a pseudo-aleatory algorithm, and the optimal
sensor formation are listed in Table 3.4.

Table 3.4: Target positions and optimal sensor positions.

q1 q2 q2 q4 q5 q6 q7 p1

{xI } − coord. (m) 15.3 −10.64 12.35 −15.06 −1.56 −2.61 3.92 17.75
{yI } − coord. (m) −2.49 16.03 −2.30 −4.45 2.76 4.43 −12.5 12.48

p2 p3 p4 p5 p6 p7 p8 p9

{xI } − coord. (m) 14.91 6.33 −15.17 −16.74 −13.85 −6.53 1.77 15.37
{yI } − coord. (m) 18.67 24.21 11.99 10.53 −7.87 −14.11 −13.2 −12.9
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In Figure 3.5 (a) and (b) it is shown how the maximum FIM determinants are defined at the
targets positions, and in Figure 3.5 (c) and (d) how the same occurs with the minimum CRB trace.
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Figure 3.5: Optimal formation for 10 sensors and 7 targets. In (a)|FIM |D in ℜ2 is shown and in (b) its
magnitude inℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.

The FIM determinants obtained with this formation for each of the targets are stated in Table 3.5.
It is easy to check that the FIM determinants are very close tothe optimal one,|FIM | = n2/(σ2 ·4) =
102/(0.12 · 4) = 2.5 · 105 m−4.

Table 3.5: FIM determinant for each of the targets.

q1 q2 q3 q4 q5 q6 q7

|FIM | 2.498· 105 2.5 · 105 2.499· 105 2.5 · 105 2.499· 105 2.499· 105 2.5 · 105

Therefore, when the error measurement has its covariance constant, it is possible to design sensor
configurations that provide the theoretical maximum FIM determinant for each target, or a value very
close to the maximum one.�

3.4 Gaussian error with distance-dependent covariance

For a wide range of robotics applications, for example an indoor environment, the error can
be considered Gaussian with constant covariance since distance does not significantly affect the
measurements. This approach may be erroneous for sensor networks that cover a wide area, because
the distance between sensors and targets may affect dramatically the measurement error. For this
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reason, the previous analysis is now extended for the scenario in which the covariance error is
distance-dependent, and thus the FIM is defined by (3.3).

It is important to remark that for the problem at hand it is notpossible to achieve the theoretical
maximum accuracy for all the targets. This can be seen clearly by noticing that the accuracy increases
when the distance between sensors and targets is reduced, something that cannot be achieved for all
the targets at the same time. This fact is coupled with the constraint that the sensors cannot lie at the
target positions, they must keep a safe or limit distance with respect to the targets. This limit distance
between sensors and targets cannot be reduced due to physical constraints and/or limitations for a
correct positioning and tracking strategy.

Therefore there will be tradeoffs involved in the precision with which each of the targets can
be localized; to study them, as abovementioned, techniquesthat borrow from estimation theory and
Pareto optimization are used. For the latter, the reader is referred to [45], [22], [90]. Therefore,
concepts on Pareto-optimality are employed to maximize convex combinations of the logarithms of
the determinants of the FIMs for each of the targets in order to compute the Pareto-optimal surface
that gives an image of the tradeoffs involved in the multiobjective optimization problem. Thus, we
seek to determine the sensor configuration that yields, if possible, a proper tradeoff for the accuracy
with which the position of the different targets can be computed.

3.4.1 Gradient optimization algorithm for optimal sensor placement

The logarithms of the FIM determinants for each of the targets are used in the computation of the
indicator of the performance that is achievable with a givensensor configuration,

p̄∗ = argmax
p̄

(

log |FIM1| + · · · + log |FIMm|
)

= argmax
p̄

log |FIMT | (3.36)

One simple method to find the optimal formation is the gradient optimization method. Thus
the derivative of the logarithm of the FIM determinant of each target with respect to all sensor
coordinates must be computed. It is necessary to expand (3.36) to compute its derivatives, and
similarly to the analysis of Section 3.3, from (3.11) and (3.12), |FIMT | yields
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Therefore the cost function can be rewritten as a product of dot products:
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The derivative of a vector is defined by the derivatives of each of its elements,∂~P =
[

∂~P1 · · · ∂~Pn

]

, so the derivatives of each vector element with respect to each sensor position
coordinate must be defined. These derivatives were computedin the previous section in (3.15),
(3.16), (3.17), with respect to the{xI } coordinate, and in (3.18), (3.19), (3.20), with respect to the
{yI } coordinate. In the distance-dependent covariance scenario we must also compute the following
additional derivatives:

∂Γ2
i

∂pix
= cos(αi)

2ηγrγ−1
i

(

1+ ηrγi
)3

∂Γ2
i

∂piy
= sin(αi)

2ηγrγ−1
i

(

1+ ηrγi
)3 (3.39)

Thus the derivatives of (3.38) with respect to each sensor position coordinate yield
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Some straightforward computations over the above derivatives yield
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Once the gradients have been computed for each target, they are combined to update the sensor
configuration so as to yield an increase in the specified convex combination of the logarithms of
the FIM determinants. This computation is recursive, untilthe optimal position is found. For the
single target positioning problem, an adequate initial guess for the solution is for example any regular
distribution around the target. Checking that this algorithm behaves well for single target positioning
is easy, for an analytical solution to the optimal sensor positions is available in Chapter 2. For the
multiple target localization problem, the initial guess may be a regular distribution around the mass
centre of the target group, with all the targets inside the sensor formation, or the solution that would
be obtained for the constant covariance case. Moreover, as abovementioned, tradeoff solutions must
be adopted for the problem at hand so Pareto optimization tools are employed to determine the
optimal sensor configurations depending on the mission constraints and requirements. Therefore,
(3.4) is rewritten as

p̄∗ = argmax
p̄

m
∑

k=1

λklog |FIMk| (3.42)

wherek = 1, · · · ,m with m being the number of targets, andλk is the Pareto weight for targetk
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andλ1 + · · · + λm = 1. The Armijo rule is used for the sensor placement update phase, yielding the
following iterative gradient optimization algorithm.

1. For each target, (3.42) is computed for the current sensorformation at iterationt, from which
|FIMλ|, the convex combination of the logarithms of the determinants, given by|FIMλ| [t] =
m
∑

k=1
λk log |FIMk| [t], follows for a specific choice ofλk; k = 1, 2, ..m; λ1 + ... + λm = 1, where

m is the number of targets.

2. Using (3.40) and (3.41) the gradient of|FIMλ| [t] is computed, yielding∇i,ξ |FIMλ| [t] with
ξ = x, y; andi = 1, ..., n.

3. The sensor positions are updated according to the gradients: pi,ξ [t + 1] = pi,ξ [t] +
µζ[t]∇i,ξ |FIMλ| [t], with µ ∈ 0, 1, ζ [0] = 1, andζ [t] = ζ [t − 1] + 1.

4. If |FIMλ| [t + 1] > |FIMλ| [t], then pi [t + 1] becomes the new set of sensor positions,ζ [t] =
ζ [t] + 1, and the iteration goes back to step 1, withpi [t + 1] =

[

pi,x [t + 1] , pi,y [t + 1]
]

.

5. If |FIMλ| [t + 1] < |FIMλ| [t], then there is no improvement in the convex combination of the
determinants,ζ [t] = 0, the iterative algorithm stops, andpi [t] is considered to be the optimal
configuration for the current target positions.

The above cycle is only run once if the targets are stationary. Notice the unrealistic assumption,
also made in many of the publications available in this area,that the positions of the targets are
known in advance. This is done to simplify the problem and to first fully understand its solution
before the realistic scenario where the positions of the targets are known with error can be tackled.
In this respect, see Section 3.5, which is largely inspired by the work in [39].

Clearly, in order for the information about the Pareto-optimal configurations to be useful, one
must check if the determinants of the individual FIMs for each target meet desired specifications.
To evaluate how good the sensor formation is in terms of yielding accurate localization of the real
targets the determinant|FIMD| previously introduced is used.

In a practical situation where the targets are in motion, thesensor network must adapt its optimal
configuration as the mission unfolds in three different intertwined processes:

i) multiple target position estimation, albeit with a possibly large error, using the current
sensor configuration and resorting to a dedicated nonlinearfilter (e.g. Extended
Kalman filter);

ii) optimal sensor configuration computation, based on the data provided by the previous
process and the algorithm described above or its modification in Section 3.5;

iii) coordinated motion controlto actually drive the moving sensors to the optimal
positions determined in ii).

We thus envision the situation where the algorithm described is run during each cycle of the
positioning system in ii). Interestingly enough, we can also think of a situation where the different
iterates of process ii) can be used to yield set points for theautonomous sensor network to move to,
effectively guiding them collectively to the optimal configuration that is being computed.

The advantage of using a gradient optimization method is itssimplicity. As it will be seen later,
based on the simulations done so far, the method has proven tobe quite satisfactory. However,
should there be a need for a more refined method, the sensor network positions given by the gradient
algorithm can be used as initial estimates in the new method.

57



Optimal Sensor Placement for Target Localization

The rest of this section contains the results of simulationsthat illustrate the potential of
the method developed for optimal sensor placement when multiple targets are involved. As an
introductory step, only the case where the targets have equal Pareto weights, that is,λ1 = λ2 = ... =

λm is considered. The case where the targets have different weights is addressed after the following
examples.

Example 3.5:4 sensors and 2 targets.

This example deals with the problem of 2 targets positioningwith a 4 sensor network and
distance-dependent error defined byσ = 0.1 m, γ = 1, andη = 0.05. The optimization method
described above is used to determine the optimal sensor configuration. The targets are placed at
q1 = [−5, 0]T m andq2 = [5, 0]T m. The additional constraint that the sensors cannot be placed
closer than 2 meters from the targets has been imposed to the design because if no constraints are
taken into account then the sensor would be too close to the targets and would provide an unrealistic
solution. In this sense, we can notice in Figure 3.6 and in Table 3.6 how the sensors are placed over
this constraint to reduce as much as possible the distance-dependent added error.

Table 3.6: Target positions and optimal sensor positions forσ = 0.1 m, γ = 1, andη = 0.05.

q1 q2 p1 p2 p3 p4

{xI } − coord. (m) −5 5 −3.97 −3.973 3.973 3.973
{yI } − coord. (m) 0 0 1.73 −1.73 −1.73 −1.73
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Figure 3.6: Optimal sensor placement for 2 targets with 4 sensors, withη = 0.05 andσ = 0.1 m. In (a) |FIM |D
inℜ2 is shown and in (b) its magnitude inℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for
each point inℜ2.
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The optimal formation is the one shown in Figure 3.6 (a) and (c), where we can see how the
maximum FIM determinant and minimum CRB trace are obtained at the target positions. The
sensors lie just at the limit distance of 2 meters. The FIM determinants for this example are
|FIM |1 = 1.6823·104 m−4 and|FIM |2 = 1.6823·104 m−4. It can be noticed that the FIM determinant
for each target is lower than in the previous situation, because now the solution space is limited by
the design constraints, and the distance-dependent added error. Thus a tradeoff solution is adopted
so that the largest accuracy possible is achieved for both targets.�

Example 3.6:6 sensors and 3 targets.

In this second example with equal Pareto weights the problemof 3 targets positioning by a 6
sensor network is studied, with the constraint that the sensors cannot lie closer than 2 meters from
the targets and a distance-dependent error modelled byσ = 0.1 m, γ = 1, andη = 0.05. In Table
3.7 the positions of the targets and the sensors are shown, the latter providing the maximum possible
accuracy for the problem at hand.

Table 3.7: Target positions and optimal sensor positions forσ = 0.1 m, γ = 1, andη = 0.05.

q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) −2.5 −2.5 5 4.12 −0.57 −2.22 −3.46 −0.53 4.46
{yI } − coord. (m) 1.7 −3.5 0 1.75 2.13 −0.23 −1.76 −3.73 −1.90
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Figure 3.7: Tradeoff solution for a 6 sensor network and 3 targets withη = 0.05. In (a)|FIM |D inℜ2 is shown
and in (b) its magnitude inℜ2. Similarly, in (c) tr(CRB)D is shown and in (d) its magnitude for each point in
ℜ2.
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In Figure 3.7 (a) and (b) it can be seen how the maximum FIM determinants in the regionD
are over points that differ from the target positions. This is due to the constraints imposed to the
problem at hand that make that a tradeoff solution must be adopted. For the tradeoff solution defined
an equivalent accuracy, as large as possible, is obtained for each target. The FIM determinants
obtained for each of the targets are|FIM |1 = 4.0799· 104 m−4, |FIM |2 = 4.01 · 104 m−4, and
|FIM |3 = 3.6359· 104 m−4. The three determinants are as large as the constraints allow. It can be
also seen in Figure 3.7 (c) and (d) how an equivalent accuracyis obtained for the targets in terms of
the CRB trace.�

Example 3.7:6 sensors and 3 targets in a wide area.

In this third example the problem of 3 targets positioning bya 6 sensor network is studied when
the targets are placed in a wide area, with the constraint that the sensors cannot lie closer than 20
meters from the targets and with a distance-dependent errormodelled byσ = 0.1 m, γ = 1, and
η = 0.05. The targets are placed such that the geometric configuration of Example 3.6 is kept but
the distances between targets are larger, in fact the targetcoordinates are 50 times larger, as it can be
seen in Table 3.8, where the optimal sensor positions are also shown.
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Figure 3.8: Tradeoff solution for a 6 sensor network and 3 targets withη = 0.05. In (a)|FIM |D inℜ2 is shown
and in (b) its magnitude inℜ2. Similarly, in (c) tr(CRB)D is shown and in (d) its magnitude for each point in
ℜ2.

In Figure 3.8 (a) and (b) it can be seen how the maximum FIM determinants in regionD are at
the target positions and how the sensors are close to them to reduce the distance-dependent added
error. The FIM determinants obtained for each of the targetsare|FIM |1 = 603.6742m−4, |FIM |2 =
663.5002m−4, and|FIM |3 = 653.0239m−4. These small values compared with those obtained in
Example 3.6 are due to the constraints imposed to the problemat hand, and the wide area considered,
that make more evident the importance of considering a distance-dependant measurement error. It
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Table 3.8: Target positions and optimal sensor positions forσ = 0.1 m, γ = 1, andη = 0.05.

q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) −125 −125 25 234.3 −106.2 −125.2 −105.4 237.9 4.5
{yI } − coord. (m) 85 −175 0 12.3 78.5 65 −171.1 −15.8 −1.9

can be seen in Figure 3.8 (c) and (d) the accuracy that is obtained inD in terms of the CRB trace.
This example shows clearly the importance of the size of the work area because the distance

dramatically affects the measurement accuracy and consequently the optimalsensor configurations
that can be defined.�

It is not hard to envision situations where different “levels of importance” and therefore different
localization accuracies are required for the elements in a group of targets. For example, in a 2 target
scenario one of the targets may be executing a very demandingand risky task, while the other is
carrying out an easy, routine task. In this situation, the sensor network should “focus its attention”
on the first target, effectively imposing strict requirements on the accuracy withwhich its position
must be estimated, while relaxing the level of localizationaccuracy required for the second target.
This situation may be inverted during the mission, so the formation should be able to accordingly
reconfigure itself.

It is obvious that the geometry of the sensor network will impact on the accuracy with which
the position of each target can be computed. In the case of multiple targets, improving the accuracy
in the estimate of one target may at times be done only in detriment of the accuracy of the other
estimates. There are therefore tradeoffs that must be examined carefully. An example of a multi-
target localization problem can be briefly described as follows: “given m targets andn sensors,
determine, if possible, a geometric configuration for the sensors that will maximize the accuracy
with which the position of targeti can be estimated, while keeping the accuracy of the other target
estimates above a desired threshold level”. It is at this stage that the power of multi-objective Pareto
optimization must be brought into the picture. Clearly, in order to fully understand the problem, the
corresponding set of Pareto-optimal points must be computed and make decisions accordingly. See
the presentation in Appendix B. As explained before, this can be done by computing

p̄∗ = argmax
p̄
|FIMλ| = argmax

p̄
log |FIMT | (3.43)

over all possible sensor positions, and for allλ = [λ1, λ2, ..., λm] such thatλ1 + ... + λm = 1. In
practice a grid of points is adopted for vectorλ. The maximization above is done by resorting to the
gradient optimization algorithm previously introduced.

For simplicity of explanation, a 2-target positioning problem with 6 sensors is studied although
the procedure would be the same for more targets and a different number of sensors. This particular
problem is studied in detail in Example 3.8, here we simply give a brief overview of the problem of
Pareto optimization. Since only two targets are involved, the Pareto-optimal curve is parametrized
by a single parameterλ ∈ [0, 1]. For simplicity of notation, we use the same symbol for this scalar
as well as for vectorλ. The meaning will be clear from the context. We assume thatλ1 = λ and
λ2 = 1 − λ. Whenλ varies from 0 to 1, the weight on one of the targets changes accordingly.
Thus, in the extreme cases of 0 and 1 the solutions degenerateinto those two of the single target
localization problems for target 2 and 1, respectively. Twodifferent curves that show the tradeoffs in
the determinants of the Fisher Information Matrices for each of the targets (with the sensor geometry
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Figure 3.9: Pareto curve (solid line) for a 2 target localization problem, using 6 sensors forη = 0.2, and the
corresponding FIM determinants (dotted line) for different values of the Pareto scalarization weights inλ.

obtained by running the gradient optimization algorithm) are plotted in Fig. 3.9. The left plot
corresponds to the Pareto curve for the maximization of|FIMλ|, whereas the right plot shows the
corresponding FIM determinants. The two curves are normalized between 0 and 1.

Notice in Fig. 3.9 how the cost function|FIMλ| = log |FIMT | provides a concave Pareto curve
(solid line), as expected for a maximization problem. As explained before, this is a consequence
of the fact that in this case the criterion for each target is indeed concave. The right plot shows the
corresponding evolution of the FIM determinants. Notice that the curve shown is concave for this
particular example because the distance between targets issmall, as will be detailed in Example 3.8,
however in multitude of scenarios it will not be concave (depending on the targets configuration),
thus supporting the statement that the determinants of the FIMs are not adequate criteria to be
maximized jointly (in the Pareto-optimal sense).

Fig. 3.9 shows how the accuracy of the measurements changes for different values ofλ. At
this point it is important to remark that if the measurement error does not depend on the distance
between targets and sensors, that is,η = 0, it is possible to obtain sensor locations for which the
accuracies obtained for each of the targets simultaneouslyare close to the optimal ones that would
be obtained if the targets were operating in isolation. Thisfollows from the shape of the Pareto
curve whenη = 0, not shown here. For example, withλ = 0.5 the performance achievable in
the localization of targets 1 and 2 simultaneously does not degrade when compared to the best
performance achievable for the two targets isolated. Of course the acceptable level of degradation
in performance is problem-dependent (for more than 2 targets). When the measurement error is
distance-dependent, the situation changes drastically because of the “steepness” of the Pareto curve.
For example, whenλ = 0.5 the performance that can be simultaneously achieved for both targets
degrades substantially. The tradeoffs involved are clear.

Now some examples of Pareto optimization are shown for different number of targets and
sensors. For the sake of clarity in the exposition of the previous arguments, the distances between
targets are considered small to show clearly the evolution of the optimal formation when the Pareto
weights are modified. For larger distances the changes wouldbe less evident, as it can be deduced
from Example 3.7, and the problem understanding less clear.In all the examples the sensors cannot
lie closer than 2 meters from the targets and the noise model is defined byσ = 0.1, γ = 1, and
η = 0.05, therefore the error depends on the distance in a linear manner.

Example 3.8:6 sensors and 2 targets.

In this example a 6 sensor formation is used to localize two targets with different values of the

62



3.4. GAUSSIAN ERROR WITH DISTANCE-DEPENDENT COVARIANCE

X (meters)

Y
 (m

e
te

rs
)

 

 

−6 −4 −2 0 2 4

−6

−4

−2

0

2

4

6

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

−6
−4

−2
0

2
4

−5

0

5

1

2

3

4

5

x 10
4

X (meters)
Y (meters)

|F
IM

|

X (meters)

Y
 (m

e
te

rs
)

 

 

−6 −4 −2 0 2 4

−6

−4

−2

0

2

4

6

−0.06

−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−6
−4

−2
0

2
4

−5

0

5

0.01

0.02

0.03

0.04

0.05

0.06

X (meters)
Y (meters)

C
R

B
 t

ra
ce

a) b)

c) d)

Figure 3.10: Optimal sensor formation forλ = 0.2. In (a) |FIM |D inℜ2 is shown and in (b) its magnitude in
ℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.

Pareto weights that illustrate how the sensors must change their configuration to achieve the accuracy
requirements imposed to each target. The targets are placedatq1 = [−5, 0]T m andq2 = [5, 0]T m.
As mentioned above, as only two targets are involved, the Pareto-optimal curve is parametrized by
a single parameterλ ∈ [0, 1]. We assume in this example thatλ1 = λ andλ2 = 1 − λ. Whenλ
varies from 0 to 1, the weight on one of the targets changes accordingly. The Pareto curve is shown
in Figure 3.9.

Some optimal configurations for different Pareto weights are now shown to illustrate the above
comments. For example in Figure 3.10 the optimal sensor network forλ = 0.2 is shown. The sensors
are placed at the positions listed in Table 3.9. It is clear how the formation is focused on target 2, but
maintaining a minimum accuracy for target 1.

Table 3.9: Target positions and optimal sensor positions forσ = 0.1, γ = 1, andη = 0.05.

λ = 0.2 q1 q2 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) −5 5 2.31 −3.67 −3.79 −3.79 −3.67 2.31
{yI } − coord. (m) 0 0 3.57 1.44 1.59 −1.59 −1.44 −3.57

In Figure 3.10 (a) and (b) the FIM determinants inD are shown, which are|FIM |1 = 4.6693·
104 m−4 and |FIM |2 = 2.1355· 104 m−4 at the target positions. In Figure 3.10 (c) and (d) the
CRB traces forD are shown too, which in the target positions becometr(CRB)1 = 0.0093m2 and
tr(CRB)2 = 0.0153m2.

In Figure 3.11 it can be seen that forλ = 0.5 the formation is symmetric and therefore both
targets are localized with the same accuracy. The sensor positions are shown in Table 3.10.
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Table 3.10:Target positions and optimal sensor positions forσ = 0.1, γ = 1, andη = 0.05.

λ = 0.5 q1 q2 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) −5 5 4.20 0 −4.20 −4.20 0 4.20
{yI } − coord. (m) 0 0 1.79 3.22 1.79 −1.79 −3.21 −1.79
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Figure 3.11: Optimal sensor formation forλ = 0.5. In (a) |FIM |D in ℜ2 is shown and in (b) its magnitude in
ℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.

In Figure 3.11 (a) and (b) the FIM determinants are shown overD, which in the target positions
are|FIM |1 = 3.5458·104 m−4 and|FIM |2 = 3.5458·104 m−4, that imply the same accuracy for both
targets. In Figure 3.11 (c) and (d) the CRB traces inD are plotted, which at the target positions are
tr(CRB)1 = 0.0106m2 andtr(CRB)2 = 0.0106m2. It can be noticed from these results, with respect
to the previous case withλ = 0.2, how the accuracy of one target increases while the other target
accuracy decreases to provide an equivalent accuracy for both targets. It is important to remark at
this point that if the distance between targets was to be larger, the optimal configuration would be
such that the 6 sensors are split into two formations of 3 sensors, each of these formations focused
on one of the targets.

Another interesting situation is when the sensor network isfocused on target 1 but the importance
of target 2 is large too, it is, whenλ = 0.7. Figure 3.12 shows how the formation is split into a 4
sensor network close to target 1 and a 2 sensor network close to target 2 (in fact the sensors are over
the limit distance), see Table 3.11.

It is clear how the formation is focused on target 1, but maintaining a minimum accuracy for
target 2, larger than the one obtained for target 1 whenλ = 0.2. In Figure 3.12 (a) and (b) the
FIM determinants are shown inD, which at the target positions are|FIM |1 = 3.1202· 104 m−4 and
|FIM |2 = 4.4533· 104 m−4. In Figure 3.12 (c) and (d) the CRB traces inD are shown, which at the
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Table 3.11:Target positions and optimal sensor positions forσ = 0.1, γ = 1, andη = 0.05.

λ = 0.7 q1 q2 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) −5 5 4.25 3.40 −4.37 −4.37 3.40 4.25
{yI } − coord. (m) 0 0 1.85 1.20 1.88 −1.88 −1.20 −1.85
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Figure 3.12: Optimal sensor network forλ = 0.7. In (a) |FIM |D in ℜ2 is shown and in (b) its magnitude in
ℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.

target positions aretr(CRB)1 = 0.0114m2 andtr(CRB)2 = 0.0095m2.
Finally, Figure 3.13 shows the optimal formation when the sensors are focused on the localization

of target 1 but a minimum accuracy must be maintained on target 2, it is, whenλ = 0.9. The sensors
positions are stated in Table 3.12.

Table 3.12:Target positions and optimal sensor positions forσ = 0.1, γ = 1, andη = 0.05.

λ = 0.7 q1 q2 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) −5 5 4.25 3.40 −0.88 −0.88 3.40 4.25
{yI } − coord. (m) 0 0 1.85 1.20 3.30 −3.30 −1.20 −1.85

In Figure 3.13 (a) and (b) the FIM determinants are shown inD, which in the target positions are
|FIM |1 = 1.4283· 104 m−4 and|FIM |2 = 4.8898· 104 m−4, showing a larger accuracy for the second
target as it was expected. In Figure 3.13 (c) and (d) the CRB traces for all the points inD are shown,
which in the target positions aretr(CRB)1 = 0.0221m2 andtr(CRB)2 = 0.0090m2. From the above
figures we can notice how the formation adapts its shape accordingly to the required accuracy for
each of the targets.�
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Figure 3.13: Optimal sensor network forλ = 0.9. In (a) |FIM |D in ℜ2 is shown and in (b) its magnitude in
ℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.

Example 3.9:6 sensors and 3 targets.

In this example the problem of 3 targets positioning with a network composed by 6 sensors is
studied. The increasing in the problem complexity is clear because the 6 sensors must adapt their
configuration to achieve the accuracy requirements and constraints while they must deal with an
additional target compared with the previous example. The targets are placed atq1 = [4, −3]T m,
q2 = [−4, −3]T m andq3 = [5, 0]T m. These target positions have been chosen arbitrarily. Several
scenarios for different values of theλs and their tradeoff solutions are shown next.

For example, in Figure 3.14 the tradeoff solution forλ1 = λ2 = λ3 = 0.333 is shown. After the
optimization process the sensors are in the positions shownin Table 3.13.

Table 3.13:Target positions and optimal sensor positions forσ = 0.1, γ = 1, andη = 0.05.

λ1,2,3 = 0.33, 0.33, 0.33 q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) 4 −4 5 4.06 1.76 −1.76 −0.99 −2.18 2.20
{yI } − coord. (m) −3 −3 0 −1 4.05 4.05 −4.03 −3.84 −3.61

It is easy to check how the formation is placed adequately to provide similar accuracy for all
targets and as large as possible. In Figure 3.14 (a) and (b) the |FIM |D and its representation in 3D are
shown, respectively. The FIM determinants obtained for thetargets are|FIM |1 = 3.4681· 104 m−4,
|FIM |2 = 3.4635·104 m−4, and|FIM |3 = 3.3637·104 m−4. In a similar way in Figure 3.14 (c) and (d)
thetr(CRB)D and the representation of its magnitude in 3D are shown. The values of the CRB trace
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Figure 3.14: Tradeoff solution forλ1 = λ2 = λ3 = 0.333. In (a)|FIM |D inℜ2 is shown and in (b) its magnitude
inℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.

at the targets position aretr(CRB)1 = 0.0108m2 tr(CRB)2 = 0.0108m2, andtr(CRB)3 = 0.0110m2.

In Table 3.14 and in Figure 3.15 the optimal solution is shownfor the Pareto weights given by
λ1 = 0.4,λ2 = 0.4, andλ3 = 0.2.

Table 3.14:Target positions and optimal sensor positions forσ = 0.1, γ = 1, andη = 0.05.

λ1,2,3 = 0.4, 0.4, 0.2 q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) 4 −4 5 4 2.69 −2.69 −3.02 −2.24 2.24
{yI } − coord. (m) −3 −3 0 −1 2.92 2.92 −1 −3.96 −3.95

In Figure 3.15 (a) and (b) we can see how the formation is focused on targets 1 and 2, providing
a larger accuracy (FIM determinant) than for target 3. Thesedeterminants are|FIM |1 = 3.5962·
104 m−4, |FIM |2 = 3.6034· 104 m−4, and |FIM |3 = 2.8334· 104 m−4. In Figure 3.15 (c) and
(d) the trace of the CRB matrix is shown inD, taking at the target positions the following values,
tr(CRB)1 = 0.0106m2, tr(CRB)2 = 0.0105m2, andtr(CRB)3 = 0.0123m2.

The situation shown in Figure 3.16 corresponds to the case inwhich the Pareto weights are
λ1 = 0.2, λ2 = 0.2, andλ3 = 0.6. The sensor positions for the corresponding tradeoff solution are
listed in Table 3.15.

In Figure 3.16 (a) and (b) the FIM determinants inD are shown, which for the target positions
are |FIM |1 = 2.9083· 104 m−4, |FIM |2 = 2.8385· 104 m−4, and |FIM |3 = 4.1533· 104 m−4. In
Figure 3.16 (c) and (d) the trace of the CRB matrix inD is also shown, which for the targets are
tr(CRB)1 = 0.0121m2, tr(CRB)2 = 0.0124m2, andtr(CRB)3 = 0.0098m2.
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Figure 3.15: Tradeoff solution forλ1 = 0.4, λ2 = 0.4, λ3 = 0.2. In (a) |FIM |D in ℜ2 is shown and in (b) its
magnitude inℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.
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Figure 3.16: Tradeoff solution forλ1 = 0.2, λ2 = 0.2, λ3 = 0.6. In (a) |FIM |D in ℜ2 is shown and in (b) its
magnitude inℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.
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Table 3.15:Target positions and optimal sensor positions forσ = 0.1, γ = 1, andη = 0.05.

λ1,2,3 = 0.2, 0.2, 0.6 q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) 4 −4 5 2.22 1.79 −1.79 −2.19 −2.23 2.16
{yI } − coord. (m) −3 −3 0 2.54 4.1 4.1 2.54 −3.93 −3.6

Finally the situation in which the targets must be positioned with a different accuracy each is
studied. Therefore the Pareto weights are nowλ1 = 0.1, λ2 = 0.3, andλ3 = 0.6. The tradeoff
solution provides a network with the sensors placed at the positions shown in Table 3.16.

Table 3.16:Target positions and optimal sensor positions forσ = 0.1, γ = 1, andη = 0.05.

λ1,2,3 = 0.1, 0.3, 0.6 q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI } − coord. (m) 4 −4 5 4.25 1.80 −1.79 −1.30 0.27 2
{yI } − coord. (m) −3 −3 0 0.55 4.14 4.11 3.49 −4.30 −3

As in the previous situations, in Figure 3.17 (a) and (b) the FIM determinants are shown,
which for the targets are|FIM |1 = 2.3052· 104 m−4, |FIM |2 = 3.3721· 104 m−4, and |FIM |3 =
4.0629· 104 m−4. In Figure 3.17 (c) and (d) the traces of the CRB matrices are shown, which for the
targets aretr(CRB)1 = 0.0142m2, tr(CRB)2 = 0.0111m2, andtr(CRB)3 = 0.0099m2. �
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Figure 3.17: Tradeoff solution forλ1 = 0.1, λ2 = 0.3, λ3 = 0.6. In (a) |FIM |D in ℜ2 is shown and in (b) its
magnitude inℜ2. Similarly, in (c)tr(CRB)D is shown and in (d) its magnitude for each point inℜ2.
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Therefore from the two examples above, and the different situations studied for different Pareto
weights, it is clear that there exist tradeoffs in the design of optimal sensor configurations that must
be kept. Depending on the accuracy with which each of the targets must be localized, and depending
on the number of sensors, number of targets, and their own configuration, the sensors must adapt
their configuration accordingly to the accuracy required ateach moment for each target. Of course,
these accuracies can change during a mission, so the formation must be able to adapt its configuration
for the different possible situations in a similar way as in the different situations seen in the previous
examples.

3.5 Uncertainty in the target location

Now it is addressed the situation where the targets to be positioned are known to lie in well defined
uncertainty regions. Inspired by the work in [39] and similarly to Chapter 2, it is assumed that the
uncertainty in the target positions is described by given probability distribution functions and we
seek to maximize, by proper sensor placement, the average value of the log determinants of the
FIMs for the targets.

In what follows, piξ ; i = 1, 2, ..., n; ξ = x, y denotes theξ − th coordinate of sensori located
at positionpi , p̄ = [pT

1 , ..., p
T
n ]T, andq̄ = [qT

1 , ..., q
T
m]T . We further denote byϕ (q̄) ; q̄ ∈ Rm×2 the

probability density functions with supportD ∈ R2 that describe the uncertainty in the position of the
targets in regionD, whereD = D1 + · · · + Dm. With this notation, the problem of optimal sensor
placement can be cast in the form of finding a vector ¯p∗ such that

p̄∗ = argmax
p̄

∫

D

|FIM (p̄, q̄)λ| · ϕ (q̄) dq̄ (3.44)

where we used the notation|FIM (p̄, q̄)λ| to clearly show the dependence of the FIM on the target and
sensor locations. However, in the following|FIM(p̄, q̄)λ| will often be denoted simply as|FIMλ|.
In a real situation,ϕ (q̄) will depend on the type of mission carried out by the targets.Therefore,
different distributions can be taken for different targets and different scenarios.

To proceed, one must compute|FIM(p̄, q̄)λ| in the equation above. At this point it is important to
remark that, given the complexity of the optimal sensor placement problem at hand, the only viable
solution is a numerical one.

It now remains to solve the optimization problem defined above. Conceptually, the procedure to
determine the optimal sensor configuration is similar to that explained in the previous sections, that
is, one must compute the derivatives of (3.44) with respect to the sensor coordinates

∂

∂piξ

∫

D

log(|FIM (p̄, q̄)T |)ϕ (q̄)dq̄ =
∂

∂piξ

∫

D

|FIM (p̄, q̄)λ| · ϕ (q̄) dq̄ (3.45)

for i = 1, 2, ..., n andξ = x, y.
To proceed with the computations, the integral and derivative operations are interchanged: the

derivatives are explicitly determined first, and the integration over regionD is performed afterwards.
The derivatives can be computed in a recursive way using (3.40) and (3.41) for any number of

targets. In what regards the computation of the double integral over the regionD of interest, however,
this is virtually impossible to do analytically. For this reason, the integral is computed numerically
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3.5. UNCERTAINTY IN THE TARGET LOCATION

with a Monte Carlo method. Finally, the solution of (3.44) isobtained using the gradient optimization
method detailed in Section 3.4.1. Again, to overcome the possible occurrence of local maxima or the
divergence of the algorithm, the initial guess in the iterative algorithm must be chosen with care. In
the examples that we studied we found it useful and expedite to adopt as an initial guess the solution
for the single target positioning problem described in Chapter 2, with the hypothetical single target
placed at the centre of mass of the work area, or the solutionsobtained in the previous sections of
this chapter. It is important to stress that the solution to (3.44) depends strongly on the probability
density function adopted for the target positions ¯q.

3.5.1 Simulation examples

Some examples for multiple target positioning when the target positions are known with uncertainty
are studied now. In these examples we consider an error modeldefined byσ = 0.1 m, β = 1 and
η = 0.1 or η = 0. In these examples we only know the region in which the targets operate instead
of the target positions themselves. We deal with equal Pareto weights for all the targets, but the
procedure would be exactly the same for different Pareto weights.

Example 3.10:Constant covariance error, 2 targets and 6 sensors.

In this first example the scenario with 2 targets and 6 sensorsis studied. The only knowledge
about the target positions is that the targets operate inside a certain area, therefore the probability
distribution functions are step-like distribution functions because the targets can be placed at any
point inside their corresponding work areas. The areas in which the targets operate are squares of
2× 2 m2 whose vertices are given by the pointsD1 = [−5 1; −5 − 1; −3 1; −3 − 1]T m for target
1, andD2 = [5 1; 5 − 1; 3 1; 3 − 1]T m for target 2. After the optimization process commented
above the optimal formation is defined by the sensor formation described in Table 3.17 and shown
in Figure 3.18.

Table 3.17:Optimal sensor positions for constant covariance.

p1 p2 p3 p4 p5 p6

{xI } − coord. (m) 4.13 0 −4.16 −4.15 0 4.13
{yI } − coord. (m) 2.90 3.58 2.89 −2.89 −3.57 −2.89

We can check in Figure 3.18 (a) and (b) how a large average FIM determinant, close to the
optimal one, is obtained over the work areas. In fact, the maximum and minimum determinant
that this optimal formation provides inside the areas of interest are|FIM |max = 9 · 104 m−4 and
|FIM |min = 8.8672· 104 m−4. We can notice how the maximum determinant is the theoretical one,
|FIM |opt = n2/(4σ4) m−4, and how the minimum determinant is very close to this optimal value
too, given a large accuracy in all the points if the uncertainty regions. In a similar manner, in Figure
3.18 (c) and (d) the CRB trace inD is shown, and it can be seen how inside the work areas a small
average CRB trace is obtained. The minimum and maximum CRB trace inside the areas of interest
aretr(CRB)min = 0.0067m2 andtr(CRB)max = 0.0068m2. The minimum CRB trace is again the
theoretical minimum for constant covariance,tr(CRB)opt = 4σ2/n m2, and the maximum is very
close to this minimum.

Thus, from this example it is clear that when a distance-independent measurement error is
considered it is possible to define optimal sensor configurations for which the accuracy inside the
work areas is very close to the maximum accuracy that would beobtained for a single target with
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Figure 3.18: Optimal sensor placement for 2 target positioning with uncertainty and constant covariance error.
In (a) |FIM |D inℜ2 is shown and in (b) its magnitude inℜ2. Similarly, in (c) tr(CRB)D is shown and in (d) its
magnitude for each point inℜ2.

known position working in isolation.�

Example 3.11:Distance-dependent covariance error, 2 targets and 6 sensors.

The above example is now studied with distance-dependent measurement error, for whichη =
0.1 andγ = 1. Again the targets operate inside two square areas of 2× 2 m2 defined by the vertices
D1 = [−5 1; −5 − 1; −3 1; −3 − 1]T m for target 1, andD2 = [5 1; 5 − 1; 3 1; 3 − 1]T m
for target 2. The only knowledge about the target positions is that the targets operate inside a certain
area, they can be placed at any point of their corresponding work area and therefore the probability
distribution functions are step-like distribution functions. Once the optimization process is finished,
the sensor positions that define the optimal formation are listed in Table 3.18.

Table 3.18:Optimal sensor positions forσ = 0.1, γ = 1, andη = 0.1.

p1 p2 p3 p4 p5 p6

{xI } − coord. (m) 3.91 −3.22 −4.41 −3.91 3.21 4.42
{yI } − coord. (m) 0.97 1.13 1.15 −0.95 −1.11 −1.13

It is interesting enough to notice how in this example the 6 sensor formation is split into two
formations of 3 sensors, which are focused on the work areas as two independent formations.

In Figure 3.19 (a) and (b) the FIM determinants forD are shown. The accuracy inside the
work areas has been substantially reduced with respect to the previous example, due to the distance-
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Figure 3.19: Optimal sensor placement for 2 target positioning with uncertainty and distance-dependent
covariance error. In (a)|FIM |D in ℜ2 is shown and in (b) its magnitude inℜ2. Similarly, in (c) tr(CRB)D
is shown and in (d) its magnitude for each point inℜ2.

dependent added error, and we can see how the sensor formation takes a configuration in which
this added error is reduced as much as possible to keep a largeaccuracy over the regions of
interest. This fact can be seen as well in Figure 3.19 (c) and (d) in terms of the trace of the
CRB forD. The maximum and minimum FIM determinants obtained inside the work areas are
|FIM |max = 2.9941· 104 m−4 and |FIM |min = 1.5577· 104 m−4, respectively, and the minimum
and maximum CRB trace are,tr(CRB)min = 0.0116m2 andtr(CRB)max = 0.0208m2, respectively.
Although the global accuracy is reduced, we can observe how an adequate design can optimize the
accuracy over the areas of interest.�

Example 3.12:Constant covariance error, 3 targets and 6 sensors.

The problem of 3 target positioning with a 6 sensor network with constant covariance is tackled.
In this example the sensors can be placed in a wide area and theuncertainty regions are larger. The
uncertainty regions where the targets operate are square areas of 40× 40 m2 defined by the vertices
D1 = [−100 − 20; −100 20;−60 − 20; −60 20]T m for target 1,D2 = [100 − 20; 100 20; 60−
20; 60 20]T m for target 2, andD3 = [−20 100; −20 140; 20 100; 20 140]T m for target 3.
The only knowledge about the target positions is again that the targets are inside these areas, thus the
probability distributions are step-like distributions. The sensor formation that maximizes the average
logarithm of the FIM determinant is defined by the sensor positions in Table 3.19.

Again it is possible to notice in Figure 3.20 how a large accuracy is obtained inside the areas of
interest when a constant covariance error is considered.

In Figure 3.20 (a) and (b) the FIM determinants overD are shown. The maximum and
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Table 3.19:Optimal sensor positions for constant covariance.

p1 p2 p3 p4 p5 p6

{xI } − coord. (m) 153.36 −43.31 −190.92 −166.80 31.02 138.09
{yI } − coord. (m) 123.36 75.43 176.83 −194.48 −86.92 −60.13
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Figure 3.20: Optimal sensor placement for 3 target positioning with uncertainty and constant covariance error.
In (a) |FIM |D inℜ2 is shown and in (b) its magnitude inℜ2. Similarly, in (c) tr(CRB)D is shown and in (d) its
magnitude for each point inℜ2.

minimum FIM determinants obtained inside the work areas are|FIM |max = 9 · 104 m−4 and
|FIM |min = 8.7849 · 104 m−4, respectively. The average value inside the regions of interest is
|FIM |av = 8.9760· 104 m−4. We can notice how the maximum FIM determinant corresponds to the
theoretical maximum FIM determinant that can be obtained for a single target working in isolation,
|FIM |opt = n2/(4σ4) m−4, and that the minimum FIM determinant is very close to this theoretical
optimal value, so that the accuracy inside the regions of interest is very close to the optimal one.
Similarly, in Figure 3.20 (c) and (d) the trace of the CRB for each point inD is shown. The minimum
and maximum CRB trace are,tr(CRB)min = 0.0067m2 andtr(CRB)max = 0.0068m2, respectively,
with the minimum value equal to the theoretical one,tr(CRB)opt = 4σ2/n m2, and the maximum
very close to it, as commented for the FIM determinant plots.�

Example 3.13:Distance-dependent covariance error, 3 targets and 6 sensors.

The above problem is studied now considering a distance-dependent error modelled withη = 0.1
andγ = 1. The uncertainty regions are the same square areas of 40× 40 m2 defined by the vertices
D1 = [−100 − 20; −100 20;−60 − 20; −60 20]T m for target 1,D2 = [100 − 20; 100 20; 60−
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Figure 3.21: Optimal sensor placement for 3 target positioning with uncertainty and distance-dependent
covariance error. In (a)|FIM |D in ℜ2 is shown and in (b) its magnitude inℜ2. Similarly, in (c) tr(CRB)D
is shown and in (d) its magnitude for each point inℜ2.

20; 60 20]T m for target 2, andD3 = [−20 100; −20 140; 20 100; 20 140]T m for target 3.
The probability distributions for the uncertainty areas are step-like distributions, as in the previous
examples. The sensor formation that maximizes the average logarithm of the FIM determinant is
defined by the sensor positions in Table 3.20.

Table 3.20:Optimal sensor positions forσ = 0.1, γ = 1, andη = 0.1.

p1 p2 p3 p4 p5 p6

{xI } − coord. (m) 79.61 −23.10 −79.77 −77.65 19.64 78.59
{yI } − coord. (m) 15.52 121.96 16.44 −13.41 123.10 −12.62

In Figure 3.21 (a) and (b) the FIM determinants inD are shown. In this case the accuracy with
which each of the targets (actually its associated area) canbe localized is reduced with respect to
Example 3.12 due to the distance-dependent added error. However the accuracy obtained inside the
work areas is large and homogeneous for all the areas, providing a similar accuracy for the three
uncertainty areas. This fact can be seen too in Figure 3.21 (c) and (d) in terms of the trace of the
CRB in D. The maximum and minimum FIM determinants obtained inside the work areas are
|FIM |max = 1.8616· 103 m−4 and|FIM |min = 146.0117m−4, respectively, with an average value of
|FIM |avg = 588.9221m−4. The minimum and maximum CRB trace are,tr(CRB)min = 0.0648m2

andtr(CRB)max= 0.2553m2, respectively.
Comparing these results with the results obtained in Example 3.11, we can see that the accuracies

are smaller in the problem at hand because the formation has to maximize the FIM determinant
over three wide regions that are separated by a larger distance than the two areas of Example 3.11.
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Although the accuracy is reduced for this case, we can observe how with an adequate design it is
possible to optimize the accuracy over the areas of interest. �

3.6 Conclusions

The problem of optimal sensor placement for multiple targetpositioning in 2D scenarios has been
studied in this chapter. Clearly, there exist tradeoffs involved in the precision with which each of
the targets can be localized; to study them, we resorted to techniques that borrow from estimation
theory and Pareto optimization. Stated briefly, we availed ourselves of concepts on Pareto-optimality
and maximized convex combinations of the logarithms of the determinants of the FIMs for each of
the targets in order to compute the Pareto-optimal surface that gives a clear image of the tradeoffs
involved in the multiobjective optimization problem.

The first problem studied was the one in which the measurementerror was Gaussian with its
covariance being constant. This situation has been widely studied in the ground robotics field, where
the distances are not large and the covariance can be considered constant. Despite this, most works
in the literature deal with single target positioning, so the extension to multiple target positioning
has been done in this chapter. It has been studied that under some conditions, an analytical solution
can be defined and that this solution provides the maximum FIMdeterminant for each target. In
other situations with complex target configurations, this analytical solution cannot be achieved, and
then the optimal sensor configurations have been defined witha gradient optimization method. The
examples shown in this chapter with constant covariance illustrated that this approach is correct and
that the accuracy obtained for each target is very close to the theoretical maximum that would be
obtained for a single target working in isolation.

Then this study was extended to a second and more complex problem, when the distance affects
the measurement error and then the covariance of the measurement error is distance-dependent.
In this problem it is necessary to resort to optimization techniques to define an optimal formation
because it is not possible to define an analytical solution. In this sense Pareto optimization is used
for the maximization of convex combinations of the logarithms of the determinants of the FIMs
for each of the targets. The optimal solution has been obtained again via a gradient optimization
method. It has been reported that depending on the error model, on the targets configuration, and
on the Pareto weights assigned to each of the targets, several optimal configurations may be defined.
These optimal configurations are clearly mission-dependent.

Finally, the previous results were extended to the more realistic problem where the target
positions are known with uncertainty. This uncertainty canbe defined by any probabilistic
distribution function, and the kind of function used determines in high degree the optimal sensor
formation. An optimization method similar to the previously defined was used to determine the
optimal sensor configurations. The main problem to overcomewas the resolution of the integrals of
the gradient equations, to determine the necessary gradients to increase the average FIM determinant
over the work area in the optimization algorithm. These integrals were solved numerically by a
Monte Carlo method because of the impossibility of solving them analytically. Different design
scenarios were studied.

Therefore, in this chapter, a methodology to define optimal sensor configurations for multiple
target positioning in 2D considering constant and distance-dependent covariance error has been
defined and the well behaviour of this methodology has been proved through several illustrative
examples.
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Chapter 4

SINGLE TARGET POSITIONING IN
3D SCENARIOS WITH RANGE MEA-
SUREMENTS

4.1 Introduction

The use of autonomous underwater vehicles (AUVs) in different research and commercial areas has
been increasing in the last few years. For reasons that have to do with autonomy, flexibility, and
the new trend in miniaturization, AUVs are steadily emerging as tools par excellence to replace
ROVs and also humans in the execution of many demanding tasksat sea that include pipeline
inspection, seabed surveying, and archaeological research, to name but a few. Furthermore, their
use in collaborative tasks allows for the realization of complex missions, often with relatively simple
systems; see [32].

Central to the operation of some classes of AUVs is the availability of good underwater
positioning systems to localize one or more vehicles simultaneously based on information received
on-board a support ship or an autonomous surface system. Theinfo thus obtained is at times used to
follow the state of progress of a particular mission or, if reliable acoustic modems are available, to
relay it as a navigation aid to the navigation systems existent on-board the AUV. Identical comments
apply to a new generation of positioning systems to aid in thetracking of one or more human divers,
as proposed in the context of the EC CO3AUVs project [9].

Inspired by similar developments in ground robotics, in this chapter we address the problem of
single target positioning in 3D scenarios based on measurements of the ranges between the target
and a set of sensors, obtained via acoustic ranging devices.In particular, and speaking in loose
terms, we are interested in determining the optimal configuration (formation) of a sensor network
that will, in a well defined sense, maximize the range-related information available for underwater
target positioning. To this effect, we assume that the range measurements are corrupted by white
Gaussian noise the variance of which is distance-dependent. The actual computation of the target
position may be done by resorting to trilateration algorithms. See for example [4], [3], [7], and the
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references therein for an introduction to this circle of ideas, covering both theoretical and practical
aspects.

Given a target positioning problem, the optimal sensor configuration can be ascertained by
examining the corresponding Cramer-Rao Bound (CRB) or Fisher Information Matrix (FIM).
See [87] for a lucid presentation of this subject in the context of estimation theory. To this
effect, the determinant of the FIM is used as an indicator of the performance that is achievable
with a given sensor configuratin. Maximizing this quantity yields the most appropriate sensor
formation geometry. Thus, the FIM corresponding to a 3D scenario is computed to derive the
sensor configuration that yields the best precision with which the position of a target can possibly
be estimated considering a distance-dependent variance ofthe noise model. In this sense, in [84]
the Cramer-Rao Bound is derived for a distance-dependent error model for Time-Of-Arrival based
localization in the two-dimensional (2D) space, showing that an error model with distance-dependent
covariance has an important impact on the geometric configuration of nodes on the localization
accuracy. The underwater target positioning problem was addressed by the authors previously in [61]
and [62].

For a given target positioning problem, the optimal geometry of the sensor configuration depends
strongly on the constraints imposed by the task itself (e.g.maximum number and type of sensors that
can be used) and the environment (e.g. ambient noise). In fact, an inadequate sensor configuration
may yield large positioning errors. It is interesting to remark that in spite of the importance and
relevance of the optimal sensor placement problem, the topic is far from being studied exhaustively.

Interesting results in the area go back to the works commented on the introduction of Chapter 2.
Some interesting works that deal with the problem of target positioning in 3D can be found in [94]
and [95], where the authors derive some properties of the CRBand state conditions that the optimal
formations must satisfy. In addition, several solutions tothe 2D and 3D positioning problems are
proposed. In [66] a method for optimal sensor placement thatminimizes the condition number of
a matrix involved in a linear least squares (LLS) solution isproposed and it exploits the use of an
iterative linearized model (LM) estimator. The authors further derive the analytical form of some
optimal sensor configurations. In [61] and [62] an initial solution for the problem of underwater
target positioning with a surface sensor network was introduced for the scenarios where the target
position is knowna priori and when it is known with uncertainty, respectively.

Motivated by previous work, in this chapter we address the problem of finding the optimal
geometric configuration of a sensor formation for the positioning of a target, based on target-to-
sensor range measurements only. In contrast to what has so far been published in the literature,
we address explicitly the positioning problem in 3D with thesensor array in 3D. The special
scenario where the sensor array is located in a plane (2D) is studied as a particular example of the
methodology developed; this application scenario arises for example in the case where an underwater
target is positioned by an ocean surface sensor network. A problem of this type was previously
studied in [99], where a method to determine the optimal two-dimensional spatial placement of
multiple sensors participating in a robot perception task was derived. One of the scenarios considered
was that of localizing an underwater vehicle, the acoustic receivers being constrained to lie on a
horizontal plane.

The key contributions of the present chapter are fivefold: i)a general solution is obtained
analytically for the problem of optimal sensor placement when the sensors are allowed to be placed
freely in 3D space. Thus, depending on the mission at hand, for example for underwater target
positioning, the sensor network may be completely underwater or at the surface, or even configured
such that a sub-group of sensors is at the surface and the remaining sub-group close to the sea-
bottom, ii) it is shown that the optimal configuration lends itself to an interesting intuitive geometric
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characterization of all possible (optimal sensor placement) solutions that can be obtained in 3D, iii)
a solution is also offered for the important case where the depth of the target is computed directly,
thus dispensing with the need to estimate it using acoustic range measurements; with the solution
obtained, the relationship between 3D and 2D scenarios (commonly exploited in land robotics)
where the target and the sensor network lie in the same plane,becomes clear; iv) the solutions
derived are extended to the case wherea priori knowledge about the target in 3D is given in terms
of a probability density function, and finally, v) the variances are allowed to depend explicitly on
the ranges themselves. This allows us to capture the fact that measurement noise increases in a
non-linear manner with the distances measured.

It is important to point out that, as commented in previous chapters, it may be argued that
considering an assumed position for the target defeats the purpose of devising a method to compute
it, for the latter is known in advance. The rationale for the problem at hand stems from the need
to first fully understand the simpler situation where the position of the target is known and to
characterize, in a rigorous manner, the types of solutions obtained for the optimal sensor placement
problem. In a practical situation, the position of the target is only known with uncertainty and
this problem must be tackled directly. However, in this caseit is virtually impossible to a general
analytical characterization of the optimal solutions, andone must resort to numerical search methods.
At this stage, an in-depth understanding of the types of solutions obtained for the ideal case is of
key importance to compute an initial guess for the optimal sensor placement algorithm adopted.
These issues are rarely discussed in the literature, a notable exception being [39]. Thus, this chapter
establishes the core theoretical tools to address and solvethe case when there is uncertainty in the
position of the underwater target

For the sake of completeness similar definitions and demonstrations to those given in Chapter
2, i.e., the problem formulation, information inequality and optimal FIM, are stated again for three-
dimensional scenarios. This repetition of arguments seeksto make the present chapter self-contained
and more readable, since the optimal solutions are far more rich and complex.

The chapter is organized as follows. Section 4.2 derives theFIM for the optimal sensor placement
problem when the measurement noise is Gaussian, with distance-dependent variance. The optimal
FIM that provides the maximum determinant at the target position is analytically defined in Section
4.3. Section 4.4 characterizes all the possible optimal sensor configurations in 3D space when the
error covariance is constant. Moreover the application scenario in which the sensors are placed
in a plane is tackled. Both situations where the target depthis known and unknown are also
studied. Section 4.5 contains the derivation of optimal sensor configurations with distance-dependent
covariance error. The particular case where the sensors canbe placed on a sphere centred at the target
position in 3D space is tackled, and the results are then re-examined for the application scenario
where an sensor formation is located on a plane. For the latter case, both situations where the target
depth is known and unknown are studied again. In Section 4.6 the optimal sensor placement problem
is solved for the case where the prior knowledge about the target is given in terms of a probability
density function, and several simulation examples are included. Finally, Section 4.7 contains the
conclusions and a brief discussion of topics.

4.2 Information Inequality with distance-dependent measure-
ment noise

Let {I } be an inertial reference frame with unit axis{xI }, {yI }, {zI } and letq = [qx, qy, qz]T be the
position of the target to be positioned in{I }. Further denote bypi = [pix, piy, piz]T ; i = 1, 2, .., n,
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ri=|q-pi|

p2=[p2x,p2y,p2z]

pi=[pix,piy,piz]

p1=[p1x,p1y,p1z]

O {xI}

q=[qx,qy,qz]

T

T

T

T

{zI}

{yI}

Figure 4.1: Target localization problem set-up.

the position of thei − th acoustic ranging sensor, also in{I }. Let r i(q) = |q − pi | (abbv. r i) be the
distance (range) between the targetq and thei − th sensor, where| · | denotes the Euclidean norm.
The variables and the set-up that will be used are illustrated in Figure 4.1 for the case of one target
and three sensors. We denote byzi the measurements of the actual ranger i(q), corrupted by additive
noiseωi . With the above notation, the measurement model adopted is given by

zi = |q− pi | + ωi = r i(q) + ωi (4.1)

Range measurements between two objects are plagued with errors that depend on a multitude
of effects: depth-dependent speed of propagation of sound in water, physical propagation barriers,
ambient noise, and degrading signal-to-noise ratio as the distance between the two objects increases,
to name but a few. For analytical tractability, it is commonly assumed that the measurement errors
can be captured by Gaussian, zero mean, additive noise with constant covariance. Clearly, this
assumption is artificial in view of the simple fact that the “level of noise” is distance-dependent. In
this chapter we assume again that the measurement noise can be modelled by a zero-mean Gaussian
process where the covariance depends on the distance between the two objects that exchange range
data. Stated mathematically,

ω = (I + ηδ(r(q)γ)) · ω0 (4.2)

wherer(q) is the vector of actual ranges,η andγ are the modelling parameters for the distance-
dependent noise component, andω = [ω1 · · ·ωn]T is measurement noise assuming that all noise
sourcesωi are independent, and the vectorω0 is a zero mean Gaussian processN(0,Σ0) with Σ0 =

σ2 · I , whereI is the identity matrix. In the above,δ is the operatordiag, that either converts a
square matrix into a vector consisting of its diagonal elements, or converts a vector into a square
diagonal matrix whose diagonal components are the array elements. With these assumptions, the
measurement noise covariance matrix is given by

Σ = σ2 (I + ηδ(r(q)γ))2
= δ

(

σ2 ·
(

1+ ηrγ1
)2
, · · · , σ2 ·

(

1+ ηrγn
)2
)

(4.3)

Stated in simple terms, the FIM captures the amount of information that measured data provide
about an unknown parameter (or vector of parameters) to be estimated. Under known assumptions,
the FIM is the inverse of the Cramer-Rao Bound matrix (abbv. CRB), which lower bounds the
covariance of the estimation error that can possibly be obtained with any unbiased estimator. Thus,
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“minimizing the CRB” may yield (by proper estimator selection) a decrease of uncertainty in the
parameter estimation.

Formally, letq̂(z) be any unbiased estimator ofq, that is, a mapping ˆq : ℜn → ℜ3 between the
observationsz and the target position space such thatE{q̂} = q for all q ∈ ℜ3, whereE{·} denotes
the average operator. Letpq(z) be the likelihood function that defines the probability of obtaining
the observationzgiven that the true target position isq. It is well known that under some regularity
conditions onpq(z) the following inequality holds:

Cov{q̂} ≥ FIM(q)−1 = CRB(q) (4.4)

where
Cov{q̂} = E{(q̂− q)(q̂− q)T}, (4.5)

FIM (q) (often abbreviated simply as FIM) is the Fisher Information Matrix defined as

FIM(q) = E
{

(∇q log pq(z))(∇q log pq(z))T
}

, (4.6)

andCRB(q) is the Cramer-Rao Bound matrix. In the above,∇q log pq denotes the gradient of the log
of the likelihood function with respect to the unknown parameterq. Taking the trace of both sides
of the covariance inequality yields

var{q̂} := tr(Cov{q̂}) = tr(E{(q̂− q)(q̂− q)T}) ≥ tr(FIM(q))−1 (4.7)

that sets a lower bound on the mean-square error of any unbiased estimator.

Equipped with the above notation and tools of estimation theory we now address the optimal
sensor placement problem by solving a related equivalent optimization one: given the FIM for the
problem at hand, maximize its determinant by proper choice of the acoustic sensor coordinates.
This strategy for sensor placement underlies much of the previous work available in the literature;
see for example [55] , [39] and the references therein. Following standard procedures, the FIM
corresponding to the problem of range-based single target positioning in 3D can be computed from
the likelihood functionpq(z) given by

pq(z) =
1

(2π)
n
2 |Σ| 12

exp

{

−1
2

(z− r(q))T Σ−1 (z− r(q))

}

(4.8)

wheren is the number of receivers,z = [z1, z2, ..., zn]T consists ofn measured ranges, andr(q) are
the actual ranges. Taking the logarithm of (4.8), computingits derivative with respect toq, and then
its expected value, the FIM is defined as

FIM = C(δ(r)Σδ(r))−1CT (4.9)

whereC = (q1T
n − p) ∈ ℜ3xn, 1n ∈ ℜnx1 is a vector of 1s, andp is the vector of sensor positions,

the latter being defined inℜ3xn. The FIM is constructed by allowing the measurement error tobe
distance-dependent. Note thatΣ depends on the actual range distances, not the measured ones,
so its derivative with respect to the estimation parametersof q must not be computed in (4.9).
Once the FIM is computed, the Cramer Rao Bound matrix is defined asCRB = FIM−1. In this
context, the optimal sensor placement strategy for a singlevehicle localization problem is obtained
by maximizing the determinant of the FIM, which must be computed explicitly. To this effect, we
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start by expanding (4.9) to obtain

FIM =
1
σ2
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(4.10)

whereΓi = 1/
(

1+ ηrγi
)

for i ∈ {1, ..., n}, and without loss of generality, the target is considered to

be placed at the origin of the inertial coordinate frame,q = [0, 0, 0]T. Clearly, the expression of the
FIM considering a distance-dependence covariance error iswell defined.
As explained before, the determinant of the FIM is used for the computation of an indicator of
the performance that can be achieved (by proper choice of an estimator) with a given sensor
configuration. Maximizing this indicator, as proposed in the so-called theD-optimum design
strategy [85], yields the most appropriate sensor formation geometry for the single target positioning
problem.

It is important to remark that is crucial the imposition or existence of constraints in the design
of an optimal sensor network when a variable error covariance is considered. It can be seen that the
determinant of (4.10) is inversely proportional to the measurement error, so it depends explicitly
on the distance between sensors and target. Hence if the sensors can be placed freely in the
3D space they will tend to concentrate over the target position to reduce as much as possible the
distance-dependent added error. Therefore, different optimal formations may be defined depending
on the constraints imposed by the environment, by the task, or by the sensor network itself. In the
forthcoming sections we study some of the more usual practical scenarios, but the procedure would
be similar for any alternative scenario.

4.3 Optimal Fisher Information Matrix

To compute the determinant of the FIM it is convenient to introduce the following three vectors in
ℜn:

X =
[ p1x

r1
· Γ1 . . .

pnx

rn
· Γn

]

Υ =
[ p1y

r1
· Γ1 . . .

pny

rn
· Γn

]

Z =
[

p1z

r1
· Γ1 . . .

pnz

rn
· Γn

]

(4.11)

The latter should be viewed as vectors of a Hilbert space withelements inℜn, endowed with
an inner product structure<, >. This allows for the computation of the length of a vector andalso
for the angle between two vectors. Namely, given X andΥ in ℜn, then |X|2 =< X,X > and<
X,Υ >= |X||Υ| cos(θXΥ), from which it follows that the angleθXΥ between vectors X andΥ is given
by θXΥ = cos−1(< X,Υ > /(|X||Υ|)).

With this notation, the FIM for a distance-dependent covariance error becomes

FIM =
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,

(4.12)
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from which it follows that
|FIM | = |X|2 · |Υ|2 · |Z|2 · Θ, (4.13)

where

Θ = 1+ 2 cos(θΥZ) cos(θXZ) cos(θXΥ) − cos2 (θΥZ) − cos2 (θXZ) − cos2 (θXΥ) (4.14)

where θXΥ, θXZ and θΥZ are the angles defined by vectors X andΥ, X and Z, andΥ and Z,
respectively, and|FIM | denotes the determinant of the FIM.

Notice how |FIM | has been expressed in terms of the norms of vectors X,Υ, and Z and the
anglesθXΥ, θXZ , andθΥZ between them. The latter depend onpi = [pix, piy, piz]T ; i = 1, 2, ...n, that
define the positions of the sensors with respect to the target, with the target placed at the origin of the
reference frame. Formally, in order to seek conditions thatthe optimal sensor configurations must
satisfy in order to maximize|FIM |, one could compute the derivatives of|FIM | with respect topix,
piy, and piz, and equate them to zero. This task is tedious and will not shed light on the form of
the optimal sensor configurations. We therefore follow a different approach. From the expression of
|FIM | it is easy to check that the maximum value ofΘ is 1. In fact, suppose that a larger value can
be obtained, which clearly requires that

1+ 2 cos(θΥZ) cos(θXZ) cos(θXΥ) − cos2 (θΥZ) − cos2 (θXZ) − cos2 (θXΥ) > 1 (4.15)

The above inequality is equivalent to

0<2 cos(θΥZ) cos(θXZ) cos(θXΥ) − cos2 (θΥZ) − cos2 (θXZ) − cos2 (θXΥ) . (4.16)

Notice, however that because cos2 (θXZ)+cos2 (θXΥ) ≥ 2 cos(θXZ) cos(θXΥ) and 0≤ |cos(θΥZ)| ≤
1, it follows that

cos2 (θXZ) + cos2 (θXΥ) ≥ 2 cos(θΥZ) cos(θXZ) cos(θXΥ)

and then is clear that,

cos2 (θXZ) + cos2 (θXΥ) + cos2 (θΥZ) ≥ 2 cos(θΥZ) cos(θXZ) cos(θXΥ)

which contradicts (4.16). Therefore,

1+ 2 cos(θΥZ) cos(θXZ) cos(θXΥ) − cos2 (θΥZ) − cos2 (θXZ) − cos2 (θXΥ) ≤ 1 (4.17)

and its maximum value of 1 is obtained when all the angles are equal tok ·π/2, withk an odd natural
number and then,

cos(θXΥ) = cos(θXZ) = cos(θΥZ ) = 0. (4.18)

We now define the auxiliary cost function

f ∗(FIM) = |X|2 · |Υ|2 · |Z|2 (4.19)

Consider now the problem of maximizingf ∗(FIM) by proper choice of ¯p = [p1, · · · , pn]T , and
let p̄∗; i = 1, 2, ..., n, be a maximizing solution. Let X∗,Υ∗, and Z∗ be the corresponding vectors in
ℜn. Suppose also that the corresponding anglesθ∗XΥ, θ∗XZ , andθ∗

ΥZ satisfy

cos
(

θ∗XΥ
)

= cos
(

θ∗XZ
)

= cos
(

θ∗ΥZ
)

= 0. (4.20)
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Then p̄∗; i = 1, 2, ..., n maximize also (4.13), the FIM is a diagonal matrix and it implies that its
determinant is the global maximum. Under the assumptions stated, the optimal FIM is a diagonal
matrix, that is,

FIM =
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




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



(4.21)

With the above assumption on the general form that the simplified FIM matrix will take, we now
introduce a simple general procedure to derive conditions for optimal sensor placement that lend
themselves to clear geometric interpretations. The problem at hand can be converted into that of
computing

p̄∗ = argmax
p̄
|FIM | = |X|2 · |Υ|2 · |Z|2 (4.22)

wherep̄ = [pT
1 , ..., p

T
n ]T , andp̄∗ are the optimal sensor positions. Notice that the sensor positions p̄∗

must satisfy the additional constraint imposed by inequality (4.20), i.e., the anglesθXΥ, θXZ , andθΥZ

must be equal tok · π/2 for some odd natural numberk which, as explained, makes the off-diagonal
elements of (4.21) equal to 0.

Formally, the conditions that an optimal sensor configuration must satisfy may now be obtained
by computing the derivatives of (4.22) with respect topix, piy, andpiz; i = 1, 2, ..., n and equating
them to 0. The candidate solutions must also satisfy (4.20).This will naturally yield multiple optimal
sensor configurations for single target positioning if no extra constraints are placed on the sensor
configuration. To make the problem tractable, it is therefore important to impose configuration
constraints rooted in operational considerations. In whatfollows, the methodology adopted is
illustrated with two representative scenarios: i) for constant covariance error, as commonly reported
in the literature of the area, to first fully understand the geometric configuration of the optimal
sensor array, and ii) with distance-dependent covariance error, to illustrate how a different and more
realistic measurement error model can modify and conditionthe optimal sensor configurations. The
methodology adopted for both scenarios will be analysed through several simulation examples.

4.4 Gaussian error with constant covariance

In the existent literature it is commonly assumed that the range measurement error has constant
covariance. Therefore it is important to study this problembefore a distance-dependent covariance
error may be considered. It is shown that the optimal configuration lends itself to an interesting
intuitive geometric characterization of all possible (optimal sensor placement) solutions that can
be obtained in 3D. This characterization yields a simple, geometrically based procedure to choose
an optimal sensor placement strategy in situations of practical interest. In this sense the situation
in which a surface sensor network computes the position of anunderwater target is studied, and a
solution is also offered for the important case where the depth of the target is computed directly, thus
dispensing with the need to estimate it using acoustic rangemeasurements. Thus, with the solution
obtained for this latter scenario, the relationship between 3D and 2D scenarios (commonly exploited
in land robotics) where the target and the sensor network liein the same plane, becomes clear.

4.4.1 The optimal Fisher Information Matrix for constant covariance error

In this context, the optimal sensor placement strategy for asingle vehicle localization problem is
obtained by maximizing the determinant of (4.10), which must be computed explicitly for the case
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in which the covariance error is constant. To this effect, makingη = 0, (4.10) becomes

FIM =
1
σ2
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(4.23)

where
ui = [uix, uiy, uiz]T =

[

∂|q−pi |
∂qx
,
∂|q−pi |
∂qy
,
∂|q−pi |
∂qz

]T
; i ∈ {1, ..., n} . (4.24)

As explained before, the optimal FIM is defined by (4.21), andits determinant is function of the
vectors X,Υ, and Z inℜn (wheren is the number of sensors involved in the target positioning task)
that for the constant covariance scenario become

X =
[

u1x . . . unx

]T
=

[ p1x

r1
. . .

pnx

rn

]T

Υ =
[

u1y . . . uny

]T
=

[ p1y

r1
. . .

pny

rn

]T

Z =
[

u1z . . . unz

]T
=

[

p1z

r1
. . .

pnz

rn

]T

(4.25)

Formally, the conditions that an optimal sensor configuration must satisfy may be obtained by
computing the derivatives of (4.22) with respect topix, piy, andpiz; i = 1, 2, ..., n and equating them
to 0. The candidate solutions must also satisfy (4.20), as mentioned above.

It is interesting to notice that we can focus our attention onthe computation of the derivatives
of (4.22) with respect to the norms of the above vectors instead of computing these derivatives with
respect topix, piy, andpiz; i = 1, 2, ..., n. Since

p2
ix

r2
i

+
p2

iy

r2
i

+
p2

iz

r2
i

= 1, (4.26)

it follows that
|X|2 = n− |Υ|2 − |Z|2 (4.27)

Replacing (4.27) in the equation of the determinant of (4.22), the determinant of the FIM
becomes

|FIM | = 1
σ6

(

n− |Υ|2 − |Z|2
)

|Υ|2 |Z|2

and therefore
∂ |FIM |
∂ |Υ| = n− 2 |Υ|2 − |Z|2 = 0, (4.28)

∂ |FIM |
∂ |Z| = n− |Υ|2 − 2 |Z|2 = 0. (4.29)

The last two equations yield|Υ|2 = |Z|2. Using (4.27) and (4.29) it now follows that|X|2 = |Z|2.
As a consequence,|X|2 = |Υ|2 = |Z|2. Furthermore, from (4.27) it is easy to check that

|X|2 = |Υ|2 = |Z|2 = n
3

(4.30)
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Therefore, the optimal Fisher Information Matrix is

FIMopt =
1
σ2
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(4.31)

Comparing the optimal FIM in (4.31) with the generic one in (4.10) gives an implicit
characterization of the conditions that must be satisfied bythe sensor network in order for it to
be optimal:

n
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ix
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n
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iy
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3
, (4.32)

n
∑

i=1

pix piy

r2
i

=

n
∑

i=1

pix piz

r2
i

=

n
∑

i=1

pizpiy

r2
i

= 0. (4.33)

where (4.32) maximizes (4.22). Equation (4.33) satisfies the additional constraint imposed by
inequality (4.20), i.e., the anglesθXΥ, θXZ , andθΥZ must be equal tok · π/2 for some odd natural
numberk which, as explained, makes the off-diagonal elements of (4.21) equal to 0. Therefore
any sensor configuration that satisfies (4.32) and (4.33) is an optimal formation that implies the
global maximum FIM determinant. It is also interesting how this solution defined by the optimality
conditions (4.32) and (4.33) implies the orthogonality relations for sines and cosines from Fourier
analysis [37].

From (4.31) it is obvious that the FIM is diagonal and its eigenvalues are equal. Therefore, the
optimality conditions derived maximize not only the determinant of the FIM (D-optimum design)
but also its minimum singular value (E-optimum design), andminimize the trace of its inverse too
(A-optimim design).

4.4.2 Optimal sensor placement solutions

The contribution of this section is twofold: i) it offers a general characterization of the optimal sensor
configurations for the problem of single target positioningin 3D and ii) it illustrates the computation
of specific optimal configurations via three design examples.

4.4.2.1 A general characterization of optimal sensor configurations

Letσix,σiy, andσiz be the direction angles that thei-th range vector forms with the vectors{xI }, {yI },
and{zI } of {I } and let cos(σix) = pix/r i , cos(σiy) = piy/r i , and cos(σiz) = piz/r i be the corresponding
direction cosines. Clearly, (4.32) and (4.33) can be written in terms of the direction cosines as

n
∑

i=1

cos2(σix) =
n

∑

i=1

cos2(σiy) =
n

∑

i=1

cos2(σiz) =
n
3

(4.34)

n
∑

i=1

cos(σix) cos(σiy) =
n

∑

i=1

cos(σix) cos(σiz) =
n

∑

i=1

cos(σiz) cos(σiy) = 0 (4.35)

The above equations show clearly that all optimal sensor configurations are characterized in
terms of the angles that the range vectors form with the unit axis of the inertial frame. Therefore,
there is no explicit dependence on the ranges themselves. This is because in the formulation adopted

86



4.4. GAUSSIAN ERROR WITH CONSTANT COVARIANCE

it was tacitly assumed that the covariance of the range measurements is distance-invariant. For this
reason we will henceforth assume, without any loss of generality, that the target is located at the
origins of the inertial coordinate frame and that the optimal sensor formations are such that the
sensors are placed on a sphere centred at the target. In this case, cos(σix) = pix, cos(σiy) = piy,
and cos(σiz) = piz. Once an optimal solution on a sphere is found in terms of the direction cosines
referred to above, an infinite number of optimal solutions can be generated by: i) multiplying the
range of each sensor to the target by an arbitrary positive number (as will be explained later, the
scaling of the ranges is dependent on the practical constraints imposed by physical considerations),
and ii) rotating the sensor formation rigidly in terms of an arbitrary axis. The first statement is
trivial to prove. To prove the second statement, let an initial sensor formation on the unit sphere be
described by vectorspi ; i = 1, 2, .., n and letp̃i = Rpi ; i = 1, 2, .., n be the formation that is obtained
by applying the same rotation matrixR to all vectors. Withr i = 1, straightforward computations
show that equations (4.32) and (4.33) can be written in compact form as

n
∑

i=1

pi p
T
i =

n
3

I (4.36)

whereI is the identity matrix. It then follows that

n
∑

i=1

p̃i p̃
T
i =

n
∑

i=1

Rpi p
T
i RT =

n
3

I (4.37)

becauseRRT = I ; thus, the new sensor positions verify (4.36) and therefore(4.32) and (4.33).

Let σq = p1 + ... + pn; n > 2 denote the geometric centre of an optimal sensor formationand
let rq denote the vector directed from the origin toσq. Clearly, in view of the comments above, the
formation that is obtained by moving the sensor rigidly withrq until the latter vector is aligned with
the {zI } axis of the inertial coordinate frame is also optimal. The centre of the resulting formation
will be denoted byzq. We will therefore assume, again without loss of generality, that the sensor
positions satisfy the equations

n
∑

i=1
pix =0

n
∑

i=1
piy =0

n
∑

i=1
piz =nzq (4.38)

wherepi = [pix, piy, piz]T is thei− th sensor position. At this point it is important to remark thateven
with the assumptions stated above it does not seem to be possible to classify all optimal solutions
to the target localization problem in 3D in a simple manner. This is in striking contrast with the
case of 2D, where all optimal solutions are obtained by distributing the sensors at equal angles
along a circumference centred at the target, see [55] or Chapter 2. Once a solution is chosen, all
solutions are simply generated by rotating the complete sensor formation rigidly about the target
by an arbitrary angleα ∈ [0, π]. The 3D case is far more complex, and therefore, in what follows,
we restrict ourselves to presenting a method to generate a sufficiently rich set of solutions, which,
as explained later, is appropriate to solve a number of problems of practical interest. To this effect,
we start by restraining the types of solutions to lie not onlyon the unit sphere but also on a general
quadratic surface (also called quadric) that intersects the sphere. As will be seen, the choice of the
quadric affords the designer a very convenient “tuning knob” to “bias” the placement of the sensors
towards regions of interest determined by practical considerations. We consider quadrics defined by
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the equation

(

x y z 1
)





























a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

























































x
y
z
1





























= a11x
2 + a22y

2 + a33z
2 + a44+ 2a12xy

+ 2a13xz+ 2a23yz+ 2a14x+ 2a24y+ 2a34z= 0
(4.39)

where [x, y, z]T are the coordinates of the points that belong to the quadric.The unit sphere, where
all optimal sensor configurations lie, corresponds to the non-degenerate quadric surface given by
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= x2 + y2 + z2 − 1 = 0 (4.40)

To determine the quadrics that are allowed we simply notice that for an optimal sensor formation
that belongs to the intersection of a particular quadric andthe unit sphere, the coordinates of each
sensor must satisfy (4.39) and (4.40), together with (4.32), (4.33) , and (4.38). Addingn equations
of the type (4.39), one for each sensor, yields the equality

a11

n
∑

i=1

p2
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∑

i=1
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n
∑

i=1
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iz + na44+ 2a12
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+2a23
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piy piz + 2a14
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piy + 2a34

n
∑
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piz = 0

Using now (4.40) together with (4.32), (4.33) , and (4.38) with r i = 1 gives the constraint

a11 + a22+ a33

3
+ a44+ 2a34zq = 0 (4.41)

This concludes the presentation of all the equations that allow for the computation of a solution
to the optimal sensor placement problem. Granted, there is still an infinite number of degrees of
freedom in the choice of a particular solution. The examplesthat follow show how this problem can
be dealt with. Before we do so, however, it is important to remark on one important feature of the
optimal solutions that can be computed based on the analysisexplained above. If two disjoint sets of
n andm sensors each are placed optimally, the resulting formationof n+m sensors is also optimal.
Therefore, new higher order optimal solutions can be obtained by combining reduced order optimal
configurations.

4.4.2.2 Examples of optimal sensor placement

We now give three examples that illustrate the steps involved in the computation of optimal
sensor configurations for the single target localization problem in 3D. We assume that all range
measurements are corrupted by additive zero mean Gaussian noise with varianceσ2 = 0.01 m2. We
impose the restriction that the maximum distance between the sensors and the target be 100m. This
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a) b)

Figure 4.2: Intersection between the unit sphere and a hyperboloid of one sheet (a), and intersection between
the unit sphere and a hyperbolic cylinder (b).

constraint can be easily accommodated by solving the optimal sensor placement problem with the
assumption that the sensors lie on the unit sphere centred atthe target and multiplying their distance
to the origin by 100 at the end. As explained before, in order to make the problem tractable we
consider that the sensors lie on the intersection of the unitsphere and a quadric, the coefficients of
which must satisfy (4.41). In the examples, two quadrics areconsidered: an hyperboloid of one sheet
defined by 2x2+2y2−z2 = 1 and an hyperbolic cylinder defined by 4x2−y2 = 1. Their intersections
with the unit sphere are shown in Fig. 4.2 (a) and Fig. 4.2 (b),respectively. In the first two examples,
the number of sensors isn = 4. Example 4.1 refers to Fig. 4.2 (a), while Example 4.2 refers to Fig.
4.2 (b). Thus, the only difference between them are the loci where the sensors should be located.
Without any loss of generality, the design procedure is explained by referring to Example 4.1.

Example 4.1: The system of equations used to compute the possible optimalconfigurations
consists of then equations

cos2(σix) + cos2(σiy) + cos2(σiz) = 1; i = 1, 2, ..., n (4.42)

that restrict each sensor to lie on the unit sphere,n additional equations

2 cos2(σix) + 2 cos2(σiy) − cos2(σiz) = 1; i = 1, 2, ..., n (4.43)

that express the fact that the sensors lie also on the quadricadopted, and an additional set
of 6 equations derived directly from (4.34) and (4.35). The above equations were solved
numerically using the Newton-Raphson method. As is well known, if F is the vector of
equations to be solved,∂F is the Jacobian ofF with respect to the sensor coordinates, and

S0 =
[

p0
1x p0

1y p0
1z . . . p0

nx p0
ny p0

nz

]T
is an arbitrary initial vector that belongs to the

intersection of the sphere and the quadric, a solution is obtained via the iteration

S(k+1) = S(k) − (∂F(k))−1 · F(k) (4.44)

whereS(k) =
[

pk
1x pk

1y pk
1z . . . pk

nx pk
ny pk

nz

]T
is the vector of sensor coordinates at stepk.

The process finalizes when an appropriate stop criterion is met. See for example [24] for complete
details.
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In the case of Example 4.1, a solution was obtained that corresponds to placing the sensors at
the positions stated in Table 4.1. It is easy to check that this configuration satisfies conditions (4.34)
and (4.35), thus making the determinant of the FIM maximum atthe target position. In this case
|FIM | = n3/(σ6 · 33) = 2.3704· 106 m−6.

Table 4.1: Optimal sensor positions.

Example 4.1 p1 p2 p3 p4

{xI } − coord. (m) 81.497 −81.497 0 0
{yI } − coord. (m) 0 0 −81.497 81.497
{zI } − coord. (m) −57.735 −57.735 57.735 57.735

For the sake of completeness, and to better understand the efficacy of the solution obtained, it
was judged appropriate to evaluate how good the sensor formation is in terms of yielding accurate
positioning of the real target, in comparison with the positioning accuracy that is possible for any
hypothetical target (different from the real target) positioned anywhere in a finite spatial regionD
centred at the target. To this effect, the determinant of the FIM obtained for a number of hypothetical
target points (based on the optimal sensor configuration obtained) was computed by allowing these
points to be on a grid inD. With an obvious abuse of notation, we refer to that determinant of the
FIM, viewed as a function of its argument inD, simply as|FIM |D. In the example, in order to
enable a graphical representation,D consists of the three orthogonal planes in Fig. 4.3 (a) and the
magnitude of|FIM |D is indicated in a gray scale, lighter points corresponding to larger values of
the |FIM |. The figure supports the fact that with the sensor placement adopted the position of the
target can be determined with optimal accuracy. Should the target move to a different location, the
precision with which it can be localized degrades. This raises the interesting practical problem of
optimal sensor placement in the presence of target uncertainty, an issue that will be resolved later in
the chapter.�

Example 4.2: This second example is analogous to Example 4.1 but the quadric adopted is
the hyperbolic cylinder depicted in Fig. 4.2 (b). The formation obtained with the above numerical
procedure is the one in which the sensors are placed at the positions shown in Table 4.2. Equations
(4.34) and (4.35) are achieved and the maximum FIM determinant is obtained with|FIM | = n3/(σ6 ·
33) = 2.3704· 106 m−6. Notice that the FIM determinant is the same of the previous example,
as expected. This illustrates the fact that by choosing different quadrics one may generate a set of
possible solutions to the single target localization problem. In Fig. 4.3 (b),|FIM |D is mapped for
the three orthogonal planes referred to above.

Table 4.2: Optimal sensor positions.

Example 4.2 p1 p2 p3 p4

{xI } − coord. (m) 57.735 −57.735 −57.735 −57.735
{yI } − coord. (m) −57.735 57.735 −57.735 −57.735
{zI } − coord. (m) −57.735 −57.735 57.735 −57.735

�

Example 4.3:Finally, in this third example the number of sensors is reduced ton = 3. Using the
quadric of Fig. 4.2 (b), a solution was found with the sensorsplaced at the positions listed in Table
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Figure 4.3: Plot of |FIM |D in the three main planes, using 4 sensors. Lighter regions correspond to larger
values of|FIM |; solutions obtained using a hyperboloid of one sheet (a) anda hyperbolic cylinder (b).

.

4.3. In this case,|FIM | = n3/(σ6 · 33) = 1 · 106 m−6. Note that the determinant of the FIM is smaller
than that of Examples 4.1 and 4.2 due to the lower number of sensors. The sensor arrangement and
the plot of|FIM |D ;D for three orthogonal planes are shown in Fig. 4.4.�
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Figure 4.4: Plot of |FIM |D in the three main planes, using 3 sensors; solution obtainedusing a hyperbolic
cylinder.

The above examples illustrate the fact that a large number ofsolutions exists for the single target
positioning problem in 3D and how a subset of them can be foundby constraining the sensors to
lie on the intersection of a quadric with a sphere. In this case, however, this constraint is purely
artificial and is simply used as a “tuning knob” in the search for optimal solutions. In a great number
of situations, however, there are practical issues that impose physically sound constraints on the
possible sensor loci. One of these situations is studied next.
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Table 4.3: Optimal sensor positions.

Example 4.3 p1 p2 p3

{xI } − coord. (m) −59.45 −50.69 −62.42
{yI } − coord. (m) 64.31 16.63 −74.75
{zI } − coord. (m) 48.27 −84.58 22.71

4.4.3 Sensors lying in a plane: an application in underwatertarget position-
ing

This section addresses the problem of optimal sensor placement for underwater target positioning in
3D, subject to the condition that the sensors lie in a plane. This problem is of the utmost importance
for underwater target positioning applications where the acoustic ranging devices are either located
at the sea surface or on the seabed. A solution to this problemcan be obtained using the results
derived in the previous section and casting it in the following equivalent form: given a target at the
origin of an inertial reference frame{I }, an unit sphere centred at the target, and a horizontal plane(a
special case of a quadric), compute the distancezq from the plane to the target such that a solution to
the unconstrained single target localization problem lieson the intersection between the unit sphere
and that plane. Once a solution to the latter problem is found, it is a simple matter to scale it while
preserving the direction cosines of the range vectors (between the target and the sensors). Clearly,
the scaling factor isdt/zq, wheredt is the target depth.

We start by characterizing the solutions for which the geometric centre of the sensors is located
at [0, 0, zq]T . The computation of a solution unfolds in two steps: thezq coordinate of the plane
is computed; the geometric formation of the sensors on the plane is then derived. The first step is
straightforward: becausez1 = z2 = ... = zn = zq, it follows from (4.32) that

p1z = ... = pnz = zq = ±1/
√

3 (4.45)

The above solutions correspond to two horizontal planes that intersect the unit sphere along two
circumferences of radiir ′, as depicted in Fig. 4.5. Becauser ′2 + z2

q = 1, it follows that the optimal

radii are equal tor ′ =
√

1− z2
q =

√

2
3. These results yield straightforward solutions to the problem of

underwater target positioning, as follows. Letdt be the depth of the target, and assume that the array
of n sensors to be used for target positioning is constrained to lie at the surface. An optimal solution
to the problem of sensor placement corresponds to distributing the sensors along a circumference of
radiusrs =

√
2dt. In an analogous manner, if the target is at a distance (altitude)ht above the seabed,

and the array ofn sensors to be used for target positioning is constrainted tolie at the seabottom, an
optimal solution to the problem of sensor placement corresponds to distributing the sensors along a
circumference of radiusrs =

√
2ht. In the two cases, the centre of the circumferences is positioned

either directly above or under the target.

It now remains to determine the geometric configuration of the sensors on the circumferences.
To this effect, rewrite their positions in polar coordinates aspix = r ′ cos(αi), piy = r ′ sin(αi), and
piz = zq, whereαi is the angle that the projection of thei − th range vector on the{xI yI } plane forms
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Figure 4.5: Intersection between two horizontal planes and the unit sphere.

with the{xI } axis,r ′ =
√

2/
√

3, andzq = 1/
√

3. With this notation, (4.32) and (4.33) yield

n
∑

i=1
r ′2 cos2(αi) =

n
3
→ 2

3

n
∑

i=1
cos2(αi) =

n
3

n
∑

i=1
r ′2 sin2(αi) =

n
3
→ 2

3

n
∑

i=1
sin2(αi) =

n
3

n
∑

i=1
z2
q =

n
3
→

n
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i=1

(

1√
3

)2
=

n
3

n
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i=1
r ′2 cos(αi) sin(αi) = 0→

n
∑

i=1
cos(αi) sin(αi) = 0

zq

n
∑

i=1
r ′ cos(αi) = 0→

n
∑

i=1
cos(αi) = 0

zq

n
∑

i=1
r ′ sin(αi) = 0→

n
∑

i=1
sin(αi) = 0

(4.46)

Using by now classical terminology, the sensor formation must be first and second moment
balanced. A simple and elegant solution is obtained by noticing the orthogonality relations for sines
and cosines from Fourier analysis [37]

n−1
∑

i=0
cos2

(

2π
n · i

)

=
n−1
∑

i=0
sin2

(

2π
n · i

)

=
n
2

n−1
∑

i=0
cos

(

2π
n · i

)

sin
(

2π
n · i

)

=
n−1
∑

i=0
cos

(

2π
n · i

)

=
n−1
∑

i=0
sin

(

2π
n · i

)

= 0

(4.47)

From (4.46) and (4.47) it follows that optimal solutions areobtained by distributing then sensors
uniformly along the circumferences, the vectors from the sensors to the centre of the circumferences
making angles 2πi/n; i = 0, 1, ..., n− 1 with the{xI } axis. Obviously, an infinite number of solutions
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Figure 4.6: Target localization with sensors on a plane: two equivalentsolutions obtained by rotation about
one axis.

are obtained by rotating the sensors rigidly along the circumferences, that is, by allowing the above
angles to become 2πi/n+ αs; i = 0, 1, ..., n− 1, whereαs is a fixed but arbitrary angle in [0, 2π]

The results obtained in above sections imply that, once a solution to the above positioning
problem is obtained, an infinite number of solutions can be generated in three steps: i) compute
the vectors from the target to the sensor positions, ii) rotate them rigidly about a same axis, and iii)
find (if they exist) the intersections of the extensions of the rotated vectors with the horizontal plane.
This is illustrated in Fig. 4.6 where two equivalent solutions are presented for the special case of 4
sensors placed on a horizontal plane at the surface. In this case, the initial solution corresponds to
the case where the 4 sensors are placed on the corners of the base of a regular pyramid with the apex
at the target, the latter being directly under the geometriccentre of the sensor formation. Another
solution is obtained by rotating the pyramid about a selected axis while holding its apex fixed, and
finding the new sensor locations at the intersection of the extended pyramid edges with the horizontal
plane.

4.4.3.1 Example of target localization with sensors lying in a plane

The example in this section illustrates the methodology adopted for optimal sensor placement when
the sensors are restricted to lie in a horizontal plane. In the example, for the sake of simplicity on the
computation of the optimal solution, the origin of the inertial frame{I } is considered to be placed at
the target’s projection on the horizontal plane, and the target placed at a depth of 100m. A network
of 5 sensors is considered.

Based on the theoretical analysis presented before, a simple optimal sensor configuration is
derived that consists of placing the sensors regularly distributed on a circumference of radius
r ′ = 100 ·

√
2 m centred at the target’s projection on the horizontal plane.This formation yields

the maximum value of the FIM determinant,|FIM | = n3

σ6·33 = 4.6296· 106 m−6. Figure 4.7 shows
|FIM |D, that is, the evolution of|FIM | as a function of the position of an hypothetical target placed
arbitrarily in the regionD := {(x, y, z)T : −150 m ≤ x ≤ +150 m,−150 m ≤ y ≤ +150 m, z =
100 m}. Part (a) of the figure shows the level curves of|FIM |, with lighter colours corresponding

94



4.4. GAUSSIAN ERROR WITH CONSTANT COVARIANCE

−100 0 100

−150−100−50050100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
6

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
a) b)

X (meters)Y (meters)

|F
IM

|

Y
 (m

e
te

rs
)

X (meters)

−150 −50 0 50 100 150
−1000100

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05c)

Y (meters) X (meters)

C
R

B
 T

ra
ce

Figure 4.7: Optimal sensor formation for underwater target positioning in 3D with 5 sensors placed in a
horizontal plane: (a) level curves of|FIM |D in regionD; (b) |FIM |D; (c) CRB trace inD.

to larger values of|FIM |. Part (b) shows the|FIM | in 3D. Both figures show thatmax|FIM | is
attained when the target is placed atqx = qy = 0 m, that is, directly under the geometric centre of
the sensor network. The determinant of the FIM decreases as the hypothetical target moves away
from qx = qy = 0 m, qz = 100 m. Part (c) shows the evolution of the CRB trace. As expected, its
minimum value is attained at the actual target position.

The plots in Fig. 4.8 are similar to those in Fig. 4.7 and correspond to a different optimal sensor
placement problem solution that corresponds to rotating rigidly the pyramid (with apex at the target
and a pentagonal base defined by the sensor positions in Fig. 4.7) about the{xI } axis of {I } by an
angle of−20 deg. The figure illustrates the fact that the optimal value of|FIM | is again obtained at
qx = qy = 0 m, qz = 100m. However, the general evolution of|FIM |D is substantially different from
that in Fig. 4.7. This raises the interesting problem of robustness of the optimal solutions against
uncertainty in the target position, a subject that will be dealt with later.

4.4.3.2 Underwater target positioning with known target depth

This section explores an interesting connection between target positioning in 2D and 3D. We start
by observing that in the 3D solution studied so far, if the depth of the underwater target tends to 0,
then an optimal sensor formation at the surface is such that the positions of all the sensors collapse
on top of the target, that is, they tend to [0, 0, 0]T. Clearly, this limit solution lacks realism and fails
to degenerate into the solution that would be obtained had weassumed that the target and the sensors
were exactly in the same horizontal plane. The reason for this discrepancy arises from the fact that
in the pure 3D approach the depth of the target must be estimated explicitly. In many practical
applications of interest, however, the target depth can be measured directly with small error, thus
dispensing with the need to estimate it using acoustic rangemeasurements. In this case, only the
qx andqy target position coordinates should be determined, becauseqz is known. This positioning
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Figure 4.8: Optimal sensor formation for underwater target positioning in 3D with 5 sensors placed in a
horizontal plane - an alternative solution obtained by rotation about one axis: (a) level curves of|FIM |D in
regionD; (b) |FIM |D; (c) CRB trace inD.

problem is studied next.

We assume that all sensors lie on a horizontal plane. Following the procedure adopted to derive
(4.10) yields the Fisher information matrix

FIM =
1
σ2
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(4.48)

whereui =
[

∂|q−pi |
∂qx
,
∂|q−pi |
∂qy

]T
, for i ∈ {1, ..., n}.

It is now necessary to find the sensor positions that maximize|FIM |. For the sake of conciseness
and to avoid a tedious repetition of the arguments presentedin the previous sections, the details of
the computation are eschewed. For reasons that will become clear later, we restrict the maximum
range of the target to the sensors tormax ≥ 0 m. With this constraint, an optimal sensor geometry
corresponds to placing all the sensors on a circumference centred on the projection of the target on
the plane. The distribution of the sensors on the circumference exhibits the symmetry that is implied
by conditions similar to those in (4.46). We assume, for clarity of exposition, that the reference
frame adopted has its origin at the centre of the circumference. The resulting optimal FIM is

FIMopt =
1
σ2
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(4.49)

We now examine the relationship between the above 3D target positioning problem and the
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purely 2D one. The latter, commonly studied in land robotics, corresponds to the case where the
target and the sensor network lie in the same plane. From the analysis presented, it follows from
(4.49) that when the target depth equals 0 then|FIM | = n2/(σ4 · 22) m−4. This is equal to the
maximum possible FIM determinant in 2D, as explained in [11]and [55]. Furthermore, for anyrmax

the corresponding regular sensor formation satisfies the conditions obtained in [55] for the pure 2D
case. Thus, if the target depth is known, then a 2D solution iseasily obtained from the 3D one by
simply letting the target depth equal 0.

It is interesting to notice that if the sensors and the targetare not placed in the same plane, the
optimal formation is the one in which the ranges (between thetarget and the sensors) are as large as
possible. In fact, the larger the termrmax in (4.49), the closer the eigenvalues of the optimal FIM are
to the optimal ones in 2D scenarios, that is,n/2. Finally, it is important to comment on and compare
the best estimation accuracy that can be obtained in the purely 3D positioning case and in the case
where the target depth is known. Notice that in the case studied the determinant of (4.31), computed
asn3/(σ6 · 33) m−6, is larger than the determinant of (4.49), which at most isn2/(σ4 · 22) m−4.
This may be misinterpreted as implying that the pure 3D solution yields better estimation accuracy,
a conclusion that would be counter-intuitive.To clarify this issue, it is convenient to examine for
both cases the inequality in (4.4) that sets a lower bound on the mean-square error of any unbiased
estimator. The lower bound is (9·σ2)/n m2 for the purely 3D positioning case and has the minimum
value of (4· σ2)/n m2 for the case where the depth is known. Thus, for sufficiently largermax or,
equivalently, for a sufficiently large radius of the circumference on which the sensors are placed, the
solution that relies on knowledge about the target depth yields better estimation accuracy.

4.5 Gaussian error with distance-dependent covariance

It is important to remark that is crucial the imposition or existence of constraints in the design of
an optimal sensor network when a variable error covariance is considered. It can be seen that the
determinant of (4.10) is inversely proportional to the measurement error, so it depends explicitly
on the distance between sensors and target. Thus, if sensorscan be placed freely in the 3D space
they will tend to concentrate over the target position to reduce as much as possible the distance-
dependent added error. Therefore, different optimal formations may be defined depending on the
constraints imposed by the environment, by the task, or by the sensor network itself. To make the
problem tractable, it is therefore important to impose configuration constraints rooted in operational
considerations. In what follows, the methodology adopted is illustrated with two representative
design examples: i) first, by considering that the sensors are restricted to lie at the same distance
from the target, that is,r i = r for all i = 1, · · · , n, and ii) second, by considering that the sensors
are restricted to lie in a horizontal plane, i. e.,qz − piz = zq is the target depth whereqz = 0 and
piz = −zq. The latter example captures the very important situation where the sensors are placed at
the sea surface. The procedure adopted can of course be used to deal with other types of constraints
on sensor placement.

4.5.1 Sensors placed on a sphere around the target

This section shows how the incorporation of physical or mission-related constraints on the positions
of the sensors leads to a methodology to determine a solutionto the optimal sensor placement
problem that eschews tedious computations and lends itselfto a simple geometric interpretation.
To this effect, we consider the situation where all the sensors are placed on a sphere centred at the
target position, that is, the distances from the sensors to the target are equal. With this assumption,
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r i = r; i = 1, · · · , n, wherer is the radius of the sphere. In this situation the distance does not
condition the solution and the angles that the range vectorsform with the axis of the inertial frame
characterize the solution. The solution of this scenario isequivalent to find all the possible solutions
for constant covariance measurement error becauseΓi is constant for all sensors and the FIM (4.10)
can be rewritten as,

FIM =
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(4.50)

whereΓi = Γ0 = 1/ (1+ ηrγ), andr = r i , for all i = 1, · · · , n. Thus the FIM (4.50) is the same matrix
defined by (4.23) for the constant covariance error case but whose elements are scaled with a factor
given byΓ0.

In this case, the simplified optimal Fisher Information Matrix (4.21) can be written as

FIM =
Γ2

0

σ2
· δ

([

A; B; C
])

(4.51)

with A =
n
∑

i=1

p2
ix

r2 , B =
n
∑

i=1

p2
iy

r2 , andC =
n
∑

i=1

p2
iz

r2 . The above equations show clearly that all optimal sensor

configurations are characterized in terms of the angles thatthe range vectors form with the unit axis
of the inertial frame (division of each sensor coordinate bythe range distance). Therefore, there is
no explicit dependence on the ranges themselves. This is because in the formulation adopted it was
tacitly assumed that the covariance of the range measurements is distance-invariant.

Following the same analytical procedure to that explained in Section 4.4.1 and that after simple
computations, the relationship betweenA, B, andC yields

A = B = C =
n
3

(4.52)

Therefore, the optimal Fisher Information Matrix is

FIMopt =
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(4.53)

Comparing the optimal FIM in (4.53) with the generic one in (4.50) gives an implicit
characterization of the conditions that must be satisfied bythe sensor network in order for it to
be optimal:

n
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r2
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iz
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=

n
3

(4.54)

n
∑

i=1

pixpiy

r2
=

n
∑

i=1

pix piz

r2
=

n
∑

i=1

pizpiy

r2
= 0 (4.55)

Let nowσix, σiy, andσiz be the direction angles that thei-th range vector forms with the vectors
{xI }, {yI }, and{zI } of {I } and let cos(σix) = pix/r i , cos(σiy) = piy/r i , and cos(σiz) = piz/r i be the
corresponding direction cosines. Clearly, (4.54) and (4.55) can be written in terms of the direction
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cosines as
n

∑

i=1

cos2(σix) =
n

∑

i=1

cos2(σiy) =
n

∑

i=1

cos2(σiz) =
n
3

(4.56)

n
∑

i=1

cos(σix) cos(σiy) =
n

∑

i=1

cos(σix) cos(σiz) =
n

∑

i=1

cos(σiz) cos(σiy) = 0 (4.57)

The above equations show clearly that all optimal sensor configurations of this particular case are
characterized in terms of the angles that the range vectors form with the unit axis of the inertial frame.
Moreover, the optimal configurations of this particular case imply the same optimality conditions
derived in Section 4.4.1 for constant covariance. It is because for the problem at hand, as commented
above, it has been asummed a constant covariance error due tothe sensors are all placed at the same
distance from the target. Therefore, the same analysis madein Section 4.4.2 holds for this particular
scenario, and once an optimal solution on the unit sphere is found in terms of the direction cosines
referred to above, an infinite number of optimal solutions can be generated by: i) multiplying the
range of each sensor to the target by an arbitrary positive number that will depend on the practical
constraints imposed by physical considerations, and ii) rotating the sensor formation rigidly in terms
of an arbitrary axis.

4.5.1.1 Example of optimal sensor configuration design

This example addresses the problem of optimal sensor placement for target positioning in 3D, subject
to the condition that the sensors lie on the intersection of asphere and a plane, i.e., the sensors are
placed at a fixed distance from the target and in the same plane(the target cannot belong to that
plane). Thus, the sensor configuration has to achieve two different constraints. The importance
of this example resides in that this problem is equivalent tothe case where the error covariance
is constant and the sensors are placed in the same plane (the surface plane), as it will be seen
next. The added interest lies in the comparison of the solution of this particular example with the
solution obtained when the sensors are restricted to lie in aplane. Thus we can state their main
differences, and the importance of the constraints imposed to the sensor formation and the noise
model considered.

A solution to this problem can be obtained using the results derived previously and casting it
in the following equivalent form: given a target at the origin of an inertial reference frame{I }, a
unit sphere centred at the target, and a horizontal plane, compute the distancezq from the plane
to the target such that a solution to the unconstrained single target localization problem lies on the
intersection between the unit sphere and that plane. Once a solution to the latter problem is found,
it is scaled while preserving the direction cosines of the range vectors (between the target and the
sensors). The scale factor is the radius of the sphere,rs.

The same arguments commented in Section 4.4.3 holds for thiscase, and then the computation of
a solution unfolds in two steps: thezq coordinate of the plane is computed; the geometric formation
of the sensors on the plane is then derived. The first step is straightforward: becausez1 = z2 = ... =

zn = zq, it follows from (4.56) that

p1z = ... = pnz = zq = ±1/
√

3 (4.58)

Two horizontal planes that intersect the unit sphere along two circumferences of radiir ′ are
defined from the above solutions. Becauser ′2 + z2

q = 1, it follows that the optimal radii are equal
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to r ′ =
√

1− z2
q =

√

2
3. An optimal solution to the problem of sensor placement corresponds to

distributing the sensors along a circumference of radiusr ′ =
√

2
3rs, wherers is the radius of the

sphere, or similarly, a circumference of radiusr ′ =
√

2dt, wheredt is the distance of the target to the
horizontal plane.

It now remains to determine the geometric configuration of the sensors on the circumferences.
A simple and elegant solution is again obtained by noticing the orthogonality relations for sines and
cosines from Fourier analysis [37]. It follows that optimalsolutions are obtained by distributing
then sensors uniformly along the circumferences, the vectors from the sensors to the centre of the
circumferences making angles 2πi/n; i = 0, 1, ..., n − 1 with the {xI } axis. Obviously, an infinite
number of solutions are obtained by rotating the sensors rigidly along the circumferences, that is, by
allowing the above angles to become 2πi/n+ αs; i = 0, 1, ..., n− 1, whereαs is a fixed but arbitrary
angle in [0, 2π].

It is important to notice how the solution defined satisfies the optimality conditions of the
simplified FIM (4.21), in particular (4.54) corresponds to the maximization of the norms of the
vectors X,Υ, and Z, i.e., it maximizes (4.19), and (4.55) makes the off-diagonal elements of the FIM
equal to 0, i.e, it satisfies (4.20). Thus the solutions defined implies a global maximum on the FIM
determinant for the case of study. The similarity with the constant covariance case is evident.

4.5.2 Underwater target positioning: sensors lying on a plane

This problem is of the utmost importance for underwater target positioning applications where the
acoustic ranging devices are either located at the sea surface or on the seabed. The previous analysis
is not valid for this scenario in which the sensors are constrained to lie on the sea surface and the
covariance error is distance-dependent, i.e. for the problem at handΓi , i = 1, · · · , n are not constant
in the solution space, their values depend explicitly on thesensor positions, and thus the range
distances are now a key element to define the optimal sensor formation.

The problem at hand will show the importance of considering amore complex error model to
determine the optimal sensor configuration. The sensors areplaced in the planez= zq, thuspiz = zq,
and the target is at the origin of the inertial coordinate frame,q = [0, 0, 0]T. The Fisher Information
Matrix is the one defined in (4.10), and following the processexplained in Section 4.3 we can define
the simplified optimal FIM given by (4.21).

For the sake of simplicity the notation is changed to cylindric coordinates whereαi is the angle
that the projection of thei − th range vector in the surface plane forms with the{xI } axis; andβi is
the angle that thei − th range vector forms with the surface plane{xI yI }. It must be noticed that
βi ∈ [0, π/2] because the sensors are placed on the surface plane, abovethe target position. With this
notationpix = r i cos(βi) cos(αi), piy = r i cos(βi) sin(αi), andpiz = zq, with r i = zq/ sin(βi), and (4.51)
becomes,

FIM =
1
σ2





















A 0 0
0 B 0
0 0 C





















(4.59)

100



4.5. GAUSSIAN ERROR WITH DISTANCE-DEPENDENT COVARIANCE

where

A =
n
∑

i=1
cos2(βi) cos2(αi)Γ2

i

B =
n
∑

i=1
cos2(βi) sin2(αi)Γ2

i

C =
n
∑

i=1
sin2(βi)Γ2

i

with

Γi =
1

1+ η(zq/ sin(βi))γ

Then the determinant of (4.59) yields,

|FIM | = 1
σ6

A · B ·C (4.60)

In this caseA, B andC, depend onΓi and then, on the distance between target and sensors.
Hence, we cannot proceed as in Section 4.4 and we cannot compute the derivatives of (4.60) with
respect toA, B, andC explicitly. Therefore, we must compute the derivatives of (4.60) with respect
to αi andβi . It is straightforward to compute the derivative of (4.60) with respect toαi ,

∂|FIM |
∂αi

= 2 cos2(βi) cos(αi) sin(αi)Γ
2
i C (A− B) = 0 (4.61)

and the derivative of (4.60) with respect toβi yields,

∂|FIM |
∂βi
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AB= 0

(4.62)

with
∂Γ2

i

∂βi
=

2γη(zq/ sin(βi))γ
cos(βi )
sin(βi)

(

1+ η(zq/ sin(βi))γ
)3

Clearly, (4.61) is satisfied if at least one of the following conditions holds: i) cos(αi) = 0; ii)
sin(αi) = 0; iii) A = B. If cos(αi) = 0 for each sensor in the formation then this means that all
sensors are placed in the same vertical plane,{yI zI }, target and sensors are in the same plane and
|FIM | = 0, therefore the solution is not optimal and it is discarded.The same occurs if sin(αi) = 0
for each sensor in the formation but in this case the sensors are placed in the plane{xI zI }, |FIM | = 0
again and this solution is discarded too. If cos(αi) = 0 or sin(αi) = 0 for each sensor in the
formation, (4.62) implies that the only feasible solution is thatA = B. Therefore,A = B is one of
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the conditions that an optimal surface sensor network must satisfy. In what followsE can beA or B
without any loss of generality due toA = B. Analysing the derivative (4.62) withA = B = E yields,

∂|FIM |
∂βi

= E · 2 cos(βi)
sin(βi)

Γ3
i ·

[

−C

(

sin2(βi) + η

(

zq

sin(βi)

)γ

(sin2(βi) − γ cos2(βi))

)

+

+E ·
(

sin2(βi) + η

(

zq

sin(βi)

)γ

sin2(βi)(1+ γ)

)]

= 0

(4.63)

Straightforward computations give,

C = E ·
sin2(βi) + η

( zq

sin(βi)

)γ
sin2(βi)(1+ γ)

sin2(βi) + η
( zq

sin(βi)

)γ
(sin2(βi) − γ cos2(βi))

(4.64)

Equation (4.64) must be satisfied for all the derivatives of (4.60) with respect to eachβi with
i = 1, · · · , n. Moreover,A, B, andC are constant for a given optimal configuration so it must be
studied if (4.64) is hold for more than one value ofβi , i.e., if the sensors can have different anglesβi

or all of them must be equal, it isβi = β for all i. Equation (4.64), after some computations, may be
rewritten as,

C = E · 1
1−Ω (4.65)

where

Ω =
ηzγqγ

sinγ+2(βi) + ηzq
γ sin2(βi)(1+ γ)

(4.66)

with βi ∈ [0, π/2]. The functionΩ is strictly decreasing in the above domain ofβi , and we must
focus on the positive values off (βi) = 1/(1− Ω), i.e, when 1> Ω, sinceA, B, andC are always
positive. Therefore the analysis of the possible solutionsmust take into account the variation ofΩ
fromΩ = 1 toΩ whenβi = π/2. In this domainΩ is always positive and smaller than 1, moreover,
the functionf (βi) = 1/(1−Ω) is strictly decreasing. Thus (4.65) only holds for one value ofβi for a
given optimal sensor configuration since (4.65) is strictlydecreasing in the considered domain, and
A, B, andC are constant for a given optimal formation. Thereforeβi = β andr i = r for i = 1, · · · , n.

From the previous analysis all the sensors must be placed over a circumference centred on the

target projection on the surface plane andA = cos2(β)Γ2
0

n
∑

i=1
cos2(αi), B = cos2(β)Γ2

0

n
∑

i=1
sin2(αi), and

C = nsin2(β)Γ2
0, with Γi = Γ0 for all i = 1, · · · , n, because all sensors are at the same distance from

the target.
To defineβ regardless of the sensor distribution over the resulting circumferences, we proceed

by adding (4.64) withE = A to (4.64) withE = B, it is 2C = (A+ B)/(1− Ω). When doing so, all
the terms inαi are cancelled and one obtains

2
(

sinγ+2(β) + ηzγq sin2(β)(1+ γ) − ηzγqγ
)

= cos2(β)
(

sinγ(β) + ηzγq(1+ γ)
)

(4.67)

This expression can be rewritten to avoid the use of angles and to determine the range distancer

of the optimal formation explicitly. It is clear that sin(β) = zq/r and cos(β) =
√

r2 − z2
q/r, so (4.67)

yields,
3z2

q + 3(1+ γ)ηz2
qrγ − 3ηγrγ+2 − r2 − ηrγ+2 = 0 (4.68)
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X

Y

Z

Figure 4.9: Optimal formation size for a 4 sensor network on a plane with distance dependent covariance. The
intersection sphere-plane defines the optimal formation for constant covariance

The solution of (4.68) defines the optimal formation size, that depends on the error model and
on the target depth. It is interesting to notice that if the covariance error is distance independent, i.e.,
η = 0, then (4.68) implies that 3z2

q − r2 = 0, that is the solution obtained in Section 4.5.1 when the
sensors are restricted to lie on a horizontal plane and on a sphere, and also equivalent to the surface
sensor placement problem with constant covariance.

It now remains to determine the geometric configuration of the sensors on the circumferences.
Comparing the optimal FIM (4.59) with the generic one in (4.10) gives an implicit characterization
of the conditions that must be satisfied by the sensor networkin order for it to be optimal. From the
conditionA = B and that all sensors have the same elevation angle,βi = β, it is straightforward to
obtain that the optimal formation must hold

n
∑

i=1

(

cos2(αi) − sin2(αi)
)

= 0 (4.69)

with
n
∑

i=1
cos2(αi) and

n
∑

i=1
sin2(αi) as large as possible. From the off diagonal elements we find that the

optimal configuration must hold too
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r2 Γ
2
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n
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pixzq
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n
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i=1

piyzq

r2 Γ
2
0 = 0 =⇒

n
∑

i=1
sin(αi) = 0

(4.70)

Thus the sensor formation must be first and second moment balanced, and a solution can be
obtained by noticing the orthogonality relations for sinesand cosines from Fourier analysis [37].
Therefore we can define an optimal sensor formation by distributing uniformly the sensors around
the circumference where the sensors must stay. It can be noticed how the solution defined satisfies the
optimality conditions of the simplified FIM (4.21); (4.68) and (4.69) correspond to the maximization
of the productA · B · C and thus to the maximization of (4.19), and (4.70) makes the off-diagonal
elements of the FIM equal to 0, i.e, it satisfies (4.20). Thus,this solution implies a global maximum
of the FIM determinant for the considered constraints.

In Figure 4.9 an optimal configuration for 4 sensors is shown.It can be seen how the ideal
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formation considering a Gaussian noise with distance-dependent covariance has a smaller size than
the optimal formation with constant covariance error. Thissmaller formation size searches to reduce
the distance from sensors to target and therefore to minimize the distance-dependent measurement
errors. Thus, a tradeoff solution may be defined analytically between the optimal angles and the
optimal distances.

Notice the unrealistic assumption made until this point, also made in many of the publications
available in this area, that the position of the target is known in advance. This is done to simplify
the problem and to first fully understand its solution beforethe realistic scenario where the position
of the target is known with error can be tackled. In this respect, see Section 4.6, which is largely
inspired by the work in [39].

4.5.2.1 Underwater target positioning with known target depth

This section explores an interesting connection between target positioning in 2D and 3D similarly
as it was done in Section 4.4.3.2. We start by observing that in the 3D solution studied so far, if
the depth of the underwater target tends to 0, then an optimalsensor formation at the surface is
such that the positions of all the sensors collapse on top of the target, that is, they tend to [0, 0, 0]T.
Moreover, the FIM determinant equals to 0 if the sensors and target are on the same plane, so an
optimal solution cannot be derived. Clearly, this limit solution lacks realism and fails to degenerate
into the solution and FIM determinant that would be obtainedhad we assumed that the target and the
sensors were exactly in the same horizontal plane. This discrepancy arises from the fact that in the
pure 3D approach the depth of the target must be estimated explicitly. Despite this, in many practical
applications of interest, the target depth can be measured directly with small error, thus dispensing
with the need to estimate it using acoustic range measurements. In this case, only theqx andqy

target position coordinates should be determined, becauseqz is known. This positioning problem is
studied next.

We assume that all sensors lie on a horizontal plane. Following the procedure adopted in Section
4.2 to derive (4.10), it yields the Fisher Information Matrix
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(4.71)

It is now necessary to find the sensor positions that maximize|FIM |. For the sake of conciseness
and to avoid a tedious repetition of the arguments presentedin the previous sections, the details of the
computation are eschewed. Following the same procedure explained for (4.59), an optimal sensor
geometry corresponds to placing all the sensors on a circumference centred on the projection of the
target on the plane. The distribution of the sensors on the circumference exhibits the symmetry that
is implied by conditions similar to those in (4.69) and (4.70). We assume, for clarity of exposition,
that the reference frame adopted has its origin at the centreof the circumference. The resulting
optimal FIM is

FIMopt =
1
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(4.72)

We now examine the relationship between the above 3D target positioning problem and the
purely 2D one. The latter, commonly studied in land robotics, corresponds to the case where the
target and the sensor network lie in the same plane. From the analysis presented, it follows from
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(4.72) that when the target depth is equal to 0 and we considerconstant covariance (η = 0) then
|FIM | = n2/σ4 · 22. This makes the maximum FIM determinant possible in 2D, as explained in [11]
and [55]. Furthermore, for anyr the corresponding regular sensor formation satisfies the conditions
obtained in [55] for the pure 2D case. Thus, if the target depth is known, then a 2D solution is easily
obtained from the 3D one by simply letting the target depth equal 0.

If the covariance error is distance-dependent then it is possible to check, by an analysis similar
to the previous one, that when the target depth becomes 0, theFIM is equivalent to the one of the
pure 2D case and that we must impose constraints on the distance from sensors to target to avoid
that the sensors collapse over the target position to reducethe distance-dependent covariance error
as much as possible. It is interesting to notice that if the sensors and the target are not placed in the
same plane, the optimal formation is placed on a circumference around the target projection on the
horizontal plane and we can define again an optimal radius forthe formation. The FIM computed
this way yields

FIM =
1
σ2
δ
([

n·Γ2
0·(r2−z2

q)
2

2·r2 ;
n·Γ2

0·(r2−z2
q)

2

2·r2

])

(4.73)

Computing the determinant of (4.73) and its derivative withrespect tor yields

r2 (1+ ηrγ) −
(

r2 − z2
q

)

(1+ ηrγ (1+ γ)) = 0 (4.74)

Thus solving (4.74) the optimal radius can be defined easily.
Finally, it is important to comment on and compare the best estimation accuracy that can be

obtained in the purely 3D positioning case and in the case where the target depth is known. Notice
that the determinant of (4.60) is larger than the determinant of (4.72). This may be misinterpreted
as implying that the pure 3D solution yields better estimation accuracy, a conclusion that would be
counter-intuitive. In fact, from the Cramer-Rao inequality the right comparison should be between
the eigenvalues of the FIMs for the 2D and 3D cases, which aren(1 − z2

q/r
2)Γ0/2 andnΓ0/3,

respectively. Thus, for an adequate radius of the circumference on which the sensors are placed,
the solution that relies on the knowledge about the target depth yields better estimation accuracy, as
can be deduced from the larger eigenvalues of the FIM.

4.5.2.2 Examples of optimal sensor placement

Three examples of underwater target positioning with a network composed of 4 sensors are now
studied to show the differences between optimal formations for both constant and distance-dependent
covariance. The first example shows the optimal formation for σ = 0.1 andη = 0 (constant
covariance); the second example studies the same problem but in this case withη = 0.1 andγ = 1
(distance-dependent covariance); both examples with the target at a depth of 50 meters. For the third
example the same set-up of the latter scenario is studied butthe target depth is known by additional
sensors.

Clearly, in order for the information about the configuration to be useful in a practical situation,
one must check if the determinant of the FIM meets desired specifications. To this effect, and for
comparison purposes, the determinant of the FIM obtained for a number of hypothetical target points
in D is again computed,|FIM |D. Similarly, the CRB trace will be computed for the same regionD
and named asCRBD.

105



Optimal Sensor Placement for Target Localization

Example 4.4: In Figure 4.10 we can see the optimal formation when the covariance is constant,
η = 0. We can notice in Figure 4.10 (a) how the radius of the formation is the one defined in
Section 4.4.3 and Section 4.5.1,r ′ =

√
2 · zq = 70.71 m, wherer2 = r ′2 + z2

q. In Figure 4.10 (b)
we can observe how this configuration implies the theoretical maximum determinant over the target
position,|FIM | = n3/(σ6 ·33) = 2.3704·106 m−6. In Figure 4.10 (c) and (d) the CRB trace is shown,
we can notice how the minimum value is also over the target position. �
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Figure 4.10: Constant covariance error.|FIM |D around the target position (a). Value of the FIM determinant
around the target position (b).CRBD trace around the target position (c). Value of the CRB aroundaround the
target position (d)

Example 4.5: In the distance-dependent covariance case with unknown target depth, we can
determine the optimal radius by means of (4.68) that, withγ = 1, becomes:

−4ηr3 − r2 + 6ηrz2
q + 3z2

q = 0 (4.75)

Equation (4.75) provides the optimal radius for the formation depending on the target depth and
on the noise parameterη. This equation can be rewritten as

1+ z2
q

3+ 6ηr
−4ηr3 − r2

= 0 (4.76)

Notice that (4.76) has the form of a closed loop characteristic equation with the square of the
depth as a gain; thus, the evolution of the roots can be analyzed using the root locus tool. The root
locus plot is shown in Fig. 4.11.
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Figure 4.11: Graphical representation of the solutions of the third degree equation to determine the radius of
the optimal surface sensor network withγ = 1 andη , 0.

Clearly, two roots have negative real part and can be discarded. The third root, however is
positive and its magnitude increases with the gain. Hence, the plot shows clearly how the optimal
radius varies with respect to the target depth; its value canbe computed by solving (4.75). In Figure
4.12 (a) we can see the optimal formation and how its radius,r ′ = 37.34 m, becomes smaller (almost
the half) than in the previous example to reduce as much as possible the added distance-dependent
measurement error. In Figure 4.12 (b) the value of the determinant of the FIM is plotted around the
target position. We can notice how the maximum value falls over the target position but how the
accuracy is reduced dramatically due to the error model considered in this example. Similarly, in
Figure 4.12 (c) and (d) the CRB trace is shown. It can be noticed how the CRB trace is larger than
in the previous example due to the added measurement error, and how the minimum CRB trace is
over the target position again.�

Example 4.6:Finally if the target depth is known andγ = 1 we can determine the optimal radius
from:

−ηr3 + 2ηrq2
z + q2

z = 0 (4.77)

Analyzing (4.77) the same way as (4.75) we find again that two solutions are always negative
and the other one positive and depending on the square of the depth, so the optimal radius is again
well defined and can be computed from (4.77). In Figure 4.13 (a) we can see the optimal formation
and how its radius,r ′ = 53.31 m, becomes larger than in the previous example because the target
depth is now known. In Figure 4.13 (b) the value of the determinant of the FIM is plotted around the
target position. We can notice how the maximum value falls over the target position again. The value
of the determinant is smaller than in the previous example because the FIM is now 2x2, however the
value of the CRB trace is smaller, shown in Figure 4.13 (c) and(d), and therefore its covariance is
smaller too providing a better estimation of the parametersof interest.�

Therefore with this method and the adequate noise model we can design optimal sensor
formations for underwater target positioning.
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Figure 4.12: Distance-dependent covariance error.|FIM |D around the target position (a). Value of the FIM
determinant around the target position (b).CRBD trace around the target position (c). Value of the CRB around
around the target position (d)

4.6 Optimal sensor placement with uncertain target location

At this point, following what is commonly reported in the literature, we have started by addressing
the problem of optimal sensor placement given an assumed position for the target. In a practical
situation, the position of the target is only known with uncertainty and this problem must be tackled
directly. However, in this case it is virtually impossible to make a general analytical characterization
of the optimal solutions, and one must resort to numerical search methods. At this stage, an in-depth
understanding of the types of solutions obtained for the ideal case is of the utmost importance to
compute an initial guess for the optimal sensor placement algorithm adopted.

For the above reason, we now address the situation where the target to be positioned is known to
lie in a well defined uncertainty region. The objective is to obtain an expedite numerical solution for
the problem at hand. Inspired by the work in [39], we assume the uncertainty in the target position
is described by a given probability distribution function and we seek to maximize, by proper sensor
placement, the average value of the determinant of the FIM for the target.

In what follows,piξ; i = 1, 2, ..., n; ξ = x, y, zdenotes theξ − th coordinate of sensori located at
positionpi and p̄ = [pT

1 , ..., p
T
n ]T . We further denote byϕ (q) ; q ∈ ℜ3 a probability density function

with supportD ∈ ℜ3 that describes the uncertainty in the position of the targetin regionD. With
this notation, the problem of optimal sensor placement can be cast in the form of finding a vector ¯p∗

such that

p̄∗ = argmax
p̄

∫

D

|FIM(p̄, q)| · ϕ (q) dq (4.78)
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Figure 4.13: Distance-dependent covariance error with known target depth. |FIM |D around the target position
(a). Value of the FIM determinant around the target position(b). CRBD trace around the target position (c).
Value of the CRB around around the target position (d)

where we used the notation|FIM(p̄, q)| to clearly show the dependence of the FIM on the target and
sensor locations. However, in the following|FIM(p̄, q)| will often be denoted simply as|FIM |. In
a real situation,ϕ (q) will depend on the type of mission carried out by the underwater target. If the
target operates mostly in the centre of the working area,ϕ (q) can for example assume the form of a
truncated, radially-symmetric probabilistic Gaussian distribution centred at an appropriate point. On
the other hand, if only the work area is known and the target can operate anywhere inside it,ϕ (q)
can be taken as the unity function inside that area.

To proceed, one must compute|FIM(p̄, q)| in the equation above. At this point it is important
to remark that, given the complexity of the optimal sensor placement problem at hand, the only
viable solution is a numerical one. For this reason, in contrast with the methodology adopted in the
previous sections, the derivatives of the|FIM | are computed explicitly with respect to the sensor
position coordinates, i.e.,pi = [pix, piy, piz]. The computations are straightforward but lengthy, so
details are omitted.

It now remains to solve the optimization problem defined above. As explained later, we opted to
use a gradient-based method to do so. To this effect, it is important to compute the derivatives of the
integral in (4.78) with respect to the sensor coordinates, that is,

∂

∂piξ

∫

D

|FIM(p̄, q)|ϕ (q)dq (4.79)

for i = 1, 2, ..., n andξ = x, y, z. To proceed with the computations, the integral and the derivative
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operations are interchanged: the derivatives are determined explicitly first, see Appendix C, and the
integration over regionD is performed afterwards.

In what concerns the computation of the triple integral overthe regionD of interest, we opted to
do it numerically using a Monte Carlo method. Finally, a solution of (4.78) can be obtained using
a gradient optimization method with the Armijo rule. However, the details are omitted (see [12]
and the references therein). To overcome the occurrence of local maxima or the divergence of the
algorithm, the initial guess in the iterative algorithm must be chosen with care. In the examples that
we studied we found it useful and expedite to adopt as an initial guess the solution for the single
target positioning problem described in previous sections, with an hypothetical single target placed
at the centre of the work area. It is important to stress that the solution to (4.78) depends strongly on
the probability density function adopted for the target position q (e.g. a truncated, radially-symmetric
probabilistic Gaussian distribution or a radially-symmetric step distribution, [39]).

4.6.1 Simulation examples with unknown source location

The methodology developed is now illustrated with the help of two examples that address the
problem of optimal surface sensor placement for uncertain underwater target positioning. In the
design of both examples, 4 sensors are placed in the same horizontal plane at the sea surface. The
target is known to operate at a constant depthqz = 50 m, in an area delimited by a circumference
of 50 m radius. Therefore, the probabilistic distribution of the target position is a step-like function,
taking the value 1 inside and on the circumference and the value 0 outside. Through a gradient
optimization method with the Armijo rule, the ideal formation is searched, using as an initial guess
the ideal configuration when the target position is known, asexplained previously. Because the
sensors lie on the same plane, the algorithm must be modified slightly. The relevant difference is
in the computation of the derivatives of (4.78), because forthe problem at hand only the derivatives
with respect to thepix andpiy coordinates of each sensori must be computed. The computation of
these derivatives is straightforward and details about their computation are in Appendix C.

Example 4.7: This example corresponds to the case where the covariance error is constant,
η = 0. The optimization process results in a regular formation (shown in Fig. 4.14) of radius
r ′ = 82.2 m similar to the one that would be obtained for the case where the target position has no
uncertainty. However, the optimal formation radiusr ′ = 82.2 m of the first is larger than that of the
latter, given byr ′ = qz·

√
2 = 70.71 m. This has the effect of increasing the average FIM determinant

inside the work area. As a consequence, the shape of the plot|FIM |D in Fig. 4.14 (b) is flatter over a
larger area. The obvious interpretation is that in the presence of uncertainty the sensors are placed in
such a way as to tradeoff optimal performance at a point against slightly reduced performance, albeit
uniformly over a large area around that point. The maximum FIM determinant is 2.3230· 106 m−6

that is very close to the optimal value 2.37 · 106 m−6. Thus in in Fig. 4.14 (a)|FIM |D, D ∈ R2

shows that the largest accuracy is obtained inside the working area. In Fig. 4.14 (b) we can observe
the magnitude of the FIM determinant for each point in the plane where the target lies. The average
determinant inside the working area maintains a large valuenear to the theoretical maximum. Fig.
4.14 (c) and Fig. 4.14 (d) show similar plots to Fig. 4.14 (a) and Fig. 4.14 (b), respectively, but
considering the CRB trace. We can notice how the CRB trace maintain a small value inside the
working area and therefore a minimum global variance for thetarget positioning is obtained in the
area of interest.�

Example 4.8: In this second example the covariance error is distance-dependent, withη = 0.1
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Figure 4.14: |FIM |D, D ∈ R2 (a), FIM determinant for each point in the plane where the target lies for the
optimal sensor formation for an unknown source location (b). CRBD trace around the target position (c). Value
of the CRB around around the target position (d). (η = 0)

and γ = 1. The same optimization process as before results in a regular formation of radius
r ′ = 48.04 m. This formation shown in Fig. 4.15 is again larger than the optimal one that would be
obtained when the target position has no uncertainty (r ′ = 37.35 m). Fig. 4.15 (a)|FIM |D,D ∈ R2,
shows how the largest accuracy is obtained inside the working area. In Fig. 4.15 (b) we can observe
the magnitude of the FIM determinant for each point in the plane where the target lies. The average
determinant inside the working area maintains a large valuenear to the maximum obtained when the
target position has no uncertainty, but in this case the decrease of the determinant is faster due to
the dependence on distance of the noise. In a similar way as inthe previous example, Fig. 4.14 (c)
and Fig. 4.14 (d) show equivalent plots to Fig. 4.14 (a) and Fig. 4.14 (b), respectively, but with the
CRB trace. We can notice how the CRB trace maintains a small value inside the working area but
larger than in the previous example due to the distance-dependent covariance error. Despite of this,
the minimum global variance for the target positioning is obtained in the area of interest.�

Similar results can also be obtained for other radially symmetric probability density functions. In
fact, using the procedure proposed here, optimal sensor configurations can be obtained for arbitrary
probability density functions. Depending on the knowledgeabout the target or the application, the
optimal sensor configuration will change.
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Figure 4.15: |FIM |D, D ∈ R2 (a), FIM determinant for each point in the plane where the target lies for the
optimal sensor formation for an unknown source location (b). CRBD trace around the target position (c). Value
of the CRB around around the target position (d).(η = 0.1)

4.6.2 Simulation examples when the sensors can be placed in two different
planes

An interesting problem arises when the target is known to lieanywhere in a volume in the water
column and one is free to distribute the sensors at the sea surface and on the sea-bottom. At this
point, an interesting question arises: given the experimental conditions, should we place all the
sensors in one plane (sea surface or sea-bottom), or distribute them between the two planes? In what
follows we show, via a design example, how the circle of ideasexploited in the previous section can
be used to solve this problem.

Suppose that the underwater target operates inside a rectangular parallelepiped with dimensions
60× 60× 40 m3 and geometrical centre at 50m depth. The sea bottom is 100m deep. We consider
two possible arrangements for a 6 sensor network. In the firstcase, depicted in Figure 4.16 (a),
all sensors are placed at the sea surface. In the second case,illustrated in Figure 4.16 (b), 3 of the
sensors are placed at the surface, while the others are placed on the sea-bottom.

Example 4.9:Firstly we consider a constant covariance error,η = 0.
In the first scenario, Figure 4.16 (a), a solution was found whereby the sensors are distributed

regularly on a circumference with radiusr ′ = 74.57 m, centred at the projection of the
parallelepiped’s centroid on the sensor plane. The integral of the FIM determinant over the volume
of interest was found to be 1.0483· 1012 m−6 and the maximum and minimum FIM determinants
obtained inside this region were 8· 106 m−6 and 5.5856· 106 m−6 respectively. The maximum
determinant is the theoretical maximum,n3/(σ633) m−6. Comparing the maximum and minimum
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Figure 4.16: Maximization of the average FIM determinant inside a volume, with all the sensors placed in the
same plane (a), or with the sensors distributed among two different parallel planes (b).

CRB trace, they were 0.0197m2 and 0.0150m2 respectively. Again, this last one is the theoretical
minimum CRB trace.

In the second scenario, Figure 4.16 (b), 3 sensors were placed at the sea surface and the
remaining ones on the sea-bottom. A solution was found in theform of two regular formations
in circumferences with equal radiir ′ = 71.62 m, centred at the projection of the parallelepiped’s
centroid on the two sensor planes. The integral of|FIM | is now 1.1379· 1012 m−6 and the maximum
and minimum FIM determinants are 8· 106 m−6 and 7.3103· 106 m−6, respectively. Notice how
the integral is larger in the latter case. Furthermore, the minimum FIM determinant obtained inside
the working area is larger, providing a more homogeneous estimation accuracy inside the volume
of interest. In terms of the CRB trace, we found that the minimum and maximum values were
0.0150m2 and 0.0159m2, respectively. The minimum theoretical CRB trace is again achieved and
the maximum CRB trace is lower than in the previous situationwhere the sensors are placed in only
one plane.�

Example 4.10:Secondly we consider a distance-dependent covariance error, η = 0.1 andγ = 1,
and proceed as above.

In the first scenario, Figure 4.16 (a), the solution is again aregular formation around the origin but
with radiusr ′ = 34.88 m. The integral of the FIM determinant over the volume of interest is 5.7394·
106 m−6 and the maximum and minimum FIM determinants are 228.7667 m−6 and 1.6311 m−6

respectively. These values are lower than in the previous case due to the effect of distance on the
measurement noise.

In the second scenario, Figure 4.16 (b), 3 sensors were placed at the sea surface and the
remaining ones on the sea-bottom. A solution was found in theform of two regular formations
in circumferences with equal radiir ′ = 32.08 m, where the integral is now 4.5570· 106 m−6, and the
maximum and minimum FIM determinants are 74.6648m−6 and 16.6552m−6. We can notice how
in the latter case the average FIM determinant is smaller andthe maximum determinant is reduced
too, so the largest accuracy in the volume is smaller. However the minimum FIM determinant is in
this case larger providing a more homogeneous estimation accuracy. The adequate solution will be
mission-dependent.�

Therefore, for an unknown target location it is clear that the average accuracy inside the working
area is improved if we can place the sensors in two different parallel planes.
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4.7 Conclusions

This chapter offered a characterization of the solutions to the problem of optimal acoustic sensor
placement for target positioning in 3D space, with special emphasis in the underwater target
positioning by a surface sensor network. By assuming that the range measurements between the
target and the acoustic sensors were corrupted by white Gaussian noise, the variance of which is
distance-dependent, conditions were derived under which asensor network maximizes the range-
related information available for positioning. This was done by exploiting tools from estimation
theory whereby the problem to be solved was converted into that of maximizing the determinant of
a conveniently defined Fisher Information Matrix (FIM). Thecore result obtained was an analytic
characterization of the conditions that must be met by a generic n sensor network in 3D in order for
it to be optimal. This result was instrumental in deriving strategies to deal with practical situations
where, depending on the mission at hand, the sensor network may be completely underwater or at
the surface, or even configured such that a sub-group of sensors is at the surface and the remaining
sub-group is close to the sea-bottom. The relationship between optimal solutions in 2D and 3D space
was clarified. It was further shown that the optimal sensor configuration lends itself to an interesting
geometrical interpretation and that the spreading of the sensor configuration depends explicitly on
the intensity of the range measurement noise and on the probabilistic distribution that defines the
prior uncertainty in the target position. Examples illustrated the application of the methodology in a
number of applications-relevant scenarios.
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Chapter 5

MULTIPLE TARGET POSITIONING IN
3D SCENARIOS WITH RANGE MEA-
SUREMENTS

5.1 Introduction

It has been studied until this point that many AUV mission scenarios call for the availability of good
underwater positioning systems to localize one or more vehicles simultaneously based on acoustic-
related range information received on-board a support shipor an autonomous surface system (e.g.
a number of autonomous surface vehicles equipped with acoustic receivers, moving in formation).
The information obtained can be used to follow the state of progress of a particular mission or to
relay it as a navigation aid to the navigation systems existent on-board the AUVs. Similar comments
apply to a future envisioned generation of positioning systems to aid in the tracking of one or more
human divers.

In this chapter, based on the results of the previous chapters, we address the problem of
computing the optimal geometric configuration of a mobile sensor network that will maximize the
range-related information available formultiple target localizationin three-dimensional space. In
contrast to what has so far been published in the literature,we address explicitly the localization
problem in 3D using a sensor array located in a finite spatial region (3D). Furthermore, we
incorporate directly into the problem formulation the factthat multiple targets must be localized
simultaneously. The particular scenario in which the sensor array is located at the sea surface (2D)
for multiple underwater target positioning (3D) will be studied in depth as an interesting application
scenario, in a similar manner as in Chapter 4. We assume that the range measurements are again
corrupted by white Gaussian noise, the variance of which is distance-dependent. The computation
of the target positions may be done, as usual, by resorting totrilateration algorithms [3], [4], [7].

Clearly, there will be tradeoffs involved in the precision with which each of the targets canbe
localized; to study them, we resort to techniques that borrow from estimation theory and Pareto
optimization. For the latter, the reader is referred to [45], [22], [90]. See also Appendix B for a
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very short review of some key concepts and results. Stated briefly, we avail ourselves of concepts on
Pareto-optimality and maximize convex combinations of thelogarithms of the determinants of the
FIMs for each of the targets in order to compute the Pareto-optimal surface that gives a clear image
of the tradeoffs involved in the multiobjective optimization problem. We thus obtain a powerful tool
to determine the sensor configuration that yields, if possible, a proper tradeoff for the accuracy with
which the position of the different targets can be computed. In what follows, and with an obvious
abuse of notation, we often refer to Pareto-optimal solutions simply as optimal.

It is important to remark that for the multiobjective optimization problem at hand, the logarithms
of the determinants of the FIMs will be used instead of the determinants themselves. This makes the
functions to be maximized jointly convex in the search parameter space, thus justifying the use of
scalarization techniques in the computation of the Pareto-optimal surface, as described in Appendix
B. For a discussion of the convexity of the functions adopted, see for example [12], Chapter 3 and
the work in [85] on the D-optimality criterion.

For a multi-target localization problem, the optimal geometry of the sensor configuration
depends strongly on the constraints imposed by the task itself (e.g. maximum number and type
of sensors that can be used), the environment (e.g. ambient noise), the number of targets and their
configuration, and the possibly different degrees of precision with which their positions should be
estimated. An inadequate sensor configuration may yield large localization errors for some of the
targets. It is interesting to remark that even though the problem of optimal sensor placement for
range based localization is of great importance, not many results are available on this topic yet.
Even more, the results are only for single target positioning. Exceptions include the works [63]
and [74].

The key contributions of the present chapter are twofold: i)we fully exploit concepts and
techniques from estimation theory and multiobjective optimization to obtain a numerical solution
to the optimal sensor configuration problem for multiple targets in 3-dimensional space, and ii)
in striking contrast to what is customary in the literature,where zero mean Gaussian processes
with fixed variances are assumed for the range measurements,the variances are allowed to depend
explicitly on the ranges themselves. This allows us to capture the fact that measurement noise
increases in a non-linear manner with the distances measured.

The chapter is organized as follows. Section 5.2 summarizesthe computation of the FIMs that are
necessary to solve the optimal sensor placement problem under consideration. The demonstration of
concavity of the logarithm of the FIM determinant for a global sensor placement in 3D with constant
and distance-dependent covariance is shown in Section 5.3.The gradient optimization algorithm
used to compute the optimal sensor configurations is summarized in Section 5.4; and the multiple
localization problem for the case in which the targets have different importance weights during the
mission, changing accordingly the sensor formation, is also studied. This same problem is studied
in Section 5.5 for the application scenario of multiple underwater target positioning with surface
sensor networks. Finally, in Section 5.6 the maximization of the average value of the logarithms of
the FIM determinants is studied when a static fixed sensor network surveys a certain working area
or when there is uncertainty in thea priori knowledge about the target positions. The conclusions
are included in Section 5.7.
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ri=|q-pi|
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T

T

T

{zI}
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Figure 5.1: Target localization problem set-up.

5.2 Information Inequality with distance-dependent measure-
ment noise

For the sake of completeness, we proceed to summarize the results obtained in Chapter 4 for the
computation of the FIM for a 3-dimensional scenario. Let{I } be an inertial reference frame with
unit axis {xI }, {yI }, {zI } and letqk = [qkx, qky, qkz]T be the position of the targetk to be positioned
in {I }, with k = 1, · · · ,m wherem is the number of targets. Further denote bypi = [pix, piy, piz]T ;
i = 1, 2, .., n, the position of thei − th acoustic ranging sensor, also in{I }. Let r i(qk) = |qk− pi | (abbv.
rki) be the distance (range) between the targetqk and thei− th sensor, where| · | denotes the Euclidean
norm. The variables and the set-up that will be used are illustrated in Figure 5.1 for the case of one
target and three sensors. We denote byzki the measurements of the actual ranger i(qk), corrupted by
additive noiseωki. With the above notation, the measurement model adopted is given by

zki = |qk − pki| + ωki = r i(qk) + ωki (5.1)

We assume that the measurement noiseωki can be modelled by a zero-mean Gaussian process
where the covariance depends on the distance between the twoobjects that exchange range data.
Stated mathematically,

ωk = (I + ηδ(r(qk)γ)) · ω0 (5.2)

wherer(qk) is the vector of actual ranges,η andγ are the modelling parameters for the distance-
dependent noise component, andωk = [ωk1 · · ·ωkn]T is measurement noise assuming that all noise
sourcesωki are independent, and the vectorω0 is a zero mean Gaussian processN(0,Σ0) with Σ0 =

σ2 · I , whereI is the identity matrix. The measurement noise covariance matrix for targetk is given
by

Σk = σ
2 (I + ηδ(r(qk)

γ))2 (5.3)

Following standard procedures, the FIM corresponding to the problem of range-based single
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target positioning can be computed from the likelihood function pq(zk) given by

pq(zk) =
1

(2π)
n
2 |Σk|

1
2

exp

{

−1
2

(zk − r(qk))T Σ−1
k (zk − r(qk))

}

(5.4)

wheren is the number of receivers,zk = [zk1, zk2, ..., zkn]T consists ofn measured ranges for targetk,
andr(qk) are the actual ranges. Taking the logarithm of (5.4), computing its derivative with respect
to qk, and then its expected value, the FIM is defined as

FIMk = C(δ(r)Σkδ(r))−1CT (5.5)

whereC = (qk1T
n − p) ∈ ℜ3xn, 1n ∈ ℜnx1 is a vector of 1s, andp is the vector of sensor positions,

the latter being defined inℜ3xn. This FIM was introduced in Chapter 4 for single target positioning
in 3D scenarios, and for each of the targets its corresponding FIM will be computed to evaluate the
accuracy with which the target is localized. Expanding (5.5) it is obtained:

FIMk =
1
σ2

n
∑

i=1
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(5.6)

whereΓki = 1/
(

1+ ηrγki

)

for i ∈ {1, ..., n} andk = 1, · · · ,m. Clearly, the expression of the FIM
considering a distance-dependence covariance error is well defined.

5.3 Convexity/concavity for a 3 sensor network

The optimal sensor configuration that maximizes the summation of the logarithms of the FIM de-
terminants of the targets is searched from the Pareto-optimality conditions and convex optimization
tools, so it is imperative to demonstrate the convexity, actually concavity as pointed out in Chapter
3, of the log determinant function. In this sense, the simplest problem of a 3 sensor network is
studied because it is possible to analytically demonstratethe convexity (concavity) of the optimality
criterion, and thus that a global unique solution may be obtained with numerical search methods.
For this purpose the notation introduced in [6] for the FIM determinant is used, that for a distance-
dependent covariance error becomes

|FIM | = 1
σ6

n
∑

j≤k≤l

((

u j × uk

)

· ul

)2

(

1+ ηrγj
)2 (

1+ ηrγk
)2 (

1+ ηrγl
)2
=

1
σ6

n
∑

j≤k≤l

sin2
(

α jk

)

cos2
(

β jk,l

)

(

1+ ηrγj
)2 (

1+ ηrγk
)2 (

1+ ηrγl
)2

(5.7)

where
u j = [u jx, u jy, u jz]T =

[

∂|q−pj |
∂qx

∂|q−pj |
∂qy

∂|q−pj |
∂qz

]T
; (5.8)

j ∈ {1, ..., n}; identical definitions apply to the indicesk, l; α jk is the angle formed by the vectorsu j

anduk, andβ jk,l is the angle that the vectoruk forms with the resultant vector of the cross product
betweenu j anduk. The optimal sensor configuration is the one which maximizesthe logarithm of
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(5.7).
For the sake of simplicity and clarity in the exposition, both scenarios with constant covariance

and distance-dependent covariance are studied separately. The main reason is because for constant
covariance the demonstration of concavity is easy and straightforward. Moreover, it is possible to
achieve an accuracy close to the optimal one that would be obtained for one single target working in
isolation for each of the targets involved in the positioning task. Thus, this simpler problem is dealt
with first.

5.3.1 Gaussian error with constant covariance

In this case, (5.7) becomes

|FIM | = 1
σ6

((u1 × u2) · u3)2 =
1
σ6

sin2 (α12) cos2
(

β12,3
)

(5.9)

It was demonstrated in Chapter 4 that, in 3D positioning problems with constant covariance error,
the distance or orientation of the sensor network does not condition the optimal solution, only the
angles that the range vectors form between them determine the optimal configuration. Therefore,
without loss of generality, we can consider that vectors 1 and 2 are always in an arbitrary plane, so
that anglesα12 andβ12,3 are independent and we can compute their derivatives independently. This
assumption is also valid for multiple targets.

We must compute the second derivatives of the logarithm of (5.9) with respect to anglesα12 and
β12,3 to construct the Hessian matrix. It is important to remark that the concavity of the logarithm of
the FIM determinant is restricted to positive definite matrices, therefore the domain of the logarithm
of (5.9) cannot contain values ofα12 andβ12,3 for which the determinant becomes equal to zero,
it is, sensors and target cannot lie in the same plane. Therefore α12 ∈ ]0, π[ and β12,3 ∈ ]0, π[.
For the domainsα12 ∈ ]π, 2π[ and β12,3 ∈ ]π, 2π[, together or in combination with the domains
commented above, the solutions are equivalent and define thesame formations only by rotating
them the adequate angle. We compute first the Jacobian of the logarithm of (5.9), that after some
simplifications becomes:

∇ log |FIM | =
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The Hessian matrix yields

Hlog |FIM | =


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(5.11)

Therefore it is clear that the Hessian matrix (5.11) is definite negative, and thus the logarithm
of (5.9) is a concave function and we can employ Pareto optimization tools to define optimal sensor
networks of 3 sensors for multiple target positioning.

As abovementioned, in the multiple target positioning problem the maximum log determinant
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Target 1

Original pyramid 

configura"onRotated

configura"on

Target 2

Figure 5.2: Example of optimal sensor networks for two targets and four sensors.

cannot be achieved for all targets at the same time, so a tradeoff solution must be adopted. This
is true except for the special case of two targets and no constraints in the sensor placement. This
case allows for optimal sensor configurations that provide the maximum accuracy possible for both
targets. From the results of Chapter 4 it is easy to check thatthe optimal sensor configuration for
single target positioning with 3 sensors is the one in which the range vectors form an orthogonal
axis system. For the two target problem, the most simple solution is trivial, since one of the possible
optimal sensor formations corresponds to a circular formation of radiusr =

√
2 · d/2, whered is the

distance between targets, in which the sensors are regularly distributed, and where the centre of the
sensor formation is over the mid point of the segment that joins both targets. Moreover, the sensors
are placed in the plane that is orthogonal to this segment. Thus, the range vectors form an orthogonal
system with respect to each of the targets and then the FIM determinants at the target points are the
theoretical maximum|FIM | = n3/(33σ3) m−6. An equivalent solution would be obtained if the
pyramids formed by the sensor positions and each target are rotated an arbitrary angle around the
target positions, with the new sensor positions defined by the cut of the horizontal plane with the
edges of the pyramids. These cuts determine the new sensor positions similarly as it was studied in
Chapter 4. All these infinite solutions will provide the maximum accuracy for both targets too. It is
clear that these solutions are optimal for 2 targets and any number of sensors, not only 3, for constant
covariance and no constraints. A graphical example for 4 sensors and 2 targets is shown in Figure
5.2. It is important to remark that for this solution it is necessary to have some prior knowledge about
the target positions because if all the sensors are in the same plane it is not possible to distinguish
which target is above or under the sensor network.

5.3.2 Gaussian error with distance-dependent covariance

In the distance-dependent covariance error scenario some constraints must be imposed on the sensor
placement so that the sensors do not collapse over the targetposition to reduce the distance-
dependent added error as much as possible. It is important toremark at this point that if no
constraints are imposed on the sensor network and the sensors can be placed freely in the 3D space,
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Figure 5.3: Notation adopted for the 3 sensor network problem.

the optimality criteria of the logarithm of the FIM determinant is not concave, and some numerical
and stochastic methods must be used together with the gradient descendent algorithm to find the
optimal solutions, which could not be considered global optimal solutions. Thus only specific
scenarios with well defined constraints can be analysed for the problem at hand. For example, if
the sensors are placed at the same (or a fixed) distance from the target, i.e., the sensors are placed
over a sphere centred at the target position, then the solution is the same commented above for the
constant covariance scenario. In the following analysis, the concavity of the logarithm of the FIM
determinant is studied when the sensors must be placed in a plane, as it is usual for the application
scenario of underwater target positioning by a surface sensor network.

Equation (5.7) for 3 surface sensors and distance-dependent covariance error yields

|FIM | = 1
σ6

sin2 (α12) cos2
(

β12,3
)

(

1+ ηrγ1
)2 (

1+ ηrγ2
)2 (

1+ ηrγ3
)2 (5.12)

For the sake of simplicity we rewrite (5.12) with the notation shown in Figure 5.3. We must take
into account that the sensors lie in a plane, and therefore the range distances can be rewritten as a
function of the angles shown in the set-up of Figure 5.3. Then, the logarithm of (5.12) becomes

log |FIM | = log
sin2 (α) cos2 (β) cos2 (θ)

(

1+ η

(

zq

√
1+tan2(φ)
cos(α1)

)γ)2 (

1+ η

(

zq

√
1+tan2(φ)
cos(α2)

)γ)2
(

1+ η
(

zq

cos(θ) sin(β+φ)

)γ)2
(5.13)

with sin(α12) = sin(α1 + α2) = sin(α), cos(β12,3) = cos(β) cos(θ), and

r1 = zq

√

1+ tan2 (φ)

cos(α1)
r2 = zq

√

1+ tan2 (φ)

cos(α2)
r3 =

zq

cos(θ) sin(β + φ)
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To demonstrate the concavity of (5.13) we must compute the Hessian matrix with respect to
each of the angles shown in Fig. 5.3. If the Hessian matrix is definite negative then (5.13) is a
concave function with respect to the set-up adopted and we can use gradient descendent optimization
tools to determine the optimal sensor configuration. Moreover, if it is possible to demonstrate the
concavity of the function log|FIM | then we can use these techniques to determine the optimal
sensor configuration for multiple target positioning. First, we compute the Jacobian, that after some
simplifications yields

∇ log |FIM | =
(

∂ log |FIM |
∂α1

∂ log |FIM |
∂α2

∂ log |FIM |
∂β

∂ log |FIM |
∂θ

∂ log |FIM |
∂φ

)T

(5.14)

where

∂ log |FIM |
∂α1

=
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For the simplifications done in the computation of the Jacobian it must be noticed that sin(α) , 0,
cos(β) , 0, and cos(θ) , 0, because two sensors cannot be placed at the same point and sensors and
target cannot be placed all in the same plane. The Hessian matrix, after some lengthy computations
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that are omitted, yields
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For the analysis of concavity we have to take into account that α1, α2 ∈ [−π/2, π/2], β ∈
[−π/2, π/2], andφ, θ ∈ [0, π/2], as it can be seen in Fig. 5.3. For negative definite matrices, all
principal minors have to be in alternation of signs, i.e., the upper left 1 by 1 corner of (5.15) must
be negative, the upper left 2 by 2 corner of (5.15) must be positive, the upper left 3 by 3 corner of
(5.15) must be negative, and so on. We can check easily that

M1 = H1,1 < 0

M2 = H1,1 · H2,2 −H2
1,2 > 0;

M3 = H1,1 · H2,2 · H3,3 −H2
1,2 · H3,3 = H3,3 · M2 < 0;

M4 =
(

H1,1 · H2,2 −H2
1,2

)

·
(

H3,3 · H4,4 −H2
3,4

)

> 0

M5 = |H| < 0

Therefore (5.15) is definite negative and log|FIM | for a three sensor formation is a concave
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function, so we can use convex optimization tools to determine the sensor formation that provides
the maximum determinant possible over the target position and, moreover, to use Pareto optimization
techniques to determine the optimal sensor configuration for a multiobjective problem.

Similarly to the constant covariance scenario, in a multiple target positioning problem the
maximum log determinant cannot be achieved for all targets at the same time, so a tradeoff solution
must be adopted. Again, this is true except for the special case of two targets when the sensors
are placed in the horizontal plane that is perpendicular to the segment that joins both targets in
its mid point. In this case an unique optimal sensor configuration provides the maximum possible
accuracy for both targets. Thus the FIM determinant at the target points is the maximum possible.
As abovementioned, this solution is optimal for 2 targets and any number of sensors, not only 3. It is
important to remark again that for this solution it is necessary to have some prior knowledge about
the target positions because if all the sensor are in the sameplane it is not possible to distinguish
which target is above or under the sensor network.

Once the concavity for a 3 sensor network problem is defined wemust tackle the general problem
of an arbitrary number of sensors and targets. In this situation it is not possible to prove the convexity
(concavity) of the problem due to the complexity of the first and second derivatives of the logarithm
of the FIM determinant, but from the above result together with the discussion on the convexity of
the functions adopted for the problem at hand in [12], Chapter 3 and the work in [85] on the D-
optimality criterion, we can think of extending the concavity result for 3 sensors to a formation with
an arbitrary number of sensors, so that Pareto optimizationand convex optimization techniques can
be used to determine the optimal sensor configuration for multiple target positioning.

It is important to remark at this point that although the previous analysis shows the concavity
of the logarithm of the FIM determinant with respect to the angles that the range vectors form
between them, for more than 3 sensors and multiple targets the optimization process using these
variables becomes so complex. For this reason, the optimization procedure of the following sections
will be done in the Cartesian space considering the Cartesian coordinates of each sensor as the
design variables. The logarithm of the FIM determinant is not a concave function with respect to
these variables, but with the knowledge that the maximum is unique, and that this maximum is well
defined for a single target, we have tools to determine if the solution provided by the optimization
process achieves desired conditions and if it is close to theoptimal value that would be obtained for
a single target.

5.4 Gradient optimization algorithm for sensor placement

In this section the gradient optimization algorithm with which the optimal sensor formations are
computed is presented.

Maximizing a convex combination of the logarithms of the determinants of the different FIMs,
as a consequence of the Pareto-optimality conditions described in Appendix B, yields the most
appropriate sensor formation geometry for the multiple underwater target positioning problem:

p̄∗ = argmax
p̄

m
∑

k=1

log |FIMk| (5.16)

wherem is the number of targets involved in the multiple target positioning task,|FIMk| is the FIM
determinant of targetk, andp̄ is the vector of sensor positions.

One simple method to find the optimal formation is the gradient optimization method. To use it,
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we compute the derivative of the logarithm of the FIM determinant of each target with respect to all
sensor coordinates. For the sake of simplicity, the computation of the derivatives is not shown here.
For details on the computation of these partial derivatives, see Appendix C.

Once the gradients have been computed for each target, they are combined to update the sensor
configuration so as to yield an increase in the specified convex combination of the logarithms of
the FIM determinants. This computation is recursive, untilthe optimal position is found. For the
single target positioning problem, an adequate initial guess for the solution is for example any regular
distribution around the target. Checking that this algorithm behaves well for single target positioning
is easy, for an analytical solution to the optimal sensor positions is available in Chapter 4. For the
multiple target localization problem, the initial guess will be a regular distribution around the mass
centre of the target group, with all the targets inside the sensor formation. The Armijo rule is used for
the sensor placement update phase, yielding the following iterative gradient optimization algorithm.

1. For each target, (5.6) is computed for the current sensor formation at iterationt, from which
|FIMλ|, the convex combination of the logarithms of the determinants given by|FIMλ| [t] =
m
∑

k=1
λk log |FIM |k [t], follows for a specific choice ofλk; k = 1, 2, ..m, λ1 + ... + λm = 1, where

m is the number of targets.

2. The gradient of|FIMλ| [t] is computed, yielding∇i,ξ |FIMλ| [t] with ξ = x, y, zandi = 1, ..., n.

3. The sensor positions are updated according to the gradients: pi,ξ [t + 1] = pi,ξ [t] +
µζ[t]∇i,ξ |FIMλ| [t], with µ ∈ 0, 1, ζ [0] = 1, andζ [t] = ζ [t − 1] + 1.

4. If |FIMλ| [t + 1] > |FIMλ| [t], then pi [t + 1] =
[

pi,x [t + 1] , pi,y [t + 1] , pi,z [t + 1]
]T

becomes
the new set of sensor positions,ζ [t + 1] = ζ [t] + 1, and the iteration goes back to step 1.

5. If |FIMλ| [t + 1] < |FIMλ| [t], then there is no improvement in the convex combination of the
determinants,ζ [t] = 0, the iterative algorithm stops, andpi [t] is considered to be the optimal
configuration for the current target position.

The above cycle is only run once if the targets are stationary. Notice the unrealistic assumption
that the positions of the targets are known in advance. This is done to simplify the problem and to
first fully understand its solution before the realistic scenario where the positions of the targets are
known with error can be tackled, in this respect, see Section5.6.

In a practical situation where the targets are in motion, thesurface sensor network must adapt its
optimal configuration as the mission unfolds. Clearly, thisrequires that three different, intertwined
processes be activated as follows:

i) multiple target position estimation, albeit with a possibly large error, using the current
sensor configuration and resorting to a dedicated non-linear filter (e.g. Extended
Kalman filter);

ii) optimal sensor configuration computation, based on the data provided by the previous
process and the algorithm described above;

iii) coordinated motion controlto actually drive the moving sensors to the optimal
positions determined in ii).

We thus envision the situation where the algorithm described (or its modification in Section 5.6)
is run during each cycle of the positioning system in i). Interestingly enough, we can also think of a
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situation where the different iterates of process ii) can be used to yield set points for the autonomous
sensor network to move to, effectively guiding them collectively to the optimal configuration that is
being computed.

The advantage of using a gradient optimization method is itssimplicity. As it will be seen later,
based on the simulations done so far, the method has proven tobe quite satisfactory. However,
should there be a need for a more refined method, the sensor network positions given by the gradient
algorithm can be used as initial estimates in the new method.

It is not hard to envision situations where different “levels of importance” and therefore different
localization accuracies are required for the elements in a group of targets. It is obvious that the
geometry of the sensor network will impact on the accuracy with which the position of each of the
targets can be computed. In the case of multiple targets, improving the accuracy in the estimate of
one target may at times be done only in detriment of the accuracy of the other estimates. There
are therefore tradeoffs that must be examined carefully. An example of a multi-target localization
problem can be briefly described as follows: “givenm targets andn sensors, determine, if possible,
a geometric configuration for the sensors that will maximizethe accuracy with which the position
of targeti can be estimated, while keeping the accuracy of the other target estimates above a desired
threshold level”.

5.4.1 Simulation examples on optimal sensor placement

The rest of this section contains the results of simulationsthat illustrate the potential of the method
developed for optimal sensor placement when multiple targets are involved.

Example 5.1: 3 targets, 6 sensors and constant covariance.

As an introductory step, only the case where the targets haveequal Pareto weights, that is,λ1 =

λ2 = ... = λm, is considered. All the targets have the same importance (weight) in the mission so
they must be localized with the largest global accuracy possible, it is, λi = 1/m with i = 1, · · · ,m
wherem is the number of targets. To determine the optimal configuration the algorithm explained
above is run for a stationary group of targets. Once the optimal formation is obtained, the accuracy
with which each of the targets is positioned is compared withthe one that would be obtained for the
corresponding target working in isolation to check if the targets are positioned with correct accuracy.
The error is modelled withσ = 0.1 m, andη = 0.

We consider a formation composed of 6 sensors and 3 targets tobe positioned. The target
positions have been generated with a pseudo-random algorithm, and they are listed in Table 5.1
together with the sensor positions of the optimal configuration.

Table 5.1: Target positions and optimal sensor positions forλ1 = λ2 = λ3 = 1/3.

q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI }(m) 292.2 −464 178.7 1653.8 −149.7 −1832.9 −1841 −220 1826.9
{yI }(m) 459.5 349.1 −257.7 1365.1 1299 1216.5 −642 −2137 −764.1
{zI }(m) 155.7 434 −243.1 −1400 797.5 −1425.6 1754.7 −1757 1757.3

With this formation the determinants are|FIM |1 = 7.8386· 106 m−6, |FIM |2 = 7.8284· 106 m−6,
and |FIM |3 = 7.9015· 106 m−6. We can notice how a large accuracy is obtained for each target
and how the FIM determinants are very close to the optimal onethat would be obtained for a single
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Figure 5.4: Optimal sensor configurations for 6 sensors and 3 targets with η = 0, (a) withλ1 = 0.33,λ2 = 0.33,
andλ3 = 0.33 and (b) withλ1 = 0.05,λ2 = 0.05, andλ3 = 0.9.

target working in isolation,|FIM |opt = n3/(33 · σ6) = 8 · 106 m−6. Their corresponding CRB traces
aretr(CRB)1 = 0.0152m2, tr(CRB)2 = 0.0152m2, andtr(CRB)3 = 0.0151m2, being the theoretical
minimum tr(CRB)opt = 0.015 m2. In Figure 5.4 (a) it is shown this optimal formation (red points)
and the targets (green points).

Therefore it is possible to obtain large FIM determinants for all the targets at the same time,
so for most of the different Pareto weights that could be defined (for the 3 targets)the optimal
formation is the one shown in Figure 5.4 (a). The formation only changes slightly for extreme cases,
for example, in Figure 5.4 (b) one target must be localized with large accuracy while the accuracies
of the others can be degraded. In this example the Pareto weights areλ1 = 0.05, λ2 = 0.05, and
λ3 = 0.9. Therefore it must be defined a formation that provides the maximum accuracy possible for
two targets while keeping the very large accuracy of target 3. This formation can be seen in Table
5.2 and in Figure 5.4 (b)

Table 5.2: Target positions and optimal sensor positions forλ1 = 0.05,λ2 = 0.05, andλ3 = 0.9.

q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI }(m) 292.2 −464 178.7 1602.5 −144 −1836.5 −1929 −381 1869
{yI }(m) 459.5 349.1 −257.7 1207.1 1132 1096.4 −806.4 −2142.6 −826
{zI }(m) 155.7 434 −243.1 −1437 540.6 −1256.6 1731.1 −1748.3 1744

The determinants are|FIM |1 = 7.7807· 106 m−6, |FIM |2 = 7.5883· 106 m−6 and |FIM |3 =
7.9822· 106 m−6. It can be noticed how the determinant of target 3 is almost the optimal one,
|FIM |opt = 8 ·106 m−6, while the determinants of targets 1 and 2, although lower, are large and close
to the optimal one too. The traces of the CRB matrices aretr(CRB)1 = 0.0153 m2, tr(CRB)2 =

0.0155m2, andtr(CRB)3 = 0.015m2, being the theoretical minimumtr(CRB)opt = 0.015m2.
Thus, for constant covariance it is possible to achieve a large accuracy for all the targets at the

same time if there are no constraints on the sensor placement. Of course, the accuracy required for
each target will be mission-dependent. It is important to remark at this point that for the multiple
target positioning problem with constant covariance the distance between targets does not condition
the optimal sensor configuration. As it was commented in Chapter 3, the optimal sensor formation
only depends on the geometric configuration of the targets. If the distance between targets is
increased while its geometric configuration is kept, then the optimal sensor formation will be the
same with the appropriate change of scale. This issue was studied in detail in Chapter 3 where some
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examples were shown to illustrate this behaviour. In the distance-dependent covariance scenario the
distance affects dramatically the resultant sensor formation.�

Example 5.2: 3 targets, 6 sensors and distance-dependent covariance.

The tradeoffs are clearer in the distance-dependent covariance scenario because the increase in
the accuracy of one target only can be done in detriment of theaccuracy of the other targets. This
fact is studied in detail in Section 5.5 for surface sensor networks, because in this latter case the
optimality criteria is concave, as it was demonstrated in Section 5.3.2. In the problem at hand, the
criterion is not concave because of the distance-dependentadded error; and the gradient descendent
method detailed in Section 5.4 must be combined with numerical and stochastic methods to find an
optimal configuration, that can or not be the global one. For these reasons, the study of the tradeoffs
related with the variation of the Pareto weights is done for surface sensor networks. The aim of this
example is to shed light on the tradeoffs involved in a multiple target positioning task in 3D space.

The same situation of 6 sensors and 3 targets is studied for the case in which the error covariance
is distance-dependent, withη = 0.01 andγ = 1. The targets are placed at the same points of the
above example to compare the different solutions obtained for different weights and different error
models. The target positions and the optimal sensor configuration, for the case in which the weights
are the same for all the targets, are shown in Table 5.3.

Table 5.3: Target positions and optimal sensor positions forλ1 = λ2 = λ3 = 0.33.

q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI }(m) 292.2 −464 178.7 271 −445 119.5 −443.5 266 178
{yI }(m) 459.5 349.1 −257.7 420.6 359.9 −203.5 335.8 450.6 −212.9
{zI }(m) 155.7 434 −243.1 165.1 425.5 −216.1 431.6 125.1 −190

With the defined formation the determinants are|FIM |1 = 4.8148· 103 m−6, |FIM |2 = 1.5542·
103 m−6, and|FIM |3 = 230.9 m−6. Their corresponding CRB traces aretr(CRB)1 = 0.5059 m2,
tr(CRB)2 = 2.2319 m2, and tr(CRB)3 = 2.8021 m2. We cannot compare these determinants
with an optimal value because with distance-dependent covariance the optimal value for a single
target depends on the constraints imposed to the sensor formation, and when several targets must be
positioned the accuracy degrades substantially. The sensors try to reduce the distance to the targets
as much as possible to minimize the distance-dependent added error, and it is clear that this is not
possible for all the targets at the same time. Thus, a tradeoff solution must be adopted. Moreover, in
the example the distance between targets and sensors is limited to 20m to avoid that the sensors be
placed so close from a target. In Figure 5.5 (a) it is shown this optimal formation (red points) and the
targets (green points) where the sensor formation is split into pairs of sensors focused on one target
each.

A second scenario is studied in which two targets must be localized with large accuracy (one
with larger accuracy than the other) and the third one does not require a large accuracy. Thus, the
weights areλ1 = 0.1,λ2 = 0.4, andλ3 = 0.5. The optimal sensor positions are stated in Table 5.4.

The FIM determinants for each of the targets are|FIM |1 = 101m−6, |FIM |2 = 0.1034· 104 m−6

and |FIM |3 = 2.1955· 104 m−6. We can notice how targets 2 and 3 are positioned with larger
accuracy than target 1, and how the accuracy of target 3 is larger than the accuracy of target 2. Their
corresponding CRB traces aretr(CRB)1 = 1.6446 m2, tr(CRB)2 = 1.5314 m2, and tr(CRB)3 =

0.1245m2. Moreover, the FIM determinant of target 1 is significantly reduced with respect to the
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Table 5.4: Target positions and optimal sensor positions forλ1 = 0.1, λ2 = 0.4, andλ3 = 0.5.

q1 q2 q3 p1 p2 p3 p4 p5 p6

{xI }(m) 292.2 −464 178.7 241 −425 176.6 −423.7 266 135.1
{yI }(m) 459.5 349.1 −257.7 −220.6 359.9 −208.8 315.7 433.6 −225.7
{zI }(m) 155.7 434 −243.1 −165.1 425.5 −249.6 431.6 125.1 −165
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Figure 5.5: Optimal sensor configuration for 3 targets and 6 sensors, with distance-dependent covariance and
λ1 = 0.33,λ2 = 0.33, andλ3 = 0.33 in (a), andλ1 = 0.1, λ2 = 0.4, andλ3 = 0.5 in (b).

previous example to increase the determinant of target 3. InFigure 5.5 (b) this optimal formation is
shown and it is possible to notice how 3 sensors are close to target 3, 2 sensors are close to target 2,
and 1 sensor is close to target 1, to obtain the desired accuracies for each of the targets.�

From the previous examples we can conclude that it is possible to achieve a large accuracy for
all the targets at the same time in a constant covariance scenario. We can notice how in the solution
for the distance-dependent covariance case the sensors arecloser to the targets to reduce the added
error. Alternative and different examples could be obtained for different weights, number of sensors
and/or number of targets. It is important to notice that the sensors take positions close to the targets
because of the large distances between targets.

5.5 Gradient optimization algorithm for surface sensor place-
ment

In many situations of interest, a number of human divers or AUVs may be required to work scattered
over a certain area, executing different tasks or cooperating towards the execution of a commontask.
It is not hard to envision situations where different “levels of importance” and therefore different
localization accuracies are required for the elements in a group of underwater targets. In the case
of human divers, for example, in a 2 diver scenario one of the divers may be executing a very
demanding and risky task, while the other is carrying out an easy, routine task. In this situation,
the surface sensor network should “focus its attention” on the first target, effectively imposing strict
requirements on the accuracy with which its position must beestimated, while relaxing the level
of localization accuracy required for the second target. This situation may be inverted during the
mission, so the formation should be able to reconfigure itself accordingly. It is obvious that the
geometry of the sensor network will impact on the accuracy with which the position of each of the
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targets can be computed.
The sensors are constrained to lie in the planez = 0, at the sea surface. One simple method to

find the optimal formation is the gradient optimization method used until this point. To use it, we
compute the derivative of the logarithm of the FIM determinant of each target with respect to the
sensor coordinates in the{xI yI } plane. Then, the computation of the derivatives of the logarithm of
(5.6) is carried out with respect to thepix andpiy coordinates of a generic sensori. The computation
of these derivatives is shown in Appendix C.

It is at this stage that the power of multi-objective Pareto optimization must be brought into
the picture, because, as explained in Section 5.3, (5.17) isa concave function for surface sensor
networks. Clearly, in order to fully understand the problemwe must compute the corresponding set
of Pareto-optimal points and make decisions accordingly. See the presentation in Appendix B. As
explained before, this can be done by computing

p̄∗ = argmax
p̄
|FIMλ| (5.17)

over all possible sensor positions, and for allλ = [λ1, λ2, ..., λm] such thatλ1 + ... + λm = 1. In
practice a grid of points is adopted for vectorλ. The maximization above is done by resorting to the
gradient optimization algorithm introduced before.

For simplicity of explanation, a theoretical 2 target positioning problem with 6 sensors and
distance-dependent covariance is studied although the procedure would be the same for more targets
and a different number of sensors. The computation of the optimal solutions of this particular case
is studied in detail in Example 5.4.

Because only two targets are involved, the Pareto-optimal curve is parametrized by a single
parameterλ ∈ [0, 1]. For simplicity of notation, we use the same symbol for this scalar as well as for
vectorλ. The meaning will be clear from the context. We assume thatλ1 = λ andλ2 = 1− λ. When
λ varies from 0 to 1, the weight of one of the targets changes accordingly. Thus, in the extreme
cases of 0 and 1 the solutions degenerate into those two of thesingle target localization problems
for target 2 and 1, respectively. Two normalized curves thatshow the tradeoffs in the determinants
of the Fisher information matrices for each of the targets (with the sensor geometry obtained by
running the gradient optimization algorithm) are plotted in Fig. 5.6. The solid line corresponds to
the Pareto curve for the maximization of|FIMλ|, whereas the dotted line shows the corresponding
FIM determinants. The two curves are normalized between 0 and 1.

Notice in Fig. 5.6 how the cost function|FIMλ| provides a concave Pareto curve (solid line), as
expected for a maximization problem. As explained before, this is a consequence of the fact that in
this case the criterion for each target is indeed concave. The dotted line shows the corresponding
evolution of the FIM determinants. Notice that the curve is not concave, thus supporting the
statement that the determinants of the FIMs are not adequatecriteria to be maximized jointly (in
the Pareto-optimal sense).

Fig. 5.6 shows how the accuracy of the measurements changes for different values ofλ. At
this point it is important to remark that if the measurement error does not depend on the distance
between targets and sensors, that is,η = 0, it is possible to obtain sensor locations for which the
accuracies obtained for each of the targets simultaneouslyare close to the optimal ones that would
be obtained if the targets were operating in isolation. Thisfollows from the shape of the Pareto
curve whenη = 0, not shown here. For example, withλ = 0.5 the performance achievable in
the localization of targets 1 and 2 simultaneously does not degrade substantially when compared
to the best performance achievable for the two targets isolated. Of course the acceptable level
of degradation in performance is problem-dependent. When the measurement error is distance-
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Figure 5.6: Pareto curve (solid line) for a 2 target localization problem, using 6 sensors forη = 0.05, and the
corresponding FIM determinants (dotted line) for different values of the Pareto scalarization weights inλ.

dependent, the situation changes drastically because of the “steepness” of the Pareto curve. For
example, whenλ = 0.5 the performance that can be simultaneously achieved for both targets
degrades substantially. The tradeoffs involved are clear.

5.5.1 Simulation examples on optimal sensor placement

This subsection contains the results of simulations that illustrate the potential of the method
developed for optimal surface sensor placement when multiple targets are involved. The initial guess
for the gradient optimization algorithm is of great importance to avoid local minima or divergence.
Experience has shown that a regular formation around the centre of mass of the group of targets,
keeping the targets inside the formation, is an appropriateinitial guess. Starting from this initial
guess, several examples of multi-target positioning are shown next. In the forthcoming examples
we consider that all the targets are placed in the same plane,it is, at the same depth. The reason to
adopt this condition is to be able to show graphically the tradeoffs involved with the representation
of |FIM |D,D ∈ ℜ2 as in Chapters 2 and 3, and to be able to analyse the accuracy with which each
target is positioned. The approach would be exactly the samefor different target depths.

Example 5.3: 4 sensors, 2 targets and constant covariance.

In this example the targets are placed at a depth of 100 metersat the positionsq1 =

[150, 0, −100]T m andq2 = [−150, 0, −100]T m. In Figure 5.7 it is shown the optimal sensor
formation when the targets have equal Pareto weights,λ1 = λ2 = 0.5. In this case the distance
between sensors and targets does not condition the solution, so the sensors can be placed such that a
large accuracy is obtained for both targets. The formation is placed according to Table 5.5.

The FIM determinants obtained for each target are|FIM |1 = 2.2722· 106 m−6 and |FIM |2 =
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Table 5.5: Target positions and optimal sensor positions forλ1 = λ2 = 0.5.

q1 q2 p1 p2 p3 p4

{xI }(m) −150 150 191.3 0 −191.3 0
{yI }(m) 0 0 0 300.4 0 −300.4
{zI }(m) −100 −100 0 0 0 0
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Figure 5.7: Optimal sensor configurations withη = 0 for 4 sensors and 2 targets, andλ = 0.5. |FIM |D,D ∈ ℜ2

(a); FIM determinant for each point in the plane where the targets lie (b);CRBD (c); and Value of the CRB in
the targets plane (d). Sensors in red and targets in green.

2.2722· 106 m−6, that are very close to the optimal one,|FIM |opt = n3/(33σ6) = 2.37 · 106 m−6.
Therefore it is possible to achieve large accuracy for both targets at the same time.

This same example is studied when the Pareto weights are different,λ1 = 0.9 andλ2 = 0.1, and
the optimal sensor formation is shown in Figure 5.8 and in Table 5.6.

Table 5.6: Target positions and optimal sensor positions forλ1 = 0.9 andλ2 = 0.1.

q1 q2 p1 p2 p3 p4

{xI }(m) −150 150 108.6 −101.4 −101.4 108.6
{yI }(m) 0 0 90.4 114.3 −114.3 −90.4
{zI }(m) −100 −100 0 0 0 0

The FIM determinants are|FIM |1 = 2.3688· 106 m−6 and|FIM |2 = 2.2712· 106 m−6. We can
notice how the FIM determinant of target 1 is almost the optimal one. However the FIM determinant
of target 2 is close to the optimal one too, and therefore it isalways possible to obtain large accuracy
for multiple targets in the constant covariance scenario.�
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Figure 5.8: Optimal sensor configurations withη = 0 for 4 sensors and 2 targets, andλ = 0.9. |FIM |D,D ∈ ℜ2

(a); FIM determinant for each point in the plane where the target lies (b);CRBD (c); and Value of the CRB in
the targets plane (d). Sensors in red and targets in green.

Example 5.4: 6 sensors, 2 targets and distance-dependent covariance.

In this second example we consider a 6 sensor formation for a two target positioning problem in
which the targets are again at positionsq1 = [150, 0, −100]T m andq2 = [−150, 0, −100]T m.
In Figure 5.9 and in Table 5.7 it is shown the optimal sensor formation when the targets have equal
Pareto weights,λ1 = λ2 = 0.5.

Table 5.7: Target positions and optimal sensor positions forλ1 = λ2 = 0.5.

q1 q2 p1 p2 p3 p4 p5 p6

{xI }(m) −150 150 193.8 91.3 −150.5 −193.8 −91.3 150.5
{yI }(m) 0 0 40 57.5 67.1 −40 −57.5 −67.1
{zI }(m) −100 −100 0 0 0 0 0 0

In this case, in contrast to what was seen in the previous example, the distance affects the
optimal sensor configuration and the accuracy with which each target can be localized is substantially
degraded. We can notice how the 6 sensors are split into two formations of 3 sensors, each
formation close to one of the targets. The FIM determinants are |FIM |1 = 8.4030 m−6 and
|FIM |2 = 8.4030m−6, that are quite smaller than in the previous example due to the added distance-
dependent error.

Now it is studied the case in which the Pareto weights are different,λ1 = 0.8 andλ2 = 0.2,
and the optimal sensor formation is shown in Figure 5.10 and in Table 5.8. We can see how the
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Figure 5.9: Optimal sensor configurations withη = 0.05 for 6 sensors and 2 targets, andλ = 0.5. |FIM |D,
D ∈ ℜ2 (a); FIM determinant for each point in the plane where the targets lie (b);CRBD (c); and Value of the
CRB in the targets plane (d). Sensors in red and targets in green.

sensor formation is focused on target 1 to increase its accuracy. The FIM determinants are now
|FIM |1 = 14.0237m−6 and|FIM |2 = 4.5465m−6.

Table 5.8: Target positions and optimal sensor positions forλ1 = 0.8 andλ2 = 0.2.

q1 q2 p1 p2 p3 p4 p5 p6

{xI }(m) −150 150 195.2 106.1 −148.4 −148.8 104.1 193.6
{yI }(m) 0 0 51.2 58.9 58.4 −57.8 −57.1 −53.2
{zI }(m) −100 −100 0 0 0 0 0 0

Therefore it is clear that for distance-dependent covariance error a tradeoff solution must be
adopted because the distance affects dramatically the precision with which each target is localized.
�

Now some more examples are shown briefly for more than 2 targets.
In Fig. 5.11 (a),|FIM |D ;D ∈ ℜ2 is mapped for a 6 sensor network, 3 targets, andη = 0

(constant covariance error). The maximum values of the function are over the target positions, close
to the optimal values that would be obtained in a single target positioning problem, as seen in Fig.
5.11 (b). We can notice how the sensors are spread around the centre of mass of the targets. In
Fig. 5.11 (c) the same formation of 6 sensors is used for a 4 target positioning problem. Again the
maximum values are over the target positions and their values are close to the optimal ones, Figure
5.11 (d). Thus for constant covariance error it is possible to obtain a sensor formation that provides
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Figure 5.10: Optimal sensor configurations withη = 0.05 for 6 sensors and 2 targets, andλ = 0.8. |FIM |D,
D ∈ ℜ2 (a); FIM determinant for each point in the plane where the targets lie (b);CRBD (c); and Value of the
CRB in the targets plane (d). Sensors in red and targets in green.

for all the targets an accuracy close to the one that would be obtained for a single target working in
isolation, as it was seen in detail in Example 5.3.

In Fig. 5.12 (a),|FIM |D ;D ∈ ℜ2 is mapped for a 6 sensor network, 3 targets, andη = 0.1
(distance-dependent covariance error). In this case, the position where the maximum of|FIM |D
occurs is strongly affected by the distance-dependent added error. It is possibleto notice how
the accuracy is similar for the three targets, Fig. 5.12 (b),but the FIM determinant obtained is
dramatically affected by the distance-dependent added noise. In Fig. 5.12 (c), |FIM |D ;D ∈ ℜ2

is mapped for a 7 sensor formation and 4 targets, withη = 0.1. Again, the maximum values
of the function are close to the targets, Fig. 5.12 (d), and the sensors spread themselves in an
organized manner around the targets. For the choice of identical weights adopted, the most adequate
configuration with 7 sensors and 4 targets is such that the accuracy with which two of the targets
can be located is larger than the others because it is not possible to obtain the same good accuracy
for all the targets and a tradeoff solution must be chosen. Should such a solution prove unsuitable,
a complete analysis of the tradeoffs involved using the set-up with different target weights would be
required.

5.6 Optimal sensor placement with uncertain target location

We now address the situation where the targets to be positioned are known to lie in well defined
uncertainty regions. The objective is to obtain an expeditenumerical solution for the problem
at hand. We assume the uncertainty in each target position isdescribed by a given probability
distribution function and we seek to maximize, by proper sensor placement, the average value of the
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Figure 5.11: Optimal sensor configurations withη = 0 for 6 sensors and 3 targets, (a) and (b), and 4 targets,
(c) and (d).|FIM |D around the target positions in (a) and (c). Value of the FIM determinant in the plane of the
target positions in (b) and (d). Sensors in red and targets ingreen. Lighter regions correspond to larger values
of |FIM |D.

determinant of the FIM for the targets.

In what follows,piξ ; i = 1, 2, ..., n; ξ = x, y, z denotes theξ − th coordinate of sensori located
at positionpi and p̄ = [pT

1 , ..., p
T
n ]T , qkξ ; k = 1, 2, ...,m; ξ = x, y, z denotes theξ − th coordinate

of targetk located at positionqk andq̄ = [qT
1 , ..., q

T
m]T . We further denote byϕ (q̄) ; q̄ ∈ ℜm×3 the

probability density functions with supportDq̄ ∈ ℜ3 that describe the uncertainty in the position of
the targets in regionD. With this notation, the problem of optimal sensor placement can be cast in
the form of finding a vector ¯p∗ such that

p̄∗ = argmax
p̄

∫

D

log |FIM(p̄, q̄)| · ϕ (q̄) dq̄ (5.18)

where we used the notation|FIM(p̄, q̄)| to clearly show the dependence of the FIM on the target and
sensor locations. However, in the following log|FIM(p̄, q̄)| will often be denoted simply as|FIMλ|,
as mentioned on the previous sections. In a real situation,ϕ (q̄) will depend on the type of mission
carried out by the targets. If the targetk operates mostly in the centre of its working area,ϕ (qk) can
for example assume the form of a truncated, radially-symmetric probabilistic Gaussian distribution
centred at an appropriate point. On the other hand, if only the work area is known and the targetk
can operate anywhere inside it,ϕ (qk) can be taken as the unity function inside that area. Depending
on the knowledge about the targets, eachϕ (qk), k = 1, · · · ,m, may be a different probability density
function. In the most general set-up, the regionD must be taken as the union of a number of disjoint
regionsDk; k = 1, 2, ..,m, whereDk is the work area of targetk.

137



Optimal Sensor Placement for Target Localization

−40

−20

0

20

40

−30−20−1001020304050
0

100

200

300

400

500

600

−40 −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

40

−100

−50

0

50

100

−60
−40

−20
0

20
0

50

100

150

200

250

−50 0 50

−50

−40

−30

−20

−10

0

10

a)

d)

b)

c)

|F
IM

|
|F

IM
|

Figure 5.12: Optimal sensor configurations withη = 0.1 for 6 sensors and 3 targets, (a) and (b), and 7 sensors
and 4 targets, (c) and (d).|FIM |D around the target positions in (a) and (c). Value of the FIM determinant in
the plane of the target positions in (b) and (d). Sensors in red and targets in green. Lighter regions correspond
to larger values of|FIM |D.

It now remains to solve the optimization problem defined above. As explained later, we opted to
use a gradient-based method to do so. To this effect, it is important to compute the derivatives of the
integral in (5.18) with respect to the sensor coordinates, that is,

∂

∂piξ

∫

D

|FIMλ|ϕ (q̄)dq̄ (5.19)

for i = 1, 2, ..., n andξ = x, y, z.

To proceed with the computations, the integral and derivative operations are interchanged: the
derivatives are explicitly determined first and the integration over regionD is performed afterwards.
The derivative can be computed in a recursive way using the equations of Appendix C for any
number of targets. In what regards the computation of the triple integral over the regionD of
interest, however, this is virtually impossible to do analytically. The computation of the triple integral
was obtained numerically using a Monte Carlo method. Finally, the solution of (5.18) is obtained
using the gradient optimization method detailed in Section5.4. Again, to overcome the possible
occurrence of local maxima or the divergence of the algorithm, the initial guess in the iterative
algorithm must be chosen with care. In the examples that we studied we found it useful and expedite
to adopt as an initial guess the solution for the multiple target positioning problem described in this
chapter, with the hypothetical targets placed at the centreof their corresponding work areas. It is
important to stress that the solution to (5.18) depends strongly on the probability density function
adopted for each of the target positions (e.g. a truncated, radially-symmetric probabilistic Gaussian
distribution or a radially-symmetric step distribution, [39]).
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5.6.1 Optimal sensor placement solutions in 3D

In this section an optimal sensor configuration scenario is studied to illustrate the methodology
developed to define optimal sensor networks for multiple target positioning when the target positions
are described by probability density functions. The simpleexamples studied search to shed light on
the problem at hand, it does not pretend to be an exhaustive study but an explanation on how to
apply the methodology developed in this chapter. For this reason the most simple scenario of two
target positioning is considered although the procedure would be exactly the same for any number
of sensors and targets.

In the problem at hand it is considered that the prior knowledge about the target positions is that
they are placed inside two given volumes, so that the probability distribution functions that define
the target positions inside these volumes are step-like distributions. Once the sensors are placed on
the optimal positions that maximize the average log determinant, the target positions are known with
larger accuracy than the prior one and then the sensors couldtrack the movements of the targets to
improve and to maintain large accuracy over the target positions.

We can think of a different problem with the same statement and solution. If we have a static
sensor network and the work areas of the targets are knowna priori, then the optimal sensor network
is the one that maximizes the average logarithm of the FIM determinants inside these work areas.
This problem is equivalent to position a single target that follows a known preplanned trajectory with
a static sensor network.

The constant and distance-dependent covariance error cases are studied. The uncertainty regions
for the two targets are defined by parallelepipeds whose dimensions are 80× 80× 80 m3 defined by
the limits A1 = [−250, −170; −40, 40; −40, 40] m andA2 = [170, 250; −40, 40; −40, 40] m,
whereA = [xmin, xmax; ymin, ymax; zmin, zmax] m.

Example 5.5: Constant covariance.

In this first example it is possible to define a sensor network that provides a very large accuracy
inside the volumes of interest. The optimization process provides the optimal formation defined in
Table 5.9.

Table 5.9: Target positions and optimal sensor positions for constantcovariance.

p1 p2 p3 p4 p5 p6

{xI }(m) 289.8 0.2 −290.7 −290.8 −2.6 290.1
{yI }(m) −20 456.5 −18.6 −143.1 −590.8 −144
{zI }(m) 261.7 −117.2 263.3 −222.1 151.6 −220.5

This formation provides|FIM |max = 8 · 106 m−6 and|FIM |min = 7.8037· 106 m−6 as maximum
and minimum FIM determinants inside the volumes of interest, respectively. We can notice how
the maximum is the theoretical optimal FIM determinant and how the minimum is very close to
this optimal value too. The average FIM determinant in the work areas is given by|FIM |avg =

7.9467· 106 m−6, showing how the average accuracy is very close to the optimal one, providing a
very good positioning of the targets inside the areas of interest. The maximum and minimum CRB
trace aretr(CRB)max = 0.0153 m2 and tr(CRB)min = 0.015 m2, respectively, being the latter the
theoretical optimal CRB trace.

Therefore it is possible to define optimal sensor configurations that provide large accuracy, close
to the optimal one, inside the volumes of interest for constant covariance error.�
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Example 5.6: Distance-dependent covariance.

In this second example, whereη = 0.05 andγ = 1, the sensor network that provides the largest
accuracy inside the volumes of interest is defined by the points in Table 5.10.

Table 5.10:Target positions and optimal sensor positions forη = 0.05 andγ = 1.

p1 p2 p3 p4 p5 p6

{xI }(m) 208.7 −0.2 −209.1 −209.6 −2.4 208.8
{yI }(m) 4.6 370.6 5.1 −5 −474.1 −4.7
{zI }(m) 28 −92.9 27.7 −27.1 120.1 −27.7

This formation provides as maximum and minimum FIM determinants inside the volumes of
interest|FIM |max= 270.6958m−6 and|FIM |min = 2.6213m−6, respectively. We can notice how the
FIM determinants are quite smaller than the ones obtained inExample 5.5, and how the difference
between the maximum and minimum value is large because of thedistance-dependent added error.
The average FIM determinant inside the work areas is given by|FIM |avg = 3.2662 m−6, showing
how the average accuracy is seriously affected by the error model considered. The maximum and
minimum CRB trace aretr(CRB)max= 6.0312m2 andtr(CRB)min = 2.2129m2, respectively.

Therefore it is possible to define optimal sensor configurations that provide an homogeneus
accuracy inside the volumes of interest, maximizing as muchas possible the average log determinant.
Of course, the accuracy required for each target will be mission-dependent.�

5.6.2 Sensors lying on a plane: Underwater target positioning

In Chapter 4 it was commented that an interesting problem arises when the targets are known to lie
anywhere in one or several volumes in the water column and oneis free to distribute the sensors
at the sea surface and at the sea-bottom. At this point, an interesting question arises: given the
experimental conditions, should we place all the sensors inone plane (sea surface or sea-bottom), or
distribute them between the two planes? In what follows we show, via a design example, how the
circle of ideas exploited in the previous section can be usedto solve this problem.

Suppose that 2 underwater targets operate inside a rectangular parallelepiped each, the two
volumes with dimensions 80x60x60 meters and geometrical centre at 100m depth. The limits of
the areas areA1 = [−120, −40; −30, 30; −30, 30] m andA2 = [40, 120; −30, 30; −30, 30] m,
where the areas are defined byA = [xmin, xmax; ymin, ymax; zmin, zmax] m. The sea bottom is 200m
deep. We consider two possible arrangements for a 6 sensor network. In the first case, depicted in
Figure 5.13 (a), all sensors are placed at the sea surface. Inthe second case, illustrated in Figure 5.13
(b), 3 of the sensors are placed at the surface, while the others are placed at the sea-bottom.

Example 5.7: Constant covariance

We have seen in the examples along this chapter that for constant covariance it is possible to
obtain sensor configurations that provide large accuracy for all the points in the region of interest. In
this example we determine the surface sensor network that maximizes the average log determinant
over the above areas and then we compare the accuracy obtained by the latter formation with the
accuracy that provides the network for which 3 of the sensorsare placed at the sea surface, while the
others are placed on the sea-bottom.
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Figure 5.13: Maximization of the average FIM determinant inside a volume, with all the sensors placed in the
same plane (a), or with the sensors distributed among two different parallel planes (b).

The first scenario tackles the arrangement of Figure 5.13 (a), a surface sensor network. The
resultant sensor formation is placed at points shown in Table 5.11.

Table 5.11:Target positions and optimal sensor positions for constantcovariance.

p1 p2 p3 p4 p5 p6

{xI }(m) 135.4 −1.5 −134.9 −135.5 1 134
{yI }(m) 33.7 405.6 33.1 −33.6 −406.7 −32.9
{zI }(m) 100 100 100 100 100 100

This resultant configuration provides inside the work areasa maximum and minimum FIM
determinants given by|FIM |max = 8 · 106 m−6 and |FIM |min = 5.7 · 106 m−6, respectively, with
an average value of|FIM |avg = 7.5241· 106 m−6. We can notice how the maximum determinant
corresponds to the theoretical optimal value and how the minimum determinant is large and close to
the optimal value, providing a large average accuracy inside the volumes of interest. The maximum
and minimum CRB trace aretr(CRB)max= 0.0193m2 andtr(CRB)min = 0.015m2, respectively.

Now we consider the arrangement depicted in Figure 5.13 (b).The optimal sensor is shown in
Table 5.12.

Table 5.12:Target positions and optimal sensor positions for constantcovariance.

p1 p2 p3 p4 p5 p6

{xI }(m) 122.2 −0.6 −122.7 −122.9 −0.2 122.1
{yI }(m) 27.4 373 27.3 −27 −371.4 −26.9
{zI }(m) 100 −100 100 −100 100 −100

The maximum and minimum FIM determinant are now|FIM |max= 8 · 106 m−6 and|FIM |min =

7.6994· 106 m−6, respectively, with an average value of|FIM |avg = 7.8979· 106 m−6. We can notice
how the maximum determinant is again the theoretical optimal determinant, but in this case the
minimum determinant is very close to this theoretical optimal value providing a very large accuracy
over the work areas. The maximum and minimum CRB trace aretr(CRB)max = 0.0154 m2 and
tr(CRB)min = 0.015m2, respectively.

Therefore, for the constant covariance case, it is clear that if it is possible to place the sensor
network in two different parallel planes the accuracy over the volumes of interest is improved in a
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great manner.

Example 5.8: Distance-dependent covariance

The same two scenarios of Example 5.7 are now studied considering that the measurement error
is distance-dependent and modelled by the parametersη = 0.05 andγ = 1.

The first scenario studies the optimal surface sensor formation of Figure 5.13 (a). After the
optimization process the resultant optimal formation is the one shown in Table 5.13.

Table 5.13:Target positions and optimal sensor positions forη = 0.05 andγ = 1.

p1 p2 p3 p4 p5 p6

{xI }(m) 107.6 21.9 −88.7 −89.8 20.1 106.1
{yI }(m) 43.9 61.6 47.8 −46.9 −61.8 −45.6
{zI }(m) 100 100 100 100 100 100

This resultant configuration provides inside the work volumes a maximum and minimum FIM
determinants given by|FIM |max = 87.2283 m−6 and |FIM |min = 1.3473 m−6, respectively, with
an average value of|FIM |avg = 19.5355 m−6. The maximum and minimum CRB trace are
tr(CRB)max= 3.9155m2 andtr(CRB)min = 0.6920m2, respectively. We can notice how the accuracy
over the areas of interest is seriously affected by the distances involved in the problem.

The second scenario of Figure 5.13 (b) in which 3 sensors are at the sea surface and the other 3
sensors are at the sea-bottom is studied now. The optimal sensor formation is listed in Table 5.14.

Table 5.14:Target positions and optimal sensor positions forη = 0.05 andγ = 1.

p1 p2 p3 p4 p5 p6

{xI }(m) 6 18.2 −24.4 −3.7 −15.9 18.4
{yI }(m) 5.4 73.1 71.7 2.4 −71.2 −71.7
{zI }(m) −100 100 −100 100 −100 100

This resultant configuration provides inside the work volumes a maximum and minimum FIM
determinants given by|FIM |max = 42.7823 m−6 and |FIM |min = 6.1053 m−6, respectively, with
an average value of|FIM |avg = 20.4632 m−6. The maximum and minimum CRB trace are
tr(CRB)max = 2.1255 m2 and tr(CRB)min = 0.9682 m2, respectively. We can check how the
maximum determinant is smaller in this latter case, howeverthe minimum FIM determinant is larger
and the average determinant is larger too. Therefore, although the maximum accuracy is reduced,
the average accuracy and the minimum accuracy are larger, moreover, the FIM determinant inside
the volumes of interest is more homogeneous than in the previous scenario.

Therefore, for distance-dependent covariance, the optimal formation will be clearly mission-
dependent. If the maximum accuracy possible for some given points is searched then the first
scenario is the correct one, but if we need an homogeneous accuracy for all the points inside the
work volumes then the second scenario is the appropriate one.

142



5.7. CONCLUSIONS

5.7 Conclusions

We studied the problem of determining the optimal configuration of a sensor network that will,
in a well defined sense, maximize the range-related information available for multiple underwater
target positioning. To this effect, we assumed that the range measurements were corrupted by white
Gaussian noise with distance-dependent covariance. In contrast to what has so far been published in
the literature, we explicitly addressed the localization problem in 3D using a sensor array located at
the sea surface (2D). Furthermore, we incorporate directlyinto the problem formulation the fact
that multiple targets must be localized simultaneously. Atthe core of the techniques used are
key concepts and methods from Pareto optimization and estimation theory. From a mathematical
standpoint, the key problem that we solved was that of maximizing, by proper choice of the sensor
geometric configuration, convex combinations of the logarithms of the determinants of the Fisher
Information Matrices corresponding to estimation problems for each target separately. This was
done by resorting to an iterative optimization algorithm. The methodology developed allows for an
in depth study of the tradeoffs that are inherent to a multiple target localization problem. Simulation
examples show clearly how the optimal sensor location depends on the size of the area in which the
targets operate, on the type of measurement noise, and on the“level of importance” attached to each
of the targets; the latter aims to capture the fact that tradeoffs are inevitable, and therefore different
levels of accuracy may be required in the localization of thedifferent targets.
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Chapter 6

SINGLE TARGET POSITIONING IN
3D SCENARIOS WITH BEARING-ONLY
MEASUREMENTS

6.1 Introduction

In previous chapters the general problem of single and multiple target positioning with range
measurements in 2D and 3D scenarios has been studied, and analytical and numerical solutions
of optimal sensor placements have been derived, paying special attention to the practical scenario
of underwater target positioning by surface sensors. In thechapter at hand this analysis is extended
to single underwater target positioning with noisy angle measurements. The chapter is focused on
the underwater target positioning problem because this practical scenario allows for a well defined
analytical solution.

As it has been explained along this work, a key element in the operation of some classes of
AUVs is the availability of reliable underwater positioning systems to localize one or more vehicles
simultaneously based on information received on-board a support ship or an autonomous surface
system. The info thus obtained is at times used to follow the state of progress of a particular
mission or, if reliable acoustic modems are available, to relay it as a navigation aid to the navigation
systems existent on-board the AUV. In this sense, we addressthe problem of single target positioning
based on measurements of the azimuth (bearing, in 2D scenarios) and elevation angles between
an underwater target and a set of sensors, obtained via acoustic devices. In what follows we will
refer to these measurements in 3D as AE (azimuth-elevation)measurements or, for simplicity, with
an obvious abuse of notation, simply as bearing measurements. Speaking in loose terms, we are
interested in determining the optimal configuration (formation) of a sensor network that will, in a
well defined sense, maximize the AE-related information available for underwater target positioning.
To this effect, we assume that the AE measurements are corrupted by white Gaussian noise, the
variance of which is distance-dependent. The computation of the target position may be done by
resorting to triangulation algorithms, based on the natureof the measurements.We recall that the
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triangulation problem has been widely studied in the computer vision field, and that there exist
many examples of algorithms to compute the position of a target using angle measurements; see
for example [34] and [43] for an example of the design of motion-planning and sensor assignment
strategies to track multiple targets with a mobile sensor network by resorting to triangulation.

When compared with other possible techniques commonly usedfor underwater target position-
ing, the problem of determining the optimal sensor placement for target localization using AE-only
measurements is of special interest because no informationflows from the sensor network to the
target, and therefore its solution does not require the exchange of information between the target
and the sensor network. Thus, AE-based strategies allow forthe sensor network to observe without
being detected itself. A problem of this type was studied in [57] for an unmanned underwater
vehicle tracking an underwater target while avoiding detection. Given a localization strategy, the
optimal sensor configuration can be ascertained by examining the corresponding Fisher Information
Matrix (FIM) or its inverse, the so-called Cramer-Rao Bound(CRB) matrix. In this chapter, we use
the trace of the CRB matrix as an indicator of the performancethat is achievable with a given sensor
configuration. Minimizing this quantity yields the most appropriate sensor formation geometry. It
is important to remark that in many studies published in the literature on ground and marine robots,
the determinant of the FIM is often used as an indicator of thetype of positioning performance that
can be achieved. For the problem that we tackle in this chapter this indicator is not adequate, as
will be shown in Section 6.5. This is a simple consequence of the fact that the AE-measurements
enter the FIM in such a way as to render its determinant extremely large for certain trigonometric
configurations. However, the large value of the determinantis misleading since it corresponds
to close-to-singular configurations of the network. This issue does not arise in 2D applications,
see [10]. For interesting related work, the reader is also referred to [56], [15], [36], [53] and [61].

Motivated by previous results published in the literature,we address the problem of finding the
optimal geometric configuration of a sensor formation for the localization of an underwater target,
based on AE-only measurements. The optimality conditions for a generic sensor formation are
defined, and the explicit optimal geometric configuration ofa sensor formation based on AE-only
measurements is studied for two different scenarios:

• The case in which the sensors lie on a sphere centred at the target position, which provides a
simple example of how to define optimal sensor configurationsfor a given set of (physical or
mission-related) constraints imposed on the sensor formation.

• The application scenario in which a surface-based sensor formation is defined for the
localization of an underwater target. Notice that in this scenario the sensors are restricted to lie
at the sea surface. A problem of this type was previously studied in [99], where a method to
determine the optimal two-dimensional spatial placement of multiple sensors participating in
a robot perception task was introduced. One of the scenariosconsidered was that of localizing
an underwater vehicle, with the locations of the acoustic receivers constrained to lie in a
horizontal plane.

The key contributions of the present chapter are threefold:i) global solutions to the optimal
sensor configuration problem in 3D are obtained analytically in the cases where the sensor network
is restricted to lie on a sphere centred at the target position or on a plane, the latter capturing
the situation where the sensors are deployed at the sea surface; ii) in striking contrast to what is
customary in the literature, where zero mean Gaussian processes with fixed variances are assumed
for the measurements, thevariances are now allowed to depend explicitly on the distances between
target and sensors. This allows us to address explicitly the important fact (rooted in first physics
principles) that the measurement noise may increase in a non-linear manner with distance; finally,
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iii) the solutions derived are extended to the case wherea priori knowledge about the target in 3D
is given in terms of a probability density function. In this latter case it is virtually impossible to
make a general analytical characterization of the optimal solutions, and one must resort to numerical
search methods. At this stage, an in-depth understanding ofthe types of solutions obtained for the
ideal case in which the target position is known in advance isof the utmost importance to compute
an initial guess for the optimal sensor placement algorithmadopted.

The document is organized as follows. Section 6.2 derives the FIM for AE-measurements
when the measurement noise is Gaussian, with distance-dependent variance. The optimal Fisher
Information Matrix that minimizes the trace of the corresponding CRB matrix is computed in Section
6.3. The optimal sensor configuration is defined explicitly for the case in which the sensors lie on a
sphere centred at the target position in Section 6.4. In Section 6.5, the optimal sensor placement is
computed in the context of a sensor network restricted to lieon a plane and two illustrative scenarios
are shown as examples. In Section 6.6, the optimal sensor placement problem is solved for the case
where the prior knowledge about the target in 3D is given in terms of a probability density function.
Finally, the conclusions are included in Section 6.7.

6.2 The Fisher Information Matrix and the Cramer-Rao Lower
Bound

The same notation of previous chapters is adopted. In what follows, {I } denotes an inertial frame with
unit axis{xI }, {yI }, and{zI } defined according to the notation that is customary in marinesystems,
see Fig. 6.1. Letq = [qx, qy, qz]T be the position of the target to be positioned in{I }. Further denote
by pi = [pix, piy, piz]T ; i = 1, 2, .., n, the position vector of thei − th acoustic sensor, also in{I },
wheren is the number of sensors. Define ¯r i(q) as the range vector from thei − th sensor to the target
located atq, and letr i(q) = |q − pi | (abbv. r i), where| · | denotes the Euclidean norm, denote the
corresponding vector length (that is, range between the sensor and the target).

To each of the acoustic sensors at the surface we attach a parallel translation of{I }. Furthermore,
for each sensori = 1, 2, .., n we definezi(q) = (αi , βi)T , whereαi andβi are the AE angles that
define the direction of the target with respect to the sensor location. As is customary, the elevation
β is the angle between the range vector and the{xI yI } plane, while the azimuthα is the angle
between the projection of the range vector in the{xI yI } plane and the{xI } axis; see Fig. 6.1. Stated
mathematically,

αi = atan2
(

qy − piy, qx − pix

)

βi = atan2

(

qz − piz,

√

(qx − pix)2 +
(

qy − piy

)2
) (6.1)

whereatan2 is a variation of the arctangent function to distinguish between diametrically opposite
directions. We denote byzi the measurements of the actual AE anglesαi andβi in zi(q), corrupted

by additive noise
(

ωαi , ωβi
)T

.
For analytical tractability, it is commonly assumed that measurement errors can be described as

Gaussian, zero mean additive noise with constant covariance. See for example [99], where different
noise covariances are taken for different range sensors, but the covariances are constant. Clearly,
the latter assumption is artificial, in view of the simple fact that the “level of noise” is distance
dependent. We can assume that the measurement noise can be modelled by a zero-mean Gaussian
process with an added term that depends on the distance (range) between the sensor and the target.
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ri=|q-pi|

pi=[pix,piy,piz]

q=[qx,qy,qz]

T

O {xI}

{zI}

{yI}

T

α

β

Figure 6.1: Elevation and azimuth angles measured in the inertial coordinate frame used in marine systems.

A similar error model is considered in [42] for range measurements. Stated mathematically, for an
arbitrary sensori the associated measurement noiseωi is given by

ωi =
(

ωαi , ωβi
)T
=

(

ωα0 ·
(

1+ ηrγi
)

, ωβ0 ·
(

1+ ηrγi
))T

(6.2)

whereωα and ωβ are noises associated with the azimuth and elevation angle measurements,
respectively,ωβ0 andωα0 are zero mean Gaussian processes described by the probability density
function N(0,Σ0) with Σ0 = σ

2 · I , I is the identity matrix,r is range, andη andγ are modelling
parameters of the distance-dependent noise component. Forsimplicity of exposition, and without
loss of generality, the noises in the measurements ofαi and βi are assumed to have identical
distributions. We further assume that the distributions are identical for all sensors.

Definez(q) =
(

z1(q)T , ...., zn(q)T
)T

, z=
(

zT
1 , ...., z

T
n

)T
, andω =

(

ωT
1 , ...., ω

T
n

)T
. With this notation,

the collection of all AE angle measurements obtained from all the sensors can be written as

z= z(q) + ω (6.3)

or equivalently, in component form

zi = (αi , βi)T +
(

ωαi , ωβi
)T

(6.4)

whereω is a Gaussian process with covariance matrix

Σ = δ
((

σ2
α ·

(

1+ ηrγ1
)2
, σ2
β ·

(

1+ ηrγ1
)2
)

, ...,
(

σ2
α ·

(

1+ ηrγn
)2
, σ2
β ·

(

1+ ηrγn
)2
))

(6.5)

with Σ ∈ ℜ2nx2n andδ is the operatordiag that converts a vector into a square diagonal matrix whose
diagonal components are the array elements.

Stated in simple terms, the FIM captures the amount of information that measured data provide
about an unknown parameter (or vector of parameters) to be estimated. Under known assumptions,
the FIM is the inverse of the Cramer-Rao Bound matrix (abbv. CRB), which lower bounds the
covariance of the estimation error that can possibly be obtained with any unbiased estimator. Thus,
“minimizing the CRB” may yield (by proper estimator selection) a decrease of uncertainty in the
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parameter estimation.

Formally, letq̂(z) be any unbiased estimator ofq, that is, a mapping ˆq : ℜn → ℜ3 between the
observationsz and the target position space such thatE{q̂} = q for all q ∈ ℜ3, whereE{·} denotes
the average operator. Letpq(z) be the likelihood function that defines the probability of obtaining
the observationzgiven that the true target position isq. It is well known that under some regularity
conditions onpq(z) the following inequality holds:

Cov{q̂} ≥ FIM(q)−1 = CRB(q) (6.6)

where
Cov{q̂} = E{(q̂− q)(q̂− q)T}, (6.7)

FIM (q) (often abbreviated simply as FIM) is the Fisher Information Matrix defined as

FIM(q) = E
{

(∇q log pq(z))(∇q log pq(z))T
}

, (6.8)

andCRB(q) is the Cramer-Rao Bound matrix. In the above,∇q log pq denotes the gradient of the log
of the likelihood function with respect to the unknown parameterq. Taking the trace of both sides
of the covariance inequality yields

var{q̂} := tr(Cov{q̂}) = tr(E{(q̂− q)(q̂− q)T}) ≥ tr(CRB(q)) (6.9)

that sets a lower bound on the mean-square error of any unbiased estimator.

From the above notation, following standard procedures, the FIM is computed from the
likelihood function

pq(z) =
1

(2π)
n
2 |Σ| 12

exp

{

−1
2

(z− z(q))T Σ−1 (z− z(q))

}

(6.10)

wheren is the number of receivers,z is the vector of measured angles, andz(q) the vector of actual
angles. From (6.8),

FIM = E
{

∇q log pq · ∇q log pT
q

}

= FTΣ−1F, (6.11)

with

F =





















































− sin(α1)
r1 cos(β1)

cos(α1)
r1 cos(β1) 0

− sin(β1) cos(α1)
r1

− sin(β1) sin(α1)
r1

− cos(β1)
r1

...
...

...
− sin(αn)
rn cos(βn)

cos(αn)
rn cos(βn) 0

− sin(βn) cos(αn)
rn

− sin(βn) sin(αn)
rn

− cos(βn)
rn





















































(6.12)

whereF ∈ ℜ2nx3 andCRB= FIM−1. In this context, the optimal sensor placement strategy fora
single vehicle localization problem is obtained by minimizing the trace of the CRB.

6.3 Optimal Fisher Information Matrix

To compute the trace of the CRB matrix it is convenient to introduce the following three vectors in
ℜ2n:
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X =
[ F(1,1)
σ(1+ηrγ1)

F(2,1)
σ(1+ηrγ1)

· · · F(n−1,1)
σ(1+ηrγn)

F(n,1)
σ(1+ηrγn)

]

,

Υ =
[ F(1,2)
σ(1+ηrγ1)

F(2,2)
σ(1+ηrγ1)

· · · F(n−1,2)
σ(1+ηrγn)

F(n,2)
σ(1+ηrγn)

]

,

Z =
[ F(1,3)
σ(1+ηrγ1)

F(2,3)
σ(1+ηrγ1)

· · · F(n−1,3)
σ(1+ηrγn)

F(n,3)
σ(1+ηrγn)

]

.

(6.13)

The latter should be viewed as vectors of a Hilbert space withelements inℜ2n, endowed with
an inner product structure<, >. This allows for the computation of the length of a vector andalso
for the angle between two vectors. Namely, given X andΥ in ℜ2n, then |X|2 =< X,X > and
< X,Υ >= |X||Υ| cos(θXΥ), from which it follows that the angleθXΥ between vectors X andΥ is
given byθXΥ = cos−1(< X,Υ > /(|X||Υ|)).

With this notation, the FIM becomes

FIM =





















X · X X · Υ X · Z
X · Υ Υ · Υ Υ · Z
X · Z Υ · Z Z · Z





















=





















|X|2 |X| |Υ| cos(θXΥ) |X| |Z| cos(θXZ)
|X| |Υ| cos(θXΥ) |Υ|2 |Υ| |Z| cos(θΥZ)
|X| |Z| cos(θXZ) |Υ| |Z| cos(θΥZ) |Z|2





















,

(6.14)
from which it follows that

tr (CRB) = tr
(

FIM−1
)

=
|Υ|2 |Z|2

(

1− cos2 (θΥZ)
)

|FIM |

+
|X|2 |Z|2

(

1− cos2 (θXZ)
)

|FIM | +
|Υ|2 |X|2

(

1− cos2 (θXΥ)
)

|FIM | ,

(6.15)

where θXΥ, θXZ and θΥZ are the angles defined by vectors X andΥ, X and Z, andΥ and Z,
respectively, and|FIM | denotes the determinant of the FIM. Straightforward computations show
that

|FIM | = |X|2 · |Υ|2 · |Z|2 · Θ, (6.16)

where

Θ = 1+ 2 cos(θΥZ) cos(θXZ) cos(θXΥ) − cos2 (θΥZ) − cos2 (θXZ) − cos2 (θXΥ) (6.17)

Notice howtr (CRB) has been expressed in terms of the norms of vectors X,Υ, and Z and the
anglesθXΥ, θXZ , andθΥZ between them. The latter depend on the variablesαi , βi , r i ; i = 1, 2, ...n, that
define the positions of the sensors with respect to the target. Formally, in order to seek conditions
that the optimal sensor configurations must satisfy in orderto minimizetr (CRB), one could compute
the derivatives oftr (CRB) with respect toαi , βi , andr i and equate them to zero. This task is tedious
and will not shed light on the form of the optimal sensor configurations. We therefore follow a
different approach. To this effect, we rewrite (6.15) as

tr(CRB) = f 1
FIM + f 2

FIM + f 3
FIM =

(

1− cos2 (θΥZ)
)

|X|2Θ
+

(

1− cos2 (θXZ)
)

|Υ|2Θ
+

(

1− cos2 (θXΥ)
)

|Z|2Θ
(6.18)

where the definitions off 1
FIM , f 2

FIM , and f 3
FIM are obvious. We also define the auxiliary cost function
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f ∗(CRB) = f 1∗
FIM + f 2∗

FIM + f 3∗
FIM =

1

|X|2
+

1

|Υ|2
+

1

|Z|2
(6.19)

Consider now the problem of minimizingf ∗(CRB) by proper choice ofαi , βi , and r i ; i =
1, 2, ..., n, and letα∗i , β

∗
i , and r∗i ; i = 1, 2, ..., n, be a minimizing solution. Let X∗,Υ∗, and Z∗ be

the corresponding vectors inℜ2n. Suppose also that the corresponding anglesθ∗XΥ, θ∗XZ , andθ∗
ΥZ

satisfy
cos

(

θ∗XΥ
)

= cos
(

θ∗XZ
)

= cos
(

θ∗ΥZ
)

= 0. (6.20)

Then, as will shown next,α∗i , β
∗
i , andr∗i ; i = 1, 2, ..., n minimize also (6.18). To see this, consider

each of the three functions in (6.18) independently. Take for example the functionf 1
FIM . Clearly, if

the anglesθ∗XΥ, θ∗XZ , andθ∗
ΥZ are equal tok ·π/2, wherek is any odd natural number, then they satisfy

(6.20) and the above function takes the valuef 1
FIM = 1/ |X|2. We now show that this is its minimum

possible value. In fact, suppose that a smaller value can be obtained, which clearly requires that
(

1− cos2 (θΥZ)
)

Θ
<1. (6.21)

The above inequality is equivalent to

0<2 cos(θΥZ) cos(θXZ) cos(θXΥ) − cos2 (θXZ) − cos2 (θXΥ) . (6.22)

Notice, however that because cos2 (θXZ)+cos2 (θXΥ) ≥ 2 cos(θXZ) cos(θXΥ) and 0≤ |cos(θΥZ)| ≤
1, it follows that

cos2 (θXZ) + cos2 (θXΥ) ≥ 2 cos(θΥZ) cos(θXZ) cos(θXΥ)

which contradicts (6.22). Therefore,
(

1− cos2 (θΥZ)
)

Θ
≥ 1, (6.23)

and its minimum value of 1 is obtained when all the angles are equal tok · π/2, with k being an odd
natural number. By applying the same reasoning to the other terms in the trace of the CRB in (6.18)
it follows, under the assumptions stated, that the optimal FIM is a diagonal matrix, that is,

FIM =





















XX XΥ XZ
XΥ ΥΥ ΥZ
XZ ΥZ ZZ





















=

n
∑

i=1





















Ai 0 0
0 Bi 0
0 0 Ci





















(6.24)

with
Ai =

sin2(αi )

r2
i cos2(βi)·σ2·(1+ηrγi )

2 +
sin2(βi) cos2(αi )

r2
i ·σ2·(1+ηrγi )

2 ,

Bi =
cos2(αi )

r2
i cos2(βi)·σ2·(1+ηrγi )

2 +
sin2(βi) sin2(αi )

r2
i ·σ2·(1+ηrγi )

2 ,

Ci =
cos2(βi )

r2
i ·σ2·(1+ηrγi )

2 .

With the above assumption on the general form that the simplified FIM matrix will take, we now
introduce a simple general procedure to derive conditions for optimal sensor placement that lend
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themselves to clear geometric interpretations. To this effect, defineA =
n
∑

i=1
Ai , B =

n
∑

i=1
Bi, C =

n
∑

i=1
Ci .

With this notation, the problem at hand can be converted intothat of computing

p̄∗ = argmin
p̄

tr (CRB) = argmin
p̄

tr
(

FIM−1
)

= argmin
p̄

(

1
A
+

1
B
+

1
C

)

(6.25)

wherep̄ = [pT
1 , ..., p

T
n ]T , andp̄∗ are the optimal sensor positions expressed in spherical coordinates,

that is, pT
i = [αi , βi , r i ]. Notice that the sensor positions ¯p∗ must satisfy the additional constraint

imposed by inequality (6.20), i.e., the anglesθXΥ, θXZ , andθΥZ must be equal tok · π/2 for some odd
natural numberk which, as explained, makes the off-diagonal elements of (6.24) equal to 0.

Formally, the conditions that an optimal sensor configuration must satisfy may now be obtained
by computing the derivatives of (6.25) with respect toαi , βi , andr i ; i = 1, 2, ..., n and equating them
to 0. The candidate solutions must also satisfy (6.20). Thiswill naturally yield multiple optimal
sensor configurations for single target positioning if no extra constraints are placed on the sensor
configuration. To make the problem tractable, it is therefore important to impose configuration
constraints rooted in operational considerations. In whatfollows, the methodology adopted is
illustrated with two representative design examples: i) first, by considering that the sensors are
restricted to lie at the same distance from the target, that is, r i = r for all i = 1, · · · , n, and ii) second,
by considering that the sensors are restricted to lie in a horizontal plane, i. e.,qz − piz = qz where
qz is the target depth andpiz = 0. The latter example captures the very important situationwhere
the sensors are placed at the sea surface. The procedure adopted can of course be used to deal with
other types of constraints on sensor placement.

6.4 Sensors placed at a fixed distance from the target

This section shows how the incorporation of physical or mission-related constraints on the positions
of the sensors leads to a methodology to determine a solutionto the optimal sensor placement that
eschews tedious computations and lends itself to a simple geometric interpretation. To this effect,
we consider the situation where all the sensors are placed ona sphere centred at the target position,
that is, the distances from the sensors to the target are equal. With this assumption,r i = r; i =
1, · · · , n, wherer is the radius of the sphere. In this case, the diagonal elements of the optimal Fisher
Information Matrix (6.24) can be written as

A = 1
r2·σ2·(1+ηrγ)2

n
∑

i=1

(

sin2(αi )
cos2(βi)

+ sin2 (βi) cos2 (αi)
)

= ΓA∗,

B = 1
r2·σ2·(1+ηrγ)2

n
∑

i=1

(

cos2(αi )
cos2(βi)

+ sin2 (βi) sin2 (αi)
)

= ΓB∗,

C = 1
r2·σ2·(1+ηrγ)2

n
∑

i=1
cos2 (βi) = ΓC∗,

(6.26)

whereΓ = 1
r2·σ2·(1+ηrγ)2 is constant and the same for all sensors in the formation andA∗, B∗,C∗

are defined in the obvious manner. With the notation introduced, the problem of optimal sensor
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placement can be cast in the form of finding a vector ¯p∗ such that

p̄∗ = argmin
p̄

tr(CRB) = argmin
p̄

(

1
A∗
+

1
B∗
+

1
C∗

)

(6.27)

It is important to notice that for this scenario the optimal solutions corresponding to constant or
distance-dependent measurement noise covariances are identical. In fact, the solutions depend only
on the azimuth and elevation angles of each sensor with respect to the target location, and the distance
between target and sensors does not affect the solutions (distance is the constraint parameter). This
fact does not hold true in the practical scenario of surface sensor networks, as will be shown in
Section 6.5, where the optimal solutions depend explicitlyon the range distances between target and
sensors and on the noise model. At this point, the derivatives of (6.27) with respect toαi andβi must
be computed and equated to 0. Straightforward manipulations yield

∂ (tr (CRB))
∂αi

= 2 cos(αi) sin(αi) ·
(

1
cos2 (βi)

− sin2 (βi)

)

(

A∗2 − B∗2
)

= 0, (6.28)

∂ (tr (CRB))
∂βi

=2 sin(βi)

((

sin2 (αi)
cos3 (βi)

+ cos(βi) cos2 (αi)

)

1
A∗2
+

1
B∗2

(

cos2 (αi)
cos3 (βi)

+ cos(βi) sin2 (αi)

)

−
(

cos(βi)
C∗2

))

= 2 sin(βi)Φ = 0,

(6.29)

where the definition ofΦ is clear from the context. By examining (6.28) and (6.29) it is possible to
define several configurations. For this reason, and because the purpose of this section is to derive
a general methodology to obtain optimal sensor configurations under suitable constraints on sensor
placement we will illustrate the procedure by examining solutions that are relatively easy to obtain.
Clearly, (6.28) is satisfied if at least one of the following conditions holds: i) cos(αi) = 0; ii)
sin(αi) = 0; iii) A∗2 = B∗2. Similarly, (6.29) is satisfied if i)Φ = 0 or ii) sin(βi) = 0. The last
condition is not studied in detail because, if all the sensors are placed such that sin(βi) = 0, it can
be shown that the condition yields a local maximum fortr(CRB).Thus, in what follows, we consider
that the optimality condition for (6.29) isΦ = 0. However, it is important to keep in mind that
alternative optimal solutions could be defined by combination of different optimal formations. Let
us now examine the conditions corresponding to (6.28).

If cos(αi) = 0 for all sensors in the formation, then this means that all sensors are placed in the
same vertical plane,{yI zI }, and therefore (6.29) becomes:

cos4 (βi) =
C∗2B∗2

A∗2(B∗2 −C∗2)
. (6.30)

The above equation only holds for a single value of cos4 (βi) sinceA∗2, B∗2, andC∗2 are constant
for a given optimal configuration and (6.30) must be satisfiedfor every sensor in the formation. Thus,
(6.30) implies that the elevation angle for all elements of the sensor network must be±β which,
together with cos(αi) = 0; i = 1, · · · , n, defines 4 feasible optimal points for sensor placement.
Clearly, this solution cannot be generalized for an arbitrary number of sensors. Furthermore, the
analysis oftr(CRB) with the previous conditions shows that this solution yields a local maximum
and is equivalent to having sin(βi) = 0 for i = 1, · · · , n; thus, the solution is discarded.

Consider now the case where sin(αi) = 0 for each sensor in the formation. In this case, the
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sensors are placed in the vertical plane{xI zI } and (6.29) yields

cos4 (βi) =
C∗2A∗2

B∗2(A∗2 −C∗2)
. (6.31)

A similar reasoning to that used in the previous case allows for the conclusion that this solution must
also be discarded.

Finally if cos(αi) = 0 or sin(αi) = 0 holds for every sensor, the solution only defines a small
number of optimal points for the sensor placement, so the solution cannot be generalized for an
arbitrary number of sensors. Moreover, for this solutionA∗ = B∗. Therefore,A∗ = B∗ is one of
the conditions that an optimal sensor network must satisfy.Moreover, this solution can be easily
generalized for an arbitrary number of sensors. Analyzing (6.30) withA∗ = B∗ = D∗ for someD∗

yields

C∗2 = D∗2
cos4 (βi)

1+ cos4 (βi)
(6.32)

It must be noticed that (6.32) must hold for each and every sensor for a given optimal formation,
sinceA∗, B∗, andC∗ are constant for that given formation. Equation (6.32) can be rewritten as,

C∗2 = D∗2
1

1+ Ω
(6.33)

whereΩ = 1
cos4(βi)

. Considering that an arbitrary sensori can be under or above the target, the angle
βi can take values between [−π/2, π/2]. In the interval [−π/2, 0], Ω is strictly decreasing and thus

1
1+Ω is strictly increasing, so that (6.33) only holds for a single value of the elevation angleβ = β∗1, the
same angle for all the sensors placed under the target position. In the interval [0, π/2],Ω is strictly
increasing and thus1

1+Ω is strictly decreasing, so that, in the same way as before, (6.33) only holds
for a single value of the elevation angleβ = β∗2, the same for all the sensors placed above the target
position. Furthermore, sinceA∗, B∗, andC∗ are fixed for a given sensor formation thenβ∗1 = −β∗2.
It is clear that a given value ofβ defines a circumference on the sphere where the sensors lie, with
the radius (and height,qz − piz) depending on the given angleβ. Thus, fromβ∗1 = −β∗2, the sensors
are placed in two parallel planes over two circumferences centred at the target projections over these
planes.

To defineβ regardless of the sensor distribution over the resulting circumferences, we proceed
by adding the square root of (6.33), withD∗ = A∗, to the square root of (6.33) withD∗ = B∗. When
doing so, all the terms inαi are cancelled and one obtains

2ncos2 (βi) =

(

n
cos2 (β)

+ nsin2 (β)

)

√

cos4 (β)
1+ cos4 (β)

(6.34)

Equation (6.34) has a single valid solution,β = 42.40 degrees, and thus the radius of the two
parallel circumferences is equal tor ·cos(β). From the above, the values of A, B and C, and therefore
the norms of the vectors X,Υ and Z, are well defined. Once these values of the norms of the vectors
are well defined, the extra conditions to be specified are thatA∗ = B∗ and that the off-diagonal
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elements of the FIM are equal to 0 (or equivalently cos(θXΥ) = cos(θXZ) = cos(θΥZ ) = 0), that is:

FIM12 =

n
∑

i=1

sin(αi) cos(αi)

r2
i cos2 (βi) · σ2 ·

(

1+ ηrγi
)2
+

n
∑

i=1

sin2 (βi) cos(αi) sin(αi)

r2
i · σ2 ·

(

1+ ηrγi
)2

=

=

(

1

r2 cos2 (β) · σ2 · (1+ ηrγ)2
+

sin2 (β)

r2 · σ2 · (1+ ηrγ)2

) n
∑

i=1

cos(αi) sin(αi) = 0

FIM13 =
n
∑

i=1

sin(βi) cos(βi) cos(αi)

r2
i · σ2 ·

(

1+ ηrγi
)2
=

sin(β) cos(β)

r2 · σ2 · (1+ ηrγ)2

n
∑

i=1
cos(αi) = 0

FIM23 =
n
∑

i=1

sin(βi) cos(βi) sin(αi)

r2
i · σ2 ·

(

1+ ηrγi
)2
=

sin(β) cos(β)

r2 · σ2 · (1+ ηrγ)2

n
∑

i=1
sin(αi) = 0

(6.35)

A simple and elegant solution that satisfies the two above extra conditions is obtained by noticing
the orthogonality relations for sines and cosines from Fourier analysis [37],

n
∑

i=1
cos(αi) =

n
∑

i=1
sin(αi) =

n
∑

i=1
sin(αi) cos(αi) = 0

n
∑

i=1
cos2 (αi) =

n
∑

i=1
sin2 (αi) = n

2

(6.36)

so we can take a regularly distributed formation on the circumferences, with the sensors placed along
one or both of them. Using classical terminology, the sensorformation must be first and second
moment balanced. Therefore, with this configuration the minimum trace of the CRB is obtained for
this scenario.

6.5 Surface sensor network for underwater target positioning

In real situations, the sensors cannot be placed at will, either due to physical or mission constraints.
As an interesting application scenario, we tackle the case where the sensors are restricted to lie in
the horizontal planez = 0 and search for the minimum of the trace of the CRB. It will be shown
an explicit result that lends itself to an intuitive geometric interpretation without constraint in the
number of sensors used for the network.

It is clear that the anglesβi , with i = 1, .., n, must take values between 0 andπ/2, because the
sensors lie in the horizontal plane, above the target. It is also easy to check that the value of eachβi

determines the distancer i between the target and thei − th sensor becauser i = qz/sin(βi), whereqz

is the target depth. Thus,r i depends directly onβi , and therefore the derivatives of the trace of the
CRB with respect toαi andβi must be computed. Straightforward manipulations yield

∂ (tr (CRB))
∂αi

= 2 cos(αi) sin(αi) sin2 (βi) ·
(

1
cos2 (βi)

− sin2 (βi)

)

(

A2 − B2
)

= 0 (6.37)
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∂ (tr (CRB))
∂βi

=

(

sin3 (βi) sin2 (αi)
cos3 (βi)

+ 2 sin3 (βi) cos(βi) cos2 (αi)+
sin(βi) sin2 (αi)

cos(βi)

)

1
A2
+

1
B2

(

sin3 (βi) cos2 (αi)
cos3 (βi)

+
sin(βi) cos2 (αi)

cos(βi)
+2 sin3 (βi) cos(βi) sin2 (αi)

)

+

(− sin3 (βi) cos(βi) + sin(βi) cos3 (βi)
C2

)

+
ηγ (qz/ sin(βi))γ

tan(βi) (1+ (qz/ sin(βi))γ)

[

cos2 (βi)
C2

+

(

sin2 (αi)
cos2 (βi)

+ sin2 (βi) cos2 (αi)

)

1
A2
+

(

sin2 (αi)
cos2 (βi)

+ sin2 (βi) cos2 (αi)

)

1
B2

]

= 0

(6.38)

We now examine (6.37) and (6.38). From (6.37) it is easy to check that one of the following
conditions must hold: i) cos(αi) = 0; ii) sin (αi) = 0; iii) A− B = 0.

Following a similar procedure to that of the previous section, the analysis of (6.38) with the
previous conditions shows that if cos(αi) = 0 for each sensor in the formation the solution is
not optimal, so this solution is discarded. The same occurs if sin(αi) = 0 for each sensor in the
formation, and so this solution is discarded too. If cos(αi) = 0 or sin(αi) = 0 for each sensor in the
formation, (6.38) implies that the only feasible solution is thatA = B. Therefore,A = B is one of the
conditions that an optimal surface sensor network must satisfy. Analysing (6.38) withA = B = D
yields

C2 = D2

(

N1 + N2

M1 + M2

)

(6.39)

where
N1 = cos4 (βi) sin3 (βi) − sin(βi) cos6 (βi)

N2 = − cos5 (βi)
ηγ (qz/ sin(βi))γ

tan(βi) (1+ (qz/ sin(βi))γ)

M1 = sin3 (βi) + 2 cos4 (βi) sin3 (βi) + cos2 (βi) sin(βi)

M2 =
ηγ

(

cos(βi) + cos3 (βi) sin2 (βi)
)

(qz/ sin(βi))γ

tan(βi) (1+ (qz/ sin(βi))γ)

and A, B, and C (and therefore D) are constant for a given sensor configuration. This equation allows
us to determine the optimal sensor configuration for underwater target positioning when the sensors
are placed on the same plane. An in-depth analysis of

f (βi) =

(

N1 + N2

M1 + M2

)

(6.40)

reveals that (6.39) can be satisfied for a maximum of two different values ofβi at the same time,
for given values of A, B, and C. An equivalent angleβi for a group of sensors indicates that they
are placed at points belonging to a circumference around thetarget projection on the planez = 0.
Therefore, the sensors are placed on a circumference aroundthe target projection if the solution is
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only oneβi or on two concentric circumferences around the target projection if the optimal formation
is defined by two different values ofβi . A numerical analysis of these two possible solutions shows
that the minimum trace is obtained if the sensors are all placed in the same circumference, therefore
βi = β. The value ofβ, and therefore the radius of the circumference where the sensors must be
placed, can be obtained by solving (6.39). Then the sensors are all placed at the same distance from
the target, i.e.,r i = r for i = 1, · · · , n, and the two extra conditions defined byA = B and (6.35)
are satisfied, as in the previous example, with the orthogonality relations for sines and cosines from
Fourier analysis (6.36), so the formation must be first and second moment balanced. Clearly, the
solution depends onβ, qz, and the noise measurement model.

6.5.1 Simulation examples with known target position

Based on (6.39) we now study two different scenarios that illustrate the potential of the methods
developed for optimal sensor positioning. In the first scenario one wishes to find the sensor
configuration that yields the minimum CRB trace when the noise covariance is distance-independent,
that is, η = 0. The second scenario shows how the optimal formation changes when the noise
covariance is distance-dependent, that is,η , 0. In the second scenario, the optimal formation
depends directly on the modelling parametersη andγ, and on the target depthqz. The values of
qz = 50 m andσ = 0.05 m2 will be constant in the forthcoming examples. Clearly, in order for the
information about the optimal configurations to be useful, one must check if the trace of the CRB
matrix meets the desired specifications. To this effect, and for comparison purposes, the trace of the
CRB matrix obtained for a number of hypothetical target points (based on a fixed optimal sensor
configuration corresponding to a well-defined scenario) will at times be computed by allowing these
points to be on a grid in a finite spatial regionD. This will allow us to evaluate how good the sensor
formation is in terms of yielding accurate localization of the real target, in comparison with the
performance localization accuracy that is possible for anyhypothetical target (different from the real
target) positioned anywhere inD. For the sake of clarity, and with an obvious abuse of notation, we
will refer to that trace of the CRB, viewed as a function of itsargument inD, simply astr(CRB)D.
In this chapter,D will always be a rectangle inℜ2.

Example 6.1:Distance independent covariance error.

Analysing (6.39) withη = 0 gives

C2 = D2 cos4 (β) sin2 (β) − cos6 (β)

1+ 2 cos4 (β) sin2 (β)
(6.41)

The value ofβ, and therefore the radius of the circumference where the sensors must stay is
obtained from (6.41). The sensors are placed in a circumference centred at the target projection on
the planez = 0, therefore all the radii are the same, that is,r i = r for i = 1, ..., n. To defineβ
irrespective of the sensor distribution over the resultingcircumference, we proceed by adding the
square root of (6.41), withD = A, to the square root of (6.41) withD = B, all the terms inαi are
cancelled and one obtains

2C = (A+ B)

√

cos4 (β) sin2 (β) − cos6 (β)

1+ 2 cos4 (β) sin2 (β)
(6.42)
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Straightforward computations yield

2 cos2 (β)
√

1+ 2 cos4 (β) sin2 (β) =
(

1+ cos2 (β) sin2 (β)
)

√

sin2 (β) − cos2 (β) (6.43)

whose only valid solution isβ = 54.86 degrees. At this point, we can compare this optimal elevation
angle with the one obtained in Section 6.4 for a sensor network placed over a sphere, that was
equal to 42.40 degrees. We can check how the optimal elevation angle is different depending on the
constraints imposed to the sensor network. This difference on the two optimal elevation angles can
be negligible or very important depending on the target depth or the limit distance considered in the
mission scenario. For example, for a limit distance or depthof 50 meters, the optimal formation
of Section 6.4 has a radius of 54.76 meters, and the surface network of the example at hand, a
radius of 32.69 meters. In this case the difference between formations can be considered not so
important for a practical situation. However if we considera limit distance or target depth equal
to 500 meters, the radius are 547.60 and 326.94 meters, and the difference between formations
is almost 220 meters, a very significant difference. Moreover, for the scenario of Section 6.4 the
optimal elevation angle is the same for constant and distance-dependent covariance error. In the
problem at hand, the noise model is a crucial factor to determine the optimal configuration, and the
solution will change depending on the noise model considered, as shown next.

Clearly, the optimal elevation angleβ is not enough to specify the optimal location of the sensors.
The extra conditions to be specified are thatA = B and (6.35). As abovementioned these conditions
are met if the sensors are first and second moment balanced, sowe can take a regularly distributed
formation around the circumference. This is exactly the configuration obtained in [10] for 2D, under
the explicita priori condition that all sensors be placed at the same distance from the target. We thus
examine the example where the sensors are regularly distributed around a circumference centred at
the target projection on the surface plane. This solution can be observed in Fig. 6.2 a) where the
optimal formation and the CRB trace for each point inℜ2 at the target depth (tr(CRB)D) are shown
on the left-hand side (lighter regions correspond to hypothetical target points with lower values of
the trace of the corresponding CRB matrices). On the right-hand side of Fig. 6.2 a) it is possible to
observe the value of the trace and how its minimum is reached over the target position.

In Fig. 6.3 we show a comparison between the FIM determinant and the trace of the CRB for
the different possible values ofβ, with βi = β for all sensors, for a regular distribution of sensors
around the target projection. Notice that there are configurations that yield very large values of the
determinant of the FIM but that differ from the one which provides the minimum trace of the CRB, as
introduced in Section 6.1. Moreover, these large values correspond to configurations of the network
that are clearly inadequate, e.g., they are close to configurations where all the sensors are placed at
the same point, coincident with the target projection on thesurface plane. It is for this reason that
the trace of the CRB is used as indicator to analyse the performance of an arbitrary formation for
AE-only measurements in 3D space.�

Example 6.2:Distance-dependent covariance error.

Following the reasoning of the previous example, the radiusof the circumference can be obtained
easily by adequately manipulating (6.39). We can define an optimal formation where the sensors are
regularly distributed around the target projection.

The only valid solution of (6.39) yields the size of the optimal formation for single target
positioning. In Fig. 6.2 b), the optimal formation is shown for a value ofη different from 0,
η = 0.05, andγ = 2. The optimal radius is defined by an angleβ = 63.18 degrees. Notice how
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Figure 6.2: Optimal surface sensor formations for a target depth of 50 meters,σ = 0.05 m2 and different values
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the formation size becomes smaller when the noise between target and sensors increases, to reduce
the distance-dependent measurement noise component. The formation tends to concentrate itself
around the projection of the target on the surface plane for increasing values ofη andγ to reduce
the impact of the distance-dependent measurement noise. This shows that it is critical to have an
adequate noise model, for the optimal sensor formation is strongly noise-dependent.�

6.6 Uncertainty in the target location

At this point, following what is commonly reported in the literature, we have started by addressing
the problem of optimal sensor placement given an assumed position for the target. In a practical
situation, the position of the target is only known with uncertainty and this problem must be tackled
directly. However, in this case it is virtually impossible to make a general analytical characterization
of the optimal solutions, and one must resort to numerical search methods. At this stage, an in-depth
understanding of the types of solutions obtained for the ideal case is of key importance to compute
an initial guess for the optimal sensor placement algorithmadopted. The objective is to obtain a
numerical solution when the target is known to lie in a well defined uncertainty region, and we
assume the uncertainty in the target position is described by a given probability distribution function
and seek to minimize, by proper sensor placement, the average value of the trace of the CRB matrix
for the target.

In what follows,piξ ; i = 1, 2, ..., n; ξ = α, β, r, denotes the AE-measurements and range of sensor
i located at positionpT

i = [αi , βi , r i ], and p̄ = [pT
1 , ..., p

T
n ]T. We further denote byϕ (q) ; q ∈ ℜ3 a

probability density function with supportD ∈ ℜ3 that describes the uncertainty in the position of
the target in regionD. With this notation, the problem of optimal sensor placement can be cast in
the form of finding a vector ¯p∗ such that

p̄∗ = argmin
p̄

∫

D

tr (CRB(p̄, q)) · ϕ (q) dq (6.44)

where we used the notationCRB(p̄, q) to clearly show the dependence of the trace of the CRB on
the target and sensor locations. However, in the followingCRB(p̄, q) will often be denoted simply as
CRB. In a real situation,ϕ (q) will depend on the type of mission carried out by the underwater target.
If the target operates mostly in the centre of the working area,ϕ (q) can for example assume the form
of a truncated, radially-symmetric probabilistic Gaussian distribution centred at an appropriate point.
On the other hand, if only the work area is known and the targetcan operate anywhere inside it,ϕ (q)
can be taken as the unity function inside that area.

To proceed,tr (CRB(p̄, q)) must be computed in the equation above. At this point it is important
to remark that, given the complexity of the optimal sensor placement problem at hand, the only
viable solution is a numerical one. It now remains to solve the optimization problem defined above.
As explained later, and similarly to the approach followed in previous chapters, we opted to use
a gradient-based method to do so. To this effect, it is important to compute the derivatives of the
integral in (6.44) with respect to the sensor coordinates, that is,

∂

∂piξ

∫

D

tr (CRB(p̄, q))ϕ (q)dq (6.45)

for i = 1, 2, ..., n andξ = α, β, r. To proceed with the computations, the integral and the derivative
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operations are interchanged: the derivatives are explicitly determined first and the integration over
regionD is performed afterwards. After lengthy computations, the derivatives oftr (CRB(p̄, q)) are
well defined, see Appendix D for details.

The seemingly complex form of the derivatives, shown in Appendix D stems from the fact that
tr(CRB) is defined explicitly and from the complexity of the FIM expression, (6.11). However, with
the notation adopted, each of the derivatives oftr(CRB) with respect to the coordinates of a specific
sensor can be computed in a recursive manner.

In what concerns the computation of the triple integral overthe regionD of interest, we opted
to do it numerically using a Monte Carlo method. Finally, a solution of (6.44) can be obtained
using a gradient optimization method with the Armijo rule (see [12] and the references therein). To
overcome the occurrence of local minima or the divergence ofthe algorithm, the initial guess in the
iterative algorithm must be chosen with care. In the examples that we studied we found it useful and
expedite to adopt as an initial guess the solution for the single target positioning problem described
in previous sections, with an hypothetical single target placed at the centre of the work area. It is
important to stress that the solution to (6.44) depends strongly on the probability density function
adopted for the target positionq.

6.6.1 Simulation examples with uncertain target location

The methodology developed is now illustrated with the help of several examples that address the
problem of optimal surface-sensor placement for uncertainunderwater target positioning. Therefore
the main constraint imposed to the problem is that the range distances depend explicitly on the angles
βi , with i = 1, · · · , n, i.e., r i = qz/ sin(βi), whereqz is the target depth. Different problem scenarios
are studied both for constant and distance-dependent covariance error.

Scenario 1: In this first scenario the target is known to be working insidean area defined by a
circumference of a 50m radius, at a constant depth of 50 meters. A 5 sensor network isused for the
positioning task and the sensors are restricted to lie in thesurface plane.

Example 6.3:The first example of this scenario corresponds to a constant covariance positioning
problem withσ = 0.1 m. After the optimization method described above it is found that the optimal
surface formation is the one described in Figure 6.4. We can notice in Figure 6.4 (a) how the
formation keeps a regular distribution around the work areawith an optimum radius of 39.9 m; and
in Figure 6.4 (b) how an homogeneous trace of the CRB matrix isobtained inside the area of interest,
keeping an equivalent accuracy for all the points inside thearea. The sensors are placed regularly
around the target projection forming a regular pentagon. The maximum and minimum values of
the CRB trace inside the area of interest are 53.51 m2 and 31.33 m2, respectively. Despite of the
difference between the maximum and minimum values of the CRB trace, the average value inside
the working area is 36.41 m2, so the average accuracy is close to the optimal one, and thusfor most
points the accuracy is closer to the minimum value of the CRB trace.

Example 6.4:This example corresponds to a distance-dependent covariance problem, withη =
0.05 andγ = 1. We can notice in Figure 6.5 (a) the difference of this optimal formation with respect
to the optimal one of Example 6.3 shown in Figure 6.4 (a). The optimal formation is defined by
a radius of 36.12 m with the sensors distributed regularly around the target projection. We can
notice in Figure 6.5 (b) how the values of the trace of the CRB matrices are larger due to the added
distance-dependent error. The maximum and minimum values of the CRB trace inside the work area
are 326.94 m2 and 128.05 m2, respectively. However an homogeneous accuracy over the area of
interest is obtained, with an average value of 180.17m2, that shows that for most of the points of the
area of interest an accuracy close to the minimum one is obtained.�
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Figure 6.4: Optimal surface sensor formations for a target depth of 50 meters,σ2 = 0.01 m2 andη = 0. Lighter
regions indicate higher accuracy in the 2D plots oftr(CRB)D.
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Figure 6.5: Optimal surface sensor formations for a target depth of 50 meters,σ2 = 0.01 m2 andη = 0.05.
Lighter regions indicate higher accuracy in the 2D plots oftr(CRB)D.

Scenario 2:In this second scenario the target is placed inside an area of60×60×60m3 centred
at the origin of the inertial coordinate frame, but there is no additional knowledge about the target
position so the distribution function is a step-like distribution. The target is positioned by a 6 sensor
network at the sea surface as shown in the set-up of Figure 6.6(a). Again both situations with
constant and distance-dependent covariance are studied.

Example 6.5:This example deals with a constant covariance error withσ = 0.05 m. No figures
are shown because it is not possible to show adequately the accuracy in a figure when a volume is
studied. The optimal sensor formation that maximizes the accuracy inside the working volume takes
a shape similar to a circumference, with an approximate radius of 41 meters. The sensor positions,
in Cartesian coordinates, are shown in Table 6.1.

Table 6.1: Optimal sensor positions for constant covariance.

p1 p2 p3 p4 p5 p6

{xI }(m) 35.48 0.07 −35.33 −35.3 0.07 35.48
{yI }(m) 20.37 40.80 20.37 −20.52 −40.96 −20.52
{zI }(m) 50 50 50 50 50 50

The minimum and maximum CRB trace values obtained inside thevolume aretr(CRB)min =

2.44 m2 andtr(CRB)max = 18.62 m2, respectively, with an average value oftr(CRB)avg = 8.11 m2,
providing a large accuracy for most points inside the regionof interest.
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Figure 6.6: Sensor formations for an uncertainty volume of 60× 60× 60 m3, (a) surface sensor network, and
(b) sensor network split into two formations, one at the sea surface and another at the sea bottom.

Example 6.6: In the second example of this scenario the error is considered to be distance-
dependent, withσ = 0.05, η = 0.1 andγ = 1. After the gradient optimization the optimal sensor
network is placed at the positions listed in Table 6.2.

Table 6.2: Optimal sensor positions forσ = 0.05,η = 0.1 andγ = 1.

p1 p2 p3 p4 p5 p6

{xI }(m) 32.76 0.04 −32.69 −32.68 0.04 32.76
{yI }(m) 18.91 37.80 18.91 −18.87 −37.77 −18.87
{zI }(m) 50 50 50 50 50 50

We can notice how the formation is smaller than that of Example 6.5 to reduce the impact of the
distance-dependent added error, with the network keeping aformation similar to a circumference of
an approximate radius of 37 meters. The minimum and maximum CRB trace inside the volume of
interest aretr(CRB)min = 49.39 m2 andtr(CRB)max = 2.17 · 103 m2, respectively, with an average
value of tr(CRB)avg = 591.05 m2, that shows that, in this example, the accuracy is dramatically
affected by the added distance-dependent error component.�

Scenario 3:We now tackle the same situation of Scenario 2 but the sensor network can be placed
in two different planes, it is, one subnetwork on the sea surface, and another subnetwork on the sea
bottom, shown in the set-up of Figure 6.6 (b).

Example 6.7:This example is again with constant covariance,η = 0 andσ = 0.05 m. After
the optimization process, in which 3 sensors are constrained to lie at the sea surface, i.e., 50 meters
above the centre of the volume of interest, and the other 3 sensors are constrained to lie at the sea
bottom, at 50 meters under the centre of the volume of interest, the optimal formation is such that
the sensor are placed, in Cartesian coordinates, at the positions stated in Table 6.3.

Table 6.3: Optimal sensor positions for constant covariance.

p1 p2 p3 p4 p5 p6

{xI }(m) 21.98 −0.04 −22.15 −22.23 −0.08 22.14
{yI }(m) 12.841 25.68 12.84 −12.7 −25.38 −12.74
{zI }(m) −50 50 −50 50 −50 50

We can notice that the formation shape, although split in twoformations, is very similar to the
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one obtained in the previous scenario but with an approximate radius of 26 meters. However, in this
case the minimum and maximum CRB trace aretr(CRB)min = 2.23 m2 andtr(CRB)max = 7.27 m2,
respectively, with an average value oftr(CRB)avg = 5.13 m2, that shows how the accuracy, for the
constant covariance case, increases when the formation consists of two formations, one at the sea
surface and another at the sea bottom. We can check how the maximum value of the CRB trace is
smaller with respect to Example 6.5 and how the average CRB trace is very close to the minimum
value.

Example 6.8:Finally, this one tackles the distance-dependent covariance problem, withσ =
0.05 m, η = 0.1, andγ = 1. In this case the optimal formation is the one in which the sensors take
the positions shown in Table 6.4.

Table 6.4: Optimal sensor positions forσ = 0.05 m, η = 0.1, andγ = 1.

p1 p2 p3 p4 p5 p6

{xI }(m) 19.74 0.14 −19.28 −19.41 0.21 19.70
{yI }(m) 11.16 22.66 11.14 −11.16 −22.66 −11.14
{zI }(m) −50 50 −50 50 −50 50

Again the formation shape is similar to that obtained in Example 6.6, but with an approximate
radius of 22 meters. The minimum and maximum CRB trace are nowtr(CRB)min = 39.36 m2 and
tr(CRB)max = 414.77 m2, respectively, with an average value oftr(CRB)avg = 214.09 m2. We can
notice how the maximum CRB trace is significantly reduced with respect to the value obtained in
Example 6.6. The average value is again smaller, showing that a very good average accuracy is
obtained inside the volume of interest. Finally, the minimum value of CRB trace is also smaller.
Thus a more homogeneous accuracy inside the area with a significantly smaller error is obtained for
this example with the sensors split in two formations, one atthe sea surface and the other at the sea
bottom.�

Therefore, for an unknown target location it is clear that the average accuracy inside the working
area is improved if we can place the sensors in two different parallel planes.

6.7 Conclusions

We studied the problem of determining optimal configurations of sensor networks that will, in a well
defined sense, maximize the AE-related information available for underwater target positioning.
To this effect, we assumed that the measurements were corrupted by white Gaussian noise, the
variance of which is distance-dependent. The Fisher Information Matrix and the minimization of
the trace of the CRB matrix were used to determine the optimalsensor configurations. Explicit
analytical results were obtained for both distance-dependent and distance-independent noise. In the
application scenario of underwater target positioning by asurface sensor network, we have shown
that the optimal formation lies on a circumference around the target projection and that a “regularly
distributed formation” around this target provides an optimal configuration, the size of which
depends on the measurement noise model and the target depth.The methodology was then extended
to deal with uncertainty in the target location, because in apractical situation the target position is
only known with uncertainty. Simulation examples illustrated the concepts developed in different
application scenarios, showing that the optimal configuration of the sensors depends explicitly on
the intensity of the measurement noise, the constraints imposed to the sensor configuration, the target
depth, and the probabilistic distribution that defines the prior uncertainty in the target position.
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Chapter 7

UNDERWATER TARGET POSITION-
ING WITH A SINGLE SURFACE SEN-
SOR

7.1 Introduction

The developments studied in previous chapters exploit the geometric configuration of acoustic
sensors in order to define the position of an underwater target from range or bearings measurements.
These ranges or bearings are measured at different locations that make it possible to determine the
target position. However, in this chapter an alternative approach is used, a single sensor that employs
both the spatial and temporal diversity in order to extract position information. In particular, and
speaking in loose terms, we are interested in determining the optimal movements or trajectory of
a single mobile sensor that will, in a well defined sense, maximize the range-related information
available for underwater target positioning. To this effect, we assume that the range measurements
are corrupted by white Gaussian noise. The actual computation of the target position may be done
by resorting to trilateration algorithms as mentioned in previous chapters.

There is a great interest in reducing the number of beacons involved in the acoustic naviga-
tion/positioning system, as they usually involve deployment, calibration and recovery time which
is money and time consuming. The concept of underwater navigation using ranges to a single
beacon/transponder has received increasing attention in the marine robotics community. An early
reference can be found in [8] where the target motion analysis (TMA) with unknown marine systems
using sonar measurements is discussed, i.e., the estimation of the position and velocity of a target
ship, given a sequence of measurements, is studied, or [83] where the observability requirements
are obtained for three-dimensional maneuvering target tracking with bearings-only measurements.
Another early work on this trend is the work of Larsen who cameup with the term Synthetic Long
Baseline navigation [49], [50]. Observability is the key issue, and several works have addressed
this [82], [86], [30], [68], [31], [75], [41], [19], [29]. More recently, several works have addressed
the problem from diverse perspectives, and pointed out its relationship with the multiple vehicle
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navigation problem.
Some interesting examples are [35] in which the author develops a computer algorithm based

on least squares and a Kalman Filter for single beacon navigation that can be integrated in
the architecture of an AUV, [48] where multiple asynchronous ranges from a transponder are
manipulated to create a long baseline of virtual transponders in different locations at a single point
in time so that an underwater vehicle can compute its global location in the same way that it would
do using multiple transponders, [23] in which a continuous time adaptive localization algorithm that
permits a mobile agent to estimate the location of a stationary source is developed, or [26] where
the simultaneous navigation of multiple underwater vehicles is done using a surface-ship acting as
a moving transponder with a maximum likelihood framework. Another interesting work can be
found on [76] where the estimation of an underwater vehicle position with a single beacon is studied
in the presence of unknown ocean currents. The idea behind this work is the combination of DR
information with a sequence of range measurements taken at different instants of time to determine
the target position, target velocity and current velocity with a Kalman Filter. Note that this problem
is also closely related to the classic source localization problem in underwater acoustics [40].

A dual to this problem is the tracking of an underwater targetwith a single range measuring
device. An important question in positioning with sensor networks is about the minimum number
of beacons that can be used to perform an underwater target positioning task. A single range
measurement does not contain enough information to determine the target position, so we cannot
compute a position fix. Instead of a static surface sensor network, one could think of a surface vehicle
that, by moving in convenient trajectories, exploits its spatial diversity while measuring ranges to the
underwater platform in order to determine its position. Therefore, in this chapter the study of the
optimal trajectories that a single sensor must follow, in order to maximize the accuracy with which
a target is localized, is tackled. Some previous works go back to the work of [70] where optimal
control theory is used to determine the course of a constant speed observer by minimization of a
criterion based on the FIM with a mixed analytical and numerical procedure. In [69] a fixed target
location is estimated from a sequence of noisy bearings measurements, and the optimal trajectories
for bearings-only target localization are based on the maximization of the determinant of the FIM
subject to some constraints. The optimal solutions are determined numerically. In [77] a single LBL
acoustic transponder is used for AUV positioning. The localization algorithm is based on a least
square root method that estimates the AUV position and current velocity. In [14] a navigation system
to remove the accumulated position errors of an underwater system is described. Finally, in [78]
some algorithms to position an AUV based on one moving beaconare described. The navigation
systems are composed of AUV on-board reckoning systems and an acoustic positioning system with
LBL with a moving beacon. The AUV position is computed with a Kalman Filter and the algorithm
for mobile beacon trajectory is presented.

The key contributions of the present chapter are threefold:i) two different approaches to
determine the optimal sensor trajectories are studied, thefirst one when only the next best
measurement of the current trajectory is computed, and the second one when the whole trajectory is
optimized to maximize the positioning accuracy, ii) a general solution is obtained analytically and
numerically for the positioning of a static underwater target with the above approaches, and finally
iii), the results are extended to the scenario in which the target moves at a constant speed.

The chapter is organized as follows. In Section 7.2 the optimal sensor trajectory problem is
formulated and the assumptions made for the computation of the optimal trajectories are established.
In Section 7.3 the three first optimal range measurements aredetermined analytically, so that the
initial target estimation be defined with the maximum possible accuracy. Section 7.4 contains the
derivation of optimal sensor trajectories for two different approaches, i) when only the next best
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measurement point for the current sensor trajectory must bedetermined and ii) when the whole
trajectory must be optimized, both for the case where the target is static. Simulation examples are
included. In Section 7.5 the above analysis is extended to the scenario in which the target moves at
a constant speed, and some simulation examples are includedtoo. Finally, Section 7.6 contains the
conclusions.

7.2 Problem formulation

For a given target positioning problem, the optimal sensor trajectory depends strongly on the
constraints imposed by the task itself (e.g. maximum numberof measurements used for the
computation of the FIM and type of sensor that can be used) andthe environment (e.g. ambient
noise). In fact, an inadequate sensor trajectory may yield large positioning errors. Therefore it is of
the utmost importance to define the constraints and assumptions considered for the problem at hand:

• The variance of the measurement errorω is constant and equal toσ.

• The USV must localize a single static target or a mobile target with constant speed.

• The target position isa priori known and it is considered to be placed at the origin of the
inertial coordinate frame.

• The initial USV position is arbitrary because it actually does not condition the final optimal
solution.

• The target is positioned with a fixed number of measurements,i.e., the amount of memory used
to storage the measurements is limited and the FIM is computed with a fixed given number of
range measurements.

• The acoustic signals are emitted at constant intervals of time ∆t and there exists a delay
between the emission by the pinger on board the USV and the answer from the target, so
the reception of the answer is at a different point from the emission point, see Fig 7.1.

• The sensor, or USV, moves with constant speedV(t) = V.

• It is considered that the range measured by the sensor is the distance between the target and
the position of the sensor at the moment of the reception of the acoustic signal.

Some of the above issues can be observed in Figure 7.1. We can notice how the sensor (red)
emits the acoustic signal at the momentEk and the answer from the target (green) is received by the
sensor atRk, with dk being the distance between the two above points. This distancedk depends on
the velocity of sound in water, on the sensor speedV, and on the range distancesr ′k andrk that define
the go and back way travel of the acoustic signal. The emission point Ek defines the pointp′k, the
reception pointRk defines thek− th measurement pointpk, and the range distance measured for the
FIM computation is considered to berk, i.e., the distance between the target positionq and the point
pk. In this theoretical framework it is considered thatr ′k andrk, and thereforep′k andpk, are known,
so we can define analytically the distancedk that separates the emission and reception points. If we
consider thatcs is the speed of sound in water we can write:

dk

V
=

r ′k
cs
+

rk

cs
(7.1)
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Figure 7.1: Problem set-up: the acoustic signal is emitted at the pointsEk and received by the sensor at the
pointsRk. The range distance measured to define the FIM is the range distance of the way back of the acoustic
signal from the target to the sensor,rk.

Moreover, ifγ is the angle defined byr ′k anddk, from the theorem of the cosine we can express
rk as

r2
k = r ′2k + d2

k + 2dkr
′
k cos(γ) (7.2)

with

γ = arccos

















〈
(

q− p′k
) (

p′k − pk−1

)

〉
r ′k · (∆tV − dk−1)

















(7.3)

where<> denotes the inner product between its operands, see Fig. 7.1. Then we can rewrite (7.1) as

dk

V
−

r ′k
cs
=

√

r ′2k + d2
k + 2dkr ′k cos(γ)

cs
(7.4)

Now taking the square of both sides and rewriting the equation we find,

dk =
2r ′k
cs

(

cos(γ)
cs

− 1
V

) (

1
c2

s
− 1

V2

)−1

(7.5)

so the measurement points may be explicitly defined considering only the orientation anglesαi taken
by the surface sensor at theRk points and the already known information.

Given a target positioning problem, the optimal sensor trajectory can be ascertained by
examining the corresponding Cramer-Rao Lower Bound (CRLB)or Fisher Information Matrix
(FIM). We focus on the computation of the CRLB (or, equivalently the FIM) for the problem at
hand. In particular, the determinant of the FIM is used as an indicator of the performance that
is achievable with a given sensor trajectory. Maximizing this quantity yields the most appropriate
sensor movements.
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The FIM is defined as the expected value of the logarithm of thederivative of the maximum
likelihood function, that yields

FIM =
1
σ2

n
∑

i=1
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(7.6)

whereui j =
∂‖qi−pi‖
∂qi, j

, for i ∈ {1, ..., n} and j ∈ {x, y, z}, pi = Ri , andqi corresponds to the target position
at the moment in which the measurementi is taken, i.e, the position in which the target sends the
acoustic signal to the surface sensor, that could be a position fix or not depending on the scenario
studied.

7.3 Initial target estimation: Three first range measurements

The number of ranges needed to determine the position of a target is of the utmost importance, in
the most general scenario, 3 non-collinear ranges in two-dimensional scenarios, and 4 non-coplanar
ranges in three-dimensional scenarios are needed to determine a position fix. In a practical situation,
such as the underwater target positioning with surface sensors, the target is known to be under the
sea surface, so 3 non-collinear range measurements are enough.

In this section the three first measurement points that provide an initial target position estimation
and that maximize the FIM determinant given a constant advance speed and a constant sample time
are determined analytically. For this initial scenario thenotation introduced in [6] for the FIM
determinant is used for simplicity reasons, that becomes,

|FIM | = 1
σ6

n
∑

j≤k≤l

((

u j × uk

)

· ul

)2
=

1
σ6

n
∑

j≤k≤l

sin2
(

α jk

)

cos2
(

β jk,l

)

(7.7)

where
u j = [u jx, u jy, u jz]T =

[

∂|q−pj |
∂qx

∂|q−pj |
∂qy

∂|q−pj |
∂qz

]T
; (7.8)

j ∈ {1, ..., n}; identical definitions apply to the indicesk, l; α jk is the angle formed by the vectorsu j

anduk, andβ jk,l is the angle that the vectorul forms with the resultant vector of the cross product
betweenu j anduk. The optimal sensor configuration is the one which maximizesthe logarithm of
(7.7).

We consider 3 range measurements, constant covariance, andthe target placed at the origin of
the inertial coordinate frame, so that (7.7) can be rewritten as

|FIM | = 1
σ6

((p1 × p2) · p3)2

r2
1r2

2r2
3

(7.9)

wherep1, p2, p3 are the three points in which the range measurements are taken, as defined in Section
7.2. The pointp1 is an arbitrary point, the sensor velocityV is constant, and the time between two
consecutive emissions of acoustic signals by the surface sensor∆t is also constant, so pointsp2 and
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p3 can be rewritten as

p2 =
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
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
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p1y + (V∆t − d1 + d2) sin(α2) + (V∆t − d2 + d3) sin(α3)

qz
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















T

whereα2 andα3 are the angles that line that joinsp1 andp2 and the line that joinsp2 andp3 form
with respect to the{xI } axis, respectively, andd1 andd2 are the distances between the point in which
the acoustic signal is emitted by the surface sensor and the point in which the response from the
target is received, as it was defined in Figure 7.1. As mentioned above, the point in which the signal
is received is considered to be the measurement point. For simplicity reasons, and without loss of
generality, we consider that the initial measurement pointis such thatp1x = p1y.

The anglesα2 andα3 must be chosen so that their values maximize the logarithm of(7.9). To
define these angles the cross and dot product of (7.9) can be expanded as

(p1 × p2) · p3 = qz(p1yp3x − p2yp3x + p2xp3y − p1xp3y + p1xp2y − p2xp1y) =

= qz · ((V∆t − d1 + d2)(V∆t − d2 + d3) + (V∆t − d1 + d2)d3+

+(V∆t − d2 + d3)d2 + d2d3) (cos(α2) sin(α3) − sin(α2) cos(α3))

The range distancesr2 andr3 can be written in terms ofr1 and the anglesα2 andα3,

r2
2 = r2

1 + (V∆t − d1 + d2)2 + 2p1x(V∆t − d1 + d2)(cos(α2) + sin(α2))

r2
3 =r2

1 + (V∆t − d1 + d2)2 + 2p1x(V∆t − d1 + d2)(cos(α2) + sin(α2))

+ 2p1x(V∆t − d2 + d3)(cos(α3) + sin(α3)) + 2(V∆t − d1 + d2)

· (V∆t − d2 + d3)(cos(α2) cos(α3) + sin(α2) sin(α3))

Moreover, we have that

p2
1x + p2

1y + q2
z = r2

1 =⇒ p1x = p1y =

√

r2
1 − q2

z

2

With the above notation the derivatives of (7.9) with respect to α2 andα3 can be computed
analytically to obtain the optimality conditions for the single target positioning problem with 3
range measurements by a single mobile surface sensor. Thesederivatives, after some straightforward
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computations, yield,

∂|FIM |
∂αi

=
2((p1 × p2) · p3) · ∂((p1 × p2) · p3)r2

1r2
2r2

3

r4
1r4

2r4
3

+
((p1 × p2) · p3)2r2

1

(

∂r2
2 · r2

3 + r2
2 · ∂r2

3

)

r4
1r4

2r4
3

= 0

(7.10)

with i = 2, 3, and

∂((p1 × p2) · p3)
∂α2

=qz · ((V∆t − d1 + d2)(V∆t − d2 + d3) + (V∆t − d1 + d2)d3+

(V∆t − d2 + d3)d2 + d2d3) (− sin(α2) sin(α3) − cos(α2) cos(α3))

∂((p1 × p2) · p3)
∂α3

=qz · ((V∆t − d1 + d2)(V∆t − d2 + d3) + (V∆t − d1 + d2)d3

+(V∆t − d2 + d3)d2 + d2d3) (cos(α2) cos(α3) + sin(α2) sin(α3))

∂r2
2

∂α2
= 2p1x (∆tV − d1 + d2) (cos(α2) − sin(α2))

∂r2
2

∂α2
= 0

∂r2
3

∂α2
=2p1x (∆tV − d1 + d2) (cos(α2) − sin(α2)) + 2(∆tV − d1 + d2) ·

(∆tV − d2 + d3) (cos(α2) sin(α3) − sin(α2) cos(α3))

∂r2
3

∂α3
=2p1x (∆tV − d2 + d3) (cos(α3) − sin(α3)) + 2(∆tV − d1 + d2) ·

(∆tV − d2 + d3) (sin(α2) cos(α3) − cos(α2) sin(α3))

If we now combine (7.10) for bothα2 andα3 it implies that

(V∆t − d1 + d2)(cos(α2) − sin(α2))(r2
2 + r2

3) + r2
2(V∆t − d1 + d2)(cos(α3) − sin(α3)) = 0 (7.11)

Therefore, with (7.11), we can compute the 2 next measurement points to maximize the FIM
determinant.
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7.4 Static target positioning

In this section we define the points or the trajectory that a moving surface sensor must follow in
order to maximize the accuracy with which a static underwater target is localized. The computation
of the optimal trajectory is done with two different approaches: i) when the immediate best next
measurement point for the current sensor trajectory is computed to update the FIM after the
elimination of the oldest one, and ii) when the whole trajectory, for a given number of range
measurements, is optimized. As commented in Section 7.2, itis considered that the FIM is
computed with a limited and constant number of range measurements, i.e., in the first scenario
the new measurement substitutes the oldest one of then measurement points with which the FIM
is computed, and in the second scenario the optimal trajectory is computed recursively for then
measurement points considering that the initial point of the new trajectory is the last point of the old
one.

7.4.1 Next optimal range measurement

Once the mission is running and we have an initial estimationof the target position, it is necessary
to determine the next measurement point, i. e., the direction that the single tracker must take in
order to maximize the FIM determinant and thus to minimize the positioning error. If we have a
given number of measurements and we want to know the next one,for a given velocity and sample
time, it is easy to define the analytical expression that provides this optimal value because the new
FIM determinant will have only one unknown parameter, the new angleαk+1 that defines the sensor
movement direction. As mentioned above, the single trackercomputes the FIM with a given number
of measurements, therefore it is necessary to delete the oldest measurement to be able to update the
FIM. The sensor speedV and the sampling time∆t are known, so the new measurement pointpk+1

can be written as:

pk+1 =
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wheredk anddk+1 are defined according to Section 7.2.
The derivative of the FIM determinant with respect to the newdirection angleαk+1 can be

obtained easily and quickly. We consider thatFIM∗k is the FIM computed with the currentk known
range measurements except the oldest one that has been deleted, andFIMk+1 the updated FIM that
has been computed with the new range measurement obtained from a point to be defined. This new
and unknown FIM yields,

FIMk+1 = FIM∗k + FIM ′k+1 (7.12)

where
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Thus, the problem to solve can be defined as,

α∗k+1 = argmax
αk+1

|FIMk+1| (7.13)
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The derivative of (7.13) with respect toαk+1 can be computed by decomposing the determinant
by its adjoints:

∂|FIMk+1|
∂αk+1

=

n
∑

i, j

(−1)i+ j |Ad ji, j(FIMk+1)| · Θ(i, j) (7.14)

whereΘ(i, j) = ∂FIMk+1(i, j)
∂αk+1

and |Ad ji, j(FIMk+1)| is the determinant of the adjoint matrix of
FIMk+1 with respect to the element (i, j). The derivatives of eachFIMk+1 element with respect
to αk+1 are actually the derivatives of each element of the matrixFIM ′k+1 with respect toαk+1. With
this clarification, these derivatives are defined next:

∂|FIMk+1(1, 1)|
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∂
(
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)

=
∂r2

k+1

∂αk+1
= 2

(

−pkx sin(αk+1) + −pky cos(αk+1)
)

υ = (V∆t − dk + dk+1)

Making (7.14) equal to 0 we can find the angle that makes the determinant ofFIMk+1 maximum.
It can be seen that although (7.14) depends only onαk+1 and an analytical solution may be defined
from this equation, the computation of the optimal solutionis not immediate. In a practical situation,
the optimal value ofαk+1 can be obtained by using the gradient of the FIM determinant,i.e., to use
(7.14) at the current sensor position to define the movement direction. In fact, the solution that the
gradient provides is very close to the one given by the analytical procedure.

Some examples of optimal sensor trajectories for a static target position are now studied for
different values of the velocity of the single tracker, the sampling time or the number of points with
which the FIM is constructed.
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Figure 7.2: (a) Trajectory followed by the sensor to reach the optimal trajectory that provides the maximum
FIM determinant. In the lower right corner, the final optimaltrajectory is shown in detail. (b) FIM determinant
computed at each iteration of the algorithm, i.e., for each new measurement point.

7.4.2 Simulation examples

For each of the following examples we consider that the optimal trajectories are computed forn = 5
range measurements but the procedure will be very similar for any number of measurements. The
sensor starts at the positionp1 = [170, 170, 200]T m and the target is placed at the origin of the
inertial coordinate frame, so that the target is placed at a depth of 200m.

Example 7.1:V = 3 m/sand∆t = 3 s

In this first example the constant speedV = 3 m/sand the sampling time∆t = 3 sare considered.
In Figure 7.2 (a) the trajectory followed by the sensor during the simulation is shown. It can be
noticed how the sensor describes circumferences while it isgetting closer to the target position. In the
lower right corner of Figure 7.2 (a) we can see the last 100 points of the simulation that correspond to
the stationary of the optimal trajectory, i.e., the trajectory that the sensor is repeating if we continue
simulating because this trajectory provides the largest accuracy possible for the approach adopted.
The values ofV and∆t determine the number of points (or equivalently, time) needed to reach
the optimal trajectory, as it will be seen in the forthcomingexamples. The optimal trajectory is a
circumference of 15 meters of radius around the target projection on the horizontal plane, moreover,
the size of this circumference depends directly on the sensor speedV, the sampling time∆t, and the
number of pointsn used for the computation of the FIM. It is interesting to comment, although it is
not shown, that the radius of the optimal trajectory increases with the number of measurements used
for the computation of the FIM. In Figure 7.2 (b) the FIM determinant computed at each iteration of
the algorithm is shown. It is easy to notice how the accuracy increases during the simulation because
the sensor describes a trajectory closer to the optimal one.After 7000 iterations the FIM determinant
has a constant value that means that the sensor has reached its optimal trajectory.�

Example 7.2:V = 5 m/sand∆t = 5 s

For this example the velocityV = 5 m/s and the sampling time∆t = 5 s are considered. In
this case 2000 points are simulated because the values ofV and∆t are larger, and then the optimal
trajectory is reached in less iterations than in the previous example.
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Figure 7.3: (a) Trajectory followed by the sensor to reach the optimal trajectory that provides the maximum
FIM determinant. (b) FIM determinant computed at each iteration of the algorithm, i.e., for each new
measurement point.

In Figure 7.3 (a) we can observe the trajectory followed by the sensor until the optimal trajectory
and the maximum FIM determinant are defined. In this case we can notice how this optimal
trajectory is reached in less iterations than in the previous example, in around 1000 iterations.
Again we can check how this final trajectory is a circumference around the target projection on
the horizontal plane, but the circumference has around 35 meters of radius, in contrast to the 15
meters of the previous example. Thus, with larger values ofV and∆t the final trajectory follows
a larger circumference and it is computed with less iterations of the algorithm. In Figure 7.3 (b)
the FIM determinant computed at each iteration of the algorithm is shown again. The accuracy
increases during the simulation because the sensor describes trajectories closer to the optimal one.
After approximately 1000 iterations, the FIM determinant has its maximum value, i.e., the sensor
has reached its optimal trajectory. In this example, the FIMdeterminant obtained is quite larger than
in the previous example, around 50 times larger, so it shows that it is adequate thatV and∆t be
large enough so that the optimal trajectory can be followed with a lower number of iterations and it
provides larger positioning accuracy (FIM determinant). Of course, the election ofV, ∆t andn will
be mission-dependent.�

7.4.3 Optimal trajectory

In this approach, we now determine the optimal trajectory tobe followed by the sensor so that the
nextn range measurements maximize the positioning accuracy of the underwater target. Therefore,
in contrast to the previous approach, the whole trajectory of n points is optimized and we have a
new target position estimate eachn · ∆t seconds. The same assumptions about the sensor speedV,
sampling time∆t, targetq, and noiseω still hold for the scenario at hand, the only difference is that
the optimization procedure deals withn range measurements to be computed, not just one.

The solution may be computed analytically from the derivatives of the FIM determinant with
respect to the anglesαi , i = 2, · · · , n, that determine the distance and relative orientation of two
consecutive measurements. It is clear that, considering that the initial sensor position is known, we
haven − 1 variablesαi , i = 2, · · · , n, andn − 1 derivatives with respect to these anglesαi , so that
we have an equation system with the same number of equations and unknowns. The complexity
of this approach resides in the fact that the process to obtain the solution of this equation system
is complex and tedious. Moreover, we must resort to numerical methods to solve it. Therefore,

175



Optimal Sensor Placement for Target Localization

the commented derivatives are used for a gradient optimization algorithm. These derivatives can be
defined, similarly to the previous section, as follows,

∂|FIM |
∂αi

=

3
∑

j,k

(−1) j+k|Ad j j,k(FIM)| · ∂FIM( j, k)
∂αi

(7.15)

where|Ad j j,k(FIM)| is the determinant of the adjoint matrix of theFIM with respect to the element
( j, k). Details are omitted but the procedure is very similar to that explained in Section 7.4.1. The
optimal solution is obtained with a gradient optimization algorithm with the Armijo rule. As it
will be explained in the forthcoming examples, it is interesting to notice that this approach provides
optimal trajectories very similar to those obtained in the previous examples. The difference lies
in that, for the approach at hand, the optimal trajectories are defined in quite less iterations of the
algorithm, and then, in a practical situation, the optimal trajectory would be reached faster.

At this point, it is interesting to mention that if the valuesof V, ∆t andn are the optimal ones
for the target depth so that the maximum theoretical FIM determinant can be obtained, the same
solution defined in Chapter 4 for surface sensor networks is recovered.

7.4.4 Simulation examples

Now some examples of optimal sensor trajectories are studied. For comparison purposes with
Section 7.4.2, the number of range measurements with which the FIM is computed will ben = 5, but
the procedure would be very similar for any number of measurements. The initial sensor position
is p1 = [170, 170, 200]T m and the target is placed at the origin of the inertial coordinate frame,
at a depth of 200m. For each iteration of the algorithm explained above, the first point of the
new trajectory of 5 points is the last one of the previous iteration, so for each iteration the next 4
measurement points are planned. The algorithm is recursively executed 30 times, so 120 points are
computed. Although this algorithm needs less iterations tocompute the optimal trajectory, and this
trajectory is reached with less measurement points, the computation of the solution is more complex.

Example 7.3:V = 3 m/sand∆t = 3 s

A constant speedV = 3 m/s and a sampling time∆t = 3 s are considered. In Figure 7.4 (a) the
trajectory followed by the sensor is shown. In this case the final trajectory is reached faster compared
to the result obtained in Example 7.1. We can notice how the optimal trajectory is not exactly a
circumference, the optimal measurement points are concentrated in two concentric circumferences
around the target projection, and the sensor moves between them in the optimal trajectory. However,
their size is very close to that of the circumference of Example 7.1. In the left upper corner of Figure
7.4 (a) the optimal trajectory is shown for the last 80 measurement points.

In Figure 7.4 (b) the FIM determinant computed for each of the30 iterations of the algorithm
is shown. We can notice how the maximum FIM determinant obtained is the same of Example 7.1,
but it is obtained with less iterations, and in a practical situation, the optimal trajectory would be
reached faster.�

Example 7.4:V = 5 m/sand∆t = 5 s

For this second example the velocity of the sensor and the sampling time are both considered to
be equal to 5, being the dual of Example 7.2. In Figure 7.5 (a) it is shown the trajectory followed
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Figure 7.4: (a) Trajectory followed by the sensor to reach the optimal trajectory that provides the maximum
FIM determinant. (b) FIM determinant computed at each iteration of the algorithm, i.e., for each new 5
measurement points.
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Figure 7.5: (a) Trajectory followed by the sensor to reach the optimal trajectory that provides the maximum
FIM determinant. (b) FIM determinant computed at each iteration of the algorithm, i.e., for each new 5
measurement points.

by the sensor. We can notice again how the final trajectory is not a circumference, and the sensor
moves between 2 circumferences. Again, this optimal trajectory is computed in less iterations than in
Example 7.2, so in a practical scenario the maximum accuracywould be obtained faster and with less
iterations of the optimization algorithm. Compared to the above Example 7.3, the final trajectory
defines circumferences of a larger radius, similarly to whathappened in the examples of Section
7.4.1. In Figure 7.5 (b) The FIM determinant obtained for each iteration of the algorithm is shown.
We can notice how the FIM determinant is larger than in the previous example, so for larger values
of V and∆t the determinant of the FIM increases too. Moreover, the maximum FIM determinant is
obtained in less iterations of the algorithm. Again the accuracy is similar to that obtained in Example
7.2, but the optimal trajectory is computed with a very significant less number of algorithm iterations
and measurement points.�

Therefore we can conclude that, for a static target, although both approaches provide the
same maximum FIM determinant and therefore the same positioning accuracy for similar mission
constraints, the latter approach computes the optimal trajectory in less iterations, and the optimal
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trajectory is reached with a few sensor movements and less measurement points. Despite of this,
this algorithm is more complex to implement and the computation of the optimal solution may take
more time than in the first approach, whose implementation isquite easier and faster.

7.5 Moving target positioning

The previous scenario is now extended to the problem of positioning an underwater target that is not
static. The target is considered to be moving in a straight line with a constant velocity, which must
be slower than that of the sensor. The latter assumption is a necessary condition so that the sensor
be able to track the target correctly. The two above different approaches are studied, i) when the
next best measurement is computed and then the FIM is updatedwith this new range measurement
deleting the oldest one, and ii) when the trajectory for a given numbern of future measurements is
planned to be optimal.

7.5.1 Next optimal range measurement

In this approach the immediate next measurement that maximizes the accuracy is computed,
considering a limited number of range measurements with which the FIM is computed, similarly
as it was studied in Section 7.4.1 for a static target. To obtain a good positioning accuracy the
sensor speed must be quite larger than the target one, moreover, as it will be studied in Section 7.5.3,
planning the trajectory for a given number of measurements,instead of just the next one, provides a
much better solution.

The target position is now defined byq = [Vt · ∆t, 0, 0]T m, whereVt is the target speed. With
this assumption the FIM becomes,

FIM =
1
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(7.16)

whereui j =
∂‖qi−pi‖
∂qi, j

, for i ∈ {1, ..., n} and j ∈ {x, y, z}, andqi corresponds to the target position at the
moment in which the measurementi is taken, i.e, the position in which the target sends the acoustic
signal to the surface sensor. The next measurement point is defined as in previous sections:
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Again, we opted for a recursive procedure to compute the derivative of the new FIM determinant
with respect to the new direction angleαk+1. The matrixFIM∗k is the FIM computed with the current
n known range measurement except the oldest one, andFIMk+1 is the FIM computed by adding the
new range measurement toFIM∗k. Then the updated and unknown optimal FIM yields,

FIMk+1 = FIM∗k + FIM ′k+1 (7.17)
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where

FIM ′k+1 =
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(7.18)

with i = k+ 1. Thus the problem to solve can be cast as

α∗k+1 = argmax
αk+1

|FIMk+1| (7.19)

The derivative of (7.19) with respect toαk+1 can be computed by decomposing the determinant
by its adjoints:

∂|FIMk+1|
∂αk+1

=

n
∑

i, j

(−1)i+ j |Ad ji, j(FIMk+1)| · Θ(i, j) (7.20)

whereΘ(i, j) = ∂FIMk+1(i, j)
∂αk+1

, and|Ad ji, j(FIMk+1)| is the determinant of the adjoint matrix ofFIMk+1

with respect to the element (i, j). The derivatives of eachFIMk+1 element with respect toαk+1

are actually the derivatives of each element ofFIM ′k+1 with respect toαk+1. These derivatives are
computed as explained in Section 7.4.1, so the details are omitted to avoid tedious repetition of the
same arguments. An analytical solution may be defined but we opted to use the gradient (7.20) to
define the sensor movements for simplicity reasons.

It is important to remark that this approach is useful and provides good results when the sensor
speedV is quite larger than the target velocity,Vt. If the difference is not significant enough, then the
present approach will not be adequate, and planning the optimal trajectory would be a much better
approach, as it is studied in the next examples.

7.5.2 Simulation examples

Different examples are now studied to show the performance of theabove algorithm when a moving
target must be localized. Similarly to the examples seen in Section 7.4, a constant speedV = 5 m/s
and a sampling time∆t = 5 s are considered. The initial sensor position isp1 = [170, 170, 200]T m
and the target is initially placed at the origin of the inertial coordinate frame, at a depth of 200m.
The algorithm is run for the next 5000 points, so 5000 iterations are carried out.

Example 7.5:Vt = 0.1 m/s, V = 5 m/sand∆t = 5 s

The target moves with a constant speedVt = 0.1 m/salong the{xI }-axis. In Figure 7.6 (a) we can
see the trajectory described by the sensor to maximize the positioning accuracy and how the sensor
tracks the target movements describing circumferences around its projection on the horizontal plane.
It is interesting how the optimal trajectory described by the sensor is very similar to that shown in
Example 7.2 for a static target, with the difference that in the example at hand, the optimal trajectory
is moving accordingly to the target displacement. In the capture of the upper right corner of Figure
7.6 (a), the trajectory for the last 100 simulated points is shown to demonstrate how the sensor is
moving around the target position. As aforementioned, thisgood result is possible due toV is much
larger thanVt. In Figure 7.6 (b) the FIM determinant obtained for each iteration of the algorithm is
shown. We can notice how the FIM determinant is very close to the value obtained for a static target
in Example 7.2, but in this case the final value is not a fix value, it is within a range of values due to
the target and sensor movements. We can see how the optimal trajectory is reached in around 2000
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Figure 7.6: (a) Trajectory followed by the sensor to reach the optimal trajectory that provides the maximum
FIM determinant. (b) FIM determinant computed at each iteration of the algorithm.

iterations of the optimization algorithm.�

Example 7.6:Vt = 1 m/s, V = 5 m/sand∆t = 5 s

This example aims at showing the problem presented by this approach when the target velocity
increases, so the difference between target and sensor speeds is reduced. Now the target speed is ten
times larger than in the previous example, but five times smaller than that of the sensor. There is still
a great difference between speeds but the sensor does not behave well as it has no reaction margin to
compensate the target movements, so it cannot follow a correct trajectory. Henceforth, this approach
is not adequate for this particular case.

In Figure 7.7 (a) we can see the trajectory described by the sensor. In the upper right corner of
Figure 7.7 (a) the last 100 measurement points are shown in detail. It is interesting how the trajectory
described by the sensor diverges from the target trajectoryand how it becomes very different from
what it could be expected, or what it was obtained in the previous example. The solution obtained
comes from the fact that the target speed is very large (or thedifference between speeds small) for
the approach adopted so that planning only the next measurement is not enough to describe a correct
trajectory to track and localize the underwater target. Therefore this approach gives a non-optimal
trajectory because the sensor is not able to track the target.

In Figure 7.7 (b) the FIM determinant is shown for each iteration of the algorithm. The FIM
determinant has a large initial value compared to the final one. As already mentioned, the sensor
trajectory diverges from that of the target, reducing quickly the FIM determinant. Thus, we can
conclude that this approach, for the mission constraints considered, is not adequate.�

Therefore, it is clear that if the target speed is much smaller than the sensor speed this approach
provides satisfactory results, but if the difference between those velocities is not significant, the final
trajectory is not as accurate as it should be. For this latterscenario, planning the trajectory for the
nextn future measurements provides a better result, close to the optimal one that would be obtained
for a static target.

Example 7.7:Vt = 1 m/s, V = 5 m/sand∆t = 5 sand 15 measurements.

If we cannot increase the sensor speed or decrease the targetspeed, and our design constraints

180



7.5. MOVING TARGET POSITIONING

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

12000

iterations

|F
IM

|

a) b)

0 1000 2000 3000 4000 5000

−1000

−800

−600

−400

−200

0

200

X−position coordinate (m) 

Y
−

p
o

si
ti

o
n

 c
o

o
rd

in
a

te
 (

m
) 

2580 2600 2620 2640 2660 2680 2700 2720 2740

−1040

−1020

−1000

−980

−960

−940

−920

−900

−880

Figure 7.7: (a) Trajectory followed by the sensor trying to obtain the maximum FIM determinant. (b) FIM
determinant computed at each iteration of the algorithm.
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Figure 7.8: (a) Trajectory followed by the sensor to reach the optimal trajectory that provides the maximum
FIM determinant. (b) FIM determinant computed for each iteration of the algorithm.

with respect to the target and sensor velocities are similarto those seen on the previous example, a
simple manner to (partially) avoid the abovementioned problem is to compute the FIM with a large
number of range measurements. By doing so the sensor can describe a larger trajectory and a larger
FIM determinant can be obtained. For the example at hand, we consider that the FIM is computed
with the last 15 range measurements.

In Figure 7.8 (a) the optimal trajectory is shown. It can be noticed how the trajectory described
by the sensor is a sequence of circumferences following the target trajectory. Although this trajectory
implies a good positioning accuracy and the sensor is able totrack the target, the difference of speeds
is still large for this approach and the tracking of the target is not adequately performed. The latter
can be seen on the capture of the upper left corner of Figure 7.8 (a), where the last 100 measurement
points are shown. It can be seen how the sensor is always behind the target and the circumferences
described are not around the target projection on the horizontal plane. The maximum positioning
accuracy would be obtained if the sensor was turning around the target, so the target is not tracked
with the largest accuracy that could be obtained for 15 rangemeasurements, moreover, this is a
very large number of range measurements for the computationof the FIM. In Fig. 7.8 (b) the FIM
determinant obtained at each iteration of the optimizationalgorithm is shown. The accuracy obtained
is large and the value is kept within a margin of accuracy during the tracking of the target, although
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a large number of measurements is required to obtain this result. Of course, if the variability on the
accuracy shown in Fig. 7.8 (b) is tolerable or not will be mission-dependent.�

Therefore, from the three examples shown it is clear that this approach is only valid when the
target moves much slower than the sensor or when the number ofmeasurements used to compute
the FIM is very large. In any other case, other strategies aremore adequate.

7.5.3 Optimal trajectory

In this scenario we find again an equation system ofn − 1 equations andn − 1 unknowns if an
analytical solution for the set of orientation anglesαi to be defined is searched in a similar manner
as in Section 7.4.3. These equations may be easily defined by computing the derivatives of the
determinant of (7.16) with respect to the anglesαi , i = 2, · · · , n, in the same way as it was defined
in (7.15). Therefore an analytical solution may be defined, although the procedure is complex and
it is necessary to resort to numerical methods to find the solution. For the above reason we opted
again for a gradient optimization method for the computation of the optimal trajectories. Details are
omitted to avoid tedious repetition of the same arguments commented in previous sections and we
proceed to the study of some examples.

7.5.4 Simulation examples

The same examples of Section 7.5.2 are now studied for comparison purposes of both methodologies.
For this reason, a constant speedV = 5 m/sand a sampling time∆t = 5 sare considered. The initial
sensor position isp1 = [170, 170, 200]T mand the target is initially placed at the origin of the inertial
coordinate frame, at a depth of 200m.

Example 7.8:Vt = 0.1 m/s, V = 5 m/sand∆t = 5 s

For this first example the target velocity isVt = 0.1 m/s. In Figure 7.9 (a) the optimal trajectory
followed by the sensor to track the target is shown. Similarly to Example 7.6, the sensor tracks
adequately the target since there is a great difference of speeds and the trajectory can be planned
without problems. In the lower right corner of Figure 7.9 (a)the last 100 measurement points are
shown in detail, so we can see how the sensor is describing circumferences around the target position
in a similar manner as if the target was in a position fix. In Figure 7.9 (b) the FIM determinant is
shown and it can be noticed that the accuracy obtained is larger than in Example 7.5, and it is
very close to the one obtained for a static target in Example 7.3. Although for both examples the
trajectory followed by the sensor is correct and provides a large positioning accuracy, in this case the
FIM determinant is larger because the trajectory is optimized for a given number of measurements,
not just one. Moreover, the optimal trajectory is reached inless iterations than in Example 7.5.�

Example 7.9:Vt = 1 m/s, V = 5 m/sand∆t = 5 s

This second example shows the advantage of using this approach when the target speed is larger,
i.e., the difference between target and sensor speeds is smaller. In Figure 7.10 (a) the trajectory
described by the sensor to track the target is shown. We can notice how in this example, in contrast
to the result of Example 7.6, the sensor adequately tracks the target describing circumferences around
the target projection on the horizontal plane, similarly tothat obtained in the previous example. In
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Figure 7.9: (a) Trajectory followed by the sensor to reach the optimal trajectory that provides the maximum
FIM determinant. (b) FIM determinant computed at each iteration of the algorithm, i.e., for each new 5
measurement points.
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Figure 7.10: (a) Trajectory followed by the sensor to reach the optimal trajectory that provides the maximum
FIM determinant. (b) FIM determinant computed at each iteration of the algorithm, i.e., for each new 5
measurement points.

the upper right corner the last 30 measurement points are shown, and these circumferences described
by the sensor around the target can be seen in detail. We can notice in Figure 7.10 (b) how the FIM
determinant obtained is very similar to the one obtained in the previous example and the one of
Example 7.4. Moreover, we can see how the accuracy is much larger than in Example 7.6.�

Therefore when the target is moving, it is clear that planning a number of future measurement
points is a better strategy than planning just the next one, so that a good positioning accuracy can be
obtained.

7.6 Conclusions

In this chapter the problem of single underwater target positioning by a single surface sensor has
been studied. The analysis of optimal sensor trajectories exploits the spatial and temporal diversity
of the measurements taken by the surface sensor and it has been done for two different scenarios,
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initially i) for a static target placed at a known position, and then ii) for a mobile target that is moving
in a straight line with constant velocity. Two different approaches for the computation of the optimal
trajectories have been tested considering a fixed numbern of range measurements with which the
FIM is computed. The first approach deals with the computation of the next measurement point that
maximizes the current FIM determinant, and once this optimal point is determined, the sensor is
driven to this position in which a new range measurement is taken and the FIM is updated, deleting
the oldest range measurement. The second approach optimizes the whole trajectory for the number
of range measurements considered, so in contrast to the previous approach, the sensor trajectory
is computed eachn measurements, instead of recomputing it after each new range measurement.
The examples showed that for a static target both approachesprovide similar accuracies and optimal
trajectories. However, for a mobile target, it was clear that the second approach was more reliable,
providing a similar solution to that defined for a static target, and with so much larger accuracy than
the first approach.
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Chapter 8

CONCLUSIONS

This work has addressed several estimation problems relevant to the positioning of underwater
targets. The problems however, are also of practical importance in other different fields such as
indoor, urban, and space navigation, whenever GPS measurements are not available, or unreliable,
and one wants to use an alternative range-based local navigation system. Therefore, the sensor
configurations that maximize the estimation accuracy have been theoretically defined to be applied
in a practical scenario.

This work offered a characterization of the solutions to the problem of optimal acoustic sensor
placement for single target positioning in 2D and 3D spaces,with special emphasis on the application
scenario of underwater target positioning in 3D by a surfacesensor network.

By assuming that the range measurements between the target and the acoustic sensors were
corrupted by white Gaussian noise, the variance of which wasdistance-dependent, conditions
were derived under which a sensor network maximizes the range-related information available
for positioning. This was done by exploiting tools from estimation theory whereby the problem
to be solved was converted into that of maximizing the determinant of a conveniently defined
Fisher Information Matrix (FIM). The core result obtained was an analytic characterization of the
conditions that must be met by a genericn sensor network in order for it to be optimal. This result
was instrumental in deriving strategies to deal with practical situations where, depending on the
mission at hand, the sensor network should satisfy several constraints.

One of the practical scenarios studied was an underwater target positioning, in which the sensor
network might be completely underwater or at the surface, oreven configured such that a sub-
group of sensors is at the sea surface and the remaining sub-group is close to the sea-bottom.
The relationship between optimal solutions in 2D and 3D spaces was clarified. It was further
shown that the optimal sensor configuration lends itself to an interesting geometrical interpretation
and that the spreading of the sensor configuration depends explicitly on the intensity of the range
measurement noise and the probabilistic distribution thatdefines the prior uncertainty in the target
position. Examples illustrated the application of the methodology in a number of applications-
relevant scenarios.

The previous analysis was extended to the problem of determining the optimal configuration
of a sensor network that will, in a well defined sense, maximize the range-related information
available for multiple underwater target positioning. To this effect, we assumed again that the
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range measurements were corrupted by white Gaussian noise with distance-dependent covariance. In
contrast to what has so far been published in the literature,we explicitly addressed the localization
problem both in 2D and 3D using a sensor array located in 2D and3D spaces too. The special
scenario of a surface sensor network (2D) was studied for underwater target positioning in the 3D
positioning problems. Furthermore, we incorporated directly in to the problem formulation the fact
that multiple targets must be simultaneously localized.

At the core of the techniques used are key concepts and methods from Pareto optimization
and estimation theory. From a mathematical standpoint, thekey problem that we solved was that
of maximizing, by proper choice of the sensor geometric configuration, convex combinations of
the logarithms of the determinants of the Fisher Information Matrices corresponding to estimation
problems for each target separately. This was done by resorting to an iterative optimization
algorithm. The methodology developed allowed for an in depth study of the tradeoffs that are
inherent to a multiple target localization problem. Simulation examples showed clearly how the
optimal sensor location depends on the size of the area in which the targets operate, the type of
measurement noise, and the “level of importance” attached to each of the targets; the latter aims
to capture the fact that tradeoffs are inevitable, and therefore different levels of accuracy may be
required in the localization of the different targets. The analysis was extended to the situation in
which the prior knowledge about the targets is described by probability distribution functions and it
was shown that the spreading of the sensor configuration depends explicitly on the intensity of the
range measurement noise and the probabilistic distribution that defines the prior uncertainty in the
target positions.

The special scenario in which the target positioning is performed by angle measurements in 3D
was studied as a natural extension of the previous methodology. The measurements of the azimuth
and elevation angles were considered to be corrupted by white Gaussian noise, the variance of which
was distance-dependent, and conditions were derived underwhich a sensor network maximizes
the angle-related information available for positioning.The optimal formations and conclusions
obtained for this problem were very similar to those of the range-measurement problem, so only a
brief analysis has been developed to avoid tedious repetition of the same arguments exploited in the
range-measurement problems.

Finally the problem of underwater target positioning usinga single surface sensor was addressed.
For this problem two different approaches were studied. The first one i) when just the next
measurement point, and thus the next sensor movement, must be chosen so as the new FIM
determinant be maximum considering the past measured ranges, and the second one ii) in which
the nextn measurements are planned so as they maximize the FIM determinant. Both approaches
were studied for a static and a moving target, showing that for a static target both approaches provide
similar optimal trajectories; however, for the second approach the optimal trajectory is reached faster.
In the case of a moving target, the examples showed that planning the trajectorya priori is a much
better alternative that implies similar results to those obtained for a static target. For the next best
measurement approach, the results were not as accurate as itcould be expected, and this approach
only provides satisfactory results if the sensor speed is much larger than the target one, or if the
FIM is computed with a large number of range measurements. Consequently, it was clear that for a
moving target it was necessary to plan the trajectory to obtain a good positioning accuracy.

To sum up, in this work the problem of single and multiple target localization has been studied
both in 2D and 3D. Analytical and numerical solutions for optimal sensor placement and optimal
sensor trajectory, depending on whether a sensor network orjust a single sensor is used, have been
defined. Moreover, the problem in which the covariance errorcan be distance-dependent has been
tackled as well. The potential of the methodology developedhas been illustrated with multiple
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examples for the different problems and scenarios, with special emphasis on the application scenario
of underwater target localization by acoustic sensors.

There are several topics that were not addressed in the report and warrant further research.

8.1 Future Work: Multiple Target Tracking and Cooperative
Navigation

In the last few years there has been an increasing interest inthe use of multiple underwater vehicles
to work in cooperative missions and tasks. The use of multiple vehicles presents many potential
advantages compared with a single vehicle. For instance, operations such as searching or surveying
can be developed in less time, in addition the area coverage can be increased depending on the
number of vehicles employed. In this sense, fleets of underwater gliders have started to be used to
gather oceanographic data, and groups of AUVs have been usedto perform surveying and de-mining
missions successfully, showing the potential on using multiple vehicles simultaneously.

Central to these kind of tasks are the navigation capabilities of each vehicle and its navigation
systems, that in a classical scenario can be possibly aided with some underwater acoustic positioning
system. This scenario can be improved in a great manner if inter vehicle communications and
ranging are used in order to increase the overall group navigation performance. A group of
underwater robots might be able to navigate with higher precision, as compared to each individual
vehicle navigation system, if they can communicate certaininformation with all the vehicles or with
their neighbours.

This leads to the concept of cooperative navigation, where there is a synergy between the
navigation systems of the multiple vehicles operating simultaneously, allowing them to navigate
better than they would do on their own. There has been some theoretical and experimental works
on this direction but it is expected to see many more in the near future, see for example [21], [17],
[28], [72], [93]. There are many fundamental theoretical and practical questions that still need to
be addressed. Particularly important in the underwater environment is the characterization of the
communication requirements in terms of bandwidths and communication topologies that are needed
in order to achieve a certain navigation performance [33].
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Appendix A

THE INFORMATION INEQUALITY

In this Appendix it is computed the Fisher Information Matrix when the measurement error is
modelled by Gaussian, zero mean additive noise with an addedterm that depends on the distance
between the two objects that exchange range data.

Let q = [qx, qy, qz]T in 3D, or q = [qx, qy]T in 2D, be the position of an arbitrary target;pi =

[pix, piy,]T or pi = [pix, piy,, piz]T , with i = 1, 2, .., n, the position of thei-th acoustic ranging sensor,
andωi the corresponding measurement noise. Stated mathematically,

ω = (I + ηδ(r(q)γ)) · ω0 (A.1)

whereω is measurement noise,ω0 is a zero mean Gaussian processN(0,Σ0) with Σ0 = σ
2 · I , I is the

identity matrix,r(q) is the vector of actual ranges (abbv.r), andη andγ are the modelling parameters
for the distance-dependent noise component. In the above,δ is the operatordiag, that either converts
a square matrix into a vector consisting of its diagonal elements, or converts a vector into a square
diagonal matrix whose diagonal components are the array elements. With these assumptions, the
measurement noise covariance matrix is given by

Σ = E
{

ω · ωT
}

= E
{

(I + ηδ(r(q)γ))ω0 · ωT
0 (I + ηδ(r(q)γ))T

}

=

= (I + ηδ(r(q)γ)) E
{

ω0 · ωT
0

}

(I + ηδ(r(q)γ))T
=

= (I + ηδ(r(q)γ))
∑

0

(I + ηδ(r(q)γ)) = σ2 (I + ηδ(r(q)γ))2

(A.2)

We denote byzi the measurements of the actual ranger i(q), corrupted by additive noiseωi . With
the above notation, the measurement model adopted is given by

zi = |q− pi | + ωi = r i(q) + ωi (A.3)

Stated in simple terms, the FIM captures the amount of information that measured data provide
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about an unknown parameter (or vector of parameters) to be estimated. Under known assumptions,
the FIM is the inverse of the CRLB, which lower bounds the covariance of the estimation error that
can possibly be obtained with any unbiased estimator. Thus,minimizing the CRLBmay yield (by
proper estimator selection) a decrease of uncertainty in the parameter estimation. We therefore focus
on the computation of the CRLB (or, equivalently the FIM) forthe problem at hand.

Formally, letq̂(z) be any unbiased estimator ofq, that is, a mapping ˆq : ℜn → ℜ3 between the
observationsz and the target position space such thatE{q̂} = q for all q ∈ ℜ3, whereE{·} denotes
the average operator. Letpq(z) be the likelihood function that defines the probability of obtaining
the observationz given that the true target position isq. It is well known that under some regularity
conditions onpq(z) the following inequality holds:

Cov{q̂} ≥ FIM(q)−1 = CRB(q) (A.4)

where
Cov{q̂} = E{(q̂− q)(q̂− q)T}, (A.5)

FIM (q) (often abbreviated simply as FIM) is the Fisher Information Matrix defined as

FIM(q) = E
{

(∇q log pq(z))(∇q log pq(z))T
}

, (A.6)

andCRB(q) is the Cramer-Rao Bound matrix. In the above,∇q log pq denotes the gradient of the log
of the likelihood function with respect to the unknown parameterq. Taking the trace of both sides
of the covariance inequality yields

var{q̂} := tr(Cov{q̂}) = tr(E{(q̂− q)(q̂− q)T}) ≥ tr(FIM(q))−1 (A.7)

that sets a lower bound on the mean-square error of any unbiased estimator.

Equipped with the above notation and tools of estimation theory, and following standard
procedures, the FIM corresponding to the problem of range-based single target positioning in 2D
or 3D can be computed from the likelihood functionpq(z) given by

pq(z) =
1

(2π)
n
2 |Σ| 12

exp

{

−1
2

(z− r(q))T Σ−1 (z− r(q))

}

(A.8)

wheren is the number of receivers,z = [z1, z2, ..., zn]T consists ofn measured ranges, andr(q) are
the actual ranges. Taking the logarithm of (A.8) yields

log pq = − log
(

(2π)
m
2 |Σ| 12

)

− 1
2

(z− r(q))T Σ−1 (z− r(q)) (A.9)

At this point it is necessary to introduce some concepts in Matrix Differential Calculus and
Derivations to derive (A.9) with respect toq. For this purpose it is necessary to determine the
gradient of the functionf : ℜn→ℜ given by

f (x) :=
1
2

(r − r (x))T Σ−1 (r − r (x)) (A.10)

whereΣ is taken as a constant andr (x) =
[

r1 (x) . . . rn (x)
]

∈ ℜn is the vector of range
measurements betweenx and the landmarks whose coordinates are defined bypi , i.e., with
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componentsr i(x) = ‖x− pi‖, with i ∈ {1, · · · , n}. The first differential of f yields

d f (x) =
1
2

d (r − r (x))T Σ−1 (r − r (x)) +
1
2

(r − r (x))T Σ−1d (r − r (x)) =

= −1
2

dr (x)T Σ−1 (r − r (x)) − 1
2

(r − r (x))T Σ−1dr (x) = − (r − r (x))T Σ−1dr (x)

(A.11)

The differential ofr (x) is given by the differential of its components,dr (x) =
[

dr1 (x) · · · dr (x)
]T

,
dri (x) = d ‖x− pi‖ where

d ‖x− pi‖ = d
(

(x− pi)
T (x− pi)

)
1
2
=

1
2

(

(x− pi)
T (x− pi)

)− 1
2 d

(

(x− pi)
T (x− pi)

)

=

=
1

2r i (x)
2 (x− pi)T dx=

1
r i (x)

(x− pi)T dx

(A.12)

Then,

dr (x) =



























1
r1(x) (x− p1)T dx

...
1

rn(x) (x− pn)T dx


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


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=
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
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









dx= δ (r (x))−1 CTdx (A.13)

and
d f (x) = − (r − r (x))T Σ−1dr (x) = − (r − r (x))T Σ−1δ (r (x))−1 CTdx (A.14)

which has the formd f (x) = aTdx. According to theFirst Identification Theoremin [54], the gradient
of the MLR cost function is given by

∇ f (x) = −Cδ (r (x))−1 Σ−1 (r − r (x)) . (A.15)

From the above results and considering that∇qr(q) =
[

∇qr1(q) . . .∇qrn(q)
]

,

∇r i(q) =
1
2

(qTq− 2pT
i q+ pT

i pi)−
1
2 (2qT − 2pT

i ) =
1

r i(q)
(q− pi)T = δ(r)−1(q1T

m− p)T = δ(r)−1CT

whereC = (q1T
m− p) ∈ ℜnxm, n is the number of sensors,m = 3 in 3D problems andm = 2 in 2D

problems, andp is the vector with the sensor positions, the latter being defined inℜnxm. Making
Σ−1 = B2, the derivative of (A.9) with respect toq yields

∇q log pq = −
1
2
∇q

[

(z− r(q))T Σ−1 (z− r(q))
]

=

= (z− r(q))T Σ−1∂r(q) = (z− r(q))T B · B · δ(r)−1CT

(A.16)

It is not necessary to deriveB with respect toq because the noise model depends on the actual
range, not the measured one. The FIM is computed from the expected value of the covariance matrix
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of (A.16):

FIM = I (θ) = E
{

∇θ log pθ · ∇θ log pT
θ

}

= E
{

Cδ(r)−1B2 (z− r(q)) (z− r(q))T B2δ(r)−1CT
}

=

= Cδ(r)−1B2 · E
{

(z− r(q)) (z− r(q))T
}

· B2δ(r)−1CT =

= Cδ(r)−1B2 · (I + ηδ(rβ))E
{

ω0ω
T
0

}

· (I + ηδ(rβ))TB2δ(r)−1CT =

= Cδ(r)−1B2 · σ2 · I · (I + ηδ(rβ))2 · B2δ(r)−1CT = C(δ(r)Σδ(r))−1CT

Then the expression of the FIM yields,

FIM = E
{

∇q log pq∇q log pT
q

}

= C (δ(r)Σδ(r))−1 CT (A.17)

Thus the expression of the FIM with distance-dependent covariance is well defined and it has an
structure very similar to the one with constant covariance.
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Appendix B

PARETO-OPTIMALITY

For the sake of completeness, this Appendix contains a very brief introduction to some key concepts
and results on multiobjective optimization and Pareto-optimality. The exposition is largely based on
the summary in [45].

Because we are interested in the problem of multi-target positioning, we are naturally led to adopt
a multiobjective optimization strategy. We adopt the concept of Pareto optimality introduced below.
LetX be an arbitrary non-empty set and letfi : X → R+ : i = 1, 2, ..., n ben nonnegative functionals
defined onX. A point x0 ∈ X is said to be Pareto-optimal with respect to the vector-valued criterion
f := ( f1, f2, ..., fn) if there does not existx ∈ X such that

fi(x) ≤ fi(x0) for all i = 1, 2, ..., n

and
fk(x) < fk(x

0) for some k ∈ 1, 2, .., n

From the above it follows that if one wishes to find pointsx ∈ X such that, in some sense,x jointly
minimizes all the components off , then one must examine the Pareto-optimal points. It is interesting
to point that in the literature on economics a Pareto-optimal outcome is one such thatno person could
be made better off without having someone else worse off.

When Pareto-optimal solutions do exist, in general they arenot unique. The determination of the
Pareto-optimal set for a given multiobjective problem plays a key role in that it allows for a thorough
study of the tradeoffs involved in the problem at hand. The next scalarization result in [22] is of
crucial importance in characterizing this set.

Scalarization result. Suppose thatX is a normed linear space and that each component off :=
( f1, f2, ..., fn) is a convex function onX. Let

Λ := {λ ∈ Rn : λi ≥ 0, λ1 + λ2 + ... + λn = 1}

and for eachλ ∈ Λ consider the following scalar-valued optimization problem:

inf{λT f (x) : x0 ∈ X} (B.1)
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Suppose thatx0 ∈ X is Pareto-optimal with respect to the vector-valued criterion f := ( f1, f2, ..., fn).
Then, there existsλ ∈ Λ such thatx0 is a solution to the scalar optimization problem above.
Conversely, givenλ ∈ Λ if the scalar optimization problem has at most one solutionx0 ∈ X, thenx0

is Pareto-optimal with respect tof (x).
The above result yields a powerful methodology to compute all Pareto-optimal points. In

this work, the scalar functionsfi are related to the logarithms of the determinants of the Fisher
Information Matrices corresponding to each of the targets being localized (notice that we wish to
maximize the determinants jointly, rather than minimize them; in this case, however, an obvious
modification of the result above applies).
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Appendix C

GRADIENT OF THE FIM DETERMI-
NANT

This Appendix contains the derivatives of the logarithm of the FIM determinant with respect to the
position coordinates of thei− th sensor used in Chapter 4 and Chapter 5 for the gradient optimization
algorithm. For the sake of completeness the FIM is defined again,

FIM = C(δ(r)Σδ(r))−1CT (C.1)

whereC = (q1T
n − p) ∈ ℜ3xn, 1n ∈ ℜnx1 is a vector of 1s, andp is the vector of sensor positions, the

latter being defined inℜ3xn, and with

Σ = σ2 (I + ηδ(r(q)γ))2
= δ

(

σ2 ·
(

1+ ηrγ1
)2
, · · · , σ2 ·

(

1+ ηrγn
)2
)

(C.2)

Expanding (C.1) we find,

FIM =
1
σ2
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(C.3)

whereΓi = 1/
(

1+ ηrγi
)

for i ∈ {1, ..., n}. For the sake of simplicity the FIM described in (C.3) is
rewritten as,

FIM =





















FIM11 FIM12 FIM13

FIM12 FIM22 FIM23

FIM13 FIM23 FIM33





















(C.4)

where the meaning of each FIM element is clear from the context.
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The FIM determinant can be written now,

|FIM | =FIM11FIM22FIM33+ 2FIM12FIM13FIM23

− FIM2
23FIM11 − FIM2

13FIM22 − FIM2
12FIM33

(C.5)

and the derivative of its logarithm with respect toξ, whereξ = pix, piy, piz, becomes

∂ log |FIM |
∂ξi

=
1
|FIM |

∂|FIM |
∂ξi

(C.6)

where

∂|FIM |
∂ξi

=
∂FIM11

∂ξi
FIM22FIM33 +

∂FIM22

∂ξi
FIM11FIM33+

∂FIM33

∂ξi
FIM22FIM11+

2
∂FIM12

∂ξi
FIM23FIM13 + 2

∂FIM13

∂ξi
FIM23FIM12+ 2

∂FIM23

∂ξi
FIM12FIM13

− ∂FIM11

∂ξi
FIM2

23 − 2
∂FIM23

∂ξi
FIM23FIM11−

∂FIM22

∂ξi
FIM13−

− 2
∂FIM13

∂ξi
FIM13FIM22 −

∂FIM33

∂ξi
FIM12− 2

∂FIM12

∂ξi
FIM12FIM33

(C.7)

To finalize with the analysis of the derivatives of the log FIMdeterminant with respect to the
sensor position coordinates it only remains to define the derivatives of the elements of the FIM with
respect to these variables, so that the whole derivative be defined explicitly. We define next the
derivative of each FIM component with respect topix, piy, piz, respectively.

∂FIM11

∂pix
=

























−2(qx − pix)
(

(

qy − piy

)2
+ (qz − piz)2

)

r4
i

























· Γ2
i +

(qx − pix)2

r2
i

·
∂Γ2

i

∂pix

∂FIM11

∂piy
=

















2(qx − pix)2
(

qy − piy

)

r4
i

















· Γ2
i +

(qx − pix)2

r2
i

·
∂Γ2

i

∂piy

∂FIM11

∂piz
=













2(qx − pix)2 (qz− piz)

r4
i













· Γ2
i +

(qx − pix)2

r2
i

·
∂Γ2

i

∂piz

∂FIM22

∂pix
=





















2
(

qy − piy

)2
(qx − pix)

r4
i





















· Γ2
i +

(

qy − piy

)2

r2
i

·
∂Γ2

i

∂pix

∂FIM22

∂piy
=

















−2
(

qy − piy

) (

(qx − pix)2 + (qz − piz)2
)

r4
i

















· Γ2
i +

(

qy − piy

)2

r2
i

·
∂Γ2

i

∂piy
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∂FIM22

∂piz
=





















2
(

qy − piy

)2
(qz − piz)

r4
i





















· Γ2
i +

(

qy − piy

)2

r2
i

·
∂Γ2

i

∂piz

∂FIM33

∂pix
=













2(qz− piz)2 (qx − pix)

r4
i













· Γ2
i +

(qz − piz)2

r2
i

·
∂Γ2

i

∂pix

∂FIM33

∂piy
=

















2(qz − piz)2
(

qy − piy

)

r4
i

















· Γ2
i +

(qz − piz)2

r2
i

·
∂Γ2

i

∂piy

∂FIM33

∂piz
=

























−2(qz − piz)
(

(qx − pix)2 +
(

qy − piy

)2
)

r4
i

























· Γ2
i +

(qz− piz)2

r2
i

·
∂Γ2

i

∂piz

∂FIM12

∂pix
=

























(

qy − piy

)

(

(qx − pix)2 −
(

qy − piy

)2 − (qz− piz)
2
)

r4
i

























· Γ2
i +

(qx − pix)
(

qy − piy

)

r2
i

·
∂Γ2

i

∂pix

∂FIM12

∂piy
=

























(qx − pix)
(

− (qx − pix)2 +
(

qy − piy

)2 − (qz− piz)2
)

r4
i

























· Γ2
i +

(qx − pix)
(

qy − piy

)

r2
i

·
∂Γ2

i

∂piy

∂FIM12

∂piz
=

















2(qx − pix)
(

qy − piy

)

(qz − piz)

r4
i

















· Γ2
i +

(qx − pix)
(

qy − piy

)

r2
i

·
∂Γ2

i

∂piz

∂FIM13

∂pix
=

























(qz − piz)
(

(qx − pix)2 −
(

qy − piy

)2 − (qz− piz)2
)

r4
i

























· Γ2
i +

(qx − pix) (qz− piz)

r2
i

·
∂Γ2

i

∂pix

∂FIM13

∂piy
=

















2(qx − pix)
(

qy − piy

)

(qz − piz)

r4
i

















· Γ2
i +

(qx − pix) (qz− piz)

r2
i

·
∂Γ2

i

∂piy

∂FIM13

∂piz
=

























(qx − pix)
(

− (qx − pix)2 −
(

qy − piy

)2
+ (qz − piz)2

)

r4
i

























· Γ2
i +

(qx − pix) (qz − piz)

r2
i

·
∂Γ2

i

∂piz

∂FIM23

∂pix
=

















2(qx − pix)
(

qy − piy

)

(qz − piz)

r4
i

















· Γ2
i +

(

qy − piy

)

(qz − piz)

r2
i

·
∂Γ2

i

∂pix
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∂FIM23

∂piy
=

























(qz − piz)
(

− (qx − pix)2 +
(

qy − piy

)2 − (qz − piz)2
)

r4
i

























· Γ2
i +

(

qy − piy

)

(qz − piz)

r2
i

·
∂Γ2

i

∂piy

∂FIM23

∂piz
=

























(

qy − piy

)

(

− (qx − pix)2 −
(

qy − piy

)2
+ (qz − piz)2

)

r4
i

























· Γ2
i +

(

qy − piy

)

(qz− piz)

r2
i

·
∂Γ2

i

∂piz

and finally,

∂Γ2
i

∂pix
=

2ηγrγ−2
i (qx − pix)

σ2 (1+ ηrγ)3

∂Γ2
i

∂piy
=

2ηγrγ−2
i

(

qy − piy

)

σ2 (1+ ηrγ)3

∂Γ2
i

∂piz
=

2ηγrγ−2
i (qz − piz)

σ2 (1+ ηrγ)3

Therefore the derivatives of the logarithm of the FIM determinant with respect topix, piy, piz are
well defined and can be used explicitly for the gradient optimization algorithm of Chapter 4 and
Chapter 5.
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Appendix D

GRADIENT OF THE TRACE OF THE
CRLB MATRIX

This Appendix contains the derivatives of the trace of the CRB with respect to the anglesαi

and βi of the i − th acoustic sensor. These derivatives are used in Chapter 6 forthe gradient
optimization algorithm to determine the optimal sensor placement for single target positioning with
AE-measurements with uncertainty in the target location. For the sake of completeness the FIM for
AE-measurements is defined again,

FIM = E
{

∇q log pq · ∇q log pT
q

}

= FTΣ−1F, (D.1)

with
Σ = δ

(

(

σ2
α · (1+ ηrγ)2 , σ2

β · (1+ ηrγ)
)T

)

(D.2)

and

F =





















































− sin(α1)
r1 cos(β1)

cos(α1)
r1 cos(β1) 0

− sin(β1) cos(α1)
r1

− sin(β1) sin(α1)
r1

− cos(β1)
r1

...
...

...
− sin(αn)
rn cos(βn)

cos(αn)
rn cos(βn) 0

− sin(βn) cos(αn)
rn

− sin(βn) sin(αn)
rn

− cos(βn)
rn





















































(D.3)

whereF ∈ ℜ2nx3, Σ ∈ ℜ2nx2n, andCRB= FIM−1. The sensors are considered to be placed at the sea
surface so that the range distancer i of the i − th sensor can be rewritten asr i = qz/ sin(βi), whereqz

is the target depth andβi is the elevation angle, as described in Chapter 6. For the sake of simplicity
the FIM described in (D.1) is rewritten as,

FIM =





















FIM11 FIM12 FIM13

FIM12 FIM22 FIM23

FIM13 FIM23 FIM33





















(D.4)
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where

FIM11 =

n
∑

i=1





















sin2 (αi) sin2 (βi)

q2
z cos2 (βi) · σ2 ·

(
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(

qz

sin(βi )

)γ)2
+

sin4 (βi) cos2 (αi)

q2
z · σ2 ·

(
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(

qz

sin(βi)

)γ)2





















FIM22 =

n
∑
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


















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(
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q2
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(

qz
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



















FIM33 =

n
∑

i=1




















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q2
z · σ2 ·

(
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(

qz
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



















FIM12 =

n
∑
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
















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(
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(
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






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





FIM13 =

n
∑

i=1




















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(

qz
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
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
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
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FIM23 =
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∑
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
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















With the above notation, the trace of the CRB matrix yields

tr(CRB) =
FIM22FIM33− FIM2

23

|FIM | +
FIM11FIM33− FIM2

13

|FIM | +
FIM11FIM22− FIM2

12

|FIM | (D.5)

and its derivatives with respect toξ, whereξ = αi , βi , become

∂tr(CRB)
∂ξi

=

(

∂FIM22

∂ξi
FIM33+

∂FIM33

∂ξi
FIM22 − 2

∂FIM23

∂ξi
FIM23

+
∂FIM11

∂ξi
FIM33+

∂FIM33

∂αi
FIM11 − 2

∂FIM13

∂αi
FIM13 +

∂FIM11

∂ξi
FIM22

+
∂FIM22

∂ξi
FIM11− 2

∂FIM12

∂ξi
FIM12

)

|FIM |−1 + tr(CRB) · ∂|FIM |
∂ξi

|FIM |−1

(D.6)
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where

∂|FIM |
∂ξi

=
∂FIM11

∂ξi
FIM22FIM33+

∂FIM22

∂ξi
FIM11FIM33+

∂FIM33

∂ξi
FIM22FIM11

+ 2
∂FIM12

∂ξi
FIM23FIM13 + 2

∂FIM13

∂ξi
FIM23FIM12 + 2

∂FIM23

∂ξi
FIM12FIM13

− ∂FIM11

∂ξi
FIM2

23 − 2
∂FIM23

∂ξi
FIM23FIM11−

∂FIM22

∂ξi
FIM13

− 2
∂FIM13

∂ξi
FIM13FIM22 −

∂FIM33

∂ξi
FIM12− 2

∂FIM12

∂ξi
FIM12FIM33

(D.7)

To finalize with the analysis of the derivatives of the trace of the CRB matrix with respect to the
anglesαi andβi it only remains to define the derivatives of the elements of the FIM with respect
to these angles, so that the whole derivatives be defined explicitly. We define next the derivative of
each FIM component with respect toαi andβi , respectively.

∂FIM11

∂αi
=

(

2 sin(αi) cos(αi) sin2(βi)
cos2(βi)

− 2 sin(αi) cos(αi) sin4(βi)

)

· Γ2
i

∂FIM11

∂βi
=

(

2 sin(βi) sin2(αi)
cos(βi)

− 2 sin3(βi) sin2(αi)
cos3(βi)

+ 4 sin3(βi) cos(βi) cos2(αi)

)

· Γ2
i

+

(

sin2 (αi) sin2 (βi)
cos2 (βi)

+ sin4 (βi) cos2 (αi)

)

·
∂Γ2

i

∂βi

∂FIM22

∂αi
=

(

−2 sin(αi) cos(αi) sin2(βi)
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i
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· Γ2
i

+

(
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)

·
∂Γ2

i
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= 0
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∂βi
=

(
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)
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(
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)

·
∂Γ2

i
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∂FIM12

∂αi
=

















(

cos2(αi) − sin2(αi)
)

sin2(βi)

cos2(βi)
+

(

cos2(αi) − sin2(αi)
)

sin4(βi)

















· Γ2
i

∂FIM12

∂βi
= Γ2

i ·
(

2 sin(βi) sin(αi) cos(αi)
cos(βi)

+ 4 sin3(βi) cos(βi) cos(αi) sin(αi)

−2 sin3(βi) sin(αi) cos(αi)
cos3(βi)

)

+ sin(αi) cos(αi)

(

sin2 (βi)
cos2 (βi)

+ sin4 (βi)

)

∂Γ2
i

∂βi

∂FIM13

∂αi
= − sin3(βi) cos(βi) sin(αi) · Γ2

i

∂FIM13

∂βi
= cos(αi)

(

3 sin2(βi) cos2(βi) − sin4(βi)
)

· Γ2
i + sin3(βi) cos(βi) cos(αi) ·

∂Γ2
i

∂βi

∂FIM23

∂αi
= − sin3(βi) cos(βi) cos(αi) · Γ2

i

∂FIM23

∂βi
= sin(αi)

(

3 sin2(βi) cos2(βi) − sin4(βi)
)

· Γ2
i + sin3(βi) cos(βi) sin(αi) ·

∂Γ2
i

∂βi

and finally,

∂Γ2
i

∂βi
=

2ηγ
(

qz

sin(βi )

)γ

q2
zσ

2 tan(βi)
(

1+ η
(

qz

sin(βi)

)γ)3

Therefore the derivatives of the CRB trace with respect toαi andβi are well defined and can
be used explicitly for the gradient optimization algorithmof Chapter 6 to define optimal sensor
networks for underwater positioning with uncertain targetlocation.
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